
5 Constructing and Using Software

Requirements Patterns

Xavier Franch, Carme Quer, Samuel Renault, Cindy Guerlain, Cristina

Palomares

Abstract. Software requirement reuse strategies are necessary to capitalize and

reuse knowledge in the requirements engineering phase. The PABRE framework

is designed to support requirement reuse through the use of software requirement

patterns. It consists of a meta-model that describes the main concepts around the

notion of pattern; a method to conduct the elicitation and documentation process-

es; a catalogue of patterns; and a tool that supports the catalogue’s management

and use. In this chapter all these elements are presented in detail making emphasis

on the construction, use and evolution of software requirement patterns. Further-

more, the chapter includes the construction of a catalogue of non-technical soft-

ware requirement patterns for illustration purposes.

5.1 Introduction

Requirements elicitation is the process of acquiring system requirements from sys-

tem stakeholders. The quality of this process is critical to make information tech-

nology (IT) projects a success.

When a company runs many elicitation processes over time, it is often the case

that a significant proportion of requirements is recurrent and belongs to a relative-

ly small number of categories, especially in the case of non-functional [1] and

non-technical [2] requirements. Capitalising on knowledge acquired in previous

projects seems in this way an adequate strategy to improve the quality of require-

ments, and then increase the changes of project success; as well as to increase the

efficiency of the requirements elicitation process. This chapter proposes an appli-

cation of the concept of software requirement pattern as a means to capture and

capitalise requirements knowledge in the context of IT systems and services pro-

curement projects. Specifically it presents this concept in the mark of the PABRE

framework making emphasis on the construction, use and evolution of software

requirement patterns.

The chapter is structured as follows. Section 5.2 presents the context of our

work. Then in Section 5.3, we summarize the state of the art on software require-

ment patterns. We present the main elements of our PABRE approach in Section

5.4, and in Section 5.5 we describe the patterns and catalogue structure as well as

their construction process. In Section 5.6, we detail our experience in building a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/268899150?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

catalogue of patterns for non-technical requirements. Finally, Section 5.7 presents

some conclusions and future work.

5.2 Context

The work presented in this paper stems from the needs of the Public Research

Centre Henri Tudor (TUDOR) at Luxembourg when conducting IT procurement

projects over time. Since 2004, TUDOR works in collaboration with freelance and

independent consultants. These consultants are federated in a business network

that we refer as CASSIS. They are trained to innovative methods produced by re-

search projects and they use these methods in industrial contexts. TUDOR moni-

tors their activity to ensure that they do not deviate over the time. One of the main

methodologies delivered to consultants is a requirement engineering method used

to design Software Requirements Specification documents (SRS) for IT procure-

ment projects in small and medium size companies [3].

Consultants work in collaboration with customers to help them in identifying

their needs for a new IT system supporting their business activities, and then se-

lecting the most relevant system accordingly to their needs. In this particular con-

text, requirements engineers’ consultants define SRS for external customers and

not for their internal purpose. Consultants’ customers are usually looking both for

an IT system and for its implementation. In other words, they have requirements

towards an IT system and towards additional services. For this reason, the scope

of the SRS often encompasses functional, non-functional and non-technical re-

quirements.

The initial goal of the SRS is to serve as a basis for a competitive procurement

process. So their primary use is for IT sales managers to understand the needs of

the customer and to propose a commercial bid. Only when this process is

achieved, the SRS is used in second intend as source for the design or the custom-

ization of the selected IT system.

So far, consultants and TUDOR have performed more than 40 projects in com-

pliance with the methodology. The initial approach for capitalising requirements

knowledge among the consultants was quite basic. It consisted in re-using frag-

ments of a former SRS as a basis to build the new SRS. This approach was simple

to use but required to be aware of the former projects, which was not easy for the

consultants due to their decentralized organisation in a business network.

The second TUDOR approach to capitalise requirements knowledge was to de-

sign SRS’ templates based on existing SRS with similarities. This approach no

longer requires the consultants to be aware of all former projects. However, the

SRS’ templates remained unstructured as domain experts built them both on their

own knowledge and on assumptions of similarities found in existing SRS but

without any underlying meta-model.

The limitations of these reuse approaches led us to the adoption of a more elab-

orated framework for requirements reuse.

5.3 Patterns in Requirements Engineering

As in any other software engineering discipline, reuse has been a matter of re-

search in requirements engineering. Reviewing the literature, we may find differ-

ent approaches for implementing a reuse program within the context described in

Section 5.2, i.e. facilitating the process of requirements elicitation and also im-

proving the quality of the resulting SRS. We may classify these approaches de-

pending on: the structure of capitalized knowledge; the language in which the re-

quirements are expressed; the classification and browsing capabilities of the

repository; and the existence of a method for building, evolving and exploiting the

requirement knowledge repository. From these aspects, in this chapter we focus on

the first one, the structure of the capitalized information using patterns.

In the context of engineering, the term “pattern” was introduced by the archi-

tect Christopher Alexander that proposed them to improve the quality of the build-

ings’ construction. In his view, “each pattern describes a problem which occurs

over and over again in our environment, and then describes the core of the solu-

tion to that problem, in such a way that you can use this solution a million times

over, without ever doing it the same way twice” [4]. This formulation is so generic

that fitted well in other engineering domains and in particular, software engineers

adopted it in several contexts, remarkably related with software design (being

software design patterns [5] and software architectural patterns [6] the most repre-

sentative approaches), but also in other software development phases. In particu-

lar, several approaches have proposed the use of patterns as a reuse strategy in the

requirements engineering phase, which can be roughly classified as follows:

 Specific pattern-based approaches. We group here those approaches whose pat-

terns cannot be applied in every project but just in those that are compliant to

some property. Examples are:

o Artifact-oriented patterns. Patterns that apply to a particular type of model

or diagram. For instance, use case patterns propose use cases to be included

in the specification of a system to ensure some properties or achieve some

goals [7].

o Domain-oriented patterns. Based upon the notion of variability proposed in

domain engineering. Whilst common requirements are necessary in any

system of the domain, other requirements can be chosen or not for a specif-

ic system [8]. In some of these proposals, rules are provided to establish

dependencies among variable parts of the requirements specifications.

 Refinement-oriented pattern-based approaches. They establish how the attain-

ment of certain goals can be achieved in a certain system. They usually adopt a

goal oriented modeling language as i* [9] or KAOS [10]. Requirements engi-

neers are guided in the process of deciding which requirements are necessary to

implement in a system to satisfy certain goals.

 Template-oriented pattern-based approaches. Templates with some additional

information about when to use them. The ultimate goal of these approaches is

to produce an SRS.

o In their simplest form, they do not follow any structure, or this structure is

very basic even if enriched with some search facilities [11, 12]. In these

cases, they promote direct reuse (i.e., copy-and-paste) of templates as re-

quirements, which are written as natural languages sentences usually com-

pliant to a language grammar [13].

o More elaborated approaches include additional information about the con-

text where they can be applied that guides the requirements engineer during

the requirements elicitation process [14, 15]. Usually these proposals are

general-purpose in terms of domain although others are specific (e.g. [16,

17] for real-time patterns). Most of them still keep natural language as pre-

ferred notation for expressing the requirements, but we may find some that

use other notations (e.g., UML [16]) or even combine two (this is the case

of [17] that combines natural language with real-time temporal logics).

In the rest of the chapter we present our PABRE template-oriented approach to

conduct PAttern-Based Requirements Elicitation. It consists of a meta-model that

describes the main concepts around our notion of pattern [18], a method to con-

duct the elicitation process [19], a catalogue of patterns classified according to

some schema, and a tool that supports its management and use [20]. The main re-

sult of the application of PABRE is an SRS whose requirements are written in

natural language.

5.4 Software Requirement Patterns in PABRE

In this section we describe the notion of Software Requirement Pattern (SRP) as

used in PABRE. We present the structure of patterns through a meta-model (see

Fig. 5.1) and an example, the Economic Information pattern (see Fig. 5.2), that il-

lustrates the SRP structure and helps to understand the meta-model behind them.

An SRP is a pattern that, when applied, produces software requirements related

to the objective (goal) of that pattern. Giving an analogy with the context-

problem-solution Alexander’s definition of patterns, goals correspond to problems

to be solved by applying the SRP. Applying the Economic Situation SRP we may

produce requirements related to the goal of Assessing the economic situation of the

supplier that procures a software system.

In our analysis of SRS we have observed that a goal can be achieved in different

ways. To deal with this situation, we define an SRP as consisting of several

Forms, each one representing a different solution for achieving the goal. In the

Economic Situation SRP, its goal can be attained by asking the supplier the rele-

vant economic information (Economic Situation Information form), or by setting

conditions or prerequisites on the economic situation that the supplier should have

(Economic Situation Prerequisites form).

Fig. 5.1: Meta-model for software requirement patterns.

Fig. 5.2: The Economic Situation software requirement pattern

Nevertheless, even considering a Form, we may find variations in the way they

are detailed in different specifications. We have therefore organized a Form into

Parts, each of them being a template. Each Form is characterized by a Fixed Part

which states the minimal requirement that always apply when applying that form,

and some Extended Parts which may be applied or not in each occurrence in a

project.

The Fixed Part always becomes a requirement when an SRP is applied with

this Form. Extended Parts are only used if more precise information is required in

the specification. Due to this nature, the Fixed Part is usually quite generic and

hardly measurable. For instance, the first form of Economic Situation is The sup-

plier shall provide economic information of its company, whilst the two extended

parts identify the type of information required (company’s turnover or net income)

and the period of time.

In general, fixed and extended parts must conform to some Part Constraint rep-

resented by means of a regular expression that may involve some predefined oper-

ators (e.g., for declaring multiplicities or dependencies among parts, as excludes

and requires). In the Economic Situation SRP, each part of the forms may be used

just once in a specification project, and there are neither excludes nor requires de-

pendencies among them.

From a syntactic point of view, both fixed and extended parts are similar, there-

fore an abstract superclass Pattern Item is included in the meta-model. Their tem-

plates are composed by the text to be used as a requirement and optionally some

parameters to be instantiated when applying the pattern. Parameters establish their

Metric, eventually a correctness condition inv, and also may be related to other

parameters (belonging to other patterns) such that they must have the same value.

The second form in the Economic Situation SRP declares two extended parts that

identify additional conditions on this form. For example, the second extended part

allows stating prerequisites on the net supplier incomes (by assigning values to the

parameters amount and currencyUnit, e.g. 1M EUR) for a certain period of time

(by assigning values to the parameters number and timeUnit, e.g. 2 years). The

metrics of these parameters are detailed at the bottom of the figure.

SRP are not isolated units of knowledge, instead there are several types of rela-

tionships among them. In the PABRE approach, we identify three types of rela-

tionships:

– Pattern Relationship. The most general relationship that implies all the forms

and all the forms’ parts of the related patterns.

– Form Relationship. A relationship at the level of forms implies all the parts

of the related forms.

– Part Relationship. The relationship only applies to these two parts.

In any case, if A is related to B and A is applied in the current project, the need of

applying or avoiding B must be explicitly addressed. The types of relationships are

not predetermined in the meta-model to make it more flexible. The superclass Re-

lationship includes an attribute to classify each relationship.

5.5 A Catalogue for Software Requirement Patterns

The existence of patterns by themselves does not ensure an efficient implementa-

tion of requirements reuse. It is necessary to set up an infrastructure able to sup-

port the analyst to organize and apply them. In the PABRE framework, we are

coping with this aspect through a catalogue of SRP.

5.5.1 Structure of the Catalogue

PABRE’s catalogue stores the collection of SRP identified so far. A fundamental

issue is the need of classifying them over some criteria for supporting their search.

In fact, it is important to observe that different contexts (organizations, projects,

standards, etc.) may, and usually do, define or require different Classification

Schemas. History shows that trying to impose a particular classification schema

does not work. For this reason, PABRE decouples SRP from classification sche-

mas (see Fig. 5.3): the latter just impose different structuring schemas on top of

the former. SRP are bound to Basic Classifiers, whilst Compound Classifiers just

impose the usual hierarchical structure of any classification schema. Several Roots

for a classification schema are allowed.

The meta-model (Fig. 5.1) shows that an SRP may be bound to several classifi-

cation schemas, and even to more than one basic classifier in a single classifica-

tion schema. In other words, we do not impose unnecessary constraints that could

lead to rigidness. For instance, a classification schema may not cover all existing

SRP (i.e., some SRP may not be classified).

Fig. 5.3: Software requirement patterns classification schemas

ISO/IEC
9126-1
Classification
Schema

TUDOR

Classification
Schema

Other
Classification
Schema SRP Catalogue

5.5.2 SRP catalogue construction

The current PABRE SRP catalogue was built as a result of analyzing the SRS of a

certain number of projects in which TUDOR was involved. These SRS are usually

broken down into three distinct parts: functional requirements, non-functional re-

quirements (NFR) and non-technical requirements (NTR). Our previous experi-

ence in quality models [21] and in requirements engineering projects and the anal-

ysis of TUDOR SRS showed us that non-functional requirements and non-

technical requirements have higher reuse frequency than functional requirements.

Then, our aim for the first version of the catalogue was to represent those SRP

whose application leads to NFR that appear in the mentioned SRS [22]. From the

experience gained, we recently finished the second version of the catalogue in

which we added the SRP corresponding to the NTR, as presented in Section 5.6.

In both cases, the steps (Fig. 5.4) were:

1. Alignment. First, the requirements of the different SRS are consolidated

and aligned according to their type. This corresponds to the identification

of the departing requirements in the SRS. To make this alignment more

reliable it is convenient to identify the concepts addressed by require-

ments. As part of the process, requirements need to be leveraged, which

usually requires decomposing complex requirements into simpler ones.

As a result, this step delivers a set of requirement types.

2. Analysis. For each of these types, a study of their adequacy as an SRP is

performed. The main criterion of course is repetition that identifies high

probability of reuse: those requirements that appear in most or all of the

SRS are clear candidates. But this is not the only condition. A require-

ment appearing in a few, even just one, SRS may also be considered ade-

quate as SRP. In this step, expert assessment is the cornerstone, since ex-

perts are the only ones that may say e.g. that a requirement appearing in

just one SRS could in fact have appeared in all of them, in other words

that its absence is a flaw. As a result, this step restricts the former set to a

subset with all the types that may be considered patterns’ seed or SRP

candidates. The different requirement types are converted into SRP can-

didates mainly by means of abstraction, but also a consistency analysis

and grammatical improvement is applied.

3. Formulation. The selected SRP candidates are converted into SRP. Not

every candidate is necessarily converted into a different SRP, since some

of them may be considered close enough as to be integrated in the same

pattern. As a result, the final structure of the patterns, their forms, their

parts and parameters, emerges. In the process, again with expert assess-

ment, the final structure of every SRP may be slightly different than the

corresponding requirements in the SRS, since experts may consider that

for future projects these differences could be useful. For the templates,

syntactical conventions may be enforced.

Fig. 5.4: Software requirement patterns catalogue construction process

4. Catalogue construction. Finally, the patterns evolve from individual arti-

facts into an articulated structure of knowledge, stored in the catalogue.

Two things need to be done. First, the SRP need to be classified accord-

ing to the existing classification schemas. Second, the relationships

among SRP are established, as well as those (less frequent) among pa-

rameters.

5.5.3 The SRP catalogue use

The SRP catalogue is used during the requirements elicitation phase of IT systems

and services procurement projects. During this use, requirements engineers select

SRP from the catalogue that apply to the particular project, and converts them into

the real requirements that finally configure the SRS. The complete PABRE meth-

od is detailed in [7]. In a nutshell, it converts requirements elicitation into a pro-

cess of search in, and pick-up from, the SRP catalogue (Fig. 5.5).

Fig 5.5: Overview of the PABRE method

SRSs

Requirement types

SRP Candidates

SRPs

SRP Catalogue

During elicitation, the catalogue is explored according to the following proce-

dure:

 Pattern Exploration. The requirements engineer selects the next applicable pat-

tern according to some criteria (e.g., the classification schema, the SRP rela-

tionships, etc). Based on an explanation and with continuous support from the

engineer, the customer decides whether the pattern applies in the project or not.

 Forms Exploration. For each selected pattern, the requirements engineer ex-

plains the different forms. Then the customer chooses the form that suits his/her

situation and moves to the next step. If no form meets the customer require-

ments, the requirements engineer elaborates the requirement(s) and moves to

the requirement creation step.

 Parts Exploration. For each selected form, the requirements engineer explains

the different extended parts. If it is necessary the consultant skims over the pa-

rameters and gives example of possible values, in order to improve understand-

ing of the parts. The customer chooses the extended parts that considers neces-

sary for his/her project. As well as in the previous steps, if no extension fits

completely into the customer needs, it is necessary to elicit the missing bits

separately.

Fig. 5.6: Use of software requirement patterns

At this point, the requirement may be defined in different ways. Fig. 5.6 shows the

three types or Requirement subclasses and their relationships regarding the SRP

meta-model:

 Applied Pattern. For the selected parts, the requirements engineer gives more

details about the parameters that apply (e.g., details on possible correctness

conditions, dependencies to/from other parameters) and presents the list of val-

ues for each parameter. Then the customer chooses the values for the parame-

ters. The requirements engineer turns the customized part(s) into a requirement.

The requirements engineer needs to check consistency, dependencies and cor-

rectness of the selected parts. When the requirements engineer detects a con-

flict or an inconsistency, he/she warns the customer and they try to solve the

conflict. The resulting requirement is represented with the Applied Pattern sub-

class.

 New Requirement or Associated Requirement. Sometimes, the requirements

engineer needs to create a New Requirement from scratch because the re-

striction expressed by the requirement cannot be defined as application of any

SRP. We distinguish one particular case: if the new requirement is related with

an existent pattern, since it has its same goal, but it is not its direct application,

this new requirement is an Associated Requirement. An associated requirement

consists of partial and small changes of the pattern or the forms (its part’s text

or parameters).

5.5.4 The SRP catalogue evolution

Catalogue evolution allows capitalizing the different projects and keeping the SRP

catalogue up-to-date. The requirements experts identify the patterns, forms, ex-

tended parts and parameters which are the most and less used. According to their

feedback, different actions can be undertaken to evolve the catalogue.

The feedback is obtained by having the real numbers of SRP applications, the

associated requirements to patterns or forms, and the new requirements, over time:

 The number of applications of a pattern versus the number of associations to

that pattern can be used by the requirements engineer as a guarantee of the va-

lidity of the SRP. If the number of applications is low regarding to its associa-

tions maybe the requirements engineer has to check the associated require-

ments in order to find out if there is some problem with the definition of the

requirement. On the other hand, the number of applications is a confirmation

of the validity of the pattern.

 The associated requirements have to be analyzed because they can correspond

to forms or parts of a pattern that have never been identified before, and that

would be helpful for the requirements analysts to have them as parts of the

pattern.

 In the case of new requirements, it has to be analyzed if there has been an er-

ror in defining them as new, or if in fact the requirement analyst is right and

there is not the goal corresponding to the new requirements represented by

any SRP of the catalogue. In the first case, the new requirement is analyzed as

an associated requirement, and in the second case the new requirement is con-

sidered for being added as an SRP following the lasts steps presented in Sec-

tion 5.2.

5.6 A Software Requirement Patterns Catalogue for

Non-technical Requirements

The goal of this section is to illustrate the process of construction of a set of SRP

presented in Section 5.2. We describe the construction of the SRP catalogue part

corresponding to NTR applicable to TUDOR’s projects. NTR are those require-

ments that do not refer directly to the intrinsic quality of software, but to the con-

text of the system under analysis. They include economic, political and managerial

issues. This type of requirements is highly independent of the software domain,

and for this reason, good candidate for our work. The complete catalogue of NTR

patterns (NT SRP for short) is available in the PABRE website

(http://www.upc.edu/gessi/PABRE/index.html).

5.6.1 Preliminaries

We used 6 SRS as starting point of the process, which is distilled next in terms

of the different steps enumerated in Section 5.2.

In these 6 SRS documents, specific sections were supposed to contain separate-

ly NFR and NTR. However, when building the previous catalogue of SRP for

NFR, we discovered that this separation was not clear, since some NTR were dis-

covered in the NFR section. As a result, besides the 29 NFR patterns, we already

identified 3 patterns that became the initial set of NT SRP.

The requirements in the SRS were written in French. However, the biggest core

of knowledge on requirements engineering is available mainly in English. Also,

for dissemination purposes, we had the goal of producing the pattern templates in

English too. Therefore, before the alignment process, we translated the require-

ments into English. The translation was supervised by the TUDOR team since

French is their native language but they are also fluent in English.

5.6.2 Alignment

Next, we undertook the alignment looking for requirements expressed differently

in each of the SRS but addressing the same concept. Table 5.1, first three rows,

shows three requirements appearing in different SRS but related to the concept,

namely Maintenance Period.

On the other hand, some SRS requirements were also broken into several sim-

ple requirements. For instance, the two last rows of Table 5.1 show two require-

ments that appeared in an SRS as one single complex requirement.

5.6.3 Analysis

In this step it was necessary to consider the requirements that address the same

concept to be joined, by means of abstraction, consistency analysis and improve-

ment of the grammatical form, in requirement types.

Table 5.1: Examples of aligned requirements

Concept Requirement Keywords

Maintenance

Period

The solution should be maintained for three (3) years from

the expiration of the warranty period.

Maintenance Period

Warranty

Maintenance

Period

The proposed solution must be maintained for at least 1 year

from the date of expiry of the warranty period.

Maintenance Period

Warranty

Maintenance

Period

From the date of expiry of the warranty period, the contractor

agrees to provide, at the explicit request of the client, ongo-

ing maintenance services for a minimum period of one year.

Maintenance Period

Warranty

Audits The customer reserves the right to conduct audits of the pro-

vider and its production during the project

Audits

Provider

Project Production

Audits

These audits will focus on the specific development (product

code, development methodology, documentation), the treat-

ment of the reported anomalies and quality procedures.

Audits

Specific Development

Reported Anomalies

Quality Procedures

Table 5.2 shows the list of candidate SRP for the requirements presented above

in Table 5.1. The first one corresponds to the abstraction of the three first require-

ments in Table 5.1. The requirement was abstracted in order to allow the statement

of different periods of maintenance after the end of the warranty. This example

shows a usual way to implement abstraction, namely substituting specific aspects

related to one project by parameters with some associated metric (which of course

allows the generation of the abstracted requirements).

Also, some grammatical rules on the SRP templates were enforced. Examples

are: requirements were written in an active voice; requirements were written in

third-person and with use of the modal verb shall suitable for legal requirements

or statements.

To ensure catalogue consistency, we built and maintained a glossary of terms

and metrics. Since we started from the previous state of the catalogue which con-

tained non-functional SRP, metrics as timeUnit and terms as supplier and system

were already therein. This last term was used to substitute the solution in the SRS.

Also other terms were substituted for the same reasons as project production by

project deliverables.

Also consistency among requirements was checked. For example, we found

two requirements at the same SRS: “At each Steering Committee meeting, a

statement of progress will be prepared and signed by the parties” and “The report

will be prepared by the provider and approved by the customer, if necessary after

the required updates” related to the Steering Committee Meetings requirements.

As can be seen, in the two requirements a different term is used to refer the meet-

ing reports (statement in the first requirement), and inconsistencies among the re-

port approval process are present in them. Therefore clarification was needed to

ensure consistency.

Table 5.2: Examples of requirement types

Concept Requirement Keywords

Maintenance

Period

The supplier shall maintain the system for number

timeUnit from the expiration of the warranty period.

Maintenance Period

Warranty

Audits The customer shall do audits of the supplier or the

project deliverables if it is considered necessary.

Audits

Supplier

 Project Deliverables

Audits

The audits shall focus on the quality aspects. Audits

Specific Developments

Reported Anomalies

 Quality Procedures

5.6.4 Formulation

The requirement types corresponding to SRP candidates were processed iterative-

ly, considering at each iteration one type of candidates addressing the same con-

cept. At each iteration, the considered types were compared to the set of the al-

ready approved SRP, in order to decide their treatment: approval as a new SRP,

incorporation as parts of existing SRP, or discard.

We illustrate the formulation with a particular NT SRP. The requirement types

related to Audits (see Table 5.2) were included in the catalogue as just one SRP

since they address the same concept. When all the SRP candidates aligned to Au-

dits were considered, we observed that there are two different groups: one con-

straining audits for assessing the quality of the supplier in a general way and the

other that constraints audits conducted according to a certain quality standard.

Therefore, the resulting SRP was structured into two alternative forms: General

Quality Assessment form and Quality Standard-based Assessment form (see Table

5.3). In the first form, the most general requirement type has been selected as the

fixed part of the form whilst the other becomes an extended part, since this second

type of requirement will not appear in a project without including the first one.

 The process above was iterated for the rest of requirement types. Eventually,

we found some special situations. On the one hand side, some requirement types

were restricting the Delivered Documents of the project. When the glossary was

browsed, this term was found as the name of an existing non-functional SRP.

Therefore, these types were analyzed with respect to this SRP: some types were

found redundant regarding to the existent pattern, whilst other were used to consti-

tute a new pattern. The non-functional SRP Delivered Documents addresses the

statement of requirements on the content of delivered documents, and the NT SRP

Document Characteristics allows constraining the characteristics of the documents

(i.e., their language, electronic format, metadata to include, etc.). Finally both pat-

terns were considered as related to NT aspects, although the first one is also non-

functional due to its relationship with the maintenance and understandability of a

system and therefore may appear also classified under this perspective.

Table 5.3: Quality Assessment non-technical software requirement pattern

QUALITY ASSESSMENT

Goal: Stating the customer’s right of performing quality assessment

Requirement

Form

General

Quality

Assessment

Parts

Constraints
 Fixed part cannot be applied more than once.

 Review focus cannot be applied more than once.

 Quality criteria agreements cannot be applied more than

once.

Fixed Part Form Text If the customer considers it nec-

essary during the system imple-

mentation project, s/he shall be

allowed to assess the quality of

the process or the projectDeliver-

ables.
Parameters Metrics

projectDeliverables:

is a non-empty set of

the different products

delivered during the

system implementa-

tion project

ProjectDeliverables =

Set(ProjectDelive-rable)

ProjectDeliverable = Domain

(hardware, software, data and

documents provided or paid by

customer as project deliverables,

etc.)

Extended Part

Review Focus

Form Text The customer shall focus the

quality assessment on the qual-

ityAspects.

Parameters Metrics

qualityAspects: is a

non-empty set of the

different quality as-

pects to be assessed

QualityAspects = Set (Qual-

ityAspect)

QualityAspect = Domain (specif-

ic development, treatment of the

reported abnormalities, quality

procedures, etc.)

Extended Part

Quality Criteria

Agreement

Form Text The customer shall agree with the

supplier the level of quality ex-

pected for the various project de-

liverables.

Requirement

Form

Quality

Standard-

based

Assessment

Parts

Constraints
 Fixed part cannot be applied more than once.

 Process Quality Assessment cannot be applied more than

once

 Deliverables Quality Assessment can be applied more

than once, only if it is applied for different values of the

projectDeliverables and qualityStandard parameters

 Quality criteria agreement cannot be applied more than

once.

 Quality criteria establishment cannot be applied more

than once.

Fixed Part Form Text If the customer considers it neces-

sary during the system implemen-

tation project, s/he shall be al-

lowed to assess the quality of the

process or project deliverables

taking into account a quality

standard.

Extended Part

Process Quality

Assessment

Form Text The quality of the process shall be

assessed taking into account the

qualityStandard quality standard.

Parameters Metrics

qualityStandard:

represents the identi-

fier of the quality

standard that shall be

used to assess the

quality

QualityStandard = Domain

(IEEE830, IEEE829, IEEE1016,

ISO/IEC9126, ISO/IEC 15504-5,

etc.)

Extended Part

Deliverables Quality

Assessment

Form Text The quality of the projectDeliv-

erables shall be assessed taking

into account the qualityStandard

quality standard.

Parameters Metrics

projectDeliverables
as above

ProjectDeliverables as above

qualityStandard as

above

QualityStandard as above

Extended Part

Quality Criteria

Agreement

Form Text The customer shall agree with the

supplier on the level of quality

expected for the project delivera-

bles.

Extended Part

Quality

Criteria

Applied

Form Text The customer shall establish the

subset quality standard criteria to

be applied timePreposition date.

Parameters Metrics

timePreposition

represents the rela-

tionship with respect

to a date

TimePreposition = Domain (on,

before, after, at, by,…)

date: is a time point

representing the date

in which the quality

standard criteria shall

be established

Date = TimePoint

On the other hand, some of the requirement types dealt with one restriction on

the concept Source Code. Specifically they were about the need of documenting

the source code. In this case, they were added as extended parts of the already ex-

istent Source Code NT SRP.

As already mentioned, during this step and the previous one, expert assessment

was crucial. Validation was done by requirement engineers from TUDOR with

wide experience in requirements elicitation. Some relevant observations follow.

First of all, the experts provided a general observation about the focus of the

forms. For instance, for those SRP referring to suppliers, most were asking for in-

formation about the supplier, instead of restricting how the supplier should be or

should behave. They proposed to formulate improved forms of the SRP in a more

prescriptive way. For instance, this was done in the case of the SRP Supplier

Workforce, whose goal was initially formulated as “Having information about the

supplier workforce” and whose only form’s fixed part was “The supplier shall

provide workforce information about the company”. After the expert’s assess-

ment, the goal was transformed into “Assessing the workforce of the supplier” and

a new form was added establishing a restriction of the supplier workforce with the

fixed part “The supplier shall fulfill some workforce requirements”. Both forms

have extended parts to establish different aspects of the workforce information to

obtain or to restrict respectively.

Experts also suggested restructuring some SRP while iterations progressed. Ex-

amples of actions are: SRP merged during the process due to redundancy; extend-

ed parts upgraded into fixed parts; even reallocation of extended parts from one

SRP to another. For instance, the Installation SRP was subsumed by the Imple-

mentation Planning SRP, since in this SRP it is already established the planning of

the different activities, being installation just a particular case. Also, changes in

the vocabulary and abstraction from specific contexts of application were continu-

ously performed. For instance, in the case of the SRP about Audits, the experts

suggested to change in the SRP body the action “audit” by “assess of the quality”.

After the validation step we have arrived to 38 NT SRP.

5.6.5 Catalogue construction

The created NT SRP were stored in the PABRE catalogue. As already mentioned,

the catalogue already contained three NT SRP identified in the previous version of

the catalogue: Help Desk, Crash Response and Source Code Documentation.

The NT SRP were classified in terms of the two classification schemas incor-

porated into PABRE so far: the ISO/IEC 9126-1 standard [23] and the classifica-

tion schema defined by the TUDOR center. In this section we illustrate the classi-

fication using the ISO/IEC 9126-1 standard.

ISO/IEC 9126-1 does not include non-technical features. However, in previous

works we enlarged this standard with NT features [21] and we use this extension

(called NT-ISO/IEC 9126) in the PABRE catalogue, which adds 3 characteristics

(Supplier, Business and Product) and 15 subcharacteristics to the standard. Before

classifying the NT SRP according to this schema, some changes had to be done to

take into account some differences on the use of the catalogue.

On the one hand, we found during the process of classification we found 19

patterns that did not correspond to any subcharacteristic in NT-ISO/IEC 9126. The

reason is that initially that catalogue was created to include the criteria to assess

the quality of a final software product, whereas the NT SRP state requisites for the

procurement of a system (probably by gluing or adapting several products). This is

the reason why we needed to add a new characteristic to group the SRP about the

implementation project: the Project characteristic, decomposed into two subchar-

acteristics: Business Scheduling and Supplier Relationships.

Table 5.4: NT SRP Extended ISO/IEC 9126-1 classification

1. Supplier NT SRP NT SRP Goals

1.1 Organizational Struc-

ture

 Supplier Administrative Infor-

mation

Being able to contact the supplier

 Supplier Organization Understanding the supplier’s organization

 Supplier History Being aware of the history of the supplier company

1.2 Positioning and Supplier Economic Information Assessing the economic situation of the supplier

Strength Supplier Workforce Assessing the workforce of the supplier

1.3 Reputation
 Supplier Business Experience Assessing project’s experience

 Supplier Quality Certification Assessing quality certification of the supplier

1.4 Services Offered
 Training Stating the training the supplier shall provide about the

implemented system

1.5 Support

 Maintenance Procedure Assessing the supplier’s maintenance procedures

 Type of Maintenance Stating the specific types of maintenance for the system

implemented the supplier shall provide

2. Business

2.1 Licensing Schema Source Code Licenses Stating the source code licenses

2.2 Ownership Intellectual Property Rights Stating the rights of using assets result of the project

2.3 Guarantees Warranty Stating the warranty that shall be applied over the imple-

mented system

2.4 Costs Cost Breakdown Structure Stating the structure of the global cost of the system to be

implemented

2. Project Stating the structure of the global cost of the system to be

impl

2.8 Business

 Scheduling

 System Implementation Schedul-

ing

Stating the scheduling of the system implementation

 Project Progress Control Having or stating the indicators for assessing the progress

of the project

 Project Management Method Stating the method used for project management

 Final acceptance Stating the time and conditions for the final acceptance of

the implemented system

 Release Stating the time and conditions when the implemented sys-

tem shall be released

 Analysis Stage Activities Stating the activities to take during analysis stage

 Data Migration Stating the necessity of migrating data

 Development Activities Stating the activities to take during development stage

 Acceptance Tests Stating the type of tests for the system implementation ac-

ceptance

2.9 Supplier

 Relationships

 Steering Committee Stating the steering committee organization

 Meetings Organization Stating system implementation meetings organization

 Access to Customer Premises Stating the rules for supplier access to customer premises

 Privacy Stating the privacy rules among customer and supplier

 Project Progress Control Having or stating the indicators for assessing the progress

of the project

 Quality Assessment Stating the customer’s right of performing quality assess-

ment

 Payment Procedure Stating the payment schedule

 Settlement of Disputes Stating how the disputes between customer and supplier

shall be solved

 Supplier People Assigned to the

Project

Assessing the profile of the people assigned to the project

 Help Desk Having access to a technical support service for the system

for information and assistance

 Crash Response Stating the required level of service for supplier support in

case of crash

3. Product

3.1 History Products History Assessing the history of the main products that will be part

of system to be implemented

 Community Support Assessing the existence of a community that could give

support on the implemented system

3.2 Deliverables Delivered Documents Stating the documentation that shall be delivered

 Source Code Documentation Stating the source code licenses

3.3 Parameterization and

Customization

On the other hand, some related subcharacteristics were merged into just one.

Specifically, they were those related to the cost of the business. The original sub-

characteristics were too static: Licensing Costs, Platform Costs, Implement Costs

and Network Costs, but the new subcharacteristic integrates all these costs in a

cost breakdown structure allowing the flexibility to add new ones.

Also relationships among the SRP were investigated. With this aim, we took

into account the keywords stated for each SRP (obtained during their construc-

tion), and also the metrics of the parameters of the different SRPs. For the Quality

Assessment SRP, taking into account the parameter ProjectDeliverables (Table

5.3), we identified a dependency with the Delivered Documents SRP that also has

a parameter with the same metrics. The relationship is that the documents for

which a quality assessment is done must be deliverable documents.

In Table 5.4, the 37 SRP are classified taking into account the extended NT

ISO classification schema updated to include the new identified characteristics and

subcharacteristics.

5.7 Conclusions

In this chapter we have presented the PABRE framework for reusing requirements

knowledge following a pattern-based approach. The different components of

PABRE have been introduced: its meta-model, the processes supported and the

catalogue of patterns. For illustration purposes, we have described the construction

of the first version of a set of 37 non-technical requirements patterns that follow

the structure stated in the PABRE meta-model. Requirements engineering experts

from the TUDOR research center have been collaborating in this construction.

Future work spreads over several dimensions.

 Validation of the adequacy of PABRE in other types of IT projects beyond

the procurement projects targeted so far.

 Adoption of clear rules and best practices for writing pattern templates (see

e.g. EARS [24]).

 Extension of the catalogue with functional patterns from several domains

(e.g., in the context of TUDOR, ERP and CRM procurement projects).

 Improving capabilities of tool support by introducing recommendation capa-

bilities (e.g., “projects that used this pattern usually use this other”).

In addition, more validation is needed. We have so far conducted post-mortem

analysis of the SRS coming from past projects to validate that: the meta-model

covers the features expressed in those SRS; the coverage of the catalogue is satis-

factory. Still, we need to apply it to real cases in an action-research basis.

Acknowledgements

This work has been partially supported by the Spanish project TIN-2010-19130-

C02-01.

References

[1] L. Chung and J.C.S. do Prado Leite. “On Non-Functional Requirements in Software Engi-

neering”, Conceptual Modeling: Foundations and Applications, 2009. pp. 363-379.

[2] J.P. Carvallo, X. Franch, C. Quer. “Managing Non-Technical Requirements in COTS

Selection”. IEEE International Requirements Engineering Conference (RE), 2006.

[3] S. Renault, B. Barafort, E. Dubois, M. Krystkowiak, “Improving SME trust into IT

consultancy: a network of certified consultants case study”, EuroSPI, 2007.

[4] C. Alexander. The Timeless Way of Building. Oxford University Press US, 1979.

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable Ob-

ject-Oriented Software, Addison-Wesley, 2000.

[6] F. Buschmann, R. Meunier, H. Rhonert, P. Sommerlad, M. Stal. Pattern-Oriented Software

Architecture. A System of Patterns, John Wiley & Sons, 1996.

[7] L. Chung, S. Supakkul. “Capturing and reusing functional and non-functional requirements

knowledge: A goal-object pattern approach”, IEEE International Conference on Information

Reuse and Integration (IRI), 2006.

[8] M. Mannion, H. Kaindl. “Using parameters and discriminants for product line requirements”,

Systems Engineering Journal, 11(1), pp.61-80, February 2008.

[9] S. Supakkul, T. Hill, L. Chung, T.T. Tun, J.C.S.P. Leite. "An NFR Pattern Approach to Deal-

ing with NFRs", IEEE International Requirements Engineering Conference (RE), 2010.

[10] R. Darimont, A. van Lamsweerde. “Formal refinement patterns for goal-driven requirements

elaboration”, ACM Symposium on Foundations of Software Engineering (SIGSOFT), 1996.

[11] A. Monzon. “A Practical Approach to Requirements Reuse in Product Families of On-

Board Systems”, IEEE International Requirements Engineering Conference (RE), 2008.

[12] E. Hull, K. Jackson, J. Dick. Requirements Engineering, Third Edition. Springer, 2010.

[13] K. Watahiki, M. Saeki. “Scenario Patterns Based on Case Grammar Approach”, IEEE In-

ternational Symposium on Requirements Engineering (RE), 2001

[14] S. Withall, Software Requirement Patterns. Microsoft Press, 2007.

[15] J.A. Toval, J. Nicolás, B. Moros, F. Garcia. “Requirements Reuse for Improving Infor-

mation Systems Security: A Practitioner's Approach”, Requirements Engineering, 6(4),

pp.205-219, 2002.

[16] S. Konrad, B. H. C. Cheng. “Requirements Patterns for Embedded Systems”, IEEE Joint In-

ternational Conference on Requirements Engineering (RE), 2002.

[17] S. Konrad, B.H.C. Cheng. "Real-Time Specification Patterns", ACM/IEEE International

Conference on Software Engineering (ICSE), 2005.

 [18] X. Franch, C. Palomares, C. Quer, S. Renault, F. DeLazzer. “A Metamodel for Software

Requirement Patterns”, Requirements Engineering: Foundation for Software Quality

(REFSQ), 2010.

 [19] S. Renault, O. Mendez-Bonilla, X. Franch, and C. Quer. “A pattern-based method for

building requirements documents in Call-for-tender processes,” International Journal of

Computer Science and Applications, 6(5), pp. 175-202, 2009.

[20 C. Palomares, C. Quer, X. Franch. "PABRE-Man: Management of a requirement patterns

catalogue". IEEE International Requirements Engineering Conference (RE), 2011.

[21] J. P. Carvallo, X. Franch, C. Quer. "Determining Criteria for Selecting Software Compo-

nents: Lessons Learned". IEEE Software, 24(3), pp.84-94, 2007.

[22] S. Renault, O. Mendez-Bonilla, X. Franch, C. Quer. "PABRE: Pattern-based Requirements

Elicitation". International Conference on Research Challenges in Information Science

(RCIS), 2009.

[23] "ISO Standard 9126". Software Engineering – Product Quality, part 1. International Organ-

ization for Standarization, 2001.

[24] A. Mavin, P. Wilkinson, A. Harwood, M. Novak. Easy Approach to Requirements Syntax

(EARS). IEEE International Symposium on Requirements Engineering (RE), 2009.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chung:Lawrence.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Saeki:Motoshi.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/=/=Aacute=lvarez:Jos=eacute=_Ambrosio_Toval.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Nicol=aacute=s:Joaqu=iacute=n.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Garcia:Fernando.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Konrad:Sascha.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Palomares:Cristina.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Franch:Xavier.html
http://www.informatik.uni-trier.de/~ley/db/conf/re/re2011.html#PalomaresQF11
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Carvallo:Juan_Pablo.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Franch:Xavier.html
http://www.informatik.uni-trier.de/~ley/db/journals/software/software24.html#CarvalloFQ07
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5073917
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5073917
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5073917

