
IEEE ICECS 2019 – SS “Advances in Circuits and Systems for HPC Accelerators and Processors”

Crypto accelerators for power-efficient and real-
time on-chip implementation of secure algorithms

Luca Baldanzi
Dept. of Information Engineering

University of Pisa
Pisa, Italy

luca.baldanzi@ing.unipi.it

Luca Fanucci
Dept. of Information Engineering

University of Pisa
Pisa, Italy

luca.fanucci@unipi.it

Luca Crocetti
Dept. of Information Engineering

University of Pisa
Pisa, Italy

luca.crocetti@phd.unipi.it

Sergio Saponara
Dept. of Information Engineering

University of Pisa
Pisa, Italy

sergio.saponara@unipi.it

Stefano Di Matteo
Dept. of Information Engineering

University of Pisa
Pisa, Italy

stefano.dimatteo@dii.unipi.it

Patrice Hameau
Senior Security Architect

Prove & Run
Paris, France

patrice.hameau@provenrun.com

Abstract—The demand for data exchange is ever growing.
Internet of Things (IoT), industry 4.0, smart city and next-
generation interconnected vehicles are some examples of
scenarios in which a high volume of nodes share data across
networks. Hence, the data protection plays a fundamental
aspect to avoid disclosure or manipulation of sensitive
information and disruption of services, particularly in safety
critical applications. On the other hand, also the compute power
at disposal of possible attackers and hackers is growing, and
next-future post-quantum capabilities will require the usage of
longer keys, certificates and digital signatures, to preserve the
security level offered by cryptographic functions. This will affect
not only the amount of exchange data, but also the
computational resources to secure data, increasing processing
time, latencies and power consumption, and lowering data rates.
In this work, we investigate different implementation strategies
to overcome such performance limitations. This work provides
a comparison among pure software approach (both on 32b and
64b processors) and hardware-based solutions we developed for
FPGA and ASIC System-on-Chip platforms, for the most
common symmetric-key and public-key cryptographic
algorithms. The proposed hardware accelerators feature one
order of magnitude higher throughput (and lower latency) and
more than two orders lower power consumption than their
software counterparts. A highly configurable cryptographic
suite is proposed that can be customized according to the
application requirements and thus able to increase as much as
possible the efficiency in terms of energy per enciphered bits per
second.

Keywords—Cryptographic hardware accelerators, energy
efficiency, ARM 32-bit, ARM 64-bit

I. INTRODUCTION

The amount of data exchanged in modern electronic
systems is constantly growing. Some examples of these
systems are Internet of Things (IoT), interconnected vehicles,
Industry 4.0, cloud-based services. From an operating point
of view, the high networking level of electronic systems
guarantees a higher level of quality service for end users, but
it introduces potentially vulnerabilities in terms of cyber
security. A typical example that explains this concept is the
autonomous driving application: in the next years cars will be
able to communicate together in order to provide to drivers
and passengers a better driving experience and enhanced
services (e.g. data exchange for traffic information, road
obstacle detection, etc.). The V2X (Vehicle to Everything)
capability introduces an enlargement of the attack surface that

a malicious entity could exploit for data stealing, service
interruption and so on. For these reasons, interconnected
systems require to be equipped with appropriate
cryptographic algorithms, in order to protect the
communication against cyberattacks. In addition, these
algorithms shall meet stringent requirements in terms of
throughput, power consumption, and usage security policy.

In [1] the authors analysed and characterized the
performance costs (in terms of power consumption and
execution times) of software solutions for cryptographic
services, targeting the ARM Cortex-M processors family. As
conclusion of that work, the authors stated that despite
Cortex-M processors were capable of running standard
cryptographic algorithms such Advanced Encryption
Standard (AES) and Secure Hash Algorithm (SHA), without
excessive power consumption, the use of a hardware
cryptographic module or an algorithm optimisation could be
required for that processors in case of public-key
cryptography: “as the resulting execution times for Elliptic
Curve Digital Signature Algorithm (ECDSA) were
sufficiently long as to increase the probability of missed
deadlines in a hard real-time application” [1]. For this reason,
in this research activity we used a Cortex-A53 processor by
ARM, which includes the ARMv8 Cryptographic Extension
module, providing instructions for accelerating the execution
of AES Decryption, AES Encryption, SHA1, SHA224 and
SHA256 algorithms [2]. In addition, we developed hardware
modules for accelerating cryptographic functions, in order to
characterize and compare both hardware (HW) and software
(SW) implementations in terms of power consumption,
throughput/data rate and energy per bit.

The remainder of this work is organized as it follows:
Section II describes the methods, the equipment and the tools
used to characterize the performances of both software and
hardware solutions. Section III reports the acquired data in
term of throughput, latency, power consumption and energy
per bit for the AES, SHA256 and ECDSA algorithms.
Accordingly, Section IV gives the conclusions of this work.

II. METHODS AND MATERIAL

As mentioned in Section I, in the SW case we targeted an
ARM Cortex-A53 processor, which is a 64-bit processor
featuring the ARMv8 architecture. As ARM does not
physically produce silicon, there are several vendors from

whom the processors can be purchased. As a result, variations
in processing speed and available peripherals can occur. For
the purposes of this research, we used the 4-Core Broadcom
BCM2837B0 chip running @ 1.4 GHz in 40 nm technology.
The Broadcom chip is mounted on Raspberry Pi 3B+ board
[3], and is representative of multicore Cortex-A53
performance, embedded also in automotive application
processor such as NXP-S32S [4].

To perform the cryptographic functions in SW, we
employed the OpenSSL library (version 1.1.1c, [5]), which is
a robust, commercial-grade and full-featured toolkit for TLS
(Transport Layer Security) and SSL (Secure Sockets Layer)
protocols [6]. It provides a full-range of symmetric-key and
public-key algorithms and a built-in self-test routine named
speed [7]. Such routine allows selecting an algorithm to be
executed, and then it executes the specified algorithm for a
fixed amount of time (typically 3 or 10 seconds); at the end
of the process, the routine reports the number of times such
algorithm has been executed. This let us to characterize the
SW solution in terms of throughput and latency. Concerning
the power consumption, we used an approach similar to the
one employed in [1], [8-10]. We fed the board hosting the
BCM2837B0 chip with a constant voltage of 5 V provided by
a bench power supply (Keysight E3631A Triple Output DC
Power Supply), and we acquired the absorbed current by the
board, by means of a digital multimeter (Keysight 34461A
Digital Multimeter), while executing the speed routine for
several algorithms. Thus, we post-processed the acquired
data to retrieve the average dynamic power consumption of
the 4-Core Cortex-A53 chip, excluding the power
consumption contribution of the other board components, in
order to make a fair comparison with the our designed HW
crypto accelerator counterpart.

In the HW case, we developed dedicated hardware
modules for accelerating cryptographic functions. The
modules have been designed by describing them in
SystemVerilog HDL language and then synthetized with the
Synopsys Design Compiler tool and using the open-source
standard-cell library provided by the Silvaco 45nm Open Cell
Library [11]. In order to support a wide range of
cryptographic functions able cover the typical and most
diffused algorithms employed in symmetric-key and public-
key cryptographic applications, we developed the following
hardware accelerators:

 an AES core, featuring both encryption and
decryption and support to both 128-bit and 256-bit
cipher keys compliant with standard [12];

 a SHA engine, supporting all the possible digest
sizes (i.e. 224, 256, 384 and 512 bits) compliant
with standard [13];

 an ECDSA engine, supporting the NIST P-256 and
NIST P-521 elliptic curves compliant with
standard [14].

The hardware modules have been developed by
University of Pisa for the purpose to be integrated in exascale
capable processors developed by the European Processor
Initiative (EPI) consortium [15].

On the power consumption side, we extracted the required
data by running simulations of the synthetized modules with
Synopsys PrimeTime tool and linking to it the same standard-
cell library used for synthesis, in order to gather the power
consumption information included in that library. On the

throughput, data rate and latencies side, once determined the
maximum frequency our modules were able to support by
synthesis, we have been able to compute mathematically such
data basing only on the modules architecture.

Anyway, to make a fair comparison with the SW
counterpart, we considered also the latencies due to a real-
case application. In other words, in the computation we
included also the time a processor integrating our modules
should spent in order to use them. The typical approach is to
provide hardware accelerators with a bus interface and
connect them to the system bus that the processor accesses to,
as peripherals. In order to gain advantage from the maximum
speed achievable by our modules, on one hand we assumed
the utilization of an AXI4-DMA interface [16] to stream data
from the system memory to our modules and vice versa.
Moreover, we assumed to apply the same clock frequency to
both the AXI bus and our modules, in order to reduce
overhead due to synchronization mechanisms. On the other
hand, we fixed the clock frequency to 300 MHz, in order to
reduce the power consumption of hardware accelerators.
Such frequency is largely supported by both the AXI4 bus
[16] and our modules, being the maximum achievable
frequency 560 MHz, 1.1 GHz and 325 MHz, respectively, for
the AES core, the SHA engine and the ECDSA engine, by
results of synthesis on the 45 nm standard-cell technology.
Thus, the maximum bandwidth reachable using the AXI4-
DMA is about 9.6 Gbps and 3.6 Gbps for MM2S and S2MM
channels respectively [16], when using a bus clock of 300
MHz. The MM2S (memory-mapped to stream) transfers
apply to data writing to peripheral (i.e. our hardware
accelerator), while the S2MM (stream to memory-mapped)
transfers apply to data reading from peripheral. To be noted
that the target technology for the first tape-out of EPI project
will be on 7 nm standard-cell technology, and from
preliminary synthesis result there is an increase of the
maximum clock frequency by a factor 5 with respect to the
above 45 nm data.

III. RESULTS

For the purposes of this research activity, we analysed the
following cryptographic functions:

 AES-ECB-256 (encryption), i.e. the encryption
algorithm of the ECB mode [17] of the AES
cipher, with 256-bit cipher key [12];

 SHA256, i.e. the SHA algorithm when
generating 256-bit digests [13];

 ECDSA signature generation on NIST P-521
curve [14].

Table I reports the performances data for the AES-ECB-

256 software implementation, and Fig.1 shows the dynamic
power consumption of the BCM2837B0 chip during the
execution of AES-ECB-256 algorithm. In Table I, Table II
and Table III, Exec. time column reports the execution time,
D column reports the amount of processed data in Mbit, TH
column reports the throughput @ 1.4 GHz, the P column
reports the average dynamic power consumption, and the E
column reports the energy per bit.

TABLE I. Performances data for AES-ECB-256 software implementation.

Number
of core

Exec. time
(s)

D
(Mb)

TH
(Mbps)

P
(mW)

E
(mJ/Mb)

1 3 917.4 305.80 300 0.98
2 3 1812.8 604.27 600 0.99
4 3 3628 1209.33 1300 1.07

Figure 1. Dynamic power acquired during execution of AES-ECB-256
algorithm on ARM Cortex-A53 processor, using 1, 2 and 4 cores.

Accordingly, Table II and Table III report data
characterizing the software implementations of SHA256 and
the ECDSA, respectively, as well as Fig. 2 and Fig. 3 show
the dynamic power consumption during the execution of such
algorithms. To be noted that data in Fig. 1, Fig. 2 and Fig. 3
have been post-processed to extract the average dynamic
power consumption for the different cases of number of cores
employed during the execution of the algorithm.

TABLE II. Performances data for SHA256 software implementation.

Number
of core

Exec. time
(s)

D
(Mb)

TH
(Mbps)

P
(mW)

E
(mJ/Mb)

1 3 337.9 113,01 310 2.74
2 3 664.9 221,63 650 2.93
4 3 1213.9 404,63 1380 3.14

Figure 2. Dynamic power acquired during execution of SHA256 algorithm
on ARM Cortex-A53 processor, using 1, 2 and 4 cores.

TABLE III. Performance data for ECDSA software implementation.

Number
of core

Exec. time
(s)

D
(Op)

TH
(Op/s)

P
(mW)

E
(mJ/Op)

1 10 282.4 28.24 310 10.98
2 10 560 56 620 11.07
4 10 1085 108.5 1330 12.26

Figure 3. Dynamic power measured during execution of ECDSA over NIST
P-521 curve algorithm using 1, 2 and 4 cores.

Concerning the HW implementation, Table IV shows data
characterizing the developed cryptographic accelerators, for
a frequency of 300 MHz. As specified in Section II, in this
case we included also the additional latency affecting
throughput, due to software access to our modules in a real-
case scenario. Hence, assuming the bandwidth achieved by
the AXI4-DMA at the frequency of 300 MHz for both MM2S
and S2MM transfers, the additional latency to be taken in
account is:

 48.89 ns, for AES-ECB-256;
 124.44 ns, for SHA256;
 316.11 ns, for ECDSA signature generation on

NIST P-521 curve.

Accordingly, the throughput of the hardware accelerators can
be calculated by:

𝑇𝐻 =
ொ

௅∗்೎೗ೖା஺௅
 (1)

Referring to Eq. (1), 𝑇௖௟௞ is the clock period of the clock
frequency of 300 MHz, i.e. 5 ns, and L is the module latency,
expressed in clock cycles, and AL is the additional latency
due to software access and reported in the list above, and
expressed in seconds. This last one parameter can be
computed by dividing the bit width of the amount of input (or
output) data required (or generated) by the hardware module,
by the AXI4-DMA bandwidth, in case of MM2S channel (or
S2MM channel). 𝑄 strongly depends on the cryptographic
function and it is:

 Q = 128 (bits), in case of AES-ECB-256, because
ECB mode of AES requires one 128-bit input data
block and generates one 128-bit output block, for
every 128-bit block composing a message;

 Q = 512 (bits), in case of SHA256, because such
algorithm requires to parse all 512-bit blocks
composing a message, to generate the corresponding
256-bit digest, thus, in this case, the throughput
refers to the input data rate supported by the input
interface;

 Q = 1 (operation), in case of ECDSA signature
generation algorithm, because it is a single-shot
operation and provides a set of output data (i.e. the
digital signature), after providing the required input
data.

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

Dy
na

m
ic

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

Time

4 Cores 3 s

1 Core 3 s

2 Cores 3 s

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

Dy
na

m
ic

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

Time

1 Core 3 s

2 Cores 3 s

4 Cores 3 s

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

Dy
na

m
ic

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

Time

1 Core 10 s

2 Cores 10 s

4 Cores 10 s

TABLE IV. Performance data of hardware cryptographic accelerators. The
TH column reports the throughput, the P column reports the average
dynamic power consumption, and the E column reports the energy per bit
(or operation), according to the algorithm in the rows. All data refer to the
synthesis on 45 nm standard-cell technology at the frequency of 300 MHz.

Cryptographic
algorithm

TH P
(mW)

E

AES-ECB-256 1339.53 Mbps 18 0.00656 mJ/Mb
SHA256 1515.79 Mbps 8.91 0.00371 mJ/Mb

ECDSA-P521 910.60 Op/s 61.8 0.06785 mJ/Op

Table V shows the comparison among software and hardware
implementations of the cryptographic algorithms we
analyzed in this work, using as efficiency factor a figure of
merit we computed as

𝐹𝑜𝑀 =
𝑇𝐻

𝐸

for which, TH and E are, respectively, the throughput and the
energy per bit (or per operation) reported in Table I, Table II,
Table III and Table IV for SW on 4-Core Cortex-A53 @ 1.4
GHz (40 nm) and our cryptographic HW accelerators @ 300
MHz (on 45 nm technology).

IV. CONCLUSIONS

In this work, we evaluated the performances of most common
and diffused cryptographic algorithms comparing different
implementations: pure SW solutions based on 64-bit
processor (4-Core ARM Cortex-A53), and HW accelerators
specifically designed and assumed to be used as peripherals
of a GPP (General Purpose Processor), by means of an AXI4-
DMA interface. In case of SW, we characterized the
algorithms in three different conditions, varying the number
of cores running the cryptographic applications (respectively
1, 2 or 4 cores). In case of HW, data refer to synthesis of
digital modules on a 45 nm standard-cell technology. As
consequence of results reported in Section III, it can be stated
that in all the cases HW solutions are better than their SW
counterparts in terms of throughput and power consumption,
with an average FoM improvement of three orders of
magnitude (refer to Table V).

Moreover, the throughput of our HW accelerators
measured in this work is not the highest one that they can
reach. For example, according to the application
requirements, the HW AES can achieve up to 5 Gbps of
throughput, in case of AES-ECB-256, at the maximum
supported frequency of 560 MHz on 45 nm technology. A
further x5 speed performance improvement is expected, in
EPI target 7 nm technology, from preliminary synthesis
results. In case of the most intensive algorithms, such as the
ECDSA one, results prove that the HW accelerator solution
is mandatory, since the relatively long execution times of SW
ECDSA could be intolerable within a real-time

TABLE V. Comparison among software and hardware implementations of
cryptographic algorithms, according to Figure of Merit (FoM).

Algorithm
FoM

SW
(1 core)

SW
(2 cores)

SW
(4 cores)

HW

AES-ECB-256 312.04 610.37 1130.21 204119.60
SHA256 41.24 75.64 128.86 408293.46

ECDSA P-521 2.57 5.06 8.85 20131.61

application, or too expensive in terms of energy consumption
for some markets (e.g. HPC or automotive).

As conclusion, even if using 64-bit multicore application
processor, such as the Broadcom BCM2837B0 @ 1.4 GHz,
the hardware-based solution for cryptography is the only one
capable to meet stringent requirements in terms of real-time
execution and power consumption for embedded IoT and
automotive systems.

ACKNOWLEDGMENT

The work presented herein has been partially funded by
the European Processor Initiative (EPI) consortium, under
grant agreement n° 826646.

REFERENCES
[1] L. P. I. Ledwaba G. P. Hancke H. S. Venter, and S. J. Isaac

"Performance costs of software cryptography in securing new-
generation internet of energy endpoint devices," IEEE Access vol. 6
pp. 9303-9323 Jan. 2018.

[2] Arm Limited. (2019). (Cortex-A53). Accessed: Jun. 5, 2019.
Available: https://developer.arm.com/ip-products/processors/cortex-
a/cortex-a53.

[3] Raspberry Pi. (Raspberry Pi 3 – Hardware – BCM2837B0). Accessed:
May 28, 2019. Available: https://www.raspberrypi.org/documentation/
hardware/raspberrypi/bcm2837b0/README.md.

[4] NXP-S32 Automotive Processor and Microcontrollers. Available:
https://www.nxp.com/products/processors-and-microcontrollers/arm-
based-processors-and-mcus/s32-automotive-platform:S32

[5] OpenSSL. (Software library). Accessed: May 31, 2019.
Available: https://www.openssl.org/source/openssl-1.1.1c.tar.gz.

[6] OpenSSL. (Main page). Accessed: May 30, 2019. Available:
https://www.openssl.org/.

[7] OpenSSL. (Library manual). Accessed: May 31, 2019.
Available: https://github.com/openssl/openssl/tree/master/doc/man1.

[8] C. C. Chang, S. Muftic, and D. J. Nagel, ‘‘Measurement of energy costs
of security in wireless sensor nodes,’’ in Proc. 16th Int. Conf. Comput.
Commun. Netw., Honolulu, Hi, USA, 2007, pp. 95–102.

[9] G. Guimaraes, E. Souto, D. Sadok, and J. Kelner, ‘‘Evaluation of
security mechanisms in wireless sensor networks,’’ in Proc. Syst.
Commun. (ICW’ICHSN’ICMCS’SENET’), Montreal, QC, USA,
2005, pp. 428–433.

[10] A. Trad, A. A. Bahattab, and S. B. Othman, ‘‘Performance trade-offs
of encryption algorithms for wireless sensor networks,’’ in Proc. World
Congr. Comput. Appl. Inf. Syst. (WCCAIS), Hammamet, Tunisia,
2014, pp. 1–6.

[11] Silvaco. (Open-source stand-cell library, 45nm OCL). Available:
https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_L
ibrary/index.html

[12] “Advanced Encryption Standard (AES),” NIST Federal Information
Publication Standard (FIPS) 197, Nov. 2001.

[13] “Secure Hash Standard”, NIST Federal Information Publication
Standard (FIPS) 180-4, Mar. 2012.

[14] “Digital Signature Standard (DSS),” NIST Federal Information
Publication Standard (FIPS) 186-4, Jul. 2013.

[15] European Processor Initiative (EPI). (Official website). Available:
https://www.european-processor-initiative.eu/

[16] Xilinx. (AXI DMA – Guide). Available: https://www.xilinx.com/sup
port/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma
.pdf

[17] “Recommendation for Block Cipher Modes of Operation”, NIST
Special Publication (SP) 800-38A, 2001.

