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Abstract—The demand for data exchange is ever growing. 
Internet of Things (IoT), industry 4.0, smart city and next-
generation interconnected vehicles are some examples of 
scenarios in which a high volume of nodes share data across 
networks. Hence, the data protection plays a fundamental 
aspect to avoid disclosure or manipulation of sensitive 
information and disruption of services, particularly in safety 
critical applications. On the other hand, also the compute power 
at disposal of possible attackers and hackers is growing, and 
next-future post-quantum capabilities will require the usage of 
longer keys, certificates and digital signatures, to preserve the 
security level offered by cryptographic functions. This will affect 
not only the amount of exchange data, but also the 
computational resources to secure data, increasing processing 
time, latencies and power consumption, and lowering data rates. 
In this work, we investigate different implementation strategies 
to overcome such performance limitations. This work provides 
a comparison among pure software approach (both on 32b and 
64b processors) and hardware-based solutions we developed for 
FPGA and ASIC System-on-Chip platforms, for the most 
common symmetric-key and public-key cryptographic 
algorithms. The proposed hardware accelerators feature one 
order of magnitude higher throughput (and lower latency) and 
more than two orders lower power consumption than their 
software counterparts. A highly configurable cryptographic 
suite is proposed that can be customized according to the 
application requirements and thus able to increase as much as 
possible the efficiency in terms of energy per enciphered bits per 
second. 

Keywords—Cryptographic hardware accelerators, energy 
efficiency,  ARM 32-bit, ARM 64-bit 

I. INTRODUCTION 

The amount of data exchanged in modern electronic 
systems is constantly growing. Some examples of these 
systems are Internet of Things (IoT), interconnected vehicles, 
Industry 4.0, cloud-based services. From an operating point 
of view, the high networking level of electronic systems 
guarantees a higher level of quality service for end users, but 
it introduces potentially vulnerabilities in terms of cyber 
security. A typical example that explains this concept is the 
autonomous driving application: in the next years cars will be 
able to communicate together in order to provide to drivers 
and passengers a better driving experience and enhanced 
services (e.g. data exchange for traffic information, road 
obstacle detection, etc.). The V2X (Vehicle to Everything)  
capability introduces an enlargement of the attack surface that 

a malicious entity could exploit for data stealing, service 
interruption and so on. For these reasons, interconnected 
systems require to be equipped with appropriate 
cryptographic algorithms, in order to protect the 
communication against cyberattacks. In addition, these 
algorithms shall meet stringent requirements in terms of 
throughput, power consumption, and usage security policy. 

In [1] the authors analysed and characterized the 
performance costs (in terms of power consumption and 
execution times) of software solutions for cryptographic 
services, targeting the ARM Cortex-M processors family. As 
conclusion of that work, the authors stated that despite 
Cortex-M processors were capable of running standard 
cryptographic algorithms such Advanced Encryption 
Standard (AES) and Secure Hash Algorithm (SHA), without 
excessive power consumption, the use of a hardware 
cryptographic module or an algorithm optimisation could be 
required for that processors in case of public-key 
cryptography: “as the resulting execution times for Elliptic 
Curve Digital Signature Algorithm (ECDSA) were 
sufficiently long as to increase the probability of missed 
deadlines in a hard real-time application” [1]. For this reason, 
in this research activity we used a Cortex-A53 processor by 
ARM, which includes the ARMv8 Cryptographic Extension 
module, providing instructions for accelerating the execution 
of AES Decryption, AES Encryption, SHA1, SHA224 and 
SHA256 algorithms [2]. In addition, we developed hardware 
modules for accelerating cryptographic functions, in order to 
characterize and compare both hardware (HW) and software 
(SW) implementations in terms of power consumption, 
throughput/data rate and energy per bit. 

The remainder of this work is organized as it follows: 
Section II describes the methods, the equipment and the tools 
used to characterize the performances of both software and 
hardware solutions. Section III reports the acquired data in 
term of throughput, latency, power consumption and energy 
per bit for the AES, SHA256 and ECDSA algorithms. 
Accordingly, Section IV gives the conclusions of this work. 

II. METHODS AND MATERIAL 

As mentioned in Section I, in the SW case we targeted an 
ARM Cortex-A53 processor, which is a 64-bit processor 
featuring the ARMv8 architecture. As ARM does not 
physically produce silicon, there are several vendors from 



whom the processors can be purchased. As a result, variations 
in processing speed and available peripherals can occur. For 
the purposes of this research, we used the 4-Core Broadcom 
BCM2837B0 chip running @ 1.4 GHz in 40 nm technology. 
The Broadcom chip is mounted on Raspberry Pi 3B+ board 
[3], and is representative of multicore Cortex-A53 
performance, embedded also in automotive application 
processor such as NXP-S32S [4]. 

To perform the cryptographic functions in SW, we 
employed the OpenSSL library (version 1.1.1c, [5]), which is 
a robust, commercial-grade and full-featured toolkit for TLS 
(Transport Layer Security) and SSL (Secure Sockets Layer) 
protocols [6]. It provides a full-range of symmetric-key and 
public-key algorithms and a built-in self-test routine named 
speed [7]. Such routine allows selecting an algorithm to be 
executed, and then it executes the specified algorithm for a 
fixed amount of time (typically 3 or 10 seconds); at the end 
of the process, the routine reports the number of times such 
algorithm has been executed. This let us to characterize the 
SW solution in terms of throughput and latency. Concerning 
the power consumption, we used an approach similar to the 
one employed in [1], [8-10]. We fed the board hosting the 
BCM2837B0 chip with a constant voltage of 5 V provided by 
a bench power supply (Keysight E3631A Triple Output DC 
Power Supply), and we acquired the absorbed current by the 
board, by means of a digital multimeter (Keysight 34461A 
Digital Multimeter), while executing the speed routine for 
several algorithms. Thus, we post-processed the acquired 
data to retrieve the average dynamic power consumption of 
the 4-Core Cortex-A53 chip, excluding the power 
consumption contribution of the other board components, in 
order to make a fair comparison with the our designed HW 
crypto accelerator counterpart. 

In the HW case, we developed dedicated hardware 
modules for accelerating cryptographic functions. The 
modules have been designed by describing them in 
SystemVerilog HDL language and then synthetized with the 
Synopsys Design Compiler tool and using the open-source 
standard-cell library provided by the Silvaco 45nm Open Cell 
Library [11]. In order to support a wide range of 
cryptographic functions able cover the typical and most 
diffused algorithms employed in symmetric-key and public-
key cryptographic applications, we developed the following 
hardware accelerators: 

 an AES core, featuring both encryption and 
decryption and support to both 128-bit and 256-bit 
cipher keys compliant with standard [12]; 

 a SHA engine, supporting all the possible digest 
sizes (i.e. 224, 256, 384 and 512 bits) compliant 
with standard [13]; 

 an ECDSA engine, supporting the NIST P-256 and 
NIST P-521 elliptic curves compliant with 
standard [14]. 

The hardware modules have been developed by 
University of Pisa for the purpose to be integrated in exascale 
capable processors developed by the European Processor 
Initiative (EPI) consortium [15]. 

On the power consumption side, we extracted the required 
data by running simulations of the synthetized modules with 
Synopsys PrimeTime tool and linking to it the same standard-
cell library used for synthesis, in order to gather the power 
consumption information included in that library. On the 

throughput, data rate and latencies side, once determined the 
maximum frequency our modules were able to support by 
synthesis, we have been able to compute mathematically such 
data basing only on the modules architecture. 

Anyway, to make a fair comparison with the SW 
counterpart, we considered also the latencies due to a real-
case application. In other words, in the computation we 
included also the time a processor integrating our modules 
should spent in order to use them. The typical approach is to 
provide hardware accelerators with a bus interface and 
connect them to the system bus that the processor accesses to, 
as peripherals. In order to gain advantage from the maximum 
speed achievable by our modules, on one hand we assumed 
the utilization of an AXI4-DMA interface [16] to stream data 
from the system memory to our modules and vice versa. 
Moreover, we assumed to apply the same clock frequency to 
both the AXI bus and our modules, in order to reduce 
overhead due to synchronization mechanisms. On the other 
hand, we fixed the clock frequency to 300 MHz, in order to 
reduce the power consumption of hardware accelerators. 
Such frequency is largely supported by both the AXI4 bus 
[16] and our modules, being the maximum achievable 
frequency 560 MHz, 1.1 GHz and 325 MHz, respectively, for 
the AES core, the SHA engine and the ECDSA engine, by 
results of synthesis on the 45 nm standard-cell technology. 
Thus, the maximum bandwidth reachable using the AXI4-
DMA is about 9.6 Gbps and 3.6 Gbps for MM2S and S2MM 
channels respectively [16], when using a bus clock of 300 
MHz. The MM2S (memory-mapped to stream) transfers 
apply to data writing to peripheral (i.e. our hardware 
accelerator), while the S2MM (stream to memory-mapped) 
transfers apply to data reading from peripheral. To be noted 
that the target technology for the first tape-out of EPI project 
will be on 7 nm standard-cell technology, and from 
preliminary synthesis result there is an increase of the 
maximum clock frequency by a factor 5 with respect to the 
above 45 nm data.  

III. RESULTS 

For the purposes of this research activity, we analysed the 
following cryptographic functions: 

 AES-ECB-256 (encryption), i.e. the encryption 
algorithm of the ECB mode [17] of the AES 
cipher, with 256-bit cipher key [12]; 

 SHA256, i.e. the SHA algorithm when 
generating 256-bit digests [13]; 

 ECDSA signature generation on NIST P-521 
curve [14]. 

 
Table I reports the performances data for the AES-ECB-

256 software implementation, and Fig.1 shows the dynamic 
power consumption of the BCM2837B0 chip during the 
execution of AES-ECB-256 algorithm. In Table I, Table II 
and Table III, Exec. time column reports the execution time, 
D column reports the amount of processed data in Mbit, TH 
column reports the throughput @ 1.4 GHz, the P column 
reports the average dynamic power consumption, and the E 
column reports the energy per bit. 

 
 



TABLE I. Performances data for AES-ECB-256 software implementation.  

Number 
of core 

Exec. time 
(s) 

D 
(Mb) 

TH      
(Mbps) 

P 
(mW) 

E 
(mJ/Mb) 

1 3 917.4 305.80 300 0.98 
2 3 1812.8 604.27 600 0.99 
4 3 3628 1209.33 1300 1.07 

 

 
Figure 1. Dynamic power acquired during execution of AES-ECB-256 
algorithm on ARM Cortex-A53 processor, using 1, 2 and 4 cores.  

Accordingly, Table II and Table III report data 
characterizing the software implementations of SHA256 and 
the ECDSA, respectively, as well as Fig. 2 and Fig. 3 show 
the dynamic power consumption during the execution of such 
algorithms. To be noted that data in Fig. 1, Fig. 2 and Fig. 3 
have been post-processed to extract the average dynamic 
power consumption for the different cases of number of cores 
employed during the execution of the algorithm. 

 
 

TABLE II. Performances data for SHA256 software implementation.   

Number 
of core 

Exec. time 
(s) 

D 
(Mb) 

TH 
(Mbps) 

P 
(mW) 

E 
(mJ/Mb) 

1 3 337.9 113,01 310 2.74 
2 3 664.9 221,63 650 2.93 
4 3 1213.9 404,63 1380 3.14 

 

 

 
Figure 2. Dynamic power acquired during execution of SHA256 algorithm 
on ARM Cortex-A53 processor, using 1, 2 and 4 cores.  

 
TABLE III. Performance data for ECDSA software implementation.   

Number 
of core 

Exec. time 
(s) 

D 
(Op) 

TH 
(Op/s) 

P 
(mW) 

E 
(mJ/Op) 

1 10 282.4 28.24 310 10.98 
2 10 560 56 620 11.07 
4 10 1085 108.5 1330 12.26 

 
Figure 3. Dynamic power measured during execution of ECDSA over NIST 
P-521 curve algorithm using 1, 2 and 4 cores.  

Concerning the HW implementation, Table IV shows data 
characterizing the developed cryptographic accelerators, for 
a frequency of 300 MHz. As specified in Section II, in this 
case we included also the additional latency affecting 
throughput, due to software access to our modules in a real-
case scenario. Hence, assuming the bandwidth achieved by 
the AXI4-DMA at the frequency of 300 MHz for both MM2S 
and S2MM transfers, the additional latency to be taken in 
account is: 

 48.89 ns, for AES-ECB-256; 
 124.44 ns, for SHA256; 
 316.11 ns, for ECDSA signature generation on 

NIST P-521 curve. 
 
Accordingly, the throughput of the hardware accelerators can 
be calculated by: 

𝑇𝐻 =
ொ

௅∗்೎೗ೖା஺௅
     (1) 

 
Referring to Eq. (1), 𝑇௖௟௞  is the clock period of the clock 
frequency of 300 MHz, i.e. 5 ns, and L is the module latency, 
expressed in clock cycles, and AL is the additional latency 
due to software access and reported in the list above, and 
expressed in seconds. This last one parameter can be 
computed by dividing the bit width of the amount of input (or 
output) data required (or generated) by the hardware module, 
by the AXI4-DMA bandwidth, in case of MM2S channel (or 
S2MM channel). 𝑄  strongly depends on the cryptographic 
function and it is: 

 Q = 128 (bits), in case of AES-ECB-256, because 
ECB mode of AES requires one 128-bit input data 
block and generates one 128-bit output block, for 
every 128-bit block composing a message; 

 Q = 512 (bits), in case of SHA256, because such 
algorithm requires to parse all 512-bit blocks 
composing a message, to generate the corresponding 
256-bit digest, thus, in this case, the throughput 
refers to the input data rate supported by the input 
interface; 

 Q = 1 (operation), in case of ECDSA signature 
generation algorithm, because it is a single-shot 
operation and provides a set of output data (i.e. the 
digital signature), after providing the required input 
data. 
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TABLE IV. Performance data of hardware cryptographic accelerators. The 
TH column reports the throughput, the P column reports the average 
dynamic power consumption, and the E column reports the energy per bit 
(or operation), according to the algorithm in the rows. All data refer to the 
synthesis on 45 nm standard-cell technology at the frequency of 300 MHz. 

Cryptographic 
algorithm 

TH  P 
(mW) 

E  
 

AES-ECB-256 1339.53 Mbps 18 0.00656 mJ/Mb 
SHA256 1515.79 Mbps 8.91 0.00371 mJ/Mb 

ECDSA-P521  910.60 Op/s 61.8 0.06785 mJ/Op 

 
 
Table V shows the comparison among software and hardware 
implementations of the cryptographic algorithms we 
analyzed in this work, using as efficiency factor a figure of 
merit we computed as 

𝐹𝑜𝑀 =
𝑇𝐻

𝐸
 

 
for which, TH and E are, respectively, the throughput and the 
energy per bit (or per operation) reported in Table I, Table II, 
Table III and Table IV for SW on 4-Core Cortex-A53 @ 1.4 
GHz (40 nm) and our cryptographic HW accelerators @ 300 
MHz (on 45 nm technology).  

IV. CONCLUSIONS 

In this work, we evaluated the performances of most common 
and diffused cryptographic algorithms comparing different 
implementations: pure SW solutions based on 64-bit 
processor (4-Core ARM Cortex-A53), and HW accelerators 
specifically designed and assumed to be used as peripherals 
of a GPP (General Purpose Processor), by means of an AXI4-
DMA interface. In case of SW, we characterized the 
algorithms in three different conditions, varying the number 
of cores running the cryptographic applications (respectively 
1, 2 or 4 cores). In case of HW, data refer to synthesis of 
digital modules on a 45 nm standard-cell technology. As 
consequence of results reported in Section III, it can be stated 
that in all the cases HW solutions are better than their SW 
counterparts in terms of throughput and power consumption, 
with an average FoM improvement of three orders of 
magnitude (refer to Table V).  

Moreover, the throughput of our HW accelerators 
measured in this work is not the highest one that they can 
reach. For example, according to the application 
requirements, the HW AES can achieve up to 5 Gbps of 
throughput, in case of AES-ECB-256, at the maximum 
supported frequency of 560 MHz on 45 nm technology. A 
further x5 speed performance improvement is expected, in 
EPI target 7 nm technology, from preliminary synthesis 
results. In case of the most intensive algorithms, such as the 
ECDSA one, results prove that the HW accelerator solution 
is mandatory, since the relatively long execution times of SW 
ECDSA could be intolerable within a real-time  

 
TABLE V. Comparison among software and hardware implementations of 
cryptographic algorithms, according to Figure of Merit (FoM). 

Algorithm 
FoM 

SW 
(1 core) 

SW  
(2 cores) 

SW 
(4 cores) 

HW 

AES-ECB-256 312.04 610.37 1130.21 204119.60 
SHA256 41.24 75.64 128.86 408293.46 

ECDSA P-521 2.57 5.06 8.85 20131.61 

application, or too expensive in terms of energy consumption 
for some markets (e.g. HPC or automotive). 

As conclusion, even if using 64-bit multicore application 
processor, such as the Broadcom BCM2837B0 @ 1.4 GHz, 
the hardware-based solution for cryptography is the only one 
capable to meet stringent requirements in terms of real-time 
execution and power consumption for embedded IoT and 
automotive systems. 
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