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Micropillar of 2 µm in diameter milled by means of Focused Ion Beam (FIB) on the surface sample 
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PREFACE 

This dissertation is the result of the research work conducted by the author to obtain the degree 

of Doctor of Philosophy in Materials Science and Engineering at the Universitat Politècnica de 

Catalunya-BarcelonaTech (UPC). This work was conducted between February 2016 and September 2019 

under the supervision of Professors Luis Miguel Llanes Pitarch and Joan Josep Roa Rovira. Experimental 

work was carried out within the Centre d'Integritat Estructural i Fiabilitat dels Materials (CIEFMA) group 

from the Department of Materials Science and Metallurgical Engineering (CMEM) of the UPC, and the 

Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA). The 

presented work is original, unless otherwise detailed references are provided.  

This PhD thesis is submitted as compendium of scientific publications and it is structured in six 

chapters. In Chapter 1, an introduction to cemented carbides is given, together with an overview on the 

criticality of W and Co as main raw materials for this composite material, and a state of the art on nano- 

and micromechanical testing techniques available nowadays. In Chapter 2 the objectives of this work are 

presented. Chapter 3 describes in depth the experimental details and techniques used in this thesis to 

achieve the goals proposed in Chapter 2. Scientific publications derived from the research work carried 

during this PhD thesis are presented in Chapter 4. Results are summarized in Chapter 5. Finally, general 

conclusion and perspectives are presented in Chapter 6.  

—Daniela Sandoval 
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ABSTRACT 

Cemented carbides - also referred to as hardmetals - are composite materials widely used in 

different industry fields within applications involving wear such as cutting, machining and drilling, 

among others, due to their outstanding wear resistance. The most commonly cemented carbides used 

are WC-Co grades, due to cobalt (Co) wettability of tungsten carbide (WC), and adhesion characteristics. 

Emergence of new applications, the existence of advanced characterization techniques, economic and 

environmental aspects, among others, encourages the development of a new cemented carbides 

generation containing other binding phases as nickel (Ni) and iron (Fe) or alloys of them. Furthermore, 

Co powder has been classified as very toxic for the human health and the combination carbide-cobalt 

hardmetals dust has shown to be even more toxic than both pure Co and W.  

The success of substitution of the main constituents of cemented carbides, have been commonly 

measured in terms of their final mechanical properties at macroscale such as hardness, Palmqvist 

fracture toughness and transverse rupture strength (TRS); and their structural integrity under service-

like conditions, such as corrosion resistance, thermal shock and fatigue resistance, etc. In this sense, 

general framework of the effect of their microstructural characteristics – carbide mean grain size, volume 

fraction and chemical nature of constitutive phases – on the mechanical response is well established at 

the macroscale. However, assessment of the individual role of binder and carbide phases in cemented 

carbides at local scale i.e. microscale, is yet to be studied in depth. 

Within micromechanical testing, special attention has being paid to the micropillar compression 

approach because its advantages: the stress-state is nominally uniaxial, allowing a straight conversion of 

the measured load-displacement data into flow curves; sample preparation by means of Focused Ion 

Beam (FIB) milling is a relatively easy machining route; it involves the use of a conventional nanoindenter 

with a flat-end tip; and, it can be performed ex-situ or in-situ by using Scanning Electron Microscopy 

(SEM) or Transmission Electron Microscopy (TEM) techniques. However, attention have to be paid to 

sample sizes since it has been well established that intrinsic properties of crystalline materials such as 

yield stress and strength, can be greatly influenced by extrinsic factors such as volume. For instance, 

results have evidenced an inverse relation between hardness and the indentation depth at the micro- 

and nanometric length scales. Regarding cemented carbides, recent studies showed that changes in 

volume fraction of binder and carbides in samples can lead to wide scatter in results of Young’s modulus 

measured at the microscale. 

Following the above ideas, in this PhD thesis uniaxial compression of micropillars and 

nanoindentation have been selected to evaluate the role of binder and carbides regarding their chemical 
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nature and microstructural dimensions, i.e. carbide mean grain size and binder mean free path, in the 

mechanical properties of cemented carbides and their mechanical response at local scales. 

This thesis is presented by a compendium of scientific publications in which several specific 

objectives are studied individually. The first publication aims to evaluate the effect of the micropillar 

diameter on the micromechanical response of WC-Co. In the second publication, the effect of WC mean 

grain size and volume fraction of both carbide and binder phases are investigated. Results allowed to 

overcome the size effect issue – usually found when testing in the micro- or nanometer regime – by selecting 

an appropriate sample size, to accomplish reliability on the mechanical properties evaluated at local length 

scales. 

Third and fourth publications are devoted to investigating the mechanical properties of cemented 

carbides with partial or total substitution of WC or Co as main constitutive phases. In this sense, in the 

third publication nanoindentation is used to evaluate the intrinsic hardness of constitutive phases and 

flow stress of the constrained binder in a WC-(W,Ti,Ta,Nb)C-Co cemented carbide. Finally, in the fourth 

paper three materials, one with Co and two with partial and total substitution of Co as binder, 

respectively, were studied to investigate the influence of the chemical nature of the binder on the overall 

mechanical response of cemented carbides, on the basis of plastic deformation phenomena and failure 

mechanisms induced by uniaxial compression of micropillars.  

  The outcomes derived from the research carried out during this PhD thesis evidence that small 

scale testing of complex composite materials such as cemented carbides by means of uniaxial 

compression of micropillars and nanoindentation techniques, allows to evaluate the role of each 

constitutive phase on their mechanical properties and response. In doing so, an appropriate sample size 

should be selected, in order to obtain reliable results of the overall behavior of the material.   
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RESUMEN 

Los carburos cementados – también llamados metales duros – son materiales compuestos 

ampliamente utilizados en diferentes áreas industriales, en aplicaciones que involucran desgaste como 

corte, mecanizado y taladrado, entre otras, debido a su sobresaliente resistencia al mismo. Los carburos 

cementados más comúnmente usados son grados WC-Co, debido a la mojabilidad y adhesión que tiene 

el cobalto (Co) sobre el carburo de tungsteno (WC). El surgimiento de nuevas aplicaciones, la existencia 

de técnicas avanzadas de caracterización, aspectos económicos y ambientales, entre otros, motivan el 

desarrollo de una nueva generación de carburos cementados que contengan otras fases ligantes como 

níquel (Ni) y hierro (Fe) o aleaciones de ellos. Además, el polvo de Co ha sido clasificado como muy 

tóxico para la salud humana y la combinación de metales duro carburo-cobalto, ha demostrado ser más 

tóxica que Co o W puros. 

   En éxito en la substitución de los componentes principales de los carburos cementados, ha sido 

comúnmente medido basado en sus propiedades mecánicas finales, evaluadas a escala macrométrica, 

como dureza, tenacidad de la fractura Palmqvist y resistencia a rotura; y también en su integridad 

estructural al ser sometidos a condiciones de servicio, como resistencia a la corrosión, choque térmico, 

fatiga, etc. En este sentido, la visión general del efecto de sus características microestructurales – tamaño 

medio de carburo y fracción volumétrica y naturaleza química de sus fases constitutivas – en la respuesta 

mecánica de carburos cementados está bien establecida a escala macrométrica. Sin embargo, el efecto 

individual de ambas fases ligante y carburo, en el compuesto a escala local, es decir, escala micrométrica, 

aún debe ser estudiado en profundidad. 

En el ámbito de ensayos micromecánicos, se ha prestado especial atención a la compresión de 

micropilares debido a sus ventajas: el estado de tensión es nominalmente uniaxial, lo que permite una 

conversión directa de los datos medidos de carga-desplazamiento en curvas de flujo; la preparación de 

la muestra mediante el fresado con haz de iones focalizados (FIB por sus siglas en inglés) es una ruta de 

mecanizado relativamente fácil; implica el uso de un nanoindentador convencional con punta plana; y, 

puede realizarse ex situ o in situ utilizando técnicas de microscopía electrónica de barrido (SEM por sus 

siglas en inglés) o microscopía electrónica de transmisión (TEM por sus siglas en inglés). Sin embargo, 

se debe prestar atención al tamaño de la muestra, ya que se ha establecido que las propiedades intrínsecas 

de los materiales cristalinos, como el límite elástico y la resistencia, pueden verse influidas por factores 

extrínsecos como el volumen. Por ejemplo, los resultados han evidenciado una relación inversa entre la 

dureza y la profundidad de indentación en escalas de longitud micro- y nanométrica. Con respecto a los 

carburos cementados, estudios recientes mostraron que los cambios en la fracción de volumen de ligante 
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y carburos en las muestras pueden conducir a una amplia dispersión en los resultados del módulo de 

Young medido a microescala. 

Siguiendo las ideas anteriores, en esta tesis doctoral se han seleccionado la compresión uniaxial de 

micropilares y la nanoindentación como técnicas experimentales para evaluar el papel del ligante y los 

carburos con respecto a su naturaleza química y dimensiones microestructurales, es decir, el tamaño medio 

del grano del carburo y el camino libre medio del aglutinante, en las propiedades mecánicas de carburos 

cementados y su respuesta mecánica a escala local. 

Esta tesis doctoral es presentada como un compendio de publicaciones científicas en el que una 

serie de objetivos específicos se estudian individualmente. La primera publicación tiene como objetivo 

evaluar el efecto del diámetro del micropilar en la respuesta micromecánica de WC-Co. En la segunda 

publicación, se investiga el efecto del tamaño medio de grano WC y la fracción de volumen de las fases 

de carburo y ligante. Los resultados permitieron superar el problema del efecto del tamaño de la muestra 

– generalmente presente al realizar ensayos en el régimen micro- o nanométrico – mediante la selección de 

un tamaño de muestra apropiado para lograr fiabilidad en las propiedades mecánicas evaluadas en escalas 

de longitud pequeñas. 

Las publicaciones tercera y cuarta se dedican a investigar las propiedades mecánicas de los 

carburos cementados con sustitución parcial o total de WC o Co como fases constitutivas principales. En 

este sentido, en la tercera publicación, la nanoindentación se utiliza para evaluar la dureza intrínseca de 

las fases constitutivas y el esfuerzo de fluencia del ligante constreñido, en un carburo cementado WC-

(W,Ti,Ta,Nb)C-Co. Finalmente, en el cuarto artículo científico, se estudiaron tres materiales, uno con Co 

y dos con substitución parcial y total de Co, respectivamente, para investigar la influencia de la naturaleza 

química del ligante en la respuesta mecánica general de los carburos cementados, basado en fenómenos de 

deformación plástica y mecanismos de falla inducidos por la compresión uniaxial de micropilares. 

  Los resultados derivados de la investigación llevada a cabo durante esta tesis doctoral demuestran 

que las pruebas a pequeña escala de materiales compuestos complejos – como los carburos cementados 

– mediante compresión uniaxial de micropilares y nanoindentación, permiten evaluar el papel de cada 

fase constitutiva en su respuesta y propiedades mecánicas. Al hacerlo, se debe seleccionar un tamaño de 

muestra apropiado para obtener resultados confiables del comportamiento general del material. 
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RESUM 

Els carburs cimentats – també coneguts com a metalls durs – són materials compostos àmpliament 

usats a diversos camps industrials en aplicacions que comporten desgast, com en eines de tall, mecanitzat 

o trepat, a causa de la seva excepcional resistència al mateix. Els carburs cimentats més comunament 

usats són graus de WC-Co, per les característiques d’humectabilitat de cobalt (Co) amb el carbur de 

tungstè (WC) i la seva adhesió. L’aparició de noves aplicacions, l’existència de tècniques de 

caracterització avançades, aspectes econòmics i ambientals, entre d’altres, fomenta a el 

desenvolupament d’una nova generació de carburs cimentats que continguin altres fases d’unió com 

níquel (Ni) i ferro (Fe) o els seus aliatges. A més, la pols de Co ha estat classificada com a molt tòxica per 

a la salut humana i la combinació de pols de metall dur carbur-cobalt ha demostrat ser encara més tòxica 

que el Co o el W purs. 

L’èxit de la substitució dels constituents principals dels carburs cimentats es mesura habitualment 

en termes de propietats mecàniques finals, com la duresa, la tenacitat de fractura Palmqvist i la 

resistència a fractura transversal (TRS) a escala macroscòpica; i en termes d’integritat estructural en 

condicions similars a servei, com ara la resistència a corrosió, resistència a xocs tèrmics i fatiga, etc. En 

aquest sentit, el marc general dels efectes de les característiques microestructurals – mida mitjana dels 

carburs i fracció de volum i naturalesa química de les fases constitutives – en la resposta mecànica dels 

carburs cimentats està ben establerta en l’escala macroscòpica. No obstant això, encara cal estudiar en 

profunditat el paper individual de la fase lligant i dels carburs en l’escala local, és a dir, a l’escala 

micromètrica. 

Pel que fa als assajos micromecànics, s’ha prestat especial atenció a la compressió de micropilars 

gràcies als seus avantatges: l’estat de tensions és nominalment uniaxial, permetent una conversió directa 

de les mesures càrrega-desplaçament a corbes de flux; la preparació de mostres mitjançant un microscopi 

de feix de ions (FIB) és una tècnica de mecanitzat relativament senzilla; implica l’ús d’un nanoindentador 

convencional amb una punta plana; i es pot realitzar ex-situ o in-situ mitjançant un microscopi electrònic 

de rastreig (SEM) o de transmissió (TEM). Tot i això, cal parar atenció a les dimensions de les mostres, 

ja que està ben establert que les propietats intrínseques dels materials cristal·lins, com ara la tensió i la 

resistència, poden estar molt influïdes per factors extrínsecs com ara el volum. Per exemple, els resultats 

han evidenciat una relació inversa entre la duresa i la profunditat d’indentació a les escales micro- i 

nanomètriques. Respecte als carburs cimentats, estudis recents han demostrat que canvis en la fracció 

volumètrica de lligant i carburs comporta una àmplia dispersió en els resultats de mòdul de Young 

mesurat a la microescala. 
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Seguint aquestes idees, en aquesta tesi doctoral s’ha seleccionat la compressió uniaxial de 

micropilars i nanoindentació per avaluar el paper del lligant i els carburs respecte la seva naturalesa 

química i dimensions microestructurals, és a dir, grandària mitjana del carbur i camí lliure mig del lligant, 

en les propietats mecàniques dels carburs cimentats i la seva resposta mecànica a escales locals. 

Aquesta tesi es presenta com a compendi de publicacions científiques en les quals s’estudien 

objectius específics individualment. La primera publicació té com a objectiu avaluar l’efecte del diàmetre 

del micropilar en la resposta micromecànica del WC-Co. A la segona publicació, s’investiguen l’efecte de 

la mitja mitjana del gra de WC i la fracció de volum de les fases de carbur i lligant. Els resultats han 

permès superar el problema de l’efecte de mida – habitual quan s’assaja a escales micro- i nanomètrica – 

seleccionant una mida de mostra adequada per tal d’aconseguir propietats mecàniques fiables avaluades a 

escales locals. 

La tercera i quarta publicacions estan dedicades a investigar les propietats mecàniques dels carburs 

cimentats amb substitució parcial o total de WC o Co com a fase constitutiva principal. En aquest sentit, 

en la tercera publicació s’usa la tècnica de nanoindentació per avaluar la duresa intrínseca de les fases 

constitutives i la tensió de fluxe del lligant constret en un carbur cimentat WC-(W,Ti,Ta,Nb)C-Co. 

Finalment, en el quart treball s’han estudiat tres materials, un amb Co i dos amb substitució parcial o 

total de Co com a lligant, respectivament, per tal d’investigar la influència de la naturalesa química del 

lligant en la resposta mecànica global dels carburs cimentats, segons fenòmens de deformació plàstica i 

mecanismes de fallada induïts per compressió uniaxial de micropilars. 

   Els resultats derivats de la investigació realitzada durant aquesta tesi doctoral demostren que els 

assajos a escala petita de materials compostos complexos com ara els carburs cementats mitjançant 

compressió uniaxial de micropilars i tècniques de nanoindentació permeten avaluar el rol de cada fase 

constitutiva en les propietats i resposta mecàniques. Per fer-ho, cal seleccionar una mida de mostra 

adequada per tal d’obtenir resultats fiables del comportament global del material. 
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1 Introduction 

1.1. Cemented carbides - History and status 

Cemented carbides - also referred to as hardmetals - are a group of composite materials that show 

outstanding mechanical properties such as hardness and fracture toughness, and excellent wear 

resistance. Such combination of properties makes cemented carbides suitable to produce structural and 

tool materials capable of working under stringent requirements. The microstructure of cemented 

carbides is heterogeneous, and it is constituted by hard but brittle carbides phase bond by one soft and 

tough metallic binder. The first ones are refractory carbides of the transition metals (WC, TiC, TaC, 

Cr3C2 or Mo2C), and the last one is a metal from the iron group, more often cobalt (Co) or nickel (Ni) 

and their alloys [1]. 

Refractory carbides of transition metals from the groups IV, V and VI show an interstitial structure 

that combines metallic, covalent and ionic bonds, being the group of materials with a high melting point. 

They also exhibit high hardness and strength with high thermal and chemical stability [2]. On the other 

hand, the metallic binder phase is a ductile and softer phase that contributes to improve the toughness 

of cemented carbides [1]. The unique combination of hardness and toughness given by its constitutive 

phases - in comparison with other hard materials – position cemented carbides as the most versatile 

materials used mainly in the tooling, mining, and oil and gas industries [3]. 

Development of cemented carbides started during World War I in Germany due to the need to 

replace diamond drawing dies for a less expensive material, in the production of tungsten (W) filaments 

[1,4]. Several attempts were made without success, until 1923, when tungsten carbide (WC) with added 

Ni was sintered. With time, Ni was changed by Co, obtaining a good ceramic-metal combination, suitable 

to produce fine W wires of good quality [4,5].  

The new material was commercialized in 1926 under the name “WIDIA” (from German 

terminology “wie Diamant” - meaning like diamond). In 1927 tools made with WIDIA were shown to the 

international public for the first time at the Spring Fair of Leipzig [5]. From this point on, the production 

of cemented carbides along with the born of new companies started to grow simultaneously. High speed 

steel (HSS) used in cutting tools production started to be replaced by cemented carbides: cutting speeds 

were increased due to the improvement in wear resistance at high temperature of cemented carbides, 

extending lifetime of tools [5]. 
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Between 1929 and 1935, Schwarzkopf, Comstock and McKenna alloyed tungsten carbide with 

titanium carbide (TiC), molybdenum (Mo2) and titanium carbide (TaC), improving the potential of WC-

Co as tool for high speed machining. Ever since, the improvement of the properties and performance of 

cemented carbides have been continuous [6]. A summarized chronology of the development of cemented 

tungsten carbides during the XX century is presented in Table 1.1. 

Table 1.1. Development of cemented carbides industry during the XX century [5–7]. 

Year Event 

1923-25 First WC-Co tool 
1929-31 Development of WC-TiC-Co and WC-TaC(VC, NbC)-Co grades 

1938 WC-Cr3C2-Co 
1948-70 Sub-micron WC-Co hardmetals 
1965-75 Hot isostatic pressing (HIP) 
1965-78 TiC, TiN, Ti(C,N), HfC, HfN and Al2O3 CVD coatings on WC-based 

hardmetal 
1969-71 Thermochemical surface hardening 
1974-77 Polycrystalline diamond on WC-based hardmetal 
1973-78 Multi-carbide, carbonitride/nitride and multiple 

carbide/carbonitride/nitride/oxide coatings 
1981 Many thin coatings with AION (aluminum oxynitride) layers 

1983-92 Sinter-HIP 
1992-95 Plasma CVD diamond coating 
1993-95 Coating complex carbonitrides 

1994 Nanocrystalline cemented carbides 

In the last 30 years, the production of cemented carbides has grown rapidly. From a total annual 

production of around 20,000 tons in 1993, to nearly 60,000 tons in the year 2008. The accelerated growth 

was a consequence of the entry of China into the cemented carbides market. Only in China, the 

production has raised from 7000 tons in the year 2001 to 28,000 tons in 2017 [8]. The fast growth of 

production of cemented carbides in particular for metal cutting has driven improvements in Chemical 

Vapor Deposition (CVD) coated cemented carbides with Co-enriched surface zone [9]. Moreover, the 

demand on submicron grained grades is increasing due to a trend on miniaturized electronic devices (in 

particular computers and phones), and to improvements in Physical Vapor Deposition (PVD) techniques 

which have widened the use of PVD coated metal cutting inserts [10]. Compared to other hard materials, 

cemented carbides represent 50% of the total world market with almost 65% of the total production 

related to metal cutting tools.  

Opportunities to improve cemented carbides include tailoring their microstructure by substitution 

and/or alloying of both carbide and binder phases, and other processing routes as additive 

manufacturing (AM) for which recent investments have reached nearly one billion US dollars, nearly half 

of it being devoted to the medical industry [11]. 
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1.2. Structure of cemented carbides 

In cemented carbides, the most commonly used ceramic phase is tungsten carbide (WC) [12], while 

the metallic binder is often cobalt (Co), followed by nickel (Ni) and iron (Fe) in order of importance [13]. 

The binder is selected for its wettability with the carbide and adhesion characteristics. In this regard, Co 

shows outstanding wetting of WC, resulting in full densification and finally higher values of toughness 

when comparing with other metallic binders [14].  Furthermore, Ni is found to be the best binder for 

hardmetals based on TaC [1,15]. An improvement on wettability and adhesion of the carbide phase can 

be achieved by alloying the known binders. Addition of chromium (Cr) to Co or Ni tends to reduce 

toughness at room temperature but improves strength and hot hardness at high temperatures [1].  

1.2.1. Ceramic carbides 

More than 98% of cemented carbides grades contain WC. Besides WC, tungsten can also form the 

sub carbide W2C and cubic sub-stoichiometric γ-WC1-x. The range of homogeneity of WC in the W-C 

phase diagram is small, 50 at.% or 6.13 wt.% [1]. Although tungsten monocarbide is the principal hard 

phase found in cemented carbides, a deficit on carbon content in WC-Co may promote any of the other 

carbide phases as shown in Figure 1.1 [16].  

 

Figure 1.1. Section of the W-C-Co phase diagram of a WC-Co cemented carbide with 10 wt.%Co [16]. Image from [17]. 

WC particles exhibit a hexagonal close packed (hcp) crystal structure with lattice parameters a = 

0.2906 nm and c = 0.2837 nm, with a ratio c/a = 0.976. WC crystals grown from liquid-metal solutions 

exhibit the shape shown in Figure 1.2 a, which is also the shape of WC grains in cemented carbides as 

seen in Figure 1.2 b. The shape adopted by WC in cemented carbides owes to the high polarity of the 

prismatic crystal planes of (101̅0) type due to the different spacing of the W and C planes of [1010] 

directions; therefore, there are two sets of equivalent (101̅0) planes, instead of six ones [1]. Because of its 
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non-centrosymmetric structure of WC, the microhardness is strongly anisotropic, i.e. hardness of the 

basal plane (0001), the prismatic plane (101̅0) and intermediate orientations are different [1]. 

 

Figure 1.2 a) Schematic representation of truncated WC grains shape in WC-Co composites [18], and b) a typical microstructure 

of WC-Co cemented carbides. The light and dark phases correspond to the carbide and to the metallic binder, respectively. 

Despite the existence of other carbides with higher hardness than WC, extremely high Young’s 

modulus (around 700 GPa) and high thermal conductivity (1.2 J cm-1 s-1 K-1) of WC are advantageous 

properties for cutting applications [1]. In WC-Co alloys, WC shows appreciably plastic deformation 

during compression test due to the mechanical behavior of the metallic binder [1].  

TiC, ZrC, HfC, VC, NbC and TaC carbides are also used to produce hardmetals. These carbides are 

face centered cubic (fcc), melt congruently and exhibit higher hardness than WC. Especially, TiC and 

TaC are used as reinforcement particles in cemented carbides [1]. However, they have limited toughness; 

thus, they are more brittle than WC [1]. During production of WC-Co hardmetals, TiC is added to 

improve resistance to chemical diffusion that cause cratering in cutting tools [19], and to reduce electrical 

conductivity for some applications [3]. On the other hand, TaC is added to cutting tool grades because 

it has higher fracture toughness than TiC [19]. Addition of TiC, TaC and/or NbC enhances corrosion 

resistance of WC-Co grades [3]. 

Some properties of WC and cubic carbides are summarized in Table 1.2. 

Table 1.2. Properties of cubic refractory carbides commonly used for hardmetals production [1,15,19]. 

Material Young’s Modulus 
(GPa) 

Vickers 
Hardness 

(HV50) 

Density (g 
cm-3) 

Melting 
temperature 

(°C) 

WC 696 13-22 15.70 2800* 
TiC 450 30 4.94 3100* 
TaC 285 18 14.50 3800 

Cr3C2 373 14 6.66 1800* 
Mo2C 533 15 9.78 2500 
NbC 388 20 7.80 3600 
VC 422 29 5.71 2700 
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(*) Dissociation temperatures. 

1.2.2. Metallic binder 

Cobalt is the most commonly used material as metallic binder in cemented carbides. Pure Co 

shows an allotropic transformation from an hcp structure up to around 415 °C to a cubic structure (fcc) 

at higher temperatures [15]. The prevalence of one form or another may affect the mechanical properties 

of the composite material [1].  Stability of the two allotropic phases is also affected by grain size: their 

structures favor the cubic form [12]. In sintered WC-Co alloys, Co shows a cubic lattice because 

stabilization of it by dissolved W and C, and cannot be transformed by annealing [1,12]. The stabilization 

of the fcc structure of Co is influenced by the W and C content dissolved as solid solution inside the 

metallic Co binder, ranging from 0.5-2 at.% (0.1-0.4 wt.%) and 0-5.9 at.% (0-17 wt.%) respectively [20]. 

1.3. Critical raw materials 

In 2010, European Union (EU) launched a list of 14 raw materials considered critical based on 

economic importance and the risk of supply disruption. The list was updated to 20 in 2014 (see Figure 

1.3) [21]. These materials are considered non-energy raw materials and reduced access to them may 

depress construction, automotive, aerospace and tool industries which are vital industrial sector in EU 

economy [22]. In this sense, European partnerships have arisen since 2013, to act towards ensuring a 

sustainable supply of raw materials to the European economy, including actions on the extraction, 

processing, recycling and substitution of critical raw materials (CRMs) [23]. However, implementation 

of these actions is not straight-forward. It implies great efforts from the industrial, technological and 

research communities to obtain reliable substitute materials with comparable or improved performances, 

easily and quickly integrable in the production processes, potentially recyclable and with lower risk to 

the environment and human health [22]. 
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Figure 1.3. Supply risk vs. Economic importance for EU of elements. Upper right corner (red color) frames those elements with 

high supply risk and of high economic importance for EU (critical raw materials) [22]. 

Regarding cemented carbides, as it has been referred above, Co is the most commonly used metal 

binder [1]. Meanwhile, W exhibits high melting point among other metallic elements and its 

monocarbide (WC) finds the largest application in cemented carbides due to its high hardness, low 

density and elevated corrosion resistance [2]. Around 12% of the consumed Co is in hardmetals [24] and 

almost half of the total Co in the world is located in Democratic Republic of Congo. On the other hand, 

the world’s largest deposits of W are placed in China, followed by Canada, Russia, USA, Australia, Korea, 

Turkey, Bolivia and others. Location of tungsten makes it hardly accessible to the “industrial world” [25]. 

By 2015, the tungsten consumption in China was around 47000 tons/year (59% of the total world 

consumption) [10]. Difficult access to CRMs impacts directly in their prices. Important fluctuations of 

prices of raw materials can be seen in Figure 1.4. 

  

Figure 1.4. Global price of a) ammonium paratungstate (APT), and b) cobalt per metric ton units (MTU). Data from January 2019. 

Source: Metal bulletin. 

Moreover, Co powder has been classified as very toxic for the human health and the combination 

carbide-cobalt hardmetals dust has shown to be even more toxic than both pure Co and W [26,27]. On 
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the other hand, WO3 “suspected for causing cancer” by the Globally Harmonized System of Classification 

and Labelling of Chemicals (GHS) [25], forms at the surface of WC by oxidation and chemical reactions 

with metal working fluids, and release to the environment through wear particles [28]. 

1.3.1. Substitution of W and Co in WC-Co cemented carbides 

Since few decades ago, investigations have been devoted to develop new composites with partial 

or total substitution of Co by more economic and less toxic materials, with equal or improved properties 

and simpler production techniques as to increase the efficiency of recycling process [7,10,25]. 

Vasel et al. [29] progressively substituted Co with Ni in a WC-Co hardmetal and reported that 

addition of Ni retarded the martensitic transformation of Co fcc to hcp. Martensitic transformation was 

proven to be the main work-hardening mechanism of Co [30]. Thus, addition of Ni shifted the 

predominant deformation mechanism from martensitic transformation to slip and twinning, decreasing 

hardness as the Ni content increased [29]. The progressive replacement of Co by Ni also leads to a 

decrease in ultimate compressive strength [31]. However, partial or complete replacement of Co by Ni 

does not alter transverse rupture strength (TRS) values [31]. 

A comparison of the mechanical properties made by Human et al. [32] for several binder alloys of 

Ni-Mo, Ni-Cr-Mo with pure Ni and Co, revealed that hardness, Palmqvist fracture toughness and TRS of 

Ni alloys were comparable with those of Co. However, both hardness and toughness were affected by the 

binder and content of alloying elements. More recently, Tarragó et al. [33,34] reported higher fracture 

toughness and lower hardness, for WC-CoNi than for WC-Co cemented carbides with similar binder 

mean free paths.  As Cr and Mo increased, hardness increased but toughness decreased given its role as 

grain growth inhibitors. While severe increase in grain growth occurred with plain Ni binder, rising Cr 

and Mo resulted in a finer microstructure; thus, higher hardness and lower toughness. Hardness of WC-

Ni can be raised with moderate additions of Cr3C2 and further additions improves TRS. However, very 

high contents of Cr in WC-10Co-4Cr was found to lower TRS [32]. 

Even though mechanical properties can slightly differ for cemented carbides with binder alloys as 

Ni-Cr-Mo, in comparison with cemented carbides with Co binder, selection of other binders can be done 

to improve other properties such as corrosion resistance. For instance, substitution of Co by Ni-Cr and 

Ni-Cr-Mo binders promotes an increase in corrosion resistance of hardmetals [32]. Both WC-Co and WC-

Ni are corrosion resistant in solutions above pH 7. However, WC-Ni is better than WC-Co in acidic 

solutions and even more when adding Cr. Furthermore, addition of Mo enhance the pitting resistance in 

chloride environments  [35]. 
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Elevated corrosion resistance can be also obtained by adding TiC [35] or by replacing 40% of WC 

with TaC [36]. Higher hardness and lower density of TiC, together with its great availability in regions 

accessible to the industrial world, have made it the most studied carbide to replace WC. The use of TiC 

remains in cutting tools given its hardness and good wear resistance. Although brittleness and poor hot-

deformation, compared to WC, holds back the use in other applications [37].  

1.4. Microstructural parameters of cemented carbides 

Both mechanical and tribological performance of cemented carbides are related to the chemical 

nature, amount and size of carbide and binder phases [15]. The common parameters used to characterize 

the microstructure of hardmetals are the mean grain size of the carbide particles (dcarbide) and the volume 

content of binder (vol.%). Correlation of both is done by contiguity of the carbide phase (Ccarbide) and 

binder’s mean free path (λbinder) [1,6,38]. The mentioned microstructural parameters are illustrated in 

Figure 1.5. 

 

Figure 1.5. Microstructural parameters commonly determined for cemented carbides. In the image, black and light phases 

correspond to binder and ceramic particles, respectively. 

1.4.1. Mean grain size of carbide phase 

Mean grain size is a statistical concept that refers to the average size of the carbide particles that 

constitute a cemented carbide. The final mean grain size and the size distribution depends on the grain 

size of the starting powders, the milling and sintering conditions and the composition of the binder [5], 

e.g. addition of small amounts of VC or TaC to WC-Co leads to grain size refinement while high C 

contents promote the growth of WC grains [19]. Mean grain size of carbide phase can range from less 

than 0.5 µm to more than 50 µm, as seen in Figure 1.6 [39].  



34 | Small-scale testing of micromechanical response of cemented carbides 

 
The mean grain size of the carbide phase is related to the final properties of the cemented carbide. 

Alloys with smaller grain mean size are harder. On the other hand, the larger the WC grains, the wider 

the metallic binder layer between the hard grains; and thus, the higher the fracture toughness of the 

alloy  [40,41]. 

 

Figure 1.6. Classification of cemented carbides according to the mean grain size of the carbide phase [39]. 

The most commonly used method to determine the carbide grain size is the linear interception (LI) 

method. It consists in measuring the length of the carbides crossed by a line in a scanning electron 

microscope (SEM) micrograph [42]. More recently, given the production of nano-grained and ultrafine 

grades of hardmetals, it becomes harder to detect smaller grains in a SEM micrograph. Automatic grain-

size analysis where the shape of the particle (circularity) is used to calculate mean size of WC particles 

have been proposed, e.g. [43–45]. 

1.4.2. Binder content 

The binder content has a relevant influence on the mechanical properties of cemented carbides. It 

is usually given in weight percentage (wt.%), but the use of the volume percentage (vol.%) or the volume 

fraction (Vbinder) can be a more informative value [38]. Conversion of wt.% to Vbinder can be done by 

applying the following expression: 

𝑉𝑏𝑖𝑛𝑑𝑒𝑟 =
1+

1−𝑉𝑏𝑖𝑛𝑑𝑒𝑟
𝑤𝑡

𝑉𝑏𝑖𝑛𝑑𝑒𝑟
𝑤𝑡 𝜌𝑊𝐶

(𝜌𝑊𝐶− 𝜌𝑐)

1+
1−𝑉𝑏𝑖𝑛𝑑𝑒𝑟

𝑤𝑡

𝑉𝑏𝑖𝑛𝑑𝑒𝑟
𝑤𝑡

                                                   Equation 1 



35 | Small-scale testing of micromechanical response of cemented carbides 

 
where Vbinder is the binder content in volume, Vwt

binder is the binder content in weight percent, ρWC 

is the density of tungsten carbide (15.65 g/cm3), and ρc is the experimental density of the composite. 

In cemented carbides, the state of aggregation of the carbide phase varies not only due to the 

processing history but also with the binder content. It then ranges from isolated carbide particles 

dispersed in the binder to a highly connected skeleton of contiguous carbide particles, for high binder 

content to low binder content respectively [19]. 

1.4.3. Contiguity 

The contiguity partially describes the state of aggregation of the carbide phase. It is defined as the 

measure of the extent of the carbide grain boundary area relative to the total surface area of the carbide 

grains [19]. The following expression is used to calculate contiguity of cemented carbides: 

𝐶𝑊𝐶 =
2𝑁𝑊𝐶/𝑊𝐶

2𝑁𝑊𝐶/𝑊𝐶+𝑁𝑊𝐶/𝐵𝑖𝑛𝑑𝑒𝑟
                                                    Equation 2 

where NWC/WC and NWC/Binder are the number of carbide/carbide and carbide/cobalt intercepted interfaces 

[38].  

With increasing sintering time, the contiguity decreases possibly due to a grain agglomeration and 

boundary migration, or to continuous Co penetration of WC/WC grain boundaries [19].  

Values of contiguity for a fixed volumetric content of binder are extremely scattered. It is attributed 

for some authors to the possible effect of grain size distribution of carbide phase, suggesting that for 

larger grain size, the larger the contiguity of the carbide phase [38,46]. However, some authors suggest 

the independence of the contiguity on the grain size. In this case it should be expressed as a function of 

the binder content exclusively [47]. Other authors report that grain shapes also have an influence in 

contiguity [48]. 

Roebuck and Almond [38] expressed the contiguity as a function of the binder content for WC-Co 

alloys. They stated that for each value of volume fraction of Cobalt (VCo) there is a wide range of CCarbide 

values due to grain size and distribution. However, they reported an expression to determine C for 

0.35>VCo>0.05 as follows: 

𝐶𝐶𝑎𝑟𝑏𝑖𝑑𝑒(𝑉𝐶𝑜)𝑛 = 𝐷                                                            Equation 3 
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where n and D are constants with 0.45 and 0.2 values, respectively.  

More recently, Coureaux [49] proposed an empirical equation to determine contiguity as a 

function of Vbinder and dWC for fine and medium grades of cemented carbides. Afterwards, Tarragó et al. 

[45] improved and extended it for determination of contiguity for ultrafine and nanometric cemented 

carbides (Equation 4). 

𝐶𝐶𝑎𝑟𝑏𝑖𝑑𝑒 = 0.036 + 0.9733 ∗ 𝑒
−𝑑𝑊𝐶

3.90825 ∗ 𝑒
−𝑉𝑏𝑖𝑛𝑑𝑒𝑟

0.24913                                Equation 4 

1.4.4. Mean free path  

The mean free path, also called the mean linear intercept in the binder phase (λbinder), is used to 

describe the distribution of the binder phase in cemented carbides. It is the most important parameter 

to characterize the geometry of the binder phase, due to its inverse relation with the specific surface of 

the binder phase (carbide/binder interface per unit volume of binder) [1]. This microstructural 

characteristic, along with contiguity and volume content of binder, constitute the primary structural 

parameters of cemented carbides. They are interrelated, as proposed by Lee and Gurland [46], according 

to Equation 5, even for varying binder phase content and sintering conditions. 

𝜆𝑏𝑖𝑛𝑑𝑒𝑟 =
1

1−𝐶𝐶𝑎𝑟𝑏𝑖𝑑𝑒

𝑉𝑏𝑖𝑛𝑑𝑒𝑟

𝑉𝑊𝐶
𝑑𝑊𝐶                                                      Equation 5 

where VWC is the volume fraction of WC. 

The λbinder increases when rising the carbide mean grain size and/or the volume fraction of binder. 

An increase in λbinder results in a higher fracture toughness of the composite; thus, lower hardness [38]. 

1.5. Mechanical testing at micro- and nanometric length scales 

Micro and nano-mechanical testing have their origins in nanoindentation [50] and scanning probe 

microscopy (SPM) [51], applied to surfaces of materials and coatings and to the mechanics of nano-

objects, respectively [52]. An important advance in the era of micromechanics came with the invention 

of micro-compression of micropillars milled by using a focused ion beam (FIB) in Ni single crystals, and 

subsequently deformed with a nanoindenter equipped with a flat punch [53]. A scheme of the micro- 

and nano-testing techniques available nowadays is shown in Figure 1.7. 
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Initially, mechanical testing at small length scales targeted understanding of size effects in single 

crystals. In this sense, it became very well understood that when the sample volume is greatly reduced, 

intrinsic mechanical properties of materials (e.g. yield stress ad strength) may exhibit an extrinsic 

behavior. This in known as size-scale effect and it can be defined as a change in material properties – 

mechanical, electrical, optical, or magnetic – due to a change in dimensions of internal structure or the 

dimensions of the sample [53].  

For many years it was a fact that the strength of a bulk material is strongly dependent of the 

characteristic length scale of its microstructure, i.e. grain or precipitate size, twin boundary spacing, or 

dislocation density. Thus, this intrinsic size governs the mechanical properties and post-elastic 

deformation at all samples dimensions [54]. However, increasing experimental activities on small-scale 

samples has shown that at micron and sub-micron scales, this is no longer true. For example, for single 

crystals of metallic structures, it has been shown that the ultimate tensile strength and the yield strength 

scale with external sample size following a power law, i.e. they exhibit the now more common 

phenomenon “smaller is stronger” [54–57]. 

Micromechanical testing field have evolved into studying the influence of microstructure in the 

plastic response of materials with a second phase [58], such as inclusions [59–62], grain boundaries [63–

68], and interfaces [69–74], as well as fracture [75–81]. Furthermore, not only micro- and nano-

mechanical testing have been used for mechanical testing of materials with dimensions from a few atoms 

up to the micrometer scale (including particles, sheets and thin films, etc.), to qualitatively determine 

their mechanical properties, but also for bulk materials to enhance their performance based on the 

knowledge that mechanical failure starts locally with formation and accumulation of defects that finally 

lead to fracture [58].  

In this thesis, a combination of nanoindentation, micropillar compression and imaging techniques 

such as SEM, transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) 

were selected to evaluate the mechanical response of cemented carbides at small length scales. 
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Figure 1.7. Scheme of the current available techniques for micro- and nano-mechanical testing [58]. 

1.6. Mechanical properties and response of cemented carbides 

Cemented carbides are key materials in the group of heterogeneous composite group with mainly 

a hard phase and a soft one. WC-Co combination is a successful example of the optimal implementation 

of microstructural design towards enhanced performance and reliability in extremely demanding 

applications (e.g. Refs. [1,17,38]). 

Hardness is among the key parameters for most of the applications in which cemented carbides 

are involved: machining tools, mining and drilling, drawing, forging, stamping, etc. Understanding of 

microstructure-hardness relationship, from theoretical, analytical and experimental viewpoints, have 

been a matter of study since decades ago (e.g. Refs. [46,82–85]). However, intrinsic response of 

constitutive phases is usually not considered in the overall behavior of the composite material. For 

example, it has been stablished that hardness of WC is anisotropic [86–93]. Furthermore, binder is a Co-

W-C alloy in which the amount of the alloying elements plays an important role on the intrinsic hardness 

and deformation mechanisms [1,94], while disposition of the surrounding carbide particles, i.e. 

constraint degree, affects its flow stress in the composite [95]. 

Structure of cemented carbides is given by a carbide skeleton, reinforced by a ductile metallic phase 

interconnected trough the composite. Effective toughening of the material comes in one hand, from the 

deformation of ductile ligaments of binder [96–99]. On the other hand, high toughness of cemented 

carbides have been associated with effective interaction between the intrinsic residual stresses – mostly 

thermal residual stresses from cooling after sintering – and the external applied stresses [100–104]. At 

macroscopic scale, plasticity of cemented carbides is the result of multiple plasticity mechanisms 
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occurring in each constitutive phase at the microscale. Thus, performance of cemented carbides is 

directly dependent upon the intrinsic response of both carbides and constrained binder.  

Regarding the above, consideration of the local response of each constitutive phase would allow 

better analytical and modelling outcomes from the viewpoint of microstructural design of metal-

reinforced ceramic-based composites. 

1.7. Mechanical properties and response of cemented carbides at local length scales 

General framework of microstructural effects on the mechanical response of cemented carbides is 

well established at the macroscale (e.g. Refs. [1,33,38,83,84,105,106]). However, mechanical response of 

both binder and carbide phases, as well as assessment of the individual role of the binder phase in 

cemented carbides at local scale i.e. at the microscale, is yet to be studied in depth. Regarding small 

scales, many studies have found estimated data in satisfactory agreement with experimental data by 

assuming an effect by the length scale, such as a Hall-Petch relationship in intrinsic hardness of 

constitutive phases, independently from the constrain factors [46,106–110].  

Within this context, nanoindentation and micropillar compression approach can give insights on 

the local response of cemented carbides, not only in terms of mechanical properties (hardness, stress 

and strain), but also in terms of the role played by its constitutive phases. In this sense, recent studies 

have been devoted to evaluate the mechanical response of WC particles at small length scales [111], as 

well as that of the composite material [95,112–115].  

1.7.1. Uniaxial compression of micropillars 

Micro-compression testing has become a commonly used technique to study the mechanical 

response of various materials in the micrometer and sub-micrometer regime [116–120] especially due to 

the simplicity of converting measured load (P)-displacement (h) data into flow curves, given that stress-

state is nominally uniaxial [121]. 

Other advantages of micropillar compression may be mentioned. First, the absence of important 

strain gradients that can mask the effect of the volume alone and free surfaces due to the appearance of 

important extrinsic contributions [122]. Second, sample preparation and testing are relatively simple by 

using Focused Ion Beam (FIB), which is the most commonly used technique to mill micropillars. 

Some limitations of this approach are related to the micropillar taper angle; the confinement of 

the pillar at the base of the specimen, imposed by the surrounding material; and misalignment between 
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the micropillar and the punch [123]. All of them can lead to non-uniformity of the micropillar stress state, 

underestimation of the elastic modulus, and possible buckling instead of compression, among others 

[55,121]. 

Given the strong influence of the specimen size in the mechanical response, most of the recent 

investigations have been advocated to fully describe and understand the size effect in strength and 

plasticity by means of micropillar compression, e.g. [57,124–126]. To the best knowledge of the author, 

no studies of this nature have been carried on cemented carbides. Csanádi et al. [111] compressed 

micropillars milled in basal and prismatic oriented grains of WC in a WC-Co cemented carbide, to study 

the influence of the orientation of WC in their mechanical response. More recently, Tarragó et al. [114] 

deepened in the mechanical deformation and failure of ceramic-metal composite by compressing 

micropillars of a WC-Co composite with 15 wt.% of Co. They revealed that carbide-carbide and carbide-

binder interfaces are preferential sites for irreversible deformation and failure phenomena. Furthermore, 

plasticity phenomena were found preferentially in the binder phase close to the WC/Co interfaces where 

maximum triaxiality stress conditions prevail. 

Actual interest in using cemented carbides in tools and components ranging from the decimeter 

to the nanometer sizes requires a deep understanding of its mechanical behavior at small scales, 

including the effect of the specimen size. In this regard, further investigation should be done not only to 

evaluate the mechanical response at small length scales, but also to stablish the influence of the 

microstructural parameters in the mechanical response of small specimens. 

1.7.2. Hardness measured at small length scales  

Macro- and microindentation tests are not well suited to determine the micromechanical 

properties of individual constitutive phases in cemented carbides, due to the small sizes of binder’s 

means free path and mean carbide grain size usually found in hardmetals. For these materials 

nanoindentation is a more appropriate technique to determine mechanical properties such as hardness 

and elastic modulus for their constitutive phases. 

Compared with traditional hardness testing, nanoindentation allows to evaluate mechanical 

response of individual phases heterogeneously distributed in the bulk material. Among its advantages, 

it is possible to set penetration depth and/or maximum load in the equipment; the elastic modulus can 

be directly determined from test data; specimen volume can be in the order of tens of microns; and the 

mechanical properties can be determined without the need to visualize the residual imprint [127]. 

However, some disadvantages can be mentioned such as the need of a good surface finish in order to 
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avoid errors in determination of the contact point due to high roughness; errors in measurements due 

to thermal drift; and errors in hardness and elastic modulus values, due to the rounding effect of the 

nanoindenter tip [128].  

Hardness (H) and elastic modulus (E) are the most commonly measured properties as a function 

of the displacement into surface, determined due to the presence of the continuous stiffness module 

(CSM) in the equipment. This allows reliable determination of both properties at the same time [129], 

directly extracting them from the loading-unloading or load-displacement (P-h) curves [128]. 

Indentation size effect 

Hardness values calculated at different applied loads, from mN to N or from the macro to nano-

scale, are completely different. At low applied loads i.e. low penetration depths, hardness values are 

higher than those obtained at higher loads; this phenomenon is known as indentation size effect (ISE) 

[127]. It is caused by possible combination of several mechanisms as strain gradients effects, roughness 

of specimen surface, irregularities of the deformed volume, and activation of different mechanisms in 

the elastic/plastic deformation regime [127]. 

Nix and Gao [130] proposed the following relation to determine accurately the hardness (H) 

without any ISE effect: 

𝐻

𝐻0
= √1 +

ℎ∗

ℎ𝑖
                                                                Equation 6  

where H is the hardness for a given depth of indentation hi, H0 is the hardness in the limit of infinite 

depth, and h* is a characteristic length that depends on the shape of the indenter. 

Indentation length scale 

Determination of an intrinsic mechanical properties of the materials comprising a given 

representative elementary volume (REV) can be done by indentation data acquired by considering a 

critical indentation depth to avoid significant length scale effect [131]. 

By fixing indentation depth and grid size, the imprint and the plastic field inside each phase are 

confined [113]. A good approximation is proposed by Constantinides et al. [131] where REV and 

characteristic size (L) must obey the length scale separability condition (Equation 7), where (h, a) are 

the indentation depth and indentation radius, D is a characteristic microstructural length scale, and d is 
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the characteristic size of the largest microstructural or mechanical heterogeneity contained in the REV. 

A good estimate according to Ref. [131] is that D is of the order of 3 times the penetration depth for 

Berkovich indentation. 

𝑑 ≪ 𝐿 ≪ (ℎ, 𝑎, 𝐷)                                                     Equation 7 
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2 Aims and scope 

Given the nature of hardmetals they are mostly used in strategic industrial sectors such as 

aerospace, oil and gas, tool industry, among others. With the current need to substitute Co and WC by 

alternative binders and carbides that outcome the severe working conditions, comes the need to 

understand the role of each constitutive phase in the overall mechanical response of the composite. In 

this sense, mechanical testing at small length scales arises as a suitable approach to study mechanical 

response, deformation phenomena, and mechanisms of failure, localized at interest points along the 

composite constitution. 

Following the above ideas, the main objective of the present project is to evaluate the role of the 

chemical nature of their constitutive phases and microstructural features, i.e. mean WC grain size and 

binder mean free path, in the mechanical properties and response of cemented carbides evaluated at the 

micro- and nanometric length scales. For this purpose, uniaxial compression of micropillars and 

nanoindentation were found appropriate. Accordingly, several specific objectives are aimed: 

• Study of the sample size effect, i.e. micropillar diameter, on the micromechanical response of 

WC-Co, to accomplish reliability on the mechanical properties evaluated at small length scales. 

 

• Assessment of the influence of mean WC grain size and volume fraction of constitutive phases 

within micropillars, on the mechanical properties of W-Co determined by means of uniaxial 

compression of micropillars. 

 

• Evaluation of the intrinsic hardness of constitutive phases and flow stress for the constrained Co 

binder, of a Co-base cemented carbide with partial substitution of WC by the mixed 

(W,Ti,Ta,Nb)C cubic carbide, and its influence on the overall mechanical response of the 

composite. 

 

• Investigation of the influence of binder’s chemical nature on the plastic deformation phenomena 

and failure mechanisms induced by uniaxial compression in WC-base cemented carbides with 

partial and total substitution of Co as binder. 
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3 Experimental aspects 

3.1. Materials and sample preparation 

The main purpose of this PhD thesis is to determine the mechanical properties of cemented 

carbides at small length scales. The studied materials are in the scope of interest of Hyperion Materials 

& Technologies, who kindly provided them for the investigation. One of the main goals of the work is to 

determine the influence of microstructural parameters such as carbide mean size and binder mean free 

path, as well as of chemical nature of the binder in the mechanical behavior of cemented carbides. In 

doing so, three WC-Co cemented carbide grades with different WC mean grain sizes and two additional 

grades with partial and total substitution of Co as binder (WC-CoNi and WC-NiMo) were selected. 

Binder content of all the studied grades was selected to be similar, between 10 and 11 wt.%. 

Table 3.1 summarizes the proposed grades of cemented carbides to be evaluated in the present PhD 

thesis. There, the “Grade” column indicates the name used for each alloy according to the following order: 

binder content (in number)/binder’s chemical nature. WC mean grain size is classified in the “GS” 

column as: fine (F), medium (M) and coarse (C). 

Table 3.1. Composition and microstructural aspects for cemented carbide grades selected for the present study.  

Grade GS Binder Additives 
wt.% 

Binder 
dWC 

(µm) 
CWC 

λbinder 

(µm) 

WC-Co F Co Cr3C2 10 0.4 ± 0.2 0.5 ± 0.1 0.2 ± 0.1 

WC-Co M Co Cr3C2 11 1.1 ± 0.7 0.4 ± 0.1 0.4 ± 0.3 

WC-Co C Co  10 2.3 ± 1.4 0.3 ± 0.1 0.7 ± 0.5 

WC-CoNi M CoNi  8 Co – 2 Ni 1.0 ± 0.8 0.4 ± 0.1 0.4 ± 0.3 

WC-NiMo M NiMo Cr3C2 9 Ni – 1 Mo 1.0 ± 0.8 0.4 ± 0.1 0.4 ± 0.3 
WC-(W,Ti,Ta,Nb)C-Co M Co  11 0.8 ± 0.2 0.5 ± 0.1 0.4 ± 0.2 

A good surface finish is mandatory to obtain reliable measurements of microstructural parameters, as 

well as results from micromechanical testing. Before polishing, samples were cut and mounted. The 

polishing was done according to standard ASTM E3-01 [132] in a semiautomatic polisher following the 

steps shown in Table 3.2. The las step with colloidal silica was repeated several times to obtain an average 

roughness Ra below 0.3 µm. After polishing, the samples were cleaned in acetone within an ultrasonic 

bath for 30 min. 
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Table 3.2. Polishing steps for surface sample preparation. 

Step Time (min) Disc/Cloth Speed (rpm) Force (N) 

1 5 MD Piano 120 150 15 
2 5 MD Piano 220 150 15 
3 5 MD Piano 500 150 15 
4 10 MD Piano 1200 150 15 
5 20 Diamond paste 30 µm 150 15 
6 15 Diamond paste 6 µm 150 15 
7 5 Diamond paste 6 µm 150 10 
8 30 Diamond paste 3 µm 100 15 
9 10 Colloidal silica 50 10 

Mean WC grain size was determined by following LI method according to standard ISO4499 [42] with 

six SEM micrographs (Figure 3.1), acquired with a SEM Jeol JSM-7001F unit. Two-phase parameters, CWC 

and λbinder, were estimated from best-fit empirical equations given in the literature [38,45,49].  

 

Figure 3.1. SEM images of the microstructures of the cemented carbide grades studied in this PhD thesis: a) WC-CoF; b) WC-

CoM; c) WC-CoC; d) WC-CoNi; e) WC-NiMo; and f) WC-(W,Ti,Ta,Nb)C-Co. 

3.2. Microscopy techniques 

3.2.1. Scanning Electron Microscopy (SEM) 

In material science, SEM is a widely used technique for characterization, given its high resolution 

and capacity to produce image of objects ranging from micro to nanometer scale [133]. In this work, SEM 

was used for microstructural characterization of the materials, and in combination with other powerful 

techniques such as FIB for sample preparation at the micrometer length scale and a nanoindenter, to 

perform in-situ the micromechanical testing in-situ.  
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A SEM consists of a source of electrons, a column where electrons travel, an electron detector, a 

sample chamber and a computerized display where images are viewed. In a SEM, an electron beam is 

produced by an electron gun and guided through a column by electromagnetic lenses towards the surface 

of the sample. The system is placed inside a chamber with ultra-high vacuum (around 10-6 torr), to avoid 

deacceleration of electrons. The system is provided with detectors that finally collect the electrons 

emitted by the sample because of the interaction with the electron beam. Thus, an image is formed with 

information of energy from detected electrons, their intensity and location of emission [133,134]. The 

electron beam interacts with atoms on the surface and inside the volume of the specimen. The two more 

important signals detected come from the secondary and backscattered electrons. The first provides 

contrast with variation of height in the surface of the samples; thus, the image in return correspond to 

the topography of the sample. The second reveals contrast between different elemental compositions 

according to their molecular weight. Thus, constitutive phases of a material can be identified because 

the variations in the grey tones found in the image [135]. 

3.2.2. Electron Back Scatter Diffraction (EBSD) 

EBSD is a powerful technique used to identify individual grain orientation, constitutive phases of 

a sample and their distribution, and local texture, among others. In the present PhD thesis, EBSD was 

used to identify crystallographic orientation of the carbide phases that constituted the WC-

(W,Ti,Ta,Nb)C-Co composite studied (see Article III). The technique is based in the generation and 

interpretation of diffraction patters from backscattered electrons in a SEM, also known as Kikuchi 

patterns. A scheme of the formation of Kikuchi patters is shown in Figure 3.2. 

 

Figure 3.2. a) Scheme of the formation of Kikuchi patterns. b) Kikuchi pattern of Cadmium [136].  

Backscatter diffraction from a crystalline material generates a pattern of parallel bright bands in a 

phosphor screen [136]. This pattern is characteristic of the crystallographic structure of the sample and 

the orientation of the sample region from where it was generated [137]. In the referred screen, the center 

of the projection is the point of incidence of the primary electron beam on the specimen surface, the 
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lattice planes can be thought as a pair of large angled cones stretched out to intersect the screen (as seen 

in Figure 3.2), and the plane between these cones is the projection of the diffracted plain in the screen 

[136].  

3.2.3. Focused Ion Beam (FIB) 

The FIB consists of a vacuum system and chamber, a liquid metal ion source, an ion column, a 

sample stage, detectors, gas delivery system and a computer to run the instrument (see Figure 3.3). It is 

usually incorporated to another analytical instrument as a SEM. Vacuum is necessary to avoid source 

contamination, prevent electrical discharges in the high voltage ion column as well as interaction of the 

ion beam with gas molecules [138]. Liquid Gallium (Ga) is commonly used as metal source, because it 

has a low melting point (29.8 °C) and low volatility at melting point. Therefore, there is no reaction or 

interfusion with tungsten needle, providing a long life of the metal source.  Among other characteristics, 

Ga also has a low vapor pressure allowing its use in its pure form. Moreover, it has mechanical, electrical 

and vacuum properties which contribute to its selection as source of ions [138].  

 

Figure 3.3. Scheme of the FIB system. 

 The Ga ions (Ga+) are accelerated down the column with a voltage ranging between 5 and 50 keV. 

A set of condenser and objective lenses is used to determine the probe size and focus the beam towards 

the sample. A detector is employed to collect secondary electrons for image formation [138]. In the 

present PhD thesis, two SEM/FIB systems were used to mill micropillars and produce TEM lamellae from 

compressed micropillars. In the case of a dual beam system (SEM/FIB), the electron column is placed 

vertically in the chamber, whereas the ion column is located at an angle of 54° with respect to the first 

one. Thus, the area of interest is tilted, to co-focus both beams to the surface of the sample.  

One important parameter to take into consideration when milling micropillars, is the aspect ratio 

- defined as the ratio between the pillar length (lpillar), and its diameter at the top (dpillar). Aspect ratio can 

magnify the pillar sink-in upon compression, leading to an inaccurate measurement of the pillar 
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deformation. Moreover, high aspect ratio can lead to premature buckling of the pillar. The second 

parameter to consider when milling micropillars is the taper angle. High taper angles can also lead to 

errors in estimation of stress from ideal strain-gradient free cylindrical micropillars. In this regard, it has 

been shown that an aspect ratio higher than 2 [55] and taper angle less than 5° [139] can have negligible 

effect in the calculated stress.  

Considering the above restrictions, milling of micropillars for the present study was done by 

following a two-stage milling process. The first step was done with a dual beam Zeiss Neon 40 FIB/Field 

Emission SEM (FESEM) at Barcelona Research Center in Multiscale Science and Engineering (Universitat 

Politècnica de Catalunya). The second one was done with a FEI-Helios Nanolab 600 dual-beam FIB at 

the Italian Institute of Photonics and Nanotechnologies. In both cases a Ga+ source operated at 30 kV 

was used. Micropillars were obtained by using a built-in pattern generator exploiting a “circle/donut” 

shape with user-defined parameters, including internal and external diameters, dwell time and number 

of passes.  The incidence angle of the ions was 36° in both cases and the currents were 4 nA and 500 pA 

for the first and the second milling step, respectively. With this two-step methodology, interaction of 

Ga+ was decreased, given the high exposure angle, low current and thus, less exposure time [140]. 

Dimensions of micropillars milled by FIB are summarized in Table 3.3. 

Table 3.3. Summary of dimensions of micropillars milled by FIB in cemented carbides samples: micropillars diameter (dpillar), 

aspect ratio (lpillar/dpillar) and taper angle (α).  

Grade dpillar (µm) lpillar/dpillar α (°) 

WC-Co (F) 2.1 ± 0.0 3.3 ± 0.1 3.4 ± 0.5 

WC-Co (M) 1.1 ± 0.4 3.7 ± 1.4 2.5 ± 0.1 

WC-Co (M) 2.0 ± 0.1 3.7 ± 0.1 3.1 ± 0.5 

WC-Co (M) 3.8 ± 0.0 2.5 ± 0.0 1.8 ± 0.2 

WC-Co (C) 1.9 ± 0.1 3.9 ± 0.2 3.1 ± 0.5 

WC-CoNi  2.0 ± 0.0 3.6 ± 0.1 3.1 ± 0.3 

WC-NiMo 2.0 ± 0.1 3.8 ± 0.3 3.4 ± 0.4 

WC-(W,Ti,Ta,Nb)C-Co 1.6 ± 0.0 3.8 ± 0.2  1.4 ± 0.9 

As mentioned above, a Zeiss Neon 40 FIB/FESEM was used to mill lamellae from the micropillars 

after uniaxial compression, to identify plastic deformation mechanisms in their constitutive phases by 

means of Transmission Electron Microscopy (TEM) inspection. Prior to milling the lamellae, a Pt layer 

was deposited in all the surface of the micropillars to avoid amorphization effect due to Ga+ interaction 

with the samples. Once the lamellae were extracted from the sample and placed in a copper (Cu) grid, 

they were polished with a 5 kV current down to around 60 nm of thickness. The process followed to mill 

micropillars and lamellae with FIB is shown in Figure 3.4. 
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Figure 3.4. Image chart of the process followed to mill micropillars and TEM lamella with FIB system: a) selected surface of the 

material; b) micropillar produced with the first step of milling; c) selection of the dimensions of the second annular milling 

process; d) micropillar with final dimensions, obtained after second milling step; e) milling of 12 micropillars in each grade; f) 

image of the micropillars’ matrix in the surface of the sample; g) micropillar selected for TEM lamella covered with Pt layer; and 

h) lamella produced from one micropillar milled in a WC-CoNi composite welded to a Cu grid.  

3.2.4. Transmission Electron Microscopy (TEM) 

TEM is an advance characterization technique commonly used in materials science to investigate 

microstructure and deformation mechanisms in the submicron and nanometer regime, given its high 

spatial and analytical resolution (down to 0.1 nm). In a TEM a high-energy beam of electrons interacts 

with a very thin samples (usually below 200 nm in thickness). A TEM uses both particle and wave 

characteristics of electrons to generate a tremendous range of signals so images, diffraction patterns (DPs) 

and several different types of spectra can be obtained [141].  

In a conventional TEM, a thin specimen is irradiated with an electron beam of uniform current 

density (usually 100-200 kV), emitted in the electron gun by thermionic, Schottky or field emission. A 

condenser-lens system allows variation of the illumination aperture and the area of the specimen under 

consideration. The distribution of electrons intensity behind the sample is imaged with a lens system 

onto a fluorescent screen coupled with a fiber-optic plate to a charge coupled device (CCD) camera, to 

obtain a digital image [142]. A scheme of a TEM is shown in Figure 3.5. 
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Figure 3.5. Schematic representation of the ray path in a TEM equipped for additional x-ray and electron energy-loss 

spectroscopy [142]. 

In TEM the primary beam generates a bright field image, whereas the Bragg-reflected beam 

generates a dark one. In crystalline materials, both beams give a diffraction contrast, which is important 

for imaging of crystal defects [142]. Furthermore, DPs resulting from variations of the diffracted beams 

in different regions of the specimen, allows to relate crystallography features to attained images [141]. In 

this PhD thesis a JEOL JEM-2100 LaB6 TEM unit at Scientific and Technological Center of Universitat de 

Barcelona was used. The equipment was operated at 200 kV. Bright and dark field TEM images were used 

to discern deformation features in constitutive phases of medium-grained WC-Co, WC-CoNi and WC-

NiMo cemented carbide grades.  

3.3. Uniaxial compression of micropillars 

Uniaxial compression tests were done in-situ, using a nanoindenter INSEM Nanomechanics placed 

inside a high-resolution field-emission-gun scanning electron microscope (FEG-SEM, LEO 35, Zeiss), and 

equipped with a flat-diamond punch of 5 µm in nominal diameter. The equipment was facilitated by the 

Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). 

The experimental setup can be seen in Figure 3.6.  
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Figure 3.6. Nanoindentation system mounted in a SEM holder: a) detail of motion station and location of samples; and b) detail 

of nanoindentation system and nanoindentation tip. 

Uniaxial compression tests were carried under displacement-control mode. Maximum 

nanoindentation depth into the sample was set to have elastic and plastic response, avoiding catastrophic 

failure. Load-displacement (P-h) data was continuously recorded during the tests.  Nominal stresses and 

strains were directly calculated from the load-displacement data. Effective elastic deformation of both 

the indenter and the bulk material below the micropillar was extracted, to calculate strains of 

micropillars. In doing so, an approach derived by Sneddon [143,144] was used, according to the following 

expression: 

 xSneddon = (1-νi2/Ei)*(Fmeas/dt) + (1-νb2/Eb)*(Fmeas/db)                                  Equation 8 

where xSneddon is the displacement corrected by the Sneddon’s approach, which is subtracted from the 

total displacement; Fmeas is the measured force; dt and db are the diameters of the micropillar at the top 

and bottom respectively; and Young’s modulus and Poisson’s ratio of the diamond tip, Ei and νi, are 1141 

GPa and 0.07 respectively [145]; Young’s modulus of the bulk is Eb, taken to be 577 GPa for WC-Co grades 

and WC-NiMo one, 593 GPa for WC-CoNi, and 475 GPa for WC-(W,Ti,Ta,Nb)-Co. Poisson’s ratio νb was 

considered as 0.24 for all grades [146]. Calibration of the equipment was done on fused silica micropillars 

of known elastic modulus (72 GPa) [145].  

Nominal stresses (σ) and strains (ε) values were directly determined from the P-h curve at 1 µm 

depth from the micro-pillars surface. This was done to avoid milling effects (e.g. round shape of the pillar) 

and/or because such location is the place where the maximum deformation is located during the 

compression process - in agreement with protocol followed by the scientific community addressing 

micropillar compression testing (e.g. [57,119,147]) - according to the following expressions: 

                                                                   σ = P/A0                                                                           Equation 9 

ε = (L0-h)/L0                                                                      Equation 10 
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where P and h are the load and displacement respectively from the P-h curve, A0 is the area of the 

micropillars at 1 µm depth, and L0 is the initial length of the micropillars. Stress-strain curves were drawn 

with the software OriginLab - OriginPro version 9.1. 

The characteristic microstructural length selected to evaluate size effect in uniaxial compression 

of micropillars tests was WC mean grain size. Sizes of micropillars were selected according to the ratio 

between diameter of micropillar and WC mean grain size (dpillar/dWC). On one hand, a WC-Co grade with 

medium WC grain size (WC-CoM) was selected to mill micropillars of 1, 2 and 4 µm in diameter, to 

evaluate the effect of the sample size on its micromechanical response. On the other hand, micropillars 

of 2 µm in diameter were milled in fine, medium and coarse WC-Co grades, to evaluate the effect of the 

volume fraction of each constitutive phase within the micropillar, on the micromechanical response. 

Finally, based on the results obtained from the size effect study, a dpillar/dWC ratio of 2 was selected to 

evaluate the effect of partial and total substitution of Co as binder, and partial substitution of WC. A 

summary of dpillar/dcarbide ratios selected for each stage of the study may be found in Table 3.4.      

Table 3.4. Ratio diameter of micropillar and WC mean grain size (dpillar/dcarbide) selected in this study to evaluate sample size 

effect on the micromechanical response of cemented carbides by means of uniaxial compression of micropillars.  

dpillar 

dpillar/dcarbide 

WC-CoF WC-CoM WC-CoC WC-CoNiM WC-NiMoM 
WC-

(W,Ti,Ta,Nb)C-
CoM 

4  3.6     

2 5.1 1.8 0.9 1.9 2.0 2.0 

1  0.9     

3.4. Massive nanoindentation 

A massive nanoindentation protocol was followed to evaluate the feasibility to determine the 

intrinsic hardness of the constitutive phases and the plastic flow of the binder within the complex alloy 

WC-(W,Ti,Ta,Nb)C-Co. Maximum indentation depth of 200 nm was considered suitable to avoid any 

size or scale effect, based on the study done by Roa et al. [148]. In such study it was shown that 

indentation imprint and plastic field were confined within WC particles, in a WC-Co grade with WC 

mean grain size of 1.1 ± 0.7 µm.  

Nanoindentation measurements were done with a Nanoindenter XP (MTS) using the continuous 

stiffness measurement module (CSM) with a Berkovich tip. Before performing the nanoindentations, the 

contact area of the tip was calibrated with fused silica with known value of modulus, E=72 GPa and a 
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Poisson’s ratio of around 0.17. Intrinsic hardness of each constitutive phase was determined from the P-

h curves, following the Oliver and Pharr method [145]. 

Hardness and elastic modulus of the composite bulk material was determined before massive 

nanoindentation testing. Arrays of 3 x 3 nanoindentations were done with a penetration depth of 2000 

nm (or until reaching a maximum applied load of 650 mN) and 50 µm of distance between each 

indentation to guarantee that no overlapping of the residual imprints occurred. 

To determine the intrinsic hardness of the constitutive phases of the cemented carbide grade, two 

arrays of 20 x 20 nanoindentations were done with a maximum displacement into surface of 200 nm and 

a distance between nanoindentations of 3 µm, assuring that the number of measurements obtained were 

sufficient to obtain representative data to be analyzed by means of the statistical method followed. 

3.4.1. Statistical method for determination of intrinsic hardness of constitutive phases 

Hardness for each constitutive phases was determine following the statistical method proposed by 

Ulm et al. [131,149,150]. A large data from indentations arrays was analyzed and subsequently 

deconvoluted by approximating the distribution of the mechanical properties (pi) to a Gaussian 

distribution, described by the following expression: 

𝑝𝑖 =
1

√2𝜋𝜎𝑖
2

𝑒𝑥𝑝
(−

(𝑥−µ𝑖)
2

2𝜎𝑖
2 )

                                               Equation 11 

where σi is standard deviation and µi is the arithmetic mean value of hardness (H) for all indentation Ni 

in the phase i. 

Mean values of µi and σi were acquired from fitting the cumulative distribution function (CDF) 

using a sigmoid shape error function, written as Equation 12 [91,151]. 

𝐶𝐷𝐹 = ∑
1

2
𝑓𝑖𝑒𝑟𝑓 (

𝑥−𝑥𝑖

√2𝜎𝑖
)𝑖                                                Equation 12 

where  

 ∑ 𝑓𝑖
𝑛
𝑖=1 = 1                                                          Equation 13 

The fitting process was programmed to be completed when the chi-square χ2 tolerance is less than 

1.10-15. 
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Software Origin® Pro 9.1 was used to analyze the data obtained. Fitting and deconvolution process 

was done by following Equation 14, considering the following constitutive phases: WC basal, WC 

prismatic, mixed cubic carbide (W,Ti,Ta,Nb)C and Co binder. 

𝐶𝐷𝐹 =
1

2
𝑓1 (1 + 𝑒𝑟𝑓 (

𝑥−𝑥1

√2𝜎1
)) +

1

2
𝑓2 (1 + 𝑒𝑟𝑓 (

𝑥−𝑥2

√2𝜎2
)) +

1

2
𝑓3 (1 + 𝑒𝑟𝑓 (

𝑥−𝑥3

√2𝜎3
)) +

1

2
(1 − 𝑓1 − 𝑓2 − 𝑓3) (1 +

𝑒𝑟𝑓 (
𝑥−𝑥4

√2𝜎4
))                                                                                                                                                                           Equation 14 

3.4.2. Flow stress (σflow) of the binder phase 

Experimental hardness values for the constrained binder obtained by statistical analysis of data 

resulting from nanoindentation tests show wide scatter due to the uneven local constrain imposed by 

carbide particles. Thus, they cannot be used directly as reliable data for modelling and/or microstructural 

design optimization. However, it is a basic parameter to be used in determination of the flow stress (σflow) 

for the constrained metallic binder which have been proved to give reliable results [113]. 

σflow for the constrained binder was determined from the hardness value obtained by modification 

of the statistical method. In doing so, it was assumed to be the ratio between the measured Vickers 

hardness (HV) and a constraint factor (ψ) reported to be in the range of 3-4 for WC-Co hardmetals 

(depending on binder content or carbide grain size) [152]. The influence of the carbide particles 

underlying binder pools in which an indentation imprint was found, was evaluated by means of thin film 

models [153]. Finally, results were compared to plastic deformation phenomena (pop-ins) observed in σ-

ε curves previously obtained by means of uniaxial compression of micropillars. 
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4 Scientific publications 

The present study is divided in two parts. The first one corresponds to the evaluation of the possible 

size effect on the mechanical properties and behavior of cemented carbides due to microscale testing 

(Articles I and II). The second one addresses the role of both WC and binder on the mechanical response 

at small length scales of hardmetals, by studying composited with partial and total substitution of Co as 

binder and WC as hard phase (Articles III and IV). In addition, a validation of the testing protocols was 

done by linking strain phenomena from uniaxial compression of micropillars with flow stress of the 

constrained Co binder from analysis of data obtained by massive nanoindentation testing (Article III). 

Following the above structure, scientific publications are presented next.  
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Article I - Scale effect in mechanical characterization of WC-Co 

composites 

 
D.A. Sandoval, A. Rinaldi, J.M. Tarragó, J.J. Roa, J. Fair, L. Llanes. Int. J. Refract. Metals Hard Mater. 

72 (2018) 157-162.    

 

  

 

 
 

ATTENTION¡¡ 

Pages 71 to 76 of the thesis are available at the editor’s web. 

https://www.sciencedirect.com/science/article/abs/pii/S0263436817307722 

Doi: 10.1016/j.ijrmhm.2017.12.029 

  

 
 
 
 
 
 
 
 
 
Uniaxial compression of micropillars is a technique widely used for evaluation of mechanical properties 

of metallic and ceramic materials. However, its implementation for studying composite materials is quite 

recent. For pure metals and metallic alloys, the effect on the specimen size is well understood - on the 

basis of a Hall-Petch relationship. This first article addresses the size effect issue on the mechanical 

response of WC-Co cemented carbides by means of uniaxial compression of micropillars. In doing so, 

micropillars of different diameters were milled on one medium-grained WC-Co sample, with dpillar/dWC 

ratios ranging from 4 to 1. Aspect ratio and taper angles were kept similar on all micropillars. A clear 

evidence of size effect was found: the smallest micropillar showed deformation/failure mechanisms 

observed for WC alone. For bigger sample sizes, the mechanical response involved several mechanisms 

such as plastic flow of Co binder, deformation of Co and WC and phenomena at WC/WC and WC/Co 

interfaces, associated with the composite nature of the bulk material. 

https://www.sciencedirect.com/science/article/abs/pii/S0263436817307722
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Article II - Influence of specimen size and microstructure on 

uniaxial compression of WC-Co micropillars 

 
D.A. Sandoval, A. Rinaldi, A. Notargiacomo, O. Ther, E. Tarrés, J.J. Roa, L. Llanes. Ceram. Int. 45 (2019) 

15934-15941 .   
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Pages 78 to 85 of the thesis are available at the editor’s web 

 https://www.sciencedirect.com/science/article/pii/S0272884219312118 

Doi 10.1016/j.ceramint.2019.05.102 

 
 
 
 
 
 

The matter of size effect and its influence on the mechanical response of cemented carbides is deepened 

in this study. Micropillars of 2 µm in diameter milled in three WC-Co grades with fine, medium and 

coarse carbide grain size were investigated (dpillar/dWC ratios of 5, 2 and 1, respectively). First, evaluation 

and selection of a representative elementary volume (REV) – based on volume fractions of constitutive 

phases – was done, to consider each sample as a bulk. Experimental findings indicate that volume 

fraction of phases within micropillars should be at least 85% that of the bulk, to overcome the size effect 

issue. By selecting the correct sample size, elastic modulus estimated from load-displacement curves, 

was within the range expected for WC-Co with similar volume fractions of binder. The relationship 

between microstructure and mechanical response was evidenced as strain bursts in σ-ε, associated with 

deformation/damage features observed in the micropillars after uniaxial compression. 

https://www.sciencedirect.com/science/article/pii/S0272884219312118
https://doi.org/10.1016/j.ceramint.2019.05.102
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Hardness of constitutive phases of a complex cemented carbide was evaluated by means of massive 

nanoindentation. The methodology followed allowed to evaluate intrinsic hardness of WC (and its 

dependence on the crystallographic orientation, i.e. basal and prismatic planes), the mixed cubic carbide 

(W,Ti,Ta,Nb)C, and the constrained Co binder. Results showed that the mixed cubic carbide is 

significantly harder than WC, regardless the hardness anisotropy exhibited by the later. By further 

deconvolution of data gathered for Co binder – using thin film models - it was found that hardness and 

flow stress of the metallic binder are strongly influenced by the hardness of the substrate, i.e. carbide 

particles. Effective flow stress of the constrained metallic binder was estimated with the attained 

hardness values and validated by correlating it with strain bursts occurring at different stress and strain 

levels, as discerned in σ-ε curves determined from uniaxial compression testing of micropillars. 

https://www.sciencedirect.com/science/article/abs/pii/S0925838818341185
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Uniaxial compression of micropillars was used to induce plastic deformation and damage in micropillars 

milled in WC-Co, WC-CoNi and WC-NiMo cemented carbides, with similar binder content and 

microstructural parameters. After testing, yielding events discerned in σ-ε curves, pointed out that plastic 

deformation at initial loading is intrinsic to the chemical nature of the binder. In this sense, deformation 

and plastic flow of binder was strongly dependent on binder free surfaces within the micropillar, and by 

constraining effect of the surrounding WC particles. Furthermore, yielding phenomena and strain 

hardening was higher for NiMo and lower for CoNi binders, compared to Co one. TEM inspection 

indicated different main plastic deformation mechanisms as function of chemical nature of the binder: 

fcc to hcp transformation for Co; fcc to hcp transformation with dislocation-mediated activity for CoNi; 

and dislocation activity for NiMo. Yield stress related to glide at WC/WC differed for the three materials, 

although sliding resistance at carbide interface were found to be alike for all of them. 

https://www.sciencedirect.com/science/article/abs/pii/S0263436819304202
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5 Summary of results 

In this PhD thesis, systematic testing protocols to evaluate the micromechanical behavior of 

cemented carbides have been proposed and implemented. They focused on the assessment of the 

intrinsic properties and response of the constitutive phases of these materials. The thesis followed a 

structure in which reliability of the testing protocols was first evaluated based on size effects linked to 

small scale testing. A minimum representative elementary volume (REV) was found suitable to obtain 

reproducible results. Then, findings obtained by uniaxial compression of micropillars were compared 

with those determined through nanoindentation testing, regarding local properties of the constrained 

binder. Finally, micromechanical response of cemented carbides with partial substitution of WC as well 

as partial or total substitution of Co was evaluated and compared to that of WC-Co.  

5.1. Evaluation of the size effect on mechanical characterization of cemented carbides at small 

length scale 

Size effect issue was approached by two perspectives. The first one regarding the ratio between 

micropillar diameter and carbide mean grain size (dpillar/dcarbide). The second one, concerning the volume 

fraction of phases contained in one micropillar.  

As it could be expected, the size of the sample influences the overall mechanical response of the 

micropillar. In this sense, as dpillar/dcarbide ratio is lower than 1, i.e. the diameter of the micropillar is within 

the range of or smaller than the mean carbide grain size, the response observed is that of the carbide 

phase. Furthermore, plastic deformation of WC depends on its orientation with respect to the 

compressive load. In addition, higher stiffness values than those expected for the composite are needed 

to induce an elasto-plastic behavior. On the other hand, as dpillar/dcarbide ratio gets around 2, the 

mechanical response of the micropillar emulates that of the bulk material in terms of elastic behavior. 

 Regarding plastic deformation, stress-strain curves suggest that observed phenomena after 

compression are a combination of intrinsic response of each constitutive phase of the material (metallic 

binder and carbides), the constraint degree of the binder by the surrounding carbide particles, and the 

orientation and disposition of phases within the micropillar.  

From the representative elementary volume (REV) perspective, the volume fraction of constitutive 

phases within the micropillars was compared to that of the bulk. To overcome the size effect issue, it was 

found that the volume fraction of both binder and carbide phases in the former should differ less than 

15% from those in the later. 
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The size effect issue in uniaxial compression of micropillars of cemented carbides can be avoided 

with a proper selection of a sample size, in terms of micropillar dimensions, microstructural length scale 

of the bulk material, and volume fraction of constitutive phases. In this PhD thesis, such condition was 

found to be satisfied for micropillars with dpillar/dcarbide ratio of 2, containing volume fraction of phases 

within the micropillar no more than 15% different from those determined in the bulk material. It allowed 

to get both an elastic response comparable to that of the bulk and reproducible results in the elasto-

plastic behavior of the tested micropillars. Using specimens with appropriated dimensions yielded elastic 

modulus was 430 ± 47 GPa and 625 ± 103 GPa for medium- and fine-grained grades respectively, within 

the range of the values expected for a WC-Co cemented carbide with comparable volume fraction of 

binder. 

Finally, constraining effect of the surrounding carbide particles was evidenced on the loading 

curves as pop-in events. Such strain bursts were found at higher stress levels for the fine grade than for 

the medium one, in agreement with the lower effective ductility expected from a more constrained 

binder in the former than in the later. 

5.2. Mechanical response of cemented carbides with partial and total substitution of Co and 

partial substitution of WC, by means of small-scale testing 

The issue of criticality of WC and Co as primary raw materials for cemented carbides is a major 

motivation for this PhD thesis. Therefore, intrinsic mechanical properties and response of constitutive 

phases were evaluated for one cemented carbide with partial substitution of WC and other two with 

partial and total substitution of Co as binder.  

Implementation of massive nanoindentation and statistical analysis of the gathered data allowed 

to validate the anisotropic character of the intrinsic hardness for WC: around 19 and 25 GPa for prismatic 

and basal planes respectively, in fair agreement with values found in the literature. It was different from 

the isotropic behavior discerned, as expected, for the intrinsic hardness of the mixed cubic carbide 

(W,Ti,Ta,Nb)C. However, variations from 23 to 38 GPa were found in this cubic phase, possibly associated 

with nonstoichiometric nature and/or heterogeneity in chemical composition of the carbide.  

Intrinsic hardness for the Co binder was determined to be around 6 GPa, after consideration of the 

constraining effect of the surrounding carbide particles. Such value is 36% lower than the one found 

directly from nanoindentation testing. Furthermore, it was found that constraining of the metallic binder 

imposed by the ceramic phase also affects its flow stress, ranging from 1.3 to 2 GPa depending on the 

carbide particles surrounding it. 
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 Plastic deformation phenomena occurring in WC and binders with different chemical nature were 

evaluated for WC-Co, WC-CoNi and WC-NiMo grades. Results showed that plastic deformation of the 

binder phase differs depending upon its chemical nature. In this sense, Co binder exhibited hcp laths 

preferentially, as a direct consequence of the stress-induced fcc to hcp martensitic transformation. By 

substituting Co by Ni, the later mechanisms shifted towards planar slip. Dislocations arrays were 

heterogeneously observed within binder regions, possibly due to an inhomogeneous distribution of 

stresses and strains because differences in stiffness of the constitutive phases as well as variable geometry 

within phase assemblage of the composite. 

 Constraining of metallic binder – together with intrinsic ductility of the metallic binder alloy – 

was evidenced as pop-in events in the stress-strain curves. They emerged at different stress/strain levels 

for micropillars milled in the same cemented carbide grade. However, resistance at WC/WC boundaries 

was estimated (around 2 GPa) to be independent of the chemical nature of the binder.  

Understanding the mechanical behavior of each constitutive phase of cemented carbides is a key 

factor for tailoring new alloys on the basis of microstructural design. In doing so, two testing protocols 

at micro- and nanometric length scales were systematically followed to evaluate such intrinsic behavior 

and its effect on the overall response of cemented carbides. On one hand, massive nanoindentation and 

the analysis of statistical data through methods proposed for composite materials, was a validated as a 

successful approach to determine the intrinsic hardness of constitutive phases in a simple binder-carbide 

structure, as well as in a more complicated one, composed by two carbides of different chemical nature. 

Furthermore, flow stress of binder was extracted from hardness values obtained from massive 

nanoindentation, and further treatment of data by thin film models (e.g. by using the Korsunsky and/or 

Puchi-Cabrera models). On the other hand, uniaxial compression of micropillars allowed to link plastic 

flow of the binder – determined from analysis of data gathered from massive nanoindentation testing – 

with strain bursts found in the stress-strain curve extracted from the loading-unloading cycle. 

Flow stress for the constrained metallic binder was estimated to be between 1.3 and 2.0 GPa. Those 

values were in satisfactory agreement with the stress levels at which pop-in events were later observed 

on stress-strain curves from uniaxial compression of micropillars. Higher and lower bounds should be 

linked to plastic flow of highly constrained and unconstrained metallic binder respectively. It sustains 

the reliable estimation of flow stress for the constrained metallic binder from the intrinsic hardness value 

evaluated from statistical analysis of the data attained through massive nanoindentation testing. 
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6 General conclusions and perspectives 

6.1 General conclusions 

In this PhD thesis, uniaxial compression of micropillars and massive nanoindentation were 

selected to evaluate the mechanical response of cemented carbides at small length scales, with the aim 

of understanding the role played by each phase in the overall mechanical response of the composite 

material. Based on the research carried and the results obtained, the following conclusions may be drawn: 

1. Mechanical response of cemented carbides evaluated by uniaxial compression of micropillars 

is size-affected. In this sense, for a sample size approaching the WC mean grain size, the 

mechanical behavior is that of the carbide phase. On the other hand, as the sample size gets 

bigger, the mechanical response is a combination of deformation and failure mechanisms of 

the constitutive phases which approaches to that of the bulk material. 

 

2. To overcome the size effect issue, an appropriate selection of the sample size - considering 

the ratio between the micropillar diameter and the mean carbide grain size – should be done. 

In this work it was found that an appropriate test specimen is obtained when the difference 

between the volume fraction of constitutive elements within micropillars and that of the 

bulk material is less than 15%. 

 

3. Uniaxial compression testing protocol followed in this work with imposed maximum load 

and displacement around 20 mN and 300 nm, respectively, allowed to obtain reproducible 

results regarding measured mean value and dispersion for elastic modulus. It was concluded 

after testing a population of micropillars milled on fine- and medium-grained grades of 

cemented carbides that met the size conditions referred above. 

 

4. Constraining effect imposed by the carbide particles on the metallic binder is evidenced in 

the loading part of stress-strain curves as strain-bursts linked to deformation and damage 

features observed on the compressed micropillars. They occur at stress levels which are 

proportional to the effective constraining degree of the metallic binder. Furthermore, the 

stress values at which local plasticity events are discerned agree with the flow stress ones 

estimated from hardness values obtained by means of massive nanoindentation; thus, the 

former may be considered as experimental validation of the latter. 
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5. Implementation of statistical analysis of massive nanoindentation data, allows to determine 

intrinsic hardness of constitutive phases of complex composites with more than one carbide 

phase. Furthermore, it allows to discern the isotropy/anisotropy character in hardness of 

them (e.g. anisotropic for WC, where basal orientation is around 30% harder than prismatic 

one). 

 

6. Assessment of intrinsic hardness of the constrained metallic phase - determined by data 

analysis from massive nanoindentation testing – requires further analysis based on thin film 

models. Within this regard, substrate influence on hardness values decreases as effective 

constraining of the ceramic particles on the metallic phase increases. 

 

7. Plastic activity at early stages of loading in uniaxial compression of micropillars corresponds 

to that of the binder, which is intrinsic to its chemical nature. In this sense, higher yield 

stresses and strain hardening rates (SHR) were found for NiMo binder. On the other hand, 

lowest values were found for the cemented carbide with partial substitution of Co by Ni. 

 

8. Frequency and stress/strain levels at which strain bursts occurred are dependent on the 

intrinsic ductility of the binder phase (through phase transformation, slip activation and/or 

dislocation activity), as well as on constraint degree imposed by surrounding carbide 

particles. 

 

9. Gliding of carbides at WC/WC interfaces was evidenced in stress-strain curves as a plateau-

like yielding event. Distribution of particles and orientation with respect to the applied load 

affect strongly the stress levels at which the former event occurs. Nevertheless, WC/WC glide 

resistance was similar (around 2GPa) for WC-Co, WC-CoNi and WC-NiMo. 

 

10.  Plastic deformation mechanisms within binder change from fcc-hcp transformation to 

dislocation-mediated activity as Co is substituted by Ni. For NiMo, dislocation density is 

affected by the amount of Mo in the alloy. Such effect was evidenced in stress-strain curves 

as a pronounced strengthening.    

6.2 Perspectives 

Nowadays the awareness on difficulties to obtain raw materials, together with their impact on the 

environment and most important, the human health, have led research to search and find other materials 

that can replace those considered critical. This issue is also an important reason for promoting research 
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on the hard materials community. In this PhD thesis it was considered the study of the mechanical 

response of cemented carbides at local length scales as the baseline to understand the role of each phase 

– hard carbide and soft metallic one – in the overall behavior of the composite material. Main goal behind 

it was to design new compositions with substitution of critical raw materials. Within this context, the 

major findings of this work were the development of a testing protocol to evaluate mechanical properties 

at small length scales, such as hardness and elastic modulus, and mechanical response, such as plastic 

deformation phenomena intrinsic of each constitutive phase, for cemented carbides.  

Furthermore, it was understood the effect of the constraining effect of the carbide particles on the 

metallic binder, which changes its elastic and plastic response at local scale. In this regard, testing 

protocols followed in this PhD thesis could be implemented at higher temperatures to evaluate the 

mechanical properties and response of the material under service-like conditions. 

Finally, the knowledge on the local response of constitutive phases gathered in this thesis and in 

future works, will be the input information for simulation models. It can further improve and accelerate 

the development of new cemented carbide alloys, designed for specific applications. In this sense, 

sequential sectioning of micropillars after uniaxial compression would be the next step to simulate all 

the phenomena occurring during testing in real time. Thus, tailoring of cemented carbides based on their 

microstructural parameters and the chemical nature of their constitutive phases, targeting a specific 

application, will become a less difficult and more effective task. 
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