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Abstract. Markov Population Models are a widespread formalism, with
applications in Systems Biology, Performance Evaluation, Ecology, and
many other fields. The associated Markov stochastic process in continu-
ous time is often analyzed by simulation, which can be costly for large
or stiff systems, particularly when simulations have to be performed in
a multi-scale model (e.g. simulating individual cells in a tissue). A strat-
egy to reduce computational load is to abstract the population model,
replacing it with a simpler stochastic model, faster to simulate. Here
we pursue this idea, building on previous work [3] and constructing an
approximate kernel for a Markov process in continuous space and dis-
crete time, capturing the evolution at fixed At time steps. This kernel
is learned automatically from simulations of the original model. Differ-
ently form [3], which relies on deep neural networks, we explore here a
Bayesian density regression approach based on Dirichlet processes, which
provides a principled way to estimate uncertainty.

Keywords: Model abstraction - Markov Population Models - Bayesian
density regression - Dirichlet processes.

1 Introduction

Stochastic models are undoubtedly one of the most powerful frameworks to de-
scribe and reason about complex systems. Due to the severe state space explosion
of these models, simulation is often the only viable tool to analyse them. Even
simulation, however, can face severe computational limits, in particular when the
systems of interest have a multi-scale nature. Consider for example a biological
scenario, in which we want to model the effect of a drug targeting individual
cells in a tissue, for instance a tumour. In order to build an accurate model of
such a system, both the dynamics at the individual cells and the one at the
tissue level have to be described and simulated. Unfortunately, tissues typically
contain millions of cells, each requiring the simulation of complex interaction
pathways [5]. This complexity defies also modern High Performance Computing
resources, and can be tackled only by simplifying the model of each individual
cell, i.e. resorting to model abstraction.

Typical approaches in this direction require a large dose of experience and in-
genuity to hand-craft a suitable abstraction. Recent alternatives rely on modern
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artificial intelligence to learn the best abstraction from a given class of models.
The more general the class, the more flexible the method, the higher the learning
cost.

Related Work Some approaches in literature try to introduce as much knowl-
edge in the abstraction as possible, thus reducing the complexity of the learning
problem. A notable example is [13], in which authors exploit knowledge about
the key drivers of bacterial chemotaxis, combining an abstract model of the dy-
namic of such drivers with a simple model with few states describing the decision
of the bacteria, i.e. whether to rotate or proceed straight. The final model is a
Continuous Time Markov Chain (CTMC) where transition rates are learned us-
ing Gaussian Process Regression from some simulations of the full model. On
the other hand of the spectrum, we find the work of Palaniappan et al. [16], in
which the authors start from a bunch of simulations of the original model, us-
ing information theoretic ideas extract a subset of relevant variables, discretize
them and then learn a dynamic Bayesian network in discrete time. The abstract
model was used for fast approximate simulation of the original model. The work
on this paper follows these lines, starting from the approach of [3], in which we
abstracted a CTMC model by discretizing time, choosing a time step At rele-
vant for the dynamics of the higher organisational scale (e.g. the time-scale of the
diffusion dynamics at the tissue level). The so obtained Discrete Time Markov
Process is defined in continuous space, approximating the exact transition ma-
trix by a transition kernel modelled as a mixture of Gaussian distributions with
means and covariances taken as functions of the current state of the model.
These functions are learned using Deep Neural Networks. Despite the method
was effective in the examples studied, it is not without drawbacks. First of all,
there is no quantification of the uncertainty in the so-learned kernel, hence no
measure of confidence on the accuracy of the abstraction. Secondly, the number
of mixture components is a hyperparameter strongly affecting the performance
of the method.

Contributions In this work, we continue the investigation started in [3], ex-
ploring the use of non-parametric Bayesian machine leaning [1] to provide a
consistent estimate of uncertainty and to self-tune kernel complexity from data.

Our idea is to work with probability distributions in the space of transition
kernels, defining a prior distribution and computing a posterior by conditioning
on observed simulation data. If we fix the current state x in the model, distri-
butions over kernels reduce to distributions over probability distributions of the
next state x’ after At units of time. To simulate the abstract model, we first need
to sample a distribution, and then sample the next state from this distribution.
Provided these sampling operations can be implemented efficiently, this could
considerably speed-up simulation. Importantly, having a distribution of distribu-
tions allows us to incorporate uncertainty in the reconstruction of the kernel and
identify initial states from which the reconstruction is more problematic. This
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information can be used to tune the accuracy of the abstraction, e.g. improve it
in areas of the state space visited more often by the process.

The technical details of this approach are non-trivial. Fortunately, the prob-
lem we want to solve has been studied in statistics and machine learning and
goes under the name of density regression [7, 6]. Borrowing from this literature,
we extend and tailor existing methods that use Dirichlet processes (essentially
distributions over probability densities) to finally obtain a posterior distribution
which is a mixture of Gaussian with a variable number of components, learned
from data. The posterior distribution cannot be computed analytically, hence
we rely on Gibbs sampling, a Monte Carlo method which has to be run only
at training time. In fact, during training we will sample from the posterior and
approximate it by its empirical distribution which permits a very fast sampling
from the transition kernel. The method is validated on few experimental case
studies, which we use to discuss potentials and limitations of this approach.

Paper structure In Section 2 we introduce some background material on
stochastic models and case studies. Section 3 is devoted to present the model
abstraction framework and formulate the learning problems, while density regres-
sion and the algorithm we use is described in detail in Section 4. Experiments
are reported in Section 5, while the final discussion is in Section 6.

2 Background

2.1 Chemical Reaction Networks

Chemical Reaction Networks (CRNs) use the formalism of chemical equations
to capture the dynamics of population models, including biological systems and
epidemic spreading scenarios. Let X1,...,X,, be a collection of m species and
M, ¢ = 1,...,m, denotes the population size of species X; present in the system
at time ¢. The dynamics of a CRN is described by a set of reactions R =
{R1,...,Rp}. The firing of reaction R; results in a transition of the system from
state ;. = (M1, Me,m) € S = N to state n, + v;, with v; being the update
vector. A general reaction R; is identified by the tuple (fg,, v;), where fg,, known
as propensity function of reaction R;, depends on the state of the system.

The time evolution of a CRN can be modelled as a Continuous Time Markov
Chain (CTMC [14]) on the discrete space S. Motivated by the well-known mem-
oryless property of CTMC, let Py, (n: = s) denote the probability of finding the
system in state s at time ¢ given that it was in state sg at time tq. This probability
satisfies a system of ODEs known as Chemical Master Equation (CME):

P
OPso(ne = 8) = > [fr,(5 = vj)Poy (s = 5 = v3) = fr, ()Psy (e = 5)] . (1)
j=1
Since the CME is a system in general with countably many differential equa-
tions, its analytic or numeric solution is almost always unfeasible. An alternative
computational approach is to generate trajectories using stochastic algorithms
for simulation, like the well-known the Gillespie’s SSA [10].
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The SIR model The SIR epidemiological model describes a population of IV
individuals divided in three mutually exclusive groups: susceptible (S), infected
(I) and recovered (R). The system state at time ¢ is 0, = (St, It, Rt). The possible
reactions, given by the interaction of individuals (representing the molecules of
a CRN), are the following;:

~ Ry S 4T PISN of (infection),

— Ry:I 24 R (recovery).

The model describes the spread, in a population with fixed size N, of an in-
fectious disease that grants immunity to those who recover from it. As the SIR
model is well-known and stable, we use it as a testing ground for our Bayesian
abstraction procedure.

The Gene Regulatory Network model Consider a simple self-regulated gene
network [2] in which a single gene G is transcribed to produce copies of a mRNA
molecule M; each mRNA molecule can then be translated into a protein P. In
addition P acts as a repressor with respect to the gene G. In other words, the
gene activity is regulated through a negative-feedback loop, a common pattern
in biological systems. The reactions are the following:

GON kprod]\/I'GON

— Ry
—RQIM

GOV 4+ M (transcription)
kprodP‘]\/I
%

M + P (translation)

~ON
— Ry : GON ldeact @7 qOFF (protein binding)

QOFF
— Ry :GOFF Fac G777 GON + P (protein unbinding)

Eqegnr-M .
— Rs: M —<2 & (mRNA degradation)

— Re¢: P Pacar T, o (protein degradation).

The system dynamic varies significantly accordingly with the choice of re-
action rates. We refer to [2] for a detailed exploration of different behavioural
patterns. According to our choice, see Section 5, the system exhibits several
well-separated stable configurations. If we look at trajectories in Figure 1 on a
smaller scale, we notice that each stable point is actually noisy, i.e. there is a
high number of small amplitude oscillations. Starting from an initial state 7y,
we can sequentially generate a large number of instances of the state of the
system at a fixed time time ¢;, n;,. The empirical probability distribution of
such 7, approximates, for a number of samples sufficiently large, the density
function P, (1), shown in Figure 3 (blue lines). The system exhibits up to 5
distinguishable modes, with some Gaussian noise affecting each one of them.

Motivated by the multimodality of this system we seek a Bayesian non-
parametric density regression method, able to capture such hierarchical struc-
ture.
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Fig. 1. Example of a trajectory, for the gene regulation network model. The overall
time is 10,000 seconds. Left: trajectory of proteins (P), which present a multistable
configuration. Middle: trajectory for the mRNA molecules (M). Right: trajectory for
the active gene GOV

3 Model Abstraction

Let’s now introduce the concept of model abstraction as presented in [3]. The
underlying idea is the following: given a stochastic process {n; }+>0 with transition
probabilities Py, (n: = s), we aim at finding another stochastic process whose
trajectories are similar to the first one, but faster to simulate. Instead of working
with transition probabilities themselves we rather use transition kernels. This
requires a discretization of time. In other words, the process is considered only
at time points with a fixed temporal distance. If we fix a time step At and an
initial time instant tg € R, the states can be expressed as 7; := M, +iat. The
CTMC, {m:}+>0, is now expressed as a time-homogeneous Discrete Time Markov
Chain {7;}; with transition kernel

Ka(s]s0) =Ps,(nat = s), (2)
for all s,s9 € S. Two additional approximations are required:

1. The abstract model takes values in &’ = RZ,, a continuous space in which
the state space S = N is embedded. B

2. The kernel K4, equation 2, is approximated by a new kernel K (s'|s() taking
values in the continuous space S’.

In constructing the approximate kernel K (s'|sj), rather than trying to preserve
the full behavior of the process, we restrict our attention to a time-bounded
reward function r from SM to an arbitrary space 7 (i.e. R, N, B, or R¥). Here
M is an upper bound on the duration of discrete time trajectories we consider
to evaluate the reward; we indicate time-bounded trajectories by 7o, as. Such a
function r can be a projection, monitoring the number of molecules belonging to
a certain subset of chemical species at a certain time step, or it can take Boolean
values in B = {0, 1}, representing the truth of a linear temporal property, for
example checking if the system has entered into a dangerous region. Note that
7(fjo,p) is a probability distribution on 7. The formal definition of an abstract
model is the following.
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Definition 1. Let n = {n;}}%, be a discrete time stochastic process over an
arbitrary state space S, with M € N a time horizon, and let r : S¥ — T be
the associated reward function. An abstraction of (n,r) is a triple (S',p, 7', =
{nf}M,) where:

— &' is the abstract state space;

— p:8 — &' is the abstraction function;

— 7' 8™ 5 T is the abstract reward;

— n' = {n}}%L, is the abstract discrete time stochastic process over S’.

Definition 2. Let ¢ > 0, 1’ is said to be e-close to 1 with respect to d if, for
almost any sg € S,

d(r(no,an), r’(nfO,M])) <e conditioned on 79 = so, 7y = p(s0).  (3)

Dataset Generation The model abstraction procedure can be translated into
a supervised learning problem. Choose n random initial states {s(gj ) iy from S.
Starting from each of these states we run a simulation from t¢g to t1 := tg + At.
ng ) denotes the system state at time ¢; for each one of these simulations. By
defining x; := s((f) and y; = ng) for all j € {1,...,n}, we have thus built
a dataset D := {(x;,y;}}—1, where each y; is a sample from the probability
distribution Py, (na¢).

In order to validate the abstraction procedure, we choose a high number of
different initial settings, different from the initial states of the training set, and
from them a very large number of SSA trajectories is simulated. The empirical
distribution obtained can be compared with the distribution estimated with the

abstract kernel at these points.

Abstract Model Simulation We now have an abstract model that can be
used to simulate a trajectory. We just need to sample up to time horizon M > 0
from the approximate kernel K, starting from the initial state sg and initial time
to. The simulated trajectory lies on the continuous state space S’. Each time step
of our simulations has thus a fixed computational cost that does not depend on
the At chosen. This saves a lot of computational resources when simulating long
trajectories. This algorithm can be easily employed in a multi-scale setting: we
just need to train the kernel of the abstract model once, but after that a high
number of simulations can be performed at a very high speed.

Measuring the error The error introduced by the abstract model, i.e. how
much the abstract distribution differs from r(nf& M])7 is a fundamental ingredient
to quantify. In general, the distance among two random distributions, X and Y,
can be computed using the L; norm. In practice, this metric will be evaluated
statistically, resulting in the so called histogram distance [4]

K

i=1
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where Iy, ..., Ik are K bins of size L and h.(I;) indicates the number of samples
in bin I;. We call self distance the histogram distance between two set of samples
drawn from the same distribution.

Confidence intervals: The big advantage of keeping a Bayesian non-parametric
perspective is the possibility to estimate the uncertainty in the approximation
procedure. The transition kernel is estimated using a trace of predictive densities,
from which we can reconstruct a confidence interval. We expect this interval to
be tight when the abstract kernel well approximate the original kernel, and wide
when the reconstruction is poor.

4 Bayesian Density Regression

Density estimation [9] is a well known process to model the density from which a
given set of observations is drawn. If data are assumed to be distributed hierar-
chically, meaning each point belongs to a randomly chosen cluster and members
of a cluster are further distributed randomly within that cluster, we are dealing
with a data clustering problem. In order to place a prior probability on the struc-
ture of data, we may assume, for instance, that there are K normally distributed
clusters, each cluster with its own parameters. The Bayesian non-parametric in-
tuition is to work without pre-specifying the number of clusters K and select
instead a random prior over an infinite set of clusters with infinitely many param-
eters. Dirichlet processes [8], which are the infinite-dimensional generalization of
Dirichlet distributions, are used as prior on such unknown distribution. They
are denoted as DP(aGy), where « is the precision parameter and Gy is the base
measure. A parametric form, Gaussian in our case, with unknown parameters is
usually chosen for Gy. Realizations of such process, G ~ DP(aGy), are random
distributions. In order to fit the model based on data, we should compute the
posterior distribution over cluster probabilities and their associated parameters.
Since we cannot write the posterior explicitly, we are going to draw samples from
the posterior using a Gibbs sampling algorithm.

However, our problem, which is embedded in the supervised learning scenario,
as presented in Section 3, is to estimate the conditional distribution of a variable
y € Y, a one dimensional projection of the state space S, that depends on a
vector of covariates x € X', which represents the entire state space S. This task is
called conditional density estimation or density regression. In other words, given
n observations D = (X1,41), .-, (Xn, Yn) € X x Y, we would like to estimate, for
a generic x € X, the density on ) of the response variable y, i.e. the conditional
density f(y|x).

A simple solution under the assumption that G ~ DP(aGy), would be to
use the dependent DP approach of MacEachern [11], which relies on the stick-
breaking representation [17] of DP:

G = Zﬂ_h : 69},,3 (5)
h=1
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with ﬁh/thz_ll(l — m) ~ Beta(l,a). In the formula above, 7 = (m,,h =
1,...,00) is an infinite sequence of stick breaking weights, dy is a degenerate
distribution with all its mass at 8 and § = (0;,,h = 1,...,00) are atoms sampled
from Gg. In the form of a DP mixture of normal linear regression models, the
stick-breaking process of (5) becomes

Flyilxi) = > mn - N (alxiBn, 7, (6)
h=1

where 0}, = (Br, 1) is still sampled from Gj.

The challenge is that unexpected changes in the shape of the density de-
pending on the predictor values x may occur, therefore we cannot assume the
distribution G to be constant over X. In this more complex scenario, priors for
a collection of dependent random distributions, Gy with x € X, must be con-
sidered. Dunson, Pillai and Park [7] proposed a kernel-weighted mixture of DPs
(WMDP), using a non-parametric mixture of linear regression models for the
conditional density of y given x. The conditional density function is expressed
as a mixture of parametric densities:

fwmaémm@daw, (7)

where f(y|x, ¢) is a known density on ) that depends on a parameter ¢ € ¢ and
Gx is a random mixing distribution on ¢ indexed by the predictor x € X. The
unknown collection of mixture distributions is allowed to vary with predictors
by defining a WMDP prior. See [7] for a detailed treatment.

Since mixtures of a sufficiently large number of Gaussian distributions have
been proved to be able to approximate any distribution accurately, we focus on
the following mixture of regression models:

ﬂmm:/N@Mmﬁﬂdamx (®)

with ¢; = (8;, 7). In order to limit the number of clusters, the WMDP prior pro-
posed in [7] set restrictions on the uncountable collection of mixture distributions
Gy = {Gx : x € X}. For every x € X, they express Gx as

Gx =Y m(x)G;,  Gx ~ DP(aGy), (9)
=1

where 7(x) = [m1(x),...,m,(x)] is a vector of probability weights with >, m;(x) =
1. This formulation introduces independent DP random basis distributions at
each of the predictor values in the sample, and then mixes across these basis dis-
tributions to obtain a prior for the unknown mixture distribution, G, at each
possible predictor value, x € X. Suppose that (¢;|x;) ~ Gy, , for i = 1,...,n,
then, by marginalizing out the infinite-dimensional WMDP prior, it is possible
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to obtain a generalization of the so called DP Polya urn scheme:

R LM Crm LA

¢ J#i

where w;; are weights that depend on the function 7, the DP parameter «
and the set of observed predictors X, and w; = >, w;j. In [6] the explicit
specification of m was avoided, using a simpler and more interpretable form:
w;j = Wy (X, X;), where wy, : X x X — [0, 1] is a bounded kernel measuring how
close two predictors are in terms of a distance measure d, with 1 a smoothing
parameter controlling how rapidly wy(x,x") — 0 as d(x,x’) decreases. In the
limit as ¢ — 00, wy (x,x’) = 0 for any x,x’ € X having d(x,x’) > 0. In addition,
for all finite 1, limx_x wy(x,x") = 1. Under this simplification, equation (10)
can be written as

k()

(@169, X,00) = (1525 ) 6o D3 (%) 5, ()

where () = (0?), . .,9](;()1.)) denotes the unique values of ¢ and wi; (V) =
>t 1(¢j:9y))w¢(xi,xj) and w;(¢) = >_; ; wy(X;,%;). The prior in (11) auto-
matically allocates the n subjects into k < n clusters according to their ¢; values.
Because subjects located close together are more likely to be clustered together,
the prior tends to penalize changes across X in the values of parameters. The
hyperparameters a and 1 control the speed at which the prior introduce new
clusters as n increase: new clusters are added more rapidly as « increases and v
decreases.

A natural choice for w,, at least for continuous x, is the Gaussian kernel
wy (x,x") = exp(—1||x—x'||3). Note that, with this kernel choice, it is important
to standardize data, avoiding sensitivity to scales.

4.1 Posterior computation

Following [7], the posterior distribution needs to be computed in order to inte-
grate out the latent cluster parameters. Since the posterior distribution is not
known explicitly, but the conditional distribution of each cluster variables is
known, the Gibbs sampling algorithm results being an efficient technique to es-
timate the posterior. Let 6 be a vector of length k£ containing the parameter
values of each of the k Gaussians distributions in the mixture, i.e. 8, = (B, 1)
for h = 1,...,k. The vector S = (S1,...,S,) maps each subject to the cluster
it is allocated to. In other words, S; = h if ¢; = 6}. Excluding the i-th subject,
6 denotes the k() unique values of ¢(¥ and S(*) denotes the configuration of
subjects {1,...,n} \ i to these values.
The full conditional posterior distribution of ¢; is

jAQ)

(¢Z|¢(l)7 Da o, 1/}) 7) X qi,OGi,O + Z quL(;e;Li) . (12)
h=1
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In the formula above, G; ¢ is the posterior obtained by updating the prior
Go(9|v), where v indicates the hyperparameters of the base measure Gy, with
the likelihood f(y;|x;, ®):

_  Go(o) fwilxi, 0)  Go(P|Y) f(wilxi, d)
Ciol) = Tyl D)dGo@l) —  halwlxn) (13)

In addition, g;0 = cah;(y:|xi,7) and ¢, = cw, (V) f(yilxi, 0r), where c is the
normalization constant. Note that o and % only appear in the expressions for
the configuration probabilities ¢; p,.

Conditional on « and v, posterior computation can proceed via a Gibbs
sampling algorithm, which alternates between the following three steps.

(1) Updating the configuration of subjects to clusters, S, and the number of
clusters, k, by sequentially sampling from the full conditional posterior dis-
tribution of each S;: P(S; = h|¢p), D) = q;p, for h = 0,1,..., k. When
Si; =0 a new cluster is generated sampling from from G; .

(2) Updating the cluster-specific parameters 6 by sampling from the full condi-
tional posterior given the configuration, i.e. S and k:

(61167, S, k, D) o < 11 f(yi|f€z‘79h)> Go(6h). (14)

ZS1:h

(3) Updating the hyperparameters v by sampling from their full conditional
posteriors.

4.2 Implementation

As already expressed in equation (8), we are considering the case in which
flyilxi, i) = N(yilx}Bi, 7 "), with ¢; = (8,7;)" and B; = (Bi1,- .., Bia)’, so
that both the regression coeflicients and variance can vary across clusters. This
generalizes [7] where only the mean parameter was allowed to vary, while 7 was
kept constant. For this particular choice, the posteriors distributions, needed at
step (1), (2) and (3) of the Gibbs sampler, have simple closed forms. The detailed
derivation of the following equations is described in the Appendix.
A natural choice for G is the multivariate normal-gamma density

GO(BhaTh) - Ng(ﬁhﬂ—h‘ﬂa ZB,GT,bT) = N(ﬁh|ﬁv7—}:12‘ﬁ) : g(Th|a7‘7b7‘)~

Let v = {8, X3, a-, b, } denote the set of hyperparameters. In order to provide
more flexibility, we allow uncertainty in v by choosing hyper-prior densities for 3,
X3 and b, while fixing a,. More precisely, we choose multivariate normal prior
for 3, p(B) = N (B|Bo, o), a multivariate inverse-gamma prior for X, p(Xg) =
IW(Zs|vo, Vo), also known as inverse Wishart distribution with vy degrees of
freedom and mean Vp, and, finally, a gamma prior for b,, p(b,;) = G(br|ao, bo).
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In step (1) of the Gibbs sampler we need to compute h;(y;|x;,7), which takes
the following simple form:
C(ar,b;) - det Xg
V 271’6'(@2‘7 T)l) - det E, ’
where ¥, = xixg—f—Egl, a; =ar+3.,b; = bT—f—%[(yi—xgﬁi)Q—I—(Bi—ﬁ)’Egl(Bi—ﬂ)]

with 3; = 57 (xiy + Eglﬁ) and C(a,b) = %, where I'(a) is the gamma

hi(yi|xi7672ﬁ7a‘rab‘r) =

function.
In addition, the full conditional posterior distribution of 8, = (8}, ), re-
quired at step (2), is

&
5 ):
If we denote with X, and Y, the vectors containing the values of predictors and
responses for the nj, subjects in cluster h, the terms Zh, Bh and &7, in the formula
above, are defined as follow: %), = (X}, X}, + Xy Y, Bh =2, (X, - Yh + Xy 13)
and & = (Y, — XpBn) - (Yn — XnfBh) + (Bn — 5) -3t (511 - B).

Finally, the conditional posterior distributions of hyper-parameters (8, X', b, ),
needed at step (3), are defined as follows.

The posterlor for 3 is (5|9 Bo, Xo) ~ (ﬁ|B 271 where X = (3, ) -
T3t 4+ 25 and B =27N(T5 o+ X0, T Br)-

The posterior for Xy is (Xg|B1,...,0k) ~ IW(Zs|no + k, Vo + S), where
S =507 (B = B)(Bu— B ]
_ The b, posterior is (br|r1,...,7%) ~ G(br|a,b), where @ = ag + k - a, and
b="by+ Zh Th.

(Bhy 70]|0™, S, k, v, D) ~ Na(Bul|B, 7 25 1) - Glmalar + b, +

4.3 Conditional predictive density

Once the posterior distribution has been computed, we can finally estimate the
response density for new subjects x, € X, i.e. f(y.|x.). This can be done using
the simple form of the conditional predictive density:

(07

fylx, Y, X, 8.k, 0,7, 0, 9) = (O[er(w)

) B yales 1) +

(15)

where w, (1) = Y1 w. ;(¥) and Wy, = Y1 1(s,2p)Ws,i(¥). In words, this
means that each normal component has a weight that depends on the number
of subjects in the dataset allocated to that component and on the cumulative
distance from these subjects and x,. Instead, if « is large or only few subjects
in the dataset are close to x,, we will observe a shrinkage towards the first
component.



12 L. Bortolussi and F. Cairoli

Measuring uncertainty in the approximation After convergence, each iter-
ation t of the Gibbs sampler correspond to a mixture of Gaussians distributions,
linear in x,, with parameters S®, k® 0®) ~() This density can be computed,
using (15), for a dense grid of possible y. values, obtaining a graphical represen-
tation of the mixture density. One can apply this procedure for a large number,
T, of iterates after convergence of the Gibbs sampler, ending up with a trace of T’
predictive density distributions. From this trace, one can calculate the expected
predictive density averaging over the large number of iterates. This remove also
the conditioning on S, k, 8, ~. In practice, given t = 1,...,T we obtain the esti-
mator:

(®)

i (oz+w* >Zw*h Ny n . an)

Furthermore, this pool of densities provide also an estimate of the variance
of the predictive density. One can leverage this information to estimate the
uncertainty underlying the abstraction procedure in a specific state x, € S.

Sampling from the predictive density The same pool of T iterations can
be used to sample from f(:|x., D, a, ) in the following hierarchical way:

— randomly pick an iteration index £ € {1,..., T},

— given the parameters at iteration f, we sample a component h® from the
discrete vector of weights [, W 1, . .., 0, @], normalized by (a + w. (1)),

— from this 2 component, N (1%L Bj, 5 T}i;) if () +£ 0, we sample the desired
value 7.

Iterating this procedure, we have an approximate simulation algorithm.

Consider a state of a d-dimensional system at time ¢, x, = 1, and an ab-
stract kernel trained on a given dataset and evaluated in x,. A sample from
such kernel should return a full state of the system after a time At. In other
words, the abstract kernel should approximate the joint probability distribution
of the d variables composing the state space S. Unfortunately, the proposed so-
lution needs the response variable y € ) to be one-dimensional, which means
that we are actually approximating the marginal distribution of a single vari-
able. Therefore, in order to simulate the full state of the system after a time
At, i.e. neyar, we must sample from d different kernels, loosing the correlation
between response variables. Nonetheless, the joint probability can be expressed
in terms of chain of conditional probabilities. We are investigating a technique
to approximate conditional distributions rather than marginals. The basic idea
is to enlarge the input space by adding the response variables that condition the
response of interest. Finally, the chain rule allows us to sample from the joint
distribution while preserving the correlation between variables.
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5 Experimental Results

We now validate the proposed Bayesian non-parametric approach on the two
case studies introduced in Section 2: the SIR model and the Gene Regulatory
Network (GRN) model.

Experimental setting Input data has been generated simulating the original
CRN model by using both the direct and the 7-leaping SSA algorithms. The
StochPy library (stochastic modeling in Python [12]) served for this purpose.
The Gibbs sampling algorithm has been implemented in Python as well. All the
computations were performed on a computer equipped with a CPU Intel x86
and 24 cores.

Setting the hyperparameters The proposed Bayesian method is nonpara-
metric in the sense that it allows infinitely many parameters. However, some
hyperparameters have to be fixed. As suggested in [6], we set, for both models,
Y =n/25 a. =1, By =0, X5, = (X’X)7, vy = d, Vo = I, where d is the
dimension of the state space, ag = 1 and by = 0.5. In addition we set a = 0.5
for SIR and, since we expect a larger number of cluster to be needed, we set
a = 1 for GRN. Data has been rescaled in order to have zero mean and variance
one. This avoids sensitivity of the kernel function to different scales. Data has
been scaled back after inference was performed, hence results are shown in the
original scale. The Gibbs sampling algorithm performed 10, 000 iterations, with
a burn-in period of 1,000 iterations. The trace plots of different unknowns show
that the convergence of the Gibbs sampler was rapid and mixing was good.

The training and validation set has been created as presented in Section 3.
The time required to generate the dataset depends heavily on the length of the
time step (At) considered and on the complexity of the model. For the SIR model,
whose dynamic is rather simple, we fix At = 0.1 seconds. The time required to
simulate 10,000 trajectories starting from a given state is 125 second, using the
direct SSA method, and 23 seconds, using the 7-leaping method. For the GRN
model, in order to observe a strong multimodality, we choose a much larger time
interval: At = 400 seconds. Here the computational effort required to generate
the dataset is much higher. Generating 10, 000 trajectories takes around 40 hours
with the direct SSA method, or around 20 hours with the 7-leaping approach.
It is important to point out that the choice of At does not depend on the model
itself, but rather on the intended use of abstraction. For instance, when using this
abstraction in a multi-scale scenario (e.g. cells and tissues), At may be chosen
as the integration step of the higher order model (e.g. the diffusion dynamics at
the tissue level).

The training time of our approach increases with the number of training
points. In order to sample from the predictive density and to compute the average
predictive density we must fix the number 7" of Monte Carlo iterations that we are
willing to consider. From a computational point of view, the sampling procedure
is not affected by the dimension of T. However, computing the estimators for
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inter-densities mean and variance takes longer as T increases. Leveraging the
multi-core hardware available, we ran, for the GRN model, 12 parallel Gibbs
sampling for each response variable and we mixed the final traces by taking the
last 200 iterations of each process. For the simple SIR model, we ran just 2
parallel processes. By doing so, a greater mixing can be achieved. Therefore, for
the GRN model, T' = 1200, whereas, for the SIR model, T = 400.

5.1 SIR model

The constant parameters governing the transition rates are: k1 = 3 and ko = 1.
The model has been trained on a set of 500 observations. Experiments with
more points showed similar results. Since we are considering a fixed population
of size N, the model is two-dimensional (d = 2) and the number of recovered
individuals is indeed N — S — I. We trained two separates models, one for each
component/species. The first model predicts the number of susceptible indi-
viduals after At time units, whereas the second model predicts the number of
infected individuals. The training of the two models has been performed in par-
allel and globally took 1.5 hours. The method automatically fix the number of
cluster needed. The average number of clusters is 7.2 for the response variable
S and 22.1 for the response variable I. In Figure 2, we can appreciate how a
larger number of clusters is required as the intrinsic variance of the response I
is larger with respect to the response variable S. Figure 2 shows the average
density estimator, which is the average among T mixtures, against the empirical
distribution obtained with 1,000 SSA trajectories. The shaded area denotes the
95% confidence interval, indicating the variance among the T mixtures. Given
1,000 samples from the true densities and 1,000 samples from the approximate
densities, the average histogram distances, over 10 validation points and 100
bins, are 0.362 for response variable S and 0.235 for the response variable I.
The self-distance bound is 0.357. The average estimator is a faithful model of
the true density for all the validation points. However, sometimes the inter-
densities variances are large, which results in potentially high variability while
sampling. In fact, as we sample from a single normal component of a randomly
picked mixture, the specific component may deviate considerably from the aver-
age estimator. This fact may introduce instabilities in trajectories simulated for
more At time instants, resulting in an artificial increase of variance. We are cur-
rently exploring alternative simulation strategies based on the average estimator
to ameliorate this problem. In any case, sampling 10,000 one-step trajectories
from the abstract model takes on average 1.5 seconds, a considerable speed up
of two orders of magnitude compared to the SSA algorithm.

5.2 GRN model

The constants governing the transition rates are: kprogp = 350, kproans = 300,
kgegnr = 0.001, kgegp = 1.5, kgeact = 166, kqey = 1. In contrast with the SIR
model, which is unimodal, we set a long time interval, At = 400 s, in order to
observe strong multimodality and test our approach in such extreme scenario.
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Fig. 2. SIR model: estimators of the average predictive densities and their confi-
dence intervals, against the empirical simulated distributions for 3 validation points.
Each column has a corresponding 2-dimensional value x.. The horizontal axis indicates
the one-dimensional response space ). The first row shows the densities for the first
component (susceptibles), while the second row shows results for the second compo-
nent (infected). The grid on ), whose domain is [0, 100] C N, contains 100 points. The
empirical distribution is generated by 1,000 SSA trajectories.

Since the species GOV and GOFF are constrained, i.e. GON 4+ GOFF = 1, the
model is three-dimensional (d = 3). We analyze the performance of our approach
in predicting the protein outcomes, since it is the species with the multi-stable
behaviour. The model has been trained on a set of 2,000 observations and train-
ing took around 20 hours. The average number of clusters is 154.5. Figure 3
shows the average density estimator and the 95% confidence interval against the
empirical distribution obtained through SSA simulations.

The true and the approximate distributions are clearly distinguishable, but
the main qualitative characteristics of the system are captured. The DP approach
manages to recognize the 3 modes associated with highest probability. When it
does not recognize a mode, it shows tails with high-variance. The last picture of
Figure 3 shows the behaviour in situations where the new input point x, has no
neighbouring training points: it doesn’t recognizes the modes but the variance
is extremely large, reflecting the uncertainty in the reconstruction. Given 1,000
samples from the true densities and 1000 samples from the approximate densities,
the average histogram distances, over 25 validation points and 200 bins, is 0.12
(the self-distance bound is 0.504).

The analyzed case studies coincide with the ones presented in [3], thus, results
may be compared. The use of deep neural networks renders the abstract model
more accurate and the training is faster with respect to the non-parametric ap-
proach, but provides no estimate of the uncertainty. However, once the training
is over, the time required by the two methods to simulate an abstract trajectory
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Fig. 3. GRN model: estimators of the average predictive densities and their confi-
dence intervals, against the empirical simulated distributions for 4 validation points.
The horizontal axis indicates the one-dimensional response space corresponding to the
protein P. The grid on Y contains 100 points. The empirical distribution is generated
by 1,000 SSA trajectories.

is similar. It is reasonable to assume that the main reason behind the lower ac-
curacy of our approach is due to the smaller training set, 2, 000 instead of 30,000
data points. In fact, since the Monte Carlo method used is quite expensive, the
Bayesian model is trained with relatively few points. The ability of the DP to
recognize the modes is likely to increase as n grows. In order to significantly
speed up the computations, we plan to develop a more efficient and compiled
implementation of the algorithm. Finally, simulating 10,000 one-step trajecto-
ries from the abstract model took on average 30 seconds, a tremendous speed-up
compared to the SSA and 7-leaping algorithms.

6 Discussion

We presented a Bayesian approach to abstract the kernel of a Markov process.
We used a mixture of Gaussian distributions with a mixing measure, a Dirichlet
Process, flexible enough to vary accordingly with the state of the population.
This work presents a first analysis on the performances of the proposed method,
both in terms of accuracy and in terms of computational speed-up.

Results are encouraging, both in terms of the accuracy of the average estima-
tor as a function of the input point and in terms of the computational gain. The
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variance of the reconstructed density is also a good indicator of the uncertainty
in the reconstruction, and can be used to guide an active learning step to refine
the abstraction improving in target points with low accuracy.

Another important issue is to improve the accuracy of the method when it
comes to iterate the sampling of the kernel to generate trajectories longer than
At. One possibility is to sample from the average estimator, rather than from a
single component of the mixture. The drawback in this case is the increased cost
of simulation per step, which may be tamed by learning a simplified model (e.g.
a mixture of Gaussians with a fixed number of components) that interpolates
the average estimator.

An additional improvement, also in terms of speedup may come from using
either variational approaches for density regression [15]. Finally, we also plan to
extend this approach to approximate more general classes of models, like time
inhomogeneous systems (including time as a covariate), including non-Markovian
models.
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