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Abstract. Recently, many realistic models of structured populations are de-

scribed through delay equations which involve quantities defined by the so-
lutions of external problems. For instance, the size or survival probability of

individuals may be described by ordinary differential equations, and their mat-

uration age may be determined by a nonlinear condition. When treating these
complex models with existing continuation approaches in view of analyzing

stability and bifurcations, the external quantities are computed from scratch

at every continuation step. As a result, the requirements from the computa-
tional point of view are often demanding. In this work we propose to improve

the overall performance by investigating a suitable numerical treatment of the

external problems in order to include the relevant variables into the continua-
tion framework, thus exploiting their values computed at each previous step.
We explore and test this internal continuation with prototype problems first.
Then we apply it to a representative class of realistic models, demonstrating
the superiority of the new approach in terms of computational time for a given

accuracy threshold.
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1. Introduction. In the recent literature delay equations are used to describe the
evolution of structured populations [5, 11, 13, 17, 26, 28, 33]. In particular, sys-
tems of Renewal Equations (REs) coupled to Delay Differential Equations (DDEs)
are employed to model consumer-resource dynamics [12, 18]. Besides the intrinsic
infinite dimension due to the presence of delays, an increase of complexity in real-
istic applications follows from the fact that several model ingredients are not given
explicitly, but rather as solutions of related external problems. For instance, this
is the case of Ordinary Differential Equations (ODEs) whose solutions provide the
evolution of some structuring variables as, e.g., the size of the individuals or their
survival probability, as well as the case of nonlinear constraints which implicitly
define the subdivision of the population into different classes as, e.g., juveniles and
adults, making the original model state-dependent (see, e.g., [23]).

The resolution of these external problems is often the computational bottleneck
when continuation techniques are applied to compute equilibria or periodic solu-
tions, analyze their stability and detect relevant bifurcations, which are all common
targets. This is the case of the approach proposed very recently in [6]. Its underly-
ing idea is to reduce the original model to a system of ODEs, but when it comes to
apply standard continuation tools for ODEs to such system the role of the external
problems in determining the computational cost emerges rather clearly. Neverthe-
less, to the best of our knowledge, this approach is very promising, especially due
to its wide applicability, and sometimes it represents the only reasonable chance to
tackle the dynamical analysis of complex yet realistic models.

To overcome the aforementioned bottleneck we propose to include the resolu-
tion of the external problems into the continuation framework, calling this general
strategy internal continuation in the sequel. Indeed, this approach eliminates the
need to compute the external variables from scratch at every continuation step and
hence it avoids to resort to external (yet efficient) solvers (for ODEs, for nonlinear
equations, etc.). This is because the computation of these quantities at the current
continuation step benefits of the information already acquired at the previous step.
Of course, the above inclusion is not for free, and a careful numerical treatment of
the external problems has to be considered.

In order to investigate the validity of our proposal, we focus on a class of real-
istic models, suitably represented by the one commonly called Daphnia consuming
algae (for simplicity, Daphnia in the sequel). We describe Daphnia in Section 3,
highlighting the external problems and the technicalities involved with it. In this
work we concentrate on the continuation of its equilibria as a starting point, thus
the rest of Section 3 focuses on how to approach this problem, either with the
general method proposed in [6] or with more specific tools as proposed in [32]. In
Section 4 we explain our internal approach in full detail. To this aim, we introduce
a series of prototype models in order to simplify the original target and distinguish
the role of all the technicalities in determining the final computational cost. The
implementation of the standard external approach that is used for comparison is
summarized in Section 5. We show the obtained numerical results in Section 6, first
on the prototype problems and then on the realistic Daphnia model. In particular,
through the latter results we demonstrate the superiority of the newly proposed
approach. Some remarks close the manuscript in Section 7.
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Let us remark that some work on a first use of the internal continuation on
prototype problems has already been made by (some of) the authors in [4]. In
particular, the current research completes the very preliminary investigation of the
basic and state-dependent cases illustrated in [4] with the analysis of also the cases
of external ODEs with discontinuous right-hand side and of systems of external
ODEs. Moreover, and above all, it extends and applies the proposed framework to
the true original target of realistic complex models.

Prior to start, we illustrate in the next section a summary of the basic aspects
of numerical continuation, which we retain necessary to facilitate the overall under-
standing of the working context.

2. Numerical continuation. We summarize the key aspects of pseudo-arclength
continuation, in order to establish the general framework in which our class of
problems falls. A starting reference on the subject is [21], which inspires most of
the content of this section.

Let G : Rn+1 → Rn be sufficiently smooth. We are interested in solving

G(v) = 0. (1)

We call v̄ a regular solution if

Gv(v̄) :=


∂G1

∂v1
(v̄) · · · ∂G1

∂vn+1
(v̄)

...
. . .

...
∂Gn
∂v1

(v̄) · · · ∂Gn
∂vn+1

(v̄)

 ∈ Rn×(n+1)

has maximal rank. If this is the case, then the implicit function theorem guaran-
tees that near v̄ there exists a unique one-dimensional continuum of solutions v(s),
parameterized by s ∈ R, such that s 7→ v(s) is as smooth as G and v(0) = v̄. Above
s plays the role of continuation parameter and v(s) is called a solution branch.
Different choices of s may be possible.

The aim of numerical continuation is to approximate a solution branch v(s)
through a sequence of points {vj}j≥0 constructed by an iterated prediction-correction
procedure as illustrated next for the initial step.

Assume to know a point v0 on the concerned solution branch, together with the
relevant tangent vector v̇0, normalized as ‖v̇0‖2 = 1, Figure 1 (top-left). Given a
step of length ∆s along this vector, a new point v1 is found as the solution of the
nonlinear determined system{

G(v1) = 0

(v1 − v0)T v̇0 −∆s = 0.
(2)

The first n equations are obvious. The latter one, called the pseudo-arclength con-
dition, is derived from the geometric interpretation of the scalar product between
the vectors v1 − v0 and v̇0 as the length of the projection of the former into the
direction of the latter (which is a unit vector).

The solution of system (2) is in general approximated by Newton’s method(
Gv(v

(k)
1 )

v̇T0

)
∆v

(k)
1 = −

(
G(v

(k)
1 )

(v
(k)
1 − v0)T v̇0 −∆s

)
, k ≥ 0, (3)
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Figure 1. Pseudo-arclength continuation (top-left) with natural
parameterization (top-right) and natural continuation with tangent
(bottom-left) and secant (bottom-right) prediction.

with initial guess

v
(0)
1 = v0 + ∆s v̇0 (4)

and updates

v
(k+1)
1 = v

(k)
1 + ∆v

(k)
1 , k ≥ 0.

Other variants can be used to avoid the repeated calculation of the Jacobian matrix
in (3). A common one in this context is the Broyden’s update [8]. In any case, (4)
plays the role of prediction step, while the Newton’s method (3) plays the role of
correction step.

Once v1 is computed, the new tangent vector is found as(
Gv(v1)

v̇T0

)
v̇1 =

(
0

1

)
, (5)

with further attention to normalize the result as ‖v̇1‖2 = 1. Note that the equation
v̇T0 v̇1 = 1 preserves the direction of the continuation along the branch. Moreover,
observe that the matrix at the left-hand side of (5) is exactly the Jacobian of the
Newton’s method (3), which means that the new tangent vector can be computed
by just one extra back-substitution.

It can be proved that the latter Jacobian is nonsingular at regular points. Yet
the step ∆s must be chosen appropriately: not too small to avoid unnecessary
work, not too large to prevent convergence, or convergence to the right branch.
Usually the selection of the next step is based on the convergence behavior of the
Newton’s method at the previous step. A first threshold is fixed on the number of
iterations, say k. If the number of Newton’s iterations overcomes this value, the
method is declared not to converge and the prediction step (4) is repeated with a
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reduced length (typically halved). Otherwise the step is accepted and the length
of the next prediction must be chosen. This length is left unchanged if the number
of performed iterations is above a second threshold, say k (< k). Otherwise, the
length is increased, multiplying the current one by c > 1. Typical heuristic choices
may be k = 3, k = 20, c = 1.3. For more detailed accounts see [3, 24].

The pseudo-arclength continuation is independent of the chosen parameteriza-
tion. Often the original problem (1) is described with an explicit parameter λ ∈ R
and hence it is rather formulated as

G(u, λ) = 0 (6)

for G : Rn × R → Rn and u ∈ Rn the true unknown vector. In this case in (1) we
set v = (u, λ), we talk about natural parameterization and we look for the solution
branch (u(λ), λ) or, basically, for u(λ). Then (2) becomes{

G(u1, λ1) = 0

(u1 − u0)T u̇0 + (λ1 − λ0)λ̇0 −∆s = 0,

Figure 1 (top-right). The k-th step of the corresponding Newton’s method, k ≥ 0,
reads(

Gu(u
(k)
1 , λ

(k)
1 ) Gλ(u

(k)
1 , λ

(k)
1 )

u̇T0 λ̇0

)(
∆u

(k)
1

∆λ
(k)
1

)
=

−

(
G(u

(k)
1 , λ

(k)
1 )

(u
(k)
1 − u0)T u̇0 + (λ

(k)
1 − λ0)λ̇0 −∆s

)
,

where the notations Gu and Gλ should be clear. The relevant updates are(
u

(k+1)
1

λ
(k+1)
1

)
=

(
u

(k)
1

λ
(k)
1

)
+

(
∆u

(k+1)
1

∆λ
(k+1)
1

)
, k ≥ 0,

the initial prediction is (
u

(0)
1

λ
(0)
1

)
=

(
u0

λ0

)
+ ∆s

(
u̇0

λ̇0

)
and the new tangent vector is eventually obtained as(

Gu(u1, λ1) Gλ(u1, λ1)

u̇T0 λ̇0

)(
u̇1

λ̇1

)
=

(
0

1

)
,

by recalling to set then ‖u̇1‖22 + λ̇2
1 = 1.

The above general description corresponds to the standard implementation as
included in celebrated continuation software like AUTO [1, 20, 21] and MatCont [2,
15, 16]. Also other continuation packages can be considered, see, e.g., ALCON [14],
HOMEPACK [36] and PITCON [31].

A common alternative is represented by the so-called natural continuation, in
which one predicts a new point along the tangent direction by choosing a step of
length ∆λ along the direction of the continuation parameter, and then performs
the correction by iterating along the direction orthogonal to the latter, Figure 1
(bottom-left). Although this method may fail in the presence of folds of the solution
branch, it is slightly simpler to implement. A even simpler version is obtained by
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substituting the prediction step along the tangent vector with that along the secant
through the two preceding steps, Figure 1 (bottom-right).

3. Target model and related continuation. First we illustrate the Daphnia
model of resource-consumer dynamics, a representative of the class of problems we
have in mind as a target of the current research. For a reference literature see
[11, 12, 13, 17, 18]. The following description is mainly inspired by [7].

At the end we report on some computational results on the numerical continua-
tion of its equilibria, obtained by using the technique recently proposed for general
REs/DDEs [6], as well as by emulating algorithms already available for Daphnia-like
models [32] (see also [10, 12]).

We denote by S(t) the (non-negative) available resource concentration at time
t, whose evolution, in the absence of consumers, is given by the ODE Cauchy or
Initial Value Problem (IVP){

S′(t) = f(S(t)), t ≥ 0,
S(0) = S0

(7)

for given f : [0,+∞)→ R sufficiently smooth and S0 > 0. As commonly used in the
theory of delay equations [19, 25], the function St : [−amax, 0] → [0,+∞) for some
amax > 0 describes the history of the resource at time t, defined as St(θ) := S(t+θ)
for θ ∈ [−amax, 0]. Above amax plays the role of the maximum age of the consumer
individuals.

The latter are structured by their (non-negative) size ξ(a, St), which is relevant
to individuals of age a that at time t have experienced a resource history St. The
size ξ̄(α) := ξ̄(α; a, ψ) at age α ∈ [0, a] of an individual that at age a has experienced
a resource history ψ is given through the IVP{

ξ̄′(α) = g(ξ̄(α), ψ(−a+ α)), α ∈ [0, a],
ξ̄(0) = ξb,

(8)

for given size at birth ξb > 0 and growth rate g : [ξb,+∞) × [0,+∞) → (0,+∞)
sufficiently smooth. Then ξ(a, ψ) := ξ̄(a; a, ψ).

Similarly, F(a, St) ∈ [0, 1] denotes the survival probability of a consumer individ-
ual that at time t has age a and has experienced a resource history St. The survival
probability F̄(α) := F̄(α; a, ψ) at age α ∈ [0, a] of an individual that at age a has
experienced a resource history ψ is given through the IVP{

F̄ ′(α) = −µ(ξ̄(α), ψ(−a+ α))F̄(α), α ∈ [0, a],
F̄(0) = 1

(9)

for a given mortality rate µ : [ξb,+∞) × [0,+∞) → (0,+∞) sufficiently smooth.
Then F(a, ψ) := F̄(a; a, ψ).

The reproduction and ingestion rates of a consumer individual that at time t
has age a and size ξ(a, St) are denoted by β(ξ(a, St), S(t)) and γ(ξ(a, St), S(t)),
respectively, with given β, γ : [ξb,+∞)× [0,+∞)→ R sufficiently smooth.

Consumers are assumed to be partitioned between juveniles and adults, the sep-
aration being determined by a given maturation size ξA (> ξb). Juveniles are not
able to reproduce, so that β(ξ, S) > 0 only for ξ ≥ ξA. The maturation age aA is
implicitly given through the maturation condition

ξ(aA, ψ) = ξA, (10)
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so that aA = aA(ψ) depends on the resource history, making the problem state-
dependent. Correspondingly, the rates β, g, γ and µ are assumed to be piecewise
sufficiently smooth functions with respect to their first argument on [ξb,+∞), with
breaking point ξA.

Eventually, the dynamics at the population level is modeled as a system of a RE
coupled to a DDE. As for the RE, the consumer birth rate b(t) at time t is obtained
by integrating with respect to the age the contribution of the individuals that have
age a at time t, i.e.,

b(t) =

∫ amax

aA(St)

β(ξ(a, St), S(t))F(a, St)b(t− a) da. (11)

The same reasoning leads to the DDE regulating the dynamics of the resource by
subtracting from the right-hand side of the ODE in (7) the total ingestion of food:

S′(t) = f(S(t))−
∫ amax

0

γ(ξ(a, St), S(t))F(a, St)b(t− a) da. (12)

For completeness, as motivated in [17], the system of (11) and (12) is equipped with
initial histories b0 ∈ L1([−amax, 0];R) and S0 ∈ C([−amax, 0];R) (the choice of the
state spaces comes from the fact that b represents a rate, while S a density).

In conclusion, the target model consists of a coupled RE/DDE with integral right-
hand sides, whose integration kernels are not given explicitly but rather through
the solutions of external IVPs. Moreover, there can be discontinuities due to the
different classes of the population, distinguished by their structuring variable and, in
turn, by their age. Eventually, the breaking point between these classes is unknown
in general, depending it on the state itself of the system through the solution of a
nonlinear equation.

Remark 1. We stress that the model (11)–(12) with (8)–(10) can be obtained
indirectly by integration along characteristic of an underlying Partial Differential
Equation (PDE) of transport type. Indeed, by defining n(t, ξ) as the density of
individuals with size ξ at time t, the model can be described by the PDE

∂tn(t, ξ) + ∂ξ[g(ξ, S(t))n(t, ξ)] = −µ(ξ, S(t))n(t, ξ)

with boundary condition

g(ξb, S(t))n(t, ξb) =

∫ ∞
ξb

β(ξ, S(t))n(t, ξ) dξ.

The RE (11) is then obtained by defining b(t) := g(ξb, S(t))n(ξb, t). One of the
advantages of the RE (11) is that it allows to treat variables defined on the one-
dimensional time domain. For a detailed derivation of the RE from the PDE we
refer to [11, Chapter 6].

In the present work we are interested in computing the equilibria and in following
their variation with respect to some model parameters as a first step in the dynam-
ical analysis. Note, however, that the prototype problems we propose in Section 4
are suitable to investigate more general solutions (e.g., periodic ones) and thus, in
this sense, the relevant internal strategy is presented in its most general version.
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It is not difficult to see that the Daphnia model described above can have trivial
equilibria, i.e., constant solutions (b, S) ≡ (0, S̄) for S̄ any zero of f in (12), as well
as nontrivial equilibria (b, S) ≡ (b̄, S̄), where S̄ satisfies∫ amax

āA

β(ξ(a, S̄), S̄)F(a, S̄) da = 1 (13)

for āA := aA(S̄) and b̄ is consequently given by

b̄ =
f(S̄)∫ amax

0
γ(ξ(a, S̄), S̄)F(a, S̄) da

.

We focus only on the nontrivial equilibria, hence on (13) (indeed, the computation
of the trivial ones does not pose any special difficulties, except for those due to the
specific form of f). In particular, the objective is to continue a solution branch of
S̄ with respect to a selected model parameter. Most of the model parameters are
hidden in (13), appearing only in the definitions of the various rates defining the
model. In this regard we refer to [7] for the current choices and, for the reader’s
convenience, we recall from there all the necessary quantities in Table 1.

resource intrinsic rate of change f(S) = a1S(1 − S/C)

consumer growth rate g(ξ, S) = γg (ξmfr(S) − ξ)
consumer mortality rate µ(ξ, S) = µ

consumer adults reproduction rate β(ξ, S) = rmfr(S)ξ2

consumer ingestion rate γ(ξ, S) = νSfr(S)ξ2

Holling type II functional response fr(S) := σS/(1 + σS)

size at birth ξb = 0.8

size at maturation ξA = 2.5
maximum size ξm = 6.0

growth time constant γg = 0.15
functional response shape parameter σ = 7.0

maximum feeding rate νS = 1.8

maximum reproduction rate rm = 0.1
mortality rate parameter µ = varying

environment carrying capacity C = 25

flow-through rate a1 = 0.5
maximum age amax = 70

Table 1. Rates (top) and parameters (bottom) of the considered
Daphnia model.

In Figure 2 we show the results of the continuation of S̄ with respect to the
mortality rate parameter µ. Two curves are shown in the left panel, obtained as
explained next.

The solid curve with circles is the result of the approach in [6], implemented
in Matlab. The system of (11) and (12) is first reduced to a system of ODEs
via a pseudospectral discretization. Then the latter is given in input to MatCont,
which performs the continuation of the desired equilibrium. The quadrature of the
integrals in (11) and (12) (by Clenshaw-Curtis quadrature [34], see Section 4.1), the
resolution of the external IVPs (8) and (9) (by ode45) and the determination of
the maturation age through (10) (by the event locator of ode45, see below) are all
performed automatically inside the routine constructing the right-hand side of the
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Figure 2. Equilibrium branch S̄(µ) with zoom (left) and relevant
residual (right) of the Daphnia model, computed with [6] (solid
line with circles) and [32] (dashed line with diamonds). See text
for more details.

reduced system of ODEs. As such, all these calculations are repeated from scratch
at every continuation step done by MatCont, with no possibility of exploiting the
information available from the previous step.

The dashed curve with diamonds is, instead, the result of a natural continua-
tion with secant prediction, recall Figure 1 (bottom-right), always implementd in
Matlab. Following [32], the correction step is made by using the Broyden’s update,
integrals and external IVPs are solved simultaneously via the embedded Runge-
Kutta pair DOPRI54 (see, e.g., [22]: basically, it is also behind ode45) and the
maturation age is directly obtained as an output of the latter, which is indeed capa-
ble of event detection, i.e., it automatically detects when (10) is satisfied during the
integration of (8). As for the previous approach, integrals, IVPs and maturation
age are computed from scratch at every continuation step, independently of the
same quantities computed at the previous step.

In the following we refer to the two approaches described above by simply citing
the works of reference, i.e., [6] and [32], respectively. Let us note that other works
exist on the numerical equilibrium analysis of the Daphnia model, see, e.g., [12]
and the references therein. Yet, from the numerical point of view, [32] is largely
inspired from [12], so that the applied numerical techniques are basically the same.
A similar comment holds also with regards to the software PSPManalysis [10].

Back to Figure 2 (left), the two curves are practically indistinguishable, but for
the greatest values of µ as highlighted in the zoom in the inner panel. The same can
be said for the marked points, which represent the performed continuation steps.
Let us remark that it is difficult to set all the parameters regulating the automatic
choice of the length of the prediction step in order to make a reasonable and fair
comparison (e.g., in MatCont, as used with [6], it is not possible to directly control
k, k or c, but just the minimum or maximum length of the steps). The same can be
said about fixing the tolerances or the discretization parameters of all the concerned
tools (MatCont, pseudospectral reduction, ode45, DOPRI54, Broyden’s update, etc.).
Nevertheless, we did our best to avoid favoring any of the two methods as much as
we could. To this aim, the lengths along µ of the secant prediction steps as used
with [32] are chosen to be equal to those obtained with [6]. Doing this way the two
computed branches cover the same range for µ (viz. [0.1, 0.4090]) with the same
number of steps (viz. 30). Moreover, as explained next, the resulting errors have
similar magnitude.
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Figure 2 (right) shows in fact the residual obtained along the branch with the two
methods. By residual we mean the absolute difference between 1 and the integral at
the left-hand side of (13). Indeed, the latter can be evaluated analytically thanks to
the choices in Table 1, while the input values for S̄ are those computed with either
[6] (solid line with circles) or [32] (dashed line with diamonds). As anticipated,
the outcome is comparable, even though a slightly increasing trend emerges for [6],
which we believe is due to the effect of µ on the error of the pseudospectral reduction
as used in [6]. Note that the range of the vertical axis is kept as large in order to
facilitate the comparison with the method proposed in this work, as reported later
on in Section 6.5. Eventually, it is worth to remark that the error as measured here is
the result of several sources, qualitatively and quantitatively different (quadrature,
IVPs, maturation condition, correction procedures, MatCont inner tolerances), so
that we refrain from drawing sharper conclusions, unless differences of several orders
of magnitude were the case (unlike the current situation indeed).

Taking into account the aforementioned premises, the computational time needed
to trace the equilibrium branch amounts to 155.88 s with [6] and 59.32 s with [32]
(both run on a MacBook Pro 2.3GHz Intel Core i7 16GB, the same hardware used to
perform also the tests in Section 6). As anticipated in the Introduction, these data
furnish enough motivation to try to improve the continuation strategy for complex
models like the Daphnia one. This is the main contribution of the present work and
we illustrate it in the following sections.

4. Prototype problems and internal continuation. With the aim of decreas-
ing the overall computational cost of the techniques available in the literature to
continue the equilibria of the complex models of interest for this work, we propose a
new strategy whose underlying idea is to take advantage of the information acquired
at the previous continuation step when computing a new point of the branch. With
reference to the class of problems exemplified by the Daphnia model, this can be
achieved by including into the continuation framework the solution of the external
IVPs (8) and (9) as well as the solution of the maturation condition (10).

In this sense we talk about internal continuation, as opposed to the standard
external continuation methods, as those employed at the end of Section 3.

In the sequel we keep on focusing on (13) even though, as already anticipated,
the following analysis is valid for continuing also solutions other than equilibria.

In order to test our proposal, we first separate the peculiar difficulties of the
Daphnia model, represented by (13). To this aim, in the following sections we
formulate a series of prototype problems, each of which tackles one single challenge
of the original model at a time, namely the presence of an external ODE, a state-
dependent maturation age, possible discontinuities among juveniles and adults and,
finally, systems of external ODEs. In each of these sections we also describe how the
problem is addressed in the framework of the newly proposed internal continuation.

Then in Section 5 we summarize the features of the external continuation used to
compare the results on these prototype problems. All the computational tests are
reported in Section 6, together with the final comparison with [6, 32] on the Daphnia
model. We anticipate that the specific instances of prototype problems used in
Section 6 are constructed to obtain a known analytic expression of the solution
branch, with the aim of measuring the true error due to the applied continuation.
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First to proceed, note that the notation used in the following sections is com-
pletely unrelated to that used so far for the Daphnia model, but the context should
be clear enough to avoid confusion. In particular, the final objective is that of de-
termining a quantity x ∈ R as a function of a varying parameter λ ∈ R, defined
implicitly through an integral condition. With reference to the case of Daphnia, x
should be read as S̄, λ as the mortality parameter µ (recall Table 1) and the integral
condition as (13).

4.1. The basic case. We concentrate on the treatment of the integral in (13) and
on the fact that the integrand is defined through the solution of external IVPs.
In this respect we simplify the problem considering just a single ODE (systems are
dealt with in Section 4.4). Moreover, the integration extrema are kept fixed in order
to avoid state-dependency (argument of Section 4.2).

The prototype problem is thus represented by the continuation of the curve x(λ)
defined by ∫ 1

0

f(a, x, λ) da = 0, (14)

where f(a, x, λ) := ϕ(a; a, x, λ) and ϕ(α; a, x, λ) ∈ R is the solution of{
ϕ′(α; a, x, λ) = g(ϕ(α; a, x, λ), a, x, λ), α ∈ [0, a],
ϕ(0; a, x, λ) = ϕ0

(15)

for given g : R× [0, 1]× R2 → R sufficiently smooth and ϕ0 ∈ R.
Note that, biologically, it should be ϕ(α; a, x, λ) ≥ 0 as well as ϕ0 > 0. As far

as only prototype problems are concerned, we feel free to relax these and similar
constraints, recalling that in the end we want to obtain exact expressions of the
solution branches.

We need to choose how to approximate both the integral in (14) and the solution
of the IVP (15) needed to compute the relevant values of the integrand function.

As for the former, we opt for the Clenshaw-Curtis quadrature [34], i.e.,∫ 1

0

f(a, x, λ) da ≈
N∑
j=0

wjf(aj , x, λ),

where N is a fixed positive integer, 0 = a0 < · · · < aN = 1 are the Chebyshev
extrema in [0, 1] and w0, . . . , wN are the corresponding quadrature weights. The
same quadrature is used for the forthcoming prototypes as well. Moreover, recall
from Section 3 that it is also adopted for treating the Daphnia problem with [6].

As for the IVP, we need the value of f(aj , x, λ) for each j = 1, . . . , N given x
and λ, and hence those of ϕ(α; aj , x, λ) at α = aj (j = 0 is excluded with the
above choice of quadrature nodes because f(a0, x, λ) = ϕ0 is given). To this aim,
we use polynomial collocation and thus look for an n-degree polynomial p(j)(α) :=
p(α; aj , x, λ) such that{

p(j)′(α
(j)
i ) = g(p(j)(α

(j)
i ), aj , x, λ), i = 1, . . . , n,

p(j)(α
(j)
0 ) = ϕ0.

for given collocation points 0 = α
(j)
0 < · · · < α

(j)
n = aj , j = 1, . . . , N .
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With respect to (6) let then

u := (p(1)(α
(1)
1 ), . . . , p(1)(α(1)

n ), . . . , p(N)(α
(N)
1 ), . . . , p(N)(α(N)

n ), x)T ∈ RnN+1, (16)

so that the collocation variables p(j)(α
(j)
i ), i = 1, . . . , n, j = 1, . . . , N , are included

in the continuation framework (again, i = 0 is excluded since p(j)(α
(j)
0 ) = ϕ0 for

every j = 1, . . . , N).
Then G in (6) is given componentwise by{

p(j)′(α
(j)
i )− g(p(j)(α

(j)
i ), aj , x, λ), i = 1, . . . , n, j = 1, . . . , N∑N

j=0 wjp
(j)(α

(j)
n ).

Note that the first group of equations does not concern any collocation variable

p(k)(α
(k)
i ) for k 6= j. This means that the resulting Jacobian matrix will have a

bordered block diagonal structure, as shown in Figure 3.

Figure 3. An example of bordered block diagonal structure of the
Jacobian matrix for n = 10 (determining the size of the diagonal
blocks) and N = 5 (determining the number of the diagonal
blocks).

Some comments are worthy with regards to the numerical solution of (15) to com-
pare internal and external continuation. Recall that we need this solution at the end
of the integration interval [0, aj ] for every quadrature node aj (a0 excluded). The in-
ternal continuation uses collocation, which has a classical drawback when applied to
solve IVPs. Indeed, this leads to solve nonlinear equations, requiring for a suitable
initial guess to start the chosen iterative solver. Clearly, this problem is immediately
solved by including the collocation variables into the continuation framework, since
the mentioned initial guess is directly provided by the same quantities as computed
at the previous continuation step (or, better, at the current prediction step). As far
as the external continuation is concerned, instead, one typically chooses standard
initial value solvers (like, e.g., ode45 in Matlab), which means that the numerical
solution is based just on the initial value ϕ0, independently of what computed at
the preceding continuation step, thus repeating all the calculations from scratch.
This should be the main source of computational advantage of the internal strategy
we propose with respect to traditional external ones.

Nevertheless, there is a price to pay, which is represented by the increased di-
mension of the continuation problem, namely O(nN) for the internal approach as
opposed to O(N) for the external one (quadrature is anyway necessary for both).
This is in part lightened by the structure of the Jacobian matrix mentioned above,
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but the situation worsens as the number of external ODEs increases (see Section
4.4).

Eventually, let us underline that in the case of equilibria, e.g., for (13), the family
of ODEs (15) parameterized by a ∈ [0, amax] actually reduces to the single ODE
corresponding to (8) for ψ = S̄ constant and α = a ∈ [0, amax] since g does not
depend on a anymore. We still use the full formulation (15) in view of the extension
of the method to, for instance, periodic solutions, for which such a simplification is
not possible.

4.2. State-dependent problems. With respect to the previous section, we put
back the problem of state-dependency, assuming that one extremum of integration
in (14) depends on the unknown x.

The prototype problem is thus represented by the continuation of the curve x(λ)
defined by ∫ 1

ā

f(a, x, λ) da = 0, (17)

where ā = ā(x, λ) is implicitly defined by

f(ā, x, λ) = ϕ̄ (18)

for given ϕ̄, the rest being unchanged with respect to Section 4.1. The focus here
is only in the addition of condition (18) to the problem. In Section 4.3 we address
also the possible change of the right-hand side of the external ODE across ā.

The problem now includes the extra (nonlinear) equation (18) and, consequently,
the internal strategy suggests to consider just an extra continuation variable, which
is ā. Hence (16) becomes

u := (p(1)(α
(1)
1 ), . . . , p(1)(α(1)

n ), . . . , p(N)(α
(N)
1 ), . . . , p(N)(α(N)

n ), x, ā)T ∈ RnN+2.

As it happens for the solution of the external IVP, also the computation of
the value of ā takes advantage of the proposed internal strategy, indeed the value
computed at the previous continuation step is used to start the iterative solver at
the current step. Let us remark once more that in the external case, in principle,
an initial guess to solve (18) is never available to the chosen external solver, fact
that may also prevent the convergence to a solution. Nevertheless, IVP solvers with
event location (as those used in Section 3) avoid this problem, too.

4.3. External ODE with discontinuous right-hand side. In realistic models,
the right-hand side of the external ODE may change across ā. This can be, e.g.,
the case of Daphnia, where the right-hand side of the ODE in (8) defining the size
represents the growth rate of the consumer population, which in general is different
between juveniles and adults. The same can obviously hold for (9), too.

To accommodate this feature we consider that f in (17) is defined through{
ϕ′(α; a, x, λ) = g1(ϕ(α; a, x, λ), a, x, λ), α ∈ [0, a],
ϕ(0; a, x, λ) = ϕ0
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as long as a ≤ ā, while for a > ā it is defined through
ϕ′(α; a, x, λ) = g2(ϕ(α; a, x, λ), a, x, λ), α ∈ [ā, a],

ϕ(ā; a, x, λ) = ϕ̄,

ϕ′(α; a, x, λ) = g1(ϕ(α; a, x, λ), a, x, λ), α ∈ [0, ā],

ϕ(0; a, x, λ) = ϕ0.

Of course, the functions g1 and g2 might be different.

In the case a > ā, the collocation solution is a continuous piecewise polynomial in
[0, a], with ā the only breaking point. In principle, different numbers of collocation
nodes can be used in the two intervals, even though in the tests we perform in
Section 6 this number is kept the same for simplicity.

As a side remark, let us note that multi-point boundary-value solvers can be
suitably adopted in the presence of discontinuities, such as, e.g., the bvp toolbox of
coco [9].

4.4. Systems of external ODEs. Finally, as a last prototype, we go back to
the case with no state-dependency treated in Section 4.1, but now we consider the
presence of more external ODEs determining the integrand. Although the internal
approach is identical, but for the dimension of the continuation problem increased
to O(nNd), where d is the number of considered external ODEs, we retain worth
describing it for experimental purposes (d = 2 below). Indeed, as we will see in
Section 6.4, the internal continuation may not always result advantageous in terms
of speed-up.

To exemplify we continue the curve x(λ) defined by∫ 1

0

f(a, x, λ)c(a, x, λ) da = 0, (19)

where f(a, x, λ) := ϕ(a; a, x, λ), c(a, x, λ) := γ(a; a, x, λ) and the solution pair
(ϕ(α; a, x, λ), γ(α; a, x, λ)) ∈ R2 is relevant to the system

ϕ′(α; a, x, λ) = g(ϕ(α; a, x, λ), γ(α; a, x, λ), a, x, λ), α ∈ [0, a],

γ′(α; a, x, λ) = h(ϕ(α; a, x, λ), γ(α; a, x, λ), a, x, λ), α ∈ [0, a],

ϕ(0; a, x, λ) = ϕ0,

γ(0; a, x, λ) = γ0

(20)

for given g, h : R2 × [0, 1] × R2 → R and ϕ0, γ0 ∈ R. Note that, for our goals,
the integrand in (19) may in principle be defined as any function of f(a, x, λ) and
c(a, x, λ) having a simple definition (to strive for an exact solution), such as a linear
combination.

Finally, with respect to (16), we decide to group the collocation unknowns as
block-vectors with blocks of size d, so that the structure of (16) remains unchanged
but for the range of p which is now in Rd. This choice does not influence neither the
overall structure of the Jacobian matrix of the relevant Newton’s method (recall,
e.g., Figure 3), just each entry is now a block of size d× d.
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5. External continuation. As already observed, there exist several continuation-
based software tools for solving our class of problems using the standard external
approach. For the purpose of comparing with the internal continuation strategy,
we emulate the behavior of those tools using the correspondent Python routines.
In particular, we use pseudo-arclength continuation with tangent prediction and
Newton’s correction.

The IVPs are solved by the Python IVP solver scipy.integrate.odeint from
the scipy package [27], based on the LSODA solver from the FORTRAN library
odepack, which is able to switch automatically between non-stiff problems (solved
using the implicit Adams formula) and stiff ones (solved using backward differenti-
ation formulas), according to the method proposed in [29].

For the solution of the nonlinear equation representing the maturation condition,
we use scipy.optimize.fsolve, which is based on the HYBRD and the HYBRJ solvers
from the FORTRAN library minpack, which implement a variant of Powell’s hybrid
method [30]. The need for an external solver of nonlinear equations comes from the
fact that odeint, unlike ode45, is not capable of event detection.

We remark that Python is an arbitrary choice, in fact, everything could be im-
plemented just as well using other software.

6. Numerical tests. In the following Sections 6.1 to 6.4 we show the results of
numerical simulations using our internal continuation approach on the prototype
models described in Section 4. We compare its performance with the external con-
tinuation described in Section 5. For both approaches the tolerance of the Newton’s
corrections is set to 10−13. As already anticipated, all the tests are run on a Mac-
Book Pro 2.3GHz Intel Core i7 16GB.

Finally, in Section 6.5 we test the performance of the internal continuation on
the Daphnia model, and compare with the results relevant to Figure 2 as described
at the end of Section 3.

6.1. The basic case. With reference to (15) in Section 4.1, we consider

g(ϕ(α; a, x, λ), a, x, λ) = λϕ(α; a, x, λ) + 2xe−λa, (21)

for which the solution branch defined by (14) reads

x(λ) =
ϕ0

2
· λ(1− eλ)

λ+ e−λ − 1
. (22)

By knowing the latter we can evaluate the true error on the continuation curve
by varying the number of collocation and quadrature nodes, while running a fixed
number of continuation steps (precisely 10) in order to reach the same final value
of the continuation parameter with both the internal and external approaches (this
holds for all the tests below).

Figure 4 (top) shows the error obtained on the true curve (22) when using (21) as
right-hand side of (15) and ϕ0 = 1, with increasing number n of collocation nodes
and fixing N = 10 quadrature nodes. The error decays spectrally as n increases
in the internal case (line with circles). Indeed, this is the expected behavior of
collocation, because our problem is smooth [35]. The horizontal lines are the result
of the external continuation where the tolerances of odeint and fsolve are both
set to 10−8, 5× 10−10 and 10−13 respectively. For each of those values there is (at
least) a number n of collocation points for which the internal continuation performs
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better in terms of both time and error. The diamond markers in Figure 4 (bottom)
show that this holds for n = 7, 8 and 11 respectively.

4 6 8 10 12 14

10−15

10−8

10−1

4 6 8 10 12 14

1

0.1

0.5

n

Figure 4. Internal (lines with circles) versus external (horizontal
lines) continuation for (21): error on the true curve (22) (top) and
elapsed time (bottom, s) using n collocation points and N = 10
quadrature nodes. See text for more details.

The simulations above were replicated using different values for the number N
of quadrature nodes, up to 100, and always gave, qualitatively speaking, the same
results. A partial evidence of this is shown in Figure 5, obtained fixing n = 12
collocation nodes and varying the number N of quadrature nodes. Figure 5 (top)
shows the error obtained on the true curve (22), while Figure 5 (bottom) compares
the elapsed time. Lines marked with circles refer to the internal continuation, while
the ones with squares refer to the external continuation with external tolerances
fixed to 10−13: the internal continuation performs better in terms of both time and
error.

6.2. State-dependent problems. With reference to Section 4.1 and Section 4.2,
we show the results obtained by choosing

g(ϕ, a, x, λ) = −(a+ 1)x(λ2 + 2)

(
ϕ− ϕ0

x(λ2 + 2)(a+ 1)
+ 2

)2

(23)

in (15) and

ϕ̄ = ϕ0 − 1 (24)

in (18).

Figure 6 (top) shows the error obtained on the true curve

x(λ) =
2ϕ0 − 1

λ2 + 2
(25)
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8 10 12 14

10−13

10−11

8 10 12 14

0.3

1

N

Figure 5. Internal (lines with circles) versus external continuation
(lines with squares) for (21): error on the true curve (22) (top) and
elapsed time (bottom, s) using n = 12 collocation points and N
quadrature nodes. See text for more details.

when using (23), (24) and ϕ0 = 1.5, with increasing number n of collocation nodes
and fixing N = 10 quadrature nodes. Again, the horizontal lines are the result of
external continuation where the tolerances of odeint and fsolve are both set to
10−8, 5×10−10 and 10−13 respectively. For each of those values there is (at least) a
number n of collocation points for which the internal continuation performs better
in terms of both time and error. The diamond markers in Figure 6 (bottom) show
that this holds for n = 13, 12 and 17 respectively. As a side remark, note that the
external continuation takes slightly less time for 5× 10−10 than for 10−8: this can
be caused by the automatic error control of either odeint or fsolve.

6.3. External ODE with discontinuous right-hand side. With reference to
Section 4.3, we show the results obtained by choosing

g1(ϕ, a, x, λ) = −x(λ2 + 1)

(
ϕ− ϕ0

x(λ2 + 1)
− 1

2

)2

, α ∈ [0, ā], (26)

g2(ϕ, a, x, λ) = −(a+ 1)x(λ2 + 1)

(
ϕ− ϕ0

x(λ2 + 1)(a+ 1)
+

1

ā+ 1

)2

, α ∈ [ā, a], (27)

and

ϕ̄ =
1

2
ϕ0 (28)

in (18) of Section 4.2.

Figure 7 (top) shows the error obtained on the true curve

x(λ) =
3ϕ0

λ2 + 1
(29)
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Figure 6. Internal (lines with circles) versus external (horizontal
lines) continuation for (23) and (24): error on the true curve (25)
(top) and elapsed time (bottom, s) using n collocation points and
N = 10 quadrature nodes. See text for more details.

when using (26), (27), (28) and ϕ0 = 1, with increasing number n of collocation
nodes and fixing N = 10 quadrature nodes. The horizontal lines are the result of
external continuation where the tolerances of odeint and fsolve are both set to
10−8, 5×10−10 and 10−13 respectively. For each of those values there is (at least) a
number n of collocation points for which the internal continuation performs better
in terms of both time and error. The diamond markers in Figure 7 (bottom) show
that this holds for n = 8, 10 and 11 respectively.

6.4. Systems of external ODEs. With reference to Section 4.4, we show the
results obtained by choosing

g(ϕ, γ, a, x, λ) =

−(a+ 1)x(λ2 + 1)

(
ϕ− ϕ0

x(λ2 + 1)(a+ 1)
+ 1

)(
γ − γ0

(λ2 + 1)(a+ 1)
+ 1

)
(30)

and

h(ϕ, γ, a, x, λ) =

−(a+ 1)(λ2 + 1)

(
ϕ− ϕ0

x(λ2 + 1)(a+ 1)
+ 1

)(
γ − γ0

(λ2 + 1)(a+ 1)
+ 1

)
(31)

in (20).

Figure 8 (top) shows the error obtained on the true curve

x(λ) =
3ϕ0

λ2 + 1
· λ2 + 1− 2ϕ0

2(λ2 + 1)− 3γ0
(32)

when using (30), (31) and ϕ0 = γ0 = 1, with increasing number n of collocation
nodes and fixing N = 10 quadrature nodes. The horizontal lines are the result
of external continuation where the tolerances of odeint and fsolve are both set
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Figure 7. Internal (lines with circles) versus external (horizontal
lines) continuation for (26), (27) and (28): error on the true curve
(29) (top) and elapsed time (bottom, s) using n collocation points
and N = 10 quadrature nodes. See text for more details.

to 10−8, 5 × 10−10 and 10−13 respectively. Unlike the previous scalar cases, the
external continuation seems to perform slightly better in terms of both time and
error. The diamond markers in Figure 8 (bottom) show that this holds for n = 12,
13 and 18 respectively (mind anyway the time scale in the bottom panel). Indeed,
the explanation resides in the increased dimension of the continuation problem for
the internal approach, as already explained in Section 4.1 and further commented on
in Section 7. Nevertheless, other experiments (not reported here) show that there
are also cases slightly in favor of the internal approach, especially when stricter
tolerances are used.

6.5. Daphnia. We finally compare the results of the continuation of the branch
S̄(µ) obtained with [6] and [32] in Section 3 (recall Table 1 and Figure 2) with those
obtained with the internal continuation. As for the latter, the initial step and the
parameters of the automatic step selection are chosen in order to cover (almost)
the same range for µ as in Figure 2, always with 30 steps (viz. k = 2, k = 20 and
c = 1.3). Moreover, the tolerance of the Newton’s corrections is set to 10−6. We
perform three runs, which differ only by the number of quadrature and collocation
nodes, respectively n = N = 10, 15 and 20.

In Figure 9 we superpose to Figure 2 the results thus obtained. In particular, in
the left panel we add only the curve obtained with n = N = 20 (dash-dot line with
stars), anticipating the correctness of the results. In the right panel, instead, we
add the residual for all the three choices of n = N (again dash-dot lines with stars):
lines with smaller residual correspond to larger values of n = N . Note a slightly
more prominent increasing trend with respect to µ than for [6] (recall the relevant
comment in Section 3).
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Figure 8. Internal (lines with circles) versus external (horizontal
lines) continuation for (30) and (31): error on the true curve (32)
(top) and elapsed time (bottom, s) using n collocation points and
N = 10 quadrature nodes. See text for more details.
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Figure 9. Equilibrium branch S̄(µ) with zoom (left) and relevant
residual (right) of the Daphnia model, computed with the internal
continuation (dash-dot line with stars), superposed to Figure 2 for
comparison. See text for more details.

As far as the computational time is concerned, in relation to the maximal resid-
ual, the outcome reported in Table 2 clearly demonstrates the superiority of the
internal continuation with respect to either [6] or [32]. Let us observe, anyway, that
the internal continuation is implemented in Python, whereas [6] and [32] are imple-
mented in Matlab (for the former there is no alternative due to MatCont, for the
latter the relevant codes are available only in Matlab): in neither case the different
language is responsible for such an evident speed-up. Moreover, recall that [32] is
implemented with secant prediction and Broyden’s update, both choices favoring
the latter with respect to the internal approach for avoiding the computation of the
Jacobian.
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method computational time maximal residual

[6] 155.88 s 7.6652 × 10−4

[32] 59.32 s 4.6768 × 10−6

internal continuation with n = N = 10 1.73 s 8.1723 × 10−3

internal continuation with n = N = 15 4.40 s 3.6517 × 10−5

internal continuation with n = N = 20 9.18 s 3.6854 × 10−7

Table 2. Computational time and maximal residual for the con-
tinuation of the Daphnia model.

7. Concluding remarks. The analysis of stability and bifurcation is a major tar-
get of population dynamics. When complex models are concerned, the approach
recently proposed in [6] represents undoubtedly a promising solution in terms of
generality and applicability, whether not the only one. Nevertheless, several ex-
periments (run by the authors even outside the current work) have shown that the
requirements in terms of computational time are often severe. The present work
aims at investigating possible remedies to this drawback, and the proposed inter-
nal continuation strategy seems to be a valid candidate as shown by the numerical
tests. The implementation of such approach comes, however, at the expense of loss
of generality, since it relies on exploiting the features of the specific model (e.g.,
external IVPs, maturation condition, etc.) to take advantage of the continuation
framework. Note, anyway, that this new method is also superior to that proposed
in [32] (and [10, 12]), which suffers from the same lack of generality.

Let us note, however, that the current analysis concentrates on saving compu-
tational time with respect to the approach of [6], for the reasons mentioned above.
Nevertheless, other potential benefits can be taken into account, like avoiding the
use of time steppers for ODEs which may cause discontinuities, failure in choosing
an optimal pivoting strategy and prevent the use of parallelization and vectorization
of the relevant codes.

Besides the aspects just summarized, which might be more evident in the case of
more difficult problems, we plan to further investigate the internal continuation by
also testing models with more than two external ODEs (see, e.g., [32]). Indeed, the
advantage of our approach seems to be milder when the number of external ODEs
increases, due to the correspondent increase in the dimension of the continuation
problem as observed in Section 6.4. Specifically, a possible improvement can be
realized by suitably exploiting the structure of the Jacobian of the correction steps
(recall Figure 3).

The present research is restricted to the analysis of equilibria as a starting point.
Our ultimate goal is to extend the internal continuation thus proposed to the de-
tection of bifurcations and to the continuation of periodic orbits. Computationally
speaking, the latter is a even more challenging problem. On a side note, we point
out that the usual computation of periodic orbits inside a continuation framework
is indeed an instance of internal approach.

Acknowledgments. The authors thank Julia Sánchez Sanz for providing the Mat-
lab codes from [32].
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