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Impact probability computation for NEO resonant returns through
a polynomial representation of the Line of Variations

Marcello Sciarra1,∗, Matteo Losacco1, Daniele Santeramo1, Pierluigi Di Lizia1

Abstract

A differential algebra based representation and propagation of the Line of Varia-
tions for Near Earth Objects impact monitoring is presented in this paper. The
Line of Variations is described at the initial epoch by a high-order polynomial
that is propagated forward in time. An Automatic Domain Splitting algorithm
is embedded in the numerical integrator, in such a way that when the poly-
nomials truncation error becomes too large, the line is split as many times as
necessary to meet accuracy requirements. The Line of Variations is propagated
forward in time until an intersection with a properly defined target plane oc-
curs for all the generated subdomains. The subdomains are then projected onto
the target plane to compute the impact probability by numerically integrating
an associated one-dimensional probability density function. The proposed ap-
proach is applied to different test-cases to assess the performance of the method
for the different possible shapes of the initial confidence region. Starting from
a case of direct encounter, the technique is tested up to the case of a resonant
return, which features critical nonlinearities.

Keywords: Line of Variations, Impact probability, Near Earth Asteroids,
Resonant Return, Differential Algebra, Automatic Domain Splitting

1. Introduction

The increasing attention towards Space Situational Awareness (SSA) requires
the development of efficient and reliable numerical techniques for different appli-
cations. In particular, as an increasing amount of Near Earth Objects (NEOs)
are being detected, the efficient estimation of their impact probability (IP) with
the Earth is gaining relevance. This is especially true in case of availability of
short observational arcs for newly discovered NEOs. The uncertainty of the
initial orbital estimate tends to be large and the computational complexity of
the IP assessment increases accordingly. In addition, when the NEO experi-
ences a close planetary encounter along the path to the potential impact, the IP
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computation becomes extremely challenging, as the highly nonlinear dynamics
critically expand the uncertainty set about the NEO’s trajectory. In case of
Earth close encounters, the broadening of the range of possible post-encounter
orbital periods may even trigger resonant returns: if the asteroid’s period is
P = h/k years, then after k revolutions of the asteroid and h revolutions of the
Earth, the two bodies may come again to a risky conjunction.

Monte Carlo simulations offer a reliable solution to the problem. Neverthe-
less, their naive implementation tends to be extremely time consuming. On the
other hand, approaches based on linearizations provide low accuracy standards.
The current state-of-the-art technique in the field is based on the idea of the
Line of Variations (LOV), introduced for the first time by A. Milani in [1]. This
approach exploits the particularly elongated shape of the six-dimensional un-
certainty region to describe it along a one-dimensional curve, that is a line of
weakness of the orbit determination solution.

When a NEO is observed, the initial orbit determination is based on the
least-square minimization of a target function

Q =
1

m
ξ · ξ (1)

where ξ ∈ Rm are the observation residuals and m = 2Nobs, assuming two
coordinates per observation and considering Nobs observations. Calling X∗ the
nominal state, the target function can be expanded in Taylor series as

Q (X) = Q (X∗) +
1

m
(X −X∗) · (X −X∗) +O (X −X∗)︸ ︷︷ ︸

∆Q(X)

(2)

We can define the region of confidence for a given value of σ as the area described
by

m∆Q (X) ≤ σ2 (3)

When the high order terms are neglected, the confidence region becomes a
confidence ellipsoid, described by a covariance matrix Γ = C−1 where the normal

matrix C is defined as C = BTB, with B =
dξ

dX
(X). When the asteroid is

newly discovered and it has been observed for a very short timespan, the solution
is weak and Γ is ill-conditioned. In this case, there is a very weak direction along
the eigenspace of the largest eigenvalue of Γ which is called Line of Variations.

As presented by Chesley and Chodas in [2], the LOV offers the possibility
to work with a reduced-dimension yet representative sampling of the confidence
region. In the nonlinear case, calling σ (X) the largest eigenvalue of Γ (X)
and V1 (X) the corresponding eigenvector, then σ (X)V1 (X) is a well-defined
and smooth vector field and therefore the LOV is the unique solution of the
differential equation

dX

dσ
= σ (X)V1 (X) (4)
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On the contrary, when a linear approximation is feasible, the LOV is simply the
major axis of the confidence ellipsoid, thus corresponding to the direction of the
eigenvector V1.

A further definition of the LOV is offered by Milani et al. in [3] and it is
directly inspired by the operational procedure typically used to compute the
multiple solutions along the LOV. For every point X, the direction V1 is defined
and therefore also the orthogonal hyperplane H (X) can be defined as

H (X) =
{
Y | (Y −X) · V1 (X) = 0

}
(5)

Starting from a guess X, a differential correction procedure constrained to the
hyperplane H (X) is performed. For such correction, the constrained normal
equation CH∆X = DH is considered, where ∆X = ∆H along the direction H
and ∆X = 0 along V1. The weak direction and the hyperplane are computed and
iterated until convergence: if X is the convergence value, then DH

(
X
)

= 0 must
hold and therefore the right-hand side of the unconstrained normal equation is
parallel to the weak direction:

D
(
X
)
‖ V1

(
X
)

(6)

Following this idea, the LOV can be defined as the set of points X for which
the target function gradient is along the weak direction. Such definition opens
the door to the application of the LOV technique to cases in which a nominal
solution is not given. Current NEO surveillance systems at JPL and at the
University of Pisa adopt this last definition. In our application, the initial orbit
determination is not included in the algorithm and the data are retrieved in the
form of nominal state and related covariance matrix. In this framework, the
LOV is only defined as the direction corresponding to the largest eigenvalue of
the covariance ellipsoid.

In the standard approach by Chesley and Chodas [2], the LOV is sampled ac-
cording to the chosen probability distribution, either uniform or Gaussian. Each
generated sample is called virtual asteroid (VA) and has a certain probability
to represent the true orbit. The VAs that directly impact the Earth take the
name of virtual impactors (VI) and in the simplest approach the IP is computed
as the ratio of VIs over VAs. This approach does not consider all impacts that
may occur for nearby off-LOV solutions and therefore some local analysis in the
neighborhood of the close approaches is performed. To this aim, a target plane
is defined and used to eliminate the role of time. The b-plane (orthogonal to the
incoming asymptote of the geocentric hyperbola) can be adopted if the nominal
orbit enters the sphere of influence of the Earth. Alternatively, the modified
target plane (MTP) is defined as orthogonal to the closest approach point along
the trajectory. The MTP was introduced in 1999 by Milani and Valsecchi in [4]
although the concept can be found earlier, see Chodas and Yeomans in [5].

After projecting the initial covariance onto the target plane at the im-
pact epoch, the IP can be computed by integrating a one-dimensional or two-
dimensional probability density function (pdf), depending on the elongation of
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the confidence ellipse on the target plane, that is by what amount the major
axis Λ is larger than the minor axis w:

• if Λ� w then PI =
p (σΛ)

Λ

• if Λ > w then PI =
p (σΛ) p (σw)

Λw
πr2
⊕

An alternative approach is proposed in this paper. The idea is to move from
a sampled description of the LOV to a polynomial representation of the curve,
obtained with differential algebraic techniques. The continuous description of
the curve allows us to find the portion of the LOV that leads to a collision
with the Earth, rather than searching for a set of impacting samples as in
the case of the VI approach. According to this approach, a highly accurate
description of the LOV evolution up to the collision epoch can be obtained and
the interpolation between different samples can be avoided.

The paper is organized as follows. Section 2 briefly introduces differential
algebra (DA) and the automatic domain splitting (ADS) algorithm. Section
3 reports the numerical technique adopted to define the target plane and to
propagate and projecct the LOV onto the MTP. In Section 4, the IP computa-
tion approach is presented based on the integration of the one-dimensional pdf.
Section 5 shows the application of the technique to a direct impact test case.
Section 6 points out the criticalities introduced by a resonant return and the
technique adopted to solve them. Section 7 presents the issue of an enlarged
initial confidence region and introduces a potential solution. Finally, Section 8
performs a comparison with other techniques to assess advantages and disad-
vantages of this approach. Section 9 summarizes the results and concludes the
paper.

2. Differential algebra and Automatic Domain Splitting

Differential algebraic techniques were developed after the need to solve analytic
problems with algebraic means. The theory of DA was developed for the first
time by Joseph Liouville during the XIX century but the complete algebraic
theory of the technique was presented by Ritt in [6]. The following overview is
based on the description given by Martin Berz in [7].

Typically, in a computational environment, numbers take the place of func-
tions and the algorithms are based on the pointwise functions evaluation. DA
techniques try to increase the information that can be obtained from a function
with respect to its mere evaluation. This additional information is provided by
the implementation of an algebra of Taylor polynomials to which differentiation
and integration can be easily added, thus obtaining a DA.

A relevant application of DA techniques arises for the propagation of an ODE
set (see [8] for details): in this framework, a high order polynomial expansion
of the propagated state can be obtained with respect to the initial condition.
This result is achieved by substituting all the operations involved in the adopted
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Figure 1: Basic principle of Automatic Domain Splitting

numerical integration scheme with the corresponding DA operations. In partic-
ular, if the initial polynomial represents the n-σ uncertainty region about the
nominal state, its numerical propagation yields a polynomial description of the
confidence region at the final integration time.

When the dynamics is highly nonlinear and for long-term propagations, a
single polynomial expansion is not capable of providing an accurate description
of the real confidence region evolution. To maintain a certain level of accuracy,
an Automatic Domain Splitting (ADS) algorithm can be implemented to sup-
port the simple DA propagation, see [9]. The ADS algorithm, whose working
principle is sketched in Fig. 1, estimates the truncation error of the polynomials
over their own domain and decides wheather the truncation error is above or be-
low a selected tolerance. When the estimated error is larger than the tolerance,
the previous integration state (i.e. the last accurate state in the propagation
history) is retrieved and split in two equal parts along a certain direction. This
direction corresponds to the state variable along which the truncation error is
estimated to be the largest. By dividing the domain by a factor 2, the trunca-
tion error is reduced by a factor 2n+1. The polynomials are then evaluated on
the two generated subdomains and propagated independently until the trunca-
tion error overcomes again the selected tolerance. This procedure is repeated as
many times as necessary, until a certain limit of splits Nmax is reached. Once
the splitting tolerance tolsplit and Nmax are defined, the procedure is fully au-
tomatic and guarantees an accurate nonlinear propagation of uncertainties. In
this work, tolsplit is set to 10−10 and Nmax to 16 whereas DA is used to obtain
12th-order polynomial expansions.

The DA routines exploited in this work are implemented in the DACE soft-
ware 2 and more details on the numerical implementation can be found in [10].
The adopted numerical integration scheme is a DA version of a 7/8 Dormand-
Prince (8th order solution for propagation, 7th order solution for step size con-
trol) RK integrator.

2https://github.com/dacelib/dace
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3. DA-based Line of Variations

3.1. LOV generation

All the analyses presented in this paper were carried out considering data ob-
tained from the NEODyS database (https://newton.spacedys.com/neodys/),
which provides nominal states in mean equinoctial elements and the associated
covariance matrices Γ. The LOV is a coordinate-dependent subspace of the con-
fidence region and a proper choice of the coordinate system is crucial. According
to [11], the LOV produces better results if computed in Cartesian coordinates
and this choice is adopted in this work accordingly. The initialization of the
LOV requires that the uncertainty ellipsoid represented by Γ is transformed
from Equinoctial into Cartesian coordinates.

In this work, this nonlinear covariance transformation is performed through
a DA-based approach. Full details on the method and its generalization can
be found in [12], while the main steps are here presented. By indicating with
~xE the equinoctial representation of the orbital state and with ~xC its Cartesian
representation, the two representations are related by a nonlinear coordinates
transformation

~xC = F(~xE) (7)

We consider covariance matrices only, therefore all statistical moments above
second order are here neglected. In the DA framework, the state in the original
coordinates is written as

[~xE ] = ~xE + δ~xE (8)

where ~xE is the initial mean and the δ~xE is the 1σ variation. The n-th or-
der Taylor expansion of ~xC with respect to δ~xE is obtained by applying the
transformation F to [~xE ] in the DA framework, i.e.

[~xC ] = F([~xE ]) = ~xC + Tδ~xC
(δ~xE) =

∑
p1+···+pn≤k

cp1...pn · δx
p1
E,1 . . . δx

pn
E,n (9)

where ~xC is the zeroth-order term of the expansion, Tδ~xC
is the Taylor map of

the final state with respect to the initial state, and cp1...pn are the coefficients
of the resulting Taylor polynomial. The Taylor polynomial in the form of Eq. 9
can be used to efficiently compute the propagated statistics by computing the
j-th moment of the transformed pdf using the polynomial map. The analytical
expressions of the first two statistical moments for a generic scalar random
variable z are {

µ = E{z}
P = E{(z − µ)2}

(10)

where µ is the mean value, P is the covariance and the expectation value of z is

E{z} =

∫ +∞

−∞
zg(z)dz (11)
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The moments of the transformed pdf can be computed by applying the multi-
variate form of Eq. 10 to the Taylor expansion in Eq. 9. The result for the first
two moments are

~µi = E{[~xCi
]} =

∑
p1+···+pn≤k ~ci,p1...pn

~E{δxp11 . . . δxpnn }
~Pij = E{([~xCi

]− µi)([~xCj
]− µj)}

=
∑
p1+···+pn≤k,
q1+···+qn≤k

~ci,p1...pn
~cj,p1...pn

E{δxp1+q1
1 . . . δxpn+qn

n }
(12)

where ~ci,p1...pn
are the Taylor coefficients of the Taylor polynomial describing

the i-th component of [~xC ]. The expectations in Eq. 12 are computed through
the Isserlis’ formula.

Eq. 12 allows the covariance to be retrieved in Cartesian coordinates. The
LOV can then be initialized, according to the linear approximation definition
presented in Section 1, by computing the eigenvalues and eigenvectors of the
Cartesian covariance matrix and considering the eigenvector associated to the
eigenvalue of largest magnitude. Considering the eigenvalues and eigenvectors
as sorted in ascending order of magnitude (i.e. the last component being the
major axis), the LOV is first initialized in the DA framework in the space of the
eigenvectors as

[~xEIG] =
[
0 0 0 0 0 Λ · δx6

]T
(13)

where Λ is a scaling factor for the DA polynomial expressed as function of δx6,
which is a coordinate spanning the direction of the eigenvector corresponding
to the largest eigenvalue λ6 of the covariance matrix Γ. If the desired analysis
covers the ±3σ interval, then Λ = 3

√
λ6. The LOV is finally obtained by

rotating ~xEIG back from the space of the eigenvectors to the real Cartesian
space through the eigenvectors matrix U and adding the nominal state:

[~xLOV] = [~x0[+U · [~xEIG] (14)

As a result, [~xLOV] is a vector of polynomials in δx6 that spans the LOV,
i.e. it is a polynomial representation of the LOV at the initial epoch.

3.2. Numerical propagation

The numerical propagation of the LOV is performed in an N-body dynamics
including relativistic corrections. This is required for complex encounters, as an
inaccurate description of a close planetary approach may lead to unacceptably
wrong post-encounter trajectories. The dynamics, taken from [9], is:

~̈r = G
∑
i

mi(~ri − ~r)
r3
i

{
1− 2(β + γ)

c2
G
∑
j

mj

rj
− 2β − 1

c2
G
∑
j 6=i

mj

rij
+
γ|~̇r|2

c2
+

+
(1 + γ)|~̇ri|2

c2
− 2(1 + γ)

c2
~̇r · ~̇ri −

3

2c2

[
(~r − ~ri) · ~̇ri

ri

]2

+
1

2c2
(~ri − ~r) · ~̈ri

}

+G
∑
i

mi

c2ri
·

{
3 + 4γ

2
~̈r +
{[~r − ~ri] · [(2 + 2γ)~̇r

r2
i

− (1 + 2γ)~̇ri]}(~̇r − ~̇ri)
r2
i

}
(15)
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where ~r is the position of the object in Solar System barycentric coordinates, G
is the gravitational constant, mi and ~ri are the mass and the barycentric position
of Solar System body i, ri = |~ri−~r| and c is the speed of light in vacuum. β and
γ are the parametrized post-Newtonian parameters measuring the nonlinearity
in superposition of gravity and space curvature produced by unit rest mass
and are set to one, since the analysis is performed in the framework of general
relativity.

3.3. Target plane

Before propagating the LOV, the Target Plane has to be identified and fixed.
In this work we choose to adopt the MTP instead of the b-plane. The main
reason for this selection is that the b-plane requires the nominal trajectory to
enter the sphere of influence of the Earth and this is not guaranteed to be true,
particularly when the impacts occur towards the tips of the LOV. The MTP
is identified by propagating the object’s nominal trajectory until the condition
of minimum geocentric distance is met. Since the propagation spans many
revolutions of the asteroid, the condition ρ = ~rGEO · ~vGEO = 0 (where the two
elements of the scalar product are the geocentric position and velocity of the
asteroid, respectively) is verified several times. In the current version of the
tool, we decided to work with a given estimate of the impact epoch. Therefore,
the condition above is considered to be met only if it occurs inside a collision
timespan of ±100 days around the expected impact epoch. When ρ changes
sign during the propagation, a bisection routine is started to identify the exact
ρ = 0 condition and subsequently fix the MTP in the heliocentric reference
frame. Working with an estimate of the impact epoch, taken from NEODyS, is
a simplifying assumption that is not suitable for operational monitoring. Yet,
the goal of this paper is to assess the performance of the proposed technique in
terms of IP computation which is not affected by this assumption.

3.4. ADS-based LOV propagation

The LOV can now be propagated forward in time to the MTP. The propa-
gation is performed by means of an algorithm that embeds ADS inside an RK
numerical integrator as illustrated in Fig. 2. The initial conditions are initial-
ized as a vector of DA variables that spans the LOV at the initial epoch, as
shown in Eq. 14. As each RK step is performed, the truncation error of the
polynomials is estimated and, when it exceeds a selected tolerance, the domain
is split in two subdomains. This procedure is repeated as many times as neces-
sary in order to guarantee that the propagation is carried on with an accurate
description of the LOV evolution. One by one, all the generated subdomains are
propagated until a final integration condition is met. There are three possible
conditions to stop the integration:

1. The reference point (i.e. the center) of the subdomain impacts the Earth
surface before or during the collision timespan. If this happens, the in-
tegration is stopped to avoid that large nonlinearities compromise the
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x0, t0 xk, tk  =  xk+1, tk+1

&

save xk, tk

in a vector 

save xk,tk in

the full list
t < tf

YES

YESNO

NO

stop automatic

stepsize control, 

stop the ADS 

routine and start 

approaching MTP

termination

= 

true?
YES

NO

RK step

compute

 xk+1, tk+1

estimated

error < toll ?

save xk,tk in

the full list and 

in MTP list

YES

NO

ADS:

split the domain

save one box in

LIST and take 

the other at tk

is the box

below Earth

surface ? YES

NO

save xk,tk in

the full list and 

in ES list

is the

LIST

empty?

END

retrieve the first

 box from LIST 

and propagate

nishing

= 

true?

YES

NO

Figure 2: ADS-based propagation algorithm. Several lists are mentioned, in particular: LIST
is the vector of subdomains generated by the splitting processes and that must still be prop-
agated. ES contains the subdomains that cross the Earth surface during the propagation;
MTP contains all the subdomains that hit the target plane; full list contains all the propa-
gated subdomains.

efficiency of the tool and the subdomain is saved in a separate list for IP
computation (ES in the scheme).

2. The subdomain reaches the MTP inside the collision timespan before its
center hits the Earth surface. In this case the subdomain is saved in a
second list (MTP in the scheme).

3. The subdomain does not cross the MTP inside the collision timespan. If
this happens, the integration is stopped right after the subdomain exits
the timespan and the subdomain is excluded from IP computation.

The intersection with the target plane is a rather critical aspect of the algorithm.
In fact, the scalar product ρ changes its value under several conditions and this
might lead to including some fictitious MTP crossings in the IP computation.
More specifically, the following conditions may infer a wrong MTP intersection:

• the scalar product changes sign at an epoch far away from a potential
impact condition.

• the scalar product changes sign when the two bodies (i.e. the asteroid and
the Earth) lie on opposite sides of the Sun.
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• when a subdomain reaches the MTP or the final integration time and the
following subdomain is initialized for propagation, the sign of the scalar
product at the two states may be opposite. Therefore the algorithm may
detect a fictitious crossing of the MTP that must be avoided.

• when a subdomain experiences a split while lying across the MTP, par-
ticular care has to be adopted to avoid that one of the two generated
subdomains misses the intersection with the plane.

A simple yet very effective solution to fictitious or missed MTP crossing is
offered by the following idea: when a subdomain is initialized for propagation,
the initial stepsize is forced to be equal to 10−8, which guarantees a better
control on the presented numerical issues. Indeed, by exploiting the knowledge
of the stepsize we can either include or exclude the first steps of a subdomain’s
propagation from being checked for potential intersection:

1. If the propagation of a new subdomain is started with a very small and
fixed stepsize, the first steps can be easily excluded from the check of the
MTP crossing. The issue of a fictitious inversion of the scalar product is
thus avoided and, at the same time, the path of the object in those first
steps is so small that real MTP intersections cannot be missed.

2. On the other hand, by limiting the control to the first steps of the prop-
agation (by requiring the stepsize to be small), we avoid failures of MTP
intersection detections due to a large initial stepsize for subdomains that
lie on the MTP since the very beginning of their trajectory. By making
reference to Fig. 3, this is crucial to make sure that, after a split occurred
across the plane, the intersection is detected when the propagation of the
red subdomain is started

As far as coding is concerned, the correct intersections of the MTP are
identified by checking at every integration step the following conditions:

(a) tk > (tIMP − 100 d)

(b) (~rGEOk
· ~V ) · (~rGEOk−1

· ~V ) < 0

(c) ~rGEOk
· ~V > 0

(d) |h| > 2 · 10−8

(e) tk−1 < (tf −∆tmax)

(16)

where tIMP represents the estimated collision epoch, tf is the final integration
time, h is the current stepsize, k subscript is the integration step counter and
∆tmax is a fixed time interval slightly larger than maximum integration stepsize.
Moreover, ~V represents the velocity of the center point of the subdomain and
~rGEO is its geocentric positon vector. This set of conditions represents the
standard MTP intersection: time belonging to the collision timespan (a), ρ
inversion (b) with negative-to-positive value (c), at least one step has occurred

10



first propagated
converges to MTP

second propagated
goes to final time

Figure 3: Example of subdomain splitting occuring across the MTP. The full polynomial is
split into two: the green subdomain would reach the MTP while the red one would miss the
intersection since at the beginning of its propagation its center lies beyond the plane.

after starting propagating the subdomain (d) and previous step not being the
final integration time (e). The key role of conditions (d) and (e) is to prevent
comparison of states belonging to separate subdomains (e.g. the last state of
one subdomain’s propagation and the first state of the following one);

Pertaining to the detection of MTP intersections when splits occurred across
the plane, this is the set of required conditions:

(a) tk > (tIMP − 100 dd)

(b) ~rGEOk
· ~V > 0

(c) |h| < 2 · 10−8

(d) |~rGEOk
· ~V | > 10−10

(e) ~rGEOk
|−1.0 · ~rGEOk

|1.0 < 0

(f) tk−1 < (tf −∆tmax)

(17)

which refer to: time belonging to the collision timespan (a), ρ being positive (b)
with previous value larger than impact tolerance (d), at most one step occurred
after starting propagating the subdomain (c), previous step not being the final
integration time (f), and subdomain’s tips lying on opposite sides of the MTP
(e). In this case, conditions (d), (c) and (f) assure that we are taking into
account only the first steps of a subdomain’s propagation while condition (e)
detects the crossing of the MTP.

Note that condition (d) of Eq. 16 and the condition (c) of Eq. 17, that refer
to the scenarios number 1 and 2 respectively in the list above, are complementary
and therefore the two sets cannot be satisfied simultaneously. By choosing a
stepsize threshold of 2 · 10−8, we can look separately for the two conditions:
when the stepsize is below this threshold, that is the propagation just started,
we only search for possible intersections due to splits that occur on the plane.
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When the stepsize is larger than the theshold, that is a few steps have already
been performed, we only search for standard intersections. If one of the two sets
is fully satisfied, a Newton’s method can be triggered to approach the plane.

3.5. Projection of the subdomains onto the MTP

After the propagation, we obtain a set of subdomains whose center point
belongs to the MTP but that expand across the plane. In order to eliminate the
role of time from the analysis, these subdomains are projected onto the MTP.
During the propagation, indeed, the confidence region spreads very quickly along
track. For this reason, the subdomains reach the target plane at time epochs
that differ from each other but that are very close to the actual closest approach
to the Earth. Therefore, by analyzing the projection of the LOV onto the MTP,
the impact probability can be properly computed.

Figure 4: Projection of a subdomain onto the MTP: each point is projected along the direction
of its own velocity vector, which is approximated by the available Taylor expansion of the
velocity on the subdomain.

Instead of projecting along the direction normal to the plane, the projec-
tion is performed along the direction of the velocity vector in order to better
approximate the dynamical path that leads each point of the subdomain to the
MTP. Figure 4 illustrates the approach that is adopted to perform such a pro-
jection using DA. The idea is to perform a DA-based projection by relying on
the available polynomial expansion of the asteroid velocity on each subdomain.
The polynomial is used to project each point of the subdomain along its own
velocity vector. After LOV propagation, all subdomains cross the MTP and
are endowed with the Taylor expansion of their position vector ~r and velocity
vector ~v. In order to project the subdomain onto the MTP, the position vector
is expressed as

~r = c1 ~R+ c2~v + c3 ~Z (18)

where ~v is the polynomial expression of the subdomain’s velocity vector while
~R and ~Z are the in-plane unit vectors of the MTP frame. The projection is
achieved by imposing the out-of-plane component of the position vector to be
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zero and finding the resulting coefficients c1, c2, and c3. To this aim the following
scalar products are computed:

~r · ~R = c1 ~R · ~R+ c2~v · ~R+ c3 ~Z · ~R = (19)

= c1 + c2~v · ~R

~r · ~v = c1 ~R · ~v + c2~v · ~v + c3 ~Z · ~v = (20)

= c1 ~R · ~v + c2v
2 + c3 ~Z · ~v

~r · ~Z = c1 ~R · ~Z + c2~v · ~Z + c3 ~Z · ~Z = (21)

= c2~v · ~Z + c3

The terms in the left-hand sides are known and are denoted with A = ~r · ~R,
B = ~r · ~v and C = ~r · ~Z in the following for the sake of notation. Furthermore
we call cosα = ~v · ~R and cosβ = ~v · ~Z. If the whole procedure is carried out with
normalized velocity vector, then v2 = 1. The simplified system to be solved is

A = c1 + c2 cosα

B = c1 cosα+ c2 + c3 cosβ

C = c2 cosβ + c3

(22)

The projection condition B=0 is then imposed and the system is easily solved
to find the resulting expression of the three coefficients c1, c2 and c3. Working
within DA, all the elements in the expressions above are polynomials and there-
fore the obtained coefficients are also polynomials. The resulting coefficients can
then be introduced in Eq. 18 to obtain the Taylor expansion of the projection
of the subdomain onto the MTP.

T~rMTP
=

[
Tc1 |~r| ~R
Tc3 |~r| ~Z

]
(23)

where the notation Tci identifies the polynomial representation of the i-th coef-
ficient. Besides granting an accurate projection, the above procedure provides a
polynomial expansion of the position vector on the MTP, which means that the
LOV is eventually fully described as a single-variate polynomial map in MTP
coordinates.

4. 1D impact probability computation

Once the propagation and the projection of the LOV have been performed, the
LOV is represented onto the MTP by a series of subdomains of different length,
some of them having a geocentric distance lower than the Earth radius. In Fig.
5 a sketch of the LOV on the MTP is illustrated: the different subdomains
of the LOV are highlighted with different colours and the impacting ones are
dashed. Considering a one-dimensional pdf associated to the LOV, the IP be-
tween the asteroid and the Earth can be computed by integrating the pdf over
the impacting subdomains. Different approaches can be exploited to perform
this computation:
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X0 

Figure 5: Sketch of the LOV projected on the MTP: dashed subdomains are the impactors
which are considered in the IP computation.

• Integration of the propagated pdf – The nonlinear dynamics stretches the
asteroid’s confidence region, and its LOV. If a single subdomain is con-
sidered, the ratio of its length at the final and initial epoch provides a
stretching factor Λ3. This stretching factor can be used to propagate the
pdf associated to the subdomain. By multiplying it by the length l of the
subdomain at the final epoch, the impact probability can be computed:

IP =
p(σ)

Λ
l (24)

• DA-based Monte Carlo – Thanks to DA, the polynomial expansion of
the position vector on the MTP is available, as explained in Section 2.
Therefore, the state on the MTP corresponding to each point of the initial
LOV can be retrieved by evaluating the polynomial map. Therefore the
initial LOV can be sampled according to the chosen pdf and the impact
probability can be computed as the ratio of the number of samples whose
corresponding final position impacts with the Earth and the total number
of samples:

IP =
N⊕
N

(25)

• Integration of the pdf over the initial domain – Once the impacting sub-
domains are detected, the IP can be computed by simply integrating the
pdf on the initial LOV over the portion of the line that collides with the
Earth.

The first method enables a target plane analysis, if needed. Presented in large
detail in [2], a target plane analysis allows to project the initial uncertainty

3The symbol used here is the same as the one adopted for the major axis of the confidence
ellipse on the MTP seen in Section 1. Indeed there is a strong correlation between the two
parameters. If we consider the initial 6D confidence region and project it onto the MTP
to become a 2D ellipse, in a first-order approximation, its semi-major axis is exactly the
propagated and projected LOV.
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region onto the plane and to search for impactors out of the LOV. On the other
hand the DA-based Monte Carlo is very simple and accurate, provided that the
final polynomial map is accurate enough. As the accuracy may not be sufficient
in case of highly nonlinear dynamics, the third method is adopted. A Gaussian
pdf is associated to the initial LOV in the form:

pdf(x) =
1√
2πσ

e
−

(x− µ)2

2σ2 (26)

The mean µ is equal to zero in this case, as the pdf is centered at the expansion
point of the LOV. In the DA framework, the DA independent variable δ spanning
the LOV goes from −1 to +1 in the corresponding real interval [−3σ,+3σ]. To
compute the probability density at a generic coordinate x = qσ (i.e. δ = qσ

3σ =
q
3 ) the exponent in Eq. 26 becomes:

− (x− µ)2

2σ2
= − (qσ)2

2σ2
= −1

2
q2 = −1

2
(3δ)2 (27)

and the pdf in the DA framework is:

pdf(δ) =
1√
2πσ

e
−

1

2
(3δ)2

(28)

On first approximation, the subdomains whose center or one of the extrema lie
within the Earth disk can be considered as fully impacting. A refinement can
be obtained by finding the exact portion of the LOV that intersects the Earth
surface, increasing the precision of IP computation. With reference to Fig. 6,
in which a sketch of the split LOV is illustrated, the subdomains are classified
as:

• Internal – Subdomains whose center lies within the Earth surface and are
not adjacent to the blue-to-red transition. They are considered as full
impactors.

• External – Subdomains whose center lies outside the Earth disk and are
not adjacent to the transitiom. They are excluded from the IP computa-
tion.

• Crossing – Moving from left to right along the LOV, the last red subdo-
mains before one or more blue subdomain and the first blue subdomain
after one or more red subdomains. For these subdomains the exact inter-
section shall be found.

For the crossing subdomains, the point corresponding to the intersection
with the Earth surface can be computed by numerically finding the root of the
function:

f = ||~rMTP|| −R⊕ (29)
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Figure 6: IP computation refinement: classification of the LOV subdomains.

where R⊕ is the Earth radius and ||~rMTP|| is the polynomial expansion of the
norm of the asteroid’s position on the MTP. For each subdomain i, finding the
exact intersection between the LOV and the Earth surface allows two coefficients
Bi and Di to be identified, which are then used to refine the IP computation
as illustrated hereafter. Before applying the bisection method, the presence of
an actual zero is checked. To this aim, the function is evaluated at the extrema
and at the center point and the three resulting values are denoted as

ai = f(+1) bi = f(0) ci = f(−1) (30)

Calling Zi the root of the function for the i-th subdomain, different possibilities
arise for the assignment of the coefficients Bi and Di

case 1) ai · bi < 0: Search for Zi between 0 and +1.

(a) ai < 0

Bi = 0.5 · (1− |Zi|)
Di = 0.5 ∗ (1.0 + Zi)

(b) ai > 0

Bi = 0.5 + 0.5|Zi|
Di = 0.5 ∗ (−1.0 + Zi)

case 2) ci · bi < 0: Search for Zi between −1 and 0.

(a) ci < 0

Bi = 0.5 · (1− |Zi|)
Di = 0.5 ∗ (−1.0 + Zi)

(b) ci > 0

Bi = 0.5 + 0.5|Zi|
Di = 0.5 ∗ (1.0 + Zi)

case 3) ai < 0 & bi < 0 & ci < 0:

Bi = 1

Di = 0
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Figure 7: IP computation refinement: illustration of the role of the coefficients Bi and Di.

case 4) ai > 0 & bi > 0 & ci > 0:

Bi = 0

Di = 0

At the end of the above procedure, the IP is computed as:

IP =
∑
i

1√
2πσ

exp

{
−1

2

[(
ci +Di · 0.5wi

)
σ
]2}
· 3σBiwi (31)

in which ci is the center of the i-th subdomain expressed in terms of its displace-
ment with respect to the LOV center, and wi is the width of the subdomain.
As illustrated in Fig. 7, Di defines by what amount the point of evaluation of
the pdf has to be shifted with respect to the reference point and Bi represents
the portion of the subdomain that impacts the Earth and therefore multiplies
the pdf.

5. Asteroid 2010 RF12 – Direct encounter

The proposed technique is now applied to a test case with a potential direct
impact, i.e. during the propagation, no planetary deep encounters occur between
the initial epoch and the impact. According to the NEODyS database4, asteroid
2010 RF12 has a very elongated initial confidence region with a ratio of 3.8 ·104

between the largest and the second eigenvalue of the initial Cartesian covariance
matrix, from now on called eigenvalue ratio χ. Due to the high eigenvalue ratio,
the LOV is expected to provide a very good approximation of the behaviour of
the full confidence region. This asteroid, whose initial conditions are taken at
00:00 of March, 23rd 2018, has a potential impact with Earth in 2095.

Figure 8 shows the resulting projection of the LOV onto the MTP associated
to the potential impact. The straight shape of the propagated LOV confirms

4accessed in May, 2018
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Figure 8: 2010 RF12: LOV projection onto the MTP at the epoch of impact in 2095

the relatively weak nonlinearity of the dynamics due to the absence of deep en-
counters. The subdomains (represented by the different colours) become smaller
and smaller as the asteroid moves close to Earth (the small black dot close to
the right end of the LOV). Inside the Earth disk (see Fig. 9 for a detailed view
of Fig. 8) they become extremely small. Table 1 reports the IP computation
for this test case, together with the reference value taken from the NEODyS
database. The accuracy of the result and the computational time are satisfac-
tory, especially considering the timespan covered by the numerical propagation
(about 80 years) and the fact that the code has not been parallelized.

order subdomains comp. time [s] IP IPNEODyS

12 91 1017 0.05943 0.06

Table 1: 2010 RF12 IP computation. The computational time is the running-time on an AMD
Opteron 6376 processor with a total of 64 cores @ 2.3 GHz and 256 Gbytes of RAM.

6. Asteroid Apophis – Resonant return

A resonant return introduces relevant complexity in the computation. To il-
lustrate the associated criticalities, the case of asteroid Apophis is here inves-
tigated. When first observed, the asteroid was estimated to have a very high
impact probability with the Earth in 2029. When this collision was ruled out,
the 2029 deep encounter still accounted for a possible resonant return collision
in 2036. Further observations ruled out also this risk. The initial conditions
used for the following analysis were provided by G. Tommei (private commu-
nication) and they refer to the results of a 2004-2005 observational campaign
that still included the possibility of a collision in 2036. In this case χ = 5 · 102,
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Figure 9: 2010 RF12: detail of the LOV projection onto the MTP at the epoch of impact in
2095 close to the Earth disk
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Figure 10: Apophis: LOV projection onto the MTP at the epoch of impact in 2036

which is lower than the previous case but still describes an elongated initial con-
fidence region. The nonlinearities due to the deep encounter with the Earth in
2029 critically enlarge the confidence region and the LOV is strongly stretched
and tangled, as evidently illustrated in Fig. 10. These nonlinearities induce a
very high number of splits and many subdomains tend to reach the maximum
number of splits Nmax. When this happens, the final polynomial map is not
accurate , which affects in turn the reliability of IP computation. To better
illustrate this issue, Fig. 11 shows the projection of the portion of the LOV
close to the Earth disk. It is evident that the inner subdomains (in red and
light blue) are completely inaccurate since they could not be split further after
reaching Nmax.
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Figure 11: Apophis: detail of the LOV projection onto the MTP at the epoch of impact in
2036, close to the Earth disk

This problem must be necessarily circumvented to guarantee sufficiently ac-
curate results for asteroids featuring a resonant return. To this aim, a refining
routine is proposed:

1. After LOV propagation and projection, the subdomains (either accurate
or inaccurate) whose center lies below the Earth surface are identified.

2. The subdomains are classified as Internal, External or Transition subdo-
mains.

3. Internal subdomains are considered full impactors even if they are inac-
curate in order to significantly reduce the computational burden.

4. Consider the Transition subdomains and retrieve the last accurate state
within their propagation history.

5. Initialize a new ADS-based propagation of these subdomains that allows
to further split the sudomains and to obtain an accurate polynomial map
close to the Earth surface.

6. Identify the exact intersection between the LOV and the Earth disk to
compute the IP.

The last item deserves to be discussed in more detail. With reference to
Fig. 12, the center points of the blue subdomains lie below the Earth surface,
whereas the center points of the red subdomains lie above the surface. Moving
from left to right, the last blue subdomain and the first red one are the cross-
ing subdomains, as the intersection between LOV and Earth surface may lie in
either one or the other. These subdomains are repropagated and a schematic

20



1 1 1 1 0 0 0

1

0.63

0.326

Earth

�rst propagation

repropagation

Figure 12: Subdomains repropagation approach: the crossing subdomains of the initial prop-
agation (above) are repropagated and a finer grid is obtained (below)

representation of the possible outcome of the procedure is reported at the bot-
tom of Fig. 12: several additional subdomains are generated from the two initial
subdomains. By applying a procedure similar to the one presented in Section
4, the exact intersection can be identified inside the sub-subdomains. The IP
computation is then performed as described in Section 4.
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Figure 13: Apophis: detail of the LOV projection onto the MTP at the impact in 2036 after
the application of the repropagation routine.

The beneficial effect of the repropagation routine for Apophis is evident
from Fig. 13. The inaccurate subdomains are repropagated and this grants a
better description of the LOV. Some of the subdomains inside the disk seem to
introduce discontinuities along the LOV: this is not due to inaccuracy of the
polynomials but rather to the projection routine. Indeed, the propagation of
the impacting subdomains is stopped as soon as they reach Earth surface and
they are then directly projected onto the MTP even if their center does not lie
on the plane. This introduces an error that turns out to be negligible for IP
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order subdom. comp. time [s] IP IPREF

12 130 1474 3.0134 · 10−5 3 · 10−5

Table 2: Apophis IP computation

computation. The result of the IP computation is presented in Tab. 2: once
again, the predicted value is close to the reference from NEODyS.

7. Low eigenvalue ratio and 2D method

7.1. Low eigenvalue ratio

The previous sections focused on two test cases in which the LOV is able
to approximate the behaviour of the full confidence region and the computed
IP is accurate. However, more generally, the impactors are gathered in a re-
gion that can be more or less elongated and variously distributed inside the
initial 6D uncertainty ellipsoid. If this region lies across the LOV, then the
one-dimensional LOV technique is capable of approximating the impact prob-
ability of the full portion of the curve leading to an impact by reducing the
analysis along a single direction. If the confidence region is very elongated, this
condition is likely to occur. On the other hand, this assumption may fail for
non-elongated uncertainty ellipsoids, i.e. if the first two eigenvalues are about
the same order of magnitude. Evidently, the eigenvalue ratio tips the balance
between the different behaviours and assumes a key role in this analysis.

The reliability of the proposed method for low values of χ is now investi-
gated. The case of asteroid 2016 LP10 is analysed. According to NEODys, this
asteroid has an eigenvalue ratio of about 8. Thus, it features a less elongated
initial uncertainty ellipsoid with respect to the previous test cases. The mere
application of the technique as presented in the previous sections yields IP = 0
even if the impact probability, according to the NEODyS database, is 4.1 ·10−5.
This means that the portion of the initial uncertainty set leading to the impact
lies in a region that is fully outside the LOV. Therefore, the one-dimensional
technique fails (see Fig. 14). In such cases, the standard LOV technique per-
forms a projection of the covariance associated to each VA onto the MTP in
order to perform an off-LOV analysis. Yet, our analysis is carried out start-
ing with a determined orbit and only one covariance matrix is known for the
whole distribution. An alternative approach is proposed here, which is based
on the idea of increasing the number of variables of the Taylor expansions by
considering the first two eigenvalues of the covariance matrix.

7.2. Two-dimensional technique

When the one-dimensional approach is deemed to be unreliable, a two-
dimensional technique can be adopted. The technique relies on the observa-
tion that DA can provide expansions with respect to an arbitrary number of
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variables. An extended treatment of two-dimensional approaches is provided
in [13] where the concept of the LOV is extended to introduce the manifold of
variations. Similarly to Eq. 13, the manifold of variation is initialized in the
space of the eigenvectors as

[xEIG] =
[
0 0 0 0 Λ5 · δx5 Λ6 · δx6

]T
(32)

Focusing on a ±3σ analysis, the scaling factors are:

Λ5 = 3
√
λ5 and Λ6 = 3

√
λ6 (33)

[xEIG] needs to be rotated in the real Cartesian space as in Eq. 14 and the
result of this procedure is a 6D vector whose components are polynomials the
two variables δx5 and δx6.

The two-dimensional confidence region stretches during the propagation and
the projection onto the MTP, as shown in Fig. 14b for asteroid 2016 LP10.
The subdomains are more subject to deformation after reaching Nmax. Conse-
quently, for the sake of clarity, Fig. 14b is produced by evaluating a first order
truncation of the 12th-order polynomials.
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(a) 1D technique. (b) 2D technique.

Figure 14: 2016 LP10: 1D and 2D confidence region projected onto the MTP

The propagation of a multidimensional confidence region exacerbate the re-
quired computational effort. A larger number of subdomains are generated,
typically in the order of thousands, and many of them reach the maximum
number of splits. This has a significant effect on the reliability of the method.
When a subdomain reaches Nmax, if the nonlinearities are large or if a long in-
tegration is performed, the accuracy of the final polynomial map is totally lost.
The technique adopted to overcome this issue is presented in the followings.

During the propagation, the distance from the Earth is checked at the center
of the subdomain and at the four boundary points identified by (δx5, δx6) =
(−1, 0), (1, 0), (0,−1), (0, 1). All the subdomains that have at least one point
below the Earth surface are saved for further analysis. When all subdomains
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have been propagated, the impacting ones are retrieved and, if they belong to
the group of subdomains that reached Nmax, they are re-initialized and reprop-
agated, starting from the integration step at which Nmax was reached. This
allows to obtain a further splitting only of the relevant boxes as depicted in Fig.
15.

Such repropagation is performed with a lower Nmax, that has to be tuned
to compromise between accuracy and computational effort. In the multidimen-
sional case, the subdomains are prone to many splits and may reach Nmax even
in the second propagation. Yet, their size would be way smaller than reasonably
needed for an accurate IP computation and their propagation would require an
extremely large computational effort. Instead, if the maximum number of splits
is reduced up to 8 or 4, the computational time reduces to values in the order
of minutes, making the approach feasible.

Earth
Earth

Figure 15: Repropagation of the impacting subdomains in the two-dimensional approach.

The IP computation for the 2D tool is performed by assigning a two-dimensional
Gaussian pdf to the initial domain and integrating it over the impacting sub-
domains. The expression of a 2D pdf

pdf(x1, x2) =
1

2π
√
|detΣ|

e
−

1

2
(x−µ)T Σ−1(x−µ)

(34)

is simplified thanks to the fact that the pdf is built on the space of the eigen-
vectors of the initial domain. Therefore, the covariance matrix Σ is diagonal
and the pdf for the i-th subdomain becomes

pdfi(δ1i
, δ2i

) =
1

2π
√
σ2

1σ
2
2

e
−

1

2
δ21i

32−
1

2
δ22i

32

(35)

with the same nomenclature as in Eq. 28 and where 3 in the exponent accounts
for the sigma-interval of the analysis: [−3σ,+3σ].

On first approximation, all the impacting subdomains resulting from the
first propagation are considered as full impactors. The 2D probability density
is obtained by evaluating Eq. 35 at the center, i.e. δ1i = δ2i = 0 and their area
is simply computed as:

Ai = 3σ13σ2w1i
w2i

(36)

The IP is therefore computed as

IP =
∑
i

pdfiAi (37)
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The result may be strongly affected by the fact that the impacting subdomains
have reached Nmax and therefore neither they can be reliably assumed as full
impactors nor they can be used for a computation of the exact intersection. The
repropagation of the impacting subdomains provides the necessary refinement.
In this case, the impacting area is computed as:

Ai = Gi3σ13σ2w1iw2i (38)

where Gi is a coefficient that accounts for the actual portion of the box that is
identified to collide with the Earth after the repropagation. Gi is computed as

Gi =
∑
j

1

2
w1i,j

1

2
w2i,j (39)

where w1j and w2j are the widths in the two dimensions of the j-th sub-
subdomain generated by the repropagation of the i-th subdomain.

The IP computation results are listed in Tab. 3. The repropagation of the
impacting boxes, in this case with Nmax = 4, requires about 3 additional hours
of computational time and it grants a much more accurate IP if compared to
the reference value provided by NEODyS.

A critical role is played by the choice of Nmax for the repropagation. In
this case Nmax = 4 was a good choice but it may turn out to be low for other
cases. In fact, when the IP is very small or the dynamics is highly nonlinear, the
impactors may lie in a very tiny region of the impacting subdomains. Therefore,
a higher value for Nmax may be required.

comp. time [h] 2D IP IPNEODyS

without repropagation 8.48 5.8983 · 10−4 4.10 · 10−5

with repropagation 11.51 4.3003 · 10−5 4.10 · 10−5

Table 3: 2016 LP10 IP computation

7.3. Intermediate eigenvalue ratio

As a final relevant scenario, let us consider the case of an intermediate value
of χ, such as asteroid 2017 RH16 for which χ = 2.95 ·103. The initial conditions
at 00:00 of March, 23rd 2018 include the possibility of an impact with Earth
on 2026 with IP = 1.45 · 10−3, according to NEODyS. A one-dimensional and
a two-dimensional propagation are performed and the impacting subdomains
are identified. Fig. 16 shows the 2D impacting subdomanins (in blue) together
with the LOV (the red line) and the 1D impactor (in black) on the plane of
the first two eigenvectors. We can observe that the 2D impactors lie almost
orthogonally to the LOV. This explains why the one-dimensional technique is
capable of providing an accurate IP (1.04 ·10−3) even if most VIs lie outside the
LOV. Indeed, if we integrate a one-dimensional pdf we are implicitely integrating
the other dimensions from −∞ to +∞. More in detail, if we consider the 1D
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impactor, this is equivalent to assuming as impactors all the points lying on the
full line orthogonal to the LOV and crossing the line at the quote of the 1D
impactor. We have seen in various cases that in this χ condition, the impactors
lie almost perpendicularly to the LOV. Even when this is not strictly true, we
can observe that the largest contribution to the IP value is given by the impactor
on the LOV and, despite a slight deviation that might be accounted for, the two
outputs turn out to be close. This justifies the adoption of a one-dimensional
reduction of the problem.
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Figure 16: 1D and 2D impacting subdomains for 2017 RH16

8. Comparison with the existing IP computation methods

The technique investigated in this paper aims at obtaining an efficient and
reliable IP computation. To assess whether the proposed technique does actually
improve the currently adopted approaches, a comparison with the existing IP
computation techniques is provided. All the following considerations apply to
the one-dimensional technique.

Monte Carlo simulations provide a benchmark solution for any uncertainty
propagation technique and, provided that a sufficient number of N-dimensionally
distributed samples is generated, they offer a reliable result with a large com-
putational burden. For the case of asteroid 2016 RD34, the longest time-per-
sample required in a sample-wise propagation has been identified to be about
2.2 seconds on the computer and with the code adopted in this work. According
to [14], the minimum number of samples required to detect any IP value above
a certain IPlim with a 50% relative error is 4/IPlim. By considering that the
impact probability is about 4 · 10−4, the propagation of 104 samples guarantees
a reliable IP computation. Yet, if the order of magnitude of the IP is not known
a priori and if IP levels down to 10−6 are of interest, then the propagation of
up to 4 · 106 samples is necessary. By multiplying this value by 2.2 seconds per
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sample, the required simulation time turns out to be of the order of 100 days.
For the sake of fairness, it is worth mentioning that the code adopted here for
numerical propagation is not optimized for point-wise propagation and all the
simulations are here performed on a single-core. Yet, it is worth observing that,
under the same conditions the proposed approach provides a computational
gain of three orders of magnitude with respect to standard Monte Carlo. The
computational gain is even larger for asteroid 2010 RF12 due to the longer in-
tegration time span (which yields longer Monte Carlo simulation time) and the
reduced DA-based computational time when the one-dimensional approach is
sufficiently accurate.

An interesting comparison can be carried out with respect to the standard
LOV approach. According to [11], a generic completion level of 10−7 requires
the propagation of around 104 samples along the LOV (3-4 orders of magni-
tude lower than the samples required with standard Monte Carlo), which would
require an IP computational time of about 1.5 to 2 hours per object on our
platform and with our code. The analyses reported in this work have shown
that the proposed approach yield accurate IP value in less than 20 minutes (see
2010 RF12). According to this considerations, the proposed approach seems to
be competitive with respect to current techniques. The main issue is, at the
moment being, the lower level of reliability of the algorithm. On a general level,
the proposed approach could be adopted for preliminary analyses. All the de-
tected objects with χ > 102 can be tested with the DA-based one-dimensional
approach and, depending on the results, different strategies may be adopted:

• IP 6= 0: the result can be considered reliable.

• IP = 0, χ < 104: a different technique analysis shall be applied.

• IP = 0, χ > 104 and very low minimum Earth-LOV distance: a different
technique shall be applied to exclude the possibility of low-probability
off-LOV impactors.

• IP = 0, χ > 104 with safe minimum Earth-LOV distance: the approach
can be considered reliable.

Since most NEOs fall in the first or fourth category, only few objects be analyzed
with different techniques.

9. Conclusion

This paper has introduced DA techniques into the standard LOV approach
for NEO impact probability computation. The one-dimensional technique, if
supported by the repropagation algorithm, provides reliable results if the eigen-
value ratio is sufficiently large. Computational times are relatively low, ranging
from few minutes to few hours in the most demanding cases. For low eigenvalue
ratios, the 2D approach has to be adopted, with increased computational time
and sensitivity to the tuning parameters
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The 1D approach could be a valuable tool, for its capability of providing
a fast and reliable IP computation. The majority of asteroids has a large χ
value and therefore this represents a significant achievement. Further work
is demanded, in particular to develop an autonomous version of the software,
capable of working without an estimated collision epoch. This aspect is certainly
non-trivial and is crucial in routine impact monitoring operations.

As a final remark, it would be interesting to assess the potential advantages
offered by code parallelization. Indeed, while working with ADS, the different
subdomains could be propagated independently thus reducing the computa-
tional time.
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