
A framework for explaining query answers in
DL-Lite

Federico Croce and Maurizio Lenzerini

Dipartimento di Ingegneria Informatica, Automatica e Gestionale “Antonio Ruberti”
Sapienza Università di Roma, Rome, Italy.
{croce, lenzerini}@diag.uniroma1.it

Abstract. An Ontology-based Data Access system is constituted by an
ontology, namely a description of the concepts and the relations in a
domain of interest, a database storing facts about the domain, and a
mapping between the data and the ontology. In this paper, we consider
ontologies expressed in the popular DL-Lite family of Description Logic,
and we address the problem of computing explanations for answers to
queries in an OBDA system, where queries are either positive, in particu-
lar conjunctive queries, or negative, i.e., negation of conjunctive queries.
We provide the following contributions: (i) we propose a formal, compre-
hensive framework of explaining query answers in OBDA systems based
on DL-Lite; (ii) we present an algorithm that, given a tuple returned as
an answer to a positive query, and given a weighting function, examines
all the explanations of the answer, and chooses the best explanation ac-
cording to such function; (iii) we do the same for the answers to negative
queries. Notably, on the way to get the latter result, we present what
appears to be the first algorithm that computes the answers to negative
queries in DL-Lite.

1 Introduction

Ontology-based Data Access [10, 11] (OBDA) is a relatively new paradigm for
accessing data by posing queries over a formal conceptualization of the domain
of interest. The intrinsically declarative nature of this approach has several ben-
efits and peculiar features that characterizes both the functionality of the system
managing an OBDA application, and the services exposed by it. Indeed, in its
most elementary form, the one we refer to in this paper, an OBDA system can
be seen as constituted by two components, called the TBox and the ABox, re-
spectively. The TBox is a description of the concepts and the relations that are
relevant in the domain of the information system under consideration, and the
ABox is the representation of the data about the domain, i.e., the data regarding
the instances of the concepts and the relations.

In a traditional database system, the ABox would represent a complete repre-
sentation of the data (Closed World Assumption), while in the case of an OBDA
system, the ABox is a set of data that is valid for the domain, but is not complete
(Open World Assumption): more data can be derived by using the axioms in the

TBox. In what follows, we refer to the pair 〈TBox, ABox〉 collectively as “the
ontology”, and, as usual, we assume that such ontology is expressed in terms
of a Description Logic of the DL-Lite family [4]. Most of the research carried
out in the last years on OBDA has concentrated on query answering [5, 4, 7,
13], i.e., on the design of algorithms for computing the answers to queries posed
to an ontology, for the case of basic forms of queries, in particular conjunctive
queries. Note, however, that even for such simple queries, this problem is more
challenging than the classical query answering problem, precisely because of the
presence of the TBox axioms. Consequently, the task of explaining why a certain
tuple is an answer to a query is far from being trivial. For instance, if b is a
student in the ABox, and the TBox sanctions that every student is a person,
then explaining the answer “b is a person” involves exhibiting both the fact that
b is a student, and the TBox axiom Student is-a Person.

The usefulness of query explanation spans from helping out knowledge en-
gineers in debugging ontologies to clarifying the automated reasoning of the
system to an end user. Moreover, having the query answers explained is valuable
for several related applications. First, it helps in improving Data Quality, be-
cause explained answers facilitate the understanding of the underlying database.
Secondly, explaining query answers is tightly related to tagging the tuples re-
turned by the system with semantic meaningful context, which might be crucial
in Open Data publishing. Furthermore, many researches explored other interest-
ing fields in which this topic could be relevant. For example, [12, 8] propose a
justification-based explanation mechanism, i.e. a form of explanation for inclu-
sion axioms rather than for answers to a query.

The problem of providing explanations for answers in DL-Lite has been ad-
dressed in two seminal papers [2, 6], where a specific technique for this prob-
lem is proposed, based on the fundamental assumption that explanations are
strictly related to deductions. The main goal of this paper is to present a general
framework for explaining conjunctive query answers in an OBDA system, where
queries are either positive, or negative, i.e., negation of conjunctive queries. In
particular, we provide the following contributions.

– We describe a formal, comprehensive framework for explaining query answers
in OBDA systems based on DL-Lite. Our framework is inspired by the one
described in [2, 6], but has important differences. First, our framework aims
at defining all possible explanations of a query answer, whereas the approach
followed by [2, 6] is based on choosing some explanations, and ignoring others.
For example, in their approach, an explanation that is longer than another
one will never be returned by the proposed algorithm. On the contrary, in
our framework, one can decide that an explanation exposing a few facts in
the ABox is preferred to an explanation disclosing more ABox axioms, even if
the latter is shorter. Secondly, the framework envisions the use of a function
that is able to associate to each explanation a weight, so as to compare
different explanations of the same answer. Thirdly, we base our notion of
explanation on a concept of variant of ABoxes, in such a way that ABoxes
that are variant of each other give the same explanations.

– We present a generic algorithm that, given a tuple returned as an answer
to a positive query, explores all the explanations of the answer according to
the ontology, and is able to choose the best explanation in accordance with
a predefined weighting function.

– We do the same for the answers to negative queries. Notably, on the way to
get the latter result, we present what appears to be the first algorithm that
computes the answers to negative queries in DL-Lite.

We believe that the proposed framework brings several advantages both in
terms of quality (i.e., completeness) of the derived explanations, and in terms of
flexibility with respect to the most preferred explanations. Indeed, the task of
choosing the best explanation for the answers of a query is intrinsically subjec-
tive, so that the end result should be user-centered and customizable.

The paper is organized as follows. In section 2 we illustrate the background
knowledge that we consider essential for a smooth reading of the paper. In section
3 we present the framework for explaining query answers in DL-Lite. In section 4
we describe a complete procedure for computing explanations to positive queries,
whereas in section 5 we do the same for negative queries. Finally, we conclude
the paper in section 6.

2 Background

In this section we provide the background notions and techniques that we re-
fer to in the rest of the paper. In particular, we introduce the DL-Lite family
[4] of Description Logics which is a well-known set of logic-based ontology lan-
guages aiming at an optimal trade-off between expressiveness and computational
complexity of the reasoning services. Then, we recall some basic notions about
conjunctive queries in the context of OBDA, we introduce the notion of negative
conjunctive query, and finally, we discuss the algorithm described in [4], that
deals with rewriting a conjunctive query in order to compute its answers.

The DL-Lite family of Description Logics. Description Logics (DLs) [1, 9,
14] represents a domain of interest in terms of concepts, denoting sets of objects,
roles, denoting binary relations between (instances of) concepts, and attributes,
denoting binary relations between concepts and value sets. In this paper, we
refer to the logic DL-LiteA [4]1, but our approach is valid for all logics of the
DL-Lite family.

Concepts and roles in DL-LiteA are formed according to the following syntax:

B −→ A | ∃R R −→ P | P−

C −→ B | ¬B E −→ R | ¬R
where A, B, and C denote an atomic concept, a basic concept, and a general
concept, respectively, whilst P denotes an atomic role, and R a general role.

1 For the sake of simplicity, we do not deal with attributes in this paper, but they can
be added without any problem.

Intuitively, P− represents the inverse of the role P , ∃P (resp. ∃P−) denotes the
projection on the first (resp. second) component of the role P (resp. P−), and
¬B (resp. ¬R) denotes the complement of B (resp. of R).

A DL-LiteA ontology O = 〈T ,A〉 is a formal description of a domain of
interest expressed in DL-LiteA constituted of the two sets of axioms T , and A.
The TBox T represents the intensional knowledge regarding the domain, i.e.,
universally quantified statements about the concepts and the roles used in O,
and the ABox A represents the extensional knowledge, i.e., ground statements
about individuals. More precisely, each TBox axiom has one of the following
forms: B v C (concept inclusion), R v E (role inclusion), and (funct R) (global
functionality of the role R). More details about the axioms allowed in DL-LiteA,
and the semantics of the language can be found in [4].

Conjunctive Queries. A conjunctive query (CQ) over a DL-LiteA ontology
has the form:

Q(x) ← ∃y conj(x,y)

where x, y are variable vectors, conj(x,y) is a conjunction of atoms, each one
of the form A(z) or P (z1, z2), with A and P atomic concepts and roles of the
ontology, respectively, and z,z1,z2 are terms, i.e., either individual constants in
the ontology or variables in x or y. The variables appearing in x are called
distinguished and represents the output of the query, while those appearing in y
are called non-distinguished, and are existentially quantified. The cardinality of x
is the arity of the query, and, for the sake of simplicity, in what follows we assume
it is greater than 0, although all results of the paper still holds for queries of arity
0. When it is irrelevant to indicate which are the non-distinguished variables, we
simply write Q(x) to refer to the query Q(x) instead of Q(x,y). An atom with
only constants is called ground.

The basic reasoning service we are dealing with in this paper is conjunctive
query answering : given an ontology O and a conjunctive query Q(x) over O,
compute the certain answers to Q over O, the tuples c of individuals in O such
that O |= Q(c), i.e., Q(c) is true in every model of O. Here, Q(c) denotes the
formula obtained from Q(x) by substituting every xi ∈ x with ci ∈ c.

In this paper, we will also consider negative conjunctive queries, written in
the form ¬Q(x,y), where Q(x) ← ∃y conj(x,y) is a CQ. The certain answers
to ¬Q(x,y) overO is the set of tuples c of individuals inO such thatO |= ¬Q(c),
i.e., O |= ¬∃y conj(c,y), which is equivalent to state that ∃y conj(c,y) is false
in every model of O. Note, due to the Open World Assumption, the certain
answers to ¬Q(x,y) over O are in general different from the complement of the
certain answers to Q(x,y) over O. Note also that, if Q(x,y) is empty w.r.t.
O (i.e., it returns the empty answer in all the models of O), then all tuples
of individuals in O will be a certain answer of ¬Q(x,y). For this reason, in
the following we will assume to deal with negative queries ¬Q(x,y) such that
Q(x,y) is non-empty.

Computing certain answers in DL-LiteA. We refer to [4] for the method
we use for computing the certain answers to conjunctive queries in the DL-Lite
family. The method is based on first rewriting the original query into a set of
alternate queries, then by evaluating these queries over the ABox of the ontology
treated as a closed database, and finally by returning the union of the results.
The rewriting of the query with respect to the ontology is carried out by a
combination of applications of the following two fundamental steps:

– Replacement : a replacement step s w.r.t. a query Q and a TBox T can be
applied to an atom α of the query when the corresponding predicate appears
on the right hand side of an inclusion axiom in T . It returns a new query
(that we say is produced by s from Q) with atom α replaced by another one,
using the predicate appearing on the left hand side of the inclusion axiom
in T .

– Unification: a unification step s w.r.t. a query Q and a TBox T produces
a query obtained by merging two atoms that have the same predicate and
such that the corresponding arguments can be unified, and applying the
unification to all atoms of the query.

For the purpose of this paper, we will usually refer to either the replacement
or the unification step by the more general term of reformulation step. Once a
query is rewritten according to the above rules, all queries resulting from the
process are inserted into a set, that constitute the rewriting. All the queries in
the rewriting are then evaluated over the ABox, by resorting to the well-known
notion of homomorphisms.

As for negative queries, we are not aware of any paper illutrating an algo-
rithms for computing the certain answers of such queries. The result presented
in Section 5 will implicitely provide what appears to be the first algorithm that
computes the answers to negative queries in DL-Lite.

3 Framework

In this section we describe our framework for explaining query answers in the
DL-Lite family of Description Logics. We start with a set of definitions that are
meant to provide the notions we will use for presenting our proposal.

Definition 1. Given a TBox T , and a conjunctive query Q, a (Q, T)-deductive
path is a sequence 〈Q0, s1, Q1, s2, . . . , Qn〉, where n ≥ 0, Q0 = Q, and for each
i = 1, . . . , n, si is a reformulation step that produces Qi from Qi−1.

Intuitively, a (Q, T)-deductive path 〈Q0, s1, Q1, s2, . . . , Qn〉 encodes the chain of
reasoning justifying the fact that in order to prove that t is a certain answer of
Q0 with respect to 〈T ,A〉 is sufficient to prove that t is a certain answer of Qn

with respect to 〈T ,A〉.
With the goal of illustrating an example of a deductive path, consider the

following ontology.

T = { ForeignStud v Student, AttendedBy v Attends−,
Attends− v AttendedBy, ∃HasCSTopic v ∃HasTopic,
Student v ¬Professor, AssociateProf v Professor }

A = { ForeignStud(Ann), AttendedBy(DB,Ann),
HasCSTopic(DB,SQL), HasCSTopic(DB,ER) }

Now, consider the query:
Q(x, y)← Student(x), Attends(x, y), HasTopic(y, z)
It is easy to see that, for example, 〈Q, s1, Q1, s2, Q2, s3, Q3〉 is a (Q, T)-

deductive path, where

– s1 is the reformulation step based on ForeignStud v Student that produces
Q1(x, y)← ForeignStud(x), Attends(x, y), HasTopic(y, z) from Q,

– s2 is the reformulation step based on ∃HasCSTopic v ∃HasTopic that pro-
duces Q2(x, y)← ForeignStud(x), Attends(x, y), HasCSTopic(y, z) from Q1

– s3 is the reformulation step based on AttendedBy v Attends− that produces
Q3(x, y)← ForeignStud(x), AttendedB(y, x), HasCSTopic(y, z) from Q2.

3.1 Explanations for positive queries

The most obvious way to define an explanation for Q(t) with respect to the
ontology 〈T ,A〉 is to see it as a (Q, T)-deductive path 〈Q, s1, Q1, s2, . . . , Qn〉
associated to a homomorphism from Qn(t) to A. Indeed, the presence of the
homomorphism proves that A |= Qn(t), and the (Q, T)-deductive path is a
chain of deduction explaining how to conclude 〈T ,A〉 |= Q(t) from A |= Qn(t).

If we adopt this approach in the above example, one can verify that the
(Q, T)-deductive path 〈Q, s1, Q1, s2, Q2, s2, Q3〉, associated for example to the
homomorphism {x 7→ Ann, y 7→ DB, z 7→ SQL} from Q3 to A is actually an
explanation for Q(Ann, DB).

However, our notion of explanation is more articulated. First, we will rely
only on deductive paths that are not redundant, i.e., that do not contain iden-
tical subpaths. More precisely, a (Q, T)-deductive path 〈Q, s1, Q1, s2, . . . , Qn〉 is
said to be non-redundant if for all i 6= j ∈ {1, . . . , n}, we have that Qi 6= Q,
and Qi 6= Qj . Second, in order to explain Q(t) with respect to 〈T ,A〉, our
approach relies not only on (Q, T)-deductive paths 〈Q, s1, Q1, s2, . . . , Qn〉 such
that A |= Qn(t), but also on (Q, T)-deductive paths 〈Q, s1, Q1, s2, . . . , Qn〉 such
that A′ |= Qn(t), where A and A′ are in a certain mutual relationship, i.e., A′
is a variant of A with respect to T . Intuitively, by stating that A′ is a variant of
A with respect to T , we sanction that they are indistinguishable from the point
of view of a user posing queries to the ontology. The consequence is that, in
order to explain a certain answer, we can use A and A′ interchangeably. For a
specific definition of variant, tailored for DL-Lite ontologies, we refer the reader
to the last part of this section. Here, we want to notice that the notion of variant
ABoxes will allow us to consider explanations that are shorter than in the usual
approaches. We are now ready to present the definition of 〈T ,A〉-explanation
for Q(t) in our approach.

Definition 2. A (T ,A)-explanation for Q(t) is a pair 〈Π,Γ 〉, where

– Π is a non-redundant (Q, T)-deductive path of the form 〈Q(x), s1, Q2(x), s2,
. . . , Qn(x)〉, and

– Γ is the image Qn(t, t′) of a homomorphism from Qn(x,y) to any ABox
that is a T -variant of A.

In a (T ,A)-explanation 〈Π,Γ 〉, the ground formula constituted by the atoms in
Γ is called an explanatory seed for Π.

Intuitively, the pattern represented by Γ provides the reason why t satisfies
Qn(x) w.r.t. the ABox A, and the (Q, T)-deductive path provides explanation
why from this pattern we can conclude that t is a certain answer to the query
Q. Referring to the example above, it is immediate to verify that both the pair
〈Π1, Γ1〉, and the pair 〈Π1, Γ2〉 are (T ,A)-explanations for Q(Ann, DB), where

– Π1 = 〈Q, s1, Q1, s2, Q2, s3, Q3〉,
– Γ1 = { ForeignStud(Ann), AttendedBy(DB,Ann), HasCSTopic(DB,SQL) },
– Γ2 = { ForeignStud(Ann), AttendedBy(DB,Ann), HasCSTopic(DB,ER) }.

Indeed, Γ1 and Γ2 are the images of two homomorphisms from Q3 to A.
Note, however, that, if the ABox
A′ = { ForeignStud(Ann), Attends(Ann,DB),

HasCSTopic(DB,SQL), HasCSTopic(DB,ER) }
is a T -variant of A, then another (T ,A)-explanation is, for example, 〈Π2, Γ3〉,
where

– Π2 = 〈Q, s1, Q1, s2, Q2〉,
– Γ3 = { ForeignStud(Ann), Attends(Ann,DB), HasCSTopic(DB,SQL) }

since Γ3 is the image of a homomorphism from Q2 to A′.

3.2 Explanations for negative queries

In order to define the notion of explanation for negative queries in our approach,
we need to introduce a few concepts.

The first one is the concept of disjointness step as a new deduction step
when reasoning about a query. Intuitively, a disjointness step is applied to a
query Q and a disjoint axiom of the form β1 v ¬β2 in T , when βi (i ∈ {1, 2})
unifies with an atom in Q by means of the unification φ. The application of
such a disjointness step produces the query composed of the atom γ, obtained
by applying the unification φ to βj (j ∈ {1, 2}, and j 6= i). The second notion
is the one of subtuple: a tuple t′ is called a subtuple of t if every element of t′

appear also in t. Finally, the third notion is the one of reverse 〈Q, T 〉-deductive
path, defined as follows.

Definition 3. Given a TBox T , and a conjunctive query Q, a reverse (Q, T)-
deductive path is a sequence 〈¬Qn, sn,¬Qn−1, . . . , s1,¬Q0〉, where n ≥ 0, Qn =
Q, and 〈Q0, s1, Q1, s2, . . . , Qn〉 is a (Q0, T)-deductive path.

Analogously to (Q, T)-deductive paths, a reverse (Q, T)-deductive path
〈¬Qn, sn,¬Qn−1, . . . , s1,¬Q0〉 encodes the chain of reasoning justifying the fact
that in order to prove that t is a certain answer of ¬Qn with respect to 〈T ,A〉
is sufficient to prove that t is a certain answer of ¬Q0 with respect to 〈T ,A〉.

Definition 4. A (T ,A)-explanation for ¬Q(t) is a pair 〈Σ,Γ 〉, where Σ is a
sequence of the form 〈¬Q, s1,¬Q2, s2, . . . ,¬Qm, sm, Qm+1, sm+2, . . . Qm+n〉 such
that

– m,n ≥ 0,
– 〈¬Q, s1,¬Q2, s2, . . . ,¬Qm〉 is a reverse (Q, T)-deductive path,
– sm is a disjointness step that produces Qm+1 from ¬Qm, and
– 〈〈Qm+1, sm+2, . . . , Qm+n〉, Γ 〉 is a (T ,A)-explanation for Qm+1(t′), where

t′ is a subtuple of t.

Intuitively, 〈〈Qm+1, sm+2, . . . , Qm+n〉, Γ 〉 explains why t′ is a certain answer
of Qm+1, sm is the disjointness step proving that t is a certain answer of ¬Qm by
exploiting the fact that t′ is a certain answer of Qm+1, and the reverse (Q, T)-
deductive path 〈¬Q, s1,¬Q2, s2, . . . ,¬Qm〉 proves that t is a certain answer of
¬Q. Coming back to the example, we can easily verify that, given the query
Q(x)← AssociateProf(x), Teaches(x, y), a (T ,A)-explanation for ¬Q(Ann) is
〈〈¬Q, s1,¬Q1, s0, Q2, s2, Q3〉, {ForeignStud(Ann)}〉, where Q1, Q2 and Q3 are
defined as follows

– Q1 ← Professor(x), Teaches(x, y)
– Q2(x)← Student(x),
– Q3(x)← ForeignStud(x),

s1 is the reformulation step that produces Q1 from Q, s0 is the disjointness step
based on the axiom Student v ¬Professor to produce Q2 from ¬Q1, s2 is the
reformulation step that produces Q3 from Q2.

3.3 The notion of variant in DL-Lite

While we left the notion of variant generic in the above considerations, we provide
here a specific formalization of the notion of T -variant for the case of DL-Lite
ontologies. In what follows, we denote with ET the set of DL-Lite assertions of
the form E1 ≡ E2 (where E1, E2 are either both concepts or both roles) that are
logically implied by T . Also, we say that two ground atoms α, β are T -equivalent
if T |= α ≡ β.

Definition 5. If T is a TBox, and A,A′ are two ABoxes, then A is a T -variant
of A′ if A′ can be obtained from A by a set of substitutions of atoms with T -
equivalent atoms.

In other words, A and A′ are T -variant when their logical equivalence can
be proved by using only pairwise T -equivalences of atoms.

Coming back to the example, by using the notion of variant just pre-
sented, we can verify that another explanation for Q(Ann, DB) in our approach

is based on the (Q, T)-deductive path 〈Q, s1, Q2, s2, Q3〉, because, although
A 6|= Q3(Ann, DB), the following ABox
A′ = { ForeignStud(Ann), Attends(Ann,DB), HasCSTopic(DB,SQL) }

is a T -variant of A, and is such that {x 7→ Ann, y 7→ DB, z 7→ SQL} is a homomor-
phism from Q3 to A′, thus proving that A′ |= Q3(Ann, DB). Notice that ABoxes
can be obviously seen as conjunctive queries, in particular, ground conjunctive
queries, and therefore the notion of deductive path can be applied to ABoxes as
well. This property is exploited in the following theorem, that will be used in
the technical development presented in the rest of the paper.

Theorem 1. The ABox A is a T -variant of the ABox A′ if and only if there is
an (A, ET)-deductive path of the form 〈A, s1,A1, s2, . . . ,A′〉.

Proof. If-part. Suppose that there is an (A, ET)-deductive path that has the form
〈A0, s1,A1, s2, . . . ,An〉 where A = A0, and An = A′. We show by induction
on the length n of such path that A is a T -variant of A′. If n is 0, then the
thesis trivially holds. If n is greater than 0, then 〈A1, s2, . . . ,A′〉 is an (A1, ET)-
deductive path whose length is n− 1. By induction hypothesis, we have that A1

is a T -variant of A′, i.e., A′ can be obtained from A1 by a set of substitutions
of equivalent atoms. It remains to show that A = A0 is a T -variant of A1, thus
showing that A′ can be obtained from A by a set of substitutions of equivalent
atoms. By the definition of (A, ET)-deductive path, we have that A1 is obtained
from A by means of a reformulation step that substitutes an atom α in A with
an atom β using an axiom of the form α ≡ β in ET . This obviously implies that
A is a T -variant of A1.

Only-if-part. Suppose that A is a T -variant of the ABox A′. We proceed
by induction on the number n of atoms in A that we have to substitute in
order to obtain A′. If n = 0, then the thesis trivially holds. If n is greater than
0, then let α ∈ A be one of the atoms to be substituted with β ∈ A′ such
that T |= α ≡ β, and let A1 be the ABox obtained from A by means of such
substitution. By induction hypothesis, there is an (A, ET)-deductive path of the
form 〈A1, s2,A2, s3, . . . ,A′〉, and it is immediate to verify that from T |= α ≡ β
we can derive a reformulation step that produces A1 from A, thus proving that
there is an (A, ET)-deductive path of the form 〈A, s1,A1, s2, . . . ,A′〉. ut

3.4 Weighting explanations

As we said in the introduction, the framework presented in this paper inten-
tionally leaves unspecified the strategy for evaluating the multiple explanations
that are computed for the same tuple, query, and ontology. This is reflected by
the fact that the framework envisions the existence of a function that is able to
associate to each explanation a weight, so as to compare different explanations
of the same answer. Although in existing approaches the weighting function is
based essentially on the length of the deduction corresponding to the explana-
tion, we argue that such function should reflect the idea that choosing the best
explanation for the answers of a query is intrinsically subjective, and can be

characterized by different properties in different contexts. For this reason, in the
next section we will keep the weighting function completely generic.

4 Computing explanations for positive queries

Given a query Q, a tuple t, and an ontology 〈T ,A〉, the algorithm Explain es-
sentially builds a tree τ whose nodes are in one-to-one correspondence with the
non-redundant (Q, T)-deductive paths, and computes all (T ,A)-explanations of
Q(t) based on such paths. For each such explanation, it also computes the as-
sociated weight, and the final result derives from the one with the maximum
weight. The algorithm makes use of the following notions.

– For each node n of the tree τ :

• father(n) denotes the father of node n in the tree τ ; father(n) is assumed
to be null if n is the root.

• equivEdge(n,m) is true if n and m are nodes different from null, n is the
father of m in τ , and the edge from n to m is labeled with a reformulation
step based on α v β such that T |= β v α; it is false otherwise.

• query(n) is set by the algorithm in such a way to denote the query asso-
ciated to n;

• images(n) is set by the algorithm in such a way to denote the set of images
of all homomorphisms from query(n) that are relevant for computing the
explanations; note that every image is a set of ground facts, and that
images(null) is assumed to be empty;

– best is a record managed by the algorithm in such a way that it stores
information about the best explanation currently found. The record contains
three items: best.node stores the node n corresponding to the deductive path
representing the explanation; best.image stores the set of facts constituting
the image of the homomorphism from query(n) to A which gives the best
explanation, and best.weight is the value of the weight of such explanation.

– transferImages(n,m) denotes the process of transferring the sets of facts
stored in images(n) to images(m), in the case where there is an edge e
connecting n and m such that equivEdge(n,m) is true. If equivEdge(n,m)
is false, then transferImages(n,m) has no effect. Let s be the reformulation
step that is the label of e, and let s be based on α ≡ β, where α is the
predicate of an atom in n, and β is the predicate of an atom in m. Then,
for each γ1 ∈ images(n), insert γ2 ∈ images(m), where γ2 is obtained
from γ1 by substituting the α-atom with the corresponding β-atom. For
example, if images(n) = { { ForeignStud(Ann), AttendedBy(DB,Ann),
HasCSTopic(DB,SQL) }, { ForeignStud(Ann), AttendedBy(DB,Ann),
HasCSTopic(DB,ER) } }, and there is an edge e connecting n
and m such that equivEdge(n,m) is true, and the reformulation
step that is the label of e is based on AttendedBy v Attends−

such that T |= AttendedBy ≡ Attends−, then we have that
the execution of transferImages(n,m) results into images(m) =

{ { ForeignStud(Ann), Attends(Ann,DB), HasCSTopic(DB,SQL) },
{ ForeignStud(Ann), Attends(Ann,DB), HasCSTopic(DB,ER) } }.

– If n is a node of τ , and γ ∈ images(n), then ComputeWeight(n, γ) computes
the weight associated to the explanation represented by n and γ, and stores
it as weight(γ).

We are now ready to present the algorithm, whose main function is Explain.
Given query Q, tuple t, and ontology 〈T ,A〉 such that 〈T ,A〉 |= Q(t), such
function returns the record best storing all relevant data used to recontruct the
best (T ,A)-explanation of Q(t). As we said before, Explain defines the tree τ
initially constituted only by the root r, and then complete the construction of
the tree by means of the function BuildTree called on r. The goal of the latter
function is indeed to build the tree in such a way that each node n of τ have
the associated data described above, namely, query(n), and images(n). On each
node, the BuildTree also calls the function EvaluateAndPropagate, whose goal is
to compute the weight of each explanation associated to the nodes that it visits,
to update the record best, if needed, and to propagate the set images(n) to
other nodes of the tree, if needed. In order to compute the weight of the various
explanations, it makes use of the function ComputeWeight, that we leave generic:
any strategy that associates a positive value to an explanation is valid in our
approach. The final result computed by Explain derives from the explanations
with the maximum weight.

The following theorems are crucial for proving the correctness of the algo-
rithm.

Theorem 2. Let τ be the tree built by the execution of Explain(Q, t, T ,A), and
let r be the root of τ . From each path from r to a node of τ , it is possible to
derive a non redundant (Q, T)-deductive path, and, conversely, from each non
redundant (Q, T)-deductive path, it is possible to derive a path from r to a node
of τ .

Proof. (Sketch) First part. Let n be a node in τ . The proof is based on induction
on the length of the path from r to n. If the length is 0, then the thesis trivially
holds. If the length is greater than 0, then there is a node m in τ that is the
parent of n, and by the induction hypothesis, we can derive a non redundant
(Q, T)-deductive path Πi using the path π1 from r to m. It is easy to see that we
can add a subsequence to Πi in order to obtain a non redundant (Q, T)-deductive
path associated to n. Second part. Let Π a non redundant (Q, T)-deductive path.
The proof is based on induction on the length of Π. If the length is 0, then it
is immediate to verify that the corresponding path in τ is simply constituted
by the root r. If the length is greater than 0, then Π can be seen as a (Q, T)-
deductive path Π ′, plus an element corresponding to a reformulation step s. By
the induction hypothesis there is a node m for which we can single out a path π
from r to m corresponding to the (Q, T)-deductive path Π ′. Now, using s it is
easy to see that we can add en edge to π′, and obtain a new path π from r to a
node n corresponding to Π. ut

Algorithm 1: The algorithm Explain for positive query answers.

1 Function Explain(Q, t, T ,A) : record
2 define τ as a tree with root r
3 query(r) ← Q(t)
4 best ← 〈null, ∅, 0〉
5 BuildTree(r)
6 return best

1 Function EvaluateAndPropagate(n)
2 foreach γ ∈ images(n) do
3 ComputeWeight(n, γ)
4 if weight(γ) ≥ best.weight then update best

5 if images(father(n)) = ∅ and equivEdge(father(n), n) then
6 transferImages(n, father(n))
7 EvaluateAndPropagate(father(n))

8 foreach child m of n do
9 if images(m) = ∅ and equivEdge(n, m) then

10 transferImages(n, m)
11 EvaluateAndPropagate(m)

1 Function BuildTree(n)
2 if equivEdge(father(n), n) and images(father(n)) 6= ∅ then
3 images(n) ← transferImages(father(n), n)

4 else images(n) ← images of homomorphisms from query(n) to A
5 EvaluateAndPropagate(n)
6 foreach reformulation step s that produces Q′ from query(n) and such

that query(ni) 6= Q′ for every node ni in the path from n to r do
7 create child m of n and label the edge from n to m with s
8 BuildTree(m)

Theorem 3. Let τ be the tree built by the execution of Explain(Q, t, T ,A). Then,
for each node n of τ such that Γ ∈ images(n), there is a (T ,A)-explanation of
Q(t) of the form 〈Π,Γ 〉, where Π is the (Q, T)-deductive path corresponding to
the path from the root of τ to n.

Theorem 4. Let τ be the tree built by the execution of Explain(Q, t, T ,A). Then,
for each (T ,A)-explanation of Q(t) of the form 〈Π,Γ 〉, there is a node n of τ
such that Γ ∈ images(n), and the path from the root of τ and n is the one
corresponding to the (Q, T)-deductive path Π.

Finally, the following theorem shows the correctness of the function Ex-
plain with respect to the goal of computing the best explanation for Q(t). The
proof proceeds by showing that Explain(Q, t, T ,A) explores all possible (T ,A)-
explanations for Q(t), computes the corresponding weight, and then returns the
one (or anyone) with the maximum weight.

Algorithm 2: The algorithm Explain for negative query answers.

1 Function ExplainNegative(Q, T , A, t) : 〈T ,A〉-explanation for ¬Q(t)
2 Initialize NEP as an empty pair 〈sequence,image〉
3 foreach disjoint axiom ∆ ∈ T do
4 Let (g1, g2) be the two atoms of the violating query associated with ∆
5 foreach atom α in Q do
6 Let t′ be a subtuple of t
7 Let γ be the predicate associated with α
8 Let η1, η2 be the predicates associated with g1, g2
9 if T |= γ v η1 then

10 if 〈T ,A〉 |= g2(t′) then
11 g′ = g1, g′′ = g2

12 else
13 if T |= γ v η2 then
14 if 〈T ,A〉 |= g1(t′) then
15 g′ = g2, g′′ = g1

16 if g′ and g′′ are defined then
17 〈〈g′′, sn, Qn+1, . . . , Qm〉, Γ 〉= Explain(g′′, T , A, t′)
18 foreach reverse (Q, T)-deductive path

〈¬Q, s1,¬Q2, s2, . . . ,¬g′〉 do
19 Let Π =

〈〈¬Q, s1,¬Q2, s2, . . . ,¬g′,∆, g′′, sn, Qn+1, . . . , Qm〉, Γ 〉 if
ComputeWeight(Π) is better than NEP then

20 Update NEP with Π

21 return NEP

Theorem 5. Let 〈T ,A〉 be an ontology, Q be a query, and t be a tuple such that
〈T ,A〉 |= Q(t). Then Explain(Q, t, T ,A) computes the best (T ,A)-explanation
for Q(t), according to the strategy represented by the function ComputeWeight.

5 Computing explanations for negative queries

In this section wepresent the Algorithm 2 that deals with building the negative
explanation for a tuple t, with respect to a satisfiable ontology 〈T ,A〉, and a
non-empty query Q. For each disjoint axiom in the input ontology, the procedure
checks whether the corresponding violating query has a non-empty evaluation
over 〈T ,A ∪ Q(t)〉 (in DL-Lite, if 〈T ,A〉 |= ¬Q(t) this has to be true for some
violating query). If this is the case, the algorithm builds a negative explanation,
and evaluates it with a predetermined evaluation function that plays the same
role as the function ComputeWeight in the case of positive explanations. The
output will be the explanation with the highest evaluation. Specifically, let ω be
an arbitrary violating query, g1, g2 be their atoms, and η1, η2 their corresponding

predicates. For each atom of Q, the algorithm verifies whether its predicate γ is a
subset of either η1 or η2 in T . Let for instance T |= γ v η1, the algorithm searches
for a 〈T ,A〉-explanation for the query g2(t′), where t′ is a subtuple of t. Then,
for all the possible reverse (Q, T)-deductive paths that leads to g1, the algorithm
builds and evaluates a negative explanation by connecting the aforementioned
deductive and explanation paths. The correctness of the algorithm is sanctioned
by the following theorem.

Theorem 6. Given a conjunctive query Q, a TBox T , an ABox A and a tuple t
such that 〈T ,A〉 is satisfiable, Q is not empty over 〈T ,A〉, and 〈T ,A〉 |= ¬Q(t),
then Algorithm 2 evaluates all and only the 〈T ,A〉-explanations for ¬Q(t).

Proof (sketch). According to a well-known property of the DL-Lite language,
〈T ,A〉 |= ¬Q(t) if and only if 〈T ,A ∪ Q(t)〉 is unsatisfiable. For each disjoint
axiom of T , consider the corresponding two atoms violating query. A DL-Lite
ontology is unsatisfiable if and only if there exists a violating query for which
the evaluation over the ontology is not empty. Since by hypothesis 〈T ,A〉 is
satisfiable, and the input query Q is not empty over 〈T ,A〉, for each violating
query ω, it has to be that 〈T ,A〉 6|= ω and 〈T ,Q(t)〉 6|= ω. As a consequence, let
ρ1, ρ2 be the two atoms of any violating query, and t′ a subtuple of t, a negative
explanation for Q(t) exists if and only if either 〈T ,A〉 |= ρ1(t′) and 〈T ,Q(t)〉 |=
ρ2(t′), or 〈T ,A〉 |= ρ2(t′) and 〈T ,Q(t)〉 |= ρ1(t′). The algorithm considers both
the above cases and provides explanations for the holding entailments. ut

6 Conclusions

In this paper, we addressed the problem of providing explanations both for posi-
tive and negative answers to queries over an ontology. In section 3 we introduced
a general framework to deal with these issues, and in seciton 4 and 5 we illus-
trated techniques for inspecting all possible explanations, both for positive and
for negative conjunctive queries.

The issue of multiple explanations is addressed by conceiving the use of
a weighting function that assigns a weight to every possible explanation, so
that they can be compared according to a set of predefined criteria. We have
implemented the procedures described in this paper in the Java tool for Ontology
Based Data Access MASTRO [3]. Future works involve dealing with the problem
of deriving an effective method for visualizing, and exposing to the users the
explanations produced with our techniques, as well as analyzing the effect, on the
notions and methodologies introduced in this paper, of extending the ontology
to languages that are more expressive than DL-Lite.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York, NY, USA, 2003.

2. A. Borgida, D. Calvanese, and M. Rodriguez-Muro. Explanation in the DL-Lite
Family of Description Logics, pages 1440–1457. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, R. Rosati, M. Ruzzi, and D. F. Savo. The mastro system for ontology-based
data access. Semantic Web, 2(1):43–53, 2011.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The dl-lite family.
Journal of Automated Reasoning, 39(3):385–429, Oct 2007.

5. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. Artificial Intelligence, 195:335
– 360, 2013.

6. D. Calvanese, M. Ortiz, M. Simkus, and G. Stefanoni. Reasoning about expla-
nations for negative query answers in dl-lite. J. Artif. Intell. Res., 48:635–669,
2013.

7. T. Eiter, C. Lutz, M. Ortiz, and M. Simkus. Answering in description logics with
transitive roles. In IJCAI, 2009.

8. M. Horridge. Justification based explanation in ontologies. PhD thesis, University
of Manchester, UK, 2011.

9. H. J. Levesque and R. J. Brachman. Expressiveness and tractability in knowledge
representation and reasoning. Computational Intelligence, 3:78 – 93, 02 1987.

10. M. Lenzerini. Ontology-based data management. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management, CIKM ’11,
pages 5–6, New York, NY, USA, 2011. ACM.

11. M. Lenzerini. Managing data through the lens of an ontology. AI Magazine,
39(2):65–74, 2018.

12. R. Penaloza and B. Sertkaya. Understanding the complexity of axiom pinpointing
in lightweight description logics. Artificial Intelligence, 250(Supplement C):80 –
104, 2017.

13. U. Straccia. Towards top-k query answering in description logics: The case of dl-
lite. In M. Fisher, W. van der Hoek, B. Konev, and A. Lisitsa, editors, Logics
in Artificial Intelligence, pages 439–451, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

14. F. van Harmelen, V. Lifschitz, and B. Porter. Handbook of Knowledge Represen-
tation. Elsevier Science, San Diego, USA, 2007.

