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Residual Trapping of CO2 in an Oil‐Filled, Oil‐Wet
Sandstone Core: Results of Three‐Phase
Pore‐Scale Imaging
Stefan Iglauer1 , Adriana Paluszny2 , Taufiq Rahman3, Yihuai Zhang4 ,
Wolfgang Wülling1, and Maxim Lebedev5

1School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia, 2Department of Earth Science
and Engineering, Imperial College London, London, UK, 3Department of Petroleum Engineering, Curtin University,
Kensington, Western Australia, Australia, 4Lyell Centre, Heriot‐Watt University, Edinburgh, UK, 5Department of
Exploration Geophysics, Curtin University, Kensington, Western Australia, Australia

Abstract CO2 geosequestration in oil reservoirs is an economically attractive solution as it can be
combined with enhanced oil recovery (CO2‐EOR). However, the effectiveness of the associated
three‐phase displacement processes has not been tested at the micrometer pore scale, which determines
the overall reservoir‐scale fluid dynamics and thus CO2‐EOR project success. We thus imaged such
displacement processes in situ in 3‐D with X‐ray microcomputed tomography at high resolution at reservoir
conditions and found that oil extraction was enhanced substantially, while a significant residual CO2

saturation (13.5%) could be achieved in oil‐wet rock. Statistics of the residual CO2 and oil clusters are also
provided; they are similar to what is found in analogue two‐phase systems although some details are
different, and displacement processes are significantly more complex.

1. Introduction
CO2 geostorage combined with enhanced oil recovery (CO2‐EOR) is an attractive and economic solution for
reducing anthropogenic greenhouse gas emissions and mitigating global warming (Cantucci et al., 2009;
Emberley et al., 2005; Intergovernmental Panel on Climate Change, 2005). The targeted oil reservoirs,
however, are typically oil wet (Cuiec, 1991), which drastically reduces residual (Al‐Khdheeawi et al., 2017;
Al‐Menhali et al., 2016; Al‐Menhali & Krevor, 2016; Chaudhary et al., 2013; Iglauer, 2017; Krevor et al.,
2015; Rahman et al., 2016) and structural (Naylor et al., 2011; Iglauer, Al‐Yaseri, et al., 2015; Iglauer,
Pentland, & Busch, 2015; Iglauer, 2017; Arif et al., 2017) trapping capacities and significantly accelerates
vertical CO2 migration (Al‐Khdheeawi et al., 2017), which is detrimental as the injected CO2 must not leak
back to the surface.

It is, therefore, of key importance to quantify how much CO2 can be safely stored in such oil reservoirs and
how CO2 migrates through the formation. However, such a three‐phase (oil, water—which is always present
in subsurface formations—and CO2, which is injected for disposal) system has not been tested at the pore
scale (micrometer scale), despite the fact that pore‐scale flow determines hectrometre‐scale reservoir beha-
vior (Bear, 1988; Sahimi, 2011; Blunt, 2017) and thus the success of any CO2‐EOR project.

Consequently, there is a serious lack of data and understanding of the fundamental in situ parameters and
phenomena governing this process, which generates high uncertainty in terms of storage capacity and con-
tainment security predictions, translating into increased project risk.

We thus imaged such three‐phase (oil/water/CO2) displacement sequences via high‐resolution in situ 3‐D
X‐ray microcomputed tomography (μCT) at reservoir conditions and measured how much CO2 is trapped
as a residual phase in oil‐wet rock and how much additional oil is produced. A statistical analysis of the
residual phases is also provided. Results show that CO2 effectively enhances oil production, remaining
partially trapped in the core plug thereafter.

2. Experimental Procedure
2.1. Mimicking an Oil Reservoir at Laboratory Scale

It is well established that mimicking true reservoir conditions (i.e., high pressure and elevated temperature)
in laboratory‐scale experiments is required to achieve representative measurements (Iglauer & Lebedev,
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2018). This is due to the CO2 being in a supercritical state, in which it has
an increased viscosity, a strongly increased density, and, importantly, also
a strongly enhanced CO2‐rock wettability (e.g., Al‐Yaseri et al., 2016a,
2016b; Span & Wagner, 1996; Yang et al., 2008a, 2008b).

Thus a sandstone oil reservoir at a depth of approximately 1,000 m (10‐
MPa pore pressure and 323‐K temperature) was simulated in the labora-
tory. A clean homogeneous sandstone (Bentheimer) was selected, and
small core plugs (5‐mm diameter and 10‐mm length) were drilled. The
whole flood sequence was imaged for one miniature plug only. Porosity
was 21.5% ± 0.5%, permeability 2,047 ± 27 mD (Saenger et al., 2016),
and the rock consisted of 99 wt% quartz, 0.7 wt% kaolinite, and 0.3 wt%

rutile. Initially, this rock was completely water wet at ambient conditions (0° water contact angle in air);
however, oil reservoir rock is frequently oil wet (Cuiec, 1991). We thus rendered the plug oil wet (130° water
contact angle measured at ambient conditions in air, cf. Rahman et al., 2016) by immersing it into silane
(Dodecyltriethoxysilane, ≥99.9 mol% purity, from Sigma‐Aldrich) under vacuum and subsequently aged
the plug for four weeks at ambient conditions (cp. Al‐Anssari et al., 2016, Nwidee et al., 2016; Rahman
et al., 2016). This process guarantees strongly oil‐wet conditions in a highly reproducible way.

2.2. Pore‐Scale μCT Imaging

The oil‐wet plug was then placed into an X‐ray transparent high‐pressure μCT cell (Iglauer & Lebedev, 2018)
and vacuumed for 4 hr to remove all air from the system. Subsequently oil (1‐Bromododecane, which has a
high CT contrast, purity≥ 98mol%, from Sigma‐Aldrich) was injected so that the plug was fully oil saturated,
and the pore pressure was raised to 10 MPa, the confining pressure to 15 MPa, and all flow lines and fluids
were isothermally heated to 323 K. This was followed by injection of 50 pore volumes (PV) of water (using
doped “dead” brine; i.e., 7 wt% NaI in deionized water; note that NaI is required for CT contrast) at a capillary
number (Ncap = vμ/γ, where v is the Darcy velocity of the injected fluid, μ is the viscosity of the injected fluid,
and γ is the fluid‐fluid interfacial tension) of 3.72 × 10−7, which was followed again by a second oil flood (50
PV of oil were injected again at a capillary number of 9.87 x 10−6) so that a water‐oil two‐phase system was
created, which represents an (oil‐wet) oil reservoir at connate water saturation (Swc) at approximately 1,000
m depth. The core plug was then imaged at Swc in 3D at a resolution of (3.4 μm)3 with an Xradia
VersaXRM μCT instrument. Afterwards 40 PV of supercritical (sc) CO2 were injected at a flow rate of 0.1
mL/min, which corresponded to a capillary number of 6 × 10−8, and the core was imaged again at
initial CO2 saturation (Sgi). Finally 40 PV of CO2‐saturated “live” brine (i.e., brine thermodynamically equili-
brated with CO2 at 10 MPa and 323 K; El‐Magrhaby et al., 2012) were injected at a flow rate of 0.1 mL/min
(Ncap = 3.72 × 10−7), and the sample was μCT imaged again at residual CO2 saturation (Sgr). The interfacial
tensions (γ) of the fluids used are tabulated in Table 1, and the related spreading coefficient of the oil was
Sspreading = γgw − γow − γog = 13.9 mN/m; thus, the oil tended to spread out on the water.

The μCT images were filtered with a 3‐D nonlocal means algorithm (Buades & Morel, 2005) and segmented
with a watershed algorithm (Schlüter et al., 2014). Petrophysical properties were then measured on the 3‐D
images; see below.

3. Results and Discussion
3.1. Fluid Saturations and Pore‐Scale Configurations

For CO2 geostorage project assessment it is crucial to know howmuch CO2 can be stored as a residual phase
(Krevor et al., 2015). Indeed, some geostorage projects have been approved solely on the basis of this storage
mechanism (Stalker et al., 2013). Similarly, it is vital to know how much additional oil can be produced by
CO2 injection (Lake, 2010). This information forms the basis of economic decisions in terms of whether
CO2‐EOR schemes are feasible (Green & Willhite, 1998; Lake, 2010). Technically, this information is quan-
tified by the fluid saturation S (i.e., the volume fraction a fluid occupies in the pore space of the rock) and S
can be measured on the μCT images for the three fluids (oil: So; water: Sw; CO2: SCO2), Iglauer and
Lebedev (2018).

Table 1
Interfacial Tensions of the Fluids Used

Fluid‐fluid system Interfacial tension (mN/m)

Water‐CO2
a 39.5

Water‐1‐Bromododecaneb 22.8
1‐Bromododecane‐CO2

c 2.8

aMeasured at 323 K and 10MPa for 0.98M (0.864 NaCl + 0.136 KCl) brine
(Li et al., 2012). bMeasured at 330.89 K and 8.851 MPa for Ontario crude
oil‐Saskatchewan reservoir brine (4,270‐mg/L total dissolved solids; Yang
et al., 2005). cMeasured at 330.74 K and 13.362 MPa for Ontario crude
oil (Yang et al., 2005).
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Initially, the plug contained 64.5% oil (Table 2 and Figures 1 and S1 in the supporting information) in the
pore space at connate water saturation (Swc). This was mainly due to the strongly oil‐wet rock surface, which
led to oil (the wetting phase) residing in the smallest pores and thus a high oil saturation (So). Water was
present only in the large pores as it was the nonwetting phase (Øren & Pinczewski, 1995; Piri & Blunt,
2004; Soll et al., 1993); however, due to its residence in the larger pores, water saturation was significant
(Sw = 35.5%). The roundish shape of the water drops was caused by interfacial forces, which minimized
the droplet's surface areas (sometimes distorted by pore geometry) and with that the (Gibbs) energy of
the system.

This configuration represents an oil‐wet oil reservoir where the capillary pressure of water is relatively low,
that is, more at the top or in the center of the oil column (Watts, 1987). During CO2 injection (CO2 is the
intermediate‐wetting phase; cf Figure 1), most of these water drops were displaced by scCO2. The scCO2

moved into large but also intermediate‐sized pores, so that an initial scCO2 saturation of 41.3% was achieved,

and a significant amount of oil (oil recovery factor RCO2‐flood =
So produced by CO2 flooding

Soinitial
¼ 19:1%

64:5% ¼ 29:6%) was

recovered. The CO2 bubbles were again roundish due to interfacial forces. From Figure 1 it can be inferred
that two pore‐scale displacement processes occurred, namely, (a) a two‐phase direct drainage process, where
CO2 directly displaced oil, and (b) a three‐phase double‐drainage process (Øren & Pinczewski, 1994, 1995),
where CO2 displaced water, which again displaced oil. This is similar to displacement processes found in
N2 injection processes once the ranking of the fluid phases with respect to their mineral surface wetting affi-
nity is taken into account (i.e., N2 is the nonwetting phase there and water is the wetting phase if the rock is
water‐wet; Scanziani et al., 2018; Khishvand et al., 2016; Iglauer et al., 2013, 2016).

Subsequently, when water was injected to residually trap CO2 and to produce more oil, approximately 70% of
the CO2 was displaced by the water, and water remained mainly in spaces, which were previously occupied
by CO2 (Figure 1). This, in combination with the CO2 phase morphology (cf. Figure S1), indicates that CO2—

as the intermediate‐wet phase—is sandwiched between the oil and water phases. Thus, CO2 has a layer‐like
structure, which has also been observed previously for the intermediate‐wetting phase in analogue systems
(e.g., Iglauer et al., 2013; Scanziani et al., 2018); it is therefore possible that more of this CO2 is displaced as
such layers can attain very thin thicknesses, although the relative permeability of such a thin layer would be
very low (Keller & Chen, 2003). In addition, it is apparent from Figure 1 that now three displacement pro-
cesses occurred, namely, (a) water displaced CO2 directly in a two‐phase drainage process, (b) water also dis-
placed additional oil directly in a two‐phase drainage process, and (c) water displaced CO2, which again
displaced more oil in a double‐drainage process. This is somewhat different to what has been observed pre-
viously for N2 systems, as there waterflooding corresponds to an imbibition process (Scanziani et al., 2018).
Note that oil is hydraulically connected throughout all flooding sequences. Overall, however, significant
amounts of residual CO2 (13.5%) were stored, and a substantial amount of additional oil (18.6%) was recov-

ered by waterflooding (Rwaterflood = ¼ So produced by waterflooding

So initial
¼ 12:0%

64:5% ¼ 18:6%; Table 2).

Thus, in summary, when compared with analogous two‐phase (water/CO2) experiments (Al‐Menhali et al.,
2016; Andrew et al., 2013, 2014; Chaudhary et al., 2013; Iglauer et al., 2011; Rahman et al., 2016), it is clear
that overall less CO2 can be stored in oil‐wet rock by residual trapping; however, it was demonstrated on the
miniature core plug used here that a similar amount of CO2 can be stored in three‐phase systems (i.e., oil
reservoirs, as opposed to aquifers). The 3‐D fluid morphologies reflect this (Figure S1 in the supporting infor-
mation); these phase structures were further statistically analyzed in detail in section 3.2 below.

3.2. Residual Cluster Statistics
3.2.1. Oil and CO2 Cluster Size Distributions
Subsequently, the oil and CO2 cluster size distributions were analyzed as they are related to remobilization
and mass transfer effects. Larger clusters can be remobilized more easily (Herring et al., 2013), and they have
a smaller surface area‐to‐volume ratio, which slows down mass transfer (Iglauer & Wülling, 2016; Jiang et
al., 2016). Note that remobilization of CO2 needs to be avoided (as it increases leakage risk), and mass trans-
fer needs to be accelerated to maximize dissolution trapping—a safe storage mechanismwhere CO2 dissolves
in formation brine and sinks deep into the reservoir (Al‐Khdheeawi et al., 2017; Emami‐Meybodi
et al., 2015).

10.1029/2019GL083401Geophysical Research Letters
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We thus analyzed these cluster distributions by counting the number N of oil or CO2 clusters of size (volume)
V. The normalized frequency (=N/total number of oil/CO2 clusters) is plotted against cluster size for each
saturation state, Figure 2.

Clearly, N always dropped rapidly with increasing cluster size V, consistent with observations made in simi-
lar experiments (e.g., Iglauer et al., 2010, 2011, 2013, 2016; Iglauer & Wülling, 2016; Georgiadis et al., 2013;
Andrew et al., 2014; Geistlinger et al., 2014; Geistlinger & Mohammadian, 2015). These cluster size distribu-
tions followed power law correlations (N ~ V−τ; Table 3). More smaller oil clusters were counted after each
flooding step, and, related to that, the cluster size distribution exponent τ significantly increased (from 1.09 to
1.35 after waterflooding, Table 3). This indicates that during the floods, larger oil clusters were split into
smaller clusters, consistent with the images shown in Figures 1 and S1. A similar effect was observed for
the CO2 clusters. The initially largest CO2 cluster was reduced from 1.45 × 109 μm3 to 3.47 × 107 μm3 after
waterflooding, while the cluster size exponent τ increased from 1.10 to 1.20 (Table 3). Note that an increased
τ value implies a higher frequency of smaller CO2 bubbles, which dissolve quicker in the oil or water phase
due to the increased surface‐to‐volume ratio (Iglauer & Wülling, 2016), thus accelerating dissolution and
mineral CO2 trapping.
3.2.2. Oil and CO2 Cluster Surface Areas
The cluster surface area‐volume relationship is another morphological descriptor of the individual fluid
phases, and they provide information directly relevant for any mass transfer considerations (see above).
Thus, the interfacial areas A for each CO2 and oil cluster were measured and plotted against their volume
V; from the (log‐log) graphs power law relations are evident (A ~ Vp; Figure 2) and as with all other measure-
ments of this kind (Iglauer et al., 2013;Karpyn et al., 2010; Pentland et al., 2012), pwas always ~0.8. Note that
p = 2/3 for a sphere, the most compact object, while it is p ~ 1 for a percolation‐like cluster (Stauffer, 1979).
The fluid clusters are therefore less compact than spheres as they can occupy more than one pore (cf.
Figures 1 and S1) but less ramified than percolation clusters. Furthermore, p was independent of the fluid
and process step.

It is interesting to note that the power law exponents measured (τ and p) are significantly lower than pre-
dicted by percolation theory [which predicts τ= 2.189 and p≈ 1; Stauffer, 1979; Lorenz & Ziff, 1998]. We thus
conclude that simple percolation models are unlikely to deliver reliable predictions; see also Iglauer and
Wülling (2016).

3.3. CO2 and Oil Cluster Capillary Pressure Distributions

Finally, the capillary pressures (pc)—which strongly influence the multiphase flow behavior through the
rock (Blunt, 2017; Øren et al., 1992; Sahimi, 2011; Soll et al., 1993)—of all oil and CO2 clusters were deter-
mined. Thus, the curvature (C) of each cluster was measured on the μCT images, and the associated capillary
pressures (pc = γC) were calculated using the CO2‐oil and water‐oil interfacial tensions (Table 1), as both,
CO2 and water, were (mainly) surrounded by oil. The accuracy of these measurements is discussed in the
supporting information; note that due to the voxelized image acquired in a μCT experiment, a measurement
bias is introduced that results in a high count of zero curvatures (and thus zero capillary pressures). This is
thus an artifact of the μCT technology and should not be interpreted as a mixed‐wet condition (the core is
strongly oil wet, see section 2.1).

The capillary pressure distributions were roughly axially symmetric and bell tower shaped and always
showed a narrow and high peak at zero capillary pressure (Figure 3), consistent with data reported for oil‐
water (Armstrong et al., 2012) and three‐phase oil‐water‐gas (Iglauer et al., 2016) systems. Interestingly,
the pc range for the oil clusters at Swc approximately doubled after CO2 flooding, from approximately

Table 2
Water, Oil, and CO2 Saturations in the Oil‐Wet Bentheimer Sandstone at 323 K and 10‐MPa Pore Pressure at Various Saturation States

Saturation state Water saturation (%) Oil saturation (%) CO2 saturation (%)

Connate water (Swc) 35.5 64.5 0
Initial CO2 (Sgi) 13.2 45.4 41.4
Residual CO2 (Sgr) 53.1 33.4 13.5

10.1029/2019GL083401Geophysical Research Letters
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Figure 1. Two‐dimensional slices through the rock and various fluids at different saturation states. In the raw and filtered images, oil is white, CO2 is black, brine
dark gray, and sandstone is light gray. Oil is red, brine blue, gas yellow, and rock is brown in the segmented images.

10.1029/2019GL083401Geophysical Research Letters
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−100 to 200 kPa to −350 to 350 kPa but then stayed constant after waterflooding; this is clearly related to a
broadening in curvature values of the oil drops. The pc range for the CO2 clusters did not significantly change
and remained at ~−40 to 40 kPa. Note that the interfacial curvatures were similar for CO2 and oil (ranging

Figure 2. Oil (a) and scCO2 (b) cluster size distribution for each saturation state. Surface area versus cluster volume for each (c) oil and (d) CO2 cluster and produc-
tion step. Oil (e) and CO2 (f) droplet capillary pressures. Measured at 323 K and 10‐MPa pore pressure.

10.1029/2019GL083401Geophysical Research Letters
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from −15 to 15 μm−1); thus, the large difference in the nominal values of
the CO2 and oil capillary pressures were caused by the significantly lower
CO2‐oil interfacial tension.

3.4. Limitations

This study was conducted at typical μCT scale; that is, the observed
volume was only several cubic millimeters (cf. e.g., Blunt et al., 2013 or
Iglauer & Lebedev, 2018). At field scale, additional factors including geo-
logical reservoir features, or gravity effects play a significant role, and also
need to be considered (e.g., Moortgat et al., 2011). Furthermore, the core
was initially completely filled with oil (note that due to the strong hydro-
phobicity of the core it was not possible to 100% saturate it with water),

which is only approximately representative of an oil reservoir core which also contains some water initially.
However, the error in saturations is small. The subsequent coreflood sequence mimicked a scenario where
CO2 is directly injected into an oil reservoir, and the large number of PV used during the different flooding
steps represents more the situation closer to the wellbore, while a smaller number of PV are expected to
sweep deeper through the reservoir. This is, however, a limitation of the small sample used (as required
by the μCT technology; Iglauer & Lebedev, 2018), and the associated very small fluid volumes (1 × PV =
40 μl). Note that no comparative study was conducted on an analogue water‐wet sample (where different
flow patterns are expected, e.g., Iglauer et al., 2013, Blunt, 2017), and only one full coreflood sequence was
imaged with μCT.

4. Conclusions and Implications

CO2 geosequestration in oil reservoirs is an attractive solution to dispose anthropogenic CO2 while simulta-
neously enhancing oil recovery (Cantucci et al., 2009). However, the effectiveness of the three‐phase (micro-
meter) pore‐scale displacement mechanism, when CO2 is injected into a formation, and additional oil is
mobilized, is only poorly understood. We thus imaged such a displacement sequence at high resolution in
situ in 3‐D via X‐ray μCT at reservoir conditions in an outcrop sandstone core. Significant amounts of resi-
dual CO2 saturations were achieved in an oil‐wet rock (13.5%), while oil production was enhanced substan-
tially (~50% total oil recovery was achieved). Furthermore, the residual oil and CO2 cluster size distributions,
and the cluster surface area‐volume relationships followed power law distributions, similar to the situation
in two‐phase flow despite three‐phase flow being dramatically more complex (e.g., Øren et al., 1992). We
conclude that, at the pore‐scale, CO2‐EOR is an efficient method to residually trap CO2 and recover signifi-
cant incremental oil.
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