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Abstract

In this work, we assess the role of a specific type of organized crime in influencing

choices on where living within the city territory, and consequently, volatility in house

prices. More specifically, we test how organized crime killing may influence house

pricing behaviors. Firstly, we show evidences about how organized crime is associated

with higher inequality of housing prices for Italian cities in 2011. Then, by collecting

and geo referencing data on the city of Naples for the period 2002-2016, we test for the

direct influence of homicides on the relevant territory, as on the neighboring districts.

Results show a negative and significant impact of killing on the house prices either

for sales or for rents and a positive effect in neighboring district, driving increases in

within-city inequality.

Keywords: organized crime, spatial interactions, panel data estimations.

JEL Classification Codes: C40, D01, O33

∗Dipartimento di Giurisprudenza, Universita’ degli Studi di Palermo, Piazza Bologni 8, 90134 Palermo
(PA), Italy, email: michele.battisti@unipa.it
†Dipartimento di Giurisprudenza, Universita’ degli Studi di Palermo, Piazza Bologni 8, 90134 Palermo

(PA), Italy, email: giovanni.bernardo@unipa.it
‡Dipartimento di Giurisprudenza, Universita’ degli Studi di Palermo, Piazza Bologni 8, 90134 Palermo

(PA), Italy, email: mario.lavezzi@unipa.it
§Department of Geography, University of Sussex, Sussex House, Falmer, Brighton, BN1 9RH, UK, email:

g.maggio@sussex.ac.uk



1 Introduction

In this paper we estimate the effect on housing prices in the city of Naples of murders

committed by the Camorra, the Neapolitan Mafia. In particular, we build a dataset of

geo-localized Mafia homicides in Naples for the period 2003-2016 and assess their effect on

district-level housing prices’ dispersion.

Criminal organizations such as the Italian Mafias pose a serious threat to economic

development. For example, recent literature highlighted the detrimental effects that Mafias

can have on foreign direct investments (Daniele and Marani, 2011), GDP growth (Pinotti,

2015) and state capacity (Acemoglu et al., 2017). In this work we focus on the effect that

Mafia violence can exert on housing prices’ dispersion, an important component of inequality

(see e.g. Maclennan and Miao, 2017). The nexus between organized crime and inequality is

a topic so far overlooked in the literature, with the exception of Battisti et al. (2018). We

focus on the city of Naples as it witnessed in recent years a conspicuous number of homicides

by the Camorra. As pointed out by Catino (2014), the high number of homicides by the

Camorra can be explained by its horizontal structure, which differentiates it from vertically

organized groups such as the Sicilian Mafia. The lack of a hierarchical structure implies that

clashes among rival gangs or families to control turf and illicit trades (most notably drugs)

occur frequently.

In particular, Catino (2014) compares the Camorra model of organization in Campania,

the region whose capital is Naples, with two other organizations such as the ’Ndrangheta

and Cosa Nostra, whose main territories are the regions of, respectively, Calabria and

Sicily. All of these organizations appeared in the nineteenth century in similar conditions of

development, geography (the South of Italy), and institutions (under the Bourbon kingdom),

and subsequently turned into transnational organizations with multiple businesses in several
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countries. Notwithstanding these similarities, Catino (2014) shows that the Camorra

organization implies a higher absolute number of homicides, but a lower capacity to plan

and carry out crucial homicides of politicians, policemen and judges, due to its historically

lower coordination at a provincial (or even higher) level.

In this paper we consider a specific type of homicides: those implying individuals not

affiliated with a Camorra gang, that we denote as “random homicides”. Our insight is the

following: random homicides are those more likely to affect the residential choice of the

largest part of the population, as any individual in principle can be affected. This type of

homicides, therefore, are those expected to have a sizable effect on the demand for houses.

In particular, we expect that the effect of a random homicide has an effect in the area

close to the location of the homicide, reducing the demand for housing, but also spills over

to different areas further away, where it increases the demand for housing, as long as these

areas are considered safer. These effects, therefore, introduce a wedge between housing prices

in different districts, increasing the within-city housing price dispersion.

This work speaks to two different strands of literature. First, it contributes to the

literature investigating the connection between crime and residential choice. Among others,

Tita et al. (2006) find that crime affects the individual decisions about changing residential

location and find that violent attacks convey the greatest cost in term of loss of property

value. Using geo-referenced data on the city of Sydney, Klimova and Lee (2014) find that

murders negatively affect housing prices, with an average drop of 3.9% with respect to their

initial value. Linden et al. (2008) find a similar impact for within-neighborhood variation

in property values (-4%) before and after the arrival in the neighborhood of a sex offender.

None of these works, however, considered violent offenses from a criminal organization, as

we do in the present article.

Secondly, this work contributes to the strand of literature investigating the socio-
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economic outcomes of violent offenses by organized crime. Specifically, recent works ask

whether organized crime can strategically use murders and violent attacks to influence

political outcomes, such as electoral participation and the capacity to govern effectively (Dal

Bo’ et al., 2006; Acemoglu et al., 2013; Daniele and Dipoppa, 2017; Alesina et al., 2018).

For example, Alesina et al. (2018) focus on the Italian case and find that a sharp increase

in violence against politicians before the electoral period reduces “anti-Mafia” efforts in the

parliamentary debate. Our work is the first providing evidence that organized crime violence

is able to impact on housing prices, affecting in this way inequality.

Our main finding is that mafia homicides lead to higher dispersion in housing prices.

Specifically, we provide a first correlational evidence about the fact that the presence of

horizontal organized crime and the higher number of homicides associated to it is associated

to higher house price dispersion both for the Italian cities and for the city of Naples. Secondly,

we show that, in a panel data framework, homicides are related to a decrease of around 2%

in housing prices at district level in the city of Naples. Third, in a spatial panel framework

we estimate a net decrease of 1.5% in housing prices in the period following a homicide,

which stems from a price decrease in the district where the murder occurred of -2.5% and an

increase in price in a neighboring district of +1%. Finally, we find that the long-run effects

estimated in the spatial analysis amount to 2.5% and are therefore bigger than the short-run

effects of 1.5%.

The rest of the paper is organized as follows. In Section 2 we offer some preliminary

evidence on the relation between the organizational form of organized crime and housing

price inequality; Section 3 describes the dataset, the territory under examination and the

variables we use; Section 4 presents the results of the empirical analysis; Section 5 contains

concluding remarks.
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2 Organized Crime and Housing Prices Dispersion:

Some Evidence

Following the definition of EUROPOL (2013), we define Camorra as a horizontal crime

organization, different from, e.g., the Sicilian Mafia and the Calabria’s ’Ndrangheta which

have a vertical, hierarchical organization. In particular, Camorra clans are more fragmented

in structure with many of the typical features of gangsterism (a phenomenon present in

many different countries such as USA and Brazil) especially in the Naples’ metropolitan

area (Sciarrone, 2014). This is in line with the analysis of Catino (2014) of coordination

within criminal organizations that, as we noted before, suggests that having an horizontal

organization such as the Camorra, implies a high number of homicides and a low number of

“excellent” ones.

Fig. 1 reports the values of per-capita Mafia homicides1 of the two Southern regions

where criminal organizations are rampant (i.e. Campania and Sicily), and of their main

provinces (i.e. where the Regional capitals are located). We see that Naples in the recent

period experienced more homicides than Palermo. This suggests that even within the

subgroup of regions or cities controlled by organized crime, the uncertain control of the

territory makes it much unsafer.

1Murders committed by Mafias reported by the police forces to the judicial authority (Omicidi per motivi
di mafia or camorra) from ISTAT - Statistiche giudiziali e penali, various years
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Figure 1: Mafia homicides for 100k persons

In Figg. 2 and 3 we compare the variance of housing prices (minimum and maximum)

across administrative districts for each Italian provincial capital to the average variance

across provincial capitals of the three regions characterized by the strong presence of

Organized Crime, and to the two distinct sub-groups of cities where the predominant

organization has a “vertical” or an “horizontal” structure for the year of last census that is

2011.2

2Table A1 in Appendix A reports the type of organization characterizing provincial capitals based on the
EUROPOL (2013) classification. Data on house prices derive from Osservatorio del Mercato Immobiliare,
described in the data section.
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Figure 2: Variance of Minimum House prices for types of OC

Figure 3: Variance of Maximum House prices for types of OC

Figg. 2 and 3 clearly shows that the dispersion of housing prices is much higher in cities

where organized crime is strong and, in particular, where it has an horizontal structure.

In a more general perspective, if we perform a variance decomposition of housing prices
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across and within Italian cities we see that the within-component of the dispersion accounts

for 45% of total housing price variance, pointing out that the within component is an

important factor of inequality among households.

In the next section we provide a more detailed econometric analysis aiming at identifying

the effects of mafia homicides on housing price dispersion, including the spillover effects that

we expect to characterize this relationship.

3 Data for Econometric Analysis

Data on real estate prices are obtained from the Osservatorio del Mercato Immobiliare (OMI,

2017), an agency delivering half-yearly records on average maximum/minimum sale and rent

price for micro-areas of Italian cities. Due to the low number of observations, for the cross-

sectional analysis we matched micro-areas with city districts and computed the average prices

for 12 different types of real estate within every district for the period 2002h2-2016h1.3 For

the panel analysis, we consider the prices of what are defined “residential houses”.4

To investigate the relationship with Mafia violence, we do not utilize the crude number

of mafia homicides as in Section 2 but consider those that, following the insights presented

in Section 1, implied people non-affiliated with the Camorra. Data on mafia homicides are

extracted from http://www.vittimemafia.it/, a portal collecting information and news

articles on all the civilians killed by the Italian mafias from 1861 onwards. Focusing on the

3The types of real estate considered are: civil housing, cheap civil housing, luxury civil housing, garage,
industrial building, shed, laboratories, warehouses, shops, parking, offices, mansion, and villas. See Table A4
in Appendix A for descriptive statistics. Data on housing prices are available for the period 2003h1-2016h1.

4A comparison among and within cities of housing prices implies two issues: prices are nominal, but on
a single year as 2011 this is not a concern. Most importantly, Italy has a high variance across regions in the
price levels, but we do not have PPP deflators to make prices homogeneous across cities. To tackle this issue
we, to compute average housing prices, use as weight the real GDP per capita by province from Cambridge
Econometrics (2016).
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homicides of civilians not affiliated to Mafias also guarantees to exclude any causality from

mafia affiliation to the mafia murder occurrence. This selection also implies the exclusion

from the sample of all the homicides of individuals that with their activities or behavior are

determining a direct or indirect damage to the mafia organization, such as policemen and

judges. Also, individuals which are murdered after having refused to pay an extortion are

assumed to create a direct and indirect damage to the organization, so we exclude them

from the final dataset. In contrast, if a civilian is randomly shot for the initiation of a

new member to the mafia organization, this is considered as random homicide. The final

sample includes all the random homicides occurred in the period 2002h2-2016h1 in Naples

(henceforth, whenever we mention a murder utilized for the empirical analysis we refer to

this type of homicide).

In this period, the city witnessed several blood feuds between rival families, such as

the first Scampia’s feud, with at least 100 affiliated killed among ex-affiliated and loyalist

to the Di Lauro’s clan, the feud between Aprea’s and Celeste-Guarino families, and many

others. Using the press articles reporting the relevant information, we geo-localized each

event involving an innocent victim by the latitude and the longitude, and merged those

belonging to the district of occurrence, obtaining district-level number of homicides. Table 1

contains the descriptive statistics of the homicides. In particular, we computed the number

of homicides with respect to the distance from the district border to the point of homicide

occurrence. This approach is justified by the spatial linkage between a murder and the

the location where it occurred. Estate buyers, indeed, are likely to respond to murders

taking place near the estate, independently whether this happens within or outside the

administrative boundaries of the district. In this sense, the killing is not location-specific.

The distance of the district from a murder, therefore, becomes an important indicator for

the level of security of the area. This is the reason why we attempt to capture the effect of
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mafia killings at different thresholds of distance form the district.

Table 1: Summary statistics on mafia murders in the district/semester panel (2003h1-2016h1)

Variables Observations Mean Std. Dev. Min Max

Total Mafia Murders within 200m 780 0.06 0.27 0 3

Total Mafia Murders within 500m 780 0.11 0.36 0 3

Total Mafia Murders within 700m 780 0.14 0.39 0 3

Total Mafia Murders within 1000m 780 0.20 0.48 0 3

Notes: the table shows the summary statistics for total mafia murders variables in the panel of
district/semester observations.

We will perform both cross-sectional and panel econometric analyses. The set of controls

is more limited for the panel compared to the cross-sectional analysis, due both to lack of

time-varying data at district level, and to the fact that fixed effects would correlate with

time-invariant controls. The cross-sectional analysis uses the same set of controls for the

sample of Italian cities and for the case study on Naples, but in different forms. For the

national level analysis, the control variables are computed as within-city variances, while

for the case study these variables are kept at their level. This set of controls involves an

indicator of the variability of districts’ characteristics, proxied by the share of buildings in

the district built before 1950 5, as well as other indicators about the share of population

with tertiary education level, unemployment rates and housing density across city districts.6

These districts’ socio-economic characteristics are more related to the perceived quality of

life in a district in terms of services, income and labor market.

5This choice is dictated by the fact that, as a consequence of the WWII reconstruction, a large part
of Italian cities experienced a housing boom and sustained population growth after this period, which
determined an expansion of urban peripheries and the usage on large scale of cement for the new housing.

6Table A2 in Appendix A reports data sources, explanation and coverage of the data we use in this
section.
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Table 2 reports descriptive statistics of the explanatory variables employed for the case

study, including the total number of Camorra homicides occurred in a given district, and

a set of socio-demographic controls extracted from the Italian 2011 Census. The panel

analysis includes as the only control the nighttime light data from the National Oceanic and

Atmospheric Administration (NOAA), for the period 2002-2013 (Cecil et al., 2014) to proxy

for local income levels. We locally interpolate these data to generate half-yearly observations.

Table 2: Summary statistics on the cross-sectional controls

Variables Obs Mean Std. Dev. Min Max

# Mafia Murders in the District 346 0.72 1.00 0 4

Unemployment rate 346 0.10 0.02 0.05 0.14

Share of pop. with tertiary education 346 0.15 0.11 0.04 0.38

Share of historical buildings 346 0.64 0.26 0.21 0.99

Housing density (area of inhabited houses/population) 346 31.19 6.20 24.08 45.78

Notes: Cross-sectional summary statistics for the control variables. The sample is type of building/area

To test whether the key variables, housing prices and homicides, display any geographical

pattern, we use quantile spatial maps at district level to show respectively maximum

house prices of transactions, the time-averaged percentage difference between maximum and

minimum price and homicides within districts. Fig. 4 shows that there exists a clear pattern

in housing prices, with higher prices in the South-West of Naples.7 Differently, in Fig. 5

shows that the within-district average difference between minimum and maximum price do

not show a clear spatial pattern across districts.

7Considering minimum prices returns a similar map, not reported.
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Figure 4: Average maximum price for sq mt 2003-2016, civic houses

Figure 5: Average percentage difference max-min price 2003-2016, civic houses

Fig. 6 reports the average number of mafia random homicides per 100 residents, for the

period 2002-2016.
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Figure 6: Mafia homicides per 100 persons by district, 2002-2016

This number takes on the highest levels in the districts of Scampia in the Northern part

of the city, and of Stella, Montecalvario, San Lorenzo, Zona Industriale, in the Southern

part. Hence, a spatial pattern of homicides appear in which the “riskiest” neighborhoods

are clustered in two areas. The spatial distribution of random homicides is in line with the

risk map built by Dugato et al. (2017), in which the probability of a Camorra homicide in

2012 has been predicted using variables such as past homicides, intensity of drug dealing,

confiscated assets, and rivalries among groups. From these three figures we draw the following

conclusions: the spatial pattern of prices and of homicides do not seem related. In addition,

the spatial pattern of within-district price dispersion does not seem related to homicides

either. Overall, this makes very unlikely the possibility that causality runs from housing

prices to (random) homicides. Therefore, except for structural characteristics captured by

the fixed effects, we may consider the random homicides as exogenous and not expected.
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4 Empirical Model

In this section we describe our econometric strategy. We start by a simple cross-section

analysis, showing effects of indicators of Mafia on the variance of maximum and minimum

prices across Italian cities, and repeat the same exercise for the level of prices and rents across

Naples’ districts. Then, we take into account the dynamics, by a panel analysis on the case

study. Finally, we consider the asymmetric spatial dynamics of homicides the districts whehe

homicides occurred and neighboring districts, and estimate short-run and long-run effects.

4.1 Benchmark cross-sectional strategy

So, how does the presence and the actions of organized crime influence housing price

dispersion within cities? In order to answer this question we correlate a measure of housing

price dispersion, the variance of log prices across census areas, (both minimum and maximum

sale prices), to indicators of mafia presence and other controls.8 A cross-sectional approach

to study the dynamics of the variance of housing prices across Italian capital of provinces

can take the following form:

V arPricec = β0 + λMIc + αXc + µc (1)

where V arPrice denotes the within-city variance of natural log of maximum and minimum

prices for city c, β0 is the intercept, MIc may represent, respectively, the mafia index at

provincial level provided by Calderoni (2011), the number of mafia killings, or dummies

8In addition to the controls introduced in section 3, we include a variable counting the census areas (ACE)
included in each districts. ACE are sub-municipal areas with autonomous administrative function at the
date of the census. This territorial subdivision is available just for municipalities with a population greater
than 20,000 inhabitants.
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indicating the presence of an horizontal or vertical organized crime, with λ the associated

vector of coefficients. In addition, Xc is a vector of controls, discussed in Section 3 and µi is

the i.i.d. error term.

For the case study, the above specification varies to include the mafia homicides occurred

within or close to a district, taking the following form:

lnPriceij = β0 + αXi + λMKi + γEstateTypeij + µi (2)

where lnPriceij is the natural log of time-averaged maximum and minimum nominal sale

price9 of real estate of type j in district i, EstateTypeij denotes a set of dummies on the

types of estate in the sample, MK refers to our measure of mafia killings occurred within the

district and within a pre-determined threshold of distance (200m, 500m, 700m, 1000m) from

the district’s border to the homicide location; Xi is a set of district-level controls. Finally,

µi denotes the error term, β0 the intercept, and again, α, λ, and γ are vectors of parameters

to be estimated.

Tables 3 and 4 contain the results of OLS estimations of Eq. (1). In particular, Table 3

contains the results of OLS regressions considering Mafia indicators only, while 4 contains the

results with additional controls. Table 3 shows that while all the organized crime variables

are positively related to the within-city variance of housing prices, the coefficient for the

dummy on horizontal structure appears particularly high.10

9All specifications involve the nominal sale/rent prices in combination with fixed effects and year dummies,
allowing to control for common increases due to inflation. As a robustness, the same specification has been
run using real prices and the results from all the specifications are consistent (available under request).

10A regression including both indicators of Mafia intensity, i.e. Mafia index and Mafia homicides, returns
positive coefficients for both with a lower level of significance, respectively 5% and 10%.
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Table 3: Housing price variances and OC variables

Variables Max sale (ln) Min sale (ln) Max sale (ln) Min sale (ln) Max sale (ln) Min sale (ln)

(1) (2) (3) (4) (5) (6)

Mafia index (rank) 0.002*** 0.002***

(0.00) (0.00)

Mafia homicides 0.011** 0.007**

(0.01) (0.00)

Vertical Hierarchical Org. (1=yes) 0.044* 0.039**

(0.03) (0.02)

Horizontal Hierarchical Org. (1=yes) 0.297** 0.228***

(0.11) (0.09)

Constant 0.216*** 0.154*** 0.251*** 0.183*** 0.238*** 0.171***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Obs. 100 100 99 99 100 100

R-squared 0.119 0.145 0.177 0.166 0.234 0.273

Notes: Dependent variable is variance of house prices. Bootstrapped standard errors, with 100 replications,
in parentheses. Level of significance are *p<10%; ** p<5%; *** p<1%.

In Table 4 we add to Models 5 and 6 of Table 3 the control variables on district

characteristics to check if the coefficients of interest remain significant.
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Table 4: Housing price variances, OC and control variables

Variables Max sale (ln) Min sale (ln) Max sale (ln) Min sale (ln)

(1) (2) (3) (4)

Vertical Hierarchical Org. (1=yes) 0.036 0.035 0.015 0.020

(0.03) (0.02) (0.03) (0.02)

Horizontal Hierarchical Org. (1=yes) 0.249** 0.198** 0.243** 0.194***

(0.10) (0.08) (0.11) (0.08)

Share of pop. with tertiary education 0.892** 0.519** 0.952** 0.565*

(0.36) (0.27) (0.51) (0.30)

Unemployment rate 0.321 0.172 0.202 0.097

(0.60) (0.41) (0.78) (0.41)

Housing density (area of inhabited houses/population) 0.010 0.003

(0.10) (0.07)

Share of historical building 1.114* 0.748

(0.68) (0.41)

Constant 0.179*** 0.135*** 0.176*** 0.132***

(0.02) (0.01) (0.02) (0.01)

Census Areas Yes Yes Yes Yes

Obs. 100 100 100 100

R-squared 0.376 0.390 0.403 0.414

Notes: Dependent variable is variance of house prices, computed across city districts. Bootstrapped standard
errors, with 100 replications, in parentheses. Level of significance are *p<10%; ** p<5%; *** p<1%.

These regressions show that the strong positive correlation between the dummy for

organized crime’s horizontal structure and housing price dispersion is robust. Among the

other explanatory variables, variance in districts’ education and in the quality of houses

seems to play a role, as expected. In particular the variance of education within city may

has an important relationship with inequality as showed for example by Berry and Glaeser

(2005) and Glaeser et al. (2009).

Turning to the district-level results for the city of Naples, Table 5 presents the estimates
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of the cross-sectional specification, where the total number of mafia killings denotes the sum

of all the mafia killings occurred within 200m from the district during the period 2002h2-

2016h1.

Table 5: Cross-sectional investigation on the effect of the number of mafia killings within

the district on real estate prices

Variables Max Sale (log) Min Sale (log) Max Rent (log) Min Rent (log)

(1) (2) (3) (4)

# mafia murders within 200m -0.016** -0.016*** -0.021*** -0.021***

(0.01) (0.01) (0.01) (0.01)

Share of pop. with tertiary education 3.595*** 3.615*** 3.572*** 3.558***

(0.50) (0.53) (0.51) (0.51)

Unemployment rate -8.768*** -8.699*** -9.413*** -9.249***

(1.23) (1.38) (1.64) (1.47)

Housing density (area of inhabited houses/population) -0.051*** -0.051*** -0.052*** -0.052***

(0.01) (0.01) (0.01) (0.01)

Share of historical building 0.337*** 0.331*** 0.425*** 0.414***

(0.06) (0.05) (0.06) (0.06)

Estate Type Dummies Yes Yes Yes Yes

Number of Districts 30 30 30 30

Number of Estates’ types 12 12 12 12

Observations 346 346 346 346

R-squared 0.911 0.918 0.894 0.899

Notes: the table reports estimates obtained from an OLS regression on a cross-sectional samples of estate
types district observations. The estates in the sample are civil housing, cheap civil housing, luxury civil
housing, garage, industrial building, shed, laboratories, warehouses, shops, parking, offices, mansion, and
villas. The dependent variables are the natural log of the maximum sale price (column 1), the natural log
of the minimum sale price (column 2); the natural log of the maximum rent price (column 3); the natural
log of the minimum rent price (column 4). All specifications control for the total number of mafia killings
committed within 200m from the district, the share of population with tertiary education, the unemployment
rate, housing density and the share of buildings edified before 1950s. Bootstrapped standard errors, with
100 replications, in parentheses. Level of significance are *p<10%; ** p<5%; *** p<1%.

An increase in one mafia killings is associated to a decrease by more than 1.7 percent
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in the maximum sale prices of the estate.11 This impact is consistent when the dependent

variable is the minimum sale price. The estimates are robust to the inclusion of Estate

types dummies, which are likely to capture cross-sectional differences in prices between

the estate types. The coefficients of the control variables take on the expected signs and

magnitudes: the unemployment rate negatively correlates with house prices, the coefficient

of the population with tertiary education is positive and significant, an increase in housing

density is negatively associated to the price.

Two mechanisms can explain this finding. First, higher competition from higher

population densities in given districts may be pushing up the prices compared to zones less

densely populated. Secondly, this coefficient may derive from the well-known non-linearity

in prices per square meters for large holdings. According to this interpretation, districts with

larger estates may observe lower maximum and minimum prices compared to districts with

smaller estates, keeping everything else equal. Finally, the number of historical buildings, a

proxy to capture closeness to city-centers, correlates positively with prices.

Table 6 shows the results obtained when the threshold distance of the mafia homicides

variable increases.

11Given the low number of observations, these results are presented at real-estate level, assuming that
the prices for different estates within the same districts are highly correlated. However, when restricting to
the sample of housing the results remain consistent for homicides occurring within 200-500-700-1000 meters
from the districts’ border (available upon request).
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Table 6: Cross-sectional investigation on the effect of the number of mafia killings at

different distances on real estate prices
Variables Max Sale (log) Max Sale (log) Maxi Sale (log)

(1) (2) (3)

# mafia murders within 500m -0.017***

(0.000)

# mafia murders within 700m -0.017***

(0.000)

# mafia murders within 1000m -0.013***

(0.000)

Share of pop. with tertiary education 3.542*** 3.649*** 3.528***

(0.55) (0.57) (0.47)

Unemployment rate -8.309*** -8.162*** -8.771***

(1.56) (1.55) (1.44)

Housing density (area of inhabited houses/population) -0.049*** -0.051*** -0.050***

(0.01) (0.01) (0.01)

Share of historical building 0.381*** 0.398*** 0.381***

(0.06) (0.06) (0.05)

Estates Dummies Yes Yes Yes

Number of Districts 30 30 30

Number of Estates 12 12 12

Observations 346 346 346

R-squared 0.91 0.91 0.91

Notes: the table reports estimates obtained from an OLS regression on a cross-sectional samples of estate
types district observations. The estates in the sample are civil housing, cheap civil housing, luxury civil
housing, garage, industrial building, shed, laboratories, warehouses, shops, parking, offices, mansion and
terraced house. The dependent variables is the natural log of the maximum sale price (column 1-4). All
specifications control for the unemployment rate, share of population with tertiary education, share of
historical buildings and housing density. The explanatory variable of interest is the total number of mafia
killings committed within 500m (column 1); 700m (column 2); 1000m (column 3) from the district border.
Bootstrapped standard errors, with 100 replications, in parentheses. Level of significance are *p¡10%; **
p¡5%; *** p¡1%.

Table 6 presents only the estimates on the maximum sale price, but the result is

consistent also for the minimum sale price. An additional mafia killing in a district is
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associated to a decrease in maximum sale prices by -1.7 percent. This effect remains

significant, but decreases in magnitude, when the threshold increase up to 1000m, where

the point estimates is equal to -1.3 percent. The value of the coefficient decreases with

the distance but remains significant. This result allows to derive two implications: first,

the transactions in a district are influenced by the occurrence of murders outside the

administrative boundary, but this effect is decreasing in the distance from the event.

Individuals, therefore, likely discount for this distance when concluding an estate transaction.

As we will see later, this implies that effects on price dynamics within a district are quite

different by those on price dynamics within the city.

4.2 Extension to a panel approach

The cross-sectional approach works if the murders are randomly distributed across the

districts, or if the presence of omitted-variable bias can be excluded. In case of omitted-

variable bias, or selection bias in homicide occurrence, e.g. the homicides are more likely

in districts under the control of the criminal organization, the estimated parameters will

overstate the impact of mafia homicides on estate prices. This may occur because mafia

homicides can be correlated with other estate and district characteristics, such as low access

to infrastructure, poor supply of public goods, low quality in the governance, etc. Since

these dimensions are strong determinants of prices, failure of controlling for these will bias

upwards the coefficients.

As second complication, using a cross-sectional approach it is not possible to determine

whether the decrease in price has preceded or followed the mafia homicide. An alternative

explanation to the cross-sectional findings could be that a district has observed a strong

decrease in house prices caused, for example, by the economic crisis, and this has determined
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a growth in the illegal mafia-related activities, including murders.12

Data on murders we collected, however, include the latitude, the longitude and the

exact date of the event, making possible an identification strategy that exploits both space

and time variation. This framework considers the murder as an external shock affecting

individual preferences for at least one period, and the panel structure allows capturing the

change in prices after the shock. This approach is more efficient and less affected by omitted

variable bias, as it controls for a set of time invariant district unobserved characteristics,

such as local geographical, institutional, and cultural features. The specification includes

also time period dummies capturing, for example, the effect of common shocks in all the

zones, such as an increase in the state budget allocated for the law enforcement agencies

controlling the territory, or the impact of 2008 economic crisis. The effect on the prices of

the occurrence of one or more murders in a district is better identified by the addition of

the lagged value of the prices at time t-1. In a first step, we estimate this equation using by

OLS with fixed effects, as follows:

lnPriceijt = β0 + δlnPriceijt−1 + λMKit−1 + φDistrictEstateij + ψTt + αXit−1 + µit (3)

where lnPriceijt−1 is the lagged natural log of the average price of the estate j in district i;

MK is a variable capturing the number of murders at time t−1 within a given distance from

the district; DistrictEstate are a fixed effects specific for the panel observation; T is a set of

time dummies (half-year), µ is an error term clustered at district-estate level. The matrix X

contains the lag of the districts’ nighttime lights,13 a proxy for local economic development,

12Figure AB1 in Appendix A reports the pattern of district level housing price variance in Naples. We see
how the such variance, normalized at 1 in the initial year, is decreasing at the onset of the crisis, showing a
tendency to return to its initial level at the end of the period.

13The results are consistent when considering the contemporaneous measure of nighttime lights (results
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interpolated half-yearly. We take the lag of this variable to reduce any reverse causality in

the estimation. Finally, µ is the error term.

As pointed out by Nickell (1981), the estimation of this model with fixed effects

may generate inconsistent estimates when the number of panel observations increases. To

strengthen our results, we restrict the analysis on few types of housing (classified as civilian,

cheap, and luxury houses), and estimate the above equation using the Arellano-Bond GMM

estimation. This approach takes first differences of the time-varying variables, a procedure

that cancels out the unobserved fixed effect. To maintain the number of instruments

lower than the number of groups, the coefficients are estimated using the second lag of

the explanatory variables as instrument, and substituting the year fixed effects with a

trend variable. As alternative specifications, we also estimate the Arellano-Blundell level

specification, and the bias-corrected LSDV dynamic panel data model (Bruno, 2005).

Table 7 displays the results of the OLS-fixed effect regression.

available upon request).
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Table 7: Effect of the number of killings on a panel of housing prices by districts estimated

by OLS with Fixed Effects (2002h2-2016h1)

Variables Max Sale (log) Min Sale (log) Max Rent (log) Min Rent (log)

(1) (2) (3) (4)

# mafia murders within 200m (lag) -0.025*** -0.026*** -0.028*** -0.029***

(0.01) (0.01) (0.01) (0.01)

Max sale price (log, lag) 0.800***

(0.01)

Min sale price (log, lag) 0.796***

(0.01)

Max rent price (log, lag) 0.786***

(0.01)

Min rent price (log, lag) 0.780***

(0.01)

Nightlights index (lag) 0.002** 0.002** 0.003*** 0.004***

(0.001) (0.001) (0.001) (0.001)

District-Estate FE Yes Yes Yes Yes

Time Dummies Yes Yes Yes Yes

Districts 30 30 30 30

Observations 2257 2257 2257 2257

R-squared 0.84 0.84 0.88 0.88

Notes: the table reports estimates obtained from an OLS with District/Estate Fixed effects and Time period
dummies on a panel composed by estate type, district, semester. The estates in the sample are civil housing,
cheap civil housing, luxury civil housing. The dependent variables are the natural log of the maximum sale
price (column 1), the natural log of the minimum sale price (column 2); the natural log of the maximum rent
price (column 3); the natural log of the minimum rent price (column 4). All the specifications control for
the total number of mafia murders, nightlight index, district-estate fixed effects, and time dummies. Robust
standard errors in parentheses. Level of significance are *p<10%; ** p<5%; *** p<1%.

According to our estimates, an additional mafia homicide at time t−1 leads to a variation
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of the maximum/minimum price of estate sale of about -2.5%.14 The estimated coefficient is

significant across al specifications, and supports the hypothesis that the fear of crime reduces

the individual willingness to pay (Pope, 2008; Bayer et al., 2016). This coefficient is lower

in magnitude than the one in Table 6, with an average difference of about 5.2%, indicating

that the unobserved characteristics, such as average housing or district’s level institutional

quality, are likely to bias upwards the cross-sectional estimates, as predicted.

The above finding is consistent when accounting for the killings at different threshold of

distance from the neighborhood. Table 8 report the results.

14Table A5 in Appendix A shows that the results are robust when focusing we extend the analysis to a
larger number of estate types.
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Table 8: Mafia killings at different thresholds and real estate prices an OLS with Fixed

Effect (2002h2-2016h1)
Variables Max Sale (log) Min Sale (log) Max Rent (log) Min Rent (log) Max Sale (log) Min Sale (log) Max Rent (log) Min Rent (log)

(1) (2) (3) (4) (5) (6) (7) (8)

# mafia murders within 700m (lag) -0.013*** -0.012*** -0.015*** -0.015***

(0.002) (0.002) (0.003) (0.003)

# mafia murders within 1000m (lag) -0.012*** -0.011*** -0.011*** -0.013***

(0.002) (0.002) (0.003) (0.003)

Max sale price (log, lag) 0.802*** 0.803***

(0.010) (0.010)

Min sale price (log, lag) 0.798*** 0.798***

(0.006) (0.006)

Max Rent price (log, lag) 0.787*** 0.788***

(0.006) (0.006)

Min Rent price (log, lag) 0.781*** 0.782***

(0.010) (0.010)

Nightlights index (lag) 0.002** 0.002*** 0.003*** 0.004*** 0.002** 0.002** 0.003** 0.004***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

District-Estate Fixed Effects Y Y Y Y Y Y Y Y

Time dummies Y Y Y Y Y Y Y Y

Observations 2257 2257 2257 2257 2257 2257 2257 2257

R-squared 0.84 0.83 0.88 0.88 0.84 0.83 0.88 0.88

Number of Groups (District x Estates) 103 103 103 103 103 103 103 103

Notes: the table reports estimates obtained from an OLS with District/Estate Fixed effects and Time period
dummies on a panel composed by estate type, district, semester. The estates in the sample are civil housing,
cheap civil housing, luxury civil housing. The dependent variables are the natural log of the maximum sale
price (column 1-4). All the specifications control for the total number of mafia murders, nightlight index,
district-estate fixed effects, and time dummies. Robust standard errors in parentheses. Level of significance
are *p<10%; ** p<5%; *** p<1%.

The estimated coefficient decreases in absolute value when moving from 200 mt. to 700

mt. and 1000 mt., but remains negative and significant, suggesting that the captured effect

is decaying with the distance from the homicides. All the specifications reports that the

coefficient of the level of nightlight is still positive and significant.15.

We now turn to the the estimation of Eq. (3) as a dynamic panel. Results are reported

in Table 9. As it is possible to notice, the coefficient on the number of murders is negative

15The results, available upon request, remain consistent when focusing on a larger number of estate types.

26



and significant for all specifications. The estimated coefficient suggest an impact of an

additional homicide equal to about -2.6% and -3.8% of the housing price. The bottom part

of the table shows the result of the tests on the model, whose results suggest the absence

of over-identification when the instrument are collapsed in a vector (columns 1-2), and of

second-order correlation. 16

16To collapse the instrument in a vector we used the command xtabond2 in Stata. The estimated
coefficients are consistent when considering homicides committed at a distance of 500, 700 and 1000 meters
(results available upon request)
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Table 9: Mafia homicides and housing prices in a dynamic panel framework (2003h1-2016h1)

Variables Max Sale (log) Min Sale (log) Max Sale (log) Min Sale (log) Max Sale (log) Min Sale (log)

(1) (2) (3) (4) (5) (6)

# mafia murders within 200m (lag) -0.033*** -0.033*** -0.038*** -0.038*** -0.026*** -0.027***

(0.012) (0.012) (0.008) (0.008) (0.005) (0.005)

Max sale price (log, lag) 0.907*** 0.940*** 0.923***

(0.026) (0.000) (0.011)

Min sale price (log, lag) 0.953*** 0.946*** 0.869***

(0.024) (0.000) (0.011)

Nightlights index (lag) 0.000 0.001 -0.002*** -0.002*** 0.001 0.000

(0.002) (0.002) (0.000) (0.000) (0.001) (0.001)

Time Trend -0.002*** -0.002*** -0.003*** -0.003*** -0.003*** -0.003***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AR(1) Pr > z 0.000 0.000 0.000 0.000 - -

AR(2) Pr > z 0.989 0.853 0.935 0.945 - -

Hansen/Sargan Over-Id test Pr > z 0.15 0.13 0.505 0.479 - -

Dynamic Model Arellano-Bond Arellano-Bond Blundell Blundell Kiviet Kiviet

Observations 2257 2257 2257 2257 2257 2257

Number of groups 103 103 103 103 103 103

Notes: the table reports estimates obtained from an first-difference GMM Arellano-bond on the house prices
panel sub-sample. The estates in the sample are civil housing, cheap civil housing, luxury civil housing. The
dependent variables are the natural log of the maximum sale price (column 1), the natural log of the minimum
sale price (column 2); the natural log of the maximum rent price (column 3); the natural log of the minimum
rent price (column 4). The instrument are limited to one lag to keep the number of instrument lower than
the number of groups. All specifications control for the total number of mafia murders within 200m from
the district (lag), nightlight index (lag), and the lag of the dependent variable. Only the first lag is added
as instrument. Robust standard errors in parentheses. Results remain significant when controlling for the
economics crisis using a dummy assuming value 1 for the period 2008h1-2013h2. Level of significance are
*p<10%; ** p<5%; *** p<1%.

To sum up, in this section we showed that the Camorra homicides negatively impact on

house prices levels in presence of fixed effects and with GMM. Our next point is that these

murders might create a wedge in prices between districts depending on the location of the

murders: as they reduces prices in a district affected by the murder, they should increase it

in districts not (or less) affected by them. However, such effect cannot be estimated by the
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empirical approaches used so far. In the next section we resort to the estimation of spatial

models, to test whether our hypothesis is supported by the data.

4.3 Spatial dynamics in the effect of murders on housing prices

While previous section highlighted the negative effects of Mafia murders in the district or

nearby on district’s housing prices, evidence presented in Section 2 suggested a more general

effects of organized crime violence on within-city housing price dispersion. In addition,

we highlighted that the negative effect of murders decays with distance: murders occurred

far away from a district have a smaller impact on district’s housing prices. This suggests

heterogeneous dynamics of these effects across the city, as in Bayer et al. (2016), showing

that people are willing to pay to live in safer neighborhoods. In this section we perform

a spatial analysis of the effects of mafia murders on prices, aimed at identifying spillover

effects, if any.

Just to gain some preliminary intuition we show the overall effects of homicides on

the price house variance for the city of Naples. That is, for every half-year we compute

the variance of housing prices and the variance of homicides across the Naples’ districts,

and examine their correlation across the period of observation. Table 10 shows that the

coefficient of the variance of murders is positive with respect to the cross-district variance of

house prices, and decreases with the distance of murders from the district.17

17To have a proxy of district amenities we keep the index of nightlight in the regressions.

29



Table 10: Housing price variances and Mafia murders

(1) (2) (3) (4) (5) (6)

Variance Mafia murders 0.016** 0.017**

(0.008)

Variance Mafia murders 200 mt 0.006*** 0.006**

(0.002) (0.003)

Variance Mafia murders 1000 mt 0.002** 0.003**

(0.001) (0.001)

Variance Nightlight 0.003* 0.003* 0.003***

(0.002) (0.002) (0.001)

Constant 0.137*** 0.141*** 0.138*** 0.109*** 0.113*** 0.109***

(0.010) (0.009) (0.010) (0.013) (0.015) (0.01)

Obs. 26 26 26 26 26 26

R-squared 0.18 0.16 0.15 0.33 0.30 0.30

Notes: Dependent variable is variance of house prices. Bootstrapped standard errors, with 100 replications,
in parentheses. Levels of significance are *p<10%; ** p<5%; *** p<1%.

From an econometric point of view, despite the strategy in Eq. (3) is able to reduce the

bias caused by multiple unobserved time-invariant co-founders, there can be still concerns

about biases in the coefficients. For example, in case of spatial correlation in the explanatory

variables, the estimation will yield biased coefficients.18 Another possibility is that murders

may have an heterogeneous spatial effect when interacting with individual preferences. The

purchase or the rent of a house, undeniably, is driven by a set of local determinants, such as

the distance from working place, the level of public goods locally available, the distance from

other relatives or friends, etc. These determinants are not varying with the occurrence of a

murder and play the role of geographical constraints for the individual choice about where to

18A general presentation of the spatial diffusion impacts of crime is in Anselin et al. (2000).
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reside. We hypothesize, therefore, that when a mafia killing occurs in a district, the demand

for real estate in that district decreases, but the one for real estate in a close neighborhood

increases. According to this interpretation, we expect that a murder happening in a district

or close to it will decrease the average price of the estates sold in that district, but will

increase the housing prices in the other districts, where the demand for houses is diverted.

To account for this and other spatial effects, we focus only on the prices of housing

estates at district level and assume a framework similar to the general dynamic Cliff-Ord

model, as follows:

lnPricei,t = τ lnPricei,t−1 + ρWtlnPricei,t + ψWt−1lnPricei,t−1 + βXi,t + γWtXi,t + υit (4)

where:

υit = λWt−1 + ε, (5)

and X containing nightlight and mafia murders.

The generality of this approach allows to test different hypotheses on spatial dependence,

obtained by setting at zeros part of the coefficients in the model. The first specification

consists in a Spatial Autoregressive model (SAR). This model derives from a Cliff-Ord model

when ρ 6= 0, ψ 6= 0, γ = 0 λ = 0. The second specification implies a Spatial Error Model

(SEM), obtained by setting ρ = 0, ψ = 0, γ = 0, λ 6= 0. Finally, the third specification

considers a Spatial Durbin Model (SDM), where ρ 6= 0, ψ 6= 0, γ 6= 0 and λ = 0.

Given we have a large degree on freedom in interpretating which kind of spatial

dependence matters, first of all we estimate all these alternative models on a static reduced

form of Eq. (4) where we use first differences of prices to eliminate dynamic issues. Then,

after we detected the main channel of spatial influence on prices, we estimate the full model

with this proper space-time dynamics. Therefore, in the case of SDM we estimate for
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instance:

4lnPriceijt = ρWtlnPricei,t + βXi,t + γWtXi,t + υit (6)

Results are obtained using a spatial contiguity matrix constructed using a minimum

threshold truncated approach, which treats districts as neighbors if they are within a distance

that allows each district to have at least one neighbor.19 Table 11 reports these SEM

estimates in columns 1 and 4, showing a negative significant effect of murders on prices

across all the specifications considered. The impact of a murder decreases in magnitude but

remains consistent and significant across all the specifications. The magnitude varies from

-2.9% when considering the murders occurring within 200 meters, to -1.9% for the murders

occurred within 1000 meters.20

Using the SAR and SDM model it is possible to compute the long-run direct, indirect,

and total effect of a murder, as reported in the bottom part of Table 11. The direct effect

denotes the impact of the murder in the district of occurrence, while the indirect effect

measures the impact on the neighboring districts. While the direct effect of a murder is

again negative and significant, the same murder appears to have a positive impact (+1%) on

the prices of the neighboring districts. Taken together, these effect may be pointing toward

a process of higher price wedge among the areas where murders occur and do not occur.

This effect, however, is captured only by the SAR model, meaning that the effect of murders

of other neighbors are transmitted indirectly to house prices, through price dynamics (see

effects in 7 and 8 below).

The total effect, however, remains negative and significant, suggesting an overall decline

of prices due to this criminal activity. The coefficient associated to the control variables

19We estimated the model using Stata xsmle routine.
20Consider, for example, that the average district area is about 4 km2, thus the linear distance from the

centroid of two squared districts would be at least 2 km.
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Table 11: Mafia homicides and real estate prices in a spatial framework
Variables Max Sale (FD) Max Sale (FD) Max Sale (FD) Max Sale (FD) Max Sale (FD) Max Sale (FD)

(SEM) (SAR) (SDM) (SEM) (SAR) (SDM)
# mafia murders within 200m (lag) -0.029** -0.028** -0.028**

(0.012) (0.012) (0.012)
# mafia murders within 1000m (lag) -.019*** -0.018** -0.019***

(0.007) (0.007) (0.007)
Nightlights index (lag) 0.005* 0.005* 0.005* 0.005* 0.005* 0.005*

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
γX
# mafia murders within 200m (lag) -.065

.007
# mafia murders within 1000m (lag) -.011 -.035

.019 .052
Nightlights index (lag) -.001

.021
Spatial
ρ̂ -0.569*** -0.601*** -0.558*** -0.565***

(0.155) (0.155) (0.155) (0.155)

λ̂ -0.573*** -0.550***
(0.154) (0.154)

Spatial effect (long run)
Direct
# mafia murders within 200m (lag) -0.027** -0.025**
# mafia murders within 1000m (lag) -0.018** -0.018**
Nightlights index (lag) 0.005* 0.005*** 0.005* 0.005*
Indirect
# mafia murders within 200m (lag) 0.010** -0.066
# mafia murders within 1000m (lag) 0.006** 0.032
Nightlights index (lag) -0.002 -0.003 -0.002 0.120
Total
# mafia murders within 200m (lag) -0.018** -0.091*
# mafia murders within 1000m (lag) -0.012** 0.033
Nightlights index (lag) 0.003* 0.002 0.003* 0.014

Notes: the table reports estimates obtained from Spatial Arellano-bond panel model on the house prices
panel sample. The dependent variables are the natural log of the maximum sale price (column 1), the natural
log of the minimum sale price (column 2). All specifications control for the total number of mafia murders
within the district (lag) and its spatial lag, nightlight index (lag) and its spatial lag, the lag of the dependent
variable. Robust standard errors in parentheses. Level of significance are *p<10%; ** p<5%; *** p<1%.
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reports the expected signs and magnitude. Nightlight positively correlates with increases

in price (+0.005%) of the same district and negatively correlates with the prices of the

neighborhood, denoting competition between neighboring districts in the housing market

prices.

Finally, since prices are likely to depend substantially on their lagged realization, we

extend the model in Table 11 to a spatial dynamic framework by adding the lag of the

house prices into the specification. Table 12 reports the output of this empirical exercise for

the SAR model. Adding the lagged price does not impact substantially on the magnitude

and the statistical significance of the coefficients of the mafia murders. The occurrence of a

murder is still associated to a reduction in price of about -2.4% for the murders occurring in

a radius of 200 meters, while its effect decreases to -1.4% for murders within 1000 meters.

The dynamic nature of the model also allows comparing the short-run and long-run

effect of mafia homicides on housing prices. The short run effect is simply the derivative of

the X variable of interest on the Y (for instance MK), taking into account the spatial lag

that is equivalent to OLS estimation, premultiplied by the Leontief inverse of the reduced

collected spatial and non-spatial coefficients (Arbia et al., 2010):

∂yi,t
∂XMK

i,t

= (In − ρWt)
−1[βMK

i,t In] (7)

The long-run coefficients are obtained by setting y=y* in the steady state. In the case

of SAR (i.e. with γ = 0, λ = 0) they take on a form such as:

∂yi,t
∂XMK

i,t

= ((1− τ)In − (ρ+ ψ)Wt)
−1 [βMK

i,t In] (8)

The bottom panel of Table 12 shows the results. The direct effect is negative and
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Table 12: Mafia killings and real estate prices in a spatial framework
Variables Max Sale (log) Min Sale (log) Max Sale (log) Min Sale (log)

(SAR) (SAR) (SAR) (SAR)
Max Sale (log, lag) 0.719*** 0.719***

(0.024) (0.024)
Min Sale (log, lag) 0.723*** 0.723***

(0.024) (0.024)
# mafia murders within 200m (lag) -0.024** -0.024**

(0.011) (0.011)
# mafia murders within 1000m (lag) -0.015** -0.015**

(.006) (.006)
Nightlights index (lag) 0.002 0.002 0.002 0.002

(0.003) (0.003) (0.003) (0.003)
ρ̂ -0.808*** -0.808*** -0.822*** -0.823***

(0.146) (0.147) (0.147) (0.146)
Spatial effect (short run)
Direct— # mafia murders within 200m and 1000m (lag) -0.025** -0.026** -0.015** -0.015**
Direct— Nightlights index (lag) 0.002 0.002 0.002 0.002
Indirect— # mafia murders within 200m and 1000m (lag) 0.011** 0.012** 0.007** 0.007**
Indirect—— Nightlights index (lag) -0.001 -0.001 -0.001 -0.001
Total— # mafia murders within 200m and 1000m (lag) -0.014** -0.014** -0.008** -0.008**
Total— Nightlights index (lag) 0.001 0.001 0.001 0.001
Spatial effect (long run)
Direct— # mafia murders within 200m (lag) -0.112** -0.112** -0.070** -0.070**
Direct— Nightlights index (lag) 0.009 0.008 0.009 0.009
Indirect— # mafia murders within 200m (lag) 0.085** 0.088** 0.056** 0.056**
Indirect—— Nightlights index (lag) -0.007 -0.007 -0.007 -0.007
Total— # mafia murders within 200m (lag) -0.023** -0.023** -0.014** -0.014**
Total— Nightlights index (lag) 0.002 0.002 0.002 0.002

significant both for the short and for the long run, whereas the estimated indirect effect

appear again positive and significant. Interestingly enough, the short-run magnitude is

much lower than the long-run impact, suggesting a mechanism of opposite price dynamics

of districts, when more homicides occur in a short or medium period.

5 Concluding remarks

This paper analyzed the effect of “random” mafia homicides on housing prices in the city of

Naples for the period 2003-2016. Naples represents an interesting case study for the pervasive

presence of the Italian criminal organization called Camorra, characterized by an horizontal

organization, that literature has identified as a crucial determinant for the high number of
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murders registered where such organizations are present.

Motivated by the finding of a positive relationship the characteristic of having an

horizontal organization and the dispersion of housing prices, we performed an econometric

analysis which showed that a random homicide reduces house prices in the district in a range

of 2% and 4%.

While the fact that crime episodes as homicides reduce housing price is not new in the

empirical we identify a more general effect on price inequality within the city.

In a spatial GMM estimation we find evidence of second order positive effects on the

neighboring districts, so that the global effect consists in an increase in the spread in prices

among districts more and less affected by mafia homicides. Therefore, this paper brings

evidence of the impact of organized crime on inequality at city level, operating through

housing prices. As Borri and Reichlin (2017) suggest, this imply other economic outcomes, as

city average income (Glaeser et al., 2009). Moreover, in the long run housing price inequality,

by affecting income inequality (Weil, 2015) can influence long-run income inequality, through

segregation (Durlauf, 1996).

As remarked by Glaeser and Gottlieb (2009, pag. 43) within-city dispersion of housing

prices may be a dimension of inequality that takes into account space much better than the

within-country one: “failure to think fully about space will tend to make within-country

inequality estimates overstate the level of real income inequality”.
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A Other Tables and Figures

Table A1 contains the values of an indicator of Mafia presence (Calderoni, 2011) for the

provincial capitals of Campania, Calabria and Sicily, the type of criminal organization

operating in their territories and the classification (horizontal/vertical) of the dominant

criminal organization from (EUROPOL, 2013).
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Table A1: Mafia types by organization model

Province Mafia index (rank) Region OC Type of OC

Reggio Calabria 98.32 Calabria ’Ndrangheta VC

Napoli 87.03 Campania Camorra HC

Caserta 84.73 Campania Camorra HC

Palermo 83.22 Sicilia Sicilian Mafia VC

Catania 82.5 Sicilia Sicilian Mafia VC

Crotone 81.22 Calabria ’Ndrangheta VC

Trapani 77.86 Sicilia Sicilian Mafia VC

Catanzaro 76.97 Calabria ’Ndrangheta VC

Vibo Valentia 74.13 Calabria ’Ndrangheta VC

Agrigento 71.75 Sicilia Sicilian Mafia VC

Ragusa 61.82 Sicilia Sicilian Mafia VC

Messina 60.82 Sicilia Sicilian Mafia VC

Enna 57.74 Sicilia Sicilian Mafia VC

Salerno 57.65 Campania Camorra HC

Bari 55.72 Apulia Camorra Barese HC

Siracusa 50.71 Sicilia Sicilian Mafia VC

Lecce 48.76 Apulia Sacra Corona Unita VC

Brindisi 47.11 Apulia Sacra Corona Unita VC

Avellino 46.29 Campania Camorra HC

Cosenza 44.1 Calabria ’Ndrangheta VC

Foggia 36.64 Apulia Societ Foggiana VC

Notes: Mafia Index from (Calderoni, 2011), OC and Type of OC from (EUROPOL, 2013).
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Table A2: Variables definition and sources
Variables Source

Murder committed by Mafia reported by the police forces to the

Homicide Mafia judicial authority (2011) - ISTAT (Statistiche giudiziali e penali

- omicidi per motivi di mafia, camorra o ’ndrangheta)

Calderoni F. (2011), ”Where is the mafia in Italy?

Mafia index (rank) Measuring the presence of the mafia across Italian provinces”

Calderoni F. (2011), Global Crime Vol. 12, Iss. 1, 2011

Real GDP Cambridge econometrics (2015)

Percentage of people aged 25-64 with tertiary education level

Share of population with tertiary education Population and housing census 2011 (ISTAT) - LOD

downloadable http://datiopen.istat.it/datasetCOM.php#

Population and housing census 2011 (ISTAT) - LOD

Unemployment rate downloadable http://datiopen.istat.it/datasetCOM.php#

Historical and residential buildings - Population and housing

Share historical buildings census 2011 (ISTAT) - The Linked Open Data (LOD) -

downloadable http://datiopen.istat.it/datasetCOM.php#

Housing density - Population and housing

Housing area and population density and housing census 2011 (ISTAT) - The Linked Open Data (LOD)

- downloadable http://datiopen.istat.it/datasetCOM.php#

The natural log of the maximum sale price

Max Sale (ln) OMI (2017) - Osservatorio del Mercato Immobiliare.

The natural log of the minimum sale price

Min Sale (ln) OMI (2017) - Osservatorio del Mercato Immobiliare.
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Table A3: Summary statistics on the share of observations observing at least 1 mafia murder

in the district/semester panel (2003h1-2016h1)

Variables Observations Mean Std. Dev. Min Max

Mafia Murders in the district (1=yes) 780 0.03 0.18 0 1

Mafia Murders within 100m (1=yes) 780 0.05 0.21 0 1

Mafia Murders within 200m (1=yes) 780 0.06 0.23 0 1

Mafia Murders within 500m (1=yes) 780 0.1 0.30 0 1

Mafia Murders within 700m (1=yes) 780 0.12 0.33 0 1

Mafia Murders within 1000m (1=yes) 780 0.17 0.37 0 1

Notes: the table displays the summary statistics for dummies on the occurrence of mafia murders at different
threshold in the panel of district and semester observations.

Table A4: Summary statistics for the dependent variables

Variables Max Sale Min Sale Max Rent Min Rent

(euro/m2) (euro/m2) (euro/m2) (euro/m2)

N Mean SD Mean SD Mean SD Mean SD

Civil Housings 780 3160.23 1388.77 2095.95 922.12 9.09 4.57 6.09 3.06

Cheap Housings 780 2239.29 961.32 1486.38 638.16 6.59 3.36 4.42 2.24

Luxury Housings 222 6129.57 1661.15 4065.14 1111.28 15.74 5.56 10.49 3.72

Garage 840 1744.71 897.79 1170.92 591.05 6.07 3.14 4.11 2.08

Sheds 705 852.44 232.02 477.54 127.97 3.43 1.02 2.01 0.76

Pre-Fabricated 60 1983.02 948.63 1342.67 630.33 8.56 4.49 5.83 2.99

Laboratories 831 2463.30 1225.83 1367.48 734.51 8.88 5.66 5.13 3.74

Warehouses 840 1553.97 942.31 879.76 603.67 5.82 4.73 3.44 3.13

Shops 840 4140.19 2001.23 2228.34 1090.07 16.28 9.80 8.97 5.85

Parking 765 1038.37 563.99 697.55 368.74 3.62 1.9 2.46 1.26

Offices 784 3378.87 1464.73 2246.18 970.52 11.43 5.87 7.66 3.92

Villas 586 3522.46 1979.79 2358.65 1310.02 11 6.84 7.42 4.56
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Table A5: Effect of the number of killings on a panel of real estate prices and districts using
an OLS with Fixed Effect (2002h2-2016h1)
Variables Max Sale (log) Min Sale (log) Max Rent (log) Min Rent (log)

(1) (2) (3) (4)

# mafia murders within 200m (lag) -0.023*** -0.023*** -0.027*** -0.027***
(0.004) (0.004) (0.005) (0.005)

Max sale price (log, lag) 0.894***
(0.007)

Min sale price (log, lag) 0.904***
(0.006)

Max rent price (log, lag) 0.899***
(0.006)

Min rent price (log, lag) 0.910***
(0.005)

Nightlights index (lag) 0.002** 0.003*** 0.004*** 0.005***
(0.001) (0.001) (0.001) (0.001)

District-Estate FE Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes
Districts 30 30 30 30
Observations 7673 7673 7673 7673
R-squared 0.86 0.88 0.88 0.91

Notes: t: the table reports estimates obtained from an OLS with District/Estate Fixed effects and Time
period dummies on a panel composed by estate type, district, semester. The estates in the sample are civil
housing, cheap civil housing, luxury civil housing, garage industrial building, shed, laboratories, warehouses,
shops, parkings, offices, mansion and terraced house. The dependent variables are the natural log of the
maximum sale price (column 1), the natural log of the minimum sale price (column 2); the natural log
of the maximum rent price (column 3); the natural log of the minimum rent price (column 4). All the
specifications control for the total number of mafia murders, nightlight index, district-estate fixed effects,
and time dummies. Robust standard errors in parentheses. Level of significance are *p<10%; ** p<5%; ***
p<1%.
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Table A6: Effect of the number of killings on real estate prices’ growth rate using an OLS

with Fixed Effect (2002h2-2016h1)

Variables Max Sale (growth rate) Min Sale (growth rate) Max Rent (growth rate) Min Rent (growth rate)

(1) (2) (3) (4)

# mafia murders (lag) -0.020*** -0.019*** -0.020*** -0.020***

(0.005) (0.004) (0.006) (0.005)

Max sale price (growth rate, lag) 0.004*** 0.004*** 0.006*** 0.007***

(0.001) (0.001) (0.001) (0.001)

Min sale price (growth rate, lag) -0.073***

(0.014)

Max rent price (growth rate, lag) -0.063***

(0.016)

Min rent price (growth rate, lag) -0.070***

(0.011)

Nightlights index (lag) -0.058***

(0.014)

District-Estate Fixed Effects Yes Yes Yes Yes

Time dummies Yes Yes Yes Yes

Observations 7319 7319 7319 7319

R-squared 0.14 0.08 0.27 0.22

Notes: the table reports estimates obtained from an OLS with District/Estate Fixed effects and Time
period dummies on a panel composed by estate type, district, semester. The estates in the sample are civil
housing, cheap civil housing, luxury civil housing, garage industrial building, shed, laboratories, warehouses,
shops, parkings, offices, mansion and terraced house. The dependent variables are the growth rate of the
maximum sale price (column 1), the growth rate of the minimum sale price (column 2); the growth rate
of the maximum rent price (column 3); the growth rate of the minimum rent price (column 4). All the
specifications control for the total number of mafia murders, nightlight index, district-estate fixed effects,
and time dummies. Robust standard errors in parentheses. Level of significance are *p<10%; ** p<5%; ***
p<1%.
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Figure AB1: Variance of houses prices Naples
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