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ABSTRACT
The large bandwidth and resolution specifications of today’s telescopes require the use of
different types of collectors positioned over long baselines. Innovative feeds and detectors must
be designed and introduced in the initial phases of development. The required level of resolution
can only be achieved through a ground-breaking configuration of dishes and antennas. This
work investigates the possibility of the genetic optimization of radio interferometer layouts
given constraints on cable length, required UV density distribution and point-spread function.
Owing to the large collecting area and the frequency range required for the Square Kilometre
Array (SKA) to deliver the promised science, the configuration of the dishes within each
station is an important issue. As a proof of concept, the Phase 1 specifications of this telescope
are used to test the proposed framework.
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1 IN T RO D U C T I O N

The required levels of sensitivity and resolving power required
from today’s telescopes cannot be achieved solely through the use
of state-of-the-art receivers: investigations to find the optimum el-
ement configuration must also be undertaken. For mega-structures
such as the Square Kilometre Array (SKA), searching through the
space of possible layouts can be challenging owing to the enor-
mous spatial extent. In addition to a pioneering design to achieve
the desired specifications, the solution should also be constrained to
minimize the infrastructure, networking and other costs related to
the cabling and trenching that connect the stations together. This re-
search builds on work by Cohanim, Hewitt & Weck (2004), Hassan
et al. (2005), Grigorescu et al. (2009) and Fridman (2001) to inves-
tigate the applicability of machine-learning techniques to determine
the optimum configuration for the collecting elements within a large
radio telescope such as the SKA.

Although the construction of the SKA will follow a phased ap-
proach, even from Phase 1 it will be a formidable instrument. A
total of 250 parabolic dishes will be installed over a region of radius
100 km (Dewdney 2010). One hundred and twenty-five core stations
(50 per cent) will be fixed in the central 500-m radius. The inner and
middle regions will extend over radii of 2500 and 100 000 m and will
contain 50 (20 per cent) and 75 (30 per cent) antennas, respectively.

In this study, a framework to search for the optimum configuration
that maximizes the uniformity of the UV density distribution and
simulates the required point spread function (PSF) while keeping the
connecting wire length to a minimum is implemented and tested.
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Unlike previous studies that consider only a limited number of
elements, the best design for mega-dimensional telescopes such as
the SKA is sought. The developed system repositions the dishes to
search and converge towards an optimal configuration according to
user-defined fitness criteria.

The next section contains details of the implemented genetic
operators and optimization functions. The results are presented in
Section 3, and the conclusions and future work in Section 4.

2 G ENETI C O PERATO RS AND FI TNESS
F U N C T I O N S

In this study, genetic algorithms (GA) are applied and tested to deter-
mine an optimum configuration for dish arrays. Such search heuris-
tics follow the natural process of evolution to determine the fittest
hypothesis from a pool of possible solutions. Pioneered by John
Holland in the mid-1970s (Holland 1975), this evolutionary pro-
gramming methodology uses mating, mutation and a fitness func-
tion as described by Mitchell (1997) to create better chromosomes.

Encodings representing different configurations and that store
the x and y coordinates of dish locations are created. A crossover
operator that generates further offspring solutions by combining
element positions in different regions is defined. This is applied on
pairs of chromosomes (parents) to generate six new individuals. For
instance, if the core, inner and middle regions of the first parent are
represented by C1 I1 M1, and the second parent is made from C2 I2
M2, encodings with C1 I2 M1, C1 I1 M2, C1 I2 M2, C2 I1 M1, C2
I1 M2 and C2 I2 M1 are generated. Two other encodings are created
by combining random parts of the two parent configurations.
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A mutation operator is also implemented to alter the positions of
randomly selected elements. This shifting allows the algorithm to
search a broader space and prevents it from converging to a local
minimum. Every encoding is processed by a gene repair function
to ensure that the 250 stored locations are distinct and that there are
no dishes that are closer than the minimum allowed distance.

To direct the search towards a solution that maximizes UV cover-
age, the density map is computed from every unique pair of dishes.
The framework is intended for configurations with a large number of
stations, and the computation of the distances between all baselines
becomes prohibitively expensive very quickly. Computational effi-
ciency is increased by following and adopting the approach used by
Cohanim (2004) and Cohanim et al. (2004). A fixed nominal grid
with the required baseline distribution is initially generated, and
each UV point is mapped to the closest grid point. The percentage
of non-mapped grid points gives an accurate measure of the differ-
ence between the actual and the required baseline distributions. As
shown in Cohanim et al. (2004), this can be calculated using equa-
tion (1). Here, Ntotal is the total number of points in the nominal grid,
and Nmatched is the total number of matched points. The numerator
equates to the percentage of grid points that are not matched with
any UV point. Ideally, all nominal grid points are flagged by at least
one UV point.

fUV = Ntotal − Nmatched

Ntotal
. (1)

Owing to its size and planned operation, the SKA will be a log-
based structure, so a log nominal grid distribution is used. The goal
of the GA is set to minimize the percentage of non-matched nominal
grid points.

To speed up the fitness evaluation process, the nominal grid is
represented as a k-dimensional tree that is built only once and stored
in the memory. The nearest point neighbours are then identified by
traversing the constant binary tree data structure. Non-leaf nodes
represent a perpendicular hyperplane that divides the space into two
subspaces. The left subtree points to other nodes on the left, while
the right subtree represents points to the right.

Apart from optimizing for UV distribution, the fitness function
must also take into account the length of cable required to con-
nect the dishes together. Various approaches to optimizing a tele-
scope layout infrastructure have been presented in the literature.
Grigorescu et al. (2009) describe a set of algorithms that take into
account trenching, as well as connection, costs. In Cohanim et al.
(2004), the Single Linkage algorithm is used. In this work, the
shortest sequence that connects all vertices together is determined
using the Kruskal minimum spanning tree (MST) algorithm (Cor-
men et al. 2001). A cable with unit cost per unit length is assumed.
Dish locations are connected so as to create an undirected graph
where the edges (connections) between each vertex (dishes) have
no particular direction. The weight of every edge is taken to corre-
spond to the Euclidian distance between the two connecting nodes.

A normalizing function that allows the computed wire length
to be scaled and compared with the other fitness criteria is defined.
Chromosomes with elements that can be connected by a cable length
of less than 250 km are not penalized. Encodings with a minimum
wire length greater than 500 km are strongly discouraged through
a fitness assignment of 1. Intermediate cable lengths are given a
weighting that varies linearly as described by equation (2). Results
from initial tests helped to empirically determine and fine-tune such
threshold values.

fwire =
⎧⎨
⎩

0 if 0 ≤ wire length < 250;
0 → 1 if 250 ≤ wire length < 500;
1 if wire length ≥ 500.

(2)

The residual error between the resulting PSF and a delta function
is also considered to determine the fitness of each chromosome.
In particular, OSKAR-2 (Mort, Dulwich & Salvini 2012) is used to
carry out the beam-forming simulations at a frequency of 1.4 GHz
over one time step. This software package makes possible the com-
putation of the PSF in reasonable time by utilizing the Message
Passing Interface (MPI) and Graphics Processing Units (GPUs). A
sky model with a single source at zenith is assumed, and the posi-
tions of 250 stations are defined in each run. The simulator is set to
consider a field of view (FOV) of 0.◦01 and to produce images of
256 × 256 pixels, making each element equal to 0.1406 arcsec. The
average difference between the resulting PSF and the ideal scenario
of one bright central pixel is computed and considered as the third
fitness function (fpsf).

It is important to keep in mind that the implemented GA solver
assumes a minimization optimization function. All fitness evalua-
tion criteria are defined in such a way as to give smaller values for
better encodings. The goal is to minimize the overall fitness with
subsequent generations and to stop iterating when no improvement
is detected.

3 R ESULTS

As a proof of concept, the GA framework is tested on the pro-
posed SKA dish array specifications. The core and inner regions
are taken to have 125 and 50 randomly positioned receivers respec-
tively, while elements within the middle region are grouped in small
clusters of three to eight dishes each. Because the outermost region
extends from 2.5 to 100 km, all configurations are checked to ensure
that they have at least three groups of dishes between 2.5 and 20 km,
20 and 40 km, 40 and 60 km, 60 and 80 km, and 80 and 100 km.
This restricts the algorithm from moving all dishes towards the core
in subsequent iterations.

The UV distributions for small groups of receivers positioned in a
straight line, in a triangle, as a snowflake, in a circular pattern and in
a Reuleaux triangle orientation are initially compared to determine
the configuration that produces the best results.

The GA is set to have an initial population of 512 random chro-
mosomes. The sum of the UV distribution fitness as defined by
equation (1), the wire-length fitness as defined by equation (2) and
the PSF fitness discussed in Section 2 are considered for perfor-
mance ranking. Crossover is achieved by swapping the core, inner
and middle regions between parents. This generates valid offspring
as the number of dishes will remain constant. The implementation
of the mutation function is slightly more complicated, as differ-
ent encodings can have different numbers of groups with different
numbers of dishes. When the position of a dish within a group is to
be changed, the entire cluster is repositioned. In every generation,
the highest-ranking (lowest-fitness) individuals are selected from:
(i) all 512 chromosomes of the previous population, (ii) 1024 chro-
mosomes created by crossover, (iii) 512 chromosomes created by
mutation, and (iv) 512 new random chromosomes.

Half of the chromosomes in the initial population are given ran-
dom dish positions. The rest are jittered versions (±50 m) of the
generic configuration as defined by the SKA Configurations Task
Force (CTF) which is shown in Fig. 1. The ultimate goal of this
experiment is to determine whether the GA manages to improve on
the fitness of the CTF configuration.
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Figure 1. Full (left) and inner (right) regions of the generic SKA CTF dish
configuration.

Figure 2. Fitness calculated at every generation.

Figure 3. Percentage of chromosomes selected from the previous genera-
tion (solid line), created by crossover (dashed line), created through mutation
(dash–dotted line), and randomly generated (dotted line), which are selected
at every generation.

Fig. 2 presents the minimum computed fitness at every gener-
ation, which decreases with subsequent iterations, indicating con-
vergence towards better encodings. Fig. 3 shows the percentage
of chromosomes from the previous generation, the percentage of
chromosomes created by the genetic operators, and the percentage
of new random chromosomes that are selected at every generation.

Figure 4. Full (top) and inner regions with connecting wire (bottom) of the
genetic algorithm configuration.

Random configurations stop being the fittest and are not selected
to procreate after the first few iterations. This indicates that the
developed genetic operators are producing better offspring. As the
algorithm progresses, less chromosomes created by mutation are
preferred, signifying that random changes are not generating fitter
individuals. The last few populations are found to contain either
individuals created in previous iterations or encodings generated by
the crossover operator. This indicates that the algorithm is converg-
ing and an optimized solution is found.

The resulting configuration after 101 iterations (including a
wiring plan for the central region) is shown in Fig. 4. Fig. 5 presents
the corresponding UV distribution and PSF. The total cable length
is found to be 229.5584 km, which is less than the minimum penalty
value, while fUV and fPSF are 0.7214 and 0.1931, respectively, giving
a total fitness of 0.9145.

To be able to compare and evaluate the results, the same fitness
functions are also computed for the CTF configuration. The UV
fitness (fUV) is found to be 0.7127. The MST algorithm gives a wire
length of 384.67 km and hence an fwire of 0.5387. OSKAR-2 (Mort
et al. 2012) is again used for PSF estimation, and an fPSF of 0.2507 is
determined. Fig. 6 presents the UV distribution and the output from
the imager. The total fitness of the CTF configuration is 1.5021.

A configuration based on Releaux triangles, as defined by Keto
(1997), is also tested. The dishes in the core are positioned over
two slightly rotated triangles. Similarly, dishes in the inner region
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Figure 5. Resulting UV coverage (top) and PSF (bottom) of the genetic
algorithm configuration.

Figure 6. UV coverage (left) and PSF (right) of the CTF configuration.

are placed according to a similar but larger shape. Receivers in
the middle region are grouped but positioned on randomly selected
points from a predefined triangle. The fitness criteria fUV, fwire and
fPSF are found to be 0.8794, 1.000 and 0.2134 respectively.

4 C O N C L U S I O N S

In this work, a genetic optimization framework for the determination
of interferometer layouts based on a desired UV distribution, PSF
and wire constraints is developed. The 250 dishes planned in Phase
1 of the SKA telescope are used as a proof of concept. Although

a log-based nominal grid is used, this can be changed depending
on the required distribution. The assumed ideal PSF can also be
changed accordingly.

Even though a large number of elements and long baselines are in-
volved, large genetic population sizes are used as much as possible.
The computation time required is reduced through parallelization.
Table 1 summarizes the results and compares the fitness values ob-
tained by the GA, SKA CTF and Realuax triangle configurations.
When using the defined fitness functions, encodings that have a
good UV coverage, minimum cable length and a well-defined main
central peak in the PSF are obtained. Although equal weighting
is given to the three criteria, this can easily be adapted to accom-
modate user-specific requirements, budget and scientific goals. For
instance, giving less importance to the wire-length criterion will im-
prove performance but may significantly increase the infrastructure
costs.

Seeding the initial population with chromosomes based on the
CTF configuration helps the GA to start off with a good dish layout.
The random individuals are the least fit encodings and are imme-
diately filtered out. In subsequent iterations, the algorithm tries to
reduce the wire length by moving all dishes towards the centre of
the telescope and positioning the clustered elements in the same
quadrant. However, the UV fitness directs convergence towards an
evenly spaced distribution. The output is proof of the algorithm’s
attempt to direct the search towards a solution that tries to satisfy
all of the defined constraints.

Although the UV fitness decreases slightly by 0.02 between the
CTF and GA configurations, improvements are noted in the wire-
length and PSF residuals. An overall fitness increase of 0.5876
is observed. The final wire-length fitness of the GA configuration
is zero because of how equation (2) is defined. As discussed in
Section 2, this is related to the total minimum cable length required
to connect all nodes together and does not relate to the number and
length of baselines involved.

Simulations that take into account the Earth’s rotation and that
consider the UV projection over a number of hours were also per-
formed to investigate the improvements in resolution. As expected,
longer exposure times cause more of the nominal grid points to pair,
giving better UV fitness values.

Through this and similar work, the potential of machine-learning
techniques to aid in identifying optimal dish configurations is
demonstrated. Promising results are obtained, and further anal-
ysis can be undertaken once more detailed specifications on the
SKA are made available. The work done by Bounova & deWeck
(2005), which describes an optimized framework to model robust
and scalable networks, may also be considered to derive the best
configuration for the full SKA. Planned future work includes an
analysis of various normalizing functions for the wire length, a
detailed analysis of the effects of the power spectrum, and other
fitness measures.
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Table 1. Results of the defined UV, wire-length and PSF fitness functions as well as the total
chromosome fitness. Smaller values indicate better encodings.

Test case fUV Wire length (km) fwire fPSF f

Genetic algorithm (seeded with 0.7214 229.5584 0.0000 0.1931 0.9145
random and CTF configurations)
SKA CTF configuration 0.7127 384.6702 0.5387 0.2507 1.5021
Reuleaux triangles configuration 0.8794 608.8108 1.0000 0.2134 2.0928
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