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Abstract
Recent developments in experimental technologies such as single-cell RNA sequencing have enabled the profiling
a high-dimensional number of genome-wide features in individual cells, inspiring the formation of large-scale
data generation projects quantifying unprecedented levels of biological variation at the single-cell level. The
data generated in such projects exhibits unique characteristics, including increased sparsity and scale, in terms
of both the number of features and the number of samples. Due to these unique characteristics, specialized
statistical methods are required along with fast and efficient software implementations in order to successfully
derive biological insights. Bioconductor - an open-source, open-development software project based on the R
programming language - has pioneered the analysis of such high-throughput, high-dimensional biological data,
leveraging a rich history of software and methods development that has spanned the era of sequencing. Featuring
state-of-the-art computational methods, standardized data infrastructure, and interactive data visualization
tools that are all easily accessible as software packages, Bioconductor has made it possible for a diverse audience
to analyze data derived from cutting-edge single-cell assays. Here, we present an overview of single-cell RNA
sequencing analysis for prospective users and contributors, highlighting the contributions towards this effort
made by Bioconductor.
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Figure 1: 10 years of Bioconductor in the high-throughput sequencing era. Bioconductor software
packages associated with the analysis of sequencing technology were tracked by the total number of packages
(left) and the number of distinct IPs (data recorded monthly) visiting their online documentation (right) over
the course of ten years. Software packages were uniquely defined by their primary sequencing technology
association, with examples of specific terms used for annotation below in parentheses.

Introduction
Bioconductor [1] is a central repository for open-source software packages based in the R programming lan-
guage [2] for the analysis and comprehension of high-throughput biological data. Since 2001, it has drawn
together a rich community of developers and users from diverse scientific fields including genomics, proteomics,
metabolomics, flow cytometry, quantitative imaging, chemoinformatics, and other high-throughput data.

Bioconductor supports the analysis of traditional bulk DNA, RNA, and epigenomic profiling assays [3–10]
(Figure 1). Such bulk profiling technologies have yielded a wealth of important scientific insights (reviewed in
e.g. [11–13]). However, a number of critical biological questions can be only answered at the single-cell level.
Characterizing the extent of genetic heterogeneity within a tumor, identifying and characterizing rare cell pop-
ulations with differential features, and defining the mechanisms of cell lineage differentiation, are all examples
of biological questions that are intractable without single-cell approaches. Furthermore, revisiting questions
that were previously tackled with bulk approaches can potentially provide new perspectives. Biotechnology is
an ever-evolving field, with an ever-changing vocabulary (see Box 1 for our definitions used throughout), and
new single-cell experimental protocols and technologies such as single-cell RNA-sequencing (scRNA-seq) have
emerged that can help tackle these unresolved questions.

In addition, Bioconductor has been a pioneer for analyzing high-throughput data from single-cell cytometry
assays that can be used to obtain samples from hundreds of thousands to millions of cells [14, 15], but are
comparatively low-dimensional, capturing around 20 to 50 features per cell. In contrast, the more recently de-
veloped single-cell genomics technologies are both high-throughput and high-dimensional, capturing thousands
of traits within a single cell in an unbiased manner. To successfully derive biological insights from such work,
two unique characteristics of the resulting data sets must be successfully dealt with. One is the increased scale
on which samples, or cells, are measured, i.e. thousands to millions of cells within each data set, for example
in the compendiums from the Human Cell Atlas [16]. In contrast, data derived from bulk assays, such as
RNA-sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq), typically have sam-
ples on the order of tens to hundreds. A second distinctive feature of single-cell assay data is their increased
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sparsity, due to biological fluctuations in the measured traits or limited sensitivity in quantifying small num-
bers of molecules [17–19]. In addition, data derived from single-cell assays have revealed more heterogeneity
than previously seen [20–27]. This has led to the rapid development of statistical methods to address the
increased sparsity and heterogeneity seen in this data [28–31]. The profound increase in the complexity of data
measured at the single-cell level, along with the continued increases in the number of samples measured, have
precipitated the need for fundamental changes in data access, management, and infrastructure to make data
analyses scalable to empower scientific progress. Specifically, specialized statistical methods along with fast and
memory-efficient software implementation are required to reap the full scientific potential of high-throughput,
high-dimensional data from single-cell assays.

Bioconductor has developed state-of-the-art and widely used software packages (Table S1) for the analysis
of high-dimensional bulk assays, such as RNA-sequencing (RNA-seq) and high-throughput, low-dimensional
single-cell assays, such as flow cytometry and mass cytometry (CyTOF) data. Therefore, Bioconductor is a
natural home for software development for data derived from high-throughput, high-dimensional single-cell
technologies. In particular, Bioconductor has developed state-of-the-art software packages (Table S1) and
workflows (Table 1) to analyze data from such technologies (Figure 2). To help users get started with
Bioconductor, we describe some of these packages and present a series of workflows (Box 2) to demonstrate
how to leverage the robust and scalable Bioconductor framework to analyze data derived from single-cell assays.
We primarily focus on the analysis of scRNA-seq data, although many of the packages mentioned herein are
also generalizable to other types of single-cell assays.

Broadly, these new Bioconductor contributions provide profound changes in how users access, store, and
analyze data, including: (1) memory-efficient data import and representation, (2) common data containers
for storing data from single-cell assays for interoperability between packages, (3) fast and robust methods
for transforming raw single-cell data into processed data ready for downstream analyses, (4) interactive data
visualization, and (5) downstream analyses, annotation and biological interpretation. As a companion to this
manuscript, we also provide an online book that provides extensive resources for running R and Bioconductor,
and furthermore demonstrates select workflows corresponding to topics covered in this manuscript. The book
can be found at: https://osca.bioconductor.org

Box 2. Key Definitions

Sample: a single biological unit that is assayed.
Feature: a trait of a sample that is measured. Examples include mRNAs in RNA-seq experiments,
genomic loci for ChIP-seq experiments, and cell markers in flow/CyTOF experiments.
Experiment: a procedure where a set of features are measured for each sample; in this usage, typically
involves multiple samples, possibly with varying conditions (e.g. treatments, time points).
High-throughput assay: an assay that captures and measures features from many samples.
Examples include flow cytometry, CyTOF, and certain scRNA-seq platforms, which can quantify tens
or hundreds of thousands to millions of cells. For this reason, in our review, most bulk assays are not
considered high-throughput as they profile a limited number of samples.
High-dimensional assay: an assay that captures thousands or tens of thousands of features per
single sample unit. In our review, high throughput assays such as flow cytometry are not considered
high-dimensional as they profile a limited number of proteins.
Bulk assay: an assay that measures pools of cells to produce a set of measured features as a single
observation unit per pool.
Single-cell assay: a technology where a single sample corresponds to a single cell; includes flow
cytometry, CyTOF, and single-cell RNA-seq (scRNA-seq) across various platform technologies
(plate-based, droplet, etc.).
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Box 2. Getting Started

To accompany this manuscript, we have written a book that is freely accessible online and discusses in
detail how to get started with using R and Bioconductor. The book covers installation, learning how
to get help, and workflows covering specific case studies to illustrate the usage of R and Bioconductor
based workflows. See the book at: https://osca.bioconductor.org

Preprocessing sequencing data
The analysis of sequencing-based assays often begins with quantification of measured traits from raw sequencing
reads. For high-throughput scRNA-seq assays, sequenced reads are typically aligned to the transcriptome and
quantified to create a matrix of expression values for each cell across the features of interest (i.e. genes or
transcripts) for further analysis. While much of the specific choices defining the workflow that generates
processed data from raw data are often technology- or platform-dependent, we will briefly touch on the topic
of alignment. A pipeline to process scRNA-seq data based on the R/Bioconductor software project is now
available through the scPipe package [32], which uses the Rsubread Bioconductor package [33, 34] to provide
alignments within R. For droplet-based scRNA-seq technologies, such as 10X Genomics [35], the DropletUtils
Bioconductor package can read in a matrix of UMI counts, which were produced from, for example, the Cell
Ranger [35] 10X Genomics pipeline, where each row of the matrix corresponds to a gene, and each column
corresponds to a cell barcode.

Outside of R, recent developments in alignment methods have produced a class of pseudoaligners capable
of running on personal computers, such as the Salmon [36] and Kallisto [37] utilities. The tximport [38] Bio-
conductor package imports the results from these pseudoaligners as matrices into an R session. In combination
with the tximeta [39] package, an instance of a well-supported Bioconductor class can be created. Common
Bioconductor methods and classes are the foundation of the single-cell R/Bioconductor analysis software dis-
cussed herein. The specific infrastructure used to represent single-cell data is discussed in more detail in the
next section.

Data Infrastructure
A key focus and advantage of embracing Bioconductor workflows is the use of common data infrastructures.
First and foremost, the implementation of the data containers is done with the aim of enabling modularity
between packages and interoperability across packages. Hence, the containers are designed to support diverse
workflows, while still being accessible to end-users. To this end, Bioconductor makes use of the S4 object-
oriented programming style that allows for the creation of classes that standardize how data is stored and
accessed. Furthermore, a single object or data container can contain a rich set of metadata annotation, as well
as various forms of primary data essential for description, analysis, and portability. Bioconductor has recently
focused its efforts on the creation of the SingleCellExperiment class to support single-cell data platforms, which
is described in depth below.

The SingleCellExperiment container
The SingleCellExperiment class is a lightweight data container for storing data from single-cell assays or exper-
iments [40] that is sufficiently flexible to work with a diverse set of packages. Because the SingleCellExperiment
class was developed as an extension of the SummarizedExperiment [41] class, the SingleCellExperiment class
contains all the advantages, structure, and specially engineered features to accommodate large-scale data, with
a number of additions that provide convenient methods and structures that are common to many single-cell
analyses. Specifically, the inheritance of SingleCellExperiment class from the SummarizedExperiment class [41]
has enabled the immediate use of previously developed methods, many of which are discussed by Huber et al.
2015 in a previous review of Bioconductor tools [1]).
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Figure 2: Overview of the SingleCellExperiment class and workflow. The SingleCellExperiment (sce) class
and data container from the SingleCellExperiment package [40] stores multifaceted large-scale data and enables
interoperability across Bioconductor packages. References to R functions and objects are shown in monospace
(code) font. (A) A minimal sce object is constructed by supplying data such as a matrix of counts per cell
as an assay (blue box), consisting of features, such as genes (rows), and cells (columns). Metadata describing
the cells may also be supplied, wherein the cells are represented as rows and known characteristics of the
cells are columns (orange box). Similarly, metadata describing the features may be added as well (green
box). Each of these different types of data are stored in distinct parts of the sce object, which are referred
to as slots. The data within each slot may be accessed programmatically via accessors named after their
respective slot (arrows), such that rowRanges refers to feature metadata, colData refers to sample metadata,
and assay refers to data. (B) Analysis using SingleCellExperiment (sce) compatible workflows appends data
to the initial sce object. For example, calculating library normalization factors per cell creates a new slot
(pink box). These can then used to derive a normalized count matrix, which is stored in the same assay slot
alongside the initial counts data (dark blue box). The assay slot is thus capable of storing any number of
data transformations. Cell quality metrics, which describe cell characteristics, are appended to the sample
metadata slot colData. Finally, in a similar fashion to the assay slot, any number of dimensionally reduced
representations of the data can be stored, residing in their own slot, reducedDim (purple box). (C) The sce
object evolves throughout the course of a typical analysis, storing various metrics and representations derived
from the initial data. For more information on the SingleCellExperiment class, see the SingleCellExperiment
vignette (https://bioconductor.org/packages/SingleCellExperiment).

Made up of multiple compartments of information called slots, the SingleCellExperiment object holds various
data representations (Figure 3). Primary data, such as count matrices representing sequencing read or unique
molecular identifier (UMI) counts, are stored in the assays slot as one or more matrices (including sparse or
dense Matrix [42] objects), where rows represent features (e.g. genes, transcripts, genomic regions) and columns
represent samples, or in the case of single-cell experiments, cells. Furthermore, each row and column can be
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Figure 3: Bioconductor workflow for analyzing single-cell data. Primary data is collected and coalesced
into a matrix representation, which can exist in various forms (top, red box). This data is then used to create a
SingleCellExperiment object, which contains both primary data and metadata essential to understanding the experimental
setup (blue box). The SingleCellExperiment object is then transformed through preprocessing workflows that ultimately
produce a cleaned expression matrix (green box). This result can then be used in various downstream statistical analyses
(purple box, bottom). This paper is structured to roughly follow this analytical workflow from top to bottom.

annotated with a rich set of metadata. For example, row metadata is stored in the rowData slot and could
include Entrez Gene IDs [43] and GC content. Further, for rows corresponding to genomic features, a special
rowRanges slot can be created to hold genome coordinates. Column metadata is stored in the colData slot
and can contain information about sample-level characteristics. Additional column metadata can be added to
this slot as well - for example, summary quality control statistics such as the total number of reads per cell.
This column metadata is particularly useful for subsetting the data, such as removing cells with a low number
of reads. Separately, the sizeFactors slot also refers to columns (cells) and contains information necessary for
normalization. A recent innovation that is specifically designed for single-cell data is the reducedDims slot that
contains low-dimensional representations of data, such as principal components analysis (PCA), t-Distributed
Stochastic Neighbor Embedding (t-SNE) [44], or Uniform Manifold Approximation and Projection (UMAP)
[45].

Lastly, throughout the various slots of the SingleCellExperiment class, disk-backed representations of the
data (e.g. HDF5) are supported to enable analyses that would otherwise be impossible to perform due to
memory constraints. Recent software innovations - both in data handling and processing - are required to make
full use of this capability, and are demonstrated in our online supplement (Table 1).

Altogether, these different types of primary data and metadata slots reside in a single data container, allow-
ing for a portable, full representation and annotation of the data alongside continual validity checks to prevent
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malformed data input. This has made the SingleCellExperiment data container the foundation of many pack-
ages oriented toward single-cell analysis available today in Bioconductor, providing seamless interoperability
and facilitating the development and usage of cutting-edge computational methods, from initialization of data
containers to the end stages of analysis.

In addition, recent advances in technology and protocols allow the simultaneous measurement of genetic,
epigenetic, and transcriptomic information from the same cells [46–52]. The MultiAssayExperiment [53] package
integrates heterogeneous data types that may be individually represented by SingleCellExperiment, DelayedAr-
ray, or other standard R/Bioconductor data structures.

Quality Control and Normalization
After quantifying a measured trait from a single-cell assay and creating a SingleCellExperiment object, one of
the first steps in analyzing the data is to identify, remove, and correct for low quality features or samples. In
the analysis of scRNA-seq data, this typically translates to transforming a raw count matrix to a processed
expression matrix ready for downstream analyses, such as clustering or differential expression. This process
includes filtering out low-quality cells, selecting for informative features, applying cell and gene-specific nor-
malization methods to remove cell and gene-specific biases, and adjusting for known covariates as well as latent
sources of variation. In this section, we discuss these steps in greater detail, as well as methods for integrating
data from multiple single-cell experiments.

Cell and Gene Quality Control
For droplet-based scRNA-seq technologies such as 10X Genomics [35], the DropletUtils package can be used to
perform key quality control tasks such as distinguishing empty droplets from cells [54] and reducing the effects
of barcode swapping [55]. The scater [56] package automates the calculation of a number of key quality control
metrics. Amongst these, the library size (the total number of read or UMI counts across all genes in a given
cell), the proportion of counts assigned to spike-ins [57] or mitocondrial genes, and the number of genes detected
are commonly used to remove low quality cells. Furthermore, genes can be annotated with their abundance
measurements, such as average expression, or frequency of detection, enabling the removal of uninformative
genes [58]. The simpleSingleCell [59] Bioconductor workflow demonstrates how to use these packages to apply
such quality control metrics for both read counts and UMI counts scRNA-seq data.

Gene Expression Normalization
Though many normalization procedures exist for data derived from traditional bulk assays [3, 7, 9, 60–62],
using data derived from single-cell assays, such as scRNA-seq, introduces new challenges that require cell and
gene-specific biases to be eliminated prior to downstream analyses that depend on explicit gene expression
value comparisons, such as differential expression analyses [19]. These biases can be reduced through the use
of cell- (and possibly gene- ) specific scaling factors, also known as size factors, which are used to make cells
with different properties comparable. The family of approaches discussed herein explicitly address technical,
experimental, and biological factors to make cells within a single scRNA-seq experiment comparable through
the calculation of a corrected or “clean” gene expression matrix.

The SCnorm [63], scran [29] and scater [56] packages provide standalone normalization methods whose
results can then be used in any downstream analysis. The SCnorm package estimates and removes gene-
specific variability due to sequencing read depth, along with accounting for other feature-level biases such as
GC content and gene-length effects. The scran package calculates cell-specific size factors used for normalization
in a manner that accounts for population heterogeneity by first clustering groups of cells with similar expression
profiles. Finally, scater can calculate size factors from the library sizes. However, these approaches can only
account for intrinsic factors that can be deduced directly from the data, and thus cannot correct for experimental
factors such as batch effects.

Alternatively, there are approaches that propose statistical models to address not only normalization, but
also other analyses such as dimensionality redution or differential expression. The Bioconductor packages
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BASiCS [64, 65], zinbwave [31], and MAST [28] are not specific for normalization, but each provide unique
statistical frameworks tailored for scRNA-seq data. Such frameworks have the capacity to adjust not only for
intrinsic technical factors, but also for known artifacts such as time, treatment, and batch effects. Further-
more, these technical or experimental factors are typically unwanted variation, however at times, they may be
potentially confounded with interesting biological factors or variation [19].

To compare the effects of different normalization strategies, the scone package [66] can be used to explore
the results of various strategies and parameterizations. To learn more about scRNA-seq normalization methods,
including a thorough discussion on the use of synthetic control genes such as ERCC spike-ins [57], we refer the
interested reader to reviews by McDavid et al. [67] and Vallejos et al. [68].

Adjusting for Cell-Cycle Heterogeneity
Unless a cell cycle synchronization step is performed, the individual cells in a population will be at different
stages of the cell cycle when the traits of interest are analyzed. Thus, a special type of normalization that is
unique to single-cell data is adjusting for the biological effect of cell cycle phase on gene expression profiles
[69]. The biological heterogeneity induced from differences in cell-cycle phases across cells is often considered a
source of unwanted, technical variation, as they can obscure primary biological effects or conversely be highly
correlated with biological effects [70]. For this reason, computational methods may be needed to deconvolute
cell-cycle heterogeneity. For instance, latent variable models have been proposed to remove cell-cycle variability
[70]. Within the Bioconductor framework, the scran [59] package implements a trained cell-cycle classifier using
known cell cycle genes in humans and in mice to assign G1, G2/M, and S scores to cells. These scores can then
be used as covariates to regress out the effect of cell cycle. In addition, the Oscope [71] package can be used to
identify oscillators, or oscillating genes, when a single cell’s mRNA expression is oscillating through cell states.

Integrating Datasets
As scRNA-seq approaches continue to gain in popularity and decrease in cost, large-scale projects that combine
and integrate independently generated datasets will become standard [72]. However, overcoming the inherent
batch effects [73] of such approaches presents a unique challenge. While linear or generalized linear modeling
frameworks can be used to integrate disparate datasets, the performance of these frameworks in the scRNA-
seq context may be sub-optimal, due to their underlying assumption that the composition of cell populations
is either known or identical across groups of cells [74]. While this assumption can be addressed through
explicit consideration of similar clusters of cells, new approaches to integrate datasets from distinct single-cell
experiments that are largely independent of linear models, and which do not even rely on producing a corrected
gene expression matrix, have been developed to address this issue.

One approach involves the identification of the most biologically similar cells between batches using mutual
nearest neighbors (MNNs) [74], which is implemented in the scran [59] and batchelor [75] packages. The
MNN-corrected data can be directly used in downstream analyses, similar to other dimensionality reduction
approaches, such as clustering or trajectory analyses. The scMerge package draws upon a similar approach,
but instead uses mutual nearest clusters to merge datasets [76]. However, scMerge requires a user to supply
the number of clusters a priori or have annotated cell types to run in unsupervised or semi-supervised mode,
respectively. Similar to MNN in scran and scMerge, the scmap package [77] performs an approximate nearest
neighbor search to project cells from a query dataset or experiment onto the cell types (clusters) or individual
cells in a different dataset or experiment. Alternative implementations based on unsupervised deep learning
methods such as the scAlign package [78] have also recently been proposed. Finally, several data integration
methods developed for bulk assays are available in the mixOmics [79] package and have shown good performance
on single-cell data [80].

Overall, the approaches that have been tailored for scRNA-seq and explicitly address dataset integration
have performed well with respect to ameliorating batch effects in recent benchmarks comparing against tradi-
tional statistical modeling frameworks [80]. However, care should be taken in utilizing corrected gene expression
matrices, and further validation should be applied to ensure the result is sufficiently free from artifacts. The
integration result is especially useful for clustering and visualization. Statistical frameworks can thus then
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be applied on the (raw) counts data in service of downstream methods such as differential expression, which
become more reliable thanks to the integration approach separating different cell types.

Beyond simply addressing batch effects, one particularly exciting application of these integration approaches
is in facilitating comparisons of de novo scRNA-seq data with published reference compendiums such as the
Human Cell Atlas [16] or, for the model organism Mus musculus, Tabula Muris [81, 82]. Such approaches may
not only facilitate cross-comparisons, but furthermore enable the annotation of de novo datasets on the basis
of previously annotated references (see the Annotation section for a broader discussion).

In our online supplement, we demonstrate an example of combining datasets derived from different sources
using the integration approaches described above (Table 1).

Feature Selection
In most experiments, only a subset of genes drive heterogeneity across the population of cells profiled within a
single-cell experiment. Feature selection is the process of identifying the most informative features or genes that
drive the biological variation, such as genes with high variance from biological effects, rather than technical
effects. In the analysis of scRNA-seq data, feature selection is an important step because it reduces the
computational burden and removes noise in downstream analyses.

In cases with known groups of cells, correlation-based approaches [83] or the identification of differentially
expressed genes [84] across groups can be used to select key features. However, in practice, these groups of
similar cells are not often known a priori unless the experimental design contains sorted populations or other
markers to designate known cell populations, such as engineered gene constructs. More commonly in scRNA-
seq data, feature selection is either: expression-based, selecting genes with a high overall mean expression
across cells; variance-based, selecting highly variable genes relative to overall mean expression [59, 64, 65];
dropout-based, selecting high dropout genes relative to overall mean expression [84]; deviance-based, selecting
genes based on how well each gene fits a null model of constant expression across cells [85]; or a mixture of
these strategies. For recent reviews comparing feature selection methods for scRNA-seq data, including the
concordance across different approaches, see Yip et al. [86] and Andrews et al. [84].

Dimensionality Reduction
Cutting-edge single-cell assays can potentially measure thousands of features genome-wide, in hundreds of
thousands to millions of cells. With data on this scale, many types of analyses quickly become computationally
intractable. While feature selection can mitigate this high-dimensional problem to a certain extent, it is often
insufficient in reducing the complexity of single-cell data. Dimension reduction approaches elegantly resolve this
dilemma by creating low dimensional representations that nonetheless preserve meaningful structure. The end
result can then be subsequently used for data visualization as well as downstream analyses such as clustering
and trajectory analysis.

The SingleCellExperiment container has a dedicated slot, reducedDims, for holding such reduced dimension
representations of single-cell data. This slot is used by single-cell Bioconductor packages to provide uniform
storage and access of linear and non-linear reduced representations of the data. For example, the scater [56]
package uses this slot to store and visualize reduced dimension representations of single-cell data after applying
dimensionality reduction methods. These include the top principal components (PCs) after performing prin-
cipal components analysis (PCA), the t-Distributed Stochastic Neighbor Embedding (t-SNE) components [44]
using the Rtsne [87] R package, the uniform manifold approximation and projection (UMAP) components [45]
using the umap [88] R package, and diffusion maps [89] using the destiny Bioconductor package, respectively.
In addition, the BiocSingular [90] package provides access to both exact and approximate singular value decom-
position (SVD) methods for developers of Bioconductor packages to implement various forms of SVD within
their own package. To improve the speed of computations in SVD methods, BiocSingular uses the BiocParallel
[91] Bioconductor framework to parallelize operations.

The zinbwave [31] Bioconductor package takes an alternative approach, calculating a model-based dimen-
sionality reduction based on the ZINB-WaVE model [31] tailored for zero-inflated count data that allows for
adjustment for confounding factors, as described above. In a similar fashion to scater, the zinbwave [31] package
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works seamlessly with counts from SingleCellExperiment objects, and can store its results in the reducedDims
slot for downstream analysis.

Downstream Statistical Analysis
The choice of statistical analyses and workflows can differ greatly depending on the specific goals of the in-
vestigation. Following preprocessing of the data as described above, here we illustrate how the Bioconductor
framework can be used to answer a variety of biological questions from single-cell data, using tools that are
interoperable with the SingleCellExperiment class and scale with the number of cells. Also, we provide an
online workbook (Box 2) that provides workflows and case studies for users on how to perform many of these
downstream analyses with single-cell data.

Clustering
Data derived from single-cell assays have enabled researchers to unravel tissue heterogeneity at unprecedented
levels of detail, enabling the identification of novel cell types, as well as rare cell populations that were previously
unidentifiable using bulk assays [92–94]. Unsupervised clustering – the process of grouping cells based on a
similarity metric without a known reference – is a fundamental step in deconvoluting heterogeneous single-cell
data into clusters that relate to biological concepts, such as discrete cell types or cell states. Clustering is also
essential for other analyses, such as differential expression, in order to identify distinct cellular sub-populations.
While, the degree of the separation between the detected clusters is relevant to the robustness and confidence
in the clusters, it is more important to think about using clustering methods to yield some hypothesis for
experimental validation.

While many algorithms and software packages have previously been used to cluster data from bulk assays
and single-cell flow cytometry [95], the complexities of scRNA-seq data pose unique challenges for clustering
tasks, specifically a richer feature space, large numbers of cells, and data sparsity [96]. To address these
challenges, Bioconductor has developed software packages that incorporate recent advance in nearest-neighbors
and clustering algorithms that improve computational efficiency through approaches such as using approximate
methods instead of exact methods, thereby trading an acceptable amount of accuracy for vastly improved
runtimes. For example, the BiocNeighbors package [97–100] can be used to search for nearest neighbors and
then a shared nearest neighbor graph using cells as nodes can be built using the scran [59]. Further, approximate
methods have the advantage of smoothing over noise and sparsity, and thus potentially providing a better fit to
the data [101]. Other approaches for improving computational speed include implementing specially designed
versions of classical algorithms that support parallelization, enabling multicore and/or multinode processing
[91].

Two implementations of unsupervised clustering frameworks come from two Bioconductor packages, SC3
[102] and clusterExperiment [103], which calculate consensus clusters derived from multiple parametrizations.
The SIMLR package [104] uses kernels to learn a distance metric between cells tailored to improve sensitivity
in noisy single-cell data. For large data that require a file-backed representation such as a HDF5 file, the mini-
batch k-means algorithm [105] has been implemented in the mbkmeans package [106], efficiently replicating
the results of classical k-means clustering. For experiments with control genes present in the form of spike-in
controls, the BEARscc [107] package estimates cluster variability due to technical noise [57]. For evaluating
clustering performance across methods and parameter spaces, the results of these various methods can be
assessed quantitatively and visually using the SC3, clusterExperiment, and clustree [108] packages. Together,
these packages directly support the SingleCellExperiment class, allowing for seamless interoperability across a
host of clustering methods.

Amongst these methods, the SC3 package was found to be a top performer in two separate benchmarking
studies [109, 110]. However, it should be noted that for the methods described above, only SC3 was tested in the
benchmarking studies. Thus, care should be taken in the choice of clustering method, as each method may excel
in different contexts, and results should always be evaluated over various instantiations. For a demonstration
of implementing clustering approaches, we refer the interested reader to our online supplement (Table 1).
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Differential Expression
Given identifiable groups of cells, differential expression analysis can be used to identify features that uniquely
distinguish each of the biological groups (clusters) of cells. The results from this analysis can then be used to
identify the cell populations present. Another application involves comparing cells within a given population
across various conditions, such as time or treatment. In both cases, it is important to correct for confounders
such as systematic batch effects [19, 111]; furthermore, it is important to consider how these effects may drive
clustering, and thus confound differential expression analyses from the start.

The distinct challenges described in the previous section for scRNA-seq data, namely data size and spar-
sity, have also spurred many methodological and computational developments in Bioconductor for identifying
differentially expressed features between biological groups. Moreover, multiple recent benchmark papers have
highlighted that many of the top performing scRNA-seq differential expression tools are Bioconductor packages
(e.g. MAST and edgeR, mentioned below) [112–114].

Across these differential expression methods, two general approaches stand out. The first approach retrofits
frameworks initially designed for bulk RNA-seq analysis, namely the edgeR [3, 62], DESeq2 [7], or limma [115]
frameworks. In this approach, the zinbwave [31] package can be used to model the single-cell data as arising
from the zero-inflated negative binomial distribution (ZiNB) to account for the sparsity inherent to scRNA-seq
data [116]. Namely, the zinbwave package downweights the excess zeros observed in scRNA-seq data in the
dispersion estimation and model fitting steps, thereby enabling improved differential expression analysis. While
this approach is slightly more complex at the onset, the edgeR, DESeq2, and limma packages have the benefit
of being well-supported, robust, and with ample documentation.

The second class of approaches is uniquely tailored for single-cell data because the statistical methods
proposed directly model the zero-inflation component, frequently observed in scRNA-seq data. These methods
explicitly separate gene expression into two components: the discrete component, which describes the frequency
of a binary component (zero versus non-zero expression), and the continuous component, where the level of
gene expression is quantified. While all the methods mentioned herein can test for differences in the continuous
component, only this second class of approaches can explicitly model the discrete component, and thus test for
differences in the frequency of expression. To do this, the MAST [28] package uses a hurdle model framework,
whereas the scDD [117], BASiCS [64, 65], and SCDE [18, 118] packages use Bayesian mixture and hierarchical
models. Together, these methods are able to provide a broader suite of testing functionality and can be directly
used on the scRNA-seq data contained within a SingleCellExperiment object.

For a guide in performing differential expression analyses, we refer the interested reader to our online
supplement (Table 1).

Trajectory Analysis
In contrast to comparing distinct groups of cells within an experiment as described above, heterogeneity in some
cases may be better explained as a continuous spectrum, arising due to processes such as cell differentiation.
A specialized application of dimension reduction, trajectory analysis - also known as pseudotime inference -
uses a broad array of phylogenetic methods to order cells (e.g. by beginning state, intermediate state, end
state) along a trajectory of interest, such as a developmental process occurring over time (see [119, 120] for
further discussion). From this inferred trajectory, it is possible to identify, for example, new subsets of cells,
a differentiation process, or events responsible for bifurcations, such as branch-points, in a dynamic cellular
process [121, 122]. As trajectory inference is intractable with bulk data, this type of analysis presents an
exciting new avenue for methods development in single-cell applications.

New developments in trajectory inference methods have greatly expanded their capabilities. Whereas early
versions required more guidance from the user - such as an expected topology - modern approaches have largely
minimized the need for extensive parametrization. Furthermore, modern methods have led the development
of novel statistical applications that can test for significant gene expression changes along a continuum and at
branch points [123, 124].

In a recent review by Saelens et al. [125], they created a wrapper package - dynverse - to perform an
extensive benchmarking of trajectory inference methods using both real and simulated datasets. From their
evaluation, which included both performance aspects and qualitative features such as documentation, four of
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the five top performers were the Bioconductor packages slingshot [126], TSCAN [30], monocle [123, 124, 127],
and cellTree [128]; the fifth was the SCORPIUS [129] package currently hosted on CRAN.

However, each of the methods above can produce drastically different results. This is largely due to the
inherent complexity of the task and choices made by the authors of the packages in setting sensible default
parameters, which may favor a specific type of topology. Therefore, it is essential to extensively test a suite of
methods and parametrizations to assess the robustness of results from trajectory analysis methods. To facilitate
such testing, the monocle, slingshot, and CellTrails (a newer method that as of this writing has not been tested
by Saelens et al.) packages provide explicit support for SingleCellExperiment objects. For a more in-depth
discussion on methods and benchmarking of trajectory analysis methods, we refer the interested reader to the
previously mentioned paper [125] and a recent review by Tanay et al. [130].

Annotation
One of the challenges of working with high-throughput data, such as that typically encountered in scRNA-seq,
is the characterization of the data into familiar terms. This has led to the development of approaches that
characterize expression changes of individual genes in the context of gene sets, often termed “gene signatures”.
The basic structure of all gene signatures is that they provide a list of genes with a shared biological context.
This context can be derived from myriad sources - from experimentally derived differential expression analyses to
manually curated compilations of genes involved in metabolic and molecular pathways. More complex versions
of gene signatures can also possess additional characteristics, such as quantitative or qualitative metrics, or even
relationships between the elements of a given signature that produces a network representation. Quantifying
the enrichment of these signatures for significant changes in expression has been a hallmark of functional
annotation. In addition to this classical approach, novel methodologies developed in the era of scRNA-seq now
bypass the usage of gene signatures, applying a data-centric approach to the annotation of de novo data using
a reference dataset.

Here, we cover how such publicly available gene signatures can be applied to quantify the enrichment of
gene signatures in scRNA-seq, methodologies that rely on reference data for annotation, and finally discuss a
specialized application of these two approaches in assigning cell labels to single-cells or clusters of cells within
an scRNA-seq experiment.

Accessing Public Gene Signatures
The characterization of gene signatures has made great strides through the coordinated efforts of many groups,
which have pioneered strategies for standardizing cell type representations and developing statistical methods
for the identification of necessary and sufficient markers for cell types and functional signatures [131, 132]. The
field has generated countless public knowledge-bases from which such signatures can be used for downstream
enrichment analysis. These databases vary in their approach to the definition of signatures - some are based
on experimental approaches, such as differential expression studies between conditions in the immunological
module of MSigDB [133], whereas others rely on curated knowledge of well known molecular functions and
biological processes, such as KEGG [134], Reactome [135], and Gene Ontology (GO) [136]. While covering
the various available knowledge bases is outside of the scope of this manuscript, we encourage the use of
programmatically accessible databases (e.g. those with application programming interfaces such as REST) and
data packages which provide ready to use annotation data in order to facilitate reproducible analyses.

Gene Signature Enrichment
In this section, we focus on methods which rely on explicit gene signatures, either from manually curated or
experimentally derived sources akin to those described above. Similar to identifying differentially expressed
genes in single-cell data, there are two general approaches to test for an enrichment of genes in functional gene
signatures. The first approach adapts existing gene set analysis methods originally developed for the analysis
of microarray and bulk RNA-seq, such as GSEA [133] (or a fast implementation of pre-ranked GSEA in the
fgsea package [137]), goseq [138], and PADOG [139], using observational weights to account for the excess zero
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observed in scRNA-seq data [116]. For a comprehensive set of available gene set analysis methods available
on Bioconductor, see the EnrichmentBrowser package [140], which facilitates the usage of 10 different gene
set based methods, with further options to combine resulting gene set rankings across methods. The second
approach is a set of enrichment methods specifically tailored for scRNA-seq data. The MAST [28] package
implements a competitive gene set test that accounts for inter-gene correlation using the hurdle model whereas
the AUCell [141] package scores the activity level of gene sets using a rank-based scoring method and computes
a gene set activation scores for each cell. Finally, the slalom [142] package uses a factorial single-cell latent
variable model to explain variation in an scRNA-seq data set as a function pre-annotated gene sets.

Data-centric Enrichment Methods
A complementary approach to using published gene signatures relies on learning such signatures de novo from
reference data. Such approaches, while still nascent, have the potential benefit of being able to characterize
biological processes through the use of more comprehensive, quantitative signature definitions, as they go
beyond just a list of genes. For example, the scmap [77] package projects cells from an scRNA-seq experiment
onto the cell-types or individual cells identified in a different experiment. Similarly, the scCoGAPS [143, 144]
package generates gene expression signatures and then maps the learned signatures onto new datasets to learn
shared biological characteristics.

Labeling of Cells
A specialized application of annotation methods in the analysis of scRNA-seq data is in automating the classi-
fication of unknown cells to known cell types. To accomplish this, a source of prior knowledge is first required.
This can be in the form of a marker panel or a well-annotated reference scRNA-seq dataset, reflecting the
division between gene signature and data-centric enrichment methods described above. Secondly, the choice
of method will depend on the desired resolution of the annotation, as the labels are assigned either at the
single-cell level or on (predefined) clusters of cells.

Methods that rely on reference scRNA-seq datasets that have been annotated a priori at the level of clusters,
and thus apply data-centric enrichment approaches, possess some key advantages. Chiefly, by defining the labels
at the cluster level from the reference dataset, e.g. from pools of cells, issues with sparsity can be overcome,
and the level of uncertainty (variability) in the characteristic signature quantified. However, the definition of
clusters, especially when it comes to defining biologically meaningful clusters, is an inherently empirical process,
and thus any results relying on clusters - either from the reference dataset or the de novo dataset - will be
subject to this initial bias. Ameliorating this, the definition of the characteristic signature pertaining to each
reference cluster is much more quantitative than traditional manually curated gene signatures. Methods that
adopt a cluster-centric labeling approach include the celaref [145] and scmap [77] packages. Interestingly, the
scmap package also possesses the capability of annotating a de novo scRNA-seq experiment at the single-cell
level (while still using the reference scRNA-seq clusters), thus removing one layer of potential bias arising from
clustering.

Conversely, approaches that rely on manually curated panels have the benefit of being well-defined based
on prior knowledge. Furthermore, they are easily adaptable, as the user can readily tweak the marker panel -
extending or shortening signatures, as well as adding or removing cell type definitions. Naturally, such manual
definitions also possess some disadvantages compared to data-centric definitions - for example, marker panels
often rely on protein level characterization that may not be applicable to scRNA-seq, and these panels are
usually much more limited in scope. Thus, it is important to apply such panels in a formalized manner, and
one such package that takes this approach comes from cellassign [146], which labels individual cells from a de
novo scRNA-seq experiment.

Accessible and Reproducible Analysis
The richness of data from single-cell assays has immensely increased the space of possible data exploration.
Oftentimes however, bespoke visualization frameworks to communicate results are limited in scope or may lack
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Figure 4: Interactive Data Exploration in Bioconductor. A An example SingleCellExperiment object,
sce, is shown with a normalized expression assay that has been log-transformed (logcounts), sample metadata
with a column representing the cluster label for each cell amongst other quality control metrics such as
total_counts, and a reduced dimension TSNE representation. B The sce object is passed to the iSEE package
using the iSEE() function (green box). This function produces an interactive data visualization accessible
via a web browser, encapsulating various types of plots into a single application (large light gray box). The
various components of the sce data container are used differently by different plots (arrows pointing from slots
to plots). The feature assay plot (left) derives its data from the assays slot (blue box), whereas the reduced
dimension plot (right) derives its coordinates from the reducedDims slot (purple box). Clustering information
from the colData slot is used for each plot to separate and color the data by clusters (middle), as well as to
visualize cell metadata (orange box). Cells from any individual plot can be selected via a shiny brush or lasso
selection tool, and then transmitted and visualized in any other plot (yellow selection in reduced dimension
plot, purple dots on feature assay and column data plot).

essential infrastructure that ensures reproducibility over time. To address these challenges, the Bioconductor
community has embraced both software solutions and best practices, as described below.
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Interactive Data Visualization
The maturation of web technologies has opened new avenues for the interactive exploration of data. These web
technologies have been embraced by the broader R community through the use of shiny [147], an R package that
facilitates the development of complex interfaces with relative ease. Given the complexity of scRNA-seq data, it
is crucial to facilitate the exploration of data across teams of researchers directly working with the data and also
to facilitate the communication of results to the broader community. Furthermore, such communication must
accommodate audiences with varying levels of programming expertise. To this end, the iSEE [148] package
provides a full-featured application for the interactive visualization of scRNA-seq data sets through an internet
browser, eliminating the need for any programming experience if the instance is hosted on the web (Figure 4).
The iSEE package directly interfaces with the SingleCellExperiment data container to enable the simultaneous
exploration of single-cell data and metadata. For example, the iSEE package includes functionality to visualize
dimensionality reduction results such as t-SNE or UMAP while coloring cells, or alternatively, the expression
level of any feature by their assigned cluster or cell type. Lastly, the iSEE package lets the user export the
code required to reproduce the interactive graphics as well, facilitating long-term reproducibility of exploratory
analyses.

Report Generation
Ensuring that results are well-documented, shareable, and reproducible is of utmost importance for publica-
tion and external validation of results. To address this, Bioconductor promotes the usage of R packages like
rmarkdown [149] and bookdown [150] to produce analytical reports, tools which were all used to generate our
companion online book (see Box 2). Furthermore, Bioconductor has published the BiocStyle package [151] to
provide standardized formats for package associated vignettes that illustrate software functionality.

Code and reports inherent to a project, especially those associated with documentation or publication, are
encouraged to be shared as part of a package as an included vignette as well as in public code repositories
such as GitHub. For example, Bioconductor publishes data packages with vignettes that demonstrate how to
reproduce an associated manuscript’s relevant figures [152]. In addition, packages such as iSEE [148] report all
the code used to generate a visualization that was manually specified via the interface described prior.

Beyond bespoke reports or packages, Bioconductor has also added packages that automate the creation of
shareable, standalone reports. In particular, one area of focus is the automation of quality control documenta-
tion. Namely, the countsimQC [153] and batchQC [154] packages automate the visualization of various sample
characteristics, such as library sizes, the number of genes quantified, and additionally illustrate what batch
correction procedures may need to be applied prior to downstream analysis.

Published and Simulated Data
Access to data – both simulated and published – is essential to validate and benchmark previously established
and new methods. Given the rapid ascent of high-throughput single-cell assays, Bioconductor has actively
encouraged the community to publish data packages, as well as use standardized data simulation frameworks
to foster further development in methods and synthesis of analytic results.

Single-cell Data Packages
As new single-cell assays, statistical methods and corresponding software continue to be developed, it becomes
increasingly important to facilitate the publication of datasets, both to reproduce existing analysis as well as to
enable comparisons across new and existing tools. Bioconductor encourages the publication of data packages,
which are primarily focused on providing accessible, well annotated, clean versions of data that are ready to be
analyzed by end users.

To standardize the querying of published data packages on Bioconductor, the ExperimentHub [155] Biocon-
ductor package was created to enable programmatic access of published datasets using a standardized interface.
Amongst available scRNA-seq datasets, the TENxPBMCData, and TENxBrainData data packages from the
10X Genomics platforms provide streamlined access to the ExperimentHub resource for their respective data
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sets. In addition, the HCAData and HCABrowser packages provide access to the data portal from the Human
Cell Atlas [16] consortium.

It is important to note that with ExperimentHub [155], data is processed and submitted by the authors of
the package, and thus data packages from multiple sources may not be readily comparable to each other. To
address this, single-cell data compendiums, such as conquer [112], provide users an interactive online resource
of many scRNA-seq datasets where each has been processed in a consistent manner and with additional quality
control steps applied. Such an approach helps standardize various pipelines used to process scRNA-seq data in
order to make them more readily comparable [112].

Benchmarking Datasets
Of note within single-cell data packages, benchmarking datasets are labeled with some known “ground truth”
designed for the evaluation of new methods. Amongst these, the CellBench [80] data set is one such example
specific to scRNA-seq applications, comprised of data from various platforms and cell lines. As such, it can
be used to validate batch correction, differential expression, and clustering methods. Another benchmarking
dataset for scRNA-seq data is from Tung et al. (2017) [156], which can be used for benchmarking methods
using data derived from plate-based protocols. Finally, the DuoClustering2018 package [109] contains data
from a variety of sources which were used to test the performance of various clustering methods, with the data
primarily chosen to represent different degrees of difficulty in the clustering task.

Simulating Data
Simulated data is logical prerequisite for method development where it is necessary to fully know the generative
model underlying the data, and thus, accurately benchmark the performance of a method. For scRNA-seq
data, the splatter package [157] can simulate the presence of multiple cell types, batch effects, varying levels of
dropout events, differential gene expression, as well as trajectories, providing a rich canvas for methods testing
and development. Furthermore, the splatter package uses both its own simulation framework and wraps other
simulation frameworks with differing generative models such as scDD and BASiCS to provide a comprehensive
resource for single-cell data simulation.

Discussion
The open-source and open-development Bioconductor community has developed state-of-the-art computational
methods, standardized data infrastructure, and interactive data visualization tools available as software pack-
ages for the analysis of data derived from cutting-edge single-cell assays. The rapid development of high-
dimensional single-cell assays producing data sets of increasing size, complexity and sparsity, has the Biocon-
ductor community to implement profound changes in how users access, store, and analyze data, including: (1)
memory-efficient data import and representation, (2) common data containers for storing data from single-cell
assays for interoperability between packages, (3) fast and robust methods for transforming raw single-cell data
into processed data ready for downstream analyses, (4) interactive data visualization, and (5) downstream anal-
yses, annotation and biological interpretation. In addition, emerging single-cell technologies in epigenomics,
T-cell and B-cell repertoires, and multiparameter assays from single cells (such as joint/simultaneous protein
and transcriptional profiling) promise to continue to push forward advances in computational biology. Based
on the unique strengths of Bioconductor, in particular its strong connection between users and developers,
the high degree of responsiveness of developers to user needs that arise, and the reach of the Bioconductor
community, we are optimistic that it will be the hub of development for these technologies as well.

Being a part of the broader R community presents unique advantages for Bioconductor, including accessi-
blility to statisticians and data scientists. The Bioconductor software project has established best practices for
coordinated package versioning and code review. Alongside community-contributed packages, a team of core
developers (https://www.bioconductor.org/about/core-team/) implements and maintains the infrastruc-
ture needed by the global project, as well as reviews contributed packages to ensure they satisfy Bioconductor
package guidelines. Taken together, these practices result in high-quality and consistently maintained packages.
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Table 1: Bioconductor workflows for single-cell analyses.
Name Description URL

Integrating
Datasets

Using two datasets from the
TENxPBMCData data packages – one with
3000 cells and one with 4000 cells – the
workflow demonstrates how to preprocess
this scRNA-seq data and integrate the two
datasets using mutual nearest neighbors. We
visually inspect the results using the first two
principal components.

http://osca.bioconductor.org/
workflow-integrating-datasets.
html

Clustering

Using the CellBench [80] benchmarking
dataset (specifically the sc_10x_5cl dataset,
which contains 5 sorted cell lines that were
sequencing on the 10X Genomics platform),
the workflow demonstrates how to preprocess
the scRNA-seq data and highlights several
clustering packages and methods, which are
suitable for large datasets.

http://osca.bioconductor.org/
workflow-clustering.html

Differential
Expression

Using the Tabula muris data compendium of
mouse organ systems, this workflow
illustrates performing differential expression
analysis across different cell populations.

http://osca.bioconductor.org/
differential-expression.html

Large-scale
Analyses

Using the HCAData [16] package, the
workflow demonstrates current practices for
dealing with large-scale datasets, illustrated
the use of DelayedArray operations and
methods that support disk-backed (HDF5)
data representations.

http://osca.bioconductor.org/
large-scale-data.html

In addition, Bioconductor provides standardized data containers that enable interoperability between Bio-
conductor packages, between Bioconductor and CRAN [2] packages, and between R and other programming
languages. For instance, it is simple to convert between a SingleCellExperiment object and the format used by
the popular single-cell CRAN package Seurat [158] and Python [159] package scanpy [160] and vice versa. In-
deed, R has a long history of interoperability with other programming languages. Two notable examples are the
Rcpp [161–163] package for integrating C++ compiled code into R and the reticulate [164] package for interfacing
with Python. This interoperability enables common machine learning frameworks such as TensorFlow/Keras
to be used directly in R.

To the newcomer, the wealth of single-cell analyses possible in Bioconductor can be daunting. To address
the rapid growth of contributed packages within the single-cell analysis space, we have summarized and high-
lighted state-of-the-art methods and software packages and organized the packages into the broad sections of a
typical single-cell analysis workflow (Figure 2) alongside companion code-based workflows showcasing their use
(https://osca.bioconductor.org). Finally, Bioconductor software packages are organized into BiocViews,
an ontology of topics that classify packages by task or technology. This effort increases discoverability and
interoperability. In the future, additional meta packages may be developed to wrap similar methods together.
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Supplementary Tables

Table S1: Bioconductor software package for single-cell analyses.
Analysis Package name Description

Data Input

scPipe [32] Uses the Rsubread [33, 34] package to align sequencing reads

tximport [38] Wrappers for psuedoalignment algorithms such as Salmon [36] and Kallisto
[37]

DropletUtils [54] Reading in a matrix of UMI counts from droplet-based protocols, such as
10X Genomics [35]

beachmat [165] A C++ interface for accessing single-cell data with sparse, dense and
file-backed matrices, such as the HDF5 file format [166]

rhdf5 [167] Access and store data in HDF5 file formats [166]

Data Infrastructure
HDF5Array [168],
DelayedArray [169],
DelayedMatrixStats [170]

Efficiently work with data in HDF5 file formats [166] using array-like
containers and delayed operations

SingleCellExperiment [40] Package for the SingleCellExperiment class that stores and accesses data
from single-cell assays or experiments

Quality control,
normalization, fea-
ture reduction

DropletUtils [54], scater [56],
simpleSingleCell [59] Perform cell and gene quality control for both read and UMI count data

SCnorm [63], scran [29],
BASiCS [64, 65], zinbwave
[31], and MAST [28]

Normalizations methods to remove gene and/or cell-specific biases in
scRNA-seq data

scone [66] Compare normalization strategies and parameterizations

scran [59], Oscope [71] Adjust for variation from differences in cell-cycle phases in data from
humans and mice

batchelor [75], scran [59, 74],
scMerge [76], scmap [77],
scAlign [78]

Methods for integrating two or more scRNA-seq datasets

scran, [59], BASiCs [64, 65],
M3Drop [84] Methods for feature selection

scater [56]
Performs and visualizes results from dimensionality reduction methods
including PCA, t-SNE components [44], UMAP components [45, 88], and
diffusion maps [89]

BiocSingular [90] Exact and approximate methods for singular value decomposition that uses
the BiocParallel [91] framework to parallelize operations

zinbwave [31] Performs model-based dimensionality reduction based on the ZINB-WaVE
model [31]

Downstream statis-
tical analyses

BiocNeighbors [97–100] Exact and approximate methods for nearest neighbor detection that uses
the BiocParallel [91] framework to parallelize operations

SC3 [102], clusterExperiment
[103], SIMLR [104], mbkmeans
[106], BEARscc [107], clustree
[108]

Unsupervised clustering frameworks for single-cell data

edgeR [3, 62], DESeq2 [7],
limma [115]

Methods developed for bulk RNA-seq differential expression that can be
used in combination with methods such as zinbwave [31, 116] to account for
the zero-inflation

MAST [28], scDD [117],
BASiCS [64, 65], SCDE [118]

Methods to identify differentially expressed features using statistical models
that directly model zero-inflation

slingshot [126], TSCAN [30],
monocle [123, 124, 127],
cellTree [128]

Methods for trajectory analysis or pseudotime inference

MAST [28], AUCell [141],
scmap [77], PADOG [139],
fgsea [137], goseq [138], slalom
[142], scCoGAPS [143, 144],
EnrichmentBrowser [140]

Methods for gene set / signature enrichment analysis

iSEE [148] Interactive data exploration and visualization
countsimQC [153], batchQC
[154], iSEE [148] Making analyses accessible and reproducible for producing analytical reports

ExperimentHub [152],
DuoClustering2018 [109],
CellBench [80]

Single-cell published data packages such as TENxPBMCData,
TENxBrainData, HCAData, HCABrowser or benchmarking datasets

splatter [157] Packages to simulate single-cell data useful for benchmarking statistical
methods
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