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Summary
Mitochondria are the main producers of ATP, the principal energy source of the cell, and reactive oxygen species (ROS), important
signaling molecules. Mitochondrial morphogenesis and function depend on a hierarchical network of mechanisms in which proteases
appear to be center stage. The invadolysin gene encodes an essential conserved metalloproteinase of the M8 family that is necessary for

mitosis and cell migration during Drosophila development. We previously demonstrated that invadolysin is found associated with lipid
droplets in cells. Here, we present data demonstrating that invadolysin interacts physically with three mitochondrial ATP synthase
subunits. Our studies have focused on the genetic phenotypes of invadolysin and bellwether, the Drosophila homolog of ATP synthase

a, mutants. The invadolysin mutation presents defects in mitochondrial physiology similar to those observed in bellwether mutants. The
invadolysin and bellwether mutants have parallel phenotypes that affect lipid storage and mitochondrial electron transport chain activity,
which result in a reduction in ATP production and an accumulation of ROS. As a consequence, invadolysin mutant larvae show lower

energetic status and higher oxidative stress. Our data demonstrate an essential role for invadolysin in mitochondrial function that is
crucial for normal development and survival.
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Introduction
Mitochondria are ubiquitous organelles that regulate crucial

processes essential for controlling energy balance, cell signaling,

development, growth, production of damaging oxygen radicals,

and apoptosis in the organism (Ackerman and Tzagoloff, 2005;

Devenish et al., 2008; McBride et al., 2006; Newmeyer and

Ferguson-Miller, 2003). Numerous studies have shown that

mitochondria also control the metabolic status of the cell and cell

cycle checkpoints (Ackerman and Tzagoloff, 2005; Mandal et al.,

2005; Owusu-Ansah et al., 2008). Mitochondrial functions are

critically dependent on both nuclear and mitochondrial gene

expression. Most of the nuclear-encoded gene products are

imported from the cytosol into mitochondria using at least four

different strategies, including a classical presequence pathway,

but also through a redox-regulated import mechanism, the

formation of supercomplexes with the respiratory chain, and

two-membrane coupling of translocases (Chacinska et al., 2009).

The major function attributed to mitochondria is a bioenergetic

role in the production of ATP, which combines oxidative

phosphorylation reactions taking place in the mitochondrial

matrix to the reductive processes of the mitochondrial electron

transport chain (ETC) occurring in the inner membrane of

the mitochondria (Devenish et al., 2008). Enzymes of the

mitochondrial ETC are conserved throughout evolution

(Talamillo et al., 1998; Viñas et al., 1990). The mitochondrial

respiratory chain comprises one proton-translocating and four

electron-transporting complexes, which produce ATP and

accumulate reactive oxygen species (ROS) at various points.

The metabolism of carbohydrates and proteins generates

metabolic intermediates that feed electrons into the respiratory

chain; electrons are passed from complex I to complex IV. This

energy is used to pump protons out of the mitochondrial matrix,

generating a membrane potential that is used by ATP synthase to

synthesize ATP. ATP synthase is a multi-subunit complex found

in the mitochondrial inner membrane in eukaryotes and in the

inner membrane of bacteria (Talamillo et al., 1998). It is

composed of two large structural moieties, Fo and F1. Fo is the

proton pump, whereas F1 enzymatically generates ATP from

ADP and inorganic phosphate. In eukaryotes, ATP synthase is

formed from at least 15 different subunits that vary in their

stoichiometry depending on the species (Wilkens, 2000). ATP

synthase is commonly referred to as complex V of the respiratory

chain.

Defects in mitochondrial respiratory chain enzymes affect

mitochondrial membrane potential and result in the accumulation

of ROS and defects in ATP synthesis. These changes affect

cellular energy levels and cause oxidative stress, which have

dramatic and deleterious impacts on development. Mutations that
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affect the function of respiratory chain enzymes have been

reported to affect energy levels and oxidative stress in flies, rats
and humans (Bell et al., 2007; Celotto et al., 2006; Mourikis et al.,
2006; Saleh et al., 2008).

We have previously described the identification and

characterization of invadolysin, a novel essential gene encoding
the sole member of the M8 class of metzincin metalloproteinases
(McHugh et al., 2004). The gene was first identified in Drosophila

based on intriguing mutant phenotypes, which included defects in
mitotic progression and in germ cell migration. Larvae homozygous
for invadolysin mutant alleles presented pleiotropic phenotypes

including defects in chromosome structure, spindle formation,
nuclear envelope dynamics, germ cell migration and lipid storage
(Cobbe et al., 2009; McHugh et al., 2004). We have shown by
immunolocalization and subcellular fractionation that invadolysin is

localized to the surface of lipid droplets (Cobbe et al., 2009). The
protein, which is conserved among metazoa, is homologous to
Leishmanolysin or GP63 – a major surface protease that is

postulated to facilitate dissemination of the Leishmania parasite.

In this study, we utilized biochemical, genetic and behavioral
analyses to identify and characterize proteins that interact with
invadolysin in Drosophila. We show that invadolysin interacts

physically with ATP synthase subunits a, b and d. ATP synthase
a (bellwether) and invadolysin mutants have many aspects of
phenotype in common. Loss of invadolysin compromises the

electron transport chain of the mitochondrial internal membrane
resulting in decreased ATP and increased ROS production. These
alterations trigger a signaling cascade that affects cell growth, the

cell cycle, fatty acid synthesis and the stress response. Our
discovery contributes both to the understanding of the action of
invadolysin and the control of mitochondrial physiology.

Results
Previous characterization of the invadolysin mutant phenotype in
Drosophila showed that the gene was essential for viability, with

mutant animals exhibiting defects in mitotic progression, cell
migration and lipid storage (McHugh et al., 2004). Homozygous
mutant animals died at the third-instar larval stage (McHugh
et al., 2004). To better understand the role of invadolysin in

development, we identified cellular components that invadolysin
interacted with. To this end, we generated transgenic flies
carrying a pUAST-HA-invadolysin construct (Fig. 1A) (Spradling

and Rubin, 1982). Crucially, we demonstrated that HA–
invadolysin could rescue invadolysin lethality when ectopically
expressed in the spatiotemporal profile of the armadillo gene

(data not shown). Restricted expression was required because
ectopic ubiquitous expression of HA–invadolysin in a wild-type
genetic background resulted in lethality. In order to use HA–
invadolysin as a tool to identify biochemical interactors of

invadolysin, we restricted expression of HA–invadolysin to a
single non-essential tissue – using Gal4 driven by Glass Multiple
Reporter (GMR-Gal4) (Li et al., 2012) to express HA–

invadolysin in adult eyes (Brand and Perrimon, 1993; Moses
and Rubin, 1991) (Fig. 1B). HA–invadolysin and interacting
proteins were immunoprecipitated from lysates of fly heads using

a commercial anti-HA affinity matrix. Lysate from non-
transgenic wild-type adult heads served as the control. Seven
protein bands were consistently observed when HA–invadolysin-

precipitated samples were stained with colloidal Coomassie Blue
(Fig. 1C). The samples were identified using Multidimensional
Protein Identification Technology (MudPIT)-enabled mass

spectrometry (Yates et al., 1995). All peptides that were

associated with the wild-type control beads (e.g. the band at
20 kDa) were removed from the HA–invadolysin data set.

Mass spectrometry analysis identified six significant hits in the
HA–invadolysin sample. Surprisingly, three subunits of the
mitochondrial ATP synthase complex (a, b and d) were

present, represented by numerous peptides in two separate
bands and reproduced in three separate experiments
(supplementary material Table S1, S4). To determine whether

Fig. 1. Invadolysin interacts with mitochondrial Complex V subunits.

(A) Diagram illustrating the HA–invadolysin construct that is integrated into

the transgenic flies used in this study. The red, green and blue boxes indicate

the predicted signal sequence, metalloproteinase motif, and the GPI-addition

sites in the invadolysin sequence, respectively. The gray arrow denotes the

insertion site of the HA tag. (B) HA–invadolysin was successfully

expressed in fly heads of different transgenic lines using the GMR-Gal4

driver. A band of 62 kDa was detected in transgenic fly head extracts

probed with an anti-HA antibody. This band was not detected in wild-type

(wt) head extracts. (C) HA–invadolysin was immunoprecipitated from

Drosophila head extracts (control and transgenic) and (D) larval fat body

using a commercial anti-HA affinity matrix. All proteins that bound in the

control extract were subtracted from the HA–invadolysin data set. In panels C

and D, yellow arrows indicate the band that corresponds to invadolysin.

Numbered arrow indicate the following proteins: 1, 3a and 3b, ATP syn-d,

ATP syn-b and ATP syn-a (bellwether) subunits of the mitochondrial ATP

synthase complex, respectively; 2 and 2a, heat shock protein cognate 3; 4a

and 4b, tropomyosin 1 and tropomyosin 2, respectively; 6, heat shock protein

83; 7, myosin heavy chain; 2b, histone H3; 2c, heat shock protein cognate; 5a,

larval serum protein 1c; 5b, b-tubulin.
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this interaction was specific to the eye, we also expressed HA–

invadolysin in larval fat body (utilizing cg-Gal4 as a driver). Five
protein bands were consistently observed when HA–invadolysin
was immunoprecipitated from fat body lysates (Fig. 1D). Strikingly,

the same three subunits of the ATP synthase complex (a, b and d)
were also identified in fat body, represented by numerous peptides
in two separate bands (supplementary material Tables S2, S4).
These results demonstrate an interaction of invadolysin with the

ATP synthase complex in two different tissues, suggesting that
invadolysin might play a general role in regulating mitochondrial
function. Although we attempted to perform the reciprocal physical

experiment by immunoprecipitating ATP synthase from fly tissue
lysates (and probing for invadolysin), none of the commercially
available antibodies recognizing ATP syn-a immunoprecipitated

ATP synthase from fly-head lysates.

Genetic interaction of invadolysin and ATP syn-a
(bellwether)

In eukaryotes, ATP synthase contains at least 15 subunits encoded
by both nuclear and mitochondrial genes (Pedersen et al., 2000;
Wilkens, 2000; Xing et al., 2005), which are well conserved in
Drosophila. The three subunits binding to HA–invadolysin (ATP

syn-a, ATP syn-b and ATP syn-d) are all encoded by nuclear
genes. ATP syn-a and syn-b are found in the F1 moiety of the
enzyme where they both play a central role in enzymatic activity,

whereas ATP syn-d is part of the Fo proton channel.

We have recently shown that invadolysin is localized to lipid
droplets in various human and mouse cell lines, and that

triglyceride levels are lower in invadolysin mutant fat body
(Cobbe et al., 2009). Importantly, a number of recent proteomic
screens have found ATP synthase subunits in association with
lipid droplets: ATP syn-a and -b in Drosophila embryos

(Cermelli et al., 2006), ATP syn-a, -b, -b and -d in third-instar
larvae (Beller et al., 2006), ATP syn-a, -b and -d subunits in
human adipocytes (DeLany et al., 2005), and ATP syn-b in

mouse adipocytes (Brasaemle et al., 2004; Dugail and Hajduch,
2007). Thus, independent evidence linking ATP synthase
subunits to both mitochondria and lipid droplets exists.

Therefore, in order to establish whether the physical

interaction between invadolysin and ATP synthase subunits was
of functional significance, we turned to genetic and physiological
approaches. To investigate the genetic interaction between

invadolysin and ATP synthase, we utilized two mutant alleles
of the ATP syn-a (bellwether) gene (Galloni, 2003; Talamillo
et al., 1998) in an enhancer/suppressor genetic assay (St

Johnston, 2002). Overexpression of invadolysin in adult eyes
using the GMR-Gal4 driver at 29 C̊ results in a rough eye
phenotype (supplementary material Fig. S1; Fig. 2A). Scanning
electron microscopy analysis of the ommatidia in these eyes

demonstrated tissue degradation and empty bristle sockets
(supplementary material Fig. S1, arrow). GMR-Gal4.pUAST-

inv homozygous flies were crossed with bellwether flies. We

hypothesized that if a genetic interaction existed between the two
genes, an alteration of bellwether expression might modify the
rough eye phenotype induced by invadolysin overexpression.

Both the blwKG05893 and blwEY08188 mutant alleles enhanced the
rough eye (Fig. 2). In contrast, the control CyO balancer
chromosome in the GMR-Gal4.pUAST-inv genetic background

did not modify the rough eye phenotype. As an additional
control, we observed that the rough eye caused by GMR-

Gal4.pUAST-inv was suppressed by the inv4Y7 mutant allele

(data not shown). The observed genetic interaction between

invadolysin and bellwether supports the hypothesis that the two

proteins might act in the same or related pathways.

invadolysin and bellwether mutant animals exhibit

similar phenotypes

invadolysin mutant animals have growth and mitotic defects that

result in smaller larvae lacking imaginal discs (McHugh et al.,

2004). Recent studies have demonstrated that defects in other

nuclear-encoded mitochondrial genes also affect cell growth and

mitotic checkpoint control (Liao et al., 2006; Mandal et al., 2005;

Owusu-Ansah et al., 2008), and one bellwether allele (not used in

this study) was isolated in a screen aimed at identifying genes

involved in growth signaling (Galloni and Edgar, 1999; Wilk

et al., 2004). The bellwether homozygous animals show DNA

replication and larval growth defects resulting in lethality during

the larval instars, with no homozygous animals reaching the

pupal stage (similar to the invadolysin mutant larvae). We

showed that the blwKG05893 allele (Bellen et al., 2004) interacted

genetically with inv4Y7. blwKG05893 homozygous larvae were

smaller than wild-type animals at the same stage, and the

majority of animals died at the second-instar larval stage, with

20–30% of larvae reaching the third instar (Fig. 2C). Therefore

both bellwether and invadolysin homozygous animals exhibit

defects in larval development.

Mutations in genes encoding enzymes of the respiratory chain

cause defects in mitochondrial ATP production. This in turn has

an inhibitory effect on cellular anabolic pathways (Inoki et al.,

Fig. 2. Genetic interaction between invadolysin and bellwether.

(A) Overexpression of UAS-inv in fly eyes under control of the GMR-Gal4

driver results in a rough eye phenotype. Enhancement of the rough eye

phenotype is observed with a copy of mutant bellwether (blwKG05893 and

blwEY08188). Scale bars: 8 mm. (B) Transcriptional profile of bellwether and

invadolysin transcripts in the respective homozygous mutant larvae.

(C) inv4Y7 and blwKG05893 mutant larvae are much smaller than wild-type (wt)

larvae at 5 days after hatching.

Invadolysin interacts with ATP synthase 4771
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2003; Mourikis et al., 2006), thus accelerating catabolic

pathways, such as lipid oxidation, to compensate for the drop

in energy levels. We previously showed that inv4Y7 affected both

the thickness of the fat body and the size of fat body cells. We

additionally found that the relative ratio of triglyceride to protein

in inv4Y7 larval extracts was significantly reduced (Cobbe et al.,

2009). We therefore examined the fat body in homozygous third-

instar blwKG05893 larvae. When stained with the lipophilic dye Nile

Red, fat body cell size appeared dramatically reduced compared to

wild type (Fig. 3A–C). A dramatic reduction in the thickness of the

fat body and the cross-sectional area of cells was observed in the

homozygous blwKG05893 larval fat body (Fig. 3D,E). We also

observed that the ratio of triglyceride to protein content was

significantly reduced in bellwether mutant larvae, as we

demonstrated for invadolysin (Fig. 3F). Taken together, our

observations reinforce the hypothesis that invadolysin and

bellwether/ATP syn-a act in the same or parallel pathways.

invadolysin and bellwether mutants regulate ETC activity

Although most subunits of the eukaryotic ATP synthase complex

are encoded by nuclear genes, several other nuclear-encoded

proteins are specifically involved in the biogenesis of ATP

synthase (Ackerman and Tzagoloff, 2005). We hypothesize that

the interaction between invadolysin and ATP synthase subunits

might reflect a role in either assembly or function of the complex.

In the absence of invadolysin, we predicted changes in

mitochondrial morphology, number or activity.

To assess mitochondrial morphology and function in the inv4Y7

and blwKG05893 mutants, we stained the fat body of third-instar

larvae with JC-1, a dye that labels all mitochondria independent of

activity (Smiley et al., 1991), or MitoTracker, which labels only

‘functional’ mitochondria having a proton gradient. Third-instar

Fig. 3. bellwether larvae exhibit reduced adipose tissue

growth and triglyceride storage. Visualization of lipid

droplets within fat body cells from (A) wild-type,

(B) blwKG05893 and (C) inv4Y7 larvae. As shown in the boxed

areas enlarged below, blwKG05893 and inv4Y7 both affect larval

fat body thickness and cell size compared to wild-type (wt)

animals. Scale bars: 33 mm. (D) Mean thickness of fat body,

with associated standard deviation (n5183). (E) Cross

sectional area of cells, error bar shows standard deviation

(n541). (F) Quantification of total larval triglyceride

normalized to total larval protein content. Error bars show

associated standard deviation (n53). ***P,0.001 compared

with wild type, paired Student’s t-test.

Fig. 4. Mitochondrial activity is decreased in inv4Y7 and blwKG05893 larval

fat body. (A) Mitochondria are detectable in wild-type and mutant larval fat

body cells, as visualized with the JC-1 mitochondrial marker (green), labeling

all mitochondria independent of activity. DNA (red) is stained with DAPI.

Scale bars: 20 mm. (B) Larval fat body cells labeled with MitoTracker

(indicative of activity) are more intensely stained in wild-type third-instar

larvae than in inv4Y7 and blwKG05893. DNA (red) is stained with DAPI.

Journal of Cell Science 126 (20)4772
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JC-1-stained wild-type, inv4Y7 and blwKG05893 fat bodies showed

that JC-1 readily accumulated in all of these tissues (Fig. 4A),

suggesting that overall mitochondrial number was not grossly

altered in inv4Y7 and blwKG05893 mutant cells. By contrast, staining

with MitoTracker, showed decreased staining in inv4Y7 and

blwKG05893 fat body in comparison to wild type, suggesting

functional defects in both invadolysin and bellwether mitochondria

(Fig. 4B). The appearance (diameter and length) of mitochondria

in both inv4Y7 and blwKG05893 fat body cells following JC-1

staining was, however, altered when compared to wild type

(Fig. 5A).

We used a second independent approach to assess the relative

number of mitochondria in invadolysin and bellwether mutants

because staining with either JC-1 or MitoTracker is inherently

only qualitative. We determined the ratio of mitochondrial to

nuclear DNA by measuring the ratio of the mitochondrial

cytochrome oxidase subunit I (CoI) gene to the nuclear actin 5C

gene in each genotype (Neretti et al., 2009). We observed that the

ratio of CoI to actin 5C DNA was not changed in invadolysin and

bellwether mutant larvae as compared to wild type (Fig. 5B).

This observation suggested that the relative number of

mitochondria was consistent, thus corroborating the results of

the JC-1 staining, which showed little difference in labeling

intensity between tissues (Fig. 4A).

ATP levels are decreased in invadolysin third-instar larvae

Studies in yeast, Drosophila and humans have shown that ATP

syn-a is essential for the enzymatic activity of complex V in ATP

production (Copeland et al., 2009; Lai-Zhang et al., 1999;

Mráček et al., 2006). Mutations or drugs that inhibit ATP

synthase activity reduce ATP production and should increase the

cellular AMP:ATP ratio. We therefore measured ATP levels in

invadolysin and wild-type larvae. The level of ATP in third-instar

inv4Y7 larvae was only 40% that of wild-type larvae (Fig. 5C).

These data suggest that the accumulation of cellular ATP was

severely affected upon mutation of invadolysin. Organisms have

evolved compensatory mechanisms to mitigate the effects of

energy reduction, and AMP activated kinase (AMPK) is a well-

conserved kinase that functions as a sensor for cellular energy

levels (Hardie, 2004). AMPK senses increased AMP levels under

metabolic stress, and is activated by phosphorylation of Thr172

(Hardie, 2004). Activated AMPK downregulates anabolic

pathways and upregulates catabolic pathways to maintain

energy homeostasis in cells (Towler and Hardie, 2007). We

therefore analyzed AMPK status in invadolysin mutant larvae

compared to wild-type larvae. Although we observed no

significant change in AMPK protein level in inv4Y7 larval fat

body, a significant increase in the phosphorylation of AMPK in

inv4Y7 extracts was apparent (Fig. 5D,D9). Therefore, loss of

Fig. 5. AMPK is activated in invadolysin mutants. (A) Mean diameter and length of mitochondria in fat body cells following staining with JC-1, with standard

deviations (n5388). ***P,0.001 compared with wild-type (wt), paired Student’s t-test. (B) Mitochondrial DNA copy number is similar in inv4Y7 to in

control larvae. The mitochondrial DNA:nuclear DNA ratio was determined following qPCR for mitochondrial CoI (cytochrome oxidase subunit I) relative to

nuclear actin 5C. Error bars show standard deviation. (C) inv4Y7 third-instar larvae produce a lower amount of ATP than control larvae. Quantification of the total

larval ATP level normalized to total larval protein content. Error bars show associated standard deviation. ***P,0.001, paired Student’s t-test.

(D,D9) Immunoblotting of third-instar larval fat body extract demonstrates that the level of AMPK is similar in control and inv4Y7 samples. However, phospho-

AMPK (P-AMPK) is increased in inv4Y7 larvae. a-tubulin served as the loading control. (D9) Quantification of phosphorylated AMPK normalized to AMPK

levels. Error bar represents the standard deviation derived from biological triplicate samples. ***P,0.001 compared with wild type (CaS), paired Student’s t-test.

(E,E9) Immunoblotting of third-instar larval fat body extract demonstrates that the level of ACC is decreased in invadolysin larvae, whereas the ACC

phosphorylation (P-ACC) is increased in inv4Y7 larvae. (E9) Quantification of phosphorylated ACC normalized to ACC levels. Error bar represents the standard

deviation derived from biological triplicate samples. ***P,0.001 compared with wild-type (CaS), paired Student’s t-test.

Invadolysin interacts with ATP synthase 4773
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invadolysin affects mitochondrial function and reduces ATP

production, resulting in activation of the energy sensor AMPK.

We then analyzed the role of AMPK in an invadolysin mutant

background in vivo in an enhancer/suppressor genetic assay. The

AMPK complex contains three subunits: the catalytic a subunit,

the glycogen-sensing b subunit, and the c subunit containing two

regulatory sites that bind activating AMP and inhibitory ATP

nucleotides. We crossed GMR-Gal4.UAS-inv flies with flies

carrying a mutation in the SNF4c gene (the c subunit of

Drosophila AMPK) (Lippai et al., 2008). The rough eye

phenotype caused by overexpression of invadolysin was

enhanced by a mutant copy of the SNF4c gene (Fig. 6C). Our

data suggest that SNF4c usually responds to the level or activity

of invadolysin, supporting our immunoblotting data showing

AMPK activation in the invadolysin mutation.

In order to better understand the functional relationship between

invadolysin and AMPK, we analyzed the viability of larvae fed the

AMPK inhibitor Compound C or the AMPK activator AICAR (5-

amino-4-imidazolecarboxamide ribonucleotide). When wild-type

larvae were grown on Compound C, we observed no effect on their

development (Fig. 6Ai,ii); 80% of inv4Y7 mutant larvae, when

grown on normal food, died after 5 days (prior to pupation),

whereas 20% attempted pupariation. When fed Compound C,

inv4Y7 larvae lived for up to 7 days and attempted pupation

(Fig. 6Aiii). Although the pupae were abnormal and unable to

complete metamorphosis (as they lacked imaginal discs), this

represented a greater longevity than on control food. Interestingly,

wild-type larvae fed AICAR formed thinner pupae than usual and

were unable to eclose, similar to inv4Y7 pupae grown on Compound

C (Fig. 6Aiv). invadolysin animals fed AICAR showed no

discernable change in development (with larvae dying prior to

pupation and only 10% attempting pupariation).

These in vivo experiments show that in the absence of

invadolysin, AMPK was activated, which had the downstream

consequence of developmental arrest of mutant animals.

Importantly, this developmental arrest was partially overcome

by in vitro feeding with Compound C, an AMPK inhibitor

(Fig. 6A,B).

ACC is inhibited in the invadolysin mutant

Once activated, AMPK switches on catabolic pathways to

generate ATP, while switching off ATP-consuming processes

such as biosynthesis, cell growth and proliferation; both are

mediated by direct phosphorylation of substrates and indirectly,

through effects on gene expression. One of the downstream

effectors of AMPK in both flies and vertebrates is acetyl-CoA

carboxylase (ACC, known as ACC1 or ACACA in vertebrates),

which controls fatty acid synthesis in the mitochondrial matrix.

ACC is inactivated by phosphorylation by AMPK (Ser93 in flies,

Ser79 in mammals). Activation of AMPK in response to different

stress conditions (reduced ATP levels, hypoxia or glucose

deprivation) blocks lipid neo-synthesis, inactivating ACC (Ha

et al., 1994). We hypothesized that mutation of invadolysin might

affect ACC. Our results showed that the phosphorylation of ACC

was indeed increased in inv4Y7 fat body extract compared to wild

type, whereas the overall level of ACC was lower in mutant

animals (Fig. 5E,E9). Our data suggest that ACC was inactivated

in invadolysin mutant animals, which should result in decreased

fatty acid synthesis – consistent with our previous results that

showed reduced triglyceride levels in inv4Y7 larvae.

Fig. 6. Genetic interaction between invadolysin

and AMPK. (A) Wild-type (wt) pupae after growth

on normal food (i), wild type after growth on food

containing the AMPK inhibitor Compound C (ii),

inv4Y7 after growth on food containing Compound C

(iii), wild type pupae after growth on food containing

the AMPK activator AICAR (iv), inv4Y7 after growth

on AICAR (v). (B) Percentage of abnormal pupae in

each genotype fed with Compound C, AICAR and

normal food. (C) Rough eye phenotype caused by

UAS-mediated invadolysin overexpression under the

control of GMR-Gal4 is enhanced by mutation of

SNF4cEP3015b. The dashed white circles denote the

regions of tissue degradation in the eye. Scale bars:

5 mm.
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Production of ROS is enhanced in mitochondria of
invadolysin and bellwether mutants

Mitochondria play an essential role in generating the majority

of cellular ATP, coupling ETC and OXPHOS (oxidative

phosphorylation) reactions. During electron transport,

mitochondria generate ATP and ROS. ROS encompass a

variety of highly reactive metabolites of oxygen including

superoxide anions, hydroxyl radicals and hydrogen peroxide

(Finkel and Holbrook, 2000). Some of these metabolites are

highly unstable whereas others, like hydrogen peroxide, are long-

lived. Defects in ETC enzymes increase the cellular production

of ROS (Owusu-Ansah et al., 2008). We decided to assess the

consequence of reduced mitochondrial ETC activity on the

generation of ROS in invadolysin mutant larvae. Fat body

dissected from invadolysin, bellwether and wild-type third-instar

larvae was stained with DHE (dihydroethidium), a fluorescent

indicator used to analyze the production of ROS in vivo (Owusu-

Ansah et al., 2008; Robinson et al., 2006). invadolysin and

bellwether fat body showed a more than threefold increase in

ROS production, as indicated by strong DHE staining compared

to that in wild-type larvae (Fig. 7A,B). We additionally observed

a nearly twofold higher accumulation of hydrogen peroxide in

invadolysin third-instar larvae compared to that in wild-type

larvae (Fig. 7C). This suggested that the mitochondrial ETC

defects in invadolysin mutant animals resulted in an increased

accumulation of hydrogen peroxide. We conclude that both

invadolysin and bellwether mutants have defects in mitochondrial

ETC activity and thus produce high levels of ROS.

Increased levels of oxidative damage in invadolysin larvae

ROS can damage cellular components (proteins, lipids and

DNA), frequently through the formation of carbonyl derivatives

(Fridell et al., 2005; Neretti et al., 2009). Increases in ROS are

frequently accompanied by an increase in protein carbonyls. As

hypothesised, we observed an accumulation in protein carbonyls

in inv4Y7 larvae compared to wild-type animals (Fig. 7D).

invadolysin larvae are defective in a behavioral response
to hypoxia

ROS are not only damaging molecules, but also have an

important role in cell signaling (Brookes and Darley-Usmar,

2002; Brookes et al., 2002; Saleh et al., 2008). Mitochondria have

Fig. 7. Elevated levels of ROS are observed in inv4Y7

larvae. (A) Using dihydroethidium (DHE) to detect ROS

in inv4Y7 and blwKG5893 third-instar larval fat body show

elevated ROS compared to wild type. DHE (green), DNA

(red) is stained with DAPI. Scale bars: 8 mm.

(B) Quantification of the levels of DHE intensity in inv4Y7

and blwKG5893 third-instar fat body normalized to control

tissue (wt). Error bars indicate standard deviation (n55).

invadolysin mutant larvae show higher levels of

(C) hydrogen peroxide and (D) protein oxidation

(measured as protein carbonyl) compared to wild-type

animals of the same age. Error bars indicate standard

deviation (n56). ***P,0.001, paired Student’s t-test.

(E) invadolysin mutant larvae show an altered behavioral

response to hypoxia. In an experiment where the same

number of wild-type (CaS) and invadolysin larvae were

subjected to a hypoxic environment, all wild-type larvae

left the yeast paste in the first hour, whereas invadolysin

larvae only migrated from the yeast paste after 3 hours.

(F,F9) Examination of p38 mitogen-activated protein

kinase. Immunoblotting of third-instar larval extracts

showing phosphorylation status of p38 mitogen-activated

protein kinase (P-p38) in invadolysin and bellwether larvae

(F9). Quantification of phosphorylated p38 mitogen-

activated protein kinase normalized to a-tubulin levels (F).
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been implicated as oxygen sensors (Hagen et al., 2003). In order
to regulate oxygen levels in cells, mitochondria increase the

generation of ROS to regulate the hypoxia-response mechanism
(Chávez et al., 2000). Although Drosophila can survive extended
periods of hypoxia, hypoxia-response mechanisms cause cell
cycle arrest and behavioral changes (Wingrove and O’Farrell,

1999).

In order to test the response of third-instar larvae to conditions
of mild hypoxia, inv4Y7 and wild-type third-instar larvae were

placed in un-crowded conditions on red wine agar plates
containing a dollop of yeast paste. The plates were sealed with
parafilm to create a mild hypoxic condition. No differences

between inv4Y7 and wild-type larvae were observed in the first
15 minutes, with both genotypes freely feeding and moving.
After 1 hour, we observed that whereas wild-type larvae had
stopped feeding and left the yeast paste for the edges of the agar

plate, inv4Y7 larvae appeared unresponsive to the hypoxic
conditions, and were still feeding on the yeast. By 3 hours, all
inv4Y7 and control larvae had left the central yeast-covered area of

the plate (Fig. 7E). Prolonged periods of hypoxia (over 3 hours)
resulted in cessation of motility and death of both invadolysin and
control larvae. These results suggest that the inv4Y7 allele affected

the short-term ‘exploratory’ response to hypoxia. One possible
explanation for the delay in the response to hypoxia is that lower
ATP levels affect the motility of inv4Y7 larvae. Another possible

explanation is that inv4Y7 larvae accumulate higher ROS levels
compared to wild type. Higher levels of ROS are required for the
transduction of hypoxic signaling. We have shown that ROS
levels are consistently high in invadolysin larvae (during

normoxia) and we therefore suggest that this status could
reduce the sensitivity of invadolysin larvae to a low oxygen
environment, thereby retarding the exploratory response to

hypoxia. We observed a threefold higher level of the
phosphorylated, active form of p38 in invadolysin larvae
compared to control animals (Fig. 7F,F9), supporting the

hypothesis of a constitutive, activated stress status in inv4Y7.
p38 mitogen activated protein kinase shows an increased activity
in response to environmental stresses such as oxidative stress
(Craig et al., 2004).

Changes in gene expression in invadolysin mutants support the
existence of a ‘high stress’ condition. We performed microarray
studies to investigate the molecular mechanisms by which

invadolysin regulates energy balance and oxidative responses.
RNA extracted from inv4Y7 and wild-type third-instar larvae was
subjected to microarray analysis (FlyChip service, Cambridge,

UK). The microarray results were interpreted using Limma
analysis. Analysis of four data sets for each genotype showed that
among the 13,817 genes represented on the chip, expression of

231 genes had a decrease of at least 1.5-fold (P,0.05) in
invadolysin larvae, whereas 127 genes showed an increase of at
least 1.5-fold (P,0.05) in comparison to wild type. DAVID (The
Database for Annotation, Visualization and Integrated Discovery)

was used to analyze for enrichment of functional categories
among the differentially expressed genes, and assess whether the
proportion of genes in a gene set representing a functional class

(Gene Ontology term, KEGG Pathway) was higher than it would
be by chance.

Interestingly, this analysis indicated that the ‘defense response’

and ‘response to stimulus’ categories were over-represented in
the upregulated gene list, whereas ‘mitochondrion’, ‘lipid
particle’ and ‘ribosomal protein’ were enriched in the

downregulated gene list (supplementary material Table S3). We
observed that ,40% of the upregulated genes fell into categories

of defense response and detoxification enzymes, including
glutathione S-transferases (GstD2, GstD3, GstD6, GstD9)
(McElwee et al., 2004) and stress response genes (thor).

Intriguingly, 58% of the genes downregulated in inv4Y7 were
nuclear genes encoding mitochondrial proteins, including
respiratory chain enzymes (CoVa) and mitochondrial ribosomal
proteins (mRpl4, mRpl17) (Liao et al., 2006). Downregulation of

genes encoding mitochondrial proteins has been reported as
an indication of defects in cell growth and mitochondrial
metabolism (Mourikis et al., 2006), a phenotype exhibited by

invadolysin mutant animals.

The analysis of the transcription profile in invadolysin mutants
supports the hypothesis that mitochondrial pathways regulating

energy production and growth are downregulated when
invadolysin is mutated. In addition, the reduction in
mitochondrial efficiency causes a high-stress status in the

developing organism, which is subsequently reflected in the
activation of defense response genes.

Discussion
Our studies demonstrate that the essential metalloproteinase

invadolysin interacts with subunits of ATP synthase (Complex V
of the mitochondrial respiratory chain) in Drosophila.

Invadolysin plays a role in the mitochondrial production of

ATP and ROS, possibly through regulating the assembly or
activity of ATP synthase. Proteomic analysis has demonstrated
that ATP synthase subunits can also be found on lipid droplets

from human and mouse adipocytes, Drosophila embryos and
larval fat body (Beller et al., 2006; Brasaemle et al., 2004;
Cermelli et al., 2006; DeLany et al., 2005; Dugail and Hajduch,
2007). We previously reported that human invadolysin localizes

to lipid droplets in different human and mouse cell lines (Cobbe
et al., 2009). These results suggest that the invadolysin–ATP-
synthase interaction might occur on lipid droplets in Drosophila

and mammalian cells. Interestingly, we also found heat shock
cognate protein 3 in samples from both head and larval fat body
immunoprecipitates (represented by numerous peptides). Heat

shock cognate protein 3 is a member of the heat shock protein
family, which has been reported to localize to the endoplasmic
reticulum (ER) (Ryoo et al., 2007), as well as on lipid droplets
(Beller et al., 2006; Cermelli et al., 2006), and mitochondria

(Gallach et al., 2010). Taken together, our experimental results
demonstrate an interaction between invadolysin and different
mitochondrial proteins, suggesting that invadolysin might play a

more general role in mitochondrial structure or function.

Increasing evidence has demonstrated that lipid droplets
are complex organelles that have multiple cellular functions

(Beckman, 2006; Martin and Parton, 2006). Lipid droplets
interact with other cellular organelles, including mitochondria
(Jägerström et al., 2009). Lipid droplets might work as cellular

shuttles for nuclear-encoded mitochondrial proteins, facilitating
transport to the mitochondrial compartment following synthesis
in the cytoplasm. These subunits could undergo post-translational

processing on lipid droplets that might involve modification by
invadolysin. Mitochondrial morphogenesis and function depend
on a hierarchical network of mechanisms in which proteases

appear to be center stage (Guillery et al., 2008; McQuibban et al.,
2003; Voos, 2013). Proteases play a pivotal role in mitochondrial
gene expression, processing of misfolded and dysfunctional
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proteins, mitochondrial lipid metabolism, and fusion of

mitochondrial membranes (Anand et al., 2013). We are
currently testing the hypothesis that invadolysin might be
required for the processing of ATP synthase subunits.

In order to determine whether the physical interaction between

invadolysin and ATP synthase subunits was of functional
significance, we compared the phenotypes of invadolysin and
ATP syn-a (bellwether) mutations. Interestingly, the first

bellwether mutant allele was isolated during a genetic screen
aimed at identifying novel genes involved in growth signaling
(Galloni and Edgar, 1999). The phenotype of this allele included

larval growth defects affecting all tissues, DNA endoreplication
defects and larval lethality. Our previous results demonstrated
that larvae homozygous for two invadolysin alleles (inv4Y7 and
inv1) presented similar defects. The similarity in the inv4Y7 and

blwKG5893 mutant phenotypes supports the hypothesis that
invadolysin and bellwether function in the same or parallel
pathways. This suggestion is also supported by genetic data

obtained in an enhancer/suppressor assay, in which we showed
that the rough eye phenotype induced by invadolysin

overexpression was enhanced by the bellwether mutation.

Energy impairment in invadolysin larvae

The inv4Y7 third-instar larval fat body is smaller, thinner and has a
reduced triglyceride content compared to wild-type fat body. We

detected similar defects in blwKG5893 fat body. Both cell growth
and fatty acid synthesis are processes that respond to the energy
status of the cell, and are regulated by mitochondria. A reduction

in ATP level has been observed in Drosophila ATP syn-a mutants
(Copeland et al., 2009), and our results revealed that inv4Y7

mutant larvae also have a lower ATP content than found in wild-
type larvae. ATP is required for many essential processes during

development, including transcriptional regulation (e.g. histone
modification) and cell migration (Le Clainche and Carlier, 2008;
Lee et al., 2005; Saxton et al., 1988). We have previously shown

that germ cell migration is defective in invadolysin mutant
embryos (McHugh et al., 2004). Cell migration requires actin
treadmilling, which, in turn, is a bioenergetically demanding

process that hydrolyses ATP (Le Clainche and Carlier, 2008). A
reduction in ATP content might explain the germ cell migration
defect observed in the invadolysin mutant.

AMPK acts as an energy sensor to regulate cell growth and the

cell cycle in invertebrates and vertebrates alike (Hardie, 2004;
Hardie, 2005; Mandal et al., 2005). During metabolic stress, ATP
consumption is increased, raising AMP levels. Increased AMP

leads to the phosphorylation and activation of AMPK (Pan and
Hardie, 2002). AMPK-null mutants die with cell polarity and
mitotic defects in embryonic cells and larval neuroblasts (Lee
et al., 2007). We have demonstrated that inv4Y7 larvae have

reduced levels of ATP and a hyper-activation of AMPK (as
shown by elevated phosphorylation). The correlation between the
inv4Y7 mutation and AMPK activation is confirmed by genetic

interaction, whereby the rough-eye phenotype caused by
overexpression of invadolysin is enhanced by mutation in
SNF4c, the AMP-sensor subunit of AMPK. Our data suggest

that AMPK might play an antagonistic role to invadolysin.
Strikingly, inv4Y7 larvae fed Compound C, an AMPK inhibitor,
exhibited longer larval life and even formed pupae (which fail to

eclose due to a lack of imaginal discs) – in effect, a partial rescue.
This effect was not observed in wild-type animals fed Compound
C. The development of inv4Y7 on food supplemented with

AICAR, an AMPK activator, did not alter the inv4Y7 phenotype,
yet it deleteriously affected pupal development and viability of
wild-type animals. These data led us to hypothesize that AMPK

is activated in response to the stress caused by the mutation of
inv4Y7, which in turn contributes to larval lethality.

Under conditions of energy depletion, AMPK responds by
inhibiting anabolic reactions and accelerating catabolic pathways.

ACC, one of the substrates for AMPK (Ha et al., 1994), is
involved in fatty acid synthesis. Phosphorylation of ACC by
AMPK inhibits ACC activity. The phosphorylation level of ACC
in invadolysin larvae was significantly higher than in wild-type

larvae, suggesting decreased ACC activity that is consistent with
our observation of lower triglyceride content in larvae lacking
invadolysin.

Loss of invadolysin affects mitochondrial membrane
potential

A decrease of ATP synthesis is normally associated with a
reduction in mitochondrial membrane potential (Sugiyama et al.,

2007). It has been reported, in Drosophila (Copeland et al., 2009)
and in humans (Celotto et al., 2006), that mutations affecting ATP
synthase genes alter the mitochondrial membrane potential. We

found that mitochondria in both invadolysin and bellwether third-
instar larval fat body have reduced mitochondrial membrane
potential compared to that of wild-type larvae. However, based on a
quantification of mitochondrial:nuclear DNA, the overall density of

mitochondria does not appear to be different in mutant larvae. The
alteration of mitochondrial membrane potential suggests that inv4Y7

affects ATP synthesis. A reduction in mitochondrial membrane

potential has also been observed in mutations for other
mitochondrial proteins (Galloni, 2003), corroborating our
hypothesis that invadolysin is involved in mitochondrial regulation.

Mutations in ATP synthase genes are associated with alteration

of mitochondrial morphology in Drosophila neurons and flight
muscles, rat and mouse liver cells, beef heart, HeLa cells,
Caenorhabditis elegans and Chaos carolinensis (Celotto et al.,
2006; Mannella, 2008). Measurement of mitochondria in inv4Y7

and blwKG5893 fat body demonstrated an alteration in
mitochondrial shape and size compared to that of wild-type
cells. Mitochondria are dynamic organelles, and their size and

inner membrane organization are frequently modified in response
to the physiological status of cells.

Defects in respiratory chain enzymes can also create an
accumulation of ROS and a corresponding increase in oxidative

stress (Bell et al., 2007). Under normal metabolic conditions, ROS
play a role as second messengers in signal transduction (Brookes
and Darley-Usmar, 2002). ROS generated by the mitochondrial
ETC have been shown to play a role in regulating the cell cycle,

apoptosis, response to hypoxia, modification of lipid metabolism
and mitochondrial protein expression (Brookes et al., 2002; Curtis
et al., 2007; Owusu-Ansah et al., 2008; Xie and Roy, 2012). Loss

of invadolysin enhances ROS production and exacerbates
oxidative stress. It has also been reported that increased
formation of oxygen radicals increases oxidative stress in the

ATP synthase subunit a (ATP5a1) mutant rat. (Saleh et al., 2008).

We observed elevated levels of ROS in invadolysin and
bellwether mutant third-instar larvae. We additionally established
that invadolysin mutants accumulate a high amount of hydrogen

peroxide and show oxidative damage in the form of protein
carbonyls. Generally, elevated levels of ROS produced by the
mitochondrial respiratory chain under conditions of stress (such
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as hypoxia) signal the activation of the stress response pathway,

but only once a critical ROS threshold is reached (Bell et al.,

2007). We observed that inv4Y7 larvae have a slower behavioral

response to hypoxia as compared to wild-type animals. One

possible explanation is that stress responses are constitutively

activated even under normal physiological conditions in

invadolysin larvae (which show elevated levels of ROS), and

mutant larvae are thus less able to sense changes to oxygen level

in the environment. Genome-wide expression analysis supports

this hypothesis, as there are higher levels of transcripts for genes

involved in defense responses (e.g. heat shock and GST proteins)

in invadolysin mutant larvae.

Taken together, our data demonstrate that invadolysin is

important for the normal activity of mitochondria, and

consequently modulation of energy balance and the oxidative

stress response – processes essential in controlling crucial

developmental events such as cell growth and the cell cycle

(Owusu-Ansah et al., 2008).

Conclusions and model of invadolysin action

On the basis of the results of this study, we postulate that

invadolysin has a role in the formation or function of the ETC. We

hypothesize that invadolysin is required for the correct processing

of the ATP synthase complex during its biosynthesis, transport

and/or assembly. As a consequence, the flux of the ETC is not as

efficient in the absence of invadolysin as it is in control animals.

Lower levels of ATP in invadolysin mutant animals result in a

block to anabolic pathways, such as fatty acid synthesis. The lower

concentration of cellular ATP affects the energy status of the

organism, and might also contribute to the cell cycle and cell

migration defects observed in invadolysin mutant larvae. Defects

in the ETC also cause an accumulation in cellular ROS. This high
concentration of ROS, in particular hydrogen peroxide, causes

cellular damage and affects stress response pathways (Fig. 8).

In conclusion, we discovered a pivotal role for invadolysin, a
novel essential metalloproteinase, in maintaining mitochondrial

functionality. We established that invadolysin is required for
mitochondrial metabolism and maintaining the correct energetic
and redox status in the cell. Given the conservation of

invadolysin, we speculate that a similar function will also exist
in higher metazoa.

Materials and Methods
Drosophila husbandry and lines

Fly stocks were maintained at 25 C̊ on standard cornmeal medium, unless
otherwise noted. inv4Y7 was generated by local hopping of a nearby P transposon
insertion, l(3)04017, obtained from the Bloomington Stock Center (described in
McHugh et al., 2004). UAS-HA-invadolysin-cDNA flies were generated as
described below. Canton S was utilized as the control wild-type strain (Celotto
et al., 2006). All other stocks were obtained from the Bloomington Stock Center.

Molecular cloning

Drosophila EST clone 5168166 was sequenced and the full-length coding
sequence for invadolysin was amplified by PCR and cloned into the pUAST vector
(the GenBank accession number for invadolysin full-length cDNA is
AE014297.2). The hemagglutinin tag epitope (HA) sequence (59-TACCCATA-
CGATGTTCCAGATTACGCT-39 or 59-TATCCATATGATGTTCCAGATTAT-
GCT-39) was amplified by PCR and then cloned into the invadolysin coding
sequence (nt 242–247) in pUAST.

Immunoprecipitation from adult heads and larval fat body

Heads were removed from 100 3-day-old adult GMR-Gal4.UAS-HA-inv and
wild-type flies. Alternatively, fat body tissue was dissected from 100 well-fed
third-instar cg-Gal4.UAS-HA-inv and wild-type larvae. Heads or fat body were
homogenized in 500 ml of cold lysis buffer (20 mM Tris-HCl pH 8, 100 mM
NaCl, 0.1% Nonidet P40) containing Complete protease inhibitor cocktail (Roche).
100 ml of resuspended anti-HA Affinity Matrix (Roche) was added to each tube of
lysate and incubated at 4 C̊ for 2 hours. The matrix was washed three times in lysis

Fig. 8. Model showing the role and effect of invadolysin on

the ETC. Schematic representation of the ETC and lipid

droplets. The top box represents a normal wild-type organism,

whereas the lower box represents the effects observed upon

mutation of invadolysin. In the invadolysin mutant, the ETC is

disrupted, resulting in an accumulation of ROS, a reduction in

ATP synthesis, cell cycle arrest, growth defects and an

activated stress response. This results in organism death. I–V,

complexes I–V; UQ, ubiquinone; C, cytochrome c, iP,

inorganic phosphate.
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buffer and then resuspended in 75 ml electrophoresis sample buffer (20 mM Tris-
HCl pH 7.5, 2 mM EDTA, 5% SDS, 0.02% Bromophenol Blue, 20% glycerol,
200 mM DTT) and boiled for 10 minutes. 50% of each sample was analyzed by
immunoblotting to ensure successful immunopurification of HA–invadolysin. The
remaining 50% of the sample was resolved on precast 4–12% Bis-Tris
polyacrylamide gels (Novex) and stained with colloidal Coomassie Blue
(Invitrogen). Regions of interest at comparable molecular mass were excised
from each lane (HA–invadolysin and wild-type immunopurified samples) and
mass spectrometric analysis was performed (Conway Institute, University College
Dublin, Ireland).

Mass spectrometry
Mass spectrometry was performed as reported previously (Bolukbasi et al., 2012).
The proteins, in slices from SDS–PAGE gels, were digested in-gel with trypsin by
the method of Shevchenko et al. (Shevchenko et al., 1996). The resulting peptide
mixtures were resuspended in 1% formic acid and analyzed by nanoelectrospray
liquid chromatography tandem mass spectrometry (nano-LC-MS/MS). A high
performance liquid chromatography (HPLC) instrument (Dionex, UK) was
interfaced with an LTQ ion trap mass spectrometer (Thermo Finnigan, CA).
Chromatography buffer solutions (buffer A: 5% acetonitrile and 0.1% formic acid;
buffer B: 80% acetonitrile and 0.1% formic acid) were used to deliver a 60-minute
gradient (35 minutes to 45% buffer B, 10 minutes to 90%, hold 10 minutes,
3 minutes to 5% and hold for 15 minutes). A flow rate of 2 ml per minute was used
at the electrospray source. One full scan was followed by ten MS/MS events, and
the duty cycle programmed to enforce dynamic exclusion for 2 minutes. MS/MS
spectra were searched using the Sequest algorithm against the
SwissProt.2007.04.19 database restricted to Drosophila melanogaster entries.
The settings used were: parent ion tolerance (2.0 Da); CID fragment ion tolerance
(1.0 Da); semi-tryptic cleavage (one or fewer missed cleavages permitted); fixed
modification (carboxymethyl cysteine +58.005); dynamic modification (oxidized
methionine +15.995). The FDR was estimated at ,1% using the PeptideProphet
program. Proteins with a ProteinProphet probability score .0.99 identified by a
minimum of two different peptide spectra were deemed identified, additionally all
spectra of identified proteins were manually checked for quality.

Nile Red staining and Triacylglycerol assay of fat body
Third-instar larval fat body staining with the lipophilic reagent Nile Red and larval
triglyceride level measurement were performed as described previously (Cobbe
et al., 2009).

Larval MitoTracker, JC-1 and DHE staining
Mitotracker Red (active mitochondria)
Larvae of the same stage and the appropriate genotype were dissected in PBS
directly on a glass slide and the fat body was isolated and immediately fixed with
4% paraformaldehyde (Thermo Scientific) in PBS. The tissue was then washed
three times with PBS plus 1% Tween-20 (PBS-Tw) for 10 minutes each. Tissue
was stained in PBS-Tw containing 300 nM Mitotracker Red (Molecular Probes)
and 1 mg/ml DAPI (Sigma) for 30 minutes, followed by six 10-minute washes with
PBS-Tw. The tissue was mounted in 90% glycerol.

JC-1 (all mitochondria)
To visualize the mitochondria, fat body from larvae of the appropriate genotype
was dissected in Schneider’s insect medium (Sigma) directly on a glass slide. The
fat body was washed twice in double-distilled H2O and stained with 5 mg/ml JC-1
(Molecular Probes) and 1 mg/ml DAPI (Sigma) in double-distilled H2O for
15 minutes. The tissue was washed twice in double-distilled H2O followed by
three 5-minute washes with Schneider’s insect medium. Tissue was then mounted
in 90% glycerol.

DHE (ROS assay)
Larvae of the same stage and the appropriate genotype were dissected in PBS
directly on a glass slide and the fat body was isolated followed by DHE
(dihydroethidium, Molecular Probes) staining as described previously (Owusu-
Ansah et al., 2008).

Behavioral assay for hypoxia response
The hypoxia-induced motility assay was performed on late third-instar larvae.
Well-fed third-instar larvae were transferred in uncrowded conditions to yeast
paste in the middle of a 10-cm red wine agar plate. The larvae were allowed to
settle for about 10 minutes. Plates were then sealed with parafilm and incubated at
room temperature from 4–12 hours. Motility was scored as frequency of larvae
that moved to the edge of the plate, and was plotted as a function of time.

Compound C and AICAR treatments on developing Drosophila
Wild-type and inv4Y7 flies were left to mate on standard medium and medium
supplemented with 1 mg/ml (5 mM) AICAR (Cell Signaling) or 20 mg/ml
(0.2 mM) Compound C (MERCK) for 24 hours and then discarded. The effect of

the drugs on the development of each genotype was compared to animals fed on
regular medium. Every experiment was performed in triplicate. The results plotted
are reported as the percentage of abnormal pupae that developed within 15 days on
each medium.

ATP assay
Wild-type and inv4Y7 larvae were grown on fresh yeast paste on red wine agar
plates. Six wild-type or 24 inv4Y7 larvae were rinsed in PBS and then homogenized
with a motorized pestle in mitochondrial buffer (250 mM sucrose, 5 mM Tris-HCl
pH 7.4, 2 mM EGTA, 1% BSA at 4 C̊) (Miwa and Brand, 2003) and immediately
centrifuged at 12,000 rpm in an Eppendorf centrifuge for 10 minutes. 10 ml of the
supernatant was used for ATP measurement using an ATP determination kit
(Molecular Probe). Total ATP was normalized to total protein (determined using a
Bradford protein assay) from third-instar larvae. Because the isolation medium
contained BSA, the protein concentration in the isolation medium was subtracted
from the samples. All analyses were performed in triplicate. Statistical analysis
was performed using the Student’s t-test.

Hydrogen peroxide and protein carbonyl measurement
Wild-type and inv4Y7 third-instar larvae were homogenized in mitochondrial buffer
as described above. Hydrogen peroxide production was measured using the
Amplex Red kit (Molecular Probes). Hydrogen peroxide levels were normalized to
total protein (determined using a Bradford protein assay). Because the isolation
medium contained BSA, the protein concentration in the isolation medium was
subtracted from the samples. Protein carbonyl concentration was determined using
the OxiSelect Protein Carbonyl ELISA kit (Cell Biolabs) following the protocol
provided by the manufacturer. All analyses were performed in triplicate. Statistical
analysis was performed using the Student’s t-test.

RNA extraction and qPCR
RNA extraction and cDNA synthesis were performed as described in (Bolukbasi
et al., 2012). Quantitative real-time PCR (qPCR) was performed using the
LightcyclerH 480 Real-time PCR system (Roche), LightcyclerH 480 probes master
mix (Roche) and the Roche Universal Probe Library assay. Probe #89 together
with oligonucleotides inv-F (59-GCTCTTGGCTCCTCGTTTC-39) and inv-R (59-
TCTTCGCTATCAGCCAGTTG-39) were used to amplify the invadolysin

transcript. Probe #3 together with oligonucleotides blw-F (59-TCGGTTC-
CGATCTGGATG-39) and blw-R (59-GCACACCGCAGTAGATAACG-39) were
used to detect the bellwether transcript. Probe #151 (04694376001) together with
oligonucleotides CoI-F (59-TGGAGCTGGAACAGGATGAAC-39) and CoI-R (59-
CAACTGAAGCTCCACCATGA-39) were used to amplify the mitochondrial
cytochrome oxidase subunit I (CoI). Probe #132 (04694163001) and
oligonucleotides Act5C-F (59-AGACACCAAACCGAAAGACTTAAT-39) and
Act5C-R (59-ACATGCCAGAGCCGTTGT-39) were used to amplify nuclear
actin 5C. Actin 5C was used as control to normalize equal loading of template
cDNA.

Mitochondrial DNA:nuclear DNA ratio
The relative mitochondrial DNA:nuclear DNA ratio was determined by the ratio of
the number of copies for mitochondrial CoI to that of nuclear actin 5C (Neretti
et al., 2009). DNA was extracted from six third-instar larvae using the
mitochondrial QiAmp DNA Micro Kit (QIAGEN). DNA copy number was
determined using qPCR as described above.

Microarray
Gene expression analysis was performed as reported previously (Bolukbasi et al.,
2012). Microarray data were deposited in the Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/) with accession number GSE41029.

Preparation of larval protein extracts and immunoblotting
The procedure was performed as previously described (Bolukbasi et al., 2012;
Cobbe et al., 2009). Primary antibody dilutions used in the immunoblotting
experiments were as follows: rat HA antibody (Roche, used at 1:500), AMPK and
phospho-AMPK (Cell Signaling Technology, used at 1:500), phospho-p38 (Cell
Signaling Technology, used at 1:500), ACC1 (Cell Signaling Technology, used at
1:500), phospho-ACC-1 (Kinasource Ltd, used at 1:500). Appropriate IRDye 700
and 800 secondary antibodies were used at 1:10,000. Blots were scanned with the
Odyssey Infrared Imaging System (LI-COR Biosciences).

Microscopy
Light microscopy images of Drosophila adult eyes were captured on an Olympus
SZX7 dissection microscope fitted with an Olympus SP-500UZ digital camera.
The images were processed using Adobe Photoshop CS.

OPTIGrid microscopy analysis of fat body was performed as reported
previously (Cobbe et al., 2009).

Confocal microscopy was performed by imaging sample on a Leica Confocal
SP5, with an inverted DMI 6000 CS microscope base and equipped with three
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photomultiplier tubes (Hamamatsu R 9624). The images were captured using the
Leica application suite – advanced fluorescence (Version 2.0.0, build 1934).
Quantification of intensity was performed using Volocity (Version 5.03, Build 4)
‘find objects by intensity’ (taking half the maximum intensity as threshold),
‘exclude objects by size’ (,1 mm2) and ‘measure object’ tools. The average mean
intensity of every object was quantified and normalized to wild type, which was set
at a value of one. P-values were calculated using the paired Student’s t-test and the
standard deviation of each group was obtained. For the mitochondrial
measurements, z-stacks were captured at 167.7 nm sections using a 406 oil
objective and 117.8 nm sections with a 1006 oil objective. The z-stacks were
deconvolved using Huygens Essential software (Scientific Volume Imaging).
Measurements were taken using the line measure tool in Volocity. P-values were
calculated using the paired Student’s t-test and the standard deviation of each
group was obtained.

For scanning electron microscopy (SEM), fly heads removed from 1–5-day-old
fly heads were fixed in 3% glutaraldehyde in 0.1 M sodium cacodylate buffer,
pH 7.3, for 2–3 hours. Samples were then washed three times for 10 minutes each
time in 0.1 M sodium cacodylate buffer. Specimens were then post-fixed in 1%
osmium tetroxide in 0.1 M sodium cacodylate buffer for 45 minutes, prior to being
washed with three 10 minute changes of 0.1 M sodium cacodylate buffer. The
samples were then dehydrated in 50%, 70%, 90% and 100% normal grade acetone
for 10 minutes each, then for a further two 10 minutes changes in acetone analaR.
Dehydrated samples were then critical-point dried, mounted on aluminum stubs,
sputter coated with gold palladium and viewed in a Philips SEM 505. Areas of
interest were photographed on black-and-white negative film. Images were
processed using Adobe Photoshop CS.
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Chávez, J. C., Agani, F., Pichiule, P. and LaManna, J. C. (2000). Expression of
hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J. Appl.

Physiol. 89, 1937-1942.

Cobbe, N., Marshall, K. M., Gururaja Rao, S., Chang, C. W., Di Cara, F., Duca, E.,

Vass, S., Kassan, A. and Heck, M. M. (2009). The conserved metalloprotease
invadolysin localizes to the surface of lipid droplets. J. Cell Sci. 122, 3414-3423.

Copeland, J. M., Cho, J., Lo, T., Jr, Hur, J. H., Bahadorani, S., Arabyan, T., Rabie,

J., Soh, J. and Walker, D. W. (2009). Extension of Drosophila life span by RNAi of
the mitochondrial respiratory chain. Curr. Biol. 19, 1591-1598.

Craig, C. R., Fink, J. L., Yagi, Y., Ip, Y. T. and Cagan, R. L. (2004). A Drosophila
p38 orthologue is required for environmental stress responses. EMBO Rep. 5, 1058-
1063.

Curtis, C., Landis, G. N., Folk, D., Wehr, N. B., Hoe, N., Waskar, M., Abdueva, D.,

Skvortsov, D., Ford, D., Luu, A. et al. (2007). Transcriptional profiling of MnSOD-
mediated lifespan extension in Drosophila reveals a species-general network of aging
and metabolic genes. Genome Biol. 8, R262.

DeLany, J. P., Floyd, Z. E., Zvonic, S., Smith, A., Gravois, A., Reiners, E., Wu, X.,

Kilroy, G., Lefevre, M. and Gimble, J. M. (2005). Proteomic analysis of primary
cultures of human adipose-derived stem cells: modulation by Adipogenesis. Mol.

Cell. Proteomics 4, 731-740.

Devenish, R. J., Prescott, M. and Rodgers, A. J. (2008). The structure and function of
mitochondrial F1F0-ATP synthases. Int. Rev. Cell Mol. Biol. 267, 1-58.

Dugail, I. and Hajduch, E. (2007). A new look at adipocyte lipid droplets: towards a
role in the sensing of triacylglycerol stores? Cell. Mol. Life Sci. 64, 2452-2458.

Finkel, T. and Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of
ageing. Nature 408, 239-247.

Fridell, Y. W., Sánchez-Blanco, A., Silvia, B. A. and Helfand, S. L. (2005). Targeted
expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life
span in the fly. Cell Metab. 1, 145-152.

Gallach, M., Chandrasekaran, C. and Betrán, E. (2010). Analyses of nuclearly
encoded mitochondrial genes suggest gene duplication as a mechanism for resolving
intralocus sexually antagonistic conflict in Drosophila. Genome Biol. Evol. 2, 835-
850.

Galloni, M. (2003). Bonsaı̈, a ribosomal protein S15 homolog, involved in gut
mitochondrial activity and systemic growth. Dev. Biol. 264, 482-494.

Galloni, M. and Edgar, B. A. (1999). Cell-autonomous and non-autonomous growth-
defective mutants of Drosophila melanogaster. Development 126, 2365-2375.

Guillery, O., Malka, F., Landes, T., Guillou, E., Blackstone, C., Lombès, A.,

Belenguer, P., Arnoult, D. and Rojo, M. (2008). Metalloprotease-mediated OPA1
processing is modulated by the mitochondrial membrane potential. Biol. Cell 100,
315-325.

Ha, J., Daniel, S., Broyles, S. S. and Kim, K. H. (1994). Critical phosphorylation sites
for acetyl-CoA carboxylase activity. J. Biol. Chem. 269, 22162-22168.

Hagen, T., Taylor, C. T., Lam, F. and Moncada, S. (2003). Redistribution of
intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302,
1975-1978.

Hardie, D. G. (2004). The AMP-activated protein kinase pathway – new players
upstream and downstream. J. Cell Sci. 117, 5479-5487.

Hardie, D. G. (2005). New roles for the LKB1—.AMPK pathway. Curr. Opin. Cell

Biol. 17, 167-173.

Inoki, K., Zhu, T. and Guan, K. L. (2003). TSC2 mediates cellular energy response to
control cell growth and survival. Cell 115, 577-590.
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