
The Convenience for a Notation to Express Non-FunctionalCharacteristics of Software ComponentsXavier FranchDept. Llenguatges i Sistemes Inform�aticsUniversitat Polit�ecnica de Catalunyac/Jordi Girona 1-3, 08034 Barcelona Catalonia (Spain)Tel: (34) 3 4016965Fax: (34) 3 4017014Email: franch@lsi.upc.esAbstractSoftware systems are characterised both by their functionality (what the system does) andby their non-functionality (how does the system behave with respect to some observable at-tributes like performance, reusability, reliability, etc.). Both aspects are relevant to softwaredevelopment. However, non-functional issues have received little attention compared to func-tional ones. In this position paper we highlight the role of non-functionality, and we claim for anotation to deal with them. We enumerate some design principles for such a notation, and thenwe make a proposal, which allows to de�ne non-functional attributes of software, non-functionalbehaviour of components with respect to these attributes, and also non-functional requirementsover implementations.Keywords: Component, Non-Functional Attribute, Non-Functional Behaviour, Non-FunctionalRequirements.Workshop Goals: learning; to highlight a particular problem not always perceived as such; topropose a concrete notation to deal with this problem; to receive feedback from the componentprogramming community.
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/268899162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 BackgroundSince my graduation in the late eighties, I have worked at the University teaching and doingresearch, and also being a partner in some granted projects. All of these activities have taken theconcept of component as a prominent one, usually in the form of abstract data type.About my research, I have been mainly involved in the study of formal speci�cations, remarkablyin the algebraic framework, which was the former goal of my Ph.D. Later, I slightly switchedthe subject of my thesis to include non-functional aspects of software in the algebraic framework.The �nal result was a language (with completely de�ned formal semantics) to complement theusual algebraic speci�cations and imperative implementations of components with non-functionalinformation appearing in both of them [Fra96].On the other hand, my teaching activity has focused in data structures courses and also inprogramming-in-the-large with abstract data types. One of the main results of this activity isthe publication of a book on data structures [Fra93]. As remarkable points of this book, I wouldlike to mention that: data structures are de�ned as means to implement abstract data types; and,I have included a whole chapter to study the design of new data structures to implement newabstract data types. Precisely, this last chapter emphasises the concept of reusable component asthe main tool to build new software.Last, I have participated in a pair of granted projects (the ICARUS Esprit project and a nationalone) both of them again focusing in formal speci�cation of abstract data types. Recently, I haveasked for a grant for a new project entitled "ComProLab: A Component Programming Laboratory"[FBBR97].2 Position2.1 Dealing with Non-Functional Aspects of SoftwareSoftware systems are characterised both by their functionality (what the system does) and bytheir non-functionality or quality1 (how does the system behave with respect to some observableattributes like performance, reusability, reliability, etc.). Both aspects are relevant to software de-velopment. However, non-functional issues have received little attention compared to functionalones: there are a lot of formal speci�cation languages and formal methods to deal with function-ality of systems, but non-functionality is addressed by just a few approaches, often semi-formal orinformal and limited in scope.These approaches can be classi�ed as process-oriented or product-oriented. Process-oriented ap-proaches [MCN92, LS95] use non-functional information to guide the development of software sys-tems. On the other hand, product-oriented approaches deal with non-functional issues by means ofstating non-functional characteristics in the components themselves, being then possible to examinesoftware products to check if they fall within the constraints of non-functionality. In this position1We have rejected the word "quality" because there are some non-functional characteristics of software which arenot related with the quality itself; for instance, the kind of user interface of a system, or the programming languageused to write the code. 2



paper we are going to focus in the product-oriented side; however, it is important to remark thatproduct-oriented and process-oriented techniques should be seen not as alternative but as comple-mentary, both contributing to a comprehensive framework for dealing with non-functionality.2.2 Why Non-Functionality is so Important?The lack of non-functional issues in software components has some negative e�ects on many softwaredevelopment tasks.� Speci�cation. Non-functional characteristics of software remain hidden to the user and theyonly appear in (optional and informal) software documentation. Their absence leads to anunbalanced speci�cation, where functional aspects are well covered with usual speci�cationlanguages while non-functional ones do not exist.� Implementation. The selection and/or development of the most appropriate (with respectto non-functional requirements) implementation for software modules cannot be assisted atall because of lack of information. As a result, the decisions to be taken during this processmay be di�cult and even incorrect.� Maintenance. Changes in the system environment, modi�cations of existing software mod-ule implementations, and creation of new implementations require a new (by-hand) reviewof previously taken implementation decisions, without having available the non-functionalinformation of the system, which is a�ected by these changes [FB97].� Reusability. Software reuse cannot take non-functional issues into account. Thus, compo-nents selected by any functional-oriented reuse strategy may not �t into the non-functionalrequirements of the environment, hindering or even preventing their actual integration intothe system.2.3 Design PrinciplesOnce we have advocated a notation for stating non-functional information in software components,we present here some design principles for such a notation.� It should be complete. It should be possible to deal with non-functionality from di�erentpoints of view; for instance, it is important to state non-functional properties of softwarecomponents in speci�cations (e.g., "reliability of the component must be medium or high","component must be portable from a PC platform to an UNIX system", etc.), but alsoto state non-functional characteristics of component implementations (e.g., "the insert anddelete operations of the component take constant time").� It should be as open as possible. Provided that non-functionality means di�erent things fordi�erent people, it should be possible for each of them to choose the particular attributes ofinterest and to reject others; even more, there should exist means to group attributes and toform then non-functional libraries. Also, it could be useful to have the opportunity to bindsome attributes just to some particular components, or even to just some parts (typically,operations) of components. 3



� It should be concise, clear and easy to use. Writing non-functional information should not be adi�cult task, because this would con
ict with the main idea behind them: their usefulness insoftware development. So, non-functional properties should be written as usual expressions(e.g., "reliability >= medium", "works-on(PC-platform) => works-on(UNIX)", etc.), andthe same with implementations (e.g., "time(insert, delete) = O(1)").� The notation must be a constituent part of software. This requirement highlights the role ofnon-functional issues in software development and it is achieved in many ways: non-functionalinformation should be encapsulated in modules bound to software component de�nitionsand implementations; the notation should be entirely formal, in the sense that its syntaxand semantics are expected to be well-de�ned; and an algorithm should exist to verify thatimplementations ful�l non-functional speci�cations.� It should �t to other software areas as much as possible. Although we are interested here incomponent programming, it would be nice to design a notation 
exible enough to be usedalso in, say, information systems, knowledge-based systems, etc., with a few modi�cations.It should remain clear that a universal notation is impossible to get: for instance, in thecomponent programming framework we can measure e�ciency by the asymptotic behaviourof operations, while in information systems we are mainly interested in response time orthroughput.� It should be independent of the concrete speci�cation and programming languages used tospecify and code components2. The only restriction we put on those languages is modularity:software components must be really encapsulated in modules. Also, we require for everysoftware component to have a single speci�cation (at least, declaration of its public symbols-type or class name; procedures, attributes, methods of functions with their interface; etc.-)and possibly many implementations, each of them in a separate module.� It should be complemented with tools. For instance, we have already mentioned the need fora tool able to verify if an implementation satis�es the properties concerning non-functionalitythat were stated. Also, it would be nice to have an algorithm able to select the betterimplementation of a component in every context where it is used. The existence of thisalgorithm would allow the whole software system to adapt to changes in the environment inan automatic manner, once the non-functional information were modi�ed conveniently. Also,it would help component reusability and it would improve quality of design.3 A Proposal: NoFunIn this section, we present the main issues of a notation called NoFun following the design principlesenumerated in the last section. We classify non-functional information into three kinds:� Non-functional attribute (short,NF-attribute): any characteristic of software which serves as ameans to describe it and, possibly, to evaluate it. Among the most widely accepted [IEEE92,ISO91] we mention: time and space e�ciency, reusability, maintainability, reliability andusability. In our approach, we let arbitrary attributes to appear; so, software components are2Obviously, there can be a few changes to �t the notation into a particular pair of languages, most of themsyntactic in nature [Fra97] 4



studied with respect to a particular set of NF-attributes; we say then that the component ischaracterised by this set.� Non-functional behaviour of a component implementation (short, NF-behaviour): any assign-ment of values to the NF-attributes that characterise the implemented component.� Non-functional requirement on a software component (short,NF-requirement): any constraintreferred to a subset of the NF-attributes that characterise the implemented component.The set of NF-attributes that characterise a component, together with their relationships (statedas NF-requirements), are declared in a NF-speci�cation module, which is bound to the componentspeci�cation. The NF-behaviour of an implementation is stated in a NF-behaviour module, boundto the implementation. Also, NF-behaviour modules will usually include NF-requirements forthe software components imported by the implementation. Keeping non-functional informationin separate modules gives full independence from the particular speci�cation and programminglanguages used in the system.3.1 Non-Functional AttributesNF-attributes in NoFun are characterised by:� Their domain. It �xes the set of valid values and operations. We have currently de�ned:boolean (e.g., error recovery), integer (e.g., degree of testing), real (e.g., response time), byenumeration (e.g., kind of user interface), string (e.g., programmer name) and asymptotic(time and space e�ciency).NF-attributes must be declared in order to be known in components, except for asymp-totic NF-attributes, which existence is inferred from the corresponding software componentde�nition. More precisely, there are two asymptotic implicit NF-attributes, time(op) andspace(op), for every public operation op, and another one space(t) for every public type t.Values of asymptotic NF-attributes are given in terms of some measurement units, whichrepresent problem domain sizes and which must also appear in NF-speci�cation modules.� Their kind. NF-attributes can be basic or derived, depending on whether their value canbe inferred from others or must be explicitly given in NF-behaviour modules. Derived NF-attributes are useful not only for avoiding redundant assignments, but also to provide a logicalstructure to the universe of NF-attributes.A derived NF-attribute P includes the following parts:{ The list L of other NF-attributes that determine P 's value.{ A list of n guarded formulae of the form Ci => P = Ei; 1 <= i <= n, Ci being aboolean expression and Ei an expression yielding a value in P 's domain; if n = 1, thenCi is optional. The meaning of a formula is: P equals Ei if the condition Ci holds. Theunion of the Ci must cover all possible cases and their pairwise conjunction must yieldfalse.� Their scope. We have mentioned that NF-attributes can be de�ned inside NF-speci�cationmodules; in this case, they are only know in the component associated with this speci�cation.5



Also, non-functional attributes may be de�ned in what we call property modules, which intro-duce closely-related and widely-applicable NF-attributes (appearing in many NF-speci�cationmodules, even in di�erent software systems). In fact, property modules allow users to de�netheir own libraries of NF-attributes which can be imported freely in software systems (ofcourse, a property module may import other property modules).Last, we have de�ned another kind of module, system modules, to introduce NF-attributesto be know in all the components of a whole software system. System modules may alsoimport property ones, meaning that all the NF-attributes de�ned in these property modulesare know in all the system. Property modules and system modules altogether make possibleto de�ne NF-attributes in a structured and easy manner.3.2 Non-Functional BehaviourOnce a component speci�cation (both functional and non-functional parts) has been built, imple-mentations for the component may be written. Each implementation for a given software componentD should state its NF-behaviour with respect to the basic NF-attributes characterising D ; valuesof derived NF-attributes are automatically computed. This assignment of values is encapsulated ina NF-behaviour module.In the general case, a component will be used in di�erent software systems. In these systems, theNF-attributes characterising the component could be di�erent. This situation requires multipleNF-behaviour modules to exist, each of them describing the NF-behaviour of the component in itscorresponding context.3.3 Non-Functional RequirementsNF-requirements are the means to state conditions on implementations of software components.Syntactically, they are usual boolean expressions enriched with some ad hoc constructs for non-functionality. Their purpose is to express relationships between NF-attributes and to represent theenvironment where implementations are to be inserted:� Completing NF-speci�cations. NF-requirements are used in NF-speci�cations to state theconditions that every implementation of a software component must ful�l. In fact, theymay appear at three di�erent places: system modules, in which case the NF-requirementapplies in all the components of the system; property modules, so that the NF-requirementis valid in every component importing this module; and NF-speci�cation modules, to state aNF-requirement locally to a component.� Relating measurement units. E�ciency is stated in components using di�erent measurementunits, but there has been no way to relate their value up to now. It seems natural to leavemeasurement units unrelated in the modules introducing them, because this yields compo-nents that can be reused in many contexts; however, it also seems convenient to relate theunits once the components are considered as part of a particular software system. This kindof information is useful not only to complete non-functional speci�cation of systems, but alsoto allow the evaluation of expressions involving di�erent measurement units, which is essentialin order to �nd out if an implementation satis�es this kind of NF-requirements.6



� Fixing implementations of imported components. NF-requirements appearing in the NF-behaviour module bound to an implementation V in a system S state the conditions thatthe implementations of the software components imported by V must ful�l in S. In thegeneral case, V will include a list of NF-requirements for every imported component; NF-requirements in the list are considered in order of appearance (which corresponds to the usualcase of having requirements with di�erent degrees of importance). As an alternative to thelist, an implementation for a particular software component may be �xed directly by its name.Note that a single software component may be required in di�erent ways at di�erent places inthe system due to the existence of di�erent NF-requirements for it. Eventually, this will causedi�erent implementations of the same component to coexist; this situation is supported bymany programming languages (for instance, the O.-O. family using inheritance to representthe implementation relationship), although free interaction is usually restricted (see [Sit92,Fra94] for di�erent proposals to avoid such restrictions).4 ComparisonsAs far as we know, there is no proposal for a language with the constructs proposed here, althoughmany researchers have advocated for it [Jaz95, Sha84, Win90]. There are many non-formalisedproposals [Mat84, LG86] the results of which are subsumed in our work. Also, [Win89] presentsa case study to deal with boolean NF-attributes in an object-oriented framework; no other kindof properties are dealt with in her approach. An interesting proposal appears in [CZ90], whichprovides a framework to evaluate the design of software systems, the measurement criterion beingthe adequacy of implementations with respect to some non-functional requirements stated overa set of attributes. The requirements are stated as an array of weights over the properties andevery attribute has a weight too; then, the evaluation of implementations results in a numberand comparison is possible. However, the notation proposed in this work is not as general asthat presented here; also, the proposal is not integrated into the software itself losing some of theadvantages we have mentioned in the introduction.On the other hand, [CGN94], [Sit94] and [SY94] provide a language to state program e�ciency.[CGN94] aims to code generation from some high-level language constructs manipulating a relationdata type; in the general case, there are many ways to generate this code and so information aboute�ciency is used to select the optimal translation. [SY94] focuses on program transformation:algorithms are re�ned using a library of components with pre-post functional speci�cations; whenthere are many components whose pre-post speci�cation allows its inclusion in the algorithm beingre�ned, e�ciency is used to break the tie. Concerning [Sit94], it is the proposal closest to oursdue to its de�nition in the component programming framework and also to the existence of specialmodules collecting some kind of non-functional information (constraints on e�ciency in this case),although he focuses on software reusability and veri�cation, which are two �elds we have not yetaddressed. E�ciency in [Sit94] is slightly more di�cult to handle than in our work, because itis "tight" e�ciency (an exact measurement of e�ciency, more precise than the worst case we areconsidering here) and this often requires the de�nition of auxiliary models to express the timeconsumed by component operations. The proposal �ts into a more exhaustive project, RESOLVE[Sit+94], which also includes a framework to allow switching of implementations of components[Sit92]. 7



If we refer just to the notations used in the projects mentioned so far, none of them seem to be aspowerful as NoFun, even considering just the subset of NoFun concerning e�ciency. We would liketo con�rm this fact in the workshop.5 References[CGN94] D. Cohen, N. Goldman, K. Narayanaswamy. "Adding Performance Information to ADTInterfaces". In Proceedings of the Interface De�nition Languages Workshop, ACM SIGPLAN No-tices 29(8), 1994.[CZ90] S. C�ardenas, M.V. Zelkowitz. "Evaluation Criteria for Functional Speci�cations". In Pro-ceedings of 12th International Conference on Software Engineering (ICSE), Nice (France), 1990.[FB97] X. Franch, P. Botella. "Supporting Software Maintenance with Non-Functional Informa-tion". In Proceedings 1st EUROMICRO Conference on Software Maintenance and Reengineering,Berlin (Germany), 1997.[FBBR97] X. Franch, P. Botella, X. Burgu�es, J.M. Rib�o. "ComProLab: A Component Program-ming Laboratory". In Proceedings of 9th Software Engineering and Knowledge Engineering Con-ference (SEKE), Madrid (Spain), 1997.[Fra93] X. Franch. Data Structures: Speci�cation, Design and Implementation. Edicions UPC,col.lecci�o Politext, 30, 1993. Available in spanish.[Fra94] X. Franch. "Combining Di�erent Implementations of Types in a Program". In ProceedingsJoint of Modular Languages Conference (JMLC), Ulm (Germany), 1994.[Fra96] X. Franch. "Automatic Implementation Selection for Software Components using a Mul-tiparadigm Language to state Non-Functional Issues". Ph.D. Thesis (advisor: Pere Botella), Uni-versitat Polit�ecnica de Catalunya, Barcelona (Catalunya, Spain), 1996. Available in catal�a.[Fra97] X. Franch. "Including Non-Functional Issues in Anna/Ada Programs for Automatic Im-plementation Selection". In Proceedings of Ada-Europe'97, London (U.K.), LNCS 1251, Springer-Verlag, 1997.[IEEE92] IEEE Computer Society. IEEE Standard for a Software Quality Metrics Methodology.IEEE Std. 1061-1992, Institute of Electrical and Electronical Engineers, New York, 1992.[ISO91] International Standards Organization. Software Product Evaluation - Quality Characteris-tics and Guidelines for their Use. ISO/IEC Standard ISO-9126, 1991.[Jaz95] M. Jazayeri. "Component Programming - a Fresh Look at Software Components". In Pro-ceedings of 5th European Software Engineering Conference (ESEC), Barcelona (Catalunya, Spain),LNCS 989, Springer-Verlag, 1995.[LG86] B. Liskov, J. Guttag. Abstraction and Speci�cation in Program Development. The MITPress, 1986.[LS95] D. Landes, R. Studer. "The Treatment of Non-Functional Requirements in MIKE". In Pro-8



ceedings of 5th European Software Engineering Conference (ESEC), Barcelona (Catalunya, Spain),LNCS 989, Springer-Verlag, 1995.[Mat84] Y. Matsumoto. "Some Experiences in Promoting Reusable Software". IEEE Transactionson Software Engineering, 10(5), 1984.[MCN92] J. Mylopoulos, L. Chung, B.A. Nixon. "Representing and Using Nonfunctional Require-ments: A Process-Oriented Approach". IEEE Trans. on Software Engineering, 18(6), 1992.[Sha84] M. Shaw. "Abstraction Techniques in Modern Programming Languages". IEEE Software,1(10), 1984.[Sit92] M. Sitaraman. "A class of programming language mechanisms to facilitate multiple imple-mentations of the same speci�cation". In Proceedings 4th International Conference on ComputerLanguages, IEEE Computer Society Press, 1992[Sit94] M. Sitaraman. "On Tight Performance Speci�cation of Object-Oriented Components".In Proceedings 3rd International Conference on Software Reuse (ICSR), IEEE Computer SocietyPress, 1994.[Sit+94] M. Sitaraman (coordinator) et al. "Special Feature: Component-Based Software UsingRESOLVE". ACM Software Engineering Notes, 19(4), Oct. 1994.[SY94] P.C-Y. Sheu, S. Yoo. "A Knowledge-Based Program Transformation System". In Proceed-ings 6th Conference on Advanced Information Systems Engineering (CAiSE), Utrecht (Holland),LNCS 811, 1994.[Win89] J.M. Wing. "Specifying Avalon Objects in Larch". In Proceedings of Theory and Practiceof Software Development, Vol. 2, Barcelona (Catalunya, Spain), LNCS 352, 1989.[Win90] J.M. Wing. "A Speci�er's Introduction to Formal Methods". IEEE Computer 23(9), 1990.6 BiographyXavier Franch is associate professor at the Computer Science Department of the UniversitatPolit�ecnica de Catalunya (U.P.C.), Barcelona (Catalonia, Spain). He teaches courses of data struc-tures, programming with abstract data types and introductory programming. He has written abook on data structures in 1993, which is a basic reference at many spanish universities. He cur-rently leads a group of �ve people involved in many aspects of component programming: de�nitionof a notation to state non-functional issues of components, automatic synthesis of non-functionalattributes, integration of functional speci�cations and imperative code and de�nition of softwareprocesses. He received a Ph.D. in Computer Science from the U.P.C. in 1996.9


