
Improvement of network fragility for
multi-robot robustness

Toru Murayama ∗ Lorenzo Sabattini ∗∗

∗National Institute of Technology, Wakayama College, Wakayama,
Japan (e-mail: murayama@wakayama-nct.ac.jp).

∗∗University of Modena and Reggio Emilia, Reggio Emilia, Italy
(e-mail: lorenzo.sabattini@unimore.it)

Abstract: This paper proposes a novel concept of robustness for a multi-robot network.
Although connectivity is a helpful indicator for robustness against failures of the robots,
preserving a high connectivity limits the configuration space of the system. To relax this problem,
we propose to preserve a large connected component instead of the high connectivity of the
entire network, and present articulation node importance and graph fragility as indicators of
the robustness. An estimation method for the node importance and a control law using the
importance value are also introduced to improve the network robustness.
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1. INTRODUCTION

A multi-robot system is a system in which a collection
of autonomous mobile robots shows some collective be-
haviours, that emerge from inter-robot communications.
Such communication is typically achieved equipping the
robots with appropriate communication means, such as
some self-configuring wireless technology, thus defining a
mobile ad-hoc network. Since information for the collec-
tive behaviours flows through the network, the network
should be connected during their task performances in
spite of robots’ individual autonomous actions. For this
reason, many studies proposed decentralized or distributed
algorithms for preserve the network connectivity, such
as Zavlanos and Pappas (2007); Schuresko and Cortés
(2009); Kan et al. (2012); Sabattini et al. (2013); Cai et al.
(2017). The connectivity is also a good index of network
robustness against some failures since it indicates the min-
imum number of nodes/edges removed from a graph to
make the remaining graph disconnected. Moreover, some
studies proposed approaches to improve or robustify the
network robustness against the failures, such as Ghedini
et al. (2015, 2017); Panerati et al. (2018). In these studies,
the number of 2-hop neighbors connected with only one
path is employed as an indicator of node vulnerability,
and a control law to move towards the barycenter of the
2-hop neighbors is proposed for improving the network
robustness.

Although a multi-robot network characterized by high
connectivity is robust against failures of robots, this char-
acteristics narrows the configuration space of the system
because the distance of each pair of the robots adjacent
through a link is bound to the communication range. In
case the system is controlled to preserve n node connectiv-
ity, each robotic node needs to keep n links at least, and
this means each robot is not allowed to move away from all
positions of the n robots. This represents a disadvantage in

tasks where the multi-robot system is required to spread
out to a given area, like a coverage task for sensing or
monitoring a wide region. A trade-off is then achieved
between the connectivity preservation and the desired
configuration: as such, the multi-robot system may have
to choose between the robustness against failures and the
complete task achievement.

In order to handle the problem mentioned above, we
aim to preserve a large connected component instead of
preserving the connectedness of the entire network. In
other words, we propose a method in which we try to
preserve the overall configuration, but a small number
of robots may be abandoned in the case of failures. We
define the concept of fragility of a graph, introducing a
novel concept of node importance to evaluate the size
of the connected component that will remain after a
robot failure, and propose a control law for improving
the network topology when the network is too fragile. A
distributed algorithm to estimate the node importance is
also introduced for the control law to be executable in a
distributed manner. From the proposition of this study,
the system achieves a relatively large configuration space
and preserves the large connected component even if one
of the robots fails.

2. PRELIMINARY AND CONCEPT

In this section, we introduce some definitions and expres-
sions as a preliminary of this study, we introduce the
articulation node importance to evaluate an impact of the
node failure, and we define the fragility of the network.
The control objective of each the robots is also defined
using the fragility.
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2.1 Preliminary

Considering a connected simple graph G, we introduce the
adjacency matrix A of a graph G. We also define a node set
V of a graph G and a cardinal number V = |V| of a node
set V (i.e. the number of nodes in a graph G). A neighbor
node set of node i is described as Ni. An articulation
node is defined as a node whose removal makes graph G
disconnected. Removing an articulation node i brings two
or more connected components as a result. We define node
sets of such connected components by Cm, m = 1, . . . , r,
where r denotes the number of the connected components.
The number r of the connected components is less than or
equal to the number |Ni| of the neighbors. Also define a
cardinal number Cm = |Cm| of a connected component Cm.
Clearly we can see

⋃
m Cm = V \ {i} and

∑
m Cm = V − 1

from the definition.

In order to evaluate a graph G after a node i has been
removed, we consider a perturbed graph G(ε) in which
link weights connected to the node i are perturbed. We
define a perturbed adjacency matrix A(ε) multiplying a
small positive value ε by all entries aij in the i-th row
and aji in the i-th column of an (ordinal) adjacency
matrix A with respect to a graph G. And also we define
a perturbed Laplacian matrix L(ε) from the perturbed
adjacency matrix A(ε). The second smallest eigenvalue of a
perturbed Laplacian matrix L(ε) is expressed as λ(ε), and
the eigenvector v(ε) corresponding to the second smallest
eigenvalue λ(ε) is called as perturbed Fiedler vector in
this study. Note that a perturbed Fiedler vector v(ε) is
orthogonal to the vector 1 which is the eigenvector of a
Laplacian matrix with respect to the smallest eigenvalue 0.

2.2 Importance of articulation node

Our concern is the size of remaining connected components
Cm after removing a node i from the given graph G. In
fact, having a (remaining) larger connected component is
useful to continue some tasks of a multi-robot team, while
scattering into smaller connected components should be
avoided, as discussed in the introduction section.

From the above discussion, we define the impact of an
articulation node i removal as

ai =

∑
m Cm − CM

CM
, (1)

where CM = maxm Cm is the size of largest connected
component. This value ai represents the fraction of the
number of nodes which will be lost from the largest
components. Along these lines, we define ai = 0 if the
node i is not an articulation one, as a case when no node
will be lost. For instance, the value ai = 1 means the
largest connected component is almost a half of the former
graph G (strictly CM = (V − 1)/2), and therefore ai > 1
means removal of the node i causes 3 or more connected
components whose sizes are less than a half of the former
graph. Clearly the value ai + 1 implies a fraction V − 1 of
the former graph, excluding the node i, and the size CM

of the largest connected component, from the definition.
Hereafter we refer to the value ai as the importance of
node i.

The size Cm of the connected components is also useful
for calculation of the betweenness centrality, defined by

bi =
∑

j,k∈V\{i}

sjk(i)

sjk
, (2)

where sjk is the total number of paths between node j and
k, and sjk(i) is the number of paths between node j and
k through the node i. Assuming the node i is articulation
one, we get

bi =
∑
m 6=l

CmCl, (3)

therefore we can calculate the centrality from the sizes of
the components.

However, the betweenness centrality does not match our
purpose since we are particularly interested in the size
of the largest connected component and the betweenness
centrality depends on the topology other than the largest
connected component. For instance, assume two example
cases,

(1) Case 1: the removal of the node i generates r = 2
connected components C1 = V − 1 − n and C2 = n
where (V − 1)/2 ≥ n

(2) Case 2: the removal of the node i generates r = n+ 1
connected components C1 = V −1−n and C2 = · · · =
Cn+1 = 1.

Despite the invariance of the size of the largest component,
the betweenness centrality differs in each cases, as sum-
marized in Table 1. Moreover, the betweenness centrality
takes a same value even though the size of the largest
connected component differs (e.g. V = 7, in case 1 with
n = 3 and in case 2 with n = 2). That is the reason why
we employ the importance ai as an indicator of each nodes
in this study.

Table 1. Importance and centrality in the con-
sidered examples

importance ai betweenness centrality bi
Case 1 n/(V − 1− n) n(V − 1− n)
Case 2 n/(V − 1− n) n(V − 1− n) + n(n− 1)/2

2.3 Concept of fragility

Using the node importance ai, we define the measurement
of graph fragility by

F (G) = max
i∈V

ai, (4)

which represents the fraction of nodes in the largest
component after a robot loss, i.e., when any one of the
robots fails. Then our objective in this study is to reduce
the network fragility F (G) with given threshold T , that
is, to move the robots to satisfy F (G) < T . In the latter
sections, we introduce strategies to achieve this objective.

3. IMPORTANCE ESTIMATION

In this section, we describe an estimation method for the
node importance ai. First we introduce some properties
of the perturbed Fiedler vector, which will be instrumen-
tal for the proposed estimation method. The estimation
procedure is, in fact, described introducing algorithms for
estimating the Fiedler vector and algorithms for classifica-
tion. The computation of the node importance is defined
considering both the following cases: (1) if all the entries



vj∈V are available, and (2) if only the local entries vj∈Ni

are available.

3.1 Properties of the perturbed Fiedler vector

We introduce some properties of the perturbed Fiedler
vector v(ε), as proven in Murayama (2018), for the im-
portance estimation method detailed in the following sub-
section.

Theorem 1. As ε→ +0, the perturbed Fiedler vector v(ε)
approaches vector v which satisfies

λ̇vi =
∑
n∈Ni

(vi − vn) =
∑
j∈V

d(j)

C(j)
(vi − vj) , (5)

λ̇vj =
d(j)

C(j)
(vj − vi) , ∀j ∈ V \ {i}, (6)

vj = vk,
∀j, k ∈ Cm, (7)

where λ̇ = limε→+0 λ(ε)/ε, and vi is the i-th entry of
the vector v. C(j) denotes the cardinal number of the
connected component Cm such that j ∈ Cm, and d(j)
denotes the number of nodes which are adjacent to the
node i in the connected component Cm including the node
j, that is, d(j) = |{n ∈ Ni ∩ Cm}|. �

From this theoretical fact, we can see that, if vj 6= vk,
then node j and node k are not in the same connected
component. As a special case, we can find the below fact.

Corollary 2. Suppose the elimination of the node i divides
the graph G into exactly two connected components (r =
2). Then, the equation vj = vk is satisfied if and only if
both nodes j and k are in the same connected component
Cm. �

This fact indicates that, if the number of neighbors Ni

is 2, then the size Cm of both connected components can be
computed from the entries of the perturbed Fiedler vector.
In other cases, i.e. when r ≥ 3, there may exist indexes
j 6= k satisfying both vj = vk and C(j) 6= C(k) due to
d(j)/C(j) = d(k)/C(k): therefore, the sizes Cm of connected
components may not be computed from the values vj of
the perturbed Fiedler vector. To avoid this trouble, it is
possible to use the perturbed Fiedler vector of a weighted
Laplacian matrix instead of a standard Laplacian matrix.

3.2 Estimation algorithm

The overview of the main steps of the proposed estimation
procedure is summarized below.

(1) Compute the perturbed Fiedler vector vi(ε) corre-
sponding to node i using a sufficiently small pertur-
bation parameter ε > 0.

(2) Classify the entries vj of the perturbed Fiedler vec-
tor v(ε).

(3) Calculate the importance ai according to the entries
and the classes.

First, compute the perturbed Fiedler vector v(ε) exploiting
any algorithm available in the literature: it is worth noting
that several algorithms can be found in the literature
for distributed computation of the eigenvectors of the
Laplacian matrix, so we can exploit any of them. Here
we categorize the algorithms into two types:

• Algorithms of the first type (e.g. Gusrialdi and Qu
(2017); Zareh et al. (2018)) can compute the entire
eigenvector v(ε) in a distributed fashion, and there-
fore all the entries vj∈V are available for the node i.

• With algorithms of the second type (e.g. Bertrand
and Moonen (2013)), the node i computes only its
own entry vi and then only the local entries vj∈Ni

are available for the node i.

In case all the entries vj∈V of the perturbed Fiedler vector
are available, the node i classifies the entries vj (except
for vi) into each class Cm. Since the number of classes
is unknown by the node i, some classification algorithms
not using class number (like Pelleg and Moore (2000)) will
work well, and we also have proposed an algorithm for the
connected component classification in Murayama (2018). If
vj 6= 0 and the eigenvalue λ(ε) is available in the eigenpair
estimator, the class size formula

C(j) =
d(j)

λ̇

vj − vi
vj

, (8)

with λ̇ ' λ(ε)/ε is useful to evaluate the classification
error, as shown in our previous study. The differentiated
eigenvalue λ̇ can be calculated from

λ̇ =

∑
n∈Ni

(vi − vn)

vi
, (9)

if vi 6= 0, derived from (5). The cardinal number |Cm| of
each class directly indicates the number Cm of nodes in
the connected component, therefore the importance value
ai is directly computed from the definition (1).

In case only the local entries vj∈Ni
are available, the node

i classifies them into the neighbor classes Dm. Once the
classes Dm have been classified, the importance value ai
is computed in the same manner as in the previous case.
Even if vi = 0, a ratio between two connected components
C(j) and C(k) where j ∈ Dm, k ∈ Dl, and Dm 6= Dl can be
computed as

C(k)

C(j)
=
d(k)vj(vk − vi)
d(j)vk(vj − vi)

, (10)

with vj 6= 0 and vk 6= 0, derived from (6). The label of the
largest connected component M = arg maxCm is found
from the magnitude relationships, then the importance ai
is computed from

ai =
∑
m

Cm

CM
− 1. (11)

In case there are some entries such that vj = 0, the
computations of (8) or (10) do not work well. However,
some racks of information about Cm may be resumed from
the fact

∑
m Cm = V − 1, because it is enough for the

calculation of the importance ai to find the size CM of the
largest component.

4. NETWORK IMPROVEMENT

In this section we propose a method to improve the net-
work robustness according to the importance value. Here
we design the control law for letting articulation nodes
with highest importance to change their configuration to
non-articulation nodes.



We consider robotic nodes with the following single inte-
grator dynamics

ṗi = ui, (12)

where pi and ui denote the position and the control
input of the robot i respectively. The previous studies
in Ghedini et al. (2017) proposed a control law for network
improvement, described as

ui = φuci + ψuri , (13)

where uci is the connectivity maintenance control law, uci
is the control law for robustness improvement, and coef-
ficients φ, ψ are design parameters that represent control
gains.

The connectivity control law uci is defined as the gradient
of an energy function, as

uci = −∂V (λW )

∂pi
= −∂V (λW )

∂λW

∂λW
∂pi

, (14)

where V (·) ≥ 0 is an energy function for the connectivity
maintenance, and λW denotes the second smallest eigen-
value of a weighted Laplacian matrix LW induced by a
weighted adjacency matrix W . Examples of the energy
function and the elements wij of the weighted adjacency
matrix introduced in Ghedini et al. (2017) are given as

V (λW ) =

{
coth(λW − ε), if λW > ε,

0, otherwise,
(15)

wij =

exp(−‖pi − pj‖
2

2σ2
), if ‖pi − pj‖ ≤ R and i 6= j,

0, otherwise,

(16)
where ε > 0 is a designed lower-bound of the weighted
connectivity, R > 0 is the upper-bound of communication
range, and σ > 0 is a scaling factor.

In the previous studies, the robustness improving control
law uri is designed to move a node towards the barycenter
of its weakly connected 2-hop neighbors’ positions. Even
though the control objective of this study differs from the
previous ones, here we employ a similar approach, such
that each robot heads to the barycenter of some neighbors:
the approach tends to get a position consensus, and
therefore the network robustness is expected to improve.

The control law for the robustness improvement in this
study is defined by

uri =


∑

n∈Ni
α(ai, an)(pn − pi)∑
n∈Ni

α(ai, an)
, if

∑
n∈Ni

α(ai, an) 6= 0,

0, otherwise,
(17)

where α(·) is a weight function to reflect the threshold T
of the fragility, for instance

α(ai, an) = ai[ai ≥ T ] + an[an ≥ T ], (18)

where [X] denotes the Iverson bracket such that [X] = 1 if
X is true and [X] = 0 otherwise (detailed in Graham et al.
(1994)). This control law implies that the robot i moves
towards the barycenter of its high important neighbors’
positions pn, considering the weights α(ai, an). By execut-
ing this control law for all robots, each neighbor converges
near the high important robots ai ≥ T : as a consequence,
it is expected that the fragility F (G) is improved by cre-
ating new links connecting these important nodes to their

neighbors, thus leading the importance ai = 0. Because
each robot neighboring the high importance ones moves
according to a consensus-like algorithm with a weighted
graph induced by the weight α(·), the robots continue
to gather until the high importance robots become low
importance ones.

From the control law (13), each robot moves to improve the
node importance while preserving the weighted connectiv-
ity, whenever the network of the system has high fragility.
As the result, the system has the larger configuration space
than that of the system with the high connectivity, and will
preserve a large connected component even if one of the
robots fails.

5. EXPERIMENT

In this section, we show some results of our robustness
concept. Assume that each the robots is equipped with
a sensor which can detect something on a disk D(pi, r),
centered in the robot position pi and with radius r. Since
the network may not be connected due to the failure of
robots, the coverage area of the robotic team is defined
by A =

⋃
i∈CM D(pi, r) where CM denotes the largest

connected component. Thus, the task of the system is to
keep the coverage area A as large as possible, in the risk
of robot failure.

Some results of an experimental example with the pro-
posed control law are shown in Figs. 1 and 2. The ex-
periment were performed on the Robotarium, a swarm
robotics testbed by Georgia Tech, described in Pickem
et al. (2017). In this example, V = 10 robots moved in
order to make the network fragility F (G) go below the
threshold T = 0.25. The robots controlled the network
topology from the initial one (blue lines) to the final one
(red lines) as shown in Fig. 1. We can see from Fig. 1
that the robots converged for the improvement of the high
importance robots, while the low importance robots re-
mained the articulation ones. This fact can also be seen in
Fig. 2, which shows the time variation of the fragility F (G)
and each importance ai. The high importance (ai ≥ T )
robots were improved over time, while the low importance
robots remained unchanged, therefore the fragility was
improved, achieving F (G) < T as the result.

The relation between the coverage area A and the thresh-
old T when a single robot fails is shown in Fig. 3. The result
is derived from numerical simulations with the sensing
radius r = 0.5, and the other conditions are identical
to the experiment described in the preceding paragraph.
Note that the threshold T > 4/5 maintains the initial
graph shown in Fig. 1, and the threshold T ≤ 1/8 brings
a 2-connected graph that we can get from the traditional
robustification method. From the result, we can find that
the minimum coverage area with the threshold T ≤ 3/6 is
larger. Suppose the critical robot fails with probability p
and each the other robot fails with probability (1−p)/(V −
1), then the expected coverage area E(|A|) is described
as Fig. 4. It shows the expected area with the threshold
T ∈ (2/7, 3/6] is the maximum when the probability p
is around 0.55. This fact indicates that the robustness
concept we discussed in this paper is meaningful in the
sense of the coverage.
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Fig. 1. Trajectories of each robot (black lines) and network
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Fig. 2. Network fragility (black line) and importance of
each robot

Fig. 3. Coverage area without robot failure (black line),
average (blue line) and minimum (red line) in case
single robot fails
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Fig. 4. Expected coverage area vs. robot failure probability
with several thresholds

6. CONCLUSION

In this paper, we propose a novel concept about net-
work fragility for the robustness of a multi-robot network
against a robot failure. The concept of the articulation
node importance and the graph fragility are introduced,
then an estimation algorithm for the node importance and
a control law to improve the graph fragility are proposed.
The appropriateness of each the concepts and the meth-
ods are theoretically shown, and preliminary valuation is
provided.
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