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Abstract— In this paper, various bounded confidence opinion 

dynamic algorithms are examined to illustrate the effect of a 

stubborn minority groups on opinion dynamics. A notion of 

variable opinion stubborn agent is defined and it is shown that 

stubborn minorities are able to fully control the opinions of a 

Hegselmann-Krause opinion dynamic system through deliberate 

slow variation in the opinions of stubborn agents. Furthermore, an 

upper bound for the change rate of stubborn agents to preserve 

connectivity and control other flexible agents is given. Moreover, 

a method based on population and growing confidence bound is 

presented to achieve both unanimity and stubborn opinion 

rejection. To support the proposed method simulation results are 

provided. 

Keywords- opinion dynamic; stubborn agent; multi-agent 

systems; bounded confidence; Hegselmann-Krause model. 

I. INTRODUCTION 

One of the prerequisites for agents to cooperate in a multi-
agent platform is to make several agreements through their 
missions. These agreements should be based on the opinion of 
the majority or a combination of all opinions. However, an 
external agent or a stubborn agent in the group is able to severely 
affect the agreement process and a minority of stubborn agents 
are able to take opinion control from a majority of flexible 
agents. Therefore, their underlying opinion dynamic should be 
robust against such effects. An Example of a flexible majority 
with non-flexible minority can be found in food industry such as 
Halal or Kosher foods which are taking more proportion in the 
food groceries than the proportion of religious people in a given 
area with non-religious majorities [1]. Therefore, the nonflexible 
minority could have a substantial role in the decision-making 
process and such a condition is called the dictatorship of the 
small minority. 

In the book, the wisdom of crowds [2], it is shown how 
averaging of guesses about an ox weight is extremely close to its 
actual value and introduces local averaging as a distributed 
method to make a consensus. However, an agent who is deciding 
on its opinion irrespective of other agents, can act as a leader. 
Such an agent is called stubborn agent hereafter in this paper. 
Authors in [3, 4] have illustrated how in a connected graph with 

local averaging agents, the final value of all agents’ opinion will 
approach a convex combination of stubborn agents irrespective 
of their initial opinions. Therefore, the existence of stubborn 
agents in a group of averaging agents will destroy the benefits of 
an averaging system. In [5] a bounded confidence model is given 
by Hegselmann and Krause in which agents with opinions only 
in a bounded confidence can have effect on each other. 
Therefore, this approach will ignore stubborn agent intrusion, 
out of the confidence bound for each agent. Bounded confidence 
opinion dynamic model is a specific type of distance dependent 
networks [6] and connectivity preservation of these networks is 
investigated in [7, 8]. A modification on H-K (Hegselmann-
Krause) model with a decaying confidence bound, in which only 
agents who follow another agent faster than a certain speed 
average their values, is given in [9]. In this scheme, agents will 
get more and more stubborn through the time. Thus, with this 
method a tradeoff exists between averaging benefits and 
stubborn agent isolation. Authors in [10] have proved a fix point 
asymptotic convergence of H-K model in presence of any 
number of close minded agents. Moreover, a modification on H-
K system is given in [11] such that connectivity of agents is 
preserved and unanimity is achieved. This modification 
considers the assumption that any agent initially is a neighbor at 
least to another agent and agents interact slowly enough to 
preserve their initial connectivity.  

This paper shows how close minded agents could affect 
various opinion dynamic models and a method to avoid 
intolerance minority dictatorship is presented, an opinion is 
considered to be a bounded real-valued scalar and the stubborn 
agent effect on various bounded confidence opinion dynamic 
algorithms are examined. 

The rest of the paper is organized as follows: Section II will 
inspect pure averaging, bounded confidence and decaying 
bounded confidence opinion dynamic systems in presence of 
stubborn agents. Section III presents our algorithm to achieve 
unanimity and isolation of stubborn agents, which we call 
population base growing confidence opinion dynamic. Finally, 
section IV concludes the paper. 
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II. EFFECT OF STUBBORN AGENTS ON OPINION DYNAMICS 

A. pure averaging system 

Consensus in distributed pure averaging systems has been 
analyzed in [12, 13] and dynamic behavior model of each agent 
is represented in (1) where any flexible agent averages its own 
opinion with any other neighbors, irrespective of their opinion 
and only based on their adjacency relation, while stubborn 

agents arbitrarily determine their opinion. Here ( )ip t is the 

opinion of agent i  after t  iterations. F and S  are the set of 

flexible and stubborn agents, respectively. iN is the set of 

neighbors of agent i  and the function .  returns cardinality for 

a set and magnitude for a real or complex number. ( )iu t  is a 

deliberate opinion, which a stubborn agent can get in the next 
iteration. 
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Equation (2) Represents a discrete linear dynamic form of 

this dynamic system. Where , , ,A B M x and u are state matrix, 

input matrix,  the number of flexible agents, a vector stack of 
flexible agent’s opinion and a vector stack of stubborn agents, 

respectively and ijA , ijB are element ij of matrices A , B .  
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Proposition 1: Assume all initial opinions to be finite, then 
flexible opinions will stay bounded and stubborn agents have the 
ability to arbitrarily determine the controllable part of flexible 
opinions. 

Proof: 1ij

j

A   and 1ii iA N , therefore

1 1ij i

j i

A N


  . According to the Gershgorin circle 

theorem, ( )A  (i.e. eigenvalues of matrix A ) are in a circle 

with radius 1 1 iN and the circle’s center is at 1 0iN j  in 

the complex plane. Therefore, ( ) 1A  and A  is always 

stable, which proofs boundedness of the system, given 
boundedness of initial opinions of all agents. It is well-known 
with linear system theory, that the controllable part of system (2) 

can be arbitrarily determined by ( )u t  which means controllable 

states in vector ( )x t  that are opinions of flexible agents are 

controllable by ( )u t which is opinion of stubborn agents. 

According to proposition 1, only stubborn agents, 
irrespective of initial values of flexible agents, will determine 
steady state opinions. Figure 1 shows how a single stubborn 
agent is able to change any other opinion in a pure averaging 
system with a circular communication graph (i.e. each agent is 
in contact with exactly two other agents). The simulation is done 
over 10 agents with random initial opinions and a single 
stubborn agent with fix opinion.  

B. Hegselmann-Krause system 

One of the most popular mathematical models in opinion 
formation of multi-agent systems has been introduced by 
Hegselmann and Krause [5], that is an opinion dynamic model 
in which agents only interact with each other in a certain 
confidence bound. This model is developed to simulate 
fragmentation and polarization of opinions and effect of various 
type of agents in such a system has been analyzed. Authors in 
[14] have illustrated the effect of charismatic and radical agents, 
while [15] derived optimal controller for a leader and [16] has 
analyzed Bayesian decision makers in bounded confidence 
opinion dynamics. Also, various modifications are published to 
extend H-K model for various goals [11, 17-19]. 

Equation (3) represents a mathematical formulation of 

Hegselmann-Krause model, where iR  is the confidence bound. 
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Theorem 1: A variable cooperative stubborn group with a 

rate of change less than min( )i
M R

N
is able to determine an 

arbitrary unanimous consensus of the whole group, with 

tolerance of min( )iR  in finite time less than

3 1
2 min( )i

DN
M R

  
  

 iterations, where 

max( ) min( )D p p  is the size of opinion space. ,N M are 

number of whole agents and number of  stubborn agents, 
respectively. 
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Figure 1 pure averaging system with a single stubborn agent

Proof:  Consider all flexible agents to be in agreement 

initially with opinion fp  and all stubborn agents to be 

cooperative and in agreement with opinion sp , then:  

( 1) ( ) ( )f f s

N M M
p t p t p t

N N


    



Flexible agents only interact with agents in their confidence 

bound. Therefore, ( )sp t should stays in 

( ) min( ), ( ) min( )f i f ip t R p t R     interval to preserve 

connectivity with flexible agents, which makes sure all the 
agents to be interacting. Therefore, the best choice for stubborn 
agents is to choose one of the extreme points. Without losing 

generality, consider ( ) min( )s f ip p t R  then: 

( 1) ( ) ( ( ) min( ))f f f i

N M M
p t p t p t R

N N


     

( 1) ( ) min( )f f i

M
p t p t R

N
    (6) 

Therefore:  

( 1) ( ) min( )s s i

M
p t p t R

N
    (7) 

which means the maximum rate for stubborn agents, not to lose 

interaction with flexible agents, is less than min( ).i
M R

N
However, the case of initial unanimity of flexible agents is the 
worst case for stubborn agents. Otherwise, it was easier for 
stubborn agents to interact with a smaller group of flexible 
agents. Arbitrary unanimous consensus for stubborn agents to 
rule in H-K system can be divided in two phases: 

 Unanimity: in which stubborn agents collect flexible 
agents and determination, in which the group is guided 
toward an arbitrary point. Without losing generality 
consider final desired opinion is in the upper half of 
opinion space. In the first phase, stubborn agents should 
start at the minimum allowed opinion and increase their 

opinion with a rate less than min( )i
M R

N
up to the 

maximum allowed opinion. This phase will be done at 

least in iterations less than
min( )i

DN
M R

 
  

. 

 Arbitrarily determination of the final opinion: After the 
unanimity phase, which in this case all agents will have 
the maximum allowed idea, stubborn agents will change 
their opinion to the desired final opinion with a rate less 

than min( )i
M R

N
, as we assumed that the desired 

opinion is in the upper half space of opinions, therefore 

it needs at most 
2 min( )i

DN
M R

 
  

 iterations for the 

stubborn agent to arbitrarily determine the final opinion 
after the first phase.  

Altogether, it needs a finite number of iterations less than 

3 1
2 min( )i

DN
M R

  
  

for the H-K system to be under 

unanimous consensus determined by stubborn agents. Figure 2 
illustrates how a stubborn agent is able to make an arbitrary 
unanimous consensus in a bounded confidence system with 
random initial opinions in the interval [0-10] with uniform 

1iR   and the arbitrary opinion to be achieved is 8. 

C. decaying bounded confidence system 

Authors in [9] has modified H-K model with a decaying 
bounded confidence. This modification leads to stubbornness of 
flexible agents throughout the time. A mathematical description 
of this modification is represented in (8). 
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a) 

 

 

b) 

Figure 2 a)stubborn rule out in H-K system b) the first 30 iterations 

magnified 

Corollary1: A maximum rate less than min( )ct

i
M R e

N


in 

each iteration is needed for stubborn agents to stay in contact 
with their flexible neighbors and there is no guarantee for a finite 
time arbitrary determination or unanimous consensus in this 
model. 

Proof: Directly from theorem1 with the notion of 
exponential decaying of confidence bound. 

Therefore, the rate of decaying confidence bound in this 
model provides a tradeoff between the maximum time of 
interaction and isolating stubborn agent effect. This approach 
will lead to more fragmentation of opinions and unanimous 
consensus will be far from reaching for a bigger decay rate of 
confidence bound. Also, a unique initial time for all agents is 
needed for this model and the system is going to be frozen as 
time elapse. 

III. POPULATION BASE GROWING CONFIDENCE BOUND 

METHOD  

This section provides a method to reject stubborn minorities, 
while achieving unanimity among flexible agents. It is known 
that confidence should be large to achieve unanimity in a 
bounded confidence dynamic system while large confidence is 
a gateway for stubborn agents to intrude and this tradeoff is 
intrinsic in such systems. To resolve this tradeoff, population of 

an opinion can be defined as the number of agents, which have 
that opinion in a given bound. If interaction protocol is such that 
only opinions, with more followers, impact agents with less 
popular opinions then minorities will be isolated. Our proposed 
method uses a growing confidence bound so that agents will 
have an opportunity to make a local agreement at the beginning 
iterations while they are safeguarded against stubborn agents by 
mean of a small confidence bound. However, while the 
confidence bound grows, population of local agreements can be 
higher than number of stubborn agents, which provides a 
safeguard by means of population. Therefore, a population based 
growing confidence bound can be used to have benefits of the 
pure averaging system together with the benefits of decaying 
bound opinion dynamic systems. 

In (9) ( )iP p is a function which returns number of agents 

with opinion ip in a certain bound 0R . Therefore agents with 

difference in opinion less than 0R are belonging to the opinion

ip . Also, confidence bound for each agent ( )iR t grows 

exponentially until it reaches the size of  opinion space and

1i  is the growing confidence rate for agent i .  

( )

( ) | ( ) ( )

( 1)

| ( ) | ( ) ( )

( 1) ( )

p t
j

j p p R t j N P p P p
i j i i j

p t i F
i

j N p p R t j N P p P p
i j i i j

p t u t i S
i i




     
   
  

      
 

   


 
(9) 

where: 

( ) |
0

P p j p p R
i i j

 
   
 

 

And 

( 1) ( ) ( )

( 1) ( ) .

R t R t R t D
i i i i

R t R t o t
i i

  


 

 

Lemma 1 [13]: The necessary and sufficient condition for a 
multi agent system to reach unanimous consensus is strong 
connectivity of its communication digraph.  

Crollary1: For 1i    all flexible agents in (9) will always 

converge to a unanimous consensus. 

Proof: For 1i  , ( )iR t D will occur after some finite 

iterations, and at least one opinion group i  will have 

( ) ( )P p P p
i j
 for any other j , therefore after a finite time all 

agents will average their values at least with the majority group 
or groups. Therefore, the communication digraph is strongly 
connected after a finite time. Therefore, according to lemma 1, 
agents will have a unanimous agreement. All agents will 
converge to the majority group or a convex combination of 
majority groups in situations where there appear various 
majority opinion groups with equal followers. 
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Proposition 2: For opinion dynamic (9), after formation of 
a majority group, finite time needed for stubborn agents to 
arbitrarily set the consensus could be arbitrarily large.  

Proof: Stubborn agents should stay in the bound 

0 0( ) , ( )g gp t R p t R     to be in the same group with gp , 

therefore to preserve their group the maximum rate of opinion 

change for stubborn agents is 0
M R

N
 with the same argument 

in theorem1. With 0 0R  , the time to arbitrarily determine final 

consensus value,
0

3 1
2

DN
MR

  
  

 could be infinitely large. 

Remark 1: In a practical noisy analogue communication 

between agents 0 0R   is not acceptable, because it is virtually 

impossible to have agents with the same opinion and all of the 
opinion groups will only contain a single agent.  However, in 

digital communications 0 0R  is possible. 

Figure 3 illustrates interaction of 10 flexible agents with opinion 
dynamic (9) and a single stubborn agent, it shows that flexible 
agents will be in unanimous agreement without fragmentation 

while in its counterpart H-K model with a small confidence 
bound there will exist polarization and the stubborn agent were 
able to attract flexible agents in their confidence bound. 

IV. CONCLUSION 

Averaging system’s vulnerability to stubborn agent effect 
has been analyzed in this paper. It has been shown that pure 
averaging systems could be under full control of stubborn 
agents. Even though bounded confidence systems are known to 
have robustness against external opinions, we have shown a 
finite time arbitrary determination process for opinion control in 
bounded confidence systems. In addition, decaying bound 
opinion dynamic has been analyzed and it showed less 
susceptibility against stubbornness. However, a decaying bound 
will lead to stubbornness of all agents and averaging benefits 
will be lost. Therefore, a method based on population and 
growing bounds have been presented which rejects stubborn 
agent effect at the beginning iterations by a small initial 
confidence bound while after formation of a majority group or 
groups we showed that minority of stubborn agents are unable 
to arbitrarily determine final opinion of the flexible agents.

 

Figure 3  population base growing confidence opinion dynamic 
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