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Abstract. Biomass gasification is regarded as one of the most promising 

technology in the renewable energy field. The outcome of such operation, 

i.e. the synfuel, can be exploited in several ways, for example powering 

engines and turbines, and is considered more flexible than the biomass itself. 

For this reason, a careful analysis of the gasification performance is of 

paramount importance for the optimization of the process. One of the 

techniques that can be used for such a purpose, is the numerical analysis. 

CFD is indeed a tool that can be of great help in the design and study of the 

operation of the gasifier, allowing for an accurate prediction of the operating 

parameters. In this work, a downdraft gasifier is considered, and the biomass 

is made of wood chip. The present analysis is devoted to build the numerical 

model and simulate all the reactions that happen inside an actual gasifier, 

considering the drying of the wood chip, heating, pyrolysis, and combustion. 

Good match with experimental results is found, making the numerical model 

here presented a reliable virtual test bench where investigating the effects of 

variation in the working parameters. 

1 Introduction  

Energy derived from biomass gasification becomes more and more attractive in recent years. 

The growing interest in this energy source comes from the combination of different factors: 

the interest in the reduction of greenhouse gas emissions, the local availability of the energy 

source and the fluctuating price of oil and natural gas [1]. Furthermore, unlike wind or solar, 

energy supply derived from biomass is predictable. For this reason, biomass can help 

renewable grids to meet energy demands without discontinuities. Gasification is a thermal-

chemical process that converts biomass into synthesis gas (syngas) with useful calorific 

value, containing CO, H2 and CH4. The syngas obtained has, therefore, a high hydrogen-to-

carbon (C/H) ratio and can be used as fuel to power gas turbines [2], internal combustion 

engines [3] and fuel cells [4]. Downdraft gasifier is one of the promising technologies that 

allows the conversion of biomass at small and medium scales [5,6]. In these fixed-bed 

devices, biomass is fed from the upper part of the gasifier while air is supplied centrally 

through an inlet pipe. The product of the process, such as syngas and ash, comes out from 
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the bottom of the gasifier. The particles are subjected to different thermal-chemical reactions 

such as drying, pyrolysis and char oxidation/gasification. Those reactions take place in 

different zones of the gasifier, with no well-defined boundaries among them [7]. Key aspects 

for the design and the optimization of gasifiers are the prediction of the syngas composition 

and the prediction of the temperature distribution along the reactor. For this reason, CFD 

modeling of downdraft gasifiers is receiving increasing attention in the last years. The set-up 

of a kinetic model [8] can predict the gas-solid transport phenomena and the kinetics of the 

reaction in each zone of the reactor. In this work, the CFD simulation of a test-case reactor 

from literature [9] is proposed. This test case is a downdraft gasifier fueled with woody 

biomass. The governing chemical reactions of the process have been taken from [10]. The 

aims of the work are to show the methodology of gasification modeling and to compare the 

results obtained on the same reactor geometry using different kinetic reaction parameters. 

The temperature profile along the reactor is compared with the one showed in the test case 

[8].  

2 Computational Model  

The downdraft gasifier has been simulated with the commercial finite volume code FLUENT 

[11]. The assumptions made in the study are the following: 

 The flow is steady and two-dimensional; 

 The feedstock is modeled with the Discrete Phase Model (DPM), according to the 

small dimension of the particles; 

 The particles have a uniform distribution in size and shape; 

 The chemical reactions are modeled with the species transport with Finite 

Rate/Eddie Dissipation; 

 The radiation is modeled with the Discrete Ordinates (DO) model. 

The SIMPLE algorithm is used for velocity-pressure coupling and the turbulence is modeled 

by κ-ε with scalable wall functions. A second order discretization scheme is used for all 

calculated variables. The two-way model is used to couple momentum, heat and mass transfer 

between gas and solid phases. Turbulence dispersion of particles is modeled by using the 

Discrete Random Walk model. 

2.1 Geometry and Mesh 

The geometry of the test-case gasifier is reported in Fig.1. The assumption of an 

axisymmetric flow inside the reactor leads to a two dimensional model of the geometry. The 

total number of triangular cells in the mesh is 43,053. An enlarged view of the grid of the 

nozzle and the throat is reported in Fig.1. 

2.2 Governing Equations 

The governing equations for continuity, momentum, energy, turbulent kinetic energy κ, 

turbulent dissipation rate ε and species transport are applied to the continuous phase.  

The following transport equation [11] governs the chemical reactions for the ith species: 
𝜕

𝜕𝑡
(𝜌𝑌𝑖) +  

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑌𝑖) =  

𝜕

𝜕𝑡
(𝜌𝑌𝑖𝐷𝑖

𝜕𝑌𝑖

𝜕𝑥𝑗
) + 𝑅𝑖 + 𝑆𝑖     (1) 

where 𝑌𝑖 is the mass fraction, 𝑢𝑗 is the velocity component, 𝐷𝑖  is the diffusion coefficient, 𝑅𝑖 

is the reaction source term and 𝑆𝑖  represents the source term. The term 𝑅𝑖 can be written as: 

𝑅𝑖 = 𝑀𝑤,𝑖 ∑ Ȓ𝑖,𝑟
𝑁𝑅
𝑟=1       (2) 
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where 𝑀𝑤,𝑖 is the molecular weight of species i, Ȓ𝑖,𝑟 is the molar rate of creation/distruction 

of species i in reaction r and 𝑁𝑅 is the number of reactions in which the species i participates. 

The reaction source term for the species i is governed by the stoichiometric relation for the 

𝑟𝑡ℎreaction: 

∑ 𝑣𝑖,𝑟
′𝑁

𝑖=1 𝑀𝑖

𝑘𝑏,𝑟
⇐  

𝑘𝑓,𝑟
⇒   ∑ 𝑣𝑖,𝑟

′′𝑁
𝑖=1 𝑀𝑖     (3) 

where M is the symbol denoting the 𝑖𝑡ℎspecies, 𝑣𝑖,𝑟
′  is the stoichiometric coefficient for 

reactant i in reaction r, 𝑣𝑖,𝑟
′′  is is the stoichiometric coefficient for product i in reaction r and 

N is the number of chemical species in the system. The molar rate of creation/distruction of 

species i in reaction r is expressed as: 

Ȓ𝑖,𝑟 =  𝛤 (𝑣𝑖,𝑟
′′ − 𝑣𝑖,𝑟

′ )(𝑘𝑓,𝑟  ∏ [𝐶𝑗,𝑟]
𝜂𝑗,𝑟
′

− 
𝑁𝑟
𝑗=1 𝑘𝑏,𝑟  ∏ [𝐶𝑗,𝑟]

𝜂𝑗,𝑟
′′

) 
𝑁𝑟
𝑗=1   (4) 

where 𝛤 represents the effects of third bodies on the reaction rates, 𝐶𝑗,𝑟 is the molar 

concentration of each reactant and product species j in reaction r, 𝜂𝑗,𝑟
′  is the forward rate 

exponent, 𝜂𝑗,𝑟
′′  is the backward rate exponent and 𝑁𝑟 is the number of chemical species in 

reaction r. For a general reaction r the forward reaction rate is written as: 

𝑘𝑓,𝑟 =  𝐴𝑟𝑇
𝛽𝑒−

𝐸𝑟
𝑅𝑇      (5) 

where 𝐴𝑟 is the pre-exponential factor, 𝐸𝑟  is the activation energy and β is the temperature 

exponent. 

 
Fig.1 Schematic geometry of the test-case reactor, the fluid domain used in the CFD model and an 

enlarged view of the nozzle. 

2.3 Chemical Reactions Modeling 

Feedstock enters the upper part of the gasifier at 50 °C. The proximate and ultimate analysis 

of the wood biomass used in this work is reported in Tab.1 and is taken from [9]. The wood 

particles are modeled as spheres of 0.1 mm in diameter according to the limitation of the 

discrete phase model. The high heating value (HHV) and the density used for biomass in the 

model are 18 MJ/kg and 400 kg/m3, according to [9]. 

Table 1. Proximate and Ultimate analysis of wood. The values refer to the composition in mass [%]. 

Proximate 

Analysis  
[%] 

Ultimate Analysis [%] 

Fixed Carbons 31.46 Carbon 49.59 

Volatile 56.39 Hydrogen 6.28 

Moisture 9.71 Oxygen 43.74 
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Ash 2.44 
Nitrogen 0.39 

Sulfur 0.00 

2.3.1 Drying 

Evaporation of water is the first step involving biomass feedstock at the top of the reactor. 

The content of moisture contained in biomass needs to be evaporated before continuing the 

gasification. The energy invested in the water vaporization is not recoverable and for this 

reason, this process is not negligible in gasification modeling. The reaction of water 

evaporation from wood is modeled using the wet combustion model provided in FLUENT 

[11]. 

2.3.2 Pyrolysis 

The pyrolysis represents the step in which biomass is devolatilized. The products of pyrolysis 

are gases (CO, H2, H2O and CH4), liquids (tar) and solid (char). In this step, no external agent 

is needed. This process is typically carried out in a temperature range of 300°C – 650 °C. 

The volatiles release from the wood particle is modeled with the single kinetic rate model: 

−
𝑑𝑚𝑝

𝑑𝑡
= 𝑘[𝑚𝑝 − (1 − 𝑓𝑣,0)(1 − 𝑓𝑤,0)𝑚𝑝,0]    (6) 

where 𝑚𝑝 is the mass of the particle, 𝑓𝑣,0 is the mass of volatiles initially present in the 

particles, 𝑓𝑤,0 is the mass fraction of evaporating material and 𝑘 is the kinetic rate constant 

and 𝑚𝑝,0 is the initial mass of the particle. The pre-exponential factor and the activation 

energy of the devolatilization process are taken from [12] and are respectively 108 s-1 and 140 

kJ/mol. The scheme provided by FLUENT is used to model the volatiles decomposition. The 

presence of TAR is not considered in the present analysis. 

2.3.3 Char Oxidation and Gasification 

The products of pyrolysis involve homogeneous and heterogeneous reactions that take place 

in the throat of the reactor. Gasification reactions are for the most part endothermic. However, 

to provide the required heat to trigger drying and pyrolysis processes, exothermic reactions 

of combustion inside the gasifier are allowed [1].To model these reactions the multiple 

surface reaction model is provided [11]. The reactions list provided to model gas-phase (GP) 

and solid-phase (SP) reactions is reported in Tab. 2. In Tab.2 the values of pre-exponential 

factor (𝐴𝑟), activation energy (𝐸𝑟) and temperature exponent (𝛽) are also reported. 

Table 2. Reaction kinetics of gas-phase (GP) and solid-phase (SP) reactions in the gasification 

process. 

Reaction 𝐴𝑟 (s-1) 𝐸𝑟  (kJ/mol) 𝛽 Reference 

2CO + O2 →2CO2 (R1 – GP) 1.30e+11 126.0 0 [13] 

2H2 + O2 → 2H2O (R2 – GP) 3.50e+08 30.5 0 [13] 

CO + H2O → CO2 + H2 (R3 – GP) 0.0265 65.8 0 [14] 

C + O2 → CO2 (R4 – SP) 5.67e+09 160.0 0 [14] 

2C + O2 → 2CO (R5 – SP) 7.92e+04 218.0 0 [14] 

C + CO2 → 2CO (R6 – SP) 5.89e+02 223.0 1 [13] 

C + 2H2 → CH4 (R7 – SP) 1e+11 42.0 0 [14] 
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C + H2O → CO + H2 (R8 – SP) 5.714 65.8 1 [13] 

2.4 Boundary Conditions 

The boundary conditions are based on literature data [9,12,14] for wood gasification in 

downdraft reactors. Four values of Equivalence Ratio (ER), between 0.19 and 0.43, have 

been tested. The mass flow rate value of feedstock is set at 0.011 kg/s for all the simulations 

while the air flow rate changes according to the ER. The stoichiometric ratio of air to wood 

is 6:1. The boundary condition at the bottom of the reactor has been modeled as an outflow.  

The heat exchange on the wall is modeled with mixed convection and radiation condition. 

The physical constants of fiberglass are used to model the insulation section [9]. 

3 Results 

The work of Janajreh et al. [9] provides a comparison between experimental measures on the 

reactor and CFD results. In Fig..2.a the comparison between the temperature profiles taken 

from [9] and the temperature profile obtained in the present work is reported. The temperature 

profiles are obtained for an Equivalence Ratio of 0.24.  

 
Fig. 2 a) Comparison between the temperature profiles of [9] and the temperature profile obtained in 

the present work, b) contour of the temperature inside the reactor for an ER of 0.24. 

 

As shown in Fig.2.a the increasing of temperature starts at the top of the gasifier when 

moisture release begins. As expected, the highest temperature value is reached in the zone of 

the throat where combustion reaction takes place. The results of the present work 

underestimate the temperature values in the upper part of the reactor. This is due to the 

different reactions used in this work with respect to those in [9]. The contour of the 

temperature inside the reactor is reported in Fig.2.b. Three of the most significant zones of 

the reactor have been highlighted: zone a) indicates the end of the drying process, zone b) 

indicates the end of devolatilization and zone c) represent the reduction zone. Four different 

values of Equivalence Ratio, 0.19, 0.24, 0.31 and 0.43, have been simulated. In Fig.3 four 

temperature profiles, one for each ER value, have been plotted. The peaks of the temperature 

profiles are located in the zone of the throat. The difference between the four conditions lies 

in the gas exit temperature: the higher the Equivalence Ratio, the lower is the outlet gas 

temperature. 
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4 Conclusion 

In this paper, the numerical analysis of a wood-chips downdraft gasifier is provided. A test 

case taken from literature has been simulated with an alternative set of reactions. Finally, the 

results have been compared with the experimental measurements on the reactor. The 

methodology followed to set up the numerical analysis is reported in detail. The simulation 

found a good agreement with the experimental data, confirming the reliability of the 

numerical model.  

 
Fig. 3 Temperature profiles along the reactor axis for the four different values of ER. 

 
The work was carried out within the framework of the research project ''SYNBIOSE - Gassificazione di biomasse 

lignocellulosiche in sistemi di cogenerazione di piccola taglia (200 kW) per applicazioni nel settore terziario'' (CUP 

G96G16000800003) funded by ''Cassa per i servizi energetici e ambientali'' within the call ''Bando di gara per 
progetti di ricerca di cui all'art. 10, comma 2, lettera b) del decreto 26/1/2000, previsti dal Piano triennale 2012-2014 

della ricerca di sistema elettrico nazionale e dal Piano operativo annuale 2013.'' 
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