$\eta\text{-}\textsc{Einstein}$ sasakian immersions in non-compact sasakian space forms

GIANLUCA BANDE, BENIAMINO CAPPELLETTI-MONTANO, AND ANDREA LOI

ABSTRACT. The aim of this paper is to study Sasakian immersions of (non-compact) complete regular Sasakian manifolds into the Heisenberg group and into $\mathbb{B}^N \times \mathbb{R}$ equipped with their standard Sasakian structures. We obtain a complete classification of such manifolds in the η -Einstein case.

1. INTRODUCTION

Sasakian geometry is considered as the odd-dimensional counterpart of Kähler geometry. Despite the Kähler case, where the study of Kähler immersions is well developed, due to the seminal work of Calabi [6] (see also [15] for a modern treatment and an account on the subject), in the Sasakian setting there are few results. Most of the Sasakian results are concerned with finding conditions which ensure that a Sasakian submanifold is totally geodesic or similar geometric properties (see, for instance, [12, 13, 14]).

In [7] the second and the third authors studied Sasakian immersions into spheres. In particular they proved the following classification result:

THEOREM ([7]). Let S be a (2n+1)-dimensional compact η -Einstein Sasakian manifold. Assume that there exists a Sasakian immersion of S into \mathbb{S}^{2N+1} . If N = n+2 then S is Sasaki equivalent to \mathbb{S}^{2n+1} or to the Boothby-Wang fibration over Q_n , where $Q_n \subset \mathbb{C}P^{n+1}$ is the complex quadric equipped with the restriction of the Fubini–Study form of $\mathbb{C}P^{n+1}$.

Since the (Sasakian) sphere is one of the three "models" of Sasakian space forms, it is quite natural to study as a second step the immersions into Sasakian space forms.

In this paper we give a complete characterisation of Sasakian immersions of complete, regular, η -Einstein Sasakian manifolds into a non-compact Sasakian space form M(N, c), proving the following:

THEOREM 1. Let S be a (2n + 1)-dimensional connected, complete, regular η -Einstein Sasakian manifold. Suppose that there exists $p \in S$, an open neightborhood U_p of p and a Sasakian immersion $\phi : U_p \to M(N, c)$, where $c \leq -3$. Then S is Sasaki equivalent to $M(n, c)/\Gamma$ where Γ is some discrete subgroup of the Sasakian-isometry group of M(n, c). Moreover, if $U_p = S$ then $\Gamma = \{1\}$ and ϕ is, up to a Sasakian transformation of M(N, c), given by

$$\phi(z,t) = (z,0,t+c)$$

Date: February 17, 2020.

²⁰¹⁰ Mathematics Subject Classification. 53C25; 53C55.

Key words and phrases. Sasakian; Sasaki–Einstein; η -Einstein; Sasakian immersion; Kähler manifolds; Kähler immersions, Sasakian space form.

The authors were supported by Prin 2015 – Real and Complex Manifolds: Geometry, Topology and Harmonic Analysis – Italy and by Fondazione di Sardegna (Project STAGE) and Regione Autonoma della Sardegna (Project KASBA). All the authors are members of INdAM-GNSAGA - Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni.

2 GIANLUCA BANDE, BENIAMINO CAPPELLETTI-MONTANO, AND ANDREA LOI

Theorem 1 is a strong generalisation of [12, Theorem 3.2] which asserts that a complete, ϕ -invariant, η -Einstein submanifold of codimension 2 of the (2N + 1)-dimensional Heisenberg group is necessarily a totally geodesic submanifold Sasaki-equivalent to a copy of a (2N - 1)-dimensional Heisenberg group and similarly for totally geodesic submanifolds of $\mathbb{B}^N \times \mathbb{R}$, where \mathbb{B}^N denotes the unit disc of \mathbb{C}^N equipped with the hyperbolic metric. In fact in our result there is no restriction on the codimension and we assume that we have a Sasakian immersion instead of a ϕ -invariant submanifold. Moreover the immersion is not necessarily injective and is not assumed to be from the whole space but from an open neighbourhood of a point.

The general philosophy in [7] and in this paper is to take into account the transversal Kähler geometry of the Reeb foliation. When a regular Sasakian manifold is compact as in [7], one can use the so-called Boothby-Wang construction [3], which realises the space of leaves as a Kähler manifold which is the base of a principal S^1 -fibration. Then one translates the immersion problem into a Kähler immersion problem of the base spaces.

Trying the same trick in the non-compact case is more complicated because the Boothby-Wang construction fails in general, even if the Sasakian manifold is regular. Nevertheless, the Reeb foliation has the strong property to be both a totally geodesic and a Riemannian foliation. Assuming the Sasakian manifold complete, one can appeal to the result of Reinhart [19] which says that the space of leaves is the base space of a fibration, and once again translate the problem into one on Kähler immersions.

The paper contains two other sections. In Section 2 we recall the main definitions and some foliation theory needed in the proof of Theorem 1 to whom Section 3 is dedicated.

2. Preliminaries

A contact metric manifold is a contact manifold (S, η) admitting a Riemannian metric g compatible with the contact structure, in the sense that, defined the (1, 1)-tensor ϕ by $d\eta = 2g(\cdot, \phi \cdot)$, the following conditions are fulfilled

(1)
$$\phi^2 = -Id + \eta \otimes \xi, \quad g(\phi, \phi) = g - \eta \otimes \eta$$

where ξ denotes the *Reeb vector field* of the contact structure, that is the unique vector field on S such that

$$i_{\xi}\eta = 1, \quad i_{\xi}d\eta = 0$$

A contact metric manifold is said to be *Sasakian* if the following integrability condition is satisfied

(2)
$$N_{\phi}(X,Y) := [\phi X, \phi Y] + \phi^2[X,Y] - \phi[X,\phi Y] - \phi[\phi X,Y] = -d\eta(X,Y)\xi,$$

for any vector fields X and Y on S.

Two Sasakian manifolds (S_1, η_1, g_1) and (S_2, η_2, g_2) are said to be *equivalent* if there exists a contactomorphism $F: S_1 \longrightarrow S_2$ between them which is also an isometry, i.e.

(3)
$$F^*\eta_2 = \eta_1, \quad F^*g_2 = g_1.$$

One can prove that if (3) holds then F satisfies also

$$F_{*_x} \circ \phi_1 = \phi_2 \circ F_{*_x}, \quad F_{*_x} \xi_1 = \xi_2$$

for any $x \in S_1$. An isometric contactomorphism $F : S \longrightarrow S$ from a Sasakian manifold (S, η, g) to itself will be called a *Sasakian transformation* of (S, η, g) .

It is a well-known fact [4] that the foliation defined by the Reeb vector field of a Sasakian manifold S has a transversal Kähler structure. Using the theory of Riemannian

submersions one can prove that the transverse geometry is Kähler-Einstein if and only if the Ricci tensor of S satisfies the following equality

(4)
$$\operatorname{Ric} = \lambda g + \nu \eta \otimes \eta$$

for some constants λ and ν . Any Sasakian manifold satisfying (4) is said to be η -Einstein (see [5] for more details).

A remarkable property of η -Einstein Sasakian manifolds is that, contrary to Sasaki-Einstein ones, they are preserved by \mathcal{D}_a -homothetic deformations, that is the change of structure tensors of the form

(5)
$$\phi_a := \phi, \quad \xi_a := \frac{1}{a}\xi, \quad \eta_a := a\eta, \quad g_a := ag + a(a-1)\eta \otimes \eta$$

where a > 0.

By a Sasakian immersion (often called invariant submanifolds or Sasakian submanifolds in the literature) of a Sasakian manifold (S_1, η_1, g_1) into the Sasakian manifold (S_2, η_2, g_2) we mean an isometric immersion $\varphi : (S_1, g_1) \longrightarrow (S_2, g_2)$ that preserves the Sasakian structures, i.e. such that

(6)
$$\varphi^* g_2 = g_1, \quad \varphi^* \eta_2 = \eta_1,$$

(7)
$$\varphi_*\xi_1 = \xi_2, \quad \varphi_* \circ \phi_1 = \phi_2 \circ \varphi_*$$

We refer the reader to the standard references [2, 4] for a more detailed account of Riemannian contact geometry and Sasakian manifolds.

Sasakian space forms. Recall that the curvature tensor of a Sasakian manifold is completely determined [2] by its ϕ -sectional curvature, that is the sectional curvature of plane sections of the type $(X, \phi X)$, for X a unit vector field orthogonal to the Reeb vector field.

A Sasakian space form is a connected, complete Sasakian manifold with constant ϕ sectional curvature. According to Tanno [20] there are exactly three simply connected Sasakian space forms depending on the value c of the ϕ -sectional curvature: the standard Sasakian sphere up \mathcal{D}_a -homothetic deformation if c > -3, the Heisenberg group $\mathbb{C}^n \times \mathbb{R}$ if c = -3 and the hyperbolic Sasakian space form $\mathbb{B}^n \times \mathbb{R}$ if c < -3. Notice that each simply connected space form admits a fibration over a Kähler manifold and in the non-compact cases the fibration is trivial.

We denote by M(n, c) the simply connected (2n + 1)-dimensional Sasakian space form with ϕ -sectional curvature equal to c. Every connected, complete Sasakian space form is Sasakian equivalent to $M(n, c)/\Gamma$, where Γ is a discrete subgroup of the Sasakian transformation group of M(n, c).

Immersions and regular foliations. We recall some basic concepts from foliation theory (see e.g. [16, 18]). Let M be a smooth manifold of dimension n. A foliation can be defined as a maximal foliation atlas on M, where a foliation atlas of codimension q on Mis an atlas

$$\{\varphi_i: U_i \longrightarrow \mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^q\}_{i \in \mathcal{I}}$$

of M such that the change of charts diffeomorphisms φ_{ij} locally takes the form

$$\varphi_{ij}(x,y) = \left(g_{ij}(x,y), h_{ij}(y)\right).$$

Each foliated chart is divided into *plaques*, the connected components of

$$\varphi_i^{-1}\left(\mathbb{R}^p \times \{y\}\right),\,$$

where $y \in \mathbb{R}^{q}$, and the changes of chart diffeomorphism preserve this division.

DEFINITION 2. A foliated map is a map $f : (M, \mathcal{F}) \longrightarrow (M', \mathcal{F}')$ between foliated manifolds which preserves the foliation structure, i.e. which maps leaves of \mathcal{F} into leaves of \mathcal{F}' .

Now, let (M, \mathcal{F}) and (M', \mathcal{F}') be foliated manifolds and $f : M \longrightarrow M'$ be an immersion. Moreover, assume that f is a foliated map. Thus

$$f_{*_x}(L(x)) \subset L'(f(x))$$

for each $x \in M$, where $L = T(\mathcal{F})$ and $L' = T(\mathcal{F}')$. In particular, it follows that $\dim(\mathcal{F}) \leq \dim(\mathcal{F}')$. The proof of the following proposition is quite standard and will be omitted:

PROPOSITION 3. (M, \mathcal{F}) and (M', \mathcal{F}') be foliated manifolds of dimension n and n', respectively, and $f: M \longrightarrow M'$ be a foliated immersion. Suppose that $\dim(\mathcal{F}) = \dim(\mathcal{F}')$. Then for each $x \in M$ there are charts $\varphi: U \longrightarrow \mathbb{R}^p \times \mathbb{R}^q$ for M about x and $\varphi': U' \longrightarrow \mathbb{R}^p \times \mathbb{R}^{q'}$ for M' about f(x) such that

- (i) $\varphi(x) = (0, ..., 0) \in \mathbb{R}^n$
- (ii) $\varphi'(f(x)) = (0, \dots, 0) \in \mathbb{R}^{n'}$
- (iii) $F(x_1, \ldots, x_n) = (x_1, \ldots, x_n, 0, \ldots, 0)$, where $F := \varphi' \circ f \circ \varphi^{-1}$
- (iv) $L(x) = \operatorname{span}\left\{\frac{\partial}{\partial x_1}(x), \dots, \frac{\partial}{\partial x_p}(x)\right\}$

(v)
$$L'(f(x)) = \operatorname{span}\left\{\frac{\partial}{\partial x_1}(f(x)), \dots, \frac{\partial}{\partial x_p}(f(x))\right\}$$

where $p = \dim(\mathcal{F}) = \dim(\mathcal{F}'), q = n - p, q' = n' - p.$

Let \mathcal{F} be a foliation on a manifold M and let L be a leaf of \mathcal{F} . It is well known that L intersects at most a countable number of plaques in a foliated chart U. Now we give the following definition.

DEFINITION 4 ([18]). A foliation \mathcal{F} is said to be *regular* if for any $x \in M$ there exists a foliated chart U containing x such that every leaf of \mathcal{F} intersects at most one plaque of U.

The following proposition is a generalisation to the non-compact case and to immersions of [11, Proposition 3.1]:

PROPOSITION 5. Let (M, \mathcal{F}) and (M', \mathcal{F}') be foliated manifolds such that $\dim(\mathcal{F}) = \dim(\mathcal{F}')$. If there exists a foliated immersion $f : (M, \mathcal{F}) \longrightarrow (M', \mathcal{F}')$ and \mathcal{F}' is regular, then \mathcal{F} is also regular.

Proof. Assume that \mathcal{F} is not regular. Then there exists a point $x \in M$ and a leaf L of \mathcal{F} such that, for any foliated chart U containing x, L intersects more then one plaque in U. Let us consider the foliated charts U and U', respectively about x and f(x), satisfying the properties stated in Proposition 3. Then there exist at least two plaques, say $P_1 = \varphi^{-1} (\mathbb{R}^p \times \{\mathbf{y}_1\})$ and $P_1 = \varphi^{-1} (\mathbb{R}^p \times \{\mathbf{y}_2\})$, such that

(8)
$$L \cap P_1 \neq \emptyset, \quad L \cap P_2 \neq \emptyset,$$

where $\mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^q$. Notice that, for each $i \in \{1, 2\}$, $f(P_i)$ is a plaque of \mathcal{F}' in U' := f(U). Indeed, using Proposition 3, we have $f(P_i) = f(\varphi^{-1}(\mathbb{R}^p \times \{\mathbf{y}_i\})) = \varphi'^{-1}(F(\mathbb{R}^p \times \{\mathbf{y}_i\})) = \varphi'^{-1}(\mathbb{R}^p \times \{(\mathbf{y}_i, 0, \dots, 0)\})$. Now, since f is a foliated map, L' = f(L) is a leaf of \mathcal{F}' and from (8) it follows that $L' \cap f(P_1) \neq \emptyset$ and $L' \cap f(P_2) \neq \emptyset$. But this contradicts the regularity of \mathcal{F}' .

3. CLASSIFICATION

In this Section we prove the main result of this paper, that is the classification of connected, regular η -Einstein Sasakian manifolds immersed into Sasakian space forms.

Proof of Theorem 1. Let M(N, c) be one of the non-compact simply connected Sasakian space forms and $\pi' : M(N, c) \to K'$ the (trivial) fibration over its Kähler quotient. Recall that K' is either \mathbb{C}^N with its flat Kähler metric or the hyperbolic Kähler space form \mathbb{B}^N .

Since S is complete and regular, by [19] there exists a fibration $\pi : S \to K$, whose fibers are the leaves of the Reeb foliation of S. By assumption S is Sasakian η -Einstein and then K is necessarily Kähler-Einstein (see [9]). The fibration $\pi : S \to K$ is a Riemannian submersion and since S is complete then K also is (see [17, 9]).

By assumption there exists an open neighbourhood U_p of $p \in S$ and a Sasakian immersion $\varphi : U_p \to M(N, c)$. By Proposition 5 the submanifold U_p is still regular. The restriction of π to U_p gives then a projection of the Sasakian η -Einstein manifold U_p to the Kähler manifold $\pi(U_p) \subset K$.

The Sasakian immersion $\varphi: U_p \to M(N, c)$ covers a Kähler immersion $i(\varphi)$ (see [7, 10]) making the following diagram commutative:

$$\begin{array}{cccc} U_p & \stackrel{\varphi}{\longrightarrow} & M(N,c) \\ \pi & & & \downarrow \pi' \\ \pi(U_p) \subset K & \stackrel{\varphi}{\longrightarrow} & K' \end{array}$$

We have proved that there exists $q = \pi(p) \in K$, an open neighbourhood $V_q = \pi(U_p)$ of q and a Kähler immersion of V_q in K'. By Umehara [21] V_q is flat or complex hyperbolic.

On the other end, by [8] (see also [1, Theorem 5.26]), the Kähler-Einstein manifold K is real analytic and by [6, Theorem 4 and Theorem 10], for every $q \in K$ there exists an open neighbourhood V'_q and a Kähler immersion of V'_q in K'. Then K is locally flat and [9, Formula 1.31] implies that the ϕ -sectional curvature of S is less or equal to -3.

By Tanno [20] there exists a discrete group Γ of the Sasakian transformations of S such that $S = M(n, c)/\Gamma$ and this proves the first part of the theorem.

For the second part of the theorem, let us suppose $U_p = S$. Reasoning as before, by completeness of K and by Calabi's Rigidity Theorem [6] for Kähler immersions into Kähler space forms (see also [15]) one obtains the stronger result that either $K = \mathbb{C}^n$ or $K = \mathbb{B}^n$ and the projection is just the trivial fibration because in both cases K contractible. Then, since S is complete, the fibres of the fibration are diffeomorphic either to \mathbb{R} or to \mathbb{S}^1 .

The second case cannot occur because φ is a Sasakian immersion and then it restricts to immersions on the leaves of the Reeb foliations of S and M(N,c). But the leaves of M(N,c) are diffeomorphic to \mathbb{R} and if the leaves of S are circles we would obtain immersions of the circle in \mathbb{R} which is not possible.

Now it remains to prove that φ is the standard embedding up to Sasakian transformations.

First observe that, again by Calabi's Rigidity Theorem, the immersion $i(\varphi) : K \to K'$ has (up to unitary transformation) the following form:

$$i(\varphi)(z_1,\ldots,z_n)=(z_1,\ldots,z_n,0,\ldots,0).$$

Because the fibrations are trivial φ must have the following expression:

$$\varphi(z_1, \ldots, z_n, t) = (z_1, \ldots, z_n, 0, \ldots, 0, f_N((z_1, \ldots, z_n, t))).$$

Since ϕ is a Sasakian immersion, in particular we have $\varphi^*(\eta_N) = \eta_n$, where η_N and η_n are the standard contact forms of M(N,c) and M(n,c) respectively. Then a direct calculation of $\varphi^*(\eta_N) = \eta_n$ yields $\frac{\partial f_N}{\partial t} = 1$ and $\frac{\partial f_N}{\partial x_i} = \frac{\partial f_N}{\partial y_i} = 0$ for $i = 1, \ldots n$, where we put $z_j = x_j + iy_j$.

REMARK 6. In Theorem 1 the case $U_p = S$ cannot occur if S is compact because if S is compact, a Sasakian immersion cannot exist for otherwise, from the regularity of a compact Sasakian manifold, we would obtain a (compact) Kähler quotient immersed either in \mathbb{C}^N or in \mathbb{B}^N , which is impossible by the Maximum Principle.

The following result is a variation of Theorem 1:

THEOREM 7. Let S be a (2n + 1)-dimensional connected, complete, η -Einstein Sasakian manifold. Suppose that for every $p \in S$ there exists an open neighbourhood U_p of p and a Sasakian immersion $\phi : U_p \to M(N,c)$, where $c \leq -3$. Then S is Sasaki-equivalent to $M(n,c)/\Gamma$ where Γ is some discrete subgroup of the Sasakian-isometry group of M(n,c). Moreover, if $U_p = S$ then $\Gamma = \{1\}$ and ϕ is, up to a Sasakian transformation of M(N,c), given by

$$\phi(z,t) = (z,0,t+c)$$

Proof. For every point $p \in S$ we have an immersion of some U_p . After possibly shrinking the open set U_p we obtain an open set where the Reeb foliation is given by a fibration over a Kähler base. Then we proceed exactly as in the proof of Theorem 1 and we obtain that U_p (and then S) has constant ϕ -sectional curvature at every point. Then S is Sasakiequivalent to $M(n, c)/\Gamma$ where Γ is some discrete subgroup of the Sasakian-isometry group of M(n, c).

If $U_p = S$ we cannot directly conclude as in Theorem 1 because a priori we don't know if $M(n,c)/\Gamma$ is regular. On the other end we are assuming the existence of an immersion of $U_p = S$ into the regular Sasakian space form M(N,c) and then S is regular by Proposition 5. We can now apply Theorem 1 to conclude.

References

- Besse, Arthur L., *Einstein manifolds*, Reprint of the 1987 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2008
- [2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhäuser, 2010
- [3] W. M. Boothby, H. C. Wang, On contact manifolds, Ann. Math. 68 (1958), 721–734
- [4] C. P. Boyer, K. Galicki, Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008
- [5] C. Boyer, K. Galicki, P. Matzeu, η-Einstein Sasakian geometry, Comm. Math. Phys. 262 (2006), 177–208
- [6] E. Calabi, Isometric Imbedding of Complex Manifolds, Ann. Math. 58 (1953), 1–23
- [7] B. Cappelletti Montano, A. Loi, Einstein and η-Einstein Sasakian submanifolds in spheres, Ann. Mat. Pura Appl. (4) 198 (2019), no. 6, 2195–2205.
- [8] D. M. DeTurck, J. L. Kazdan, Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup. (4) 14 (1981), 249–260.
- [9] M. Falcitelli, S. Ianuş, A.M. Pastore, *Riemannian submersions and related topics*, World Scientific Publishing Co., Inc., River Edge, NJ, 2004
- [10] M. Harada, Sasakian space forms immersed in Sasakian space forms, Bull. Tokyo Gakugey Univ. Ser. IV 24 (1972), 7–11
- [11] M. Harada, On Sasakian submanifolds, Tôhoku Math. J. 25 (1973), 103-109
- [12] K. Kenmotsu, Invariant submanifolds in a Sasakian manifold, Tôhoku Math. J. 21 (1969), 495–500
- [13] M. Kon, Invariant submanifolds of normal contact metric manifolds, Ködai Math. Sem. Rep. 25 (1973), 330–336

- [14] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), 277–290
- [15] A. Loi, M. Zedda, Kähler Immersions of Kähler Manifolds into Complex Space Forms, Lecture Notes of the Unione Matematica Italiana 23, Springer, 2018
- [16] I. Moerdijk, J. Mrčun, Introduction to foliations and Lie groupoids, Cambridge University Press, 2003
- [17] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469
- [18] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957)
- [19] B. L. Reinhart, Foliated Manifolds with Bundle-Like Metrics, Ann. Math. 69 (1959), 119–132
- [20] S. Tanno, Sasakian manifolds with constant φ-holomorphic sectional curvature, Tôhoku Math. J. 21 (1969), 501–507
- [21] M. Umehara, Einstein-Kähler submanifolds of complex linear or hyperbolic space, Tôhoku Math. J. 39 (1987), 385–389

Gianluca Bande, Dipartimento di Matematica e Informatica, Università di Cagliari, Italy.

Email address: gbande@unica.it

BENIAMINO CAPPELLETTI-MONTANO, DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVER-SITÀ DI CAGLIARI, ITALY.

Email address: b.cappellettimontano@unica.it

ANDREA LOI, DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÀ DI CAGLIARI, ITALY. *Email address*: loi@unica.it