
Moving Frames: Essential Journey of Élie Cartan

by alberto cogliati
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Postcard from Cartan to Engel, 1905

Élie Joseph Cartan was born on 9 April 1869, the
second of four children, in Dolomieu (Isère),
a small village in south-eastern France. His

ancestors were peasants. His father, Joseph, was the village
blacksmith. AsCartanhimself later recalled, Cartan’s infancy
was spent serenely. Devotion to hard work, and a marked
senseof dignitywerehismost precious inheritances fromhis
parents. In 1939, on the occasion of the celebration of his 70th
birthday, he wrote:

My childhood was cradled under blows of the anvil
which resounded every morning from dawn; I can
still see mymother working with a spinning-wheel
during those rare instants when she was free from
taking care of the children and the house.

Equally valuable for grooming his character was the

influence exerted by teachers at the municipal primary
school in Dolomieu. For all his life, Cartan remembered
with gratitude and special affection his teachers, Monsieur
Collomb, and above all, Monsieur Dupuis. Cartan was an
excellent schoolboy since his childhood. Dupuis described
him as a shy student whose eyes shone both with the
light of intelligence and with the desire for knowledge.
His intelligence and almost prodigious memory stood out
among all the other pupils in a large class. As Cartan
himself was to recall later, he could, without any hesitation,
list all subprefectures in each department of France, and
remember all the subtlest rules governing the past participle.
He was equally skilled in orthography, mathematics, the
sciences, history and geography. The young Cartan, Dupuis
concluded, understood everything, even before the teacher
had finished his lesson. Dupuis referred his enthusiastic
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judgment of Cartan to AntoninDubost (1842–1921)who came
to visit the school of Dolomieu in 1878 in his capacity as a
cantonal inspector.
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Élie Cartan

Impressed by his potential, Dubost took Cartan’s education
to heart and recommended that he apply for a scholarship
in a Lycée.* Monsieur Dupuis took charge of Cartan’s
preparation with unparalleled devotion, which Cartan
always recalled with gratitude. A brilliant performance in
the examination alongwith the continuing, fatherly concern
of Dubost won Cartan a full scholarship in the College de
Vienne. Thus, he left Dolomieu at the age of ten. After
five years, his scholarship was transferred to the Lycée de
Grenoble, where he devoted himself to classical studies,

namely, rhetoric and philosophy. After that, in 1887, Cartan
went to the Lycée Janson-de-Sailly in Paris which had only
then been recently inaugurated. Among his classmates was
Jean Perrin, whowas destined to become an eminent French
physicist.

Only a year after his entrance to the Lycée, Cartan
was admitted to the École Normale Supérieure in 1888.
Although his rank at the time of admission was not what one
might have expected, his true talent was soon revealed. As
Arthur Tresse, one of his friends, was to later recall on the
occasionofCartan’s scientific jubilee,Cartan rapidly took the
position that he deserved: the first place in themathematical
section. His opinion in mathematical discussions was
highly respected among students; his unremitting diligence
becoming almost proverbial. As Tresse himself recounted,
Cartan used to sit in the place closest to the entrance door
of the reading room. The shorter the path he had to walk, the
longer he could stay there to study.

During these years, Cartan was able to attend courses
offered by the most prestigious mathematicians in France
at that time who had the talent to progress from the
most elementary notions of Analysis to the then most
recentproblemsofmathematics. Amongst others, therewere
Emile Picard, Jules Tannery, Edouard Goursat, Paul Appell,
Gabriel Koenigs, Gaston Darboux, Charles Hermite and
Henri Poincaré. Cartan remembered with special affection
Tannery who seems to have exerted the greatest influence
upon his students. Reminiscing, Cartan says:

At the École Normale, Jules Tannery exerted
upon us the most profound influence; as a
consequence of a mysterious transposition of his
personality, and possibly also of his gaze, the
respect for mathematical rigour, whose necessity
he constantly emphasised, almost became for us a
moral virtue, just like frankness, loyalty and respect
themselves. Tannery was our conscience.†
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Postcard from Cartan to Engel, 1905

* This is the last stage of secondary education in France, equivalent to classes 10–12 in the Indian school system.
† See [p. 53 [11]].
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Lectures byHermite on elliptic functions andbyDarboux
on the geometry of curves and surfaces made a big
impression on Cartan’s education. He once said about
Hermite:

Every time I had a chance to listen toHermite, I had
beforemean imageof quiet andpure joy causedby
contemplations about mathematics, joy similar to
theone thatBeethovenmusthave feltwhile feeling
hismusic inside of himself.*
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Charles Hermite Jean Perrin

Equally eulogistic were Cartan’s recollections ofDarboux
who exerted a great influence upon Cartan’s method of
moving frames. Cartan wrote:

Gaston Darboux was an analyst and a geometer
at the same time. He surely was not one of those
geometers who avoided tarnishing the beauty of
geometry by flattering analysis, and neitherwas he
one of those analysts inclined to reduce geometry
to mere calculations, without any concern or
interest in their geometric meaning. In this respect
he followed in Monge's footsteps, connecting
fine and well-developed geometric intuition with
skilled applications of analysis. All of his methods
were extraordinarily elegant and perfectly suited
for the subject under investigation.While teaching
in the department of higher geometry at the
Sorbonne, where he succeeded Michel Chasles,
he frequently, and with reverence, spoke about
the theory of triple orthogonal systems, and with
pleasure, stressing the importance of Lamé's
works. Darboux had tremendous influence on the
development of geometry. A classic in its field,
Darboux's work Théorie des Surfaces is a splendid
monument, erected in honour of both analysis and
geometry.†

No less influential were the lectures by Poincaré on
electrodynamics which Cartan attended at the Sorbonne.

A giant to whom every field of modern mathematics is
somehow indebted, as Cartan described him, Poincaré
always showed a great interest in Cartan’s career. He seems
to have been the first person to recognise the importance
of Cartan’s work, even when they were scarcely read and
not as widely known. Shortly before his premature death in
1912, Poincaré devoted his last scientific contribution to a
survey of Cartan’s already wide mathematical output, and
which finally won Cartan due acknowledgement and fame
by paving the way to his appointment as a full professor in
the Sorbonne in 1912.

Doctoral Dissertation, 1894
Cartan graduated from the École Normale in 1891.
Subsequently, he served in the army for one year where he
achieved the rank of sergeant. On his return to Paris, Cartan
immersed himself in a period (1892–93) of intense study of
the structure of (complex) finite-dimensional Lie algebras.
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Jean-Gaston Darboux

It was during these years of hard work, when he spent
most of his time in the library studying papers by Sophus
Lie, that Cartan had the occasion to actually meet Lie for
the first time. At the invitation of Darboux and Tannery, Lie
came to Paris in the Spring of 1893. He had known of Cartan
from one of his students, Georg Scheffers, who, in March
of the same year, had informed him that a friend of Tresse,
whose namewas Cartan, was working on a thesis on some of
Wilhelm Killing’s ideas. Although, as is observed by Thomas
Hawkins in [p. 198 [15]], it appears that Lie’s direct influence
onCartan’s thesiswasmarginal, but still hismeetingwith Lie
must have been very inspiring. In this respect Cartanwrote:‡

In 1892, Sophus Lie came to Paris for six months.
With great benevolence he became interested in
the researches of young French mathematicians
working in group theory. One could frequently

* See [p. 297 [1]].
† Ibidem.
‡ Cartanmistakenly put Lie’s visit to Paris in 1892 instead of 1893. Contrary to what Cartan said, Lie’s stay in Paris was only three weeks long. In this respect
see [p. 373-374 [18]].
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see him around a table of the Café de la Source,
in boulevard Saint-Michel; with the top of the
white marble table often covered in hand-written
formulas which the illustrious master wrote
down in order to illustrate the exposition of his
ideas. The indifference with which his early works
had been embraced, or even ignored by most
mathematicians, now gave way to admiration.
Most academies, with the exception of that of
Berlin, held it dear to count him among their
members. Also during this stay in Paris, on 7th July
1892, the Academy of Sciences of Paris appointed
him a corresponding member in the section of
Geometry.
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Jules Tannery

As Hawkins put it, two main motivations underlying
Cartan’s thesis can be distinguished: the discoveries in
non-Euclidean geometries and the concomitant reflection
upon the foundations of geometry initiated by Bernhard
Riemann’s and Hermann von Helmholtz’s works. Indeed,
independently of Lie, already in the late 1870s, Killing had
developed a notion which turned out to be equivalent to
that of a continuous group of infinitesimal transformations
(i.e. of a Lie algebra). His concern consisted of providing
a classification of the different motions characterising
different geometries (space forms in Killing’s language).
It was only at a later stage (c. 1884) that Killing, through
his correspondence with Felix Klein and Friedrich Engel,
discovered that his researches were intimately connected
to those of Lie. Indeed, as he soon acknowledged, the
set of infinitesimal motions of a given space form could
be identified with a continuous group of infinitesimal
transformations, in the sense of Lie’s theory.

Despite the fact that he had a clear notion of structure
and isomorphism, Lie does not appear to have developed
adequate algebraic methods to treat the classification
problem of the different isomorphism classes of Lie algebras
in their full generality. In this respect, Cartan was more

influenced by the theory developed by Killing.
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Sophus Lie

Starting from 1888, Killing, at that time an almost
unknownprofessor at the LyceumHosianum inBraunsberg,
East Prussia, published a series of four papers titled Die
Zusammensetzung der stetigen endlichen Transformationsgruppen
[The structure of finite continuous group of transformations] in
which he had provided a large part of the essential elements
of what in modern terms would be called the “structural
theory of complex Lie algebras”. Killing’s approach to
continuous groups of transformations was marked by a
sharp distinction and contrast with respect to Lie’s, both for
its underlyingmotivations, and also for the technical tools he
employed.
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Friedrich Engel

The context of Killing’s researches was that of the
foundations of geometry, a topic (quite popular in Germany
at that time, and) which he had been interested in since
1872 when, in Berlin, he had the occasion to attend Karl
Weierstrass’ lectures on the foundations of geometry.
Throughout the following years, the problem of classifying
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all different motions of a given space form attracted his
attention, in tune with his general project of classifying all
conceivable types of geometries. This led him to develop a
structural approach to the classification theory of (complex)
continuous groups which, unlike Lie’s more rudimentary
treatment, took great advantage of the new trend of rigour
initiated byWeierstrass.
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Wilhelm Killing

In this respect, the exceptional character of Killing’s
activity, among those of other mathematicians trained in
Berlin, should be stressed. Possibly as a consequence of
his distance from the academic routine, Killing was able to
exploit all the advantages (e.g. commitment to rigour and
abstract reasoning) stemming from his Berliner education
without having to contendwith, and also for this very reason
too, the skepticismwithwhich Lie’s ownworkwaswelcomed
there. The result was a fortunate marriage between the
Weierstrassian style and Lie’s fertile ideas.

What Lie called a “finite continuous group of
transformations” can be described as a set of (analytical)
transformations which depend upon a finite number of
parameters in such a way that the composition of two
transformations of the set is still a transformation belonging
to the set itself.

It is important to observe that, independently of the
type of space upon which they act, both complex and real
groups are included within the definition. Furthermore,
one should remark that, contrary to the present day
definition, the denomination “finite” refers to the fact that
the transformations admit a finite parameterisation in
terms of parameters a1, . . . , ar, even if the transformations
ofGr are infinite in number.

Besides a wide range of applications, the main objective
of the theory was the determination of all essentially distinct
transformation groups. One crucial tool introduced by Lie in
order to pursue this classification enterprise was the notion
of infinitesimal transformation. InLie’s views, itwas the very
possibility of characterising the transformation of the group
as generated by this type of infinitesimal transformations
that justifies the usage of the word “continuous”; as he put it,
“a group is called continuous when all of its transformations

are generated by repeating infinitesimal transformations
infinitely often …”.

The main technical advance introduced by Killing
consisted in the prominent role that he attributed to the
so-called characteristic equation of a given infinitesimal
transformation of a Lie algebra. It is important to note that
despite their geometrical motivation, which would have
naturally resulted in research on continuous groups with
real parameters, Killing limited himself to considering the
much easier case of complex Lie algebras.

Killing’s groundbreaking achievements soon stimulated
further investigations especially in Paris. As a young, and a
most promising student at the École Normale, Élie Cartan
decided to devote his doctorate dissertation to the subject of
the classification problem of complex Lie algebras.

As a consequence of the general favour with which Lie’s
ideas had been welcomed in Paris, many graduate students
of the École Normale were encouraged to study Lie’s theory
and even to spend some time in Leipzig, where Lie had
been teaching higher geometry since 1886, in order to hone
their knowledge of the subject. Cartan never went to Leipzig
(althoughhemet Lie inParis), but a close friendof his, Arthur
Tresse, did. In particular, it was Tresse who, upon his return
to Paris in 1892, informed Cartan of Killing’s research.
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Felix Klein

Cartan was soon convinced of the importance of taking
up Killing’s work with the aim of clarifying some delicate
points that, despite Killing’s commitment for rigour, had
remained vague. Indeed, as Engel had already pointed out,
Killing, en route to his classification enterprise, had relied
upon some incorrect statements, that resulted in people
questioning the tenability of his approach. Among the many
important new results achieved by Cartan in [3], mention
should be made of the so-called semi-simplicity criterion,
according to which a given Lie algebra can be decomposed
into the (direct) sum of simple algebras if, and only if, a
certain quadratic form (improperly known as Killing’s form)
is non-degenerate.
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Exterior Differential Systems

Cartan’s dissertation represented the beginning of a
fascinating and highly interesting mathematical enterprise
which would eventually lead him to develop a most
enterprising approach to differential geometry, known as
the method of moving frames. This is a generalisation
of the classical techniques of Frenet and Darboux that
consisted of attaching moving reference frames to curves
and surfaces. The method offers a powerful algorithmic tool
for the study of curves and surfaces in different geometrical
settings. Cartan’s highly innovative approach in this field
was the outgrowth of careful work involving re-interpreting
Lie’s classical ideas in the light of new techniques, mainly
developed by Cartan himself, of the calculus of differential
forms.
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Henri Cartan, 1968

Soon after the defence of his doctoral dissertation,
Cartanwas appointed to theUniversity ofMontpellier where
he lectured from 1894 to 1896. Then, from 1896 to 1903 he was
lecturer in the Faculty of Sciences in Lyon. While in Lyon, he
marriedMarie-Louise Bianconi (1880–1903), a youngwoman
of Corsican origin, who was destined to be Cartan’s beloved
wife for his entire life. In 1903,Cartanmoved toNancy,where
he became a professor at the local university. In 1904, Henri
(1904–2008), the first of four children, was born. Cartan
worked in Nancy until 1909 where he also taught Elements
of Analysis at the Institute of Electrical Engineering and
AppliedMechanics. Itwas inNancy, as he recalled years later,
that he first got used to addressing a large audience.

These years (1894–1909) of scientific isolation, which
were spent away from Paris, the undisputed centre of the
Frenchmathematical activity, were nonetheless very fruitful
and crucial to the development of Cartan’s mathematical
thought. Indeed, it was during these years, that he conceived

a great many technical tools which, later on, he would apply
to different realms of mathematics, mainly, in differential
geometry. It was also during this period that Cartan
developed his theory of exterior differential systems, and his
peculiar approach to continuous groups of transformations.
In his words:

…I look at the memory of the best fifteen years
I spent outside Paris, first in Montpellier, then in
Lyon and afterwards in Nancy. These were years of
meditation in the calm, and the germs of all that I
subsequently did, are contained inmyworks of this
period, pondered over at length.*

Over the period of a few years after the composition of
his doctoral thesis [3], Cartan devoted himself to applications
of the theoretical results contained therein. The theory of
partial differential equations appears to be one of the main
fields of his interest. This emerges quite clearly, for example,
from the reading of a dense memoir, [4], dedicated to the
theory of those systems of partial differential equations
whose solutions depend only upon arbitrary constants and
such that they admit a continuous group of transformations.
Cartan’s work [5] on Pfaffian forms, andmore specifically on
the problem of Pfaff was a part of this interest. Indeed, as
Lie had demonstrated, the integration of partial differential
equations and the integration of Pfaffian forms were
considered as equivalent formulations of the same problem.

W
ik
im
ed
ia
Co
m
m
on
s

Johann Friedrich Pfaff

Cartan starts off by giving a symbolic definition of what
a differential expression in n variables is; this is defined
as a homogenous expression built up by means of a
finite number of additions and multiplications of the n
differentials dx1, . . . , dxn as well as of certain coefficients
whichare functions ofx1, . . . , xn. In a similarway, aPfaffian
expression is defined as a differential expression of degree
one, and of the following type: A1dx1 + · · · + Andxn; a
differential form of degree two is given, for example, by
A1dx2 ∧ dx1 +A2dx3 ∧ dx2.†

A very important notion of Cartan’s new calculus was the
exteriormultiplicationbetween twodifferential expressions.
Cartan himself observed that already in 1896 he had realised

* See [p.54 [11]].
† Cartan did not employ the wedge product symbol∧.
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that the change of variables formula in multiple integrals
could be easily derived by submitting the differentials under
the integration sign, to appropriate laws of calculation,
which also incidentally coincide with Grassmann’s exterior
calculus. By developing such an intuition, in 1899 hewas able
to present convincing arguments to justify such rules, which
relied upon the idea of the value of a differential form.

To this end, Cartan considered a differential expression
ω of degreeh and then supposed that then involved variables
are functions of h arbitrary parameters (α1, . . . , αh). By
indicating with (β1, . . . , βh) one of the h! permutations of
the parameters α1, . . . , αh, Cartan associated to it the value
that ω assumes when the differentials occupying the ith

(i = 1, . . . , h) position are replaced by the corresponding
derivative of x with respect to βi. By attributing to such a
quantity the sign + or − depending on the parity of the
permutation considered and then by summing over all h!
permutations, Cartan finally obtained what he called the
value of the differential expression. For example, the value of
the differential formA1dx2 ∧ dx1 +A2dx3 ∧ dx2 is:

A1
∂x2
∂α1

∂x1
∂α2

+A2
∂x3
∂α1

∂x3
∂α2

−A1
∂x2
∂α2

∂x1
∂α1

−A2
∂x3
∂α2

∂x2
∂α1

.

At this point, Cartan defined two differential expressions
of degree h to be equivalent if their value is the same,
independent of the choice of parameters α1, . . . , αh. In this
way he was able to establish Grassmann’s well-known rules
of multiplication, but now to be interpreted, in Cartan’s
view, as equalities between equivalence classes of exterior
differential forms. For example, one has dx1 ∧ dx2 =
−dx2 ∧ dx1 or dx4 ∧ dx4 = 0, and it is easy to see this
by calculating the values of the differential expressions
appearing in the equations.
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Hermann Grassmann

A second crucial novelty of Cartan’s theory was the
exterior derivative of a given Pfaffian expression* which he
explicitly connected with Georg Frobenius’ and Darboux’s
notion of a bilinear covariant. Cartan’s definition reads as
follows. Given a Pfaffian form of typeA1dx1+ · · ·+Andxn,

its derived expression was a form of degree two:

ω′ = dA1 ∧ dx1 + · · ·+ dAn ∧ dxn.†

The invariant character of such derivatives was then
established upon reliance on the notion of value by observing
that if ω̄ indicates the expression of ω with respect to a new
set of coordinates y(x) then the differential forms of degree
two ω′ and (ω̄)′ are equivalent in the sense specified above.

On the basis of such a new calculus, not only was
Cartan able to reformulate all the known results of the
theory of Pfaffian equations, including Frobenius’ analytical
classification theorem, but he also succeeded in subsequent
years (1901–04) in obtaining new remarkable achievements
concerning the resolution of general systems of Pfaffian
equations (systems in involution).

The main idea at the core of Cartan’s reinterpretation of
Lie’s theory was the discovery that the transformations of a
given r-parameter continuous group could be characterised
as the set of transformations leaving invariant a system
of r, properly chosen, differential forms (nowadays, these
differential forms are known as Maurer–Cartan forms).
Accordingly, Lie’s original approach, which was based upon
the notion of infinitesimal transformation, was replaced by
a dual perspective that emphasised the role of the invariance
properties of differential forms. Although mainly devised
to deal with the infinite dimensional generalisation of
Lie’s classical notion, the new theory brought important
consequences in the realm of finite continuous groups too.

Group Theory by Means of Differential
Forms
To give an overview of some of Cartan’s ideas, one can
consider a very simple example of continuous group of
transformations, given by the affine group of the straight
line, for which a direct computation of invariant Pfaffian
expressions can be operated in a straightforward way. We
consider the set of affine transformationsSξ : X = ξ1x+ξ2
and write down the equations of the transformations of the
corresponding parameter group:{

ξ′1 = aξ1,
ξ′2 = aξ2 + b.

(1)

The parameters of S−1
ξ Sξ+dξ , which are infinitely close to

the identity parameters ξ01 = 1, ξ02 = 0, are 1 + dξ
ξ ,

dη
ξ .

The so-called Maurer–Cartan forms are the forms ω1, ω2

thatmeasure the difference between the identity parameters
and the parameters of the transformation S−1

ξ Sξ+dξ , ξ01 +

ω1, ξ
0
2 + ω2:

ω1 =
dξ

ξ
, ω2 =

dη

ξ
,

Andwhich are immediately recognised to be invariant under
the action of (1).

* The definition was generalised to enclose derivatives of differential forms of degree greater than one in [p. 243 [6]].
† The notation dω was introduced by Kähler in [p. 6 [21]].
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The usual approach pursued by Lie consisted instead
in characterising the transformations Sξ by means of the
infinitesimal transformations that are identified with the
analytic vector fields X1 =

∂

∂x
,X2 = x

∂

∂x
. It should be

observed that Cartan’s theory attributed in this way a special
role to the parametric group thus favouring the emergence
of the notion of an abstract Lie group acting on itself.

In this dual setting, the structure equations [X1, X2] =
−[X2, X1] = X1 are replaced by the following ones:

dω1 = 0, dω2 = ω2 ∧ ω1.

Geometrical Investigations
The innovation thus produced did not result in mere
technical novelties. On the contrary, it brought in major
advancements also on a conceptual level. First, it contributed
to the emergence of the abstract notion of a Lie group by
placing emphasis on the so-called parameter group rather
than on the concrete action of a group upon a manifold.
Secondly, it offered a formulation of Lie’s theory which was
particularly apt to geometrical applications.

Cartan’s method of moving frames was a development
of his peculiar approach to Lie group theory. The main idea
consisted in providing a geometrical interpretation of the
invariant forms associated to a given groupG in terms of the
infinitesimal displacements linking together two reference
frames.

Cartan’s structure equations dωk = 1
2

∑
ijk cijkωi ∧ ωj ,

for k = 1, . . . , r, played an essential role in the application of
group theory to geometry. Indeed, a crucial achievement of
[7]was the identificationof the equationsofDarboux’s theory
of surfaces treated with the method of moving frames with
Cartan’s structure equations of the Euclidean group.

Cartan considered the defining equations of the
Euclidean group and deduced from them the structure
equations which in this case read as follows:

dω1 = ω3 ∧ϖ2 − ω2 ∧ϖ3,
dω2 = ω1 ∧ϖ3 − ω3 ∧ϖ1,
dω3 = ω2 ∧ϖ1 − ω1 ∧ϖ2,
dϖ1 = ϖ3 ∧ϖ2,
dϖ2 = ϖ1 ∧ϖ3,
dϖ3 = ϖ2 ∧ϖ1.

(2)

The forms ω1, ω2, ω3 and ϖ1, ϖ2, ϖ3 could be
interpreted as the components of the instantaneous
translation and the instantaneous rotation of the moving
trihedra, respectively. In this way, it was easy to recognize
that equations (2) are equivalent to the equationsuponwhich
Darboux had erected his theory of curves and surfaces in
Euclidean space.

In the following years, Cartan applied his method of
moving frames to a large variety of cases. However, first
attempts at systematisation of the theory came only much
later, namely in his book [16] which contains a modified
version of a set of lectures delivered during the winter
semester 1931–32 at the Sorbonne University.

Cartan’s contributions to differential geometry via
moving frames can be regarded as a direct outgrowth of his
theory of continuous groups which was developed by him
in order to handle the infinite dimensional case. As Cartan’s
subsequent works would reveal, his own structural approach
to group theory turned out to be the most suitable one for
investigating more general geometrical theories.

Soon after Einstein’s celebrated series of papers
setting out his general theory of relativity appeared,
the mathematical community of differential geometers
experienced a period of intense activity and reflection
upon the mathematical principles at the basis of Einstein’s
groundbreaking approach to gravitation and space-time. As
is well known, the first manifestation of this phenomenon
was represented by the publication of [23] where Tullio
Levi-Civita posed himself the problem of investigating the
geometrical meaning of Christoffel’s symbols starting from
which Einstein had built his celebrated field equations.
Therein Levi-Civita showed that an invariant definition
of the second-order differentials, which was already to be
found in Riemann’s pioneering work, could be geometrically
regarded as prescribing the law of parallel displacement
of vectors along curves. Accordingly, the curvature tensor
was interpreted by him as a direct manifestation of the
fact that the (parallel) displacement of a vector depends, in
an essential way, on the particular path being considered.
Besides, as Levi-Civita proved in full detail, Euclidean
geometry could be characterised in terms of absolute
displacement in the sense that if the notion of parallelism is
independent of the chosen curve connecting two arbitrary
points of the manifold, then the curvature vanishes
identically. This paper triggered a process of deep reflection
upon the state of differential geometry and its relationship
with mathematical physics. Once the intrinsic meaning of
Riemann tensor had been clarified, a revision of the entire
discipline could then be initiated and pursued.
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Elwin Christoffel
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A central topic attracting the interest of physicists and
mathematicians consisted in developing a geometrical
framework which was sufficiently general so as to offer the
possibility of extending the research program pioneered
in general relativity, even to the study of electromagnetic
interactions. In this respect, Hermann Weyl’s introduction
of “infinitesimal geometry”, where a generalisation of Levi-
Civita’s parallel displacement was proposed, represented an
early outgrowth of such a general tendency.
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Tullio Levi-Civita

Cartan’s theory of generalised spaces was part of this
widespread interest in searching for new geometrical
horizons. Quite interestingly, his first publications on the
subject saw the light in 1922, also the year of Einstein’s
famous visit to Paris. Nonetheless, it is certain that Cartan’s
investigations on generalised spaces date back at least to
1921, as he states in the introduction to [12]. The central
aim of this paper was to provide a rigorous proof of the
uniqueness, under certain conditions, of Einstein’s choice
for the second-order gravitational tensor Gµν . From a
technical standpoint, the paper was characterised both
by a critical attitude towards Gregorio Ricci-Curbastro
and Levi-Civita’s absolute differential calculus, and by a
constant recourse to techniques stemming from Cartan’s
theory of exterior differential systems, namely his theory of
equivalence ofG-structures.

This was the context in which for the first time Cartan
provided his own reinterpretation of Riemannian curvature
in terms of moving frames. By considering a generalisation
of the structure equations of the Euclidean group acting on
an n-dimensional manifold (variété), Cartan could interpret
a Riemannian manifold as a deformed Euclidean space. A
measure of such a deformation was given in terms of the so-
called curvature 2-forms

Ωij = dωij −
∑

ωik ∧ ωkj .

More explicitly, in Cartan’s view, Ωij was the manifestation
of the fact that the structure equations of the Euclidean
group cease to constitute a completely integrable Pfaffian
system. Since the forms ωij represent the components of
the instantaneous rotation, it is easily seen that the forms

Ωij provide an analytical reformulation of Levi-Civita’s
above mentioned condition characterising Euclidean space
as a Riemannian manifold, endowed with an absolute
parallelism.

As for translational components, a similar generalisation
was conveyed in [9] where Cartan first introduced a sort of
translational curvature which he named “torsion”.

Already in [9], Cartan associated the notion of torsion
to non-complete integrability of the Pfaffian equations
involving the (infinitesimal) translational components of the
group of displacements. Nonetheless, it was in [11] that he
provided its analytical expression as follows:

Ωi = dωi −
n∑

k=1

ωk ∧ ωki, i = 1, . . . , n.

Curvature and torsion were thus regarded by Cartan as
complementary terms which provide a measure of the
deformation of the Euclidean space.
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A crucial advantage of Cartan’s approach was the
generality of the techniques that were being introduced.
Indeed, as Cartan explicitly observed, the procedure adopted
for the Euclidean group, consisting of deforming its
structural equations, could be extended to any continuous
group whatsoever (both finite and infinite). As his works to
come would soon testify, his method could be generalised
in a straightforward way to affine, conformal and projective
groups.

It was thanks to Cartan that the notion of continuous
group of transformations was investigated on a purely
geometrical basis, by translating algebraic properties into
the language of connection theory.

Despite the importance of this new standpoint, it should
nonetheless be stressed that, at least until 1925, the theory of
continuous groups remained a mainly local theory which
focused upon the study of transformations close to the
identity element. Topological viewpoints into the theory of
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continuous groups were first introduced by David Hilbert in
connection with his celebrated fifth problem concerning the
possibility of avoiding the differentiability requirement for
functions defining a continuous group. Despite subsequent
efforts by Luitzen Brouwer and Otto Schreier, it was only
after Hermann Weyl’s seminal works in representation
theory that global considerations became an essential part of
the discipline, thus preparing the ground for the emergence
of the currently accepted definition of a Lie group as a
differentiable manifold endowed with a compatible group
structure.
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Bernhard Riemann

Back to Paris
In 1909, Cartan moved to Paris where he was lecturer at
the Faculty of Sciences in the Sorbonne before obtaining a
full professor position in 1912, at the age of 43. Cartan also
taught at the École Normale Supérieure where he exercised
a great part of his academic activity. Before teaching higher
geometry (in 1924, he was appointed to the Chair which had
earlier been Darboux’s), he had taught analytical mechanics
and potential theory too.

Cartan’s move to Paris marked a turning point in his
career. Supported by the enormous applicative potential
both of his integration theory of Pfaffian forms and of his
structural theory of continuous Lie groups, Cartan’s research
interests gradually shifted to the realm of geometry. Still
for some years, abstract group theory and the vast field of
partial differential equations constituted a driving force for
hismathematical activity.Nonetheless, starting fromthe late
1910s, the analyst and the algebraist rapidly gave way to the
geometer.

It was precisely from his contributions to this branch
of mathematics, rather than from his previous, almost
disregarded achievements, that due acknowledgment for
his work finally came. In particular, it was his ground-

breaking approach in dealing with generalisations of the
notion of space which won him unanimous distinction as an
undisputed master of differential geometry.
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Though reluctant to build up a mathematical school
around himself,* it does appear that the influence and the
impactwhichCartan’s lectures created, both at the Sorbonne
and at the École Normale, was deep. Here follows a vivid
picture of his teaching qualities sketched by Gaston Julia, on
the occasion of Cartan’s scientific jubilee in 1939:

While your students discerned, at a glance, the
eminent algebraist that you are, they discovered
the real nature of the geometer in you more
gradually. …You endeavoured, I dare to say, to
foresee a priori; andwhen the result of a calculation
was simple, you philosophically taught us to
foresee it a posteriori, as geometers say, that is to
illustrate formulas bymeans of simple and striking
geometrical facts which express their profound
truth, and confer to them the elegance which
provide geometrical questions their veritable
beauty. †
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Shiing-Shen Chern (left) with Eugenio Calabi, 1976

Particularly appreciated was Cartan’s benevolence
towards the new generations of mathematicians who saw
him as a source of inspiration for their studies. Willing to
share his ideas with young researchers, as is witnessed, for

* S.-S. Chern and Chevalley in [p. 217 [17]] pointed out that Cartan “had too much of a sense of humour to organise around himself the kind of enthusiastic
fanaticism which helps to form amathematical school”.

† See [p. 41 [11]].
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example, by his participation in one of the well known Julia
Seminars in 1937, still later in his career Cartan was always
interested in the most recent changes in mathematics. A
young J.A.É. Dieudonné (1906–1992) described this virtue of
his character with the following words spoken directly to
Cartan:

What I have been able to appreciate in the most
direct way is your spirit which is ever open and
ready to assimilate the most recent acquisitions
of Science, in order to better them. With you,
there has never been a break of contact with new
generations. The years have passed, greying your
hair. Nonetheless, thanks to your enthusiasm
for your work, your ever-awakened curiosity,
the unremitting blossoming of your work in all
directions, constantly renewed, you are young and
you understand the young. *

After more than forty years of academic activity, Cartan
retired in 1940. For some years afterwards, he continued his
researches, publishing his last mathematical paper in 1949,
two years before his death in May 1951.

Over the last years of his long career, numerous
acknowledgements for his contributions finally came his
way. He received honorary degrees from universities all
over the world: from the University of Liege in 1934 and
from Harvard University in 1936. In 1947 he was awarded
three honorary degrees from the Free University of Berlin,
the University of Bucharest and the Catholic University of
Louvain. In the following year he was awarded an honorary
doctorate by the University of Pisa. He was elected member
of the Royal Society of London, the Accademia dei Lincei of
Rome and the Norwegian Academy. In 1931 he had already
been elected a member of the Academy of Sciences of Paris,
to which he was further appointed as president in 1946.

Cartan had erected an enormous mathematical edifice
which was destined to exert a deep and long-lasting
influence on a disparate number of disciplines: Lie
group theory, representation theory, theory of partial
differential equations, differential geometry, topology, etc.
Ugo Amaldi’s remarks, conveyed on the occasion of Cartan’s
commemoration at the Accademia dei Lincei on 14 June 1952,
represent a precious description of Cartan’s legacy:

The sovereign talents of [Cartan's] mathematical
genius shine [in his works]: his originality in
posing problems, his ability to single out the
conceptual essence of every analytical method,
his exceptional inventiveness and, above all, his
dynamical conception of Science which, as already
observed, allowed him never to constrain his
contributions into definite doctrines, but, on the
contrary, to concretise them in living and viable
movements which are destined to exert, in the
future too, a powerful influence of ideas and
suggestions in different realms ofmathematics.†

The Epistolary with Albert Einstein
As Langevin aptly observed on the occasion of Cartan’s
scientific jubilee, Cartan’s works in the realm of both
differential geometry and the theory of exterior differential
systems put him in an ideal position to formalise and “to
dominate” all mathematical problems posed by Einstein’s
theory of gravitation. Soon after the publication of Einstein’s
seminal memoirs (1915–16) providing the foundations of
the general theory, Cartan began to devote a great deal
of attention to the mathematical aspects of both general
relativity and unified field theories. The result was an
impressive number of papers, memoirs, letters and notes,
whose composition was spread over almost twenty years.

Roughly speaking, Cartan’s contributions to this
field may be divided into two categories: (1) geometrical
applications of the method of moving frames and the theory
of equivalence, (2) analytical applications of the theory
of differential systems in involution. Cartan’s first paper
devoted to relativity theory [8]belongs to the first of these two
categories. Therein, after providing his own interpretation
of Levi-Civita’s parallel displacement in terms of moving
frames,Cartanappliedhis theoryof equivalence (datingback
to the early 1900s) in order to show that Einstein’s choice
for the gravitational field equations is unique under certain
conditions. The problem consisted of proving that every
invariant quadratic differential form, which is linear with
respect to the second-order derivatives of the coefficients
of the metric, can be written as a linear combination of
the Ricci tensor, the scalar curvature multiplied by the
metric tensor, and the metric tensor itself. The techniques
employed by Cartan to prove this fundamental result were
most original. Instead of applying the so-called absolute
differential calculus of Ricci and Levi-Civita, which he felt
did not favour geometrical intuition, Cartan appealed to his
theory of equivalentG-structures, withG = SO(1, 3).

In the series of papers Sur les variétés à connexion affine
et la théorie de la relativité généralisée Cartan provided for
the first time a systematic account of his theory of non-
holonomic spaces (generalised spaces) which he regarded
as a reconciliation of two distinct geometrical traditions:
that of Riemann, founded upon the notion of metric spaces,
and that of Klein, founded upon the notion of homogeneity.
General relativity (togetherwithWeyl’s attempt to generalise
it) served as the main source of Cartan’s inspiration in his
search for new geometrical horizons. At the same time,
a deepened understanding of the geometrical contents
of Einstein’s theory of gravitation provided new insights
connected with classical Newtonian gravity. Interestingly
enough, Cartan was able to show that in this classical theory,
too, gravitationcouldbe interpretedasamanifestationof the
non-vanishing curvature of Newtonian space-time.

The liaison with Einstein’s research became even more
close and direct over the following years. The first such
example is provided by Cartan’s intense correspondence
(published in large part in [18]) with Einstein between

* See [p. 49][11].
† See [p. 773 [2]].
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May 1929 and May 1932. The main topic under discussion
was Einstein’s Fernparallelismus, taken as an approach
to unified field theories. This new Ansatz, developed by
Einstein between the summer of 1928 and the spring of 1931,
aimed to provide a general theoretical framework which
could encompass both gravitational and electromagnetic
fields. From the mathematical standpoint, Einstein’s main
innovation was in the idea to achieve this unification by
introducing a space-time manifold endowed with absolute
parallelism. Unlike Levi-Civita’s parallelism, the geometrical
structure obtained in this way was characterised by a space
with vanishing curvature and non-vanishing torsion. The
components of the torsion tensor were interpreted by
Einstein as the fundamental physical quantities at the basis
of this theory.
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Letter from Albert Einstein to Élie Cartan, 10 January 1930

Generalisations of (pseudo) Riemannian geometry in the
direction required by Einstein’s Fernparallelismus had already
been attempted by many mathematicians. In particular,
Cartan was the first to introduce the notion of torsion in
the context of his theory of generalised spaces. In fact,
his correspondence with Einstein was triggered precisely
by Cartan’s concern that Einstein had overlooked his
priority with regard to spaces with absolute parallelism.

However, soon after they met in Paris in November 1929,
their epistolary exchange turned into a close scientific
collaboration.

Cartan provided Einstein with essential mathematical
expertise needed in order to address two main issues
associated with this new unified field theory. First, how can
one determine the system of partial differential equations
that provides a truly adequate representation of the physical
universe? Second, once one has such a system of differential
equations, how can one integrate the system in such a way
as to recover solutions compatible with the properties of
matter, electricity, gravitational and electromagnetic fields
predicted by the theory?

For both of these problems Cartan’s familiarity with the
integration theory of general systems of partial differential
equations turned out to be essential. Since the early 1900s,
he had developed a most innovative approach to partial
differential equations that utilised the associated exterior
differential systems. Such a strategy had the advantage
of being fully independent of the choice of coordinate
system. Furthermore, it provided a general theoretical
framework which proved to be highly suitable for the
analysis of crucial mathematical properties connected with
Einstein’s field equations, properties such as compatibility
and determinism.

Besides interesting technical aspects, the correspondence
between Einstein and Cartan is testimony both to an
intimate scientific collaboration and to the recognition
of Cartan’s authoritative guide in matters concerning
differential geometry and general systems of partial
differential equations. Some passages taken from the
correspondence offer a most vivid picture of Einstein’s high
opinion for Cartan’s mathematical insight. A significant
example is provided by the letter that Einstein wrote to
Cartan on 16 May 1932:

My very dearM. Cartan!

After such a careful and detailed letter from you I
take up my pen with heavy conscience; for it is a
shame forme to furthermisuse yourgreatgifts. But
I console myself with the illusion: perhaps he too
obtains a bit of joy from this little discussion. So
imagine we are both young again and I am a keen
but troublesome student of yours.*

Some Final Remarks
IndiscussingFrench influenceon thehistorical development
of mathematics on the occasion of a conference in
Belgrade in 1940, Cartan depicted two approaches that have
contributed in different and complementary ways to the
evolution ofmathematics. On one hand there are “those who
open royal avenues by coming up with new ideas, usually
simple ones but nevertheless ones that have not occurred to
anyone else; and those who, on the vast land cleared by the

* See [p. 227 [18]].
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first, till their own gardens, often picking tasty fruits, and
sometimes collecting magnificent harvest”.* In view of this
metaphoricdistinctionbetween twomathematical practices,
one cannot resist the temptation to ask oneself about the
positioning of Cartan’s own mathematical production. It
is certainly true that initially—think, for example, of the
classification problem of complex simple Lie algebras—
Cartan’s contribution was that of a patient gardener that
trims the imperfections of an untamed forest (namely,
Killing’s theory); nonetheless, Cartan’s mathematical
trajectory was, by far, the embodiment of the first tendency:
an audacious explorer of new routes. This is true in many
respects; especially for the technical innovations introduced
(exterior differential calculus), but also for the audacity with
which he was able to reformulate classical theories such
as Lie’s theory of infinite continuous groups, in original
and most fertile ways. The revolutionary impact of his
ideas in the realm of group theory, especially in differential
geometry, can indeed been assimilated to the opening of
a brand new research direction that was, and possibly is,
in great need of the work of meticulous gardeners. In this
respect it is worthwhile to recall the opinion of André Weil
who, in a letter addressed to Élie’s son, Henri Cartan (see
[p. 6 [26]]), emphasised the demand for commentators on
Cartan’s works. Interestingly, he attributed such a need to
Cartan’s tendency to work out specific examples with scarce
commitment to the formalisation of abstract principles. This
is especially true in respect to Cartan’s method of moving
frames, as is vividly confirmed for example by Weyl’s review
of [16], in which Weyl expressed a mild, and very diplomatic,
disappointment for the lack of clarity in the description of
general procedures and principles.

I did not quite understand how he [Cartan] does
this in general, though in the examples he gives the
procedure is clear. …Nevertheless, I must admit I
found the book, like most of Cartan's papers, hard
reading.†

One hundred and fifty years after his birth, the
understanding of Élie Cartan’s contributions still represents
a challengeboth for historians andworkingmathematicians.
The extraordinary creative power of his mathematics will
continue to provide a most precious source of inspiration
for future generations. No doubt, Cartan belongs to the
small group of privileged mathematicians whose work can
be characterised as “classic”, and takes its veritable position
as a cornerstone in the firmament of mathematics. ■
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Endnotes by C.S. Aravinda
The endnotes here are intended to gently guide the
interested reader through some of the technical notions
appearing in the article, essentially capturing their spirit
and meaning, without pretending to be precise with all the
finer mathematical nuances involved.

The followingwords fromChapter 3 of Élie Cartan’s book
Leçons sur la géométrie des espaces de Riemann, “[T]he general
notion of a manifold is quite difficult to define precisely”,
already serve to illuminate the challenge of our task on
hand. He adds further, “A surface gives the idea of a two-
dimensional manifold. If we take for instance a sphere, or a
torus, we can decompose this surface into a finite number of
parts such that each of them can be bijectively mapped into
a simply-connected region of the Euclidean plane.” We will,
therefore, do well to follow the advice of Cartan and stick to
examples of surfaces.

The Euclidean plane, together with its component
notions of straight lines, triangles, circles, etc. that we come
across in high school, is possibly the best example to recall
when imagining a surface. It must not have been easy for an
early explorer looking around on the surface of our planet
to perceive its true shape. The following excerpt from Laura
IngallsWilder’s Little House on the Prairie, beautifully captures
this sentiment:

Kansas was an endless flat land covered with tall
grass blowing in the wind. Day after day they
travelled in Kansas, and saw nothing but rippling
grass and the enormous sky. In a perfect circle the
sky curved down to the level land, and the wagon
was in the circle's exactmiddle.

All day long Pet and Patty went forward, trotting

and walking and trotting again, but they couldn't
get out of the middle of that circle. When the sun
wentdown, the circlewas still around themand the
edge of the skywas pink.

Next day the land was the same, the sky was the
same, the circle did not change. …

However, the surface of the Earth, which some early
civilisations thought was flat, is now known to be unlike
the Euclidean plane. To get an idea of the global image
of the surface of the Earth, beyond what we perceive in
our immediate vicinity, we come across such notions as
maps and atlases in schools, where the precise positional
referenceof aplace is givenby its latitudinal and longitudinal
coordinates. Rather interestingly, in serious mathematical
investigations too, one employs similar notions and
terminology to define a manifold in general.

In an informal sense, a manifold is an expanse that
locally resembles a small neighbourhood in the Euclidean
space inwhich onemoves around. For someone adventurous
who walks on a long tight rope stretched between two
anchored points, there are only two directions to move—
forward or backward. This is an example of what is
mathematically called a one-dimensional manifold. An even
more adventurous person, say, a daring sailor on the surface
of a deep sea, will have a circle of directions in which to
proceed. This is how a typical two-dimensional manifold
looks up close. An example of a three-dimensional manifold
is the space we live in, where a pilot manoeuvring an aircraft
has an extra dimension of freedom tomove, like a flying bird.

The lifetime of Élie Cartan (1869–1951) witnessed a
remarkable transition from the invention of the aeroplane
to a significant knowledge of the shape of our universe.
The revolutionary understanding of the abstract geometries
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brought in by the likes of Gauss, Riemann and Poincaré
during the 19th century spurred the physicists of the 20th
century to try and gain an understanding of the geometry
of the larger universe; the universe in which gravitation
of heavenly bodies far greater than that of the Earth and
the paths traversed by light from myriad stars necessitated
investigations of the so-called four-dimensional space-time,
and more generally of a smooth n-dimensional manifold.

A smooth manifold is a space for which the semblance
of being locally Euclidean is sharp enough to permit the
realisation of all the essential features of differential calculus
around any point on it. For example, it will be possible to
talk about ‘smooth curves’ on these objects as well as vectors
tangent to smooth curves.

Smooth Manifolds, Metric and Curvature
Formally, a smoothn-dimensionalmanifoldM may be defined*

as a coherent ensemble of a certain number of pieces,
indexed by α, that locally resemble, via appropriate maps
φα, a neighbourhood† Uα in the n-dimensional Euclidean
space Rn. In other words, the following three conditions
must be satisfied: (1) M =

∪
α φα(Uα); that is, the whole

is the union of its local parts; (2) For each pair of indices
α, β with φα(Uα) ∩ φβ(Uβ) = W ( ̸= ∅), the maps φ−1

β ◦
φα and φ−1

α ◦ φβ between the sets φ−1
α (W ) and φ−1

β (W ),
called transition maps, are smooth—that is, are differentiable
of any order; and (3) A technical condition (that we shall not
bother to elaborate upon) that the collection {(φα, Uα)}α is
maximal, in the sense that any pair (ψ, V ) in accordance
with conditions (1) and (2) must necessarily be part of this
collection.

Here is a picture to get an idea of a typical neighbourhood
Uα inR2, themapφα, and the imageφα(Uα) as a part of the
sphere. By moving the line across each point on the lower
hemisphere from the north pole, we can associate each point
on the sphere with a point that it intersects on the plane.

The next sequence of pictures serves to illustrate the above
definitionwhere the two individual pieces (or charts)φ1(U1)
and φ2(U2) are coherently put together to give a global
image of the Earth, which is the surface of a sphere. And
the intersecting patchW = φ1(U1) ∩ φ2(U2) is exactly the
same as its depiction in either of the two patches φ1(U1)

and φ2(U2). Using the transition mechanism captured in
condition (2) to go from the patch φ1(U1) to φ2(U2), and
vice-versa, a global study of the Earth becomes possible.

φ1(U1) φ2(U2)

W φ1(U1) ∪ φ2(U2)

Effectively using this kind of analysis of a surface
different from the Euclidean plane, quite like a tailor who
stitches together the different pieces of Euclidean planes to
create a pair of pants,‡mathematicians are able to also study
more general surfaces such as a torus or a double torus.

The measurement considerations like the lengths of
tangent vectors, angles between vectors, and the lengths
of smooth curves on a smooth manifold require the
introduction of the so-called Riemannian metric. This enables
us to look for curves of particular lengths that realise the
distance between two points on a manifold, such as the
straight lines on the Euclidean plane or certain segments
of the latitudes and the equator on the surface of the Earth.

It is intuitively evident that the Euclidean plane is a
flat surface (or has zero curvature), whereas the surface
of a sphere is evenly curved. The seminal discoveries of
Nikolai Lobachevsky and JánosBolyai, independently of each
other, during the first half of the 19th century helped settle
the 2000-year-old problem of Euclid’s parallel postulate,
thereby demonstrating the existence of a geometry different
from the Euclidean and spherical geometries. This is
referred to as the non-Euclidean or hyperbolic geometry. The
Riemannian metric further makes it possible to define the
important notion of Gaussian curvature of a surface that
clearly distinguishes the three geometries.

The notion of Gaussian curvature provides information
about the different ways the uneven terrain of a surface can
bend around. To each point p on the surface, Gaussian

* The formal, mathematically precise definition is attributed to HermanWeyl from his 1913 book Die Idee der Riemannschen Fläche.
† The word neighbourhood used here has a specific mathematical connotation where it means a set sans its boundary, such as the lower (or the upper)
hemisphere excluding the equatorial circle.

‡ Indeed, the study of a generic surface by conveniently breaking it up into individual pieces called pair of pants is amethod that iswidely used inmathematics.
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K(p) > 0 K(p) = 0 K(p) = 0 K(p) < 0

curvature is a certain real number K(p), the sign of which,
whether positive, zero or negative, tells us about the shape of
the surface near the point p, as illustrated above.

Note that in the middle two images portraying zero
curvature, there is no angular distortion of the grid lines
spanning the surface, although the first of the two is curved
in its external appearance. This, in essence, demonstrates the
fact that the notion of Gaussian curvature is intrinsic to the
surface, the discovery of which fact startled Gauss himself,
compelling him to call it the “Theorema Egregium” or the
“remarkable theorem”.

The surface of a torus, as we view in the three-
dimensional space around us, is a classic example where
all three signs of curvatures are present at different points.

Tangent Planes, Vector Fields and Differential
Forms
The entire collection of tangent vectors of all lengths at a
point p and in the circle of directions around it on a surface
S is a plane sitting tangentially to S at p, called the tangent
plane to S at p, denoted TpS.

For example, ifS is the Euclidean planeR2, and the point
p = (0, 0) is the origin, then the tangent plane at p coincides
with R2 itself. If p is any point other than the origin, then
the tangent plane TpR2 is simply a shift or translate of R2

with point p as the point of reference or the origin of the
plane shifted to p. The standard basis of unit vectors ex and
ey in the x- and y-directions respectively at the origin (0, 0),
shifted to TpR2, is denoted by the symbols ∂

∂x |p and
∂
∂y |p.

Whereas if S is the unit sphere S2 in R3, the tangent
planes at different points on the sphere smoothly rotate
accordingly as points move, and is left as a pleasant exercise
to the reader’s imagination to visualise.

The mathematical representation of the effect of a
physical phenomenon like the magnetic field around a
magnet placed on the surface of a sheet of paper is an

example of a vector field. The direction and intensity of the
magnetic attraction at a point are indicated by associating
a tangent vector of appropriate length and direction at that
point.

In general, a vector field on a smooth surface S is the
association of a tangent vector to each point on S varying
smoothly as does the point. When S = R2, the partial
derivatives ∂

∂x and ∂
∂y are interpreted as the coordinate

vector fields that associate to each point p, the tangent
vectors ∂

∂x |p and ∂
∂y |p. The pair

{
∂
∂x ,

∂
∂y

}
is called the

Euclidean frame field.
In a manner similar to that of a vector field, a

multivariable specification of an object called the ‘tensor’ to
each point of a surface S is what is known as a tensor field.
Of these, certain special types, knownas the skew-symmetric
covariant tensor fields, are the so-called differential forms.
Employing the language of calculus of differential forms,
called the exterior calculus, Élie Cartan was able to give a
moving frame (or a frame field) description for the geometry
of a surface using a special type of differential 1-forms
called the connection forms (which he denoted by ωs). In
particular, he showed that the Gaussian curvature function
K of a surfaceS,mentioned earlier, is the unique real-valued
function that satisfies the equation

dω12 = −Kω1 ∧ ω2

known as the second structural equation of Cartan; here ω12

is the connection formrelevant to thegeometryof the surface
S,dω12 is the exterior derivative ofω12, andω1 andω2 are the
two differential 1-forms dual to a frame field.

Havingmade some sort of a case for their significance in
the work of Cartan, let us try to at least know closely what
kind of objects differential forms are on the Euclidean plane
R2.

Mathematically, a differential 1-form associates to each
point p in R2 a linear map that takes in a tangent vector
at p and yields a real number. Thus, at the point p, it is a
member of the space dual to the tangent space TpR2 called
the cotangent space T ∗

pR2. As an illustrative example, we
shall see below how, given a smooth function f on R2, one
can construct a differential 1-form, denoted by df .

If f is a real-valued, smooth function on R2, the partial
derivatives ∂f

∂x and ∂f
∂y evaluated at a point p give two real

numbers.Alternatively, this canbe interpretedas the tangent
vectors ∂

∂x |p and ∂
∂y |p themselves being taken by df—an

object depending only on the function f—to yield the real
numbers ∂f

∂x (p) and
∂f
∂y (p) respectively. Furthermore,

∂
∂x |p
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and ∂
∂y |p, being a basis for the tangent spaceTpR

2, facilitates
extending the above interpretation to all of TpR2. That is,
if v ∈ TpR2 and v = v1

∂
∂x |p + v2

∂
∂y |p, then df(v) =

v1
∂f
∂x (p) + v2

∂f
∂y (p) defines differential 1-form on R2. In

particular, df
(

∂
∂x |p

)
= ∂f

∂x (p) and df
(

∂
∂y |p

)
= ∂f

∂y (p). Thus,
if x and y are regarded as coordinate functions, then one
has the corresponding differential 1-forms dx and dy, called
the differential 1-forms dual to the Euclidean frame field{

∂
∂x ,

∂
∂y

}
. This means that any differential 1-form ϕ on R2

can be written as f1dx+ f2dy. In particular, if f is a smooth

function onR2, then df = ∂f
∂xdx+ ∂f

∂y dy.
A differential 2-form is a skew-symmetric bilinear map

that takes in an ordered pair of tangent vectors at each point
p inR2, and yields real numbers. Themeaning of being skew-
symmetric is that if the two arguments are repeated, then
the value on that pair is zero. Therefore, it is not hard to see
that there can be no non-zero differential 3-forms on R2. A
good example of a differential 2-form is the wedge product
of two differential 1-forms. If ϕ andψ are two differential 1-

forms onR2, p ∈ R2 and if v1, v2 ∈ TpR2, then their wedge
product ϕ ∧ ψ is defined by:

(ϕ ∧ ψ)(v1, v2) = det
(ϕ(v1) ϕ(v2)
ψ(v1) ψ(v2)

)
.

Another example of a differential 2-form is the exterior
derivative of adifferential1-formwhich is definedas follows:
Let ϕ = f1dx+ f2dy be a differential 1-form onR2. Then its
exterior derivative dϕ is the differential 2-form df1 ∧ dx +
df2 ∧ dy.

In mathematics, oftentimes, it becomes imperative
to coin novel terminologies, and evolve seemingly terse
interpretations of simple facts to reflect on interesting
mathematical insights. Also, putting them succinctly in
precise language necessitates viewing the same object from
several different perspectives. It is quite like working on
a delicately balanced piece of architecture that instantly
captivates a first-time viewer, both in its form and in its
appearance. ■
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