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Abstract. We consider a class of variational equations with exponential non-
linearities on a compact Riemannian surface, describing the mean field equa-

tion of the equilibrium turbulence with arbitrarily signed vortices. For the first

time, we consider the problem with both supercritical parameters and we give
an existence result by using variational methods. In doing this, we present a

new Moser-Trudinger type inequality under suitable conditions on the center

of mass and the scale of concentration of both eu and e−u, where u is the
unknown function in the equation.

1. Introduction

In this paper we consider the equation

(1) −∆gu = ρ1

(
h1(x) eu´

Σ
h1(x) eu dVg

− 1

|Σ|

)
− ρ2

(
h2(x) e−u´

Σ
h2(x) e−u dVg

− 1

|Σ|

)
on Σ,

where ρ1, ρ2 are two non-negative parameters, h1, h2 : Σ → R are two smooth
positive functions and Σ is a compact orientable surface without boundary with
Riemannian metric g and volume |Σ|.

This equation arises in mathematical physics as a mean field equation of the
equilibrium turbulence with arbitrarily signed vortices, and is obtained by Joyce
and Montgomery [10] and by Pointin and Lundgren [17] from different statistical
arguments. Later, many authors worked on this model, see for example [3, 11, 14,
16] and the references therein.

Equation (1) has a variational structure and solutions can be found as critical
points of the functional

Iρ1,ρ2
(u) =

1

2

ˆ
Σ

|∇gu|2 dVg − ρ1 log

ˆ
Σ

h1(x) eu dVg − ρ2 log

ˆ
Σ

h2(x) e−u dVg +

+ ρ1

ˆ
Σ

u dVg − ρ2

ˆ
Σ

u dVg, u ∈ H1(Σ),(2)

where we have normalized the volume |Σ| of Σ by |Σ| = 1. The structure of the
functional Iρ1,ρ2 strongly depends on the parameters ρ1, ρ2. A Moser-Trudinger
type inequality relative to this functional was proved in [16], and one has that

log

ˆ
Σ

eu−ū dVg + log

ˆ
Σ

e−u+ū dVg ≤
1

16π

ˆ
Σ

|∇gu|2 dVg + CΣ,

where ū denotes the average of u. By the above inequality, if we consider the case
(ρ1, ρ2) ∈ (0, 8π)×(0, 8π), the functional Iρ1,ρ2 is bounded from below and coercive,
hence solutions can be found as global minima.
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The value 8π, or more in general 8πN, are critical and the existence problem
becomes subtler due to a loss of compactness. Even in the case ρ2 = 0, namely the
Liouville-type problem

(3) −∆gu = ρ

(
h(x) eu´

Σ
h(x) eu dVg

− 1

|Σ|

)
on Σ,

the existence problem is a difficult one, see [1, 4, 15]. To solve equation (1) (or
equation (3)) in this critical case, one always needs geometry conditions, see [4, 20].
For example, for equation (1) with ρ1 = 8π and ρ2 ∈ (0, 8π], in [20] the author gave
an existence result under suitable conditions on the Gaussian curvature K(x) of Σ,
namely K(x) should satisfy

8π − ρ2 − 2K(x) > 0 for x ∈ Σ.

If ρi > 8π for some i = 1, 2, then Iρ1,ρ2
is unbounded from below and a mini-

mization technique is no more possible. In general, one needs to apply variational
methods to obtain existence of critical points (generally of saddle type) for Iρ1,ρ2 .

The case with ρ2 = 0 (for instance equation (3)) has been very much studied in
the literature. Again the problem has a variational structure and the associated
functional is given by

Iρ(u) =
1

2

ˆ
Σ

|∇gu|2 dVg + ρ

ˆ
Σ

u dVg − ρ log

ˆ
Σ

h(x) eu dVg.

There are by now many results regarding existence, compactness of solutions, bub-
bling behavior, etc, see [5, 6, 12, 19]. In particular, we have existence of solutions
for equation (3) for ρ ∈ (8kπ, 8(k+1)π) with k ≥ 1, see for example [12]. This exis-
tence result is based on a detailed study of the topology of large negative sublevels
of the functional Iρ. It is indeed possible to find a homotopy equivalence between
these sublevels and the so called space of formal baricentres Σk, namely the family

of elements
∑k
i=1 tiδxi with (xi)i ⊂ Σ and

∑k
i=1 ti = 1, ti ≥ 0. Exploiting the

fact that the set Σk is non contractible, it is then possible to introduce a min-max
scheme based on this set.

On the other hand, in the case when ρ2 6= 0 and ρi > 8π for some i = 1, 2, there
are very few results. Here we point out some of them. The first is given in [9] and
concerns with the case ρ1 ∈ (8π, 16π) and ρ2 < 8π. Via a blow up analysis the
authors proved existence of solutions for equation (1) on a smooth, bounded, non
simply-connected domain Σ in R2 with homogeneous Dirichlet boundary condition.
Later, in [21] the author generalized this result to any compact surface without
boundary by using analogous variational methods as those employed in the study
of the problem (3). In a certain sense, one can describe the topology of negative
sublevels of the functional Iρ1,ρ2

from the behaviour of the function eu.
The blow up behaviour of solutions of equation (1) is not yet developed in full

generality. However, as in the case for ρ2 = 0, in [9] the authors exhibited a volume
quantization. More precisely, they proved that the blow up values are multiples of
8π (see the proof of Theorem 2.1 for the definition of the blow up value). About
this problem, by using a local quantization proved in [16], in Section 2 we deduce
a global one for the case when ρ1, ρ2 ∈ (8π, 16π).

We then turn to the existence issue and via a min-max scheme we obtain a
positive result without any geometry and topology conditions. Our main theorem
is the following:
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Theorem 1.1. Assume that ρ1, ρ2 ∈ (8π, 16π). Then there exists a solution to
equation (1).

The method to prove this existence result relies on a min-max scheme introduced
by Malchiodi and Ruiz in [13] for the study of Toda systems. Such a scheme is based
on study of the topological properties of the low sublevels of Iρ1,ρ2 .

We shall see that on low sublevels of Iρ1,ρ2
at least one of the functions eu or

e−u is very concentrated around some point of Σ. Moreover, both eu and e−u can
concentrate at two points that could eventually coincide, but in this case the scale
of concentration must be different. Roughly speaking, if eu and e−u concentrate
around the same point at the same rate, then Iρ1,ρ2 is bounded from below. We
next make this statement more formal.

First, following the argument in [13], we define a continuous rate of concentration
σ = σ(f) of a positive function f ∈ Σ, normalized in L1. Somehow the smaller is σ,
the higher is the rate of concentration of f . Moreover we define a continuous center
of mass β = β(f) ∈ Σ. This can be done when σ ≤ δ for some fixed δ, therefore
we have a map ψ : H1(Σ)→ Σδ,

ψ(u) =
(
β(f1), σ(f1)

)
, ψ(−u) =

(
β(f2), σ(f2)

)
,

where we have set

f1 =
eu´

Σ
eu dVg

, f2 =
e−u´

Σ
e−u dVg

.

Here Σδ is the topological cone over Σ, where we make the identification to a point
when σ ≥ δ for some δ > 0 fixed, see (4).

The improvement of the Moser-Trudinger inequality discussed above is made
rigorous in the following way: if ψ(f1) = ψ(f2), then Iρ1,ρ2

(u) is bounded from
below, see Proposition 3.6. The proof is based on local versions of the Moser-
Trudinger inequality on small balls and on annuli with small internal radius. We
point out that our improved inequality is scaling invariant, differently from those
proved by Chen-Li and Zhou (see [2] and [21]).

Using this fact, for L > 0 large we can introduce a continuous map:

I−Lρ1,ρ2

(ψ,ψ)−−−→ X :=
(
Σδ × Σδ

)
\D,

where D is the diagonal of Σδ ×Σδ and I−Lρ1,ρ2
=
{
u ∈ H1(Σ) : Iρ1,ρ2

(u) < −L
}

. On
the other hand, it is also possible to do the converse, namely to map (a retraction
of) the set X into appropriate sublevels of Iρ1,ρ2 . In Section 4 we construct a
family of new test functions parametrized on (a suitable subset of) X on which
Iρ1,ρ2

attains arbitrarily low values, see Proposition 4.4. Letting

X
φ−→ I−Lρ1,ρ2

the corresponding map, it turns out that the composition of these two maps is
homotopic to the identity on X, see Proposition 4.7.

Exploiting the fact that X is non-contractible, we are able to introduce a min-
max argument to find a critical point of Iρ1,ρ2

. In this framework, an essential point
is to use the ‘monotonicity argument’ introduced by Struwe in [18] jointly with the
compactness result of solutions proved in Section 2, since it is not known whether
the Palais-Smale condition holds or not.
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2. Notations and preliminaries

In this section we fix our notation and recall some useful preliminary facts.
Throughout the paper, Σ stands for a compact orientable surface without boundary
with metric g. For simplicity, we normalize the volume |Σ| of Σ by |Σ| = 1. We
state in particular some variants and improvements of the Moser-Trudinger type
inequality and some of their consequences.

We write d(x, y) to denote the distance between two points x, y ∈ Σ. In the
same way, for any p ∈ Σ and Ω,Ω′ ⊆ Σ, we denote:

d(p,Ω) = inf
{
d(p, x) : x ∈ Ω

}
, d(Ω,Ω′) = inf

{
d(x, y) : x ∈ Ω, y ∈ Ω′

}
.

Moreover, the symbol Bp(r) stands for the open metric ball of radius r and center
p, while Ap(r,R) for the open annulus of radii r and R, r < R. The complement
of a set Ω in Σ will be denoted by Ωc.

Recalling that we are assuming |Σ| = 1, given a function u ∈ L1(Σ), we denote
its average as

ū =

ˆ
Σ

u dVg.

Given δ > 0, we define the topological cone:

(4) Σδ =
(
Σ× (0,+∞)

)/(
Σ× [δ,+∞)

)
,

where the equivalence relation identifies Σ× [δ,+∞) to a single point.
Throughout the paper we will denote by C large constants which are allowed to

vary among different formulas or even within lines. When we want to stress the
dependence of the constants on some parameter (or parameters), we add subscripts
to C, as Cδ, etc.. Also constants with subscripts are allowed to vary. Moreover,
sometimes we will write oα(1) to denote quantities that tend to 0 as α → 0 or
α → +∞, depending on the case. We will similarly use the symbol Oα(1) for
bounded quantities.

We begin with a compactness result which is deduced from the blow up theorem in
[16].

Theorem 2.1. Suppose that un satisfies

−∆gun = ρ1,n

(
h1(x) eun´

Σ
h1(x) eun dVg

− 1

|Σ|

)
−ρ2,n

(
h2(x) e−un´

Σ
h2(x) e−un dVg

− 1

|Σ|

)
on Σ.

Assume that ρ1,n, ρ2,n ∈ (8π, 16π) for any n ∈ N and that ρ1,n → ρ1 ∈ (8π, 16π)
and ρ2,n → ρ2 ∈ (8π, 16π). Then the solution sequence (un)n (up to adding suitable
constants) is uniformly bounded in L∞(Σ) and there exist u and a subsequence
(unk)k such that

unk → u,

where this u is a solution to (1) for these ρ1 and ρ2.
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Proof. Since Iρ1,ρ2
is invariant under translation by constants in the argument, we

can restrict ourselves to considering the subspace of H1(Σ) of functions with zero
average.

Consider the blow up sets of the sequence (un)n given by

S1 =
{
x ∈ Σ : ∃xn → x such that un(xn)→ +∞

}
,

S2 =
{
x ∈ Σ : ∃xn → x such that un(xn)→ −∞

}
.

From the blow up theorem in [16], it is sufficient to show that S1 ∩ S2 = ∅. We
argue by contradiction. Assume that x0 ∈ S1 ∩ S2. Define the blow up values at
x0 by

m1(x0) = lim
r→0

lim
n→+∞

ˆ
Br(x0)

ρ1,nh1(x) eun´
Σ
h1(x) eun dVg

dVg,

m2(x0) = lim
r→0

lim
n→+∞

ˆ
Br(x0)

ρ2,nh2(x) e−un´
Σ
h2(x) e−un dVg

dVg.

Since ρ1,n, ρ2,n ∈ (8π, 16π), from the blow up theorem in [16], we have

(5) 4π ≤ m1(x0) < 16π, 4π ≤ m2(x0) < 16π,

and

(6)
(
m1(x0)−m2(x0)

)2
= 8π

(
m1(x0) +m2(x0)

)
.

By the last equality we derive

m1(x0) = m2(x0) + 4π ± 4
√
πm2(x0) + π2.

First, let us consider the case m1(x0) = m2(x0) + 4π+ 4
√
πm2(x0) + π2. Using the

fact that 4π ≤ m2(x0), we derive that m1(x0) ≥ 16π, which is a contradiction to
the first estimate in (5).

If instead we consider the case m1(x0) = m2(x0) + 4π − 4
√
πm2(x0) + π2, the

estimate 4π ≤ m2(x0) < 16π implies that m1(x0) < 12π. By interchanging the
roles of m1(x0) and m2(x0), we obtain the same inequality for m2(x0). Therefore
we have

(7) 4π ≤ m1(x0) < 12π, 4π ≤ m2(x0) < 12π.

On the other hand, using (6) jointly with the fact that mi(x0) ≥ 4π, i = 1, 2, we
deduce that

|m1(x0)−m2(x0)| ≥ 8π,

which is a contradiction to (7). �

Next, we recall some Moser-Trudinger type inequalities by starting with the
standard one, i.e. for u ∈ H1(Σ) it holds

(8) log

ˆ
Σ

eu−ū dVg ≤
1

16π

ˆ
Σ

|∇gu|2 dVg + CΣ.

As observed in the introduction, problem (1) is the Euler-Lagrange equation of the
functional Iρ1,ρ2

given in (2). If we consider the space

H 1(Σ) =

{
u ∈ H1(Σ) :

ˆ
Σ

u dVg = 0

}
,

the following result has been proved by Ohtsuka and Suzuki in [16].
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Theorem 2.2. The functional Iρ1,ρ2
is bounded from below on H 1(Σ) if and only

if ρi ≤ 8π, i = 1, 2.

In view of this result, similarly to inequality (8), we can also obtain a Moser-
Trudinger inequality with eu and e−u simultaneously. Namely for u ∈ H1(Σ) it
holds

(9) log

ˆ
Σ

eu−ū dVg + log

ˆ
Σ

e−u+ū dVg ≤
1

16π

ˆ
Σ

|∇gu|2 dVg + CΣ.

It is well known that an improved inequality will hold if eu has integral bounded
from below on different regions of Σ of positive mutual distance.

Proposition 2.3. ([21]) For a fixed integer l, let Ω1, . . . ,Ωl be subsets of Σ satisfy-
ing d(Ωi,Ωj) ≥ δ0 for i 6= j, where δ0 is a positive real number, and let γ0 ∈

(
0, 1

l

)
.

Then, for any ε > 0 there exists a constant C = C(Σ, l, ε, δ0, γ0) such that

l log

ˆ
Σ

eu−ū dVg + log

ˆ
Σ

e−u+ū dVg ≤
1

16π − ε

ˆ
Σ

|∇gu|2 dVg + C

for all the functions u ∈ H1(Σ) satisfying´
Ωi
eu dVg´

Σ
eu dVg

≥ γ0, ∀ i ∈ {1, . . . , l}.

We next state a result which is a local version of the inequality (9), that will be
of use later on.

Proposition 2.4. Fix δ > 0, and let Ω1 ⊂ Ω2 ⊂ Σ be such that d(Ω1, ∂Ω2) ≥ δ.
Then, for any ε > 0 there exists a constant C = C(ε, δ) such that for all u ∈ H1(Σ)

log

ˆ
Ω1

eu dVg + log

ˆ
Ω1

e−u dVg ≤
1

16π − ε

ˆ
Ω2

|∇gu|2 dVg + C.

Proof. The proof is developed exactly as in Proposition 2.3 of [13], with obvious
modifications. Here we just sketch the proof for the reader’s convenience. First, we
consider a spectral decomposition of the Laplacian on Ω2 (with Neumann boundary
conditions), in order to write u as u = v + w with v ∈ L∞(Ω2) and w ∈ H1(Ω2).
We next consider a smooth cutoff function χ with values into [0, 1] satisfying{

χ(x) = 1 for x ∈ Ω1,
χ(x) = 0 if d(x,Ω) > δ/2,

and then define w̃(x) = χ(x)w(x). We now apply the Moser-Trudinger inequality
(9) to w̃ to deduce the desired inequality. �

We give now a criterion which is a first step in studying the properties of the low
sublevels of Iρ1,ρ2 . We first state a lemma concerning a covering argument, which
is a particular case of a more general setting in [13], Lemma 2.5.

Lemma 2.5. Let δ0 > 0, γ0 > 0 be fixed, and let Ωi,j ⊆ Σ, i, j = 1, 2, satisfy
d(Ωi,j ,Ωi,k) ≥ δ0 for j 6= k. Suppose that u ∈ H1(Σ) is a function verifying´

Ω1,j
eu dVg´

Σ
eu dVg

≥ γ0,

´
Ω2,j

e−u dVg´
Σ
e−u dVg

≥ γ0, j = 1, 2.
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Then there exist positive constants γ̃0, δ̃0, depending only on γ0, δ0, and two sets
Ω̃1, Ω̃2 ⊆ Σ, depending also on u such that

d(Ω̃1, Ω̃2) ≥ δ̃0;

´
Ω̃i
eu dVg´

Σ
eu dVg

≥ γ̃0,

´
Ω̃i
e−u dVg´

Σ
e−u dVg

≥ γ̃0; i = 1, 2.

Using this result it is indeed possible to obtain an improvement of the constant
in the Moser-Trudinger inequality (9).

Proposition 2.6. Let u ∈ H1(Σ) be a function satisfying the assumptions of
Lemma 2.5 for some positive constants δ0, γ0. Then for any ε > 0 there exists
C = C(ε) > 0, depending on ε, δ0, and γ0 such that

log

ˆ
Σ

eu−ū dVg + log

ˆ
Σ

e−u+ū dVg ≤
1

32π − ε

ˆ
Σ

|∇gu|2 dVg + C.

Proof. To obtain the thesis we can argue exactly as in Proposition 2.6 of [13]. First

we set δ̃0, γ̃0 and Ω̃1, Ω̃2 as in Lemma 2.5. Then we apply Proposition 2.4 with Ω̃i
and Ui =

{
x ∈ Ω : d(x, Ω̃i) < δ̃0/2

}
for i = 1, 2. Observing that

log

ˆ
Ω̃i

eudVg ≥ log

(ˆ
Σ

eudVg

)
+ log γ̃0,

log

ˆ
Ω̃i

e−udVg ≥ log

(ˆ
Σ

e−udVg

)
+ log γ̃0

for i = 1, 2, and that U1 ∩ U2 = ∅, we deduce the thesis. �

Proposition 2.6 implies that on low sublevels of the functional Iρ1,ρ2
, at least

one of the components of the couple (eu, e−u) must be very concentrated around
a certain point. We will present in the sequel a more detailed description of the
topology of low sublevels.

3. Improved inequality

Following the ideas presented by Malchiodi and Ruiz in [13], in this section
we exhibit an improved Moser-Trudinger inequality under suitable conditions of
concentration of the involved function.

First, we give continuous definitions of center of mass and scale of concentration
of positive functions normalized in L1. Let us consider the set

A =

{
f ∈ L1(Σ) : f > 0 a. e. and

ˆ
Σ

fdVg = 1

}
,

endowed with the topology inherited from L1(Σ). Then we have the following
result.

Proposition 3.1. ([13]) Let us fix a constant R > 1. Then there exist δ = δ(R)>0
and a continuous map:

ψ : A→ Σδ, ψ(f) = (β, σ),

satisfying the following property: for any f ∈ A there exists p ∈ Σ such that

a) d(p, β) ≤ C ′σ for C ′ = max
{

3R+ 1, δ−1diam(Σ)
}
.
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b) There holds: ˆ
Bp(σ)

f dVg > τ,

ˆ
Bp(Rσ)c

f dVg > τ,

where τ > 0 depends only on R and Σ.

This result is obtained in several steps, which we summarize in the sequel. The
explicit definition of the map ψ(f) = (β, σ) is given below.

First, take R0 = 3R, and define σ : A× Σ→ (0,+∞) such that:

(10)

ˆ
Bx(σ(x,f))

f dVg =

ˆ
Bx(R0σ(x,f))c

f dVg.

The map σ(x, f) is clearly uniquely determined and continuous. Moreover we have
the following lemma.

Lemma 3.2. ([13]) The map σ satisfies:

(11) d(x, y) ≤ R0 max
{
σ(x, f), σ(y, f)}+ min{σ(x, f), σ(y, f)

}
.

We now define

T : A× Σ→ R, T (x, f) =

ˆ
Bx(σ(x,f))

f dVg.

Lemma 3.3. ([13]) If x0 ∈ Σ is such that T (x0, f) = maxy∈Σ T (y, f), then we
have σ(x0, f) < 3σ(x, f) for any other x ∈ Σ.

As a consequence of the previous lemma, one can obtain the following:

Lemma 3.4. ([13]) There exists a fixed τ > 0 such that

max
x∈Σ

T (x, f) > τ > 0 for all f ∈ A.

Let us define

σ : A→ R, σ(f) = 3 min
{
σ(x, f) : x ∈ Σ

}
,

which is obviously a continuous function. Given τ as in Lemma 3.4, consider the
set

(12) S(f) =
{
x ∈ Σ : T (x, f) > τ, σ(x, f) < σ(f)

}
,

which is a nonempty open set for any f ∈ A, by Lemmas 3.3 and 3.4. Moreover,
from (11), we have that

(13) diam
(
S(f)

)
≤ (R0 + 1)σ(f).

By the Nash embedding theorem, we can assume that Σ ⊂ RN isometrically, N ∈ N.
Take an open tubular neighborhood Σ ⊂ U ⊂ RN of Σ, and δ > 0 small enough so
that

(14) co
[
Bx
(
(R0 + 1)δ

)
∩ Σ

]
⊂ U ∀x ∈ Σ,

where co denotes the convex hull in RN .
We define now

η(f) =

ˆ
Σ

(
T (x, f)− τ

)+(
σ(f)− σ(x, f)

)+
x dVgˆ

Σ

(
T (x, f)− τ

)+(
σ(f)− σ(x, f)

)+
dVg

∈ RN .
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The map η defines a sort of center of mass in RN . Observe that the integrands
become nonzero only on the set S(f). Moreover, whenever σ(f) ≤ δ, (13) and (14)
imply that η(f) ∈ U , and so we can define

β :
{
f ∈ A : σ(f) ≤ δ

}
→ Σ, β(f) = P ◦ η(f),

where P : U → Σ is the orthogonal projection.
Then the map ψ(f) =

(
β(f), σ(f)

)
satisfies the conditions given by Proposition

3.1. If σ(f) ≥ δ, β is not defined. Observe that a) is then satisfied for any β ∈ Σ.

Remark 3.5. The above map ψ(f) = (β, σ) gives us a center of mass of f and its
scale of concentration around that point. The identification in Σδ is somehow nat-
ural, indeed, if σ exceeds a certain positive constant, we do not have concentration
at a point and so β could not be defined.

We next state an improved Moser-Trudinger inequality for functions u ∈ H1(Σ)
such that both eu and e−u are concentrated at the same point with the same rate
of concentration. In terms of Proposition 3.1, we have the following result.

Proposition 3.6. Given any ε > 0, there exist R = R(ε) > 1 and ψ as given in
Proposition 3.1, such that for any u ∈ H1(Σ) with:

ψ

(
eu´

Σ
eudVg

)
= ψ

(
e−u´

Σ
e−udVg

)
,

the following inequality holds:

log

ˆ
Σ

eu−ū dVg + log

ˆ
Σ

e−u+ū dVg ≤
1

32π − ε

ˆ
Σ

|∇gu|2 dVg + C,

for some C = C(ε).

Before proving the proposition, we need some preliminary lemmas concerning
Moser-Trudinger type inequality for small balls, and also for annuli with small
internal radius. The first one is obtained just by using a dilation argument.

Lemma 3.7. For any ε > 0 there exists C = C(ε) > 0 such that

log

ˆ
Bp(s/2)

eu dVg + log

ˆ
Bp(s/2)

e−u dVg ≤
1

16π − ε

ˆ
Bp(s)

|∇gu|2 dVg + 4 log s+ C

for any u ∈ H1(Σ), p ∈ Σ, s > 0 small.

Proof. Notice that, as s→ 0 we consider quantities defined on smaller and smaller
geodesic balls Bp(ξ) on Σ. By considering normal geodesic coordinates at p, gra-
dients, averages and the volume element will almost correspond to the Euclidean
ones. If we assume that near p the metric of Σ is flat, we will get negligible error
terms which will be omitted.

We just perform a convenient dilation of u given by

v(x) = u(sx+ p).

We have the following equalities:ˆ
Bp(s)

|∇gu|2 dVg =

ˆ
B0(1)

|∇gv|2 dVg,
ˆ
Bp(s/2)

eu dVg = s2

ˆ
B0(1/2)

ev dVg.
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We apply then Proposition 2.4 to the function v to deduce the desired inequality. �

Remark 3.8. Observe that in Lemma 3.7 and in the results that will be present in
the sequel there is no explicit dependence of the average of u, due to the fact that
the average of u is cancelled by the average of −u.

We next deduce a Moser-Trudinger type inequality on thick annuli. In order
to do this, we use the Kelvin transform to exploit the geometric properties of the
problem.

Lemma 3.9. Given ε > 0, there exists a fixed r0 > 0 (depending only on Σ and ε)
satisfying the following property: for any r∈(0, r0) fixed, there exists C= C(r, ε) >0
such that, for any u ∈ H1(Σ) with u = c ∈ R in ∂Bp(2r),

log

ˆ
Ap(s,r)

eu dVg + log

ˆ
Ap(s,r)

e−u dVg ≤
1

16π − ε

ˆ
Ap(s/2,2r)

|∇gu|2 dVg− 4 log s+C,

with p ∈ Σ, s ∈ (0, r).

Proof. As in the proof of Lemma 3.7, by taking r0 small enough, also here the
metric becomes close to the Euclidean one. We can then assume that the metric is
flat around p.

We consider the Kelvin transform K : Ap(s/2, 2r)→ Ap(s/2, 2r) given by

K(x) = p+ rs
x− p
|x− p|2

.

Observe that K maps the interior boundary of Ap(s/2, 2r) onto the exterior one
and viceversa. We next define the function ũ ∈ H1(Bp(2r)) as:

ũ(x) =

{
u
(
K(x)

)
if |x− p| ≥ s/2,

c if |x− p| ≤ s/2.
Our goal is to apply the local Moser-Trudinger inequality given by Proposition 2.4
to ũ. First of all, observe that

(15)

ˆ
Ap(s,r)

eũ dVg =

ˆ
Ap(s,r)

eu(K(x)) dVg =

ˆ
Ap(s,r)

eu(x) s2r2

|x− p|4
dVg,

since the Jacobian of K is J
(
K(x)

)
= −r2s2|x− p|−4. Moreover, for |x− p| ≥ s/2,

we have

(16) |∇gũ(x)|2 = |∇gu(K(x))|2 s2r2

|x− p|4

Therefore,

log

ˆ
Ap(s,r)

eu dVg + log

ˆ
Ap(s,r)

e−u dVg + 4 log s =

= log

ˆ
Ap(s,r)

eus2 dVg + log

ˆ
Ap(s,r)

e−us2 dVg

≤ log

ˆ
Ap(s,r)

eu
s2

r2
dVg + log

ˆ
Ap(s,r)

e−u
s2

r2
dVg + C

≤ log

ˆ
Ap(s,r)

eu
s2r2

|x− p|4
dVg + log

ˆ
Ap(s,r)

e−u
s2r2

|x− p|4
dVg + C,



THE MEAN FIELD EQUATION ON COMPACT SURFACES 11

where we have used the trivial inequality r ≥ |x − p| for x ∈ Ap(s, r). By using
(15), applying Proposition 2.4 to ũ and then using (16), we have

log

ˆ
Ap(s,r)

eu
s2r2

|x− p|4
dVg + log

ˆ
Ap(s,r)

e−u
s2r2

|x− p|4
dVg + C =

= log

ˆ
Ap(s,r)

eu(K(x)) dVg + log

ˆ
Ap(s,r)

e−u(K(x)) dVg + C

≤ 1

16π − ε

ˆ
Bp(2r)

|∇gũ|2 dVg + C =
1

16π − ε

ˆ
Ap(s/2,2r)

|∇gũ|2 dVg + C

=
1

16π − ε

ˆ
Ap(s/2,2r)

|∇gu(K(x))|2 r2s2

|x− p|4
dVg + C

=
1

16π − ε

ˆ
Ap(s/2,2r)

|∇gu|2 dVg + C.

This concludes the proof of the lemma. �

Remark 3.10. We are now able to prove the improved inequality given in Propo-
sition 3.6. The spirit of the proof is to use jointly Lemmas 3.7 and 3.9. Indeed,
assume that eu and e−u concentrate around the same point at the same rate (in
the sense of Proposition 3.1). If we sum the inequalities given by Lemmas 3.7 and
3.9, the extra term 4 log s cancels and we can deduce the improved inequality of
Proposition 3.6.

We have to manage the case that when ψ
(

eu´
Σ
eudVg

)
= ψ

(
e−u´

Σ
e−udVg

)
we do not

really have concentration around the same point. Moreover, the property in Lemma
3.9 of u being constant on the boundary of a ball need not be satisfied.

Proof of Proposition 3.6. Fixed ε > 0, take R > 1 (depending only on ε) and let ψ
be the continuous map given by Proposition 3.1. Fix also δ > 0 small.

Let u ∈ H1(Σ) be a function with
´

Σ
u dVg = 0, such that

ψ

(
eu´

Σ
eu dVg

)
= ψ

(
e−u´

Σ
e−u dVg

)
= (β, σ) ∈ Σδ.

If σ ≥ δ
R2 , then applying Proposition 2.6 we get the result. Therefore, assume

σ < δ
R2 . Proposition 3.1 implies the existence of τ > 0, p1, p2 ∈ Σ satisfying:

(17)

ˆ
Bp1 (σ)

eu dVg ≥ τ
ˆ

Σ

eu dVg,

ˆ
Bp2 (σ)

e−u dVg ≥ τ
ˆ

Σ

e−u dVg

and

(18)

ˆ
Bp1 (Rσ)c

eu dVg ≥ τ
ˆ

Σ

eu dVg

ˆ
Bp2 (Rσ)c

e−u dVg ≥ τ
ˆ

Σ

e−u dVg,

with d(p1, p2) ≤ (6R+ 2)σ. We divide the proof into two cases:

CASE 1: Assume that

(19)

ˆ
Ap1

(Rσ,δ)

eu dVg ≥ τ/2
ˆ

Σ

eu dVg,

ˆ
Ap2

(Rσ,δ)

e−u dVg ≥ τ/2
ˆ

Σ

e−u dVg.
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In order to satisfy the hypothesis of Lemma 3.9, we need to modify our function
outside a certain ball. Via a dyadic decomposition, choose k ∈ N, k ≤ 2ε−1, such
that ˆ

Ap1
(2k−1δ,2k+1δ)

|∇u|2 dVg ≤ ε
ˆ

Σ

|∇u|2 dVg.

We define ũ ∈ H1(Σ) by: ũ(x) = u(x) x ∈ Bp1
(2kδ),

∆ũ(x) = 0 x ∈ Ap1
(2kδ, 2k+1δ),

ũ(x) = c x /∈ Bp1
(2k+1δ),

where c ∈ R. Moreover, since we want to apply Lemma 3.9 to ũ, we have to choose

δ small enough so that 23ε−1

δ < r0, where r0 is given by that lemma.
We have that

(20)

ˆ
Ap1

(2k−1δ,2k+1δ)

|∇ũ|2 dVg ≤ C

ˆ
Ap1

(2k−1δ,2k+1δ)

|∇u|2 dVg

≤ Cε

ˆ
Σ

|∇u|2 dVg,

for some universal constant C > 0.

Case 1.1: Suppose that d(p1, p2) ≤ R 1
2σ.

We first apply Lemma 3.7 to u for p = p1 and s = 2(R1/2 + 1)σ, and take into
account (17), to obtain:

1

16π − ε

ˆ
Bp(s)

|∇u|2 dVg ≥

≥ log

ˆ
Bp(s/2)

eu dVg + log

ˆ
Bp(s/2)

e−u dVg − 4 log σ − C

≥ log

ˆ
Σ

eu dVg + log

ˆ
Σ

e−u dVg − 4 log σ − C.(21)

We next apply Lemma 3.9 to ũ for p = p1, s′ = 4(R1/2 + 1)σ and r = 2k+1δ:

(22)

1

16π − ε

ˆ
Ap(s′/2,2r)

|∇gũ|2 dVg ≥

≥ log

ˆ
Ap(s′,r)

eũ dVg + log

ˆ
Ap(s′,r)

e−ũ dVg + 4 log σ − C.

Using the estimate (18), we get

(23)

1

16π − ε

ˆ
Ap(s′/2,2r)

|∇gũ|2 dVg ≥

≥ log

ˆ
Σ

eu dVg + log

ˆ
Σ

e−u dVg + 4 log σ − C.

Finally, combining (21), (23) and (20) we obtain our thesis (after renaming ε con-
veniently).
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Case 1.2: Suppose d(p1, p2) ≥ R 1
2σ andˆ

Bp1 (R1/3σ)

e−u dVg ≥ τ/4
ˆ

Σ

e−u dVg.

Here we argue as in Case 1.1. First, we apply Lemma 3.7 to u for p = p1 and
s = 2(R1/3 + 1)σ. Then we use Lemma 3.9 with ũ for p = p1, s′ = 4(R1/3 + 1)σ
and r = 2k+1δ.

Case 1.3: Suppose d(p1, p2) ≥ R 1
2σ andˆ

Bp2 (R1/3σ)

eu dVg ≥ τ/4
ˆ

Σ

eu dVg.

This case can be treated as in Case 1.2, just by interchanging the indices.

Case 1.4: Suppose d(p1, p2) ≥ R 1
2σ andˆ

Bp2 (R1/3σ)

eu dVg ≤ τ/4
ˆ

Σ

eu dVg,

ˆ
Bp1 (R1/3σ)

e−u dVg ≤ τ/4
ˆ

Σ

e−u dVg.

Take n ∈ N, n ≤ 2ε−1 so that

2∑
i=1

ˆ
Api (2

n−1σ,2n+1σ)

|∇u|2 dVg ≤ ε
ˆ

Σ

|∇u|2 dVg,

where we have chosen R such that 23ε−1

< R1/3. We define now the function
v ∈ H1(Σ) by: v(x) = u(x) x ∈ Bp1

(2nσ) ∪Bp2
(2nσ),

∆v(x) = 0 x ∈ Ap1(2nσ, 2n+1σ) ∪Ap2(2nσ, 2n+1σ),
v(x) = 0 x /∈ Bp1(2n+1σ) ∪Bp2(2n+1σ).

As before we have that
2∑
i=1

ˆ
Api (2

nσ,2n+1σ)

|∇v|2 dVg ≤ C

2∑
i=1

ˆ
Api (2

n−1σ,2n+1σ)

|∇u|2 dVg

≤ Cε

ˆ
Σ

|∇u|2 dVg,

where C > 0 is a universal constant.
Taking into account (17), we now apply Lemma 3.7 to v with p = p1 and

s = 4(6R+ 2)σ:

1

16π − ε

ˆ
Bp1

(2nσ)∪Bp2
(2nσ)

|∇u|2 dVg + Cε

ˆ
Σ

|∇u|2 dVg ≥

≥ 1

16π − ε

ˆ
Bp(s)

|∇v|2 dVg

≥ log

ˆ
Bp(s/2)

ev dVg + log

ˆ
Bp(s/2)

e−v dVg − 4 log σ − C

≥ log

ˆ
Σ

eu dVg + log

ˆ
Σ

e−u dVg − 4 log σ − C.(24)
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Next, we define w ∈ H1(Σ) by: w(x) = 0 x ∈ Bp1(2nσ) ∪Bp2(2nσ),
∆w(x) = 0 x ∈ Ap1(2nσ, 2n+1σ) ∪Ap2(2nσ, 2n+1σ),
w(x) = ũ(x) x /∈ Bp1

(2n+1σ) ∪Bp2
(2n+1σ).

Again we have

2∑
i=1

ˆ
Api (2

nσ,2n+1σ)

|∇w|2 dVg ≤ C

2∑
i=1

ˆ
Api (2

n−1σ,2n+1σ)

|∇u|2 dVg

≤ Cε

ˆ
Σ

|∇u|2 dVg,

where also here C is a universal constant.
We apply Lemma 3.9 to w for any point p′ such that d(p′, p1) = 1

2R
1/3σ, s′ = σ

and r = 2k+1δ, to obtain:

1

16π − ε

ˆ
(Bp1

(2n+1σ)∪Bp2
(2n+1σ))c

|∇u|2 dVg + Cε

ˆ
Σ

|∇u|2 dVg ≥

≥ 1

16π − ε

ˆ
Ap′ (s

′/2,2r)

|∇w|2 dVg

≥ log

ˆ
Ap′ (s

′,r)

ew dVg + log

ˆ
Ap′ (s

′,r)

e−w dVg + 4 log σ − C.

We now use (19) and the hypothesis of Case 1.4 to conclude that

1

16π − ε

ˆ
(Bp1 (2nσ)∪Bp2 (2nσ))c

|∇u|2 dVg + Cε

ˆ
Σ

|∇u|2 dVg ≥

(25) ≥ log

ˆ
Σ

eu dVg + log

ˆ
Σ

e−u dVg + 4 log σ − C.

The inequality (25) jointly with (24) implies our result (after properly renaming ε).

CASE 2: Assume thatˆ
Bp1

(δ)c
eu dVg ≥ τ/2

ˆ
Σ

eu dVg or

ˆ
Bp2

(δ)c
e−u dVg ≥ τ/2

ˆ
Σ

e−u dVg.

Without loss of generality, suppose that the first alternative holds true. Let now
δ′ = δ

23/ε . If moreover: ˆ
Bp2

(δ′)c
e−u dVg ≥ τ/2

ˆ
Σ

e−u dVg,

then we can apply Proposition 2.6 to deduce the thesis. Therefore we can assume
that

(26)

ˆ
Ap2

(Rσ,δ′)

e−u dVg ≥ τ/2
ˆ

Σ

e−u dVg.

We can apply the whole procedure of Case 1 to u, just by replacing δ with δ′. In
fact, as in Case 1.1, we would get the inequalities (21) and (22). However, in this
case we have to manage the fact that we do not know whether holdsˆ

Ap(s′,r)

eu dVg ≥ α
ˆ

Σ

eu dVg,
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for some fixed α > 0. This property is needed in (22) to get the estimate

log

ˆ
Ap(s′,r)

eũ dVg ≥ log

ˆ
Σ

eu dVg − C,

which allows us to deduce (23). To do this, we first apply Jensen and Poincaré-
Wirtinger inequalities, to get

log

ˆ
Ap(s′,r)

eũ dVg ≥ log

ˆ
Ap(r/8,r/4)

eu dVg ≥

log

 
Ap1

(r/8,r/4)

eu dVg − C ≥
 
Ap1

(r/8,r/4)

u dVg − C ≥ −ε
ˆ

Σ

|∇u|2 dVg − C.

Therefore, taking into account (26) and the last inequality, from (22) we obtain
(after properly renaming ε):

(27)
1

16π − ε

ˆ
Ap(s′/2,2r)

|∇ũ|2 dVg ≥ log

ˆ
Σ

eu dVg + 4 log σ − C.

Next, we apply Proposition 2.4, to get

1

16π − ε

ˆ
Bp1

(δ/2)c
|∇u|2 dVg ≥ log

ˆ
Bp1

(δ)c
eu dVg + log

ˆ
Bp1

(δ)c
e−u dVg.

Reasoning as above and using the hypothesis of Case 2, we can deduce:

(28)
1

16π − ε

ˆ
Bp1

(δ)c
|∇u|2 dVg ≥ log

ˆ
Σ

eu dVg + 4 log σ − C.

Finally we obtain our result by combining (28), (27) and (21).
If we are under the conditions of Cases 1.2, 1.3 and 1.4, the thesis follows arguing

in the same way. �

Remark 3.11. Our goal is to use Proposition 3.6 to obtain a lower bound of the
functional Iρ1,ρ2

under suitable conditions. The presence of the two functions h1

and h2 in Iρ1,ρ2
is not so relevant because of the following estimates:

log

ˆ
Σ

h1(x) eu dVg ≤ log

ˆ
Σ

eu dVg + log ‖h1‖∞

log

ˆ
Σ

h2(x) e−u dVg ≤ log

ˆ
Σ

e−u dVg + log ‖h2‖∞

4. Min-max scheme

Let Σδ be the topological cone over Σ defined in (4), and let us set

Dδ = diag
(
Σδ × Σδ

)
=
{

(ϑ1, ϑ2) ∈ Σδ × Σδ : ϑ1 = ϑ2

}
,

X =
(
Σδ × Σδ

)
\Dδ.

Let ε > 0 be sufficiently small and let R, δ, ψ be as in Proposition 3.1. Consider
then the map Ψ defined by

(29) Ψ(u) =

(
ψ

(
eu´

Σ
eu dVg

)
, ψ

(
e−u´

Σ
e−u dVg

))
.

By Proposition 3.6 and Remark 3.11, we have a lower bound of the functional Iρ1,ρ2

on functions u such that u ∈ Dδ. Therefore, there exists a large L > 0 such that if
Iρ1,ρ2

(u) ≤ −L then it follows that Ψ(u) ∈ X.
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In [13] the authors proved that even though the set X is non compact, it retracts
to some compact subset Xν . Indeed, we have the following lemma.

Lemma 4.1. For ν � δ, define

Xν,1 =
{(

(x1, t1), (x2, t2)
)
∈ X : |t1 − t2|2 + d(x1, x2)2 ≥ δ4,

max{t1, t2} < δ,min{t1, t2} ∈
[
ν2, ν

]}
;

Xν,2 =
{(

(x1, t1), (x2, t2)
)
∈ X : max{t1, t2} = δ,min{t1, t2} ∈

[
ν2, ν

]}
,

and set

Xν =
(
Xν,1 ∪ Xν,2

)
⊆ X.

Then there is a retraction Rν of X onto Xν .

Our next goal is to introduce a family of test functions labelled on the set
Xν on which the functional Iρ1,ρ2

attains large negative values. For (ϑ1, ϑ2) =(
(x1, t1), (x2, t2)

)
∈ Xν define

(30) ϕ(y) = ϕ(ϑ1,ϑ2)(y) = log

(
1 + t̃22d(x2, y)2

)2(
1 + t̃21d(x1, y)2

)2 ,
where

t̃i = t̃i(ti) =

{
1
ti

for ti ≤ δ
2 ,

− 4
δ2 (ti − δ) for ti ≥ δ

2 ,

for i = 1, 2.

We start by proving the following estimate.

Lemma 4.2. For ν sufficiently small, and for (ϑ1, ϑ2) ∈ Xν , there exists a constant
C = C(δ,Σ) > 0, depending only on Σ and δ, such that

(31)
1

C

t21
t42
≤
ˆ

Σ

eϕ dVg ≤ C
t21
t42
.

Proof. First, observe that the following equality holds true for some fixed positive
constant C0:

(32)

ˆ
R2

1

(1 + λ2|x|2)
2 dx =

C0

λ2
; λ > 0.

To prove the lemma, we distinguish the two cases

|t1 − t2| ≥ δ3 and |t1 − t2| < δ3,

in order to exploit the properties of Xν . Starting with the first alternative, by the
definition of Xν and by the fact that ν � δ, it turns out that one of the ti’s belongs

to [ν2, ν], while the other is greater or equal to δ3

2 .

If t1 ∈ [ν2, ν] and if t2 ≥ δ3

2 then the function 1 + t̃22d(x2, y)2 is bounded above
and below by two positive constants depending only on Σ and δ. Therefore, using
(32) we get

t21
C

=
1

Ct̃21
≤
ˆ

Σ

eϕ(y) dVg(y) ≤ C

t̃21
= Ct21.
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On the other hand, if t2 ∈ [ν2, ν] and if t1 ≥ δ3

2 then the function 1 + t̃21d(x1, y)2

is bounded above and below by two positive constants depending only on Σ and δ,
hence ˆ

Σ

eϕ(y) dVg(y) ≥ 1

C

ˆ
Σ

(
1 + t̃22d(x2, y)2

)2
dVg(y) ≥ t̃42

C
=

1

Ct42
,

and similarlyˆ
Σ

eϕ(y) dVg(y) ≤ C
ˆ

Σ

(
1 + t̃22d(x2, y)2

)2
dVg(y) ≤ Ct̃42 =

C

t42
.

In both the last two cases we then obtain the conclusion.

Suppose now that we are in the second alternative, i.e. |t1 − t2| < δ3. Then by

the definition of Xν we have that d(x1, x2) ≥ δ2

2 and that t1, t2 ≤ ν + δ3. Using
(32) we obtain

ˆ
Σ

eϕ(y) dVg(y) ≥
ˆ
Bx1 (δ3)

eϕ(y) dVg(y) ≥ 1

C

(
1 + t̃22d(x1, x2)2

)2
t̃21

≥ 1

C

t21
t42
.

In an analogous way we derive
ˆ
Bx1

(δ3)

eϕ(y) dVg(y) ≤ C
(
1 + t̃22d(x1, x2)2

)2
t̃21

≤ C t
2
1

t42
.

Finally, by the estimateˆ
(Bx1

(δ3))c
eϕ(y) dVg(y) ≤ C

t̃41

ˆ
(Bx1

(δ3))c

(
1 + t̃22d(x2, y)2

)2
dVg(y) ≤ C t

4
1

t42
,

we are done. �

Remark 4.3. Notice that for e−ϕ the same result holds true just by exchanging
the indices of t1 and t2.

Proposition 4.4. For (ϑ1, ϑ2) ∈ Xν , let ϕ(ϑ1,ϑ2) be defined as in (30). Then

Iρ1,ρ2
(ϕ(ϑ1,ϑ2))→ −∞ as ν → 0,

uniformly for (ϑ1, ϑ2) ∈ Xν .

Proof. We start by showing the following estimates:

(33)

ˆ
Σ

ϕdVg = 4
(
1 + oδ(1)

)
log t1 − 4

(
1 + oδ(1)

)
log t2;

(34)
1

2

ˆ
Σ

|∇gϕ|2 dVg ≤ 16π
(
1 + oδ(1)

)
log

1

t1
+ 16π

(
1 + oδ(1)

)
log

1

t2
.

We begin by proving (33). It is convenient to divide Σ into the two subsets

A1 = Bx1(δ) ∪Bx2(δ); A2 = Σ \ A1.

Moreover, we write

ϕ(y) = 2 log
(
1 + t̃22d(x2, y)2

)
− 2 log

(
1 + t̃21d(x1, y)2

)
.

For y ∈ A2 we clearly have that

1

Cδ,Σt21
≤ 1 + t̃21d(x1, y)2 ≤ Cδ,Σ

t21
;

1

Cδ,Σt22
≤ 1 + t̃22d(x2, y)2 ≤ Cδ,Σ

t22
,
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therefore we deriveˆ
A2

ϕdVg = 4
(
1 + oδ(1)

)
log t1 − 4

(
1 + oδ(1)

)
log t2.

Moreover, working in normal geodesic coordinates at xi one also findsˆ
Bδ(xi)

log
(
1 + t̃2i d(xi, y)2

)
dVg = oδ(1) log ti.

Using jointly the last two inequalities we obtain (33).

We prove now (34). We have that

∇gϕ(y) = 2∇g log
(
1 + t̃22d(x2, y)2

)
− 2∇g log

(
1 + t̃21d(x1, y)2

)
=

4 t̃22d(x2, y)∇gd(x2, y)

1 + t̃22d(x2, y)2
− 4 t̃21d(x1, y)∇gd(x1, y)

1 + t̃21d(x1, y)2
.

From now on we will assume, without loss of generality, that t1 ≤ t2. We distinguish
between the case t2 ≥ δ3 and t2 ≤ δ3.

In the first case the function 1 + t̃22d(x2, y)2 is uniformly Lipschitz with bounds
depending only on δ, and therefore we have

∇gϕ(y) = −4t̃21d(x1, y)∇gd(x1, y)

1 + t̃21d(x1, y)2
+Oδ(1).

Let us fix a large constant C1 > 0 and consider the subdivision of the surface Σ
into the three domains

B1 = Bx1(C1t1); B2 = Bx2(C1t2); B3 = Σ \ (B1 ∪B2).

In B1 we have that |∇gϕ| ≤ Ct̃1, while

(35)
t̃21d(x1, y)∇gd(x1, y)

1 + t̃21d(x1, y)2
=
(
1 + oC1

(1)
)∇gd(x1, y)

d(x1, y)
in Σ \B1.

These estimates imply that

1

2

ˆ
Σ

|∇gϕ|2 dVg =

ˆ
Σ\B1

|∇gϕ|2 dVg + oδ(1) log
1

t1
+Oδ(1)

= 16π

ˆ 1

C1t1

dt

t
+ oδ(1) log

1

t1
+Oδ(1)

= 16π
(
1 + oδ(1)

)
log

1

t1
+ 16π

(
1 + oδ(1)

)
log

1

t2
+Oδ(1),

recalling that t2 ≥ δ3.

If instead t2 ≤ δ3, by the definition of Xν we have that d(x1, x2) ≥ δ2

2 , and
therefore B1 ∩B2 = ∅. Similarly to (35) we get

t̃21d(x1, y)∇gd(x1, y)

1 + t̃21d(x1, y)2
=
(
1 + oC1

(1)
)∇gd(x1, y)

d(x1, y)

t̃22d(x2, y)∇gd(x2, y)

1 + t̃22d(x2, y)2
=
(
1 + oC1

(1)
)∇gd(x2, y)

d(x2, y)

in B3.

Moreover we have

|∇gϕ| ≤ Ct̃i in Bi, i = 1, 2.
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Therefore we find

1

2

ˆ
Σ

|∇gϕ|2 dVg =

ˆ
B3

|∇gϕ|2 dVg + oδ(1) log
1

t1
+ oδ(1) log

1

t2
+Oδ(1)

= 16π
(
1 + oδ(1)

)
log

1

t1
+ 16π

(
1 + oδ(1)

)
log

1

t2
+Oδ(1),

for t2 ≤ δ3. This concludes the proof of (34).
Finally, the estimates (33) and (33), jointly with (31) and Remark 3.11 yield the

inequality

Iρ1,ρ2
(ϕ) ≤

(
2ρ1 − 16π + oδ(1)

)
log t1+

(
2ρ2 − 16π + oδ(1)

)
log t2 → −∞

as ν → 0, uniformly for (ϑ1, ϑ2) ∈ Xν , since ρ1, ρ2 > 8π. �

We next state a technical lemma, that will be of use later on.

Lemma 4.5. Let ϕ(ϑ1,ϑ2) be as in (30): then, for some C = C(δ,Σ) > 0, the
following estimates hold uniformly in (ϑ1, ϑ2) ∈ Xν :

(36) sup
x∈Σ

ˆ
Bx(rt1)

eϕ dVg ≤ Cr2 t
2
1

t42
∀r > 0.

Moreover, given any ε > 0 there exists C = C(ε, δ,Σ), depending only on ε, δ and
Σ (but not on ν), such that

(37)

ˆ
Bx1

(Ct1)

eϕ dVg ≥ (1− ε)
ˆ

Σ

eϕ dVg,

uniformly in (ϑ1, ϑ2) ∈ Xν .

Proof. By the elementary inequalities
(
1 + t̃22d(x2, y)2

)2 ≤ C
t42

and 1+t̃21d(x1, y)2 ≥ 1

we haveˆ
Bx(t1r)

eϕ(y) dVg(y) ≤ C

t42

ˆ
Bx(t1r)

1(
1 + t̃21d(x1, y)2

)2 dVg(y) ≤ Cr2 t
2
1

t42
for all x ∈ Σ,

which gives the inequality (36).

We now prove (37). Using again that
(
1 + t̃22d(x2, y)2

)2 ≤ C
t42

we have that

(38)

ˆ
Σ\Bx1 (Rt1)

eϕ(y) dVg(y) ≤ C

t42

ˆ
Σ\Bx1 (Rt1)

1(
1 + t̃21d(x1, y)2

)2 dVg(y).

Finally, using normal geodesic coordinates centered at x1 and (32) with a change
of variable, we find

lim
t1→0+

t−2
1

ˆ
Σ\Bx1 (Rt1)

1(
1 + t̃21d(x1, y)2

)2 dVg = oR(1) as R→ +∞.

This fact and (38), with the estimate (31), conclude the proof of the (37), by
choosing R sufficiently large, depending on ε, δ and Σ. �

Remark 4.6. The same result holds if we consider e−ϕ, interchanging the indices
of t1 and t2.

We next present a crucial step in describing the topology of low sublevels, which
will allow us to find a min-max scheme later on.
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Proposition 4.7. Let L > 0 be so large that Ψ
(
{Iρ1,ρ2

≤ −L}
)
∈ X, and let ν

be so small that Iρ1,ρ2(ϕ(ϑ1,ϑ2)) < −L for (ϑ1, ϑ2) ∈ Xν . Let Rν be the retraction
given in Lemma 4.1. Then the map Tν : Xν → Xν defined as

Tν
(
(ϑ1, ϑ2)

)
= Rν

(
Ψ(ϕ(ϑ1,ϑ2))

)
is homotopic to the identity on Xν .

Proof. Let us denote ϑi = (xi, ti) and

f1 =
eϕ(ϑ1,ϑ2)´

Σ
eϕ(ϑ1,ϑ2) dVg

, ψ(f1) = (β1, σ1),

f2 =
e−ϕ(ϑ1,ϑ2)´

Σ
e−ϕ(ϑ1,ϑ2) dVg

, ψ(f2) = (β2, σ2),

where ψ is given in Proposition 3.1. First, observe that we have the following
relations

(39)
1

C
≤ σi
ti
≤ C, d (βi, xi) ≤ Cti,

for some constant C = C(δ,Σ) > 0, depending only on Σ and δ. Indeed, by (37),
we have that

σ (xi, fi) ≤ Cti,
where σ(x, f) is the continuous map defined in (10). From that, we get that
σi ≤ Cti. Moreover, by (36), we get the relation ti ≤ Cσi.

Next, by (11) and using again the fact that σ(xi, f) ≤ Cti, we obtain that

d
(
xi, S (fi)

)
≤ Cti,

where S(f) is the set defined in (12). But since we have the inequality

d
(
βi, S (fi)

)
≤ Cσi,

we can conclude the proof of (39).
We are now able to prove the proposition. The proof will follow by taking into

account a composition of three homotopies. The first deformation H1 is defined in
the following way:((

(β1, σ1)
(β2, σ2)

)
, s

)
H17−→

 (
β1, (1− s)σ1 + sκ1

)
(
β2, (1− s)σ2 + sκ2

)
 ,

where κi = min
{
δ, σi√

ν

}
.

We introduce now a second deformation H2, given by((
(β1, κ1)
(β2, κ2)

)
, s

)
H27−→

 (
(1− s)β1 + sx1, κ1

)
(
(1− s)β2 + sx2, κ2

)
 ,

where (1−s)βi+sxi stands for the geodesic joining βi and xi in unit time. Observe
that, if κi < δ, then we have that σi <

√
νδ. Therefore by choosing ν small enough,

we have that βi and xi are close to each other, by (39). Instead, if κi = δ, the
equivalence relation in Σδ makes the above deformation a trivial identification.
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We perform a third deformation H3 defined by((
(x1, κ1)
(x2, κ2)

)
, s

)
H37−→

 (
x1, (1− s)κ1 + st1

)
(
x2, (1− s)κ2 + st2

)
 .

Finally, we define H as the composition of these three homotopies. Then,(
(ϑ1, ϑ2), s

)
7→ Rν ◦H

(
Ψ(ϕ(ϑ1,ϑ2)), s

)
gives us the desired homotopy to the identity. Indeed, we observe that, since ν � δ,
H(Ψ(ϕ(ϑ1,ϑ2)), s) always belongs to X, so that Rν can be applied. �

We now introduce the min-max scheme which provides existence of solutions
for equation (1). The argument follows the ideas of [5], which have been used
extensively (see for instance [6, 7, 21]).

Let X ν be the topological cone over Xν , which can be represented as

X ν =
(
Xν × [0, 1]

)/(
Xν × {1}

)
where the equivalence relation identifies all the points in Xν×{1}. We choose L > 0
so large that Iρ1,ρ2

(u) ≤ −L implies that Ψ(u) ∈ X and then ν so small that

Iρ1,ρ2(ϕ(ϑ1,ϑ2)) ≤ −4L

uniformly for (ϑ1, ϑ2) ∈ Xν . The existence of such ν is guaranteed by Proposition
4.4. Fixing this value of ν, we define the following class:
(40)

H =
{
h : X ν → H1(Σ) : h is continuous and h

(
· × {0}

)
= ϕ(ϑ1,ϑ2) on Xν

}
.

Then we have the following properties.

Lemma 4.8. The set H is non-empty and moreover, letting

cρ1,ρ2
= inf
h∈H

sup
m∈Xν

Iρ1,ρ2

(
h(m)

)
,

one has that cρ1,ρ2
> −2L.

Proof. To prove that H 6= ∅, we just notice that the map

(41) h̄(ϑ, s) = sϕ(ϑ1,ϑ2), (ϑ, s) ∈ X ν ,
belongs to H . Assuming by contradiction that cρ1,ρ2

≤ −2L there would exist a
map h ∈H with supm∈Xν Iρ1,ρ2

(
h(m)

)
≤ −L. Then, since Proposition 4.7 applies,

writing m = (ϑ, t), with ϑ ∈ Xν , the map

t 7→ Rν ◦Ψ ◦ h(·, t)
would be a homotopy in Xν between Rν ◦ Ψ ◦ ϕ(ϑ1,ϑ2) and a constant map. But
this is impossible since Xν is non-contractible (see the Remark 4.9 and by the fact
that Xν is a retract of X) and since Rν ◦Ψ ◦ ϕ(ϑ1,ϑ2) is homotopic to the identity
on Xν . Therefore we deduce the proof of the lemma. �

Remark 4.9. In [13] the authors proved that the set X = Σδ × Σδ \ Dδ is non-
contractible. Indeed, if Σ = S2, then Σδ can be identified with B0(1) ⊂ R3 and it
turns out that X ' S2, where ' stands for homotopical equivalence. The case of
positive genus is not so easy. However, the authors proved that X is non-contractible
by showing that its cohomology group H4(X) is non trivial.
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From the Lemma 4.8, the functional Iρ1,ρ2
has a min-max structure. By classical

arguments, such a structure yields a Palais-Smale sequence. However, we cannot
directly conclude the existence of a critical point, since it is not known whether the
Palais-Smale condition holds or not. To bypass this problem and get the conclusion,
we need a different argument, usually taking the name ‘monotonicity argument’.
This technique was first introduced by Struwe in [18], and than used in more general
settings (see for example [8, 5]).

Let us take µ > 0 such that Λi := [ρi − µ, ρi + µ] is contained in (8π, 16π) for
both i = 1, 2. We then consider ρ̃i ∈ Λi and the functional Iρ̃1,ρ̃2

corresponding to
these values of the parameters.

It is easy to check that the above min-max scheme applies uniformly for ρ̃i ∈ Λi
for ν sufficiently small. More precisely, given any large number L > 0, there exists
ν so small that for ρ̃i ∈ Λi we have the gap:

(42) sup
m∈∂Xν

Iρ̃1,ρ̃2
(m) < −4L; cρ̃1,ρ̃2

:= inf
h∈H

sup
m∈Xν

Iρ̃1,ρ̃2

(
h(m)

)
> −2L,

where H is defined in (40). Moreover, using for example the test map (41), one
shows that for µ sufficiently small there exists a large constant L such that for
ρ̃i ∈ Λi

cρ̃1,ρ̃2
≤ L

Under these conditions, the following proposition is well-known.

Proposition 4.10. Let ν be so small that (42) holds. Then the functional Itρ1,tρ2

possesses a bounded Palais-Smale sequence (un)n at level c tρ1,tρ2
for almost every

t ∈ Γ :=
[
1− µ

16π , 1 + µ
16π

]
.

Using the above result we are now able to prove the Theorem 1.1.

Proof of Theorem 1.1. The existence of a bounded Palais-Smale sequence for the
functional Itρ1,tρ2

implies by standard arguments that the functional possesses a
critical point. Let now consider tj → 1, tj ∈ Γ and let (uj)j denote the correspond-
ing solutions. It is then sufficient to apply the compactness result in Theorem 2.1,
which yields convergence of (uj)j to a solution u of (1), by the fact that ρ1, ρ2 are
not multiples of 8π. �

References

[1] Chen, C.-S., C.C. and Lin, Sharp estimates for solutions of multi-bubbles in compact
Riemann surfaces, Comm. Pure Appl. Math., 55 (2002), pp. 771-782.

[2] W. X. Chen, C. Li, Prescribing Gaussian curvature on surfaces with conical singularities,
J. Geom. Anal. 1, no.4 (1991), pp. 359-372.

[3] A. J. Chorin, Vorticity and Turbulence, Springer, New York (1994).

[4] W. Ding, J. Jost, J. Li and G. Wang, The differential equation ∆u = 8π − 8πheu on
compact Riemann surface, Asian J. Math., 1 (1997), pp.230-248.

[5] W. Ding, J. Jost, J. Li and G. Wang, Existence results for mean field equations, Ann.
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