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MOTIVIC PERIODS AND GROTHENDIECK ARITHMETIC
INVARIANTS

F. ANDREATTA, L. BARBIERI-VIALE AND A. BERTAPELLE (APPENDIX BY B. KAHN)

ABSTRACT. We construct a period regulator for motivic cohomology of an algebraic
scheme over a subfield of the complex numbers. For the field of algebraic numbers we
formulate a period conjecture for motivic cohomology by saying that this period regula-
tor is surjective. Showing that a suitable Betti-de Rham realization of 1-motives is fully
faithful we can verify this period conjecture in several cases. The divisibility properties
of motivic cohomology imply that our conjecture is a neat generalization of the classical
Grothendieck period conjecture for algebraic cycles on smooth and proper schemes. These
divisibility properties are treated in an appendix by B. Kahn (extending previous work of
Bloch and Colliot-Théléne-Raskind).
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INTRODUCTION

Let X be a scheme which is separated and of finite type over a subfield K of the complex
numbers. Consider the g-twisted singular cohomology HP(Xay, Zan(q)) of the analytic space
X.n associated to the base change of X to C and the pth de Rham cohomology HgR(X ),
which is an algebraically defined K-vector space. We have the following natural C-linear
isomorphism

@R s HP(Xan, Zan(q)) ®z C = HYR (X) @k C
providing a comparison between these cohomology theories. As Grothendieck originally
remarked, for X defined over the field of algebraic numbers K = Q or a number field,
the position of the whole HX. (X) with respect to H?(Xan, Zan(g)) under wh? «yields an
interesting arithmetic invariant, generalizing the “periods” of regular differential forms» (see
[30, p. 101 & footnotes (9) and (10)], ¢f. [3, §7.5 & Chap. 23|, [16], [17] and [33, Chap.
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2 F. ANDREATTA, L. BARBIERI-VIALE AND A. BERTAPELLE (APPENDIX BY B. KAHN)

5 & 13]). For the comparison of several notions of “periods” and versions of the period
conjecture we refer to Huber survey [32] (see also [17, §2.2.2|).

The main goal of this paper is to describe this arithmetic invariant, at least for p = 1
and all twists, notably, ¢ = 1 and ¢ = 0. In more details, we first reconstruct wg(’q (in
Definition 1.2.4) by making use of Ayoub’s period isomorphism (see Lemma 1.2.2) in Vo-
evodsky’s triangulated category DMEEf of motivic complexes for the étale topology. Denote
by HE?(X) the named arithmetic invariant, i.e., the subgroup of those cohomology classes
in H?(Xan, Zan(q)) which are landing in HY (X) via @w’y?. We then show the existence of

a regulator map (see Corollary 1.2.6 and Definition 1.2.7)
rbd . HP(X) — HRI(X)

from étale motivic cohomology groups HP?(X). Here we regard motivic cohomology canon-
ically identified with HY, (X, Z(q)) where Z(g) is the Suslin-Voevodsky motivic complex (see
[47, Def. 3.1]), as a complex of sheaves for the éh-topology (introduced in [12, §10.2]). We
are mostly interested in the case of ¢ = 0,1 so that Z(0) = Z[0] and Z(1) = G,,[—1] by a
theorem of Voevodsky (see [47, Thm. 4.1]).

Following Grothendieck’s idea, we conjecture that the period regulator r&? is surjective
over Q and we actually show some evidence. We easily see that Hg}q(X ) =0 for ¢ # 0 and
r%0 is an isomorphism: therefore, the first non-trivial case is for p = 1. Moreover, by making
use of Suslin-Voevodsky rigidity theorem we can show that r%? is surjective on torsion (see
Lemma 1.4.2). We can also show: if the vanishing HP4(X) ® Q/Z = 0 holds true then
the surjectivity of 7% is equivalent to the vanishing HJ (X) N H?(Xan, Qan(q)) = 0. The
divisibility properties of motivic cohomology (see Appendix A) imply that our conjecture is
a neat generalization of the classical period conjecture for algebraic cycles on smooth and
proper schemes (see Proposition 1.4.4).

In order to study the case p = 1 we can make use of the description of H! via the
Albanese 1-motive L;Alb(X). Recall the existence of the homological motivic Albanese
complex LAIb(X), a complex of 1-motives whose pth homology L,Alb(X) is a 1-motive
with cotorsion (see [12, §8.2] for details). We can regard complexes of 1-motives as objects
of DMS!T and by the adjunction properties of LAlb (proven in [12, Thm. 6.2.1]) we have a
natural map

Ext?(LAIb(X), Z(1)) — HPY(X) = H (X, G,,)

which is an isomorphism, rationally, for all p (see the motivic Albanese map displayed in
(3.2) and (3.3) below). We can also describe periods for 1-motives (see Definition 2.2.1)
in such a way that we obtain suitable Betti-de Rham realizations in period categories (see
Definitions 2.5.4 and 2.5.1): a key point is that these realizations are fully faithful over
Q (see Theorem 2.7.1). The main ingredient in the proof of fullness is a theorem due to
Waldschmidt [54, Thm. 5.2.1] in transcendence theory, generalizing the classical Schneider-
Lang theorem (see also [16, Thm. 4.2]). An alternative proof can be given using a theorem
of Wiistholz [56] (see our second proof of Theorem 2.7.1). A version of Baker’s theorem
and instances of Kontsevich period conjecture for 1-motives are further explored in a recent
work of Huber and Wiistholz [34]. Note that Kontsevich’s period conjecture for 1-motives
was formulated in [57] (see also [3, §23.3.3]).
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Actually, we show that the regulator 2 can be revisited by making use of 1-motives (see
Lemmas 3.2.1 to 3.2.3 and Proposition 3.2.7). As a byproduct, all this promptly applies to
show the surjectivity of 7' : HY (X, G,,) — He'(X) via Ext(LAIb(X),Z(1)) verifying the
conjecture for p =1 and ¢ = 1 (see Theorem 3.2.4). In fact, we can use the motivic Picard
complex RPic(X) (see [12, §8.3|) so that ExtP(Z(0), RPic(X)) = Ext?(LAlb(X),Z(1)) by
Cartier duality showing that Ext(LAlb(X),Z(1)) is an extension of the finitely generated

1

group Hom(Z, RPPic(X)) by a divisible group; we thus conclude that 7% induces a map

67 : Hom(Z, RPPic(X)) — HEY(X)

which in turn can be described making use of the mentioned Betti-de Rham realization.
The surjectivity of r%' can be translated via 6% and the fullness of the Betti-de Rham

realization. For p = 1, considering the 1-motive R'Pic(X) = [L} 4 G7] which is the Cartier
dual of L1 Alb(X) = [L; 3 G1], we get a canonical isomorphism

Keru} = Hom(Z, R'Pic(X)) = Hig(X) N H (Xan, Zan(1)) = HEY(X).

In particular, we obtain that Hlg(X) N H'(Xan, Z(1)) = 0 if X is proper. This vanishing
for smooth projective varieties was previously obtained by Bost-Charles [17, Thm. 4.2].

With some more efforts, making now use of the motivic complex Lm(X) along with its
adjunction property (as stated in |12, §5.4]), we get a map

Ext?(Lmo(X), Z(0)) — HP(X) = HY (X, Z).
Analysing the composition of this map for p = 1 with re’ we see that
7"1150 : Hélt(X7 Z)= HQO(X) = HéR(X> n Hl(Xana Zan)

is an isomorphism (see Theorem 3.3.1), which yields the case p = 1 and ¢ = 0 of our
conjecture. In particular, H éR(X )N HY(Xan, Zan) = 0 for X normal. This vanishing for
smooth quasi-projective varieties was previously obtained by Bost-Charles [17, Thm. 4.1].

For p =1 and ¢ # 0,1 we have that Hx?(X) = 0 (see Corollary 3.4.2) so that the period
conjecture for motivic cohomology is trivially verified.

Remarkably, the description of the Grothendieck arithmetic invariants HL?(X) appears
strongly related to the geometric properties encoded by motivic cohomology. These prop-
erties are almost hidden for smooth schemes, since the divisibility properties of motivic
cohomology of X smooth yields that for p & [q,2q] the surjectivity of r&? is equivalent
to the vanishing H1. (X) N HP(Xan, Qan(q)) = 0. However, for X smooth with a smooth

compactification X and normal crossing boundary Y, we have that

Ker (Divy (X) i, Pic%/@
where uj is the canonical mapping sending a divisor D supported on Y to Ox(D). In
fact, here R'Pic(X) is Cartier dual of LiAlb(X) = [0 — Ag( /@], the Serre-Albanese semi-
abelian variety (see [12, Chap. 9|). Therefore, there exist smooth schemes X such that

) = Hig(X) N H' (Xan, Zan(1))

HLE'(X) is non-zero and the vanishings in [17, Thm. 4.1 & 4.2] are particular instances of
our descriptions.
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With similar techniques one can make use of the Borel-Moore Albanese complex LAIb¢(X)
(see [12, Def. 8.7.1]) to describe the compactly supported variant Hgg, (X), for any twist q.

Finally, the cohomological Albanese complex LAIb*(X) (see [12, Def. 8.6.2]) shall be
providing a description of Hgdij’q(X) for d = dim(X), at least for 7 = 0,1 and g an arbitrary
twist. A homological version of period regulators is also feasible and will be discussed in a
future work.

Aknowledgements. We would like to thank Y. André and J. Ayoub for some useful discus-
sions on the matters treated in this paper. The first author was partially supported by the
Cariplo project n. 2017-1570 and all Italian authors acknowledge the support of the Min-
istero dell’Istruzione, dell’Universita e della Ricerca (MIUR) through the Research Project
(PRIN 2010-11) “Arithmetic Algebraic Geometry and Number Theory”. We thank the ref-
eree for her/his many comments that helped us to considerably improve the exposition
(starting with the suggestion to change the title to something reflecting more accurately the
contents of the paper).

1. PERIODS: CONSTRUCTIONS AND CONJECTURES

Let DM?ﬁ be the effective (unbounded) triangulated category of Voevodsky motivic com-
plexes of 7-sheaves over a field K of zero characteristic, i.e., the full triangulated subcategory
of D(Shv (Smy)) given by Al-local complexes (e.g. see [6, §4.1] and, for complexes bounded
above, see also [47, Lect. 14]). We here generically denote by 7 either the Nisnevich or étale
Grothendieck topology on Smp, the category of smooth schemes which are of finite type
over the field K. Let Z(q) for ¢ > 0 be the Suslin-Voevodsky motivic complex regarded as
a complex of étale sheaves with transfers. More precisely we consider a change of topology
tensor functor

o : DMSE — DMt

and Z(q) = aZnis(q) (see [12, Cor. 1.8.5 & Def. 1.8.6]) where Znis(g) is the usual complex
for the Nisnevich topology (see also [50, Def. 3.1]). We have the following canonical iso-
morphisms Z(0) = Z[0], Z(1) = Gy, [—1] and Z(q) ® Z(q') = Z(q + ¢') for any q,¢' > 0 (see
[50, Lemma 3.2]). For any object M € DMST we here denote M(q):=M ® Z(q). Recall
that by inverting the Tate twist M ~» M (1) we obtain DM, (where every compact object
is isomorphic to M (—n) for some n > 0 and M compact and effective). For M € DMS! we
shall define its motivic cohomology as

HP(M) := Homp,y gt (M, Z(g)[p]).

For any algebraic scheme X we have the Voevodsky étale motive M (X) = aC.Zy(X) €
DM where C, is the Suslin complex and Zg,(X) is the representable Nisnevich sheaf with
transfers (see [47, Def. 2.8, 2.14 & Properties 14.5] and compare with [12, Lemma 1.8.7 &
Sect. 8.1]). We then write HP%(X):= HP9(M (X)) and we refer to it as the étale motivic
cohomology of X. We have an isomorphism

HP(X) = HY (X, 7Z(q))
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where the last cohomology is, in general, computed by the éh-topology (see [12, §10.2] and
[6] and [50, Prop. 1.8 & Def. 3.1]). In particular, if X is smooth H} (X,Z(q)) =
HQ(XZ((]))-

Note that we also have the triangulated category of motivic complexes without transfers
DAgf:E and if we are interested in rational coefficients we may forget transfers or keep the
Nisnevich topology as we have equivalences

ff ~ ff  ~
DAZt Q — DMZt Q — DMle ,Q
(see [6], |7, Cor. B.14] and [47, Thm. 14.30]). If we work with rational coefficients,
we then have that motivic cohomology HP4(X)qg is computed by the cdh-topology, i.e.,

(X Qg)) = th(X Q(q)), and Hfdh(X Q(q)) = Zar(X Q(q)) if X is smooth.

1.1. de Rham regulator. Denote by © the object of DMgff which represents de Rham
cohomology. More precisely we here denote 2:=afdy;, where Qy;, is the corresponding
object for the Nisnevich topology (see [45, §2.1] and c¢f. |7, §2.3] without transfers). This
latter Qy;, is given by the complex of presheaves with transfers that associates to X € Smg
the global sections I'(X, 7 / ) of the usual algebraic de Rham complex.

For M € DM4! we shall denote (cf. [44, §6] and [45, Def. 2.1.1 & Lemma 2.1.2])
Hip (M) = HomDMgf(MvQ[P])-
For any algebraic scheme X and M = M (X) we here may also consider the sheafification
of © for the éh-topology. Actually, we set
Hig (X) = Hip(M(X)) = Hy, (X, Q)
(see [12, Prop. 10.2.3]). Remark that this definition is equivalent to the definition of the
algebraic de Rham cohomology in [33, Chap. 3| via the h-topology (as one can easily see via

blow-up induction [12, Lemma 10.3.1 b)| after [33, Prop. 3.2.4] and [33, Lemma 3.1.14]).
Note that for ¢ = 0 we have a canonical map 7° : Z(0) — Q yielding a map

HPY(X) = HY (X, Z) — H (X) = H (X, Q).
For ¢ = 1 we have r' :=dlog : Z(1) — Q in DMS! (see [45, Lemme 2.1.3] for the Nisnevich
topology and apply «) yielding a map
HPY(X) = B (X, G) — HE(X) = HE(X,9).
Following [45, (2.1.5)] an internal de Rham regulator 77 in DMST for ¢ > 2 is then obtained
as the composition of

(1.1) P Z(g) = Z(1)P1 5 gea

For M € DM, composing a map M — Z(q)[p] with 79[p] we get an external de Rham
regulator map

(1.2) rid s HPY(M) — Hig (M)
and in particular for M = M (X) we get
rid HPY(X) = HY (X, Z(q)) — Hig(X) = HE (X, Q).
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Note that if X is smooth then H} (X,Q) = HL (X,Q) = H} (X,Q) coincides with the

classical algebraic de Rham cohomology (again, see [12, Prop. 10.2.3] and cf. [33, Prop.
3.2.4]) and we thus obtain i : HY (X, Z(q)) — H}, (X, Q) in this case.

1.2. Periods. As soon as we have an embedding ¢ : K — C we may consider a Betti
realization (e.g. see [45, §3.3] or [5, Def. 2.1]) in the derived category of abelian groups
D(Z) as a triangulated functor

(1.3) By : DMST — D(7)

such that 5,(Z(q)) = Zan(q) := (2m4)?Z[0]. Actually, following Ayoub (see also |7, §2.1.2] and
[8, §1.1.2]) if we consider the analogue of the Voevodsky motivic category DMSE obtained
as the full subcategory of D(Shv'! (Anc)) given by Al -local complexes, where we here
replace smooth schemes Smyg by the category Anc of complex analytic manifolds, we get
an equivalence

B:DM =, D(7)
such that Mu,(X) ~ Sing, (X) is sent to the singular chain complex of X € Anc. Moreover
there is a natural triangulated functor

o : DMST — DM
such that M(X) ~» My, (Xan) where the analytic space X,, is given by the C-points of
the base change X¢ of any algebraic scheme X. We then set 8, :=f o o. Thus it is clear
that 5,(Z[0]) = Bs(M(Spec(K)) = Z[0]. Since a K-rational point of X yields M (X) =
Z & M(X) we also see that S,(Z(1)[1]) = Bo(M(Gp,)) = B(Man(C*)) = Zan(1)[1] and then,
Bo(Z(q)) = Zan(q) in general, as it follows from the compatibility of 3, with the tensor

structures, i.e., we here use the fact that 8, is unital and monoidal. For M e DMST

o, We
denote

ng’lq(M) = HomD(Z) (BO'Mu Zan(Q) [p])
and we have a Betti requlator map
(1.4) o s HPU(M) — HE (M)

induced by fB,. In particular, for M = M(X), we obtain from Ayoub’s construction (see
also |45, Prop. 4.2.7]):

1.2.1. Lemma. For any algebraic K-scheme X and any field homomorphism o : K — C
we have
HE(X) := Homp(z) (8o M (X), Zan(q)[p]) = H?(Xan, Zan(q))
and a Betti requlator map
i HP(X) — H?(Xan, Zan(q))-

Recall that the functor 3, admits a right adjoint 37 : D(Z) — DM (see [8, Def. 1.7]).
Note that the Betti regulator (1.4) is just given by composition with the unit
(1.5) rg  Z(q) — B7Bo(Z(q))
of the adjunction. Actually, by making use of the classical Poincaré Lemma and Grothendieck
comparison theorem ([30, Thm. 1']) we get:
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1.2.2. Lemma (Ayoub). There is a canonical quasi-isomorphism

@ : 578, (2(e)) 92 C * Q@ C
whose composition with r& in (1.5) is the regqulator v in (1.1) after tensoring with C.
Proof. See |7, Cor. 2.89 & Prop. 2.92] and also |9, §3.5]. O

1.2.3. Remark. Note that applying 5, to w? we obtain a quasi-isomorphism (,(w?) such
that
N . Bo ()
B T

Bo (r9)c

Bs(2) @k C

where B, (r?)c is a split injection but it is not a quasi-isomorphism (cf. [45, §4.1]).
For M € DME?, by composition with w? we get a period isomorphism
whf : HPA(M) ®7 C — HEp (M) @k C.
1.2.4. Definition. For any scheme X we shall call period isomorphism the C-isomorphism

Wi o HP(Xan, Zan(q)) ®7 C —> HEL (X) @k C

obtained by setting w'y? := wﬁ/’[q( Xx) 3 above. We shall denote ni?:= (c?) ™! the inverse of

the period isomorphism.
We also get the following compatibility.

1.2.5. Proposition. For M € DMZ{f along with a fized embedding o : K — C the inverse
of the period isomorphism why' above induces a commutative diagram

Dp,q

HPO(M) —— " gPI(M)
l P
,r,P,q an
dR

Hyp (M) Hip (M) @k C—= Hiz!(M) @7 C

—

p,q
LdR

where Lgﬁ and By are the canonical mappings given by tensoring with C.

Proof. This easily follows from Lemma 1.2.2. In fact, by construction, the claimed commu-
tative diagram can be translated into the following commutative square:

p,q p
lan O Tan

Hompy e (M, Z(q)[p]) Hompy e (M, 87 B, Z(q)[p])c
T ;:Tq[p]ol Z wff[p]ol

Hompenr (M, Q[p]) Hompyyen (M, Q[p])c.

-®rC
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1.2.6. Corollary. Let X be an algebraic K-scheme along with a fixed embedding o : K — C.
The period isomorphism w’;{’q above induces a commutative square

p,q

HP4(X) e HP(Xan, Zan(q))

p,q p,q
TaR \L lban
p,q

HA(X) ——— HP(X,,C).

Note that from Corollary 1.2.6 we get a refinement of the Betti regulator.

1.2.7. Definition. Define the algebraic singular cohomology classes as the elements of the
subgroup Hfl’g(X) = Im By} € HP(Xan, Zan(q)) given by the image of the motivic cohomol-
ogy under the Betti regulator rh;.

Define the w-algebraic singular cohomology classes by the subgroup
H2Y(X) = HE (X) N HP(Xan, Zan()) € H?(Xan, Zan(9))

where N means that we take elements in HP(Xap, Zan(g)) which are given by the inverse
image (under ¢£;) of elements in HY, (X) regarded (under J) inside HP(Xap,C) via the
isomorphism wé}’q above.

The groups HEZ?(X) shall be called period cohomology groups and

rbd . HPY(X) — H2I(X)
induced by i and rf; shall be called the period regulator.
We get that:
1.2.8. Corollary. HJ/(X) C HZ'(X).

For example, all torsion cohomology classes are w-algebraic: we shall see in Lemma 1.4.2
that they are also algebraic.

In particular, if HP(Xan, Zan(q)) is all algebraic, i.e., the Betti regulator rh;! is surjective,

then the canonical embedding Ay of singular cohomology HP(Xan, Qan(q)) in the C-vector
space HP(Xay, C) factors through an embedding of HP (X, Qan(q)) into the K-vector space
HgR(X ). If K = Q this rarely happens. For example, if p = 0 it happens only if ¢ = 0 and
in this case ro? is always surjective (as Ho!(X) = 0 for ¢ # 0).
1.3. Period conjecture for motivic cohomology. Over K = Q it seems reasonable to
make the conjecture that all w-algebraic classes are algebraic, ¢.e., to conjecture that the
period regulator r%? is surjective. In other words we may say that the period conjecture for
motivic cohomology holds for X, in degree p and twist ¢, if

(L6) HPA(X) = HE(X).

Over a number field we may expect that this holds rationally. If (1.6) holds we also have
that H?(Xan, Zan(g)) modulo torsion embeds into HXp (X) if and only if HP(Xan, Zan(q)) is
all algebraic. Note that using Proposition 1.2.5 we can define H%?(M) providing a version
of the period conjecture for any object M € DMgf.
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1.3.1. Proposition. For any q > 0 the period conjecture (1.6) holds true for X, in degree p
and twist r, if and only if it holds true for M(X)(q), in degree p and twist q + r.

Proof. By Voevodsky cancellation theorem [51] we have that twisting by ¢ in motivic co-
homology HP"(X) — HP4+"(M(X)(q)) is an isomorphism of groups. If M = M(X)(q)
with ¢ > 0 we also get HZ"(X) —s HZ9"(M(X)(q)) canonically by twisting. In fact, we
have a diagram induced by twisting

HP(Xan, Zan (7)) ® C —2 HEIT (M (X)(q)) ©2 C
g Ao
HEL(X) @ C " HE (M(X)(q)) ®k C

where gc:=q ® C is the C-isomorphism given by the canonical integrally defined map-
ping q: H?(Xan, Zan(r)) = HEIT(M(X)(q)) which is sending a p-th cohomology class re-
garded as a map B, M (X) = Sing,(Xan) = Zan(r)[p] in D(Z) to the ¢g-twist M (X)(q) =
Sing, (Xan)(q) = Zan(q + r)[p]. Similarly, the C-isomorphism gqr is induced by twisting,
since Q(—q) 2% O is a canonical isomorphism in DMgff and the claim follows. O

For X smooth we have that HP?(X) = H. (X,Z(q)) and with rational coefficients we
have that H. (X, Q(q)) = CH(X,2q—p)g. In particular, if X is smooth and p = 2¢ we get
that 7297 is the modern refinement of the classical cycle class map with rational coefficients
(1.7) r2449 = ¢4 . CHY(X)g — H2%9(X)g
for codimension ¢ cycles on X considered in [17]. In this case, the period conjecture (1.6)
with rational coefficients coincides with the classical Grothendieck period conjecture for

algebraic cycles: see [17, §1.1.3] and [17, Prop. 2.13-14] comparing it with the conjecture
on torsors of periods.

1.3.2. Remark. For K = C we may also think to refine the Hodge conjecture as previously
hinted by Beilinson, conjecturing the surjectivity of

Tﬁgdge : Hp’q(X)Q — HomMHS(Q(O),Hp(X)(q)).
However, such a generalization doesn’t hold, in general, e.g. see [20].

1.4. Torsion cohomology classes are algebraic. Consider Z/n(q):=7%Z(q) ® Z/n. By
Suslin-Voevodsky rigidity we have a quasi-isomorphism of complexes of étale sheaves ps? —
Z/n(q) yielding H (X,Z/n(q)) = HE (X, ui?) = HE (X, us?). For a proof of this key result
see [47, Thm. 10.2 & Prop. 10.7| for X smooth and make use of [12, Prop. 12.1.1] to get it
in general.

1.4.1. Lemma. For any algebraic scheme X over K = K < C we have H% (X,Z/n(q)) =
HP(Xan,Z/n).

Proof. As étale cohomology of ng is invariant under the extension o : K «— C of al-
gebraically closed fields we obtain the claimed comparison from the classical comparison
result after choosing a root of unity. O
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We then have (cf. [49, Prop. 3.1]):

1.4.2. Lemma. The regulator 757 |yor: HP9(X )ior—H2Y (X )ior 48 surjective on torsion and
27 ®Q/Z : HP4(X) ® Q/Z — HEY(X) ® Q/Z is injective.

Proof. By construction, for any positive integer n, comparing the usual universal coefficient
exact sequences, we have the following commutative diagram with exact rows

0 = HE (X, Z(q)) /n — HE,(X,Z/n(q)) — nHE (X, Z(q) = 0

irﬂﬁq/n
0 = HP(Xan, Zan)/n — HP(Xan,Z/n) —— an+1(Xan,Zan) — 0.

Passing to the direct limit on n we easily get the claim. In fact, , H5?(X) = , H?(Xan, Zan)
and rhy! /n factors through r%%/n. O

1.4.3. Lemma. We have that r2?® Q is surjective if and only if &% is surjective; moreover,
if this is the case 15 @ Q/Z is an isomorphism.

Proof. This follows from a simple diagram chase. ]

In the situation that HP?(X) ® Q/Z = 0 the period conjecture for motivic cohomology
(1.6) is then equivalent to

(18) H(Z;R(X) me(XanyQan(Q)) = 0.
In particular:

1.4.4. Proposition. If X is smooth then (1.6) for p & [q,2q| is equivalent to (1.8). If X is
smooth and proper then (1.6) is equivalent to the surjectivity of cl% in (1.7) for p = 2q and
to the vanishing (1.8) for p # 2q.

Proof. In fact, by the Appendix A, Theorem A.1.3, we have that for p ¢ [q,2¢] the group
HP4(X) is an extension of torsion by divisible groups so that H?9(X) ® Q/Z = 0. If X is
proper the latter vanishing holds true for all p # 2q. O

Proposition 1.4.4 explains some weight properties related to the Grothendieck period
conjecture, weight arguments which are also considered in [17].

1.4.5. Remark. For K = C we have that rg’q ltor: HPY( X )tor— HP(Xan, Zan(q))tor 18 surjec-
tive (as also remarked in [49] for X smooth projective): torsion motivic cohomology classes
supply the defect of algebraic cycles providing the missing torsion algebraic cycles. In fact,
from the well known Atiyah-Hirzebruch-Totaro counterexamples to the integral Hodge con-
jecture we know that c/? : CHP(X) — H?"(Xan, Zan(p)) cannot be surjective on torsion for
p > 2 in general.
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2. PERIODS OF 1-MOTIVES: FULLNESS OF BETTI-DE RHAM REALIZATIONS

Let M (K) be the abelian category of 1-motives with torsion over K (see [12, App. C]).
We shall drop the reference to K if it is clear from the context. We shall denote

MK = [UK: LK — GK] c tMl(K)

a 1l-motive with torsion with Lx in degree 0 and Gg in degree 1; for brevity, we shall
write Mg = Lg[0] if Gk = 0 and Mg = Gg[—1] if Lx = 0 and we omit the reference
to K if unnecessary. Let My := [Lior N Ker(u) — 0] be the torsion part of Mg, let
Mg := [L/Ltor = G/u(Ltor)] be the free part of Mg, and let Myt := [L/Lior N Ker(u) — G
be the torsion free part of Mg. There are short exact sequences of complexes

(2.1) 0— Mior = Mg — My — 0
and
(2.2) 0— [F=F] = My — Mg — 0,

where F' = Loy /Loy N Ker(u). Let M,p, denote the 1-motive with torsion [L — G/T| where
T is the maximal subtorus of G. Recall (see [12, Prop. C.7.1]) that the canonical functor
M — "M from Deligne 1-motives admits a left adjoint/left inverse given by M ~» M.

Any 1-motive M = [L — G] is canonically endowed with an increasing filtration of sub-1-
motives, the weight filtration, defined as follows:

(2.3) Wi(M) = %:H P
0 if <=3

with T the maximal subtorus of G. We have that D°(!M;) = DP(M;) (see [12, Thm.
1.11.1]) and that there is a canonical embedding (see [12, Def 2.7.1])

(2.4) Tot : D°(M;) < DM

so that we can also regard 1-motives as motivic complexes of étale sheaves. The restriction of
the Betti realization (3, in (1.3) can be described explicitly for 1-motives via Deligne’s Hodge
realization (see [12, Thm. 15.4.1]). Similarly, the restriction of the de Rham realization in
[45] can be described via Deligne’s de Rham realization as follows.

2.1. de Rham realization. Let K be a field of characteristic zero and let Mg = [ug: Lx —
Gk] € ‘M;(K) be a 1-motive with torsion over K. Note that for Mi( = [ui( L — Gi(]
the universal G,-extension of Mg we have

M
0—>V(M)—>MHKP—>MK—>O

where V(M) := Ext(Mg,G,)". The existence of universal extensions is well-known when
Lk is torsion-free; for the general case see [11, Proposition 2.2.1|. Recall (see [23, §10.1.7])
the following
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2.1.1. Definition. The de Rham realization of Mg is
o Tia(Ch
Tar (M) := Lie(Gy)
as a K-vector space.

2.1.2. Remark. Note that pM = (idL, pg) where pg: GUK%%GK is a quotient and Ker pg =

V(M) so that Gg is the semiabelian quotient of Gi( and uI}( is a canonical lifting of ug, i.e.,

Ug = pG © ui(. Further V(M) C Tyr(Mg) is also the kernel of the morphism

dpg: Lie(Gh) — Lie(Gg)

induced by pg, so that Tyr(Mg) together with the K-subspace V(M) can be regarded as a
filtered K-vector space. This datum is called the Hodge filtration of Tyr(Mg).

The algebraic K-group Gi( fits in the following diagram [14, (2.15)]

0—>V(A) —=ATxpG—>G—=0

o

0——= V(M) T .G 0
V(L) ==L ®G,

where we have omitted subscripts K and written V(A)) for V(A[—1]) = V(G[-1]).

2.1.3. Lemma. For K C K’ we have a natural isomorphism

(M) ke = (M2,

2.2. Base change to C and periods. Consider K a subfield of C and let M¢ = [uc: L¢ —
Gc| be the base change of Mg to C. Let T%(Mc) be the finitely generated abelian group
in the usual Deligne-Hodge realization of M¢ (see [23, 10.1.3] and [13, §1]) given by the
pull-back

0 —— H(G¢ HLie(G@)&GCHO

(
I A

)
0 —— T%(Ge) —= Tz(M¢) —= Lc ——=0

where for brevity T7(Gc) denotes T%7(Gg[—1]) which by definition is H;(Gg). After base
change to C and Lemma 2.1.3 we then get (Mi()(c >~ (Mc)? hence an isomorphism

~

(2.5) L TdR(M(C) — TdR(MK) RK C
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and a commutative diagram

exp

(2.6) 0 —= Hy(Ge) — Lie(Ge) 22> Ge —=0

(
«
0 —— Hy( Gh Lle(G ) —— =, 0

A
uc u(?: uc

0 —Ty(Ge) — Ty (M¢) 22> Lg —= 0

where the dotted arrow exists by definition of 77 (Mc) and the fact that the upper right-hand
square is cartesian. Hence also the lower right-hand square is cartesian and the sequence
on the bottom is equivalently obtained by pull-back of the upper sequence via uc or of
the sequence in the middle via u(hc. Further T7(Gc) is identified with the kernel of both
exponential maps and the dotted arrow gives a homomorphism 77(Mc¢) — Tyr(Mc) =

Lie(G(hc). Finally note that the weight filtration in (2.3) gives a filtration on T7z(Mc): the
immersion T¢ — Ge gives an inclusion 77(Tc) = Hi(Te) € Hi(Ge) = Tz(Ge) while
T7(Ge) € Tz(Mc) comes from the previous diagram.

2.2.1. Definition. The homomorphism of periods is the unique homomorphism
wM,Z - Tz(M(C) — TdR(MK> XK C

that yields dpg o wm 7z = tc and exp ownm 7z = u(uC oexp under the identification given by the
isomorphism ¢ in (2.5).

Note that Uc is the pull-back of uc along exp and for 2 € L¢ we may pick lgé(x) € Tz (Mc),
i.e., such that exp(log(z)) = x. We then get

(2.7) uc(z) = exp(iic(log(#))) = exp(dpe(wm 2 (log(x)))-
2.2.2. Theorem. The induced C-linear mapping

wmc : Ic(Mc) :==T7(Mc) ®7 C = Tygr (MK ) @ C
is an isomorphism.

Proof. Making use of the identification in (2.5) we are left to see that it holds true for K = C.
The case of L without torsion is treated by Deligne [23, 10.1.8]. Actually, an easy proof can
be given by dévissage to the case of lattices, tori and abelian varieties. For the general case
note that wm c = wwm,c by (2.1). Indeed Tyr(Mior) = 0 and the kernel of the canonical
morphism 7% (Mc) — Tz (Mgt c) is torsion. Further by (2.2) the map 77 (M c) = T7(Mgc)
is an isomorphism and we have an exact sequence

0—>[F:F]—>M5f—>M?r—>O
so that the canonical morphism Tyr(Mi) — Tyr(Mg) is an isomorphism too. Hence

WMy;,C = @WM,,c- We conclude that @y c = wm,,c and the latter is an isomorphism
since Mg, is a Deligne 1-motive. O
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2.2.3. Examples. o If Mg = [0 — G,,], then T%(M¢) = Z and the first and second rows

211

in (2.6) are given by 0 — Z —
wmc: C— C, 2z — 2miz.

o If Mg = [Lx — 0], then 77(Mc) = L¢ and Tgr(Mc) = Lc ®z C and the map wwm z is
the homomorphism L¢ = L¢ ®7z C,z +— 2 ® 1 and wu ¢ is the identity map.

o If Mg = [u: Z — G,,] with u(l) = a € K*, then G' = G,, x G,. Once fixed a
complex logarithm log a of a we can construct an isomorphism Z x Z — Tz(M¢) = {(z,y) €
C x Z|exp(z) = a¥} that maps the pair (k,y) to (yloga + 2wik,y). The homomorphism of
periods becomes then the map wwm z: Z x Z — C x C that sends (k,y) to (yloga+ 2mik,y).

Note that over C the Hodge filtration V(M) C Tyr(Mg) of Remark 2.1.2 is obtained from
the Hodge filtration of Tc(Mc) via wm c.

C 2 C* — 0. Hence wMmz = uc: Z — C,z — 2miz and

2.3. Periods and transcendence. The proof of Theorem 2.7.1, which is the main outcome
of the second section of this paper, makes use of deep results of transcendence theory that
we recall below. First consider [43, Theorem 2].

2.3.1. Theorem. Let Ax be an abelian variety of dimension d over K = Q. Let ©: C* —
Aan be the homomorphism given by the theta functions, inducing an isomorphism of the
complex torus onto Asn. Assume that the derivations 0/0z;, (i =1,...,d) are defined over
K. If a = () € C? is a complex vector # 0 such that all o; lie in K, then ©(a) is
transcendental over K. In particular, the periods are transcendental.

It can be generalized to semiabelian varieties as follows.

2.3.2. Theorem. Let G be a semiabelian variety over K = Q. If 0 # x € Lie(Gg), then
exp(z) € Gg¢(C) is transcendental over K. In particular, Lie(Gg) N Ker(exp) = {0} in
Lie(G(c).

Proof. The assertion is known if Gg = an’ i due to fundamental work of Hermite and

Lindemann on the transcendence of ? for 5 a non zero algebraic number. The case Gx an
abelian variety is Theorem 2.3.1. The general case follows then by dévissage. O

This type of results has been further generalised by Waldschmidt ([54, Thm. 5.2.1]):

2.3.3. Theorem. Let G be a commutative connected algebraic group over K = Q. Let
p: C" — Gupy be an analytic map such that the induced morphism on Lie algebras arises from
a homomorphism of K -vector spaces K™ — LieG. Let I' C C™ be a subgroup containing n
elements which are C-linearly independent and such that ¢(I') C G(K). Then the algebraic
dimension of , i.e. the dimension of the Zariski closure of the image of p, is < n.

This implies the following result [17, Thm. 3.1], which is one of the technical inputs for
the proof of our Theorem 2.7.1

2.3.4. Theorem. Let Gi,Hg be two connected commutative algebraic groups over K = Q.
If the group Hi(Gc) generates Lie(Ge) as a complex vector space, then the map

Lie: Homp g (Gr,Hx) — {9 € Homg (Lie Gy, LieHg ) [thc(H1(Ge)) € Hi(He)}

s an isomorphism of Z-modules.
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The condition on the group H;(Gc) is satisfied whenever G is a semiabelian variety (or
its universal vectorial extension) since 17(Gc) = H1(Gc) generates Tyr(Ge) = Lie(G(uc) and
hence Lie(G¢). Note that Theorem 2.2.2 is a generalization of this fact. For completeness we
also cite the following result |56, Thm 1|, which is a consequence of the celebrated analytic
subgroup theorem of Wiistholz. It implies the result of Waldschmidt is a special case. We
will use it to give an alternative proof of Theorem 2.7.1:

2.3.5. Theorem. Let W be a commutative connected algebraic group over Q. Let S be a
subset of exp™! (W(Q)) and let V C Lie W be the smallest Q-vector subspace whose C-span
contains S. Then, there exists a connected algebraic subgroup Z C W such that Lie Z = V.

2.4. Period categories. For a fixed o : K — C we consider a homological category for
Betti-de Rham realizations as follows. Let Modyz, i be the following category: (i) objects are
triples (Hyz, H,w) where Hy is a finitely generated abelian group, H is a finite dimensional
K-vector space, and w : Hy — Hg ®pk C is a homomorphism of groups; (ii) morphisms
¢ : (Hz,Hg,w) — (Hy, Hj;,w') are pairs ¢:=(pz, pi) where pz: Hy — Hj, is a group
homomorphism, ¢x: Hx — Hj. is a K-linear homomorphism and ¢ is compatible with w
and «’, i.e., the following square

(2.8) Hz —> Hg ®k C

SOZJ/ l@x@lc

H}, —= H}- @ C
commutes. For H = (Hz, Hx,w) in Mody,  let
(2.9) we:Hyp®7,C— Hg @ C

be the induced C-linear mapping and denote Mod; x the full subcategory of Modz i given
by those objects such that wc is a C-isomorphism.

There is a Q-linear variant Modg g of this category where objects are (Hg, Hx,w) as
above but Hg is a finite dimensional Q-vector space. Note that Modg x = Modz x ® Q is
the category Modz, x modulo torsion objects (see [12, B.3| for this notion).

2.4.1. Definition. We shall call Mod;K (resp. MOdS,K) the category (resp. Q-linear
category) of homological periods.

Let Modg’g (resp. Mod%’}?r) be the full subcategory of Mod; K given by those objects
H such that Hy is free (resp. is torsion). For any r € Z we shall denote

Z(r) = (Z, K, (2mi)") € Mod 1.
For H = (Hz, Hi,w) and H' = (H},, Hj,,w') we can define
(2.10) H® H':=(Hz ®z Hj, Hx @ Hie,w @ W)
and set H(r):= H ® Z(r) the Tate twist. For H € Mod;’g, say that H = (Hz, Hg,w) with
Hy, free, we have duals HY € Mod;’ffg given by
(2.11) (Hz, Hy,w)" == (H), H}},w")
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where H) = Hom(Hy,Z) is the dual abelian group, H), = Hom(Hg, K) is the dual K-
vector space, and

w':HY - H®KC
is the composition of the canonical mapping Hy — H, ®z C with the C-isomorphism
HY ®7C — H}, @k C given by the inverse of the C-dual of wc in (2.9), i.e., WV (f) = (f ®z
idg) o w(El for any f: Hyz — Z, up to the canonical isomorphism H), @ x C ~ (Hg ®5 C)V.
We clearly get that (HY)Y = H and ( )V: Mod;’ffi — Mod;’g is a dualizing functor. Note
that Z(r)"Y = Z(—r) so that H(r)V = HY(—r) for r € Z.

Similar constructions can be done for the Q-linear variant Moda - Note that Moda K
(resp. Modz’g) admits an internal Hom defined via the internal Hom of the category of
finite dimensional Q-vector spaces (resp. lattices). Furthermore these categories do have an
identity object: 1 = Z(0) € Mod;’lfg and 1 = Q(0) € Modg’K7 respectively. For any object
H of MOdS,K we have HY = Hom(H, 1) and End(1) = Q. Hence all objects of ModaK are

reflexive. Similarly, for Mod?’lfg.

2.4.2. Lemma. The categories Mody i and Mod%’K are abelian tensor categories. The

category ModaK s a neutral Tannakian category with fibre functor the forgetful functor to
Q-vector spaces.

Note that there is a cohomological version of Mod; x and Moda x> which is called the
de Rham-Betti category in the existing literature (cf. |3, 7.5]).

2.4.3. Definition. Let Modlg{ » be the category whose objects are triples (Hg, Hz,7) where
Hg is a finite dimensional K-vector space, Hy is a finitely generated abelian group and

T]:HK®KCi>Hz®ZC

is an isomorphism of C-vector spaces. We shall call Mod?Z and its Q-linear variant Modi(@
the categories of cohomological periods.

The category Modi’fzr is denoted Cqgrp in [17, §2.1] and in [16, §5.3]. The Q-linear variant

Modi(@ is denoted (K, Q)-Vect in [33, Chap. 5|. For these categories we have an analogue
of Lemma 2.4.2; in particular, a dualizing functor exists.

2.4.4. Lemma. There is canonical equivalence given by the functor
¢:Modj o — Mody ,  <(Hz Hg,w):=(Hg,Hz,wg")
which induces an equivalence between the tensor subcategories Mod?’g and Modi’fzr.

We set
Z(r) :=<(Z(r)) € Mod;.

Note that, for H € Modi’g we may consider H® € Modi’fZr setting

(2.12) (Hz, Hy,w)®:= (H), Hy ,w°) = ¢(H") = ¢(H)"
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where w® : H), @ C = H)} ®7 C is just given by the C-dual of we in (2.9). We then have
Z(r)° =7Z(-r) € Modlg(’fzr so that H(r)° = H°(—r) for all r € Z.
The functor ( )° is an anti-equivalence and there is an induced equivalence Moda K

~

(Modi(@)"p of neutral Tannakian categories.

2.5. Betti—-de Rham realization and Cartier duality. Now recall the period mapping
wmz : T7(Mc) = Tar(Mk ) ® k C provided by Definition 2.2.1. According to Theorem 2.2.2
we have that @y ¢ is a C-isomorphism.

2.5.1. Definition. For K a subfield of C, Mg € "M;(K) and ww z we set
Tar(Mk) := (Tz(Mc), Tar (M), wm,z) € Mody, g
and the Q-linear variant
Tr (M) = (Tp(Mc), Tar (M ), wm,0) € Modg,
where Tp(Mc) :=T7(Mc) ®z Q. Call these realizations the Betti-de Rham realizations.

Since the period mapping wm z in Tear(Mgk) is covariantly functorial, by the construc-
tions in (2.6) and (2.5), the Betti-de Rham realization yields a functor

(2.13) Taar: ‘M (K) — MOd%,K

in the homological category Mod% - Similarly, with rational coefficients, we get a functor

from 1-motives up to isogenies MY (K) = ML (K) to ModaK. By Examples 2.2.3 we have
TBdR(Z[O]) = Z(O) and TBdR(Gm[_l]) = Z(l).

2.5.2. Definition. For H = (Hy, Hi,w) € Mod;}fz define the Cartier dual
H* = (Hy, Hy.,2miw") = H'(1) = H(—1)" = Hom(H,Z(1)) € Mody .
Note that this construction is reflexive.
2.5.3. Theorem. For Mg € ‘My(K) free with Cartier dual M, we have that
Tiar(Mk)" = Thar (M)

Proof. It suffices to prove that the Poincaré biextension of Mg provides a natural morphism
T(Mg) @ T(M3.) — Z(1) which induces the usual dualities ( , )z on T7’s and (, )qr on
T4r’s constructed in [23, §10.2.3 & §10.2.7|. This is proved in [23, Prop. 10.2.8|. O

Note that we also have a de Rham—Betti contravariant realization in the cohomological
category Modrf(z. Recall from [12, §1.13] that we also have the category of 1-motives with
cotorsion ; Mj. Cartier duality

(2.14) () My = My

is an anti-equivalence of abelian categories.
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2.5.4. Definition. For M € ;M denote
Tara(M) :=¢(Tpar (M¥)) = (Tqr(M*), Tz(M*), nm+) € Modi

where ny« ::w,\_/li c is the inverse of the C-linear period isomorphism @y« ¢ of the Cartier

dual M* € ‘M (see Theorem 2.2.2). Call this realization (and its Q-linear variant) the de
Rham—Betti realization.

With this definition we get a functor
(2.15) Tarp : tMF — Modiz.
Now we have Tyrp(Z[0]) = Z(1) and Tars(Gn|—1]) = Z(0). With the notation adopted in
(2.12), we also have
Tpar(M)°(1) = (Tar(M)", Tz (M), (2m1) "oy ).
2.5.5. Lemma. We have a natural isomorphism of functors Tarp( ) = Tar( )°(1).

Proof. For M € M; and its Cartier dual M* we have that Tpqr(M)* = Tpar(M*) € Modg’;
by Theorem 2.5.3. Thus the period isomorphism of the Cartier dual @y« z = 2miwy, , and
its C-inverse . c = (2mi) " loy. O

2.6. Weight and Hodge filtrations. Consider the category FModz x given by objects
in Modz, i endowed with finite and exhaustive filtrations and morphisms that respect the
filtrations.

More precisely, an object of FMody, i is an abelian group Hz endowed with a (weight)
filtration W, Hz and a K-vector space Hg endowed with two filtrations W,Hg, F,H, along
with the corresponding compatibilities of the w’s on weight filtrations.

Let Mg = [Lx — Gg]| be a 1-motive over K and, as usual, let Tx denote the maximal
subtorus of Gg. Since the Betti-de Rham realization (2.13) is functorial and compatible
with the canonical weight filtration (2.3) on Tz (Mc) and Tyr(My) is filtered by V(M), the
Hodge filtration as in Remark 2.1.2, we also get a realization functor

(2.16) FTBdRZ tMl(K) — FMOdZ,K.
We have

(T72(Mc), Tar Mk ), wmz) 2 (17(Ge), Tar (Gk ), we,z) 2 (12(Tc), Tar(Tk ), @T,2)-
Note that:

2.6.1. Lemma. Let K = Q. Let Mg and N be two free 1-motives over K. Then any
morphism ¢: Tpar(Mk) — Tpar(Nk) in Modzg preserves the weight filtrations.

Proof. Let ¢ = (¢z,¢K): (Iz(Mc), Tar(Mk), wm,z) — (Tz(Nc), Tar(Nk), @wn,z) for Mg
and Ng one of the following pure 1-motives: [Zg — 0], [0 = Gy, k] and [0 — Ag]|, where
Ak is an abelian variety. We show that ¢ = 0 for different weights, in all cases. As K is
algebraically closed this implies that ¢ = 0 for all pure 1-motives of different weights and
this easily yields the claimed compatibility.

For Mg = [Zx — 0] and Ng = [0 — Gy, k] (respectively Mg = [0 — G, k] and
Nx = [Zg — 0]) we have Tpqr([Zx — 0]) = Z(0), T4r([0 = Gy x]) = Z(1) and ¢ = 0 as
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pr: K — K is given by the multiplication by an algebraic number but the compatibility
(2.8) forces such algebraic number to be n2mi (respectively n/2mi) for some n € Z.

Similarly, for Mg = [Zx — 0] and Ng = [0 — Ag] we have that wz N o ¢z(1) = k(1)
if, and only if, ¢ = 0. Indeed, the preceding equality implies that dpa o wz N © ¢z(1) =
dpp o ¢ (1). Now, the right-hand term is in Lie(Ax) while by Remark 2.3.2 the left-hand
term would give a transcendental point of Lie(Ac¢) if ¢z(1) # 0.

Dually, for Mg = [0 — Ag] and Ng = [0 — G, k] by making use of Theorem 2.5.3 we
then get ¢* = 0 thus ¢ = 0.

Finally, for Mg = [0 — Gy, k] and Ng = [0 — Ag| we can apply Theorem 2.3.4
to the pair (¢x,¢z) so that, dually, making use of Theorem 2.5.3, the same holds for
MK:[O—)AK] and NK:[ZK—)O]. ]

Let Mg = [ug: Lx — Gg] and Ng = [vg: Fx — Hg] be free and let ¢: Tpqr (Mg ) —
Tsar(Ng) be a morphism in Mod;K. Then we have a K-linear mapping ¢x: Tgr(Mg) —
Tar(Ng) and a homomorphism ¢z : T7(Mc) — T77(N¢) which is compatible with the weight
filtrations, by Lemma 2.6.1. Moreover, ¢z and @x are compatible with the w’s as in (2.8).
We have that ¢z restricts to a homomorphism

(217)  Worpz: WoiTa(Me) :=T5(Ge) = Hi(GL) = WoaTz(Ne) = Tz(He) = Hi(HE)
and we get an induced map on grf’ as follows

(2.18) @z0: g1y’ Tz(Mc) = Tz(Mc)/Tz(Ge) = Le — gry) Tz(Ne) = Tz(Ne)/Tz(He) = Fe.
Note that ¢z is indeed defined over Q.

2.6.2. Lemma. Let K = Q. Let Mg and N be two free 1-motives over K. Then any
morphism ¢: Tpqr (Mg) — Tear(Ng) in ModZ’Ifg preserves the Hodge filtrations.

Proof. Let Mg = [ug: Lk — Gg|and Ng = [vik: Fx — Hg] be free and let ¢: Tpqr (M) —
Tsar(Nk) be a morphism in Mod;K. We have to show that ¢ (V(M)) C V(N) where V(M)

is the additive part of GHK and V(N) is that of HhK; see Remark 2.1.2. Recall the commutative
diagram

(2.19) Tz(Mc) = Tz(Nc)
le,Z \LWN,Z

Tir(M Tar(Nc).

ar(Mc) Py ar(Nc)

By definition of @y z and (2.17) there is then a commutative diagram

Hy(GL) Hy(H2)

|

Lie(GL) ——a Lie(HZ)

W_1pz
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where the vertical arrows are those in the horizontal sequence in the middle of diagram
(2.6) for M and N respectively. Hence there exists an analytic morphism hc: GE: — H(hC
with dh¢e = px ® ide. It is sufficient to prove that h¢ is algebraic and defined over K to
conclude by the structure theorem of algebraic K-groups that hx (V(M)) C V(N) and hence
that o = dhx preserves the Hodge filtrations.

If Ly = 0, by Lemma 2.6.1, ¢ factors through W_;Tqr(Nx) = Tpar(Hk). Hence we
may assume Fr = 0 as well. It follows then from Theorem 2.3.4 applied to G and H? that
the above morphism h¢ is indeed algebraic and defined over K. Hence pp preserves the
Hodge filtrations.

Now let Lx # 0 and set LhK = Lg®Gy,, k. Since ¢ preserves the weights by Lemma 2.6.1 we
get W_1¢: Tar(Gxr) — Tpar(Hk). By the previous step W_1px(V(G)) C V(H) C V(N).
We thus obtain the following commutative diagram

WM, Z

Tz(Mc) % Tar(M)/V(G) ® C 2> G /V(G)e == G @ L,

®z Y 4

TN,z v v

T2 (Ne) ——> Tar(N)/V(N) @ C =~ H/V(N)¢ He

where the mapping ~ is induced by ¢x, we have the canonical identification of Gi( /V(G) =
Gg & Li( and § = gc + B with gc = gx ® idc and gx: Gx — Hg induced by W_1pr. We
are left to show that 5 L(bC — Hc is zero. Since the composition of the upper arrows in the
previous diagram maps 77 (Gc) to 0 @ 0, we obtain a commutative square

u,1
Le “YGea Ll

@l |

Fc ——Hc¢

where 7, ¢ is the induced map as in (2.18). In particular, for z € Lg (K) we have f(z®1) =
V(gzo(x)) — gr(u(z)) = v — dgr ® idc is in Hg(K). On the other hand Sz ® 1) =
expdf(z ® 1). Since df = dé — dgx ® idc we have that d3(x ® 1) belongs to Lie(Hg)
regarded as a K-linear subspace of Lie(Hc). By Remark 2.3.2 we get that f(x ®1) = 0 and
therefore that § = 0. O

2.7. Full faithfulness. We are now ready to show that our previous Lemmas 2.6.1 and
2.6.2 yield the full faithfulness of Betti-de Rham and de Rham—Betti realizations.

2.7.1. Theorem. The functors Tpar in (2.13) and Tyrp in (2.15) restricted to My (K) are
fully faithful over K = Q.

Proof. Clearly, the functor Tqr (resp. Tgrp) is faithful (¢f. [4, proof of Lemma 3.3.2])
and we are left to show the fullness. Making use of Lemma 2.5.5 we are left to check the
fullness for Tpgr. Let Mg = Jurx: Lk — Gg] and Ng = [vk: Fx — Hg] be free and let
¢: Tear(Mk) — Tar(Ng) be a morphism in Mod;K.
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For 0-motives, i.e., if Gk = Hx = 0, we have Lxg = Z} and Fx = Zj., ¢z: Tz(Mc) =
7" — T7(Nc) =2 Zj; provides a morphism f : Mg — Ng such that Tar(f) = .

If the weight —1 parts are non-zero, by Lemma 2.6.1 ¢z restricts to a homomorphism
W_1pz as in (2.17) and it yields a morphism ¢z as in (2.18) i.e., ¢z is the map induced
by ¢z on gr}f/ . If we set fc:= ¢z the homomorphism fc: L¢ — Fc trivially descends to a
homomorphism fx: Lx — Fx over K = Q.

Let’s now consider ¢ :=¢x QK idc and translate (2.17) and (2.19), as in the proof of
Lemma 2.6.2, in the following commutative diagram with exact rows

exp

(2.20) 0 — H1(GL) — Lie(GL) —> GL ——=0

Wl‘PZi l‘PC ¢

0 — H;(HL) — Lie(H%) —~ Hh —>0

yielding a morphism of analytic groups v: GEC — H(hC on the quotients via the exponential
mapping exp, as indicated above. Now, since by Lemma 2.6.2, we have px(V(M)) C V(N),
»(V(M¢)) € V(N¢), the diagram (2.20) induces a commutative diagram

0 —— Hy(Gg) — Lie(Gg) 2> Gg —= 0
WlWZl o Y
. exp v
0 —— Hy(H¢) —— Lie(H¢) —= Hc ——0.
As ¢ is the base change of the K-linear map Lie(Gx) — Lie(Hg) induced by ¢k, it follows
from Theorem 2.3.4 that 1)’ = g¢ is the base change of the morphism gx: Gx — Hg over
K = Q induced by W_j¢f (see the proof of Lemma 2.6.2).

We are left to check that h:= (fx, gx) gives a morphism h: Mg — N, i.e., that gxoug =
Vi o fx, and to see that Tpqr(h) = ¢. To show that h is a morphism of 1-motives we may
work after base change to C and, using (2.6), it suffices to prove that ¢ o u(uC = v(hC o fc.
Consider the following diagram

Tz(Mc) = Tz (Ne)
&\ exp p
wN
Le fc Fe
C
Tar(Mg) @ C Tar(Ng) @k C J
\ . (hc

i b

All squares are commutative. Indeed, exp ownm 7z = ug o exp and exp ownz = V- 0 exp by
(2.6), fc o exp = exp o @z by definition of fc, ¢c o wmz = wN,z © wz by the compatibility
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of 7 with ¢k as in (2.8), and finally 1 o exp = exp opc by (2.20). One concludes by the
surjectivity of the map exp that also 1) o u(hC = VE: o fc.

Now consider the morphism «:=Tpgr(h) — ¢: TBar(MKk) — TBar(Ng) in Mod%}K. By
construction W_1p7 = W_1Ty(h) so that « is vanishing on Tpqr(Gx). Moreover we have
that grl/ T7(h) = ¢z,0 so that o induces a morphism in Mod%K from Tpqr (Lx) to Tpar(Hk)
which is trivial by Lemma 2.6.1. U

2.7.2. Remark. In the proof of Theorem 2.7.1, in order to show that (fx,gx): Mg — Ni
is a morphism we are left to check that gx oug = vk o fx. Remark that this also follows
from two key facts: (i) the pullbacks uc and v¢ of uc and ve factor through the period
mappings w’s and (ii) the mappings ¢z and ¢k are compatible with the w@’s.

In fact, according to the above notation, for « € L¢ pick log(z) € Tz(Mc¢) and note that
vz (log(z)) = log(f(z)). Making use of (2.7) we obtain

gc(uc (@) = g exp dpcwar z(log(x)) = exp dpudgiwa z(log(z))
by the functoriality of exp. Now ¥ = px ®x 1¢c and we are assuming the compatibility
(px ®K 1c) o wyz = Wz © Pz so that
gc(uc(z)) = expdprwnzpz(log(z)) = expdprwnz(log(f(2))) = ve(f(z))

using (2.7) again, as claimed.

We notice that an alternative proof of Theorem 2.7.1 can be given using Wiistholz’s an-

alytic subgroup Theorem 2.3.5 as follows:

Alternative Proof of Theorem 2.7.1. Let Mg = [ux: Lx — Gg] and Ng = [vi: Fx —
Hx] be free 1-motives and let ¢ = (¢z, vx): Tar(MKx) — TBar(Nx) be a morphism in
Mod§ i Let W = Gi( X HEX and note that we have commutative squares

'd7 E] 9 . . .
T = Ty(Mc) — 2 Ty (Me) x T(Ne) 2™ Lie We = Lie G& @ Lie H:
lexp
id, byt
Lo Gdvezo) Le x Fo SR We = GL x HL

where the horizontal arrows are injective. Let S denote the image of T" in Lie Wg; it is
contained in exp~! (W(Q)) since the image of L¢ x F¢ via uf x v is contained in W (Q). Let
V denote the image of Lie GuK in Lie W via the map id® ¢ x. By the compatibility of ¢z and
px over C via the homomorphisms of periods, V¢ coincides with the C-span of S. It then
follows from Theorem 2.3.5 that there exists an algebraic subgroup Z C W whose Lie algebra
is V. Now, the composition of the inclusion Z — W with the projection W — GuK is an
isogeny, since it is an isomorphism on Lie algebras. In fact, it is an isomorphism; indeed the
injective map T — V¢ = Lie Z¢ C Lie W maps Hl(G(hC) C T into Hi(Z¢c) € Hi(W¢) and
hence the isomorphism Lie Z¢ — Lie GFC restricts to an isomorphism H;(Z¢) — H 1(G52)'
Let v: G% — Hl}( be the homomorphism of algebraic K-groups defined by composing the
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inverse of the isomorphism Z — Gi( with the inclusion Z — W and the second projection

W — HhK. By construction Liey = ¢x.

In order to see that f := (¢z,0,7) is a morphism of 1-motives with Tgqr (f) = ¢ it suffices

to check that yco uE: = v(hC 0pz,0 as morphisms L¢ — H(?:. The latter fact is equivalent to the

equality (idgs, ) o u? = (u?,vio ©7,0) as morphisms Lc — W, and, by the above diagram,
this is satisfied whenever (idp;, g, Lieye) o wmz = (wmz, @wnz © ¢z): T — Lie We. Then
we conclude by the commutativity of diagram (2.8) since Lieyc = ¢x ® idc. O

2.8. Descent to number fields. Let K'/K be a field extension with K’ C Q. Note the
following commutative diagram of functors

(2.21) My (K) 25 Mod3

where the functor on the left is the usual base-change and the vertical functor on the right
maps (Hz, Hi,w) to (Hyz, Hx ® x K',w) using the canonical isomorphism (Hx @ K') @
C~ Hg @k C.

2.8.1. Proposition. Let K be a subfield of Q. The functor Tgqr: M1(K) — Modi’lfg 18
Sfully faithful.

Proof. The functor Tgqg is fully faithful over Q by Theorem 2.7.1; hence it is faithful over
K, since the left-hand vertical functor in (2.21) is faithful.

Assume now Mg = [u: Lxg — Gg|,Ng = [v: Fx — Hg] are 1-motives over K and let
(¢z,¢K): TRar(MK) — Tsar(Nk) be a morphism in Modyz x. By Theorem 2.7.1 there
exists a morphism ): Mg — Ng such that Tpar(¢) = (¢z, px @k idg). Note that there

exists a subfield K’ C Q with K'/K finite Galois and ¢ = (f,g) is defined over K'. We
may further assume that Ly, Fg are constant free. Hence grgV 7 descends over K’ and we
have a commutative square

(2.22) Ly f=er (vo) Fr
L e
Lxr ® Gg,x £ (Pre) Frr @ Gg i

where the vertical morphisms map x to x®1 (and descend the homomorphism of periods for
gryV (M) and grl¥ (N) respectively). By diagram (2.22) f descends over K since gry (¢x+) =
grt/ (px) @ idgs and the vertical morphisms are injective on points. In order to check that
1 descends over K, we may then reduce to the case Lx = Fx = 0. By Cartier duality, we
may further reduce to the case where Ly = Fx = 0 and Gxg = Ak, Hk = Bk are abelian
varieties.

For any 7 € Gal(K'/K) let T also denote the corresponding K-automorphism of Spec K.
Further let 7*Ag denote the base change of Ags along 7 and let 7 Kt A — Ak be equal
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to ida, ® 7. It is not a morphism of K’-schemes in general. Finally let ta »: Agr — 7"Ag
be the canonical morphism of K’-schemes such that T, 18 the composition of ta ; with the
projection 7*Ag: — Agr.

In order to prove that the morphism v : Agr — By is defined over K we have to check
that for any 7 € Gal(K'/K) it is 18,, 09 = 1 o 7a,,. In fact it is sufficient to check that
g0 = (T*1p)ota » as morphisms of K'-schemes A — 7B, where 7%¢: 7"Agr — 7B
is the obvious base change of 1. By faithfulness of Tgqr, it is sufficient to check that

(2.23) Tgar(tB,r) © Tar (¢) = Tar (77¢) 0 Thar(tAr)-

Note that since A is a K-form of Ag, we may identify Ags with 7*Ag so that 1 » becomes
the identity map. Further Tgr(7*¢) = 7*(px ®idg) may be identified with ¢ x ® idgs and
Ty (7*1) with ¢z. We conclude that Tpqr (7*¢) may be identified with (pz, px ®idg/) and
hence (2.23) is clear. O

3. SOME EVIDENCE: DESCRIPTION OF SOME GROTHENDIECK ARITHMETIC INVARIANTS

Throughout this section we assume that K = Q and by scheme we mean a separated
scheme of finite type over K. In order to show the period conjecture for motivic cohomology
(1.6) we are left to deal with rational coefficients. However, we prefer to keep the arguments
integral when possible. In general, for any algebraic scheme X over K, by making use of
the period isomorphism w’? and its inverse 7% in Definition 1.2.4 we set

HE IR (X) := (HP(Xan, Zan(q)), Hip (X), wk?) € ModZ
and

HYL(X) = (HIR(X), H?(Xan, Zan(q)), n%?) € Mody 5.
Note that ¢(HE% (X)) = HP9,(X). We have that wh? = (27i)9e0y” and 0 = (2mi) =930
where ng(’o cHiR(X) @k C — HP(Xan, C) is the usual de Rham-Betti comparison isomor-
phism (up to a sign cf. [33, Def. 5.3.1| and [45, Lemma 4.1.1 & Prop. 4.1.2] for the Nisnevich
topology). In particular we have that HI,(X) = Hgng(X)(q).

3.1. Period cohomology revisited. For H € Modz i we set
H = Hom(Z(0), H)
where the Hom-group is taken in Modz g. This yields a functor
( )w : Modgz gk — Mody,

to the category of finitely generated abelian groups. Similarlj& let H, := Hom(Z(0), H)
for H € Mod}Z where now the Hom-group is taken in Mod}z. By Lemma 2.4.4, for
H e Mod; x we clearly have that

Hy =¢(H)y.
Moreover, for H € Mod;’g we have H* = H(—1)V € Mod;’g so that

H? = Hom(Z(0), H(—1)") = Hom(H, Z(1)).

w
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Note that for H € Modg’g we also have H°(1) = H(-1)° € Modi’fzr (see (2.12)) and we
shall denote

H”:= Hom (Z(0), H(~1)°) = Hom (H,Z(1)) = HE.

=~ fr =~ fr
ModK7Z Mody

With rational coefficients, for H € Modz g ® Q and the corresponding H Qe Modg x we

then have H, ®7Q = H2:= Hom(Q(0), H?) and, similarly, H¥ @7 Q = HE. We have (cf.
[17, Def. 2.1] and [16, (5.15)]):

3.1.1. Lemma. For H = (Hy, Hi,w) € Mody, i we have Hy = Hz N Hyg where N is the
inverse image of Hx under w : Hy — Hg @k C. Moreover, for H = (Hg, Hz,n) € Modiz,
we have that Hy, = Hyi N Hz where N is the inverse image of Hx under the composition of

-1
Hy — Hy @7 C = Hg ®k C.
Proof. The identifications are given by mapping ¢ € Hom(Z(0), H) to (1) € HzNHg. O

Similarly, for H = (Hg, Hg,w) € Mod%((@ we have that H2 = Hy N Hg. We then clearly
obtain:

3.1.2. Corollary. For H = HY}{,(X) we have that Hy; = HEY(X) coincides with the period
cohomology of Definition 1.2.7.

Moreover, composing the functor H ~» H, with the Betti-de Rham realization of 1-
motives Tpqr in (2.13) we obtain a functor

(3.1) Tw:=( )wo Tar : ‘M1 (K) — Modz.

For a 1-motive M € ;M (K) we also have Tgrp(M) € Mod?z. Composing H ~» H, with
the de Rham-Betti realization Tyrp in (2.15) now yields a functor

T% = ( )w o TdRB : tM1(K)Op — Modz.
We also note that Lemma 2.5.5 yields:
3.1.3. Corollary. For M € My(K) we have that T% (M) :=Tgra(M)w = Tpar(M)Z.

Working with rational coefficients we have T];QdR :=Tpar ® Q (resp. T(;QRB :=TgrB ® Q)
and we then get a functor T (resp. a contravariant functor 1) from the category of
1-motives up to isogenies /\/l(i2 =M Q2M; ®Q = M;®Q to the category of finite
dimensional Q-vector spaces. Moreover, applying our Theorem 2.7.1 we have:

3.1.4. Corollary. For M = [u: L — G] € M (Q) with Cartier dual M* = [u*: L* — G¥] €

M1 (Q) we have that
T (M) = T7(Mc) N Tyr (Mg ) = Keru
and
T% (M) = Tyr (M%) N Tz (ME) = Ker u*.
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P?"OOf. Note that Z(O) = TBdR(Z[O]) and for TBdR(M) = (Tz(Mc), TdR(MK)a wM,Z) we have
T
Ker u 2 Hom v, (i) (Z[0], M) =% Hom(Tgqr (Z[0]), Tear (M)) = Trr(M)
which is an isomorphism over K = Q as proven in Theorem 2.7.1. We just apply Lemma
3.1.1. Moreover, Tgrg(M) = (Tar (M%), T2(M§), nm+), Z(0) = Tare(Gm[—1]) and we have
an isomorphism
T ™
Holi(K)(M,Gm[—l]) ﬂ? HOH](TdRB(Gm[—l]),TdRB(M)) =T (M)
and Hom v, (x) (M, Gy [—1]) = Hom v, (k) (Z[0], M*) = Ker u* showing the claim. O
3.2. Period conjecture for ¢ = 1. Recall that Z(1) € DM is canonically identified with
Tot([0 = Gy]) = G [—1] (see [12, Lemma 1.8.7]). We then have
HPY(X) = HY N(X,Gy)
for all p € Z. Recall the motivic Albanese triangulated functor
LAIb : DMSE — D (M)

where DMgﬁm C DM‘f\IfifS is the subcategory of compact objects, i.e., the category of geometric
motives, which has been constructed in [12, Def. 5.2.1] (see also [10, Thm. 2.4.1]). This
functor is integrally defined. Rationally, LAlb yields a left adjoint to the inclusion functor
given by Tot in (2.4) (see [12, Thm. 6.2.1]).

Applying LAIb to the motive of any algebraic scheme X we get LAIb(X) € DY(My), a
complex of 1-motives whose p-th homology L,Alb(X) € ;M; is a 1-motive (with cotorsion,
see [12, Def. 8.2.1]). Dually, we have RPic(X) € DP(*M;) (see [12, §8.3]). Taking the
Cartier dual of L,Alb(X) we get RPPic(X) € ‘M; and conversely via (2.14). Now, the
motivic Albanese map

M(X) — Tot LAIb(X)
in DMZ? (see |12, §8.2.7]) yields an integrally defined map
(3.2) Hompe(, pq,)(LAID(X), [0 = Gp][p]) — HOI’HDMZ?(M(X),Z(l)[p]) = th_l(X, Gm).-
Rationally (by adjunction), this map becomes a Q-linear isomorphism
(33) HE (X, Gyn)g = Hompyger (M(X),Z(1)[p]) € Homyy, 0, (LAID(X), Gru[-1][p]).
Using (2.14) we set
Ext”(Z, RPic(X)) := Homps(py,)(Z, RPic(X)[p]) = Hompu(, pq, ) (LAID(X), G [—1][p])
for all p € Z and we also have (cf. [12, Lemma 10.5.1|):
3.2.1. Lemma. For any X over K = Q and p € Z there is an extension
0 — Ext(Z, RP~!Pic(X)) — Ext?(Z, RPic(X)) - Hom(Z, RPPic(X)) — 0
where the Hom and Ext are here taken in the category ‘M of 1-motives with torsion. The
composition of (3.2) with the period regulator v Hgl:l(X, Gp) — HEZY(X) induces a
mapping
67 : Hom(Z,RPPic(X)) — HZY(X).
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Proof. In fact, the canonical spectral sequence
EDY = Ext?(Z,RIPic(X)) = Ext’T9(Z,RPic(X))

yields the claimed extension since the abelian category of 1-motives with torsion ‘M (K)
is of homological dimension 1 over the algebraically closed field K = Q. Moreover, for
any l-motive M = RPPic(X) € ‘M;(K) the group Ext(Z, M) is divisible and the group
Hom(Z, M) is finitely generated (as it follows easily by making use of [12, §C.8]). The
horizontal mapping in the following commutative diagram

EXt(Z, RpilpiC(X)) zero

p,1

Ext?(Z, RPice(X)) ——= Hf, (X, Gn) = HE' (X)

Hom(Z, RPPic(X)) . i

obtained by the composition of (3.2) with the period regulator rgl, is therefore sending
Ext(Z, RP~'Pic(X)) to zero, since H%'(X) is finitely generated. We then get the induced
mapping 0%, as indicated in the diagram. ]

Also for the Betti realization, there is an integrally defined group homomorphism
0%, - Tr(RPPic(X)c)n — HP(Xan, Zan(1))s

induced via Cartier duality, by applying the Betti realization 3, in (1.3) to the motivic
Albanese (3.2) in a canonical way. This is justified after the natural identification of Deligne’s
Ty, with the Betti realization 8, on 1-motives (see [12, Thm. 15.4.1] and [53] for an explicit
construction of the natural isomorphism 77 = 3, Tot). Rationally, it yields an injection

0% : To(RPPic(X)c) = H{})(Xan, Qan(1)) € H?(Xan, Qan(1))

where the notation Hg’l) is taken to indicate the largest 1-motivic part of HP(Xan, Qan(1))

(more precisely, this is given by the underlying Q-vector space associated to the mixed
Hodge structure, see [12, Cor. 15.3.1]).
For the de Rham realization, similarly, we have a K-linear mapping
0" : Tar(RPPic(X)) — HIL (X).
Actually, for M = L,Alb(X) and M* = RPPic(X), we have ny- the C-inverse of the period
isomorphism -+ ¢ in Theorem 2.2.2 and 77?51 which is the inverse of the period isomorphism
in Definition 1.2.4. Together with 92 and GSR, we obtain a diagram

65,0C

Tz (RPPic(X)c)c H?(Xan, Zan(1))c 2= HP(Xan, C)

1
X

. 65 ®C »
TdR(RpPIC(X))(C HdR(X) KK C.
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We have that this diagram commutes, in fact:
3.2.2. Lemma. Let X be over the field K = Q and p € Z. There is a morphism
1
0 np = (0. 05) : Tara(LpAlb(X))s — Hing (X )6
in the category Modi’fzr. Rationally HSRB ® Q becomes injective. Moreover, egRB and %RB
are integrally defined isomorphisms.

Proof. This is a consequence of [12, Cor. 16.3.2|. For p = 0, 1 it is straightforward that they
are isomorphisms. O

3.2.3. Lemma. The map 0% defined in Lemma 3.2.1 factors through the de Rham-Betti
realization via the Cartier duals (2.14), i.e., we have the following factorization

0%

Hom(Z, RPPic(X)) == Hom(L,Alb(X), G,,[—1]) Tang T%(L,Alb(X)) —— HEN(X)
such that v is given by 6%z in Lemma 3.2.2, using Corollary 3.1.2, as follows
T%(L,Alb(X)) = Hom(Z(0), Tars (LpAIb(X))) — Hom(Z(0), HEly (X)) = HE!(X)
and the latter Hom is here taken in Modfg{z.

Proof. By construction 6% is induced by 2 on a quotient via the motivic Albanese (3.2)
applying Betti and de Rham realizations so that the claimed factorization is clear. O

Thus, showing the period conjecture (1.6) for ¢ = 1 is equivalent to seeing that 6%, is
surjective, rationally. Recall (see [12, Prop. 10.4.2]) that for any X of dimension d = dim(X)
the 1-motive Ly 1Alb(X) is a group of multiplicative type and

0 ifp<O
L Alb(X) = [Z[mo(X)] — 0] ifp=0
[ngGl] ifpzl
0 if p > max(2,d+1)

where G is connected, so that LyAlb(X) € M is free for p = 0,1 (see [12, Prop. 12.6.3
¢)]). Thus RPic(X) = [Z[mo(X)] = 0]* = [0 = Z[mo(X)]Y ® Gy,] is a torus and we have
that Ext(Z, R°Pic(X)) = Homg (Z,R°Pic(X)) = K* ®z Z[mo(X)]" (see [12, Prop. C.8.3
(b)])-
3.2.4. Theorem. For any X over K = Q we have that (1.6) holds true forp=q =1, i.e.,
the period regulator r' : HY (X, G)—HE' (X)) is surjective. Moreover, considering the
1-motive R'Pic(X) = [L} 4 G7) which is the Cartier dual of L1 Alb(X) we have a canonical
isomorphism

Keruf = Hig(X) N HY (Xan, Zan(1)) = HL(X).
In particular, if X is proper HY (X, Gy,) =2 K*®zZ[mo(X)]Y and Hig (X)NH (Xan, Z(1)) =
0.
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Proof. In fact, R'Pic(X) is free and therefore Hom (L1 Alb(X), G, [—1]) & Hom(Z, R'Pic(X)) &
Keru]. Thus the extension in Lemma 3.2.1 is

0 — K* @z Z[ro(X)]Y — Ext'(Z, RPic(X)) — Keru} — 0.

Moreover 6L : Hom(Z, R'Pic(X)) = Keruf S HS'(X) is an isomorphism, which in turn
implies that rolis a surjection. Actually, see Lemma 3.2.3, 0L factors as follows

(a) (b) (c)

Hom(Z, R'Pic(X)) = T%(L;Alb(X)) = Hom(Z(0), Hypp(X)) =2 HELH(X)
where: (a) is the isomorphism obtained applying Corollary 3.1.4 to M = L1 Alb(X); (b) is
the Hom(Z(0), —) of the isomorphism 6yp : Turp(L1Alb(X)) = HéﬁB(X) given by p =1
in Lemma 3.2.2; (c) is the isomorphism in Corollary 3.1.2. If X is proper then L} =0, i.e.,

L1Alb(X) = [L; & Gy] with G an abelian variety (see [12, Cor. 12.6.6]) in such a way
that R'Pic(X) = [0 — G7], and HY (X,Gm) = G (mo(X)) (see [12, Lemma 12.4.1]). O

3.2.5. Remark. We may actually compute R'Pic(X) by using descent. For example, if X
is normal let X be a normal compactification of X, p : X, — X a smooth hypercovering
and X, a smooth compactification Wlth normal crossing boundary Y, such that p: X, — X

is a hypercovering. Then 7* : Pic% XK 5 Pic | is an abelian variety and

X./K

R!'Pic(X) = [Div), (X.) “ Pic% Ik

where Div). (X.) := Ker(Dlvy (Xo) — DIVY (X1)) (see [12, Prop. 12.7.2]).
For X smooth we have that (see [12, Cor. 9.2.3])

[Zimo(X)) 0] ifp=0

P 0= NSy ] ifp=2
0 otherwise,

where Ag( /K is the Serre-Albanese semi-abelian variety and NS% /K denotes the group of
multiplicative type dual to the Néron-Severi group NSy, . In this case, we then have

[0 — Z[WQ(X)]*] ifp=20
RPPic(X) = [Div{ (X) “ PICX/K] iftp=1
0 otherwise,

for a smooth compactification X with normal crossing boundary Y. Note that, reducing to
the smooth case by blow-up induction we can see that the map (3.2) is an isomorphism for
p=0,1 (cf. [12, Lemma 12.6.4 b)|). We deduce the following:

3.2.6. Corollary. For any scheme X over K = Q we have a short exact sequence

1,1
0 — K* @z Zmo(X)]Y = HY(X,G,) = HELHX) — 0.
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In general, we also have:

3.2.7. Proposition. For K = Q the period regulator &Y admits a factorization
~ 77p—1

HP (X)g = HY (X, Gp)o—T5 (LpAlb(X)) < HEp (X) N HP(Xan, Qan(1)) = HZ'(X)g
where the projection is given by Lemma 3.2.1 via T(;@RB and the inclusion is given by HgRB ®
Q in Lemma 5.2.2. Therefore, the conjecture (1.6) is equivalent to T (LyAlb(X)) =
HZ'(X)q.

Proof. In fact, using the adjunction (3.3), the Cartier dual 7* of 7 in Lemma 3.2.1, the
factorization of Lemma 3.2.3 and Theorem 2.7.1 we have the following commutative diagram

p,1

~ — "%,Q
Db(M?)(LAIb(X), Gm[-1][p]) — th 1(X7 Gm)@ - Hg/zl(X)Q

)

Hom(L,Alb(X), G,[—1])g ~— T (LyAlb(X)).

Hom

Q
TirB

For X smooth we further have that
HPY(X) = HY N (X, Gy) 2 HY (X, Gry)

and this latter is vanishing after tensoring with Q for all p # 1,2 (see |29, Prop. 1.4]).
Accordingly, the period conjecture (1.6) for X smooth and p # 1,2 is in fact equivalent to
(1.8), i.e.,

(3.4) HPN(X) = HIR(X) N H?(Xan, Qan(1)) =0 p#1,2.

For p = 2 and X smooth we have that H2!(X) 2 Pic(X), r3' = ¢/ is induced by the usual
cycle class map and 7§ (L2 Alb(X)) = NS(X)q.

We here recover the results of Bost-Charles (see [16, Thm. 5.1] and [17, Cor. 3.9-3.10]) as
follows. We refer to [12, Chap. 4| for the notion of biextension of 1-motives. The following
is a generalization of [17, Thm. 3.8 2)| and of the discussion of the sign issue in [17, §3.4]:

3.2.8. Lemma. For N,M € M;(Q) we have that
Biext(N,M; Gy,) = (Tar(N)" @ Tpar(M)” @ Z(1))

and, when N = M, the subgroup of symmetric biextensions corresponds to alternating ele-
ments.

Proof. Recall that Biext(—, M; G,,) is representable by the Cartier dual M* for M € M, (K)
(see [12, Prop. 4.1.1]). Thus Biext(N, M;G,,) = Hom(N, M*) = Hom(Tgqr(N), Tgar(M)*)
where we here use Theorem 2.5.3 and Theorem 2.7.1. Now Tggr(M)* = Tggr(M)Y(1) in
such a way that Hom(Tgar(N), Tear(M)*) = Hom(Z(0), Tgar(N)" ® Tar(M)" ® Z(1))
making use of the tensor structure of the category Modz’lfg by Lemma 2.4.2.

Assume N = M. Since Biext(M, M; G,,) = Hom(Tg4r(M), Tp4r(M)*), any biextension P
corresponds to a pairing Tgqr(M) ® Tpqr(M) — Z(1) which induces the pairing 23, 10.2.3|
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on Deligne-Hodge realizations and the pairing [23, 10.2.7] on de Rham realizations; if P is
symmetric, the pairing is alternating by [23, 10.2.5 & 10.2.8|. O

3.2.9. Corollary. For X over K = Q we have that

Biext(L; Alb(X), LiAlb(X); G, )™™ 2 (HY L (X) @ HYYL(X) @ Z(1))2.
Proof. Applying Lemma 3.2.8 to the free 1-motive Lj Alb(X') we obtain the claimed formula.
In fact, recall that 77 (L1 Alb(X)) = Hi(Xan, Zan)s and observe that Hé’PgB(X) is identified

with Tqr(L1Alb(X))Y up to inverting the period isomorphism by the same argument of
Lemma 3.2.2. 0

This implies that the period conjecture for p = 2 holds true in several cases, e.g. for
abelian varieties, as previously proved by Bost (see [16, Thm. 5.1]).

3.3. The case ¢ = 0. Consider the case of Z(0) which is canonically identified with
Tot([Z — 0]) = Z[0]. Note that HP(X) = HY (X,Z). Let Mo(K) C M1(K) be the
full subcategory of 0-motives or Artin motives over K. Recall that the motivic mg (see [12,
§5.4] and [10, Cor. 2.3.4]) is a triangulated functor

Lrg : DMSE — DP(My)
whence Lmo(X) € D®(My), a complex in the derived category of Artin motives, associated
to the motive of X. We have that M (X) — Tot Lmo(X) € DMST (see (2.4) for Tot) induces
Hom vty (E0(X), Z[p) — Homypy e (M(X), Z(0) ) = HY, (X, Z).
This map is an isomorphism, integrally, for p = 0,1 (¢f. [12, Lemma 12.6.4 b)|) and it

becomes, by adjunction, a Q-linear isomorphism, for all p. Recall that for any M € DME?;
we have (see [12, Prop. 8.2.3|)

LAIb(M(q)) = {OL”O(M)(U iif;lg

where an Artin motive twisted by one is a 1-motive of weight —2, i.e., the twist by one
functor (—)(1) : D*(Mg) — D?(My) is induced by L ~ [0 — L ® G,,]. Note that as soon
as K = Q Artin motives are of homological dimension 0 and we have that

Hom poaq,) (L70(X), Z[p]) = Hompgy (Lpmo(X), Z).
Moreover, we have that
HE, (X, Z) 2 Hompyyes (M(X) (1), Z(1) p])
by Voevodsky’s cancellation theorem [51].

3.3.1. Theorem. For any X over K = Q we have that (1.6) holds true forp =1 and q = 0.
Moreover, we have

HE(X,2) 2 Hjg (X) 0 H' (Xan, Zan) = HE(X)

which is vanishing if X is normal.
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Proof. Making use of Proposition 1.3.1 we are left to show the period conjecture for M (X)(1)
in degree 1 and twist 1. We have that

Hompyper (M (X)(1), Z(1)[1]) = Homppq,) (LAID(M (X)(1)), Z(1)[1]).

We have LoAlb(M (X)(1)) = Lomo(X)(1) 2 [0 — Z[mo(X)] ® Gyp,] in such a way that
Ext, p, (LoAlb(M (X)(1)), G[—1]) = 0
and (cf. (3.3) for M(X)(1)) we obtain
H},(X,Z) = Hom, pq, (L1 Alb(M (X)(1)), Gy [—1]).

Now T (L Alb(M(X)(1))) = H5 (M (X)(1)) = H5’(X) by Lemma 3.2.2 twisted by (—1)
and the same argument in the proof of Theorem 3.2.4 applies here. Finally, recall that
H}(X,Z) = H} (X,Z) for any scheme X and H} (X,Z) = 0 if X is normal (see [12,
Lemma 12.3.2 & Prop 12.3.4)). O

3.3.2. Remark. For X not normal (e.g. for the nodal curve) the group H} (X,Z) can be
non-zero. Moreover, for any X we have a geometric interpretation H), (X, Z) = L Pic(X) —
Pic(X[t,t~!]) by a theorem of Weibel [55, Thm. 7.6]. Note that this L Pic(X) is also a sub-
quotient of the negative K-theory group K_1(X) (see [55, Thm. 8.5]).

For X smooth we have a quasi-isomorphism Lo (X) = Z[mo(X)][0] (see [12, Prop. 5.4.1])
which means that HP(X)g = 0 for p # 0. This yields (as it also does Proposition 1.4.4 for
X smooth) that the period conjecture (1.6) is equivalent to

(3.5) HLp (X) N HP(Xan, Qan) =0 p #0.
3.3.3. Remark. The period conjecture (1.6) for ¢ = 0 and X smooth is also equivalent
to the surjectivity of f2 : HZ"(m (X))o — HQO(X)Q induced by the canonical morphism

f:X — m(X), for all p > 0. In fact, the morphism f induces a map M (X) — M (mo(X))
and a commutative square by functoriality

»,0
HPY(X)g ——— HE(X)q

e

HPO (0(X))g — HE (m0(X))g

fP

where f? : HomDquf(M(’]TO(X)),Z[pDQ — HomDM?g(M(X),Z[p])Q is an isomorphism for

X smooth; since dim mo(X) = 0 then 72 is clearly an isomorphism for mo(X). For p = 0 the
group H°(Xan, Zan(0)) has rank equal to the rank of Z[mo(X)] and f2 is an isomorphism;
for p # 0 the surjectivity of fL is equivalent to the vanishing of all groups.

3.4. Arbitrary twists. We now apply Waldschmidt’s Theorem 2.3.3 to arbitrary twists.

3.4.1. Proposition. For M = [L — G] a free 1-motive over K = Q and q € Z an integer we
have that

1) the group Hom(Z(q), Tgar(M)) of homomorphisms in Mody; ;- or Modg i U8 trivial
forq#0,1;
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2) the group Hom(Z(q), TdRB(I\/I)) of homomorphisms in Mod?Z or Modi(@ 18 trivial
forq#0, 1.

Proof. 1) We work in Modi x and leave the other case to the reader. We suppose first
that L = 0. Consider a non trivial ¢ € Hompggr (Z(q),TBdR(M)) and the subgroup I' =
T7(Z(q)) = Z C Tqr(Z(q))c = C. Via the non trivial map pxg ® C: Tyr(Z(q))c —
Tar(G)c = Lie(G(uC) we can identify I' with a subgroup of Lie(G(uC). This subgroup is con-
tained in Vg with V C Lie(G?) defined by the image ¢ (Tur(Z(qg))). Via the exponential
map Lie(G(hc) — GY(C) the image of T is 0 € G¥(K) as ¢ is a map in the category Mod;K
(respectively Moda ). We deduce from Waldschmidt’s Theorem 2.3.3 that V' C Lie(G) is
the Lie algebra of a 1-dimensional algebraic subgroup H of G%. There are only two possi-
bilities H = G, and H = G,,. In both cases the period morphism for Z(q) identifies I" with
the subgroup (27i)?Z C Lie(Hc) that goes to 0 via expy,.. For H = G, the map expy, is
the identity, leading to a contradiction. For H = G, the kernel of expy is (2mi)Z forcing
qg=1.

Secondly we suppose that G = 0. Consider a non trivial ¢ € Hompggr (Z(q),TBdR(M)).
Recall that Tqr(M) = L ® K and the period map is induced by the inclusion L C L ® K.
Let e = (1) € L® K. It is a non-zero element. Using that 7%(Z(q)) is identified via
the period morphism for Z(q) with (27¢)?Z, we deduce that ¢z (1) = (27i)? - e should lie in
L Cc L® K. As 7 is transcendental, this forces ¢ = 0.

For general M = [L — GJ we reduce to G and L to conclude the statement.

2) We prove the statement for Mod?Z using Lemma 2.4.4. The analogue for Modi(@
follows similarly. Given a 1-motive M and its Cartier dual M* we have a natural identification

s: Hom(Z(q), Tpar(M")) = Hom(s(Z(q)), s(Tpar(M")) = Hom(Z(q), Tarp(M))).
The statement follows then from 1). O

Denote HggB7(1)(X)fr C Hgng (X)g the image of Tyrp(LyAlb(X))s(¢—1) under OgRB(q—

1) of Lemma 3.2.2 twisted by ¢ — 1. We have:
3.4.2. Corollary. We get that ng(l)(X)fr =01ifq+#0,1. Forp=1 we have H;q(l)(X) =
HYY(X) and
HlL(X,Z) (see Theorem 3.5.1) ifq=20
HLY(X) = { Keru} (see Theorem 3.2.4) ifg=1
0 q#0,1.
Proof. We apply Proposition 3.4.1 2) to M = L,Alb(X) to deduce that

HPL9(X ) = Homang (Z(0), HYy 1) (X)(~4))) = Homars (Z(q), Tars (LyAID(X))r) = 0

ifg+£0,1. O

Thus, for the period conjecture in degree p = 1, the previous computations for the twists
q = 0,1 are the only relevant.
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3.5. Higher odd degrees. Next, let X be a smooth and projective variety over K = Q.
Denote J?*1(X) the intermediate Jacobian: as a real analytic manifold, it is defined as the
quotient of the image H21(X) of F2F+1 (Xan, Zan(k)) in H**1 (X, R(k)). This defines a
full lattice of H2k+1 (Xan, R(k)) so that J?**1(X) is compact. It has also a natural complex
analytic structure induced by the identification

J2k+1(X) — H2k+1(Xan7 (C)/(Fk—‘rlHQk—i-l(Xam C) + (w§(k+1,k)—1 (H%kJrl (X)))

Thus J2¥¥1(X) is a complex torus.
For integers n define N™H?2k+1 (Xan, Qan(k:)) C H2kH+1 (Xan, @an(k:)), the n-th step of the
geometric coniveau filtration, as the kernel of

H2k+1 (Xana Qan(k?)) — @ H2k+1 (Xan\Zan’ Qan(k))
ZCcX

for Z C X varying among the codimension > n closed subschemes.

3.5.1. Lemma. Assume that H?F*1 (Xan,Qan(k:)) has geometric coniveau k, i.e., that we
have Nkp2k+1 (Xan,C) = HZkH1 (Xan,(C). Then J?**TY(X) is an abelian variety, which
descends to an abelian variety J***1(X)x over K with

TdRB (J2k+1(X)K) — (Hgﬁﬂ (X), H%kJrl(X), 77§(k+1’k) .

Proof. Under the assumption, HékH(X ) is a polarized Hodge structure of type (1,0) and
(0,1) so that J?*T1(X) is polarizable and, hence, an abelian variety. The second statement
follows from [1, Thm. A] where it is proven that there exists an abelian variety J over K
and a correspondence T' € CH"(J xx X) over K, for h = k + dim J?**1(X), inducing an
isomorphism Ty : H'(Jan, Qun) = H2FH1 (Xan, Qan(k)) (and hence in de Rham cohomology,
compatibly with the period morphisms). Then set J2*T1(X)f :=J. O

The period conjecture (1.6) in odd degrees for X predicts that Ha (X)) = Hig™(X)n
H2k+1 (Xana Zan(Q))fr = 0 for every k € N and every ¢ € Z.

3.5.2. Proposition. The period conjecture (1.6) in degree p = 2k +1 and any twist q for X
smooth and projective holds true if H**+1 (Xan,(@an(k)) has geometric coniveau k.

Proof. Thanks to Lemma 3.5.1 we have that
H254(X) = Hom (Z(0), Turs (T (X) k) (¢ — k)) = Hom(Z(k — q), Tars (J*TH(X) k).

This is trivial for £ — ¢ # 0, 1 by Proposition 3.4.1. Now use Theorem 2.7.1. For k — ¢ =10
we get that this coincides with the homomorphisms of 1-motives from [Z — 0] to [0 —
J?*+1(X) k], which is 0. For k — ¢ = 1 this coincides with the homomorphisms of 1-motives
from [0 — Gy,] to [0 — JZ+1(X) k], which is also 0. O

3.5.3. Remark. Lemma 3.5.1 is proven more generally in [1] for the Hodge structure
Nk F2k+1 (Xan, Qan(k)) C H2k+1 (Xan, Qan(k)) defined by the k-th step of the coniveau
filtration. Namely, if X is defined over a number filed L C K, there is an abelian vari-
ety JZHL(X) over L with Tyrp (J2FH1(X)) = (N*H2EHL(X), NFHZL(X), n3t). The
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proof of Proposition 3.5.2 using J2**!(X) gives the following weak version of the period
conjecture:

(3.6) NkH§§+1(X) N NFH2HL (Xan, Zan(q)), = 0 for every k € N and every ¢ € Z.

The assumption in Lemma 3.5.1 amounts to saying that N*F2k+1 (Xan, Qan(k)) is equal
to H2k+1 (Xan,(@an(k:)). This equality holds, for example, for k& = 1 for uniruled smooth
projective threefolds; see [2].

The assumption implies, and under the generalized Hodge conjecture is equivalent to, the
fact that the Hodge structure H?2**! (Xan,Q) has Hodge coniveau k, i.e., H?**! (Xan,(C)
is the sum of the (k + 1,k) and (k, k + 1) pieces of the Hodge decomposition. Under this
weaker condition on the Hodge coniveau one can still prove that HZkA1 (Xan, @an(k:)) is the

Hodge structure associated to the abelian variety nglgrl(X ) over C, called the algebraic

intermediate Jacobian in J2**+1(X). Unfortunately one lacks the descent to K. See the
discussion in [2].

APPENDIX A. DIVISIBILITY PROPERTIES OF MOTIVIC COHOMOLOGY (by B. Kahn)

In this appendix, some results of Colliot-Théléne and Raskind on the Ko-cohomology of
smooth projective varieties over a separably closed field k are extended to the étale motivic
cohomology of smooth, not necessarily projective, varieties over k. Some consequences are
drawn, such as the degeneration of the Bloch-Lichtenbaum spectral sequence for any field
containing k.

Recall that in [19], Colliot-Théléne and Raskind study the structure of the Co-cohomology
groups of a smooth projective variety X over a separably closed field. Following arguments of
Bloch [15], their proofs use the Weil conjecture proven by Deligne [22] and the Merkurjev-
Suslin theorem [48]. These results and proofs can be reformulated in terms of motivic
cohomology, since

Hyoo(X, K2) = H™(X, Z(2))
or even in terms of étale motivic cohomology, since
HY(X,7Z(2)) — H.(X,Z(2)) for j <3

as follows again from the Merkurjev-Suslin theorem.

If we work in terms of étale motivic cohomology, the recourse to the latter theorem is
irrelevant and only the results of [22] are needed; in this form, the results of [19] and their
proofs readily extend to étale motivic cohomology of higher weights, as in [41, Prop. 4.17|
and [42, Prop. 1] (see also [49, Prop. 1.3]).

Here we generalise these results to the étale motivic cohomology of smooth varieties
over a separably closed field: see Theorem A.1.3. This could be reduced by a dévissage
to the smooth projective case, using de Jong’s alteration theorem in the style of [40], but
it is simpler to reason directly by using cohomology with compact supports, and Weil II
[24] rather than Weil I [22]. (I thank Héléne Esnault and Eckart Viehweg for suggesting
to use this approach). This descends somewhat to the case where the base field k is not
separably closed, yielding information on the Hochschild-Serre filtration on étale motivic
cohomology (Theorem A.2.1). The rest of the appendix is concerned with implications on
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motivic cohomology of a field K containing a separably closed field: the main result, which
uses the norm residue isomorphism theorem of Voevodsky, Rost et al. ([52], see also [31])
is that H'(K,Z(n)) is divisible for i # n (Theorem A.3.1). As an immediate consequence,
the “Bloch-Lichtenbaum” spectral sequence of K from motivic cohomology to algebraic K-
theory degenerates (Theorem A.4.1). We also show that the cokernel of the cup-product
map
H™YK,Z(n - 1)) ® K* - H(K,Z(n))

is uniquely divisible for i < n (Theorem A.5.1).

Throughout, motivic cohomology is understood in the sense of Suslin and Voevodsky
(hypercohomology of the Suslin-Voevodsly complexes [50]).

A.l. A weight and coniveau argument. Let X be a separated scheme of finite type
over a finitely generated field k.

A.1.1. Proposition. Let n € Z, ks a separable closure of k and G = Gal(ks/k). Let
X = X ®p ks. Then HL(X,Z)(m))¢ and H(X,Z;(m))c are finite for j ¢ [2m,m + d] and
any prime number | invertible in k, where d = dim X.

Proof. Suppose first that k = [F, is finite. By [21, Cor. 5.5.3 p. 394|, the eigenvalues of
Frobenius acting on HZ (X, Q) are algebraic integers which are divisible by ¢/=% if j > d.
This yields the necessary bound m > j — d for an eigenvalue 1. On the other hand, by [24],
these eigenvalues have archimedean absolute values < ¢7/2: this gives the necessary bound
m < j/2 for an eigenvalue 1. The conclusion follows.

In general, we may choose a regular model S of k, of finite type over Spec Z, such that X
extends to a compactifiable separated morphism of finite type f : X — S. By [35, lemma
2.2.2 p. 274 and 2.2.3 p. 277|, R’ fiZ; is a constructible Z;-sheaf on S and its formation
commutes with any base change. Shrinking S, we may assume that it is locally constant
and that [ is invertible on S. For a closed point s € S, this gives an isomorphism

Hg(y’ Zl) = Hg(y& Zl)
compatible with Galois action, and the result follows from the first case. O

A.1.2. Corollary. If X is smooth in Proposition A.1.1, then H (X, Z;(n))%) is finite for
i ¢ [n,2n], where the superscript (&) denotes the subset of elements invariant under some
open, subgroup of G. If X is smooth projective, then H*(X,Z;(n))(®) is finite for i # 2n and
0 for almost all l.

Proof. By Poincaré duality and Proposition A.1.1, H (X, Z;(n))® is finite for i ¢ [n,2n];
the claim follows since H'(X,Z;(n))) is a finitely generated Z;-module. In the projec-
tive case, the Weil conjecture [22] actually gives the finiteness of H*(X,Z;(n)), hence
of HY(X,Zy(n))(@, for all i # 2n. But Gabber’s theorem [25] says that H*(X,Z;(n)) is
torsion-free for almost all [, hence the conclusion. O

A.1.3. Theorem. Let X be a smooth variety over a separably closed field k of exponential
characteristic p. Then, fori ¢ [n,2n], the group H. (X, Z(n))[1/p] is an extension of a direct
sum T of finite l-groups by a divisible group. If X is projective, this is true for all i # 2n,
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and T is finite. If p > 1, H.(X,Z(n)) is uniquely p-divisible for i < n. In particular,
H(X,Z(n)) @ Q/Z =0 for i <n. Fori <1, H,(X,Z(n)) is divisible. The sequence

0 — Hi (X, Q/Z(n)) — Hy (X, Z(n)) = Hy (X, Z(n) ©@Q — 0
is exact for i < n.

Proof. Away from p, it is identical to [42, proof of Prop. 1] (which is the projective case)
in view of Corollary A.1.2. The unique p-divisibility of H}, (X, Z(n)) for i < n follows from
[26, Th. 8.4| and requires no hypothesis on k. O

A.1.4. Corollary. Let K be a field containing a separably closed field k. Then, for i < n,
the sequence

0 — Hi '(K,Q/Z(n)) — Hi (K, Z(n)) — Hy (K, Z(n)) @ Q — 0
is exact and the left group has no p-torsion if p = char K.

Proof. We may assume K /k finitely generated. By Theorem A.1.3, this is true for any
smooth model of K over k, and we pass to the limit (see [37, Prop. 2.1 b)|, or rather its
proof, for the commutation of étale motivic cohomology with limits). O

A.1.5. Remarks. 1) At least away from p, the range of “bad” i’s in Corollary A.1.2 and
Theorem A.1.3 is [n,2n] in general but shrinks to 2n when X is projective. If we remove
a smooth closed subset, this range becomes [2n — 1,2n]. As the proof of Proposition A.1.1
shows, it depends on the length of the weight filtration on H*(X,Q;). If X = Y — D,
where Y is smooth projective and D is a simple normal crossing divisor with 7 irreducible
components, the range is [2n — r,2n]. It would be interesting to understand the optimal
range in general, purely in terms of the geometry of X.

2) Using Proposition A.1.1 or more precisely its proof, one may recover the I-local version
of [40, Th. 3] without a recourse to de Jong’s alteration theorem. I don’t see how to get the
global finiteness of loc. cit. with the present method, because one does not know whether
the torsion of HZ(X,Z;) vanishes for [ large when X is not smooth projective.

3) Using a cycle class map to Borel-Moore [-adic homology, one could use Proposition
A.1.1 to extend Theorem A.1.3 to higher Chow groups of arbitrary separated k-schemes of
finite type. Such a cycle class map was constructed in [36, §1.3]. Note that Borel-Moore
l-adic cohomology is dual to I-adic cohomology with compact supports, so the bounds for
finiteness are obtained from those of Proposition A.1.1 by changing signs.

A.2. Descent.

A.2.1. Theorem. Let X be a smooth variety over a field k; write ks for a separable clo-
sure of k, Xs for X @y ks and G for Gal(ks/k). For a complex of sheaves C over X,
write F"H! (X, C) for the filtration on H (X, C) induced by the Hochschild-Serre spectral
sequence

EY*(C) = H'(G, H3 (X, C)) = H, (X, 0).
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Then, for i < n, the homomorphism
FTH Y(X,Q/Z(n)) — F"H (X, Z(n))
induced by the Bockstein homomorphism [ is bijective for r > 3 and surjective for r = 1,2.

Proof. By the functoriality of Ey;’(C) with respect to morphisms of complexes, we have a
morphism of spectral sequences

O+ By HQ/Z(n)) — Ep*(Z(n))

converging to the Bockstein homomorphisms. By Theorem A.1.3, 55’FT is bijective for r > 2

and surjective for » = 1. It follows that, for m > 3, (5%77" is bijective for » > 3 and surjective
for r = 1,2. The conclusion follows. ]

A.2.2. Remarks. 1) Of course, F"H}, (X, Z(n)) is torsion for 7 > 0 by a transfer argument,
hence is contained in SH*~(X,Q/Z(n)). The information of Theorem A.2.1 is that it equals
BFTHIV(X,Q/Z(n)).

2) For i > n, we have a similar conclusion for higher values of r, with the same proof: this
is left to the reader.

A.3. Getting the norm residue isomorphism theorem into play. Recall that for any
field K and any i < n, we have an isomorphism

(A1) HY(K,Z(n)) ~ H.(K,Z(n)).

Indeed, this is seen after localising at [ for all prime numbers [. For | # char K, this
follows from [50, 27] and the norm residue isomorphism theorem [52], while for [ = char K
it follows from [26]. Finally, H"(K,Z(n)) = 0 for ¢ > n. This yields:

A.3.1. Theorem. Let K be as in Corollary A.1.4. Then, for i # n, the group in (A.1) is
divisible.

Proof. Again it suffices to prove this statement after tensoring with Z; for all prime numbers
[. This is an immediate consequence of Corollary A.1.4 since, by [52], one has an isomorphism
for [ # char k ‘

Hi YK, Qu/Zu(n) = KM (K) @ Qu/Zi(n — i+ 1)
and the right hand side is divisible. O

A.4. Application: degeneration of the Bloch-Lichtenbaum spectral sequence.

A.4.1. Theorem. Let K be as in Corollary A.1.4. Then the Bloch-Lichtenbaum spectral
sequence [46, (1.8)]

EP? = HP" (K, Z(—q)) = K_p—4(K)
degenerates. For any n > 0, the map KM (K) — K,(K) is injective with divisible cokernel.

Proof. By the Adams operations, the differentials are torsion [46,' Th. 11.7]. By Theorem
A.3.1, they vanish on the divisible groups EY? for p < 0. But H'(K,Z(n)) = 0 for i > n,
so EY? = 0 for p > 0. The last statement follows from the degeneration plus Theorem
A.3.1. O



MOTIVIC PERIODS AND GROTHENDIECK ARITHMETIC INVARIANTS 39

A.4.2. Remarks. 1) Again by the Adams operations, the filtration on K, (K) induced by
the Bloch-Lichtenbaum spectral sequence splits after inverting (n — 1)! for any field K. On
the other hand, we constructed in [39] a canonical splitting of the corresponding spectral
sequence with finite coefficients, including the abutment; the hypothesis that K contains a
separably closed field is not required there. This implies in particular that the map

K (E) 17— Ko(K)/17

is split injective [39, Th. 1 (c)], hence bijective if K contains a separably closed subfield by
Theorem A.4.1. Could it be that the mod [ splittings of [39] also exist integrally?

2) As in [39], Theorems A.3.1 and A.4.1 extend to regular semi-local rings of geometric
origin containing a separably closed field; the point is that, for such rings R, the groups
H. '(R,Qu/Z(n)) are divisible by the universal exactness of the Gersten complexes ([28],
[18, Th. 6.2.1]).

A.5. The map H"Y(K,Z(n — 1)) ® K* — H'(K,Z(n)).
A.5.1. Theorem. Let K be as in Corollary A.1.4. Then, for i <n,
(i) The cokernel of the cup-product map

HY (K, Z(n— i+ 1)) @ BV (K, Z(i — 1) 5 Hi(K, Z(n))
1s uniquely divisible.
(i1) The cokernel of the cup-product map
HYK,Z(n - 1))  K* 3 Hi(K,Z(n))
is uniquely divisible.
Proof. By (A.1), we may use the étale version of these groups.

(i) Since H (K,Z(n)) is divisible by Theorem A.3.1, so is Cokery"". Let v > 1 and I
prime # char K. The diagram

HL(K,Z(n —i+1) @ HY (K, Z(i — 1)) ——  HL(K,Z(n))

5®1T /ﬁ
HY(K,Z)I"(n —i+ 1)) ® H YK, Z(i — 1)) —— HiTY(K,Z/1*(n))
commutes, where § denotes Bockstein. The bottom horizontal map is surjective (even
bijective) by the norm residue isomorphism theorem (resp. by [26]). By Theorem A.3.1
again, Hj (K, Z(n—i+1)) is I-divisible, hence so is H} (K, Z(n—i+1))® Hi (K, Z(i— 1)),
and Coker y*™ is also [-torsion free by an easy diagram chase.
(ii) Consider the commutative diagram

. i—1l,n—1 .
HA (K, Z(n i+ 1)) © Hi72(K, 2 - 2) © K* T HIZ(K, Z(n 1)) © K*

1®ul 5i,nl

HL(K,Z(n—i+1)) ® Hy YK, Z(i — 1)) AN H: (K, Z(n)).



40 F. ANDREATTA, L. BARBIERI-VIALE AND A. BERTAPELLE (APPENDIX BY B. KAHN)

Since the left vertical map is surjective, we see that Coker 55" is the quotient of Coker %
by the image of the divisible group Hgt_l(K,Z(n — 1)) ® K* (Theorem A.3.1), hence the
claim follows from (i). O

It would be very interesting to describe Ker 6>", but this seems out of range.
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