
Modeling Non-Functional Requirements

Pere Botella, Xavier Burgués, Xavier Franch, Mario Huerta, Guadalupe Salazar†

Universitat Politècnica de Catalunya (UPC)
c/ Jordi Girona 1-3 (Campus Nord, C6) E-08034 Barcelona (Catalunya, Spain)

{botella, diafebus, franch, gsalazar}@lsi.upc.es

Abstract. We present in this paper the language NoFun for stating com-
ponent quality in the framework of the ISO/IEC quality standards. The
language consists of three different parts. In the first one, software
quality characteristics and attributes are defined, probably in a hiera r-
chical manner. As part of this definition, abstract quality models can be
formulated and fu rther refined into more specialised ones. In the second
part, values are assigned to component quality basic attributes. In the
third one, quality requirements can be stated over components, both
context-free (universal quality properties) and context-dependent (qual-
ity properties for a given framework -software domain, company, project,
etc.). Last, we address to the translation of the language to UML, using
its extension mechanisms for capturing the fundamental non-functional
concepts.

1 Introduction

Software quality models are used to determine to what extent software components
satisfy the requirements of a given context of use. This kind of acceptance test is
crucial for assuring correct integration of software into applications and companies,
and so a great deal of research has been done in the field. Quality models use to be
independent of the kind of component: object-oriented (OO) classes, Commercial Off-
The-Shelf (COTS) packages, ERP (Enterprise Resources Planning) products, etc.

As part of this research, some software-centered quality standards have been pro-
posed [1, 2, 3, etc.]. Although each of them has its own specifities, some guidelines are
common: a framework for the whole quality assessment process exist; software quality
characteristics are identified and defined in a hierarchical manner; etc. We have stud-
ied one of these approaches, the set of ISO/IEC standards to software quality, in de-
tail.

The standards collect quality needs, expressed in terms of some high-level features
of software, such as efficiency, reliability and others. However, a problem arises when
the meaning of these attributes has to be defined and used accurately; usually, infor-

† Guadalupe Salazar's work has been supported by a CONACyT grant.

mal statements are used, and so the software quality model can be misunderstood.
Therefore, incorrect evaluations can result, eventually yielding to rejections of correct
components or acceptance of deficient ones.

We present here an approach aimed at lessen the risk of such misuses of quality
models. It is centered on the definition of a language called NoFun (acronym for
"NOn-FUNctional", meaning that software quality mostly refers to non-functional
issues of software), which is to be used as a formal language for the exhaustive de-
scription of software quality. The language consists of three different parts. In the first
one, software quality characteristics and attributes are defined, probably in a hierar-
chical manner. As part of this definition, abstract quality models can be formulated and
further refined into more specialised ones. In the second part, component quality de-
scriptions are stated though assignment of values to component quality basic attrib-
utes. In the third one, quality requirements can be stated over components, both con-
text-free (universal quality properties) and context-dependent (quality properties for a
given framework -software domain, company, project, etc.). We also show an interpre-
tation of NoFun constructs into the UML framework.

2 The ISO/IEC Standards for Software Quality

A set of ISO/IEC standards are related to software quality, being standards number
9126 (which is in process of substitution by 9126-1, 9126-2 and 9126-3), 14598-1 and
14598-4 the more relevant ones [1]. The main idea behind these standards is the defini-
tion of a quality model and its use as a framework for software evaluation. A quality
model is defined by means of general characteristics of software, which are further
refined into subcharacteristics in a multilevel hierarchy; at the bottom of the hierarchy
appear measurable software attributes. Quality requirements may be defined as re-
strictions over the quality model.

The ISO/IEC 9126 standard fixs which are the characteristics at the top of the hierar-
chy: functionality, reliability, usability, efficiency, maintainability and portability. Fur-
thermore, an informative annex of this standard provides an illustrative quality model
that refines the characteristics as shown in fig 1.

Some particular points of the standard could be matter of discussion. For instance,
some issues (e.g., type and time of delivery –FTP, e-mail, CD, etc.- and economical
cost –freeware, shareware, payment) are not dealt with during software evaluation;
they are postponed by the standards to a managerial decision phase started after the
evaluation itself. Anyway, we think that it is advisable to adhere to the standards to
have a clear and widespread framework.

In order to evaluate these attributes, a metric must be selected and rating levels
have to be defined dividing the scale of mesurement into ranges corresponding to
degrees of satisfaction with respect to the attribute. The rating levels must be defined
for each specific evaluation depending on the quality requirements. Finally, a set of
assessment criteria combining the mesures of attributes are necessary to obtain the
rating of the intermediate and top characteristics and, finally, the quality of the prod-
uct.

Characteristic Subcharacteristics Short definition
accuracy provision of right or agreed results or effects

compliance adherence to application related standards or conventions
interoperability ability to interact with specified systems

security prevention to unauthorised access to data
functionality

suitability presence and appropriateness of a set of functions for
specified tasks

fault tolerance ability to keep a given level of performance in case of
faults

maturity frequency of failure by faults in the software
reliability

recoverability capability of reestablish level of performance after faults
learnability users' effort for learning software application
operability users' effort for operation and operation controlusability

understandability users' effort for recognizing sw. structure and applicability
resource behaviour amount of resources used and the duration of such useefficiency

time behaviour response and processing times and throughput rates
analysability identification of deficiencies, failure causes, parts to be

modified, etc.
changeability effort needed for modification, fault removal or envi-

ronmental change
stability risk of unexpected effect of modifications

 maintainability

testability effort needed for validating the modified software
adaptability oportunity for adaptation to different environments

conformance adherence to conventions and standards related to port-
ability

installability effort needed to install the software in a given environ-
ment

portability

replaceability opportunity and effort of using software replacing other

Fig. 1. ISO/IEC 9126 proposal of quality attributes refinement

Usually, this procedure is done in an informal, more or less structured way. However,
we feel it is very well suited to be performed also in a more formal manner, with the
help of a language able to record this kind of definitions. This is the purpose of the
second release of the NoFun language, formerly presented also in [4] (which is the
evolution of the first 98's version [5], focused on expressing non-functionality charac-
teristics of OO classes). The new version of NoFun takes advantage over the old one
not only by fitting better to the ISO/IEC standard (taking therefore functionality into
account), but also by allowing the characterisation of a more general concept of com-
ponent, as we will try to illustrate in the examples, and improving the expressive power
of the language.

3 NoFun: A General View

To achieve the goal of formalisation, we basically provide three different kind of capa-
bilities. First, there are many kind of modules to get the different kind of concepts
defined in the standard. Second, values for these attributes may be given and bound
to particular software components, the ones under evaluation. Third, additional con-
structs for representing quality requirements and assessment criteria are included.

Concerning the first category, there are three main of modules: characteristic, sub-
characteristic, and attribute modules. Modules may import others, and also nesting is
allowed. Nesting of modules allow to state auxiliary definitions, although visibility
rules must always be taken into account (symbols defined in nested modules are not
exported). Following the standard, characteristic modules may not be defined one in
terms of another. No such restrictions appear on the other types of modules, and so
hierarchies of subcharacteristics and attributes may (and will) arise.

The upper part of fig. 2 shows an example of distribution of a quality model into
modules. There are two characteristics defined in terms of four subcharacteristics.
Following the ISO/IEC appendix, sharing of subcharacteristics between characteristics
does not take place (although the language does not explicitly check this situation).
Subcharacteristics do indeed form a hierarchy; they may depend on zero, one or more
other subcharacteristics and attributes; a subcharacteristic may influence on more than
one subcharacteristic. Last, attributes are defined at the bottom of the model; although
also attribute hierarchies may be defined, they are not as usual as in the case of sub-
characteristics. Attributes depending on others are named derived attributes, as op-
posited of basic ones, whose values must be explicitly stated.

Quality characteristics, subcharacteristics and attributes (hereafter, quality entities)
are declared of a particular type. In addition to predefined types (called domains),
mechanisms to define new ones are introduced. New types are introduced on top of
domains; also new domains may be defined, encapsulated in yet another kind of mo d-
ule. Type constructs are rich enough to allow modelising the usual quality entities.
There are sets, functions and tuples; their use is shown later by means of exa mples.

Assignment of basic attribute values are encapsulated in new modules (behaviour
modules), bound to the corresponding software components being evaluated. Behav-
iour modules are abstractions of software components in the sense that they contain
all the rellevant information for quality evaluation.

Last, quality requirements may be defined restricting the values of the quality enti-
ties. Assessment criteria can be seen as a set of quality requirements, and so we do
not distinguish between them. Quality requirements are stated using operators over
the quality entities, and they may be categorised depending on their importance. Re-
quirements refer normally to characteristics and subcharacteristics, and rarely to at-
tributes, due to their lower-level nature.

The rest of fig. 2 adds behaviour and requirement modules. The three software
components under evaluation include a behaviour module measuring the basic attrib-
utes. Values of the attributes propagate up to the other quality entities (following the
arrows in reverse direction). The requirement module containing assessment criteria
for the evaluation refers in this case to one characteristic and two subcharacteristics.
Here the result is simplified to be just success or failure, but we will see later that
things are a bit more sophisticated, because of the categorisation of requirements.

In addition to these elements, an orthogonal concept is the one of refinement. Re-
finement allows to define quality models in an incremental manner, by specialisation of
more general ones. This kind of inheritance-like relationship yields to a structured
representation of quality; models can be formulated first in a general way, later refined

in particular domains (OO classes, ERP products, bespoke software, etc.), and further
specialised for companys, projects, etc.

The rest of the paper develops these elements in more detail.

Fig. 2. Layout of a quality model in the ISO/IEC framework represented with NoFun

C1 C2

SC2SC1

characteristics

subcharacteristics

attributes

Comp 2 Comp 3Comp 1

assignment

software
components

behaviour

Req

products to
evaluate

expressed
in terms of

yes / no

SC3 SC4

SC5 SC6 SC7

B1

A1 A2 A3 A4

A5

B2 B3

4 Description of Domains

Domains play a central role in the definition of quality attributes. They are used to fix
the type of these attributes, either directly or as part of a complex type definition
(those using functions, sets and so on). NoFun has the usual predefined domains, that
allow to use integer, real, boolean and string types in attribute definitions, but other
types can be defined by enumeration of values.

Although anonymous ones are allowed, domains are normally declared in domain
modules, as shown in fig. 3. There appear two typical examples of domains. The first
one enumerates some values of a (part of) a domain, i.e. the areas of a company where
software has to be installed. The second one defines a scale of measurement. As it
always happens in NoFun, an informal description of domains is not only encouraged
but required. Note that the second domain is declared as ordered. Values of ordered
domains can be compared with less-than and greater-than relationships when stating
assessment criteria.

domain module COMPANY_AREAS
explanation Areas or functions of a company
domain CompanyAreas

defined as Commercial, Logistics, Manufacturing, HumanResources,
 Accounting, Finances, Quality, Technical, Management Su p-

port

end COMPANY_AREAS

domain module UPPER_ADEQUACY_SCALE
explanation 5-value scale which penalises excessive coverage of features
domain ordered UpperAdequacyScale

defined as NonExistent, Low, Excessive, Medium, High
end UPPER_ADEQUACY_SCALE

Fig. 3. Definition of domains

5 Definition of Quality Attributes

Quality attributes are used in the ISO/IEC approach to measure basic software capa-
bilities. We define them in attribute modules, which can contain many related attrib-
utes defined with the following information:

− Explanation of their purpose (mandatory). Explanation can be stated globally for
some set of related attributes, or individually.

− Declaration of their type. Simple attributes will be declared of predefined types or
using a domain. More elaborated declarations can be made using some type con-

structors: sets, functions and tuples. Involved domains must be imported or defined
previously in the module.

− Definition of their value. Just for derived attributes, i. e., those ones whose value
depends on others' (which can be basic attributes –i.e., those ones whose value is
computed explicitly- or derived, yielding to attribute definition hierarchies). Some
language constructs can be used to build the definition.

 Fig. 4 shows the definition of some attributes concerning component delivery. We
focus on date and manufacturing company (others attributes such as price could be
also considered). The month and the year of delivery are declared as integer attributes
with some value restrictions (in the case of year, just lower bound is provided). Then,
the date itself is declared as a tuple of two integers, defined as the values of the former
attributes. Concerning the supplier, represented with a string, a special value is identi-
fied standing for the company itself.

 attribute module DELIVERING_ISSUES

 explanation date of delivery of components

 attribute Month declared as Integer [1..12]

 attribute Year declared as Integer [1970..]

 attribute Date derived
 declared as Tuple(Integer [1..12], Integer [1970..])
 defined as (Month, Year)

 explanation name of company delivering the product. "Own" states for
 software produced in the company; use it instead of the name

 attribute supplier declared as string

 end DELIVERING_ISSUES

 Fig. 4. Definition of quality attributes for dealing with component delivery issues

 Fig. 5 focus on the definition of two more ellaborated attributes for ERP domains. The
first one measures the degree of coverage of company areas by ERP products. It is
declared as a function such that for every company area, a value from the given scale
is assigned. It is necessary to import the domains defined in figure 3, which become
the domain and range of the function. A default value is also provided. In top of this
attribute, a new one is declared to be the set of the company areas well-covered by
specific ERP products. The elements of the set are declared then to be taken from the
domain of company areas, and the attribute is computed in terms of the value of the
previous function (i.e., it is derived).

 attribute module ERP_ORIENTATION

 imports COMPANY_AREAS, UPPER_ADEQUACY_SCALE

 attribute AreaCoverage

 explanation Degree of coverage of company areas by an ERP product

 declared as function from CompanyAreas to UpperAdequacyScale

 default NonExistent

 attribute MainTarget derived

 explanation Company areas well-covered by an ERP product

 declared as set of CompanyAreas
 defined as
 set of a in CompanyAreas such that AreaCoverage(a) = High

 end ERP_ORIENTATION

 Fig. 5. Definition of quality attributes for dealing with ERP products orientation

 6 The Notion of Subcomponent

 In many cases, the software under evaluation is composed out of subcomponents.
Then, some attributes of the component may be derived as a combination of attributes
defined in the subcomponents. For instance, ERP are usually structured in modules
and it may be convenient to measure some attribute (testing degree, for instance, to be
used in reliability subcharacteristic) for each ERP module as done in fig. 6.

 component hierarchy ERP_STRUCTURE

 ERPModule part of ERP

 end ERP_STRUCTURE

 attribute module TESTING_DEGREE for ERPModule

 explanation Testing degree measured in the range 0.0 .. 1.0

 attribute TestingDegree declared as Real [0.0..1.0]

 end TESTING_DEGREE

 attribute module TESTING_DEGREE for ERP

 explanation ERP testing degree out of ERP-module testing degree

 attribute TestingDegree derived

 declared as Real [0.0..1.0]

 defined as MIN m: m in ERPModule: m.TestingDegree

 end TESTING_DEGREE

 Fig. 6. Definition of a testing degree attribute using ERP structural decomposition

 7 Definition of Subcharacteristic and Characteristic Modules

 Last, we introduce subcharacteristic and characteristic modules, to capture all the
concepts introduced in the standard. Basically, (sub)characteristic modules just glue
together quality attributes and subcharacteristic, either by directly putting them to-
gether in the module or by importing them; in the first case, subcharacteristic modules
can be nested, but not characteristic ones, according to the standard definition.

 Fig. 7, top, defines a subcharacteristic module for accuracy (as defined in fig. 1) re-
lated to ERP products, including many of the domains and attributes presented in
previous sections. Fig. 7, bottom, outlines a definition of the functionality quality
characteristic just by importing the necessary subcharacteristics. In both cases, defini-
tion just puts together the imported entities by means of a tuple. Note that the type
declaration is not explicitly included; it may be inferred from the definition.

 subcharacteristic module ERP_ACCURACY

 imports ERP_ORIENTATION, ... // other modules required by ERP accuracy

 subcharacteristic ERPAccuracy derived
 explanation Accuracy ISO/IEC subcharacteristic bound to ERP domain
 defined as Tuple(MainTarget, ...)

 end ERP_ACCURACY

 characteristic module ERP_FUNCTIONALITY

 imports ERP_ACCURACY, ERP_COMPLIANCE, ERP_SECURITY,
 ERP_INTEROPERABILITY, ERP_SUITABILITY

 charactacteristic ERPFunctionality derived

 explanation Functionality ISO/IEC characteristic bound to ERP domain

 defined as Tuple(ERPAccuracy, ERPCompliance, ERPSecurity,
 ERPInteroperability, ERPSuitability)

 end ERP_FUNCTIONALITY

 Fig. 7. Definition of characteristics and subcharacteristics related to ERP products

 8 The Notion of Refinement

 Although the constructs defined so far are well-suited for dealing with quality in a
rather comfortable and reliable way, they suffer from a lack of adaptability in some
senses. Let's consider the company areas domain. In fact, we have taken a strong
decision when introducing the domain, fixing the concrete areas that the company is
supposed to have. However, it is obvious that the division in areas will depend of the
size of the company, its working domain and others. This definition thus can be use-
less in many cases. Also, definition of derived attributes may vary depending on the

context. For instance, one could relax the definition of main target allowing areas cov-
ered with a medium value. In this situation, the given definition will become invalid,
and redefinition is required.

 To deal with this situation in a clean way, we have introduced the related concepts
of abstract definitions and refinement (somehow borrowed from the OO world). Do-
mains and derived attributes can be introduced as abstract, meaning that their defini-
tion is not provided in the declaration but elsewhere. Refinement allows providing the
definition of abstract domains and attributes, and also redefining them. They are en-
capsulated in new packages which must be bound to the ones containing abstract
definitions. Every appearance of an abstract item is labelled with the abstract key
word. Also non-abstract modules can be refined at any time.

 Fig. 8 redefines the example of fig. 7 making the company domain definition ab-
stract. Then, we provide a particular refinement for a concrete kind of company (note
that the binding is explicitly stated in the header) which makes explicit the areas but
not the definition of the attribute, obtaining thus a partial refinement. We remark that
the domain and attributes fully-defined in the abstract packages must not be defined
again; as a general rule of thumb, we do not repeat any previously given information,
although the opposite is also allowed for understandability purposes. Last, we show
the customization of the package for two particular companies, which name appear in
the header, giving different definitions of the attribute. Also note that the second
refinement redefines the domain adding a new area.

 abstract domain module COMPANY_AREAS

 domain CompanyAreas

 explanation ... // definition not included, because it is abstract

 end COMPANY_AREAS

 domain module UPPER_ADEQUACY_SCALE

 explanation 5-value scale which penalises excessive coverage of features
 domain ordered UpperAdequacyScale
 defined as NonExistent, Low, Excessive, Medium, High

 end UPPER_ADEQUACY_SCALE

 abstract attribute module ERP_ORIENTATION
 imports COMPANY_AREAS, UPPER_ADEQUACY_SCALE
 attribute AreaCoverage
 explanation Coverage of company areas by an ERP product

 declared as function from CompanyAreas to UpperAdequacyScale
 default NonExistent

 abstract attribute MainTarget derived
 explanation Company areas well-covered by an ERP product
 declared as set elements CompanyAreas

 end ERP_ORIENTATION

 Fig. 8. Definition of abstract packages and their refinement

 abstract subcharacteristic module GENERAL_ERP_ACCURACY

 imports ERP_ORIENTATION, … // other modules required by ERP accuracy

 subcharacteristic ERPAccuracy derived
 explanation Accuracy ISO/IEC subcharacteristic bound to ERP domain
 defined as Tuple(MainTarget, ...)

 end GENERAL_ERP_ACCURACY

 abstract subcharacteristic module LOWSIZE_COMPANY_ERP_ACCURACY

 refines GENERAL_ERP_ACCURACY
 domain CompanyAreas
 defined as Commercial, Manufacturing, Accounting, Finances
 end LOWSIZE_COMPANY_ERP_ACCURACY

 subcharacteristic module ACME_ERP_ACCURACY for ACME

 refines LOWSIZE_COMPANY_ERP_ACCURACY

 attribute MainTarget derived
 defined as

 set of a in CompanyAreas such that AreaCoverage(a) >= Medium

 end ACME_ERP_ACCURACY

 subcharacteristic module SPA3_ERP_ACCURACY for SPA3

 refines LOWSIZE_COMPANY_ERP_ACCURACY

 domain CompanyAreas defined as
 Commercial, Manufacturing, Accounting, Finances, Technical

 attribute MainTarget derived
 defined as

 set of a in CompanyAreas such that AreaCoverage(a) = High

 end SPA3_ERP_ACCURACY

 Fig. 8. Definition of abstract packages and their refinement (cont.)

 We would like to stress the high degree of structurability that the refinement construct
introduces in our approach. In our example, it is reflected by the fact that the ERP
functionality characteristic defined in fig. 8 does not depend on the particular form that
the subcharacteristics and attributes takes. In fact, we can say that we have a kind of
polymorphic or generic definition of the characteristic, such that every particular re-
finement of its subcharacteristics and attributes implicitly produces a different defini-
tion.

 Refinement and definition of component hierarchies can be combined, yielding to
highly structured definition of quality domains.

 9 Description of Software Component Quality

 In order to be used in the evaluation framework provided by the ISO/IEC standard,
software components must be measured with respect to the basic attributes that are
rellevant to them. Many metrics have a straighforward measure because they can be
computed directly from the information available of the component; this is the case of
the attributes defined in DELIVERING_ISSUES. But often evaluation is a hard task,
requiring well-defined and eventually complex methodologies; this is the case of the
AreaCoverage attribute: accurate assignment of values in the rating levels used in its
definitions is crucial for the whole scheme to succeed. This is the classical problem of
quality assessment, and obtaining results in this field falls outside the scope of this
paper.

 Once the evaluation of the attributes for a software component is obtained some-
how, it just suffices with encapsulating them in a behaviour module as a sequence of
assignments. The crucial point here is having a stable definition of the product. In
other words, the set of attributes rellevant to the component should be as fixed as
possible; otherwise, the component should be examined over and over, every time new
attributes are defined which must be taken into account. Then, the rule of thumb in
this context is clear: before producing component quality evaluations, an exhaustive
description of the domain of the component (e.g., real-time component, OO class, ERP
product, etc.) must be done.

 Related to this problem, we are currently considering the possibility of having dif-
ferent perspectives of a software component. This is to say, a component could be
involved in different quality models, each one with its own set of attributes; probably
those sets would have non-empty intersections.

 10 Statement of Quality Requirements

 Quality requirements are defined by the ISO/IEC standard as restrictions over the
quality model. As such, they take the form of expressions in the language involving
quality entities of the model. They are encapsulated in requirement modules, which
contain a preliminary explanation of the intent of the requirement, and the list of indi-
vidual related quality requirements. For each quality requirement, the following infor-
mation is stated:

− Name.

− Informal explanation of the requirement.

− Enumeration of the quality entities which the requirement is defined upon. If all the
requirements refer to the same module, a single declaration on the header suffices.

− Its definition, using operators bound to type constructs: universal and existencial
quantifiers, set membership, etc.

− Its categorisation, which depends on the importance of the requirement during the
evaluation process. In this example, we have identified four types of requirement
categories: essential, important, advisable and marginal.

 Quality requirements appear mainly in two contexts. First, as small units for establis h-
ing properties on quality entities. Properties may be more or less general depending on
the abstraction of the model they are bound to. Fig. 9 shows two examples of such
quality requirements. The first one is bound to a general quality model, and so it states
a kind of universal property on the AreaCoverage attribute: an ERP must be ad-
dressed at least to one company area. The second requirement is more specific, re-
ferred to DELIVERING_ISSUES (see fig. 4) and bound to a particular company (as
stated in the header): software made by the ACME company must not be dated before
April 1998, which is the date the company started to use OO methodologies. Note the
different categorisation of requirements: whilst the first one is labelled as essential, the
second one is just classified as advisable: older products are still acceptable.

 requirement module ORIENTATION_PROPS on ERP_ORIENTATION

 explanation Universal properties of ERP-orientation attributes

 definition

 univ-prop-orient-1: essential

 explanation ERP products must address at least to one company area

 defined as

 exists a in CompanyAreas such that AreaCoverage(a) > NonExistent

 end ORIENTATION_PROPS

 requirement module DATE_FACTS on DELIVERING_ISSUES for ACME

 explanation requirement on the date of creation of ACME delivered software

 definition

 ACME-delivery-date: advisable

 explanation Software made by ACME must not be dated before April
 1998, which is the date the company started to use OO methodologies

 defined as
 Supplier = 'ACME' implies
 (Date.Year > 1998) or (Date.Year = 1998 and Date.Month >= 4)

 end DATE_RESTRICTION

 Fig. 9. Two examples of individual quality requirements

 Quality requirements also appear in the context of assessment criteria. From the
ISO/IEC standard point of view, assessment criteria is just a set of quality require-
ments stated during the evaluation process. In this case, one or more requirements
module (typically, one for characteristic or subcharacteristic) are necessary, each one
containing a related set of requirements.

 Fig. 10 offers an example of this situation. Five requirements concerning ERP prod-
ucts are collected in a single module. It must be said that these requirements have
arosen in a real experience of selection of an ERP solution for a spanish company [6,
7]. The first two requirements can be modelled using the quality entities presented so
far; the other three use other subcharacteristics and attributes not introduced in the
paper. The informal requirements reflect the information obtained from the company;
the formalisation step helps sometimes to solve ambiguities, as it happens in the req-
func-2 requirement (the mapping from the informal to the formal requirements demands
an exact meaning for "emphasize"). Classification is done according to the priorities
expressed by the company.

 An important feature appears in req-func-4: non-trivial requirements can be decom-
posed into others. This provides a comfortable way to structure the requirements
keeping track of the original statement that generated them. The new requirements
must have a priority less or equal than the old one and at least one of the new require-
ments must have the same priority than the old one.

 Although it is out of the scope of the paper, it is worth mentioning that quality re-
quirements can be used not only to check validity of software solutions, but also to
select software components that fit well to those requirements. In this case, the lan-
guage NoFun is used in the context of component selection. Some additional com-
ments to these issue appear in the conclusions.

 11 Porting NoFun to UML

 The Unified Modeling Language (UML) [8] has emerged as the standard notation for
modeling software systems. One particular line of research of the work presented in
this paper consists on a proposal for representing the non-functional aspects of a
system by using UML and by resorting to the NoFun notation introduced in the
precedent sections. The first results of this subproject have been presented in [9] and
are based on the first NoFun version presented in [5], applied to the UML class dia-
gram.

 The ongoing research is exploring other diagrams (mainly the UseCase diagrams)
with two main goals: a) to propose extensions to the UML diagrams in order to inte-
grate non-functional information based on NoFun, and b) to integrate those aspects
both at the product and the process levels (this last, based on the Rational Unified
Process). Here follows a short description of the first results, as is in [9], but adapted
to the terms used in the present NoFun version.

 requirement module FUNCT_REQ on ERP_FUNCTIONALITY for ACME

 explanation ... // document name and location that sets the requirements

 definition

 req-func-1: essential
 explanation The selected ERP should cover all the company areas
 concerns ERP_ORIENTATION
 defined as

 for all a in CompanyAreas
 it holds that AreaCoverage(a) > NonExistent

 req-func-2: important
 explanation The selected ERP should emphasize commercial, logistic

 and management areas
 concerns ERP_ORIENTATION
 defined as {Commercial, Logistic, Management} in MainTarget

 req-func-3: marginal
 explanation The company could adapt its structure to the new

 software if necessary
 concerns ERP_ADAPTABILITY
 defined as Adaptability.CompanyAdaptability >= None

 req-func-4: advisable
 explanation The selected ERP should be as open as possible, both for

 adding functionality and for interconnecting with other software
 concerns ERP_OPENNESS
 decomposed as

 req-func-4-a: advisable
 explanation The chosen ERP must have some degree of openness
 defined as

 Openness.bespoke >= Strong and Openness.COTS >= Strong
 req-func-4-b: marginal
 explanation The chosen ERP must maximize its openness d egree
 defined as max(Openness.bespoke) and max(Openness.COTS)

 req-func-5: essential
 explanation The chosen ERP must support Y2K, euro, ISO9000 and

 multicurrency
 concerns ERP_SPECIFIC_SUPPORT
 defined as

 {Y2K, ISO9000, Euro, MultiCurrency} in ERPSpecificSupport

 end FUNCTIONALITY_REQ

Fig. 10. Two examples of individual quality requirements

 According to UML-notation, notes are used to incorporate the aspects regarding non-
functional information. UML notes may contain any information, including plain text,
fragments of code, or references to other documents. Because the different domains,

types and nature of the NF-information listed within the note, specifying NF-attributes
in this way may be insufficient if we want a systematic representation of the NF-
information therefore is necessary to put this information in a more ordered form.

 In a UML context, the functional requirements of the system are partially captured
in a Class Diagram containing the classes and relationships that represent the key
abstractions of the system under development. Although Use Cases also provide an
excellent way to capture and model system requirements, not all requirements are pres-
ent in use cases (they are primarily utilized as an informal means of documenting sys-
tem functionality and they can be linked to sequence, collaboration, and activity dia-
grams, three kinds of more detailed diagrams in UML). A class diagram can then be
taken as a good approach to model and to include the non-functional information of
the system under development. Following this and as a first step on this research, we
make a first attempt in porting NoFun to the UML class diagram.

 In order to add non-functionality as described by NoFun, the concept of stereo-
type, the extensibility mechanism that UML offers to extend its modeling vocabulary,
is used. The following stereotypes are used (fig. 11 shows an example based on the
ERP non-functional entities presented so far):

− Stereotyped classes <<QualityEntity >> to represent modules with non-functional
entities can be declared. A QualityEntity can be used to represent domain, charac-
teristic, subcharacteristic, and attribute modules. As a result, non-functional attrib-
utes are defined in this stereotyped class. In this way one can create all the stereo-
typed classes needed to describe the non-functionality. A kind of hierarchy be-
tween these attributes can be simulated with dependency relationships between the
classes. The stereotyped dependency <<imports>> is also created to indicate that
the dependent class may import one or more modules of non-functional properties.
In order to state non-functional requirements over the non-functional attributes we
define an extra compartment to show any constraint referred to a subset of the
Quality Entities with the title <<OCL-exp>>. Expressions in this compartment obey
certain rules expressed in OCL. This compartment later is described. In the upper
part of fig. 11 we show two examples of <<QualityEntity>> classes.

− A stereotyped class called <<QualityRequirements>> can be declared for the non-
functional declaration module of NoFun. Within this stereotype we set the non-
functional requirements which are directly associated to the specification module
(the functional part of the system) represented in fig. 11 with the <<Type>> stereo-
type, using the stereotyped dependency relationship <<Qa-Spec>>. This stereo-
typed class also has its extra compartment <<OCL-exp>> to show the correspond-
ing constraints over the non-functional attributes.

− The non-functional behavior of a component implementation is defined with the
stereotype <<QualityBehavior>> where assignment of basic attribute values are de-
clared and bound to the corresponding software components. In UML-Class dia-
grams we can represent this quality behavior in dependency association to an
<<implementationClass>> stereotype, that later could be encapsulated in a comp o-
nent (that represents a physical piece of implementation of a system). <<QualityBe-
havior>> also has its compartment <<OCL-exp>> to show the corresponding con-

straints on the implementations of the imported components. In addition, a stereo-
typed dependency relationship <<hasQaBehavior>> is also created to bound <<im-
plementationClass>> and its <<QualityBehavior>>.

Fig. 10. Example of UML classes showing non-functionality

OCL [10] is used to express constraints at the functional level of a system
specification. That is the reason to try to use it for our non-functional specifications
too. In this research we use constraints at a very basic level but we believe that it can
be used largely to write all kinds of constraints with non-functional attributes.
Syntactically, in our model these constraints will be expressions appearing in the extra
compartment <<OCL-exp>>. They may appear in every one of the stereotypes
<<QualityEntity >>, <<QualityRequirements>> or <<QualityBehavior>>.

< < Q u a l i t y E n t i t y > >
E r p _ O r i e n t a t i o n

c o m p a n y A r e a s : e n u m { c o m m e r c i a l , l o g i s t i c s , a c c o u n t i n g ,

 f i n a n c e s , m a n u f a c t u r i n g }
a d e q u a c y S c a l e : s e q u e n c e { n o n E x i s t e n t , l o w , m e d i u m , h i g h }

< < Q u a l i t y B e h a v i o r > >

E r p A C M E C o m m e r c i a l

s u p p l i e r = O w n
c o m p a n y A r e a s = c o m m e r c i a l

a d e q u a c y S c a l e = m e d i u m

< < O C L - e x p > >

a d e q u a c y S c a l e > l o w a n d

 c o m p a n y A r e a s < > m a n u f a c t u r i n g

< < Q u a l i t y R e q u i r e m e n t s > >

E r p A c c u r a c y A C M E

< < O C L - e x p > >

 d : D e l i v e r i n g _ I s s u e s
 e : E r p O r i e n t a t i o n

 e . a d e q u a c y S c a l e > = m e d i u m
 e . c o m p a n y A r e a s = l o g i s t i c s o r e . c o m p a n y A r e a s = c o m m e r c i a l

 d . s u p p l i e r = O w n i m p l i e s d . d a t e . y e a r > 1 9 9 8 o r

 (d . d a t e . y e a r = 1 9 9 8 a n d d . d a t e . m o n t h > = 4)

< < Q u a l i t y E n t i t y > >

D e l i v e r i n g _ I s s u e s

d a t e : D a t e

suppl ie r : s t r ing

< < i m p o r t s > >
< < i m p o r t s > >

< < Q a - S p e c > >

< < I m p l e m e n t a t i o n C l a s s > >

 E r p A C M E C o m m e r c i a l

 < < h a s Q a B e h a v i o r > >

< < T y p e > >

E r p A C M E

− In <<QualityEntity>> non-functional requirements state universal facts about their
non-functional attributes, properties that the type defined with this stereotype must
fulfil.

− In <<QualityRequirements>> non-functional requirements state the conditions that
every implementation of the component must fulfil to be useful in the system.

− In <<QualityBehavior>> we give values to the non-functional requirements.

 NoFun has the usual predefined domains to fix the type of the non-functional attrib-
utes. It allows the use of integer, real, boolean and string types, but other types can be
defined by enumeration of values. The present section is restricted to showing the use
of these types, as a first approach to resemble the basic types that OCL defines. Given
the characteristics of this constraint language it is possible to find equivalent types
for all the non-functional attributes of NoFun. Naturally, the proper considerations
must be taken with regard to its semantics and to give a suitable context in the model1.

 12 Conclusions

 We have presented in this paper NoFun, a language for supporting the ISO/IEC qual-
ity standards as reported in [1]. The language consists of three parts: definition of the
domain of discourse; definition of the quality elements; and establishment of assess-
ment criteria. The language contains structuring mechanisms, type definition elements
and other constructs that give an appropriate support for defining non-trivial quality
models. We have also studied how these concepts can be mapped to UML using its
extension mechanisms. This paper is the actualization of [4] by the inclusion of some
minor constructs and the refinement of some concepts of this previous proposal.

 We consider that the salient features of our approach are:

− NoFun provides a basis for establishing quality models in a formal way, instead of
(or better, in addition to) using natural language. We think that NoFun is a step to-
wards filling the gap of formal definition of quality characteristics and metrics; as
mentioned below, to our knowledge just a few approaches exist in this sense.

− In addition to this, we have formulated our approach in the context of a main stan-
dard on software quality. As a result, our language provides a common framework
that can be used for people working in the field, sharing common results and build-
ing repositories with definition of characteristics, domains, evaluation of products,
etc.

− The existence of a language with a well-defined semantics allows building support
tools that can save human effort increasing also accuracy on the results.

1 For instance, for a derived attribute can be found the name derived attribute, whose

values must be explicitly computed, and it is shown by placing a slash (/) in front of
the derived element.

− With respect to the expressive power, the language presented here has proved to
be useful for defining a large kind of quality characteristics, criteria, etc.

− Although we have focused on the ISO/IEC standard, the language can be used in
other contexts related with quality. In addition to deal with other quality standards
[2, 3], we can use the language as an Interface Description Language (IDL) for many
contexts, such as for specification of non-functional issues [11], for enlarging exis-
tent IDLs such as the one for CORBA, and so on.

 The language presented here is the evolution of the previous NoFun IDL [5]. Al-
though many of the lowest-level constructs are similar, changes arise mainly con-
cerning structuring mechanisms, the refinement notion and the way of establishing
requirements. There are mainly three reasons behind this evolution

− Previous NoFun was specifically addressed to deal with small components, in-
tended to contain definition of abstract data types implemented with usual data
structures [12]. Therefore, the domain of application was component libraries such
as LEDA, STL and Booch ones. There were many restrictive consequences of this
situation; for instance, the notion of efficiency was specifically asimptotical effi-
ciency, measured with the big-Oh notation, which is no longer useful in information
systems of ERP products.

− NoFun stands for "NOn-FUNctional", in the sense that just non-functional issues
were taken into account. Functionaly aspects were supposed to be covered with
usual formal specifications languages, such as Larch, Z and other similar ones. It is
not the case for the current NoFun version.

− Previous NoFun was not really bound to any quality standard. Although ISO/IEC
could have been modelled with it (except for the functionality quality characteristic),
the result would have been a little confusing. For instance, it offered just a struc-
turing mechanisms for the so-called attributes, which has been split into three in the
new NoFun.

There exist in the software community many approaches for dealing with software
quality, although as far as we know, none of these approaches has been used in the
particular framework of defining quality models. Instead, these proposals have been
stated in the context of languages and notations for dealing with non-functional as-
pects of software. But in fact, also our language can be used this way (actually it has
been the case up to now [5]), and so it makes sense to establish comparisons with
them.

The most widespread approach is the one of the Toronto group, the NFR framework
[13, 14]. NFR deal with non-functional requirements at the process level, that is, they
use non-functional requirements to guide the software design process. As part of their
proposal, they record design decisions with a design-oriented notation, which makes
explicit the functional and non-functional goals of the system and their relationships,
which can be of many kinds (synergetic, contradictory, collaboration, etc.). Since the
focus of our language has to be more the product than the process, we think that both
approaches are really complementary.

Other approaches in at the product-level focus mainly on limited parts of the quality
characteristics, or do not allow to represent all kind of attributes, characteristics and
requirements. A great deal of the approaches are restricted to state just efficiency
information of software components: asymptotic efficiency [15], efficiency of queries
in relational structures [16], tight efficiency [17] and real-time efficiency [18]. A classi-
cal proposal in this field is the faceted approach of [19], which proposes a component
classification scheme based on many dimensions. In all of these languages and sys-
tems, quality evaluation is restricted to check if components satisfy some restrictions
about time efficiency, or to select or even generate components satisfying these re-
strictions. No way of defining arbitrary attributes or (sub)characteristics, neither so-
phisticated (but usual) non-functional requirements are provided. The notion of re-
finement does not appear in any of these approaches. And requirements such the one
in fig. 10 cannot be stated at all.

A few words about experimental results. An experiment on defining a quality model
for the selection of ERP products, based on a previous real case [6, 7], has been devel-
oped successfully; some excerpts have been shown in the paper. Other previous, more
academic work in the component-based software development also exist [20]. In this
paper, we focus on tradicional non-functional attributes such as performance, reliabil-
ity, etc. Currently, another case study is being developed in cooperation with a major
spanish software manufacturing company, consisting on the classification of graphical
forms, used to access data bases from automatically-generated applications. Up to
now, forms were generated in an ad-hoc manner, making understandability and main-
tenance very difficult. NoFun is being used for defining user profiles (technical users,
managerial users, secretary staff, etc.), each of them with different requirements on the
generated forms. Last, first steps on using the approach for the general problem of
COTS packages acquisition [21] have been stated [22].

References

1. ISO/IEC Standards 9126 (Information Technology – Software Product Evaluation –
Quality Characteristics and Guidelines for their use, 1991) and 14598 (Information
Technology – Software Product Evaluation: Part 1, General Overview; Part 4, Pro-
cess for A cquirers; 1999).

2. IEEE Computer Society. IEEE Standard for a Software Quality Metrics Methodol-
ogy. IEEE Std. 1061-1992, New York, 1992.

3. Rome Air Development Center (RADC). Software Quality Specification Guidebook
RADC-TR-85-37, vol. II, 1985.

4. X. Burgués, X. Franch. "A Language for Stating Component Quality". Proceed-
ings of 14th Brasilian Symposium on Software Engineering (SBES), Joao Pessoa
(Brasil), October 2000, pp. 69-84.

5. X. Franch. Systematic Formulation of Non-Functional Characteristics of Software.
Proceedings of International Conference on Requirements Engineering (ICRE)
(Colorado Springs, USA). IEEE Computer Society, 1998.

6. J.A. Pastor, X. Franch, F. Sistach. "Methodological ERP Acquisition: the SHERPA
Experience". 1st World Class IT Service Management Guide (2nd edition), ten-
HagenStam, 2001.

7. X. Burgués, X. Franch, J.A. Pastor. "Formalising ERP Selection Criteria". Pro-
ceedings of 10th IEEE International Workshop on Software Specification and De-
sign (IWSSD), San Diego (California, USA), November 2000.

8. G. Booch, I. Jacobson, J. Rumbaugh. The Unified Modeling Language Users
Guide. Addison-Wesley object technology series, Addison Wesley, 1998.

9. G. Salazar-Zárate, P. Botella. " Use of UML for non-functionals aspects". In Pro-
ceddings of 13th International Conference Software & Systems Engineering and
their Applications. (ICSSEA '2000), Paris (France), December 2000, CNAM publ.

10. J.B. Warmer, A.G. Kleppe. The Object Constraint Language: Precise Modeling
With UML. Addison-Wesley Object Technology Series, Adisson Wesley, 1999.

11. X. Franch. "Including Non-Functional Issues in Anna/Ada Programs for Auto-
matic Implementation Selection". In Procs. International Conference on Reliable
Software Technologies - Ada Europe'97, London (UK), June 1997, LNCS 1251, pp.
88-99.

12. X. Franch, P. Botella, X. Burgués, J.M. Ribó. "ComProLab: A Component Pro-
gramming Laboratory". In Procs. 9th Software Engineering and Knowledge Engi-
neering Conference (SEKE), Madrid (Spain), June 1997, pp. 397-406.

13. J. Mylopoulos, L. Chung, B.A. Nixon. "Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach". IEEE TSE, 18(6), 1992.

14. L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, ISBN 0-7923-8666-3. October
1999, 472 pp.

15. P.C-Y. Sheu, S. Yoo. "A Knowledge-Based Program Transformation System". In
Proceedings 6th CAiSE, Utrecht (Holanda), LNCS 811, 1994.

16. D. Cohen, N. Goldman, K. Narayanaswamy. "Adding Performance Information to
ADT Interfaces". In Proceedings of the Interface Definition Languages Work-
shop, ACM SIGPLAN Notices 29(8), 1994.

17. M. Sitaraman. "On Tight Performance Specification of Object-Oriented Compo-
nents". In Proceedings Third International Conference on Software Reuse (ICSR),
IEEE Computer Society Press, 1994.

18. R.H. Pierce et al. "Capturing and verifying performance requirements for hard real-
time systems". In Proceedings International Conference on Software Reliable
Technologies, London (England), LNCS 1251, Springer-Verlag, 1997.

19. Prieto-Díaz, R.: Classifying Software for Reusability. IEEE Software 4, 1. IEEE
Computer Society, 1987.

20. Franch, X.; Pinyol, J.; Vancells, J.: "Browsing a Component Library using Non-
Functional Information". In Procs. International Conference on Reliable Software
Technologies - Ada Europe'99, Santander (Spain), June 1999, LNCS 1622, pp. 332-
343.

21. N. Maiden, C. Ncube. Acquiring COTS Software Selection Requirements. IEEE
Software, March 1998.

22. X. Franch, J.A. Pastor. "On the Formalisation of ERP Systems Procurement". In
Procs. Continuing Collaborations for Successful COTS Development ICSE Work-
shop, Limerick (Ireland), June 2000.

