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Abstract. The aim of this paper is to study Sasakian immersions of (non-compact)
complete regular Sasakian manifolds into the Heisenberg group and into BN×R equipped
with their standard Sasakian structures. We obtain a complete classification of such
manifolds in the η-Einstein case.

1. Introduction

Sasakian geometry is considered as the odd-dimensional counterpart of Kähler geome-
try. Despite the Kähler case, where the study of Kähler immersions is well developed, due
to the seminal work of Calabi [6] (see also [15] for a modern treatment and an account on
the subject), in the Sasakian setting there are few results. Most of the Sasakian results
are concerned with finding conditions which ensure that a Sasakian submanifold is totally
geodesic or similar geometric properties (see, for instance, [12, 13, 14]).

In [7] the second and the third authors studied Sasakian immersions into spheres. In
particular they proved the following classification result:

Theorem ([7]). Let S be a (2n+ 1)-dimensional compact η-Einstein Sasakian manifold.
Assume that there exists a Sasakian immersion of S into S2N+1. If N = n + 2 then S is
Sasaki equivalent to S2n+1 or to the Boothby-Wang fibration over Qn, where Qn ⊂ CP n+1

is the complex quadric equipped with the restriction of the Fubini–Study form of CP n+1.

Since the (Sasakian) sphere is one of the three “models” of Sasakian space forms, it is
quite natural to study as a second step the immersions into Sasakian space forms.

In this paper we give a complete characterisation of Sasakian immersions of complete,
regular, η-Einstein Sasakian manifolds into a non-compact Sasakian space form M(N, c),
proving the following:

Theorem 1. Let S be a (2n + 1)-dimensional connected, complete, regular η-Einstein
Sasakian manifold. Suppose that there exists p ∈ S, an open neightborhood Up of p and
a Sasakian immersion φ : Up → M(N, c), where c ≤ −3. Then S is Sasaki equivalent to
M(n, c)/Γ where Γ is some discrete subgroup of the Sasakian-isometry group of M(n, c).
Moreover, if Up = S then Γ = {1} and φ is, up to a Sasakian transformation of M(N, c),
given by

φ(z, t) = (z, 0, t+ c)
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Theorem 1 is a strong generalisation of [12, Theorem 3.2] which asserts that a complete,
φ-invariant, η-Einstein submanifold of codimension 2 of the (2N +1)-dimensional Heisen-
berg group is necessarily a totally geodesic submanifold Sasaki-equivalent to a copy of a
(2N − 1)-dimensional Heisenberg group and similarly for totally geodesic submanifolds of
BN × R, where BN denotes the unit disc of CN equipped with the hyperbolic metric. In
fact in our result there is no restriction on the codimension and we assume that we have
a Sasakian immersion instead of a φ-invariant submanifold. Moreover the immersion is
not necessarily injective and is not assumed to be from the whole space but from an open
neighbourhood of a point.

The general philosophy in [7] and in this paper is to take into account the transversal
Kähler geometry of the Reeb foliation. When a regular Sasakian manifold is compact as
in [7], one can use the so-called Boothby-Wang construction [3], which realises the space
of leaves as a Kähler manifold which is the base of a principal S1-fibration. Then one
translates the immersion problem into a Kähler immersion problem of the base spaces.

Trying the same trick in the non-compact case is more complicated because the Boothby-
Wang construction fails in general, even if the Sasakian manifold is regular. Nevertheless,
the Reeb foliation has the strong property to be both a totally geodesic and a Riemann-
ian foliation. Assuming the Sasakian manifold complete, one can appeal to the result of
Reinhart [19] which says that the space of leaves is the base space of a fibration, and once
again translate the problem into one on Kähler immersions.

The paper contains two other sections. In Section 2 we recall the main definitions and
some foliation theory needed in the proof of Theorem 1 to whom Section 3 is dedicated.

2. Preliminaries

A contact metric manifold is a contact manifold (S, η) admitting a Riemannian metric
g compatible with the contact structure, in the sense that, defined the (1, 1)-tensor φ by
dη = 2g(·, φ·), the following conditions are fulfilled

(1) φ2 = −Id+ η ⊗ ξ, g(φ·, φ·) = g − η ⊗ η,
where ξ denotes the Reeb vector field of the contact structure, that is the unique vector
field on S such that

iξη = 1, iξdη = 0.

A contact metric manifold is said to be Sasakian if the following integrability condition
is satisfied

(2) Nφ(X, Y ) := [φX, φY ] + φ2[X, Y ]− φ[X,φY ]− φ[φX, Y ] = −dη(X, Y )ξ,

for any vector fields X and Y on S.
Two Sasakian manifolds (S1, η1, g1) and (S2, η2, g2) are said to be equivalent if there

exists a contactomorphism F : S1 −→ S2 between them which is also an isometry, i.e.

(3) F ∗η2 = η1, F ∗g2 = g1.

One can prove that if (3) holds then F satisfies also

F∗x ◦ φ1 = φ2 ◦ F∗x , F∗xξ1 = ξ2

for any x ∈ S1. An isometric contactomorphism F : S −→ S from a Sasakian manifold
(S, η, g) to itself will be called a Sasakian transformation of (S, η, g).

It is a well-known fact [4] that the foliation defined by the Reeb vector field of a
Sasakian manifold S has a transversal Kähler structure. Using the theory of Riemannian



η-EINSTEIN SASAKIAN IMMERSIONS IN NON-COMPACT SASAKIAN SPACE FORMS 3

submersions one can prove that the transverse geometry is Kähler-Einstein if and only if
the Ricci tensor of S satisfies the following equality

(4) Ric = λg + νη ⊗ η
for some constants λ and ν. Any Sasakian manifold satisfying (4) is said to be η-Einstein
(see [5] for more details).

A remarkable property of η-Einstein Sasakian manifolds is that, contrary to Sasaki-
Einstein ones, they are preserved by Da-homothetic deformations, that is the change of
structure tensors of the form

(5) φa := φ, ξa :=
1

a
ξ, ηa := aη, ga := ag + a(a− 1)η ⊗ η

where a > 0.
By a Sasakian immersion (often called invariant submanifolds or Sasakian submanifolds

in the literature) of a Sasakian manifold (S1, η1, g1) into the Sasakian manifold (S2, η2, g2)
we mean an isometric immersion ϕ : (S1, g1) −→ (S2, g2) that preserves the Sasakian
structures, i.e. such that

ϕ∗g2 = g1, ϕ∗η2 = η1,(6)

ϕ∗ξ1 = ξ2, ϕ∗ ◦ φ1 = φ2 ◦ ϕ∗.(7)

We refer the reader to the standard references [2, 4] for a more detailed account of Rie-
mannian contact geometry and Sasakian manifolds.

Sasakian space forms. Recall that the curvature tensor of a Sasakian manifold is com-
pletely determined [2] by its φ-sectional curvature, that is the sectional curvature of plane
sections of the type (X,φX), for X a unit vector field orthogonal to the Reeb vector field.

A Sasakian space form is a connected, complete Sasakian manifold with constant φ-
sectional curvature. According to Tanno [20] there are exactly three simply connected
Sasakian space forms depending on the value c of the φ-sectional curvature: the standard
Sasakian sphere up Da-homothetic deformation if c > −3, the Heisenberg group Cn×R if
c = −3 and the hyperbolic Sasakian space form Bn×R if c < −3. Notice that each simply
connected space form admits a fibration over a Kähler manifold and in the non-compact
cases the fibration is trivial.

We denote by M(n, c) the simply connected (2n+ 1)-dimensional Sasakian space form
with φ-sectional curvature equal to c. Every connected, complete Sasakian space form
is Sasakian equivalent to M(n, c)/Γ, where Γ is a discrete subgroup of the Sasakian
transformation group of M(n, c).

Immersions and regular foliations. We recall some basic concepts from foliation the-
ory (see e.g. [16, 18]). Let M be a smooth manifold of dimension n. A foliation can be
defined as a maximal foliation atlas on M , where a foliation atlas of codimension q on M
is an atlas

{ϕi : Ui −→ Rn = Rp × Rq}i∈I
of M such that the change of charts diffeomorphisms ϕij locally takes the form

ϕij(x, y) = (gij(x, y), hij(y)) .

Each foliated chart is divided into plaques, the connected components of

ϕ−1i (Rp × {y}) ,
where y ∈ Rq, and the changes of chart diffeomorphism preserve this division.
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Definition 2. A foliated map is a map f : (M,F) −→ (M ′,F ′) between foliated man-
ifolds which preserves the foliation structure, i.e. which maps leaves of F into leaves of
F ′.

Now, let (M,F) and (M ′,F ′) be foliated manifolds and f : M −→M ′ be an immersion.
Moreover, assume that f is a foliated map. Thus

f∗x(L(x)) ⊂ L′(f(x))

for each x ∈M , where L = T (F) and L′ = T (F ′). In particular, it follows that dim(F) ≤
dim(F ′). The proof of the following proposition is quite standard and will be omitted:

Proposition 3. (M,F) and (M ′,F ′) be foliated manifolds of dimension n and n′, respec-
tively, and f : M −→M ′ be a foliated immersion. Suppose that dim(F) = dim(F ′). Then
for each x ∈M there are charts ϕ : U −→ Rp×Rq for M about x and ϕ′ : U ′ −→ Rp×Rq′

for M ′ about f(x) such that

(i) ϕ(x) = (0, . . . , 0) ∈ Rn

(ii) ϕ′(f(x)) = (0, . . . , 0) ∈ Rn′

(iii) F (x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0), where F := ϕ′ ◦ f ◦ ϕ−1

(iv) L(x) = span
{

∂
∂x1

(x), . . . , ∂
∂xp

(x)
}

(v) L′(f(x)) = span
{

∂
∂x1

(f(x)), . . . , ∂
∂xp

(f(x))
}

where p = dim(F) = dim(F ′), q = n− p, q′ = n′ − p.

Let F be a foliation on a manifold M and let L be a leaf of F . It is well known that L
intersects at most a countable number of plaques in a foliated chart U . Now we give the
following definition.

Definition 4 ([18]). A foliation F is said to be regular if for any x ∈ M there exists a
foliated chart U containing x such that every leaf of F intersects at most one plaque of
U .

The following proposition is a generalisation to the non-compact case and to immersions
of [11, Proposition 3.1]:

Proposition 5. Let (M,F) and (M ′,F ′) be foliated manifolds such that dim(F) =
dim(F ′). If there exists a foliated immersion f : (M,F) −→ (M ′,F ′) and F ′ is regular,
then F is also regular.

Proof. Assume that F is not regular. Then there exists a point x ∈ M and a leaf L of
F such that, for any foliated chart U containing x, L intersects more then one plaque
in U . Let us consider the foliated charts U and U ′, respectively about x and f(x),
satisfying the properties stated in Proposition 3. Then there exist at least two plaques,
say P1 = ϕ−1 (Rp × {y1}) and P1 = ϕ−1 (Rp × {y2}), such that

(8) L ∩ P1 6= ∅, L ∩ P2 6= ∅,

where y1,y2 ∈ Rq. Notice that, for each i ∈ {1, 2}, f(Pi) is a plaque of F ′ in U ′ := f(U).
Indeed, using Proposition 3, we have f(Pi) = f(ϕ−1(Rp×{yi})) = ϕ′−1(F (Rp×{yi})) =
ϕ′−1(Rp × {(yi, 0, . . . , 0)}). Now, since f is a foliated map, L′ = f(L) is a leaf of F ′ and
from (8) it follows that L′ ∩ f(P1) 6= ∅ and L′ ∩ f(P2) 6= ∅. But this contradicts the
regularity of F ′. �
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3. Classification

In this Section we prove the main result of this paper, that is the classification of
connected, regular η-Einstein Sasakian manifolds immersed into Sasakian space forms.

Proof of Theorem 1. Let M(N, c) be one of the non-compact simply connected Sasakian
space forms and π′ : M(N, c)→ K ′ the (trivial) fibration over its Kähler quotient. Recall
that K ′ is either CN with its flat Kähler metric or the hyperbolic Kähler space form BN .

Since S is complete and regular, by [19] there exists a fibration π : S → K, whose fibers
are the leaves of the Reeb foliation of S. By assumption S is Sasakian η-Einstein and
then K is necessarily Kähler-Einstein (see [9]). The fibration π : S → K is a Riemannian
submersion and since S is complete then K also is (see [17, 9]).

By assumption there exists an open neighbourhood Up of p ∈ S and a Sasakian im-
mersion ϕ : Up → M(N, c). By Proposition 5 the submanifold Up is still regular. The
restriction of π to Up gives then a projection of the Sasakian η-Einstein manifold Up to
the Kähler manifold π(Up) ⊂ K.

The Sasakian immersion ϕ : Up →M(N, c) covers a Kähler immersion i(ϕ) (see [7, 10])
making the following diagram commutative:

Up
ϕ−−−→ M(N, c)

π

y yπ′

π(Up) ⊂ K −−−→
i(ϕ)

K ′

We have proved that there exists q = π(p) ∈ K, an open neighbourhood Vq = π(Up) of
q and a Kähler immersion of Vq in K ′. By Umehara [21] Vq is flat or complex hyperbolic.

On the other end, by [8] (see also [1, Theorem 5.26]), the Kähler-Einstein manifold K
is real analytic and by [6, Theorem 4 and Theorem 10 ], for every q ∈ K there exists an
open neighbourhood V ′q and a Kähler immersion of V ′q in K ′. Then K is locally flat and
[9, Formula 1.31] implies that the φ-sectional curvature of S is less or equal to −3.

By Tanno [20] there exists a discrete group Γ of the Sasakian transformations of S such
that S = M(n, c)/Γ and this proves the first part of the theorem.

For the second part of the theorem, let us suppose Up = S. Reasoning as before, by
completeness of K and by Calabi’s Rigidity Theorem [6] for Kähler immersions into Kähler
space forms (see also [15]) one obtains the stronger result that either K = Cn or K = Bn
and the projection is just the trivial fibration because in both cases K contractible. Then,
since S is complete, the fibres of the fibration are diffeomorphic either to R or to S1.

The second case cannot occur because ϕ is a Sasakian immersion and then it restricts
to immersions on the leaves of the Reeb foliations of S and M(N, c). But the leaves
of M(N, c) are diffeomorphic to R and if the leaves of S are circles we would obtain
immersions of the circle in R which is not possible.

Now it remains to prove that ϕ is the standard embedding up to Sasakian transforma-
tions.

First observe that, again by Calabi’s Rigidity Theorem, the immersion i(ϕ) : K → K ′

has (up to unitary transformation) the following form:

i(ϕ)(z1, . . . , zn) = (z1, . . . , zn, 0, . . . , 0).

Because the fibrations are trivial ϕ must have the following expression:

ϕ(z1, . . . , zn, t) = (z1, . . . , zn, 0, . . . , 0, fN((z1, . . . , zn, t))).
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Since φ is a Sasakian immersion, in particular we have ϕ∗(ηN) = ηn, where ηN and
ηn are the standard contact forms of M(N, c) and M(n, c) respectively. Then a direct
calculation of ϕ∗(ηN) = ηn yields ∂fN

∂t
= 1 and ∂fN

∂xi
= ∂fN

∂yi
= 0 for i = 1, . . . n, where we

put zj = xj + iyj. �

Remark 6. In Theorem 1 the case Up = S cannot occur if S is compact because if
S is compact, a Sasakian immersion cannot exist for otherwise, from the regularity of
a compact Sasakian manifold, we would obtain a (compact) Kähler quotient immersed
either in CN or in BN , which is impossible by the Maximum Principle.

The following result is a variation of Theorem 1:

Theorem 7. Let S be a (2n+ 1)-dimensional connected, complete, η-Einstein Sasakian
manifold. Suppose that for every p ∈ S there exists an open neighbourhood Up of p and
a Sasakian immersion φ : Up → M(N, c), where c ≤ −3. Then S is Sasaki-equivalent to
M(n, c)/Γ where Γ is some discrete subgroup of the Sasakian-isometry group of M(n, c).
Moreover, if Up = S then Γ = {1} and φ is, up to a Sasakian transformation of M(N, c),
given by

φ(z, t) = (z, 0, t+ c)

Proof. For every point p ∈ S we have an immersion of some Up . After possibly shrinking
the open set Up we obtain an open set where the Reeb foliation is given by a fibration
over a Kähler base. Then we proceed exactly as in the proof of Theorem 1 and we obtain
that Up (and then S) has constant φ-sectional curvature at every point. Then S is Sasaki-
equivalent to M(n, c)/Γ where Γ is some discrete subgroup of the Sasakian-isometry group
of M(n, c).

If Up = S we cannot directly conclude as in Theorem 1 because a priori we don’t know if
M(n, c)/Γ is regular. On the other end we are assuming the existence of an immersion of
Up = S into the regular Sasakian space form M(N, c) and then S is regular by Proposition
5. We can now apply Theorem 1 to conclude. �
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