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ARTICLE

Biodiversity can benefit from climate stabilization
despite adverse side effects of land-based
mitigation
Haruka Ohashi 1*, Tomoko Hasegawa 2,3, Akiko Hirata 1,4, Shinichiro Fujimori 3,5,6,

Kiyoshi Takahashi 3, Ikutaro Tsuyama7, Katsuhiro Nakao8, Yuji Kominami9, Nobuyuki Tanaka10,

Yasuaki Hijioka4 & Tetsuya Matsui 1

Limiting the magnitude of climate change via stringent greenhouse gas (GHG) mitigation is

necessary to prevent further biodiversity loss. However, some strategies to mitigate GHG

emission involve greater land-based mitigation efforts, which may cause biodiversity loss

from land-use changes. Here we estimate how climate and land-based mitigation efforts

interact with global biodiversity by using an integrated assessment model framework to

project potential habitat for five major taxonomic groups. We find that stringent GHG

mitigation can generally bring a net benefit to global biodiversity even if land-based mitigation

is adopted. This trend is strengthened in the latter half of this century. In contrast, some

regions projected to experience much growth in land-based mitigation efforts (i.e., Europe

and Oceania) are expected to suffer biodiversity loss. Our results support the enactment of

stringent GHG mitigation policies in terms of biodiversity. To conserve local biodiversity,

however, these policies must be carefully designed in conjunction with land-use regulations

and societal transformation in order to minimize the conversion of natural habitats.
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Over the last century, anthropogenic interventions in nat-
ural ecosystems have caused an exceptionally rapid loss
of biodiversity. According to the IUCN Red List, 198

vertebrates have been verified as ‘extinct’ since 1900, and the
average rate of vertebrate species loss over the last century was 22
times higher than in the pre-anthropogenic era1,2. Land-use
change has been the largest driver of this biodiversity loss1,3. In
particular, the expansion of agricultural area to support an
increasing global population has caused major ecosystem changes
over millenia1. While the global population increased from 1650
million in 19004 to 6145 million in 20005, agricultural area
increased from 21million km2 in 1900 to 50 million km2 in 2000,
covering about 35% of the Earth’s land surface6. Climate change
is also becoming a major threat to biodiversity3,7,8. Since 1880,
there has been an average warming of 0.85 °C globally9, and many
organisms are likely changing their distributions as a means of
adapting to climate change10.

With an increasing recognition of the importance of biodi-
versity for human society11, preventing further biodiversity loss is
now a target of global sustainability policy, such as the Aichi
Targets of the Convention on Biological Diversity and Sustainable
Development Goals of the United Nations Development Pro-
gramme. Although these political frameworks are focused on the
near future, it is also important to take a longer perspective along
with these policy frameworks in order to project long-term global
sustainable development. As we move towards a global popula-
tion of 9–10 billion people by 2050, striking a balance between
competing demands for land to provide goods and services (e.g.,
food, water, timber, energy, settlements and recreation) and
safeguarding Earth’s life-support system will become more critical
issues as we aim to achieve sustainable development12. Increasing
demand for agricultural goods13 may put pressure on future
biodiversity. For example, in newly developed socioeconomic
scenarios, so-called shared socioeconomic pathways (SSPs), glo-
bal cropland is projected to expand by 25% and pasture by 6% by
2100 (relative to 2010) in the middle-of-the-road scenario (SSP2),
while aggregated area of forest and other natural land is projected
to decrease by 6.1 million km2 by 2100 compared to 201014.

Furthermore, as the global temperature rises due to climate
change, biodiversity loss is expected to become more severe7,8.
Previous studies have agreed that reducing the degree of climate
change by stringent greenhouse gas (GHG) mitigation activities
can prevent a substantial loss of biodiversity7,8. However, most of
these studies only consider the effects of change in climatic
condition15. Recently, integrated assessment models revealed that
the most stringent GHG mitigation scenarios require substantial
land-based mitigation options such as large-scale bioenergy crop
production, afforestation, and avoiding deforestation16,17, which
would lead to a wide range of possible changes in land use18,19.
One study’s findings suggested synergy between land-use change
for GHG mitigation and biodiversity conservation20, whereas
others showed that potential land-use changes for GHG mitiga-
tion may cause further biodiversity loss21,22. In reality, land-use
change and climate change occur simultaneously, and losses or
gains of suitable habitats occur not only due to land-use change
or climate change, but also due to their combined effects23,24.
Therefore, integrated assessment of climate change and land-use
change is urgently needed to clarify whether climate change
mitigation measures truly contribute to biodiversity conservation.

Here, we describe the combined effects of climate change and
land-use change on biodiversity under ambitious climate change
mitigation efforts at a global scale. We separately account for the
beneficial effect of limiting the magnitude of climate change and
the effect of additional land-use change, which can be either
destructive or preventative. We use a one-way economy-land-
biodiversity modelling framework. First, we project regional

aggregated land use using the Asia-Pacific Integrated Model/
Computable General Equilibrium Model (AIM/CGE)25, which
was downscaled to high spatial resolution with the AIM/PLUM
model26. The AIM/CGE implements climate change mitigation
in the form of a global uniform carbon tax on GHG emissions
from the agriculture, land-use, and energy sectors. Then, we
estimate the losses and gains in suitable habitat for 8428 species in
five taxonomic groups (vascular plants, amphibians, reptiles, birds,
and mammals) by using a species distribution model based on
occurrence–environment correlations. Although projecting future
suitable habitats is relatively simple, whether species can occupy a
space or not relies on their dispersal abilities27. In this study, we
incorporate variation of dispersal ability at the species level into
the model by using a simple approach based on life-history traits,
although more information is needed to represent all of the
complex mechanisms related to dispersal27 (see Methods).

We consider two future scenarios: baseline versus mitigation
scenarios. The baseline scenario assumes no GHG emission
reductions, and the global mean surface temperature continues to
rise. In contrast, the mitigation scenario assumes the ambitious
climate change mitigation efforts of the 2 °C scenario, where
GHG emission levels are cut to RCP2.6 emission levels with a
residual climate change impact. We consider five alternative
scenarios for land-use change that reflect different future socio-
economic development trends, which correspond to five
SSPs28,29. Consequently, the total areas of forest (including
afforestation) and bioenergy crops are larger in the mitigation
scenario than in the baseline scenario, whereas the total areas of
cropland (excluding bioenergy crops), pasture, and other natural
land are smaller26. For climate information, we use variables
based on five General Circulation Models (GCMs) of two
representative concentration pathways: RCP2.6, which roughly
corresponds to a global mean temperature rise from preindustrial
times of <2 °C by 210030, for the mitigation scenario, and RCP8.5,
which has a 2.6–4.8 °C rise31, for the baseline scenario.

Moreover, to decompose the individual effects of land-use
change and climate change, we run three hypothetical scenarios
that were produced by combining land-use change and climate
change scenarios (Supplementary Table 1). Finally, we analyse the
individual effects of land-use change and climate change on loss
and gain of species’ suitable habitat and compare these areas
between the mitigation and baseline scenarios (see Methods).

We conclude that climate stabilization by stringent GHG
mitigation, in general, can provide a net benefit to global biodi-
versity despite some regions suffering a loss of biodiversity due to
land-based GHG mitigation efforts. These beneficial effects
become more relevant in the latter half of this century, rather
than in the near future. To enhance the synergy between GHG
mitigation and the prevention of biodiversity loss, strong land-use
regulations and societal transformations that foster sustainability
will be necessary.

Results
Factors driving losses and gains of suitable habitats. Our results
indicate that the total global area of suitable habitats cannot avoid
some degree of loss regardless of whether climate change miti-
gation is implemented or not (Fig. 1). However, less suitable
habitat was lost in the mitigation scenario compared to the
baseline scenario for all taxonomic groups. This trend can be seen
in projections for both the 2050s and 2070s. In the 2050s, losses
of suitable habitat were 12.6–23.3% of current suitable habitat
area in the mitigation scenario and 14.9–26.0% in the baseline
scenario. In the 2070s, losses of suitable habitat were 16.8–27.8%
of current suitable habitat area in the mitigation scenario and
21.6–35.9% in the baseline scenario. The second important
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finding is that the differences between mitigation and baseline
scenarios became larger over time: every taxonomic group
showed larger habitat losses in the 2070s than in the 2050s.

Climate change was always the dominant factor compared to
land-use change, although the magnitude of these factors differed
across scenarios. Not surprisingly, the loss of suitable habitat
due to climate change was smaller in the mitigation scenario than
in the baseline scenario (Fig. 1). On the other hand, loss of
suitable habitat due to land-use change was larger in the
mitigation scenario than in the baseline scenario. A larger
proportion of land was converted in the mitigation scenario, with
increased areas for afforestation and bioenergy crop production
(Supplementary Fig. 2). Because the effect of climate change was
larger than that of land-use change in all taxonomic groups, the
baseline scenario is consequently projected to have a more
negative impact in total.

Additionally, we found a significant difference in loss and gain
of suitable habitat among SSPs (Tables 1 and 2). SSP1 showed the
smallest loss and relatively large gain in suitable habitat.

SSP4 showed a relatively small loss and small gain of suitable
habitat, whereas SSP3 and SSP5 showed a relatively large loss and
large gain of suitable habitat.

The difference in losses of suitable habitat among taxonomic
groups was also significant: vascular plants showed the largest
loss, followed by birds, mammals, amphibians, and reptiles
(Tables 1 and 2). Furthermore, gains of suitable habitat were
dependent on the taxonomic group. Those containing species
with a strong dispersal ability had modest gains in suitable habitat
(mammals: 0.5–0.7%, birds: 6.8–9.1%), whereas the other three
groups hardly gained new suitable habitat (Fig. 1, Table 2).
Moreover, for mammals and birds, the gains were much lower
than losses in all years and scenarios (Fig. 1).

Regional variation in the net benefit of the mitigation. Losses of
suitable habitat also varied across the native regions of taxa. Total
losses in the baseline scenario were relatively large for species in
Europe, Africa, and South America (Fig. 2). For most regions,
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Fig. 1 Proportion of losses and gains in suitable habitat from the present to the 2050s and 2070s in mitigation (MIT) and baseline (BL) scenarios. Individual
contributions of land-use change, climate change, and combined effect to losses and gains in suitable habitat were identified. Figure shows average
proportion of five GCMs in each SSP, for each taxonomic group: a vascular plants, b amphibians, c reptiles, d birds, and e mammals. Corresponding data
points for the contribution of land-use change are represented as triangles, the cumulative contributions of land-use change and climate change are
represented as crosses, and the cumulative contributions of all drivers are represented as circles. Source data are provided as a Source Data file

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13241-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5240 | https://doi.org/10.1038/s41467-019-13241-y | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


total losses of suitable habitat drastically decreased in the miti-
gation scenario (Figs 2 and 3). However, in the 2050s, some
scenario–taxon combinations in Europe and Oceania were pre-
dicted to experience further loss of suitable habitat in the miti-
gation scenario. These regional variations in habitat losses can be
explained by the magnitude of land-use and climate changes for
each region. When looking at the individual effect of land-use
change on species’ suitable habitat loss, the magnitude of loss was
correlated with the proportion of land that has changed from the
current to another land use (Fig. 4a). Similarly, the proportion of
habitat loss due to climate change was correlated with the degree
of change in the maximum temperature of the warmest month,
one of the 19 bioclimatic variables used to construct models
(Fig. 4b). In the regions predicted to have large land-use changes
in the mitigation scenario (e.g., Europe), only a small reduction in
the total loss of suitable habitat was achieved by mitigation due to
the increased loss of suitable habitat by land-use change (Figs 3
and 4).

Discussion
Our results highlight the fact that climate change mitigation can
reduce the risk of species loss at a global scale, but we must
consider the effects of land-use change associated with GHG
mitigation efforts. Certain losses of suitable habitat were inevi-
table under both mitigation and baseline scenarios. This is partly
due to the nature of the climate characteristics, because even if
GHG emissions were immediately halted, temperature rise could
continue until the middle of the century. When looking at the
individual effect of the two drivers, climate change had marked
effects on loss/gain of suitable habitat regardless of differences in
future socioeconomic development trends (Fig. 1), which was
consistent with previous studies at a larger spatial scale32. The
spatial extent of each driver differs: climate change affects all
of the land surfaces, whereas land-use change occurs locally.
Even in the 2070s, >70% of the terrestrial land surface was
unchanged in both scenarios (Supplementary Fig. 2). Therefore,
although stringent mitigation measures have been implemented,

Table 1 Result of the GLMM for area of lost suitable habitat

Parameter Estimate 95% CI z p

(Intercept) −1.757 −1.816 to –1.699 −58.977 <0.001
Scenario (MIT)a −0.103 −0.107 to –0.098 −43.798 <0.001
Year (2070s)b 0.366 0.362 to 0.371 157.261 <0.001
SSP (SSP1)c −0.046 −0.051 to –0.040 −17.493 <0.001
SSP (SSP3)c 0.043 0.038 to 0.048 16.508 <0.001
SSP (SSP4)c −0.037 −0.042 to –0.032 −14.364 <0.001
SSP (SSP5)c 0.107 0.102 to 0.112 40.967 <0.001
Taxonomic group (Amphibians)d −0.331 −0.450 to –0.213 −5.478 <0.001
Taxonomic group (Reptiles)d −0.636 −0.769 to –0.503 −9.393 <0.001
Taxonomic group (Birds)d −0.320 −0.387 to –0.253 −9.344 <0.001
Taxonomic group (Mammals)d −0.332 −0.422 to –0.241 −7.199 <0.001
GCM (HadGEM2-ES)e −0.060 −0.065 to –0.054 −22.675 <0.001
GCM (GFDL-CM3)e 0.160 0.155 to 0.166 60.622 <0.001
GCM (MIROC-ESM-CHEM)e 0.138 0.133 to 0.144 52.304 <0.001
GCM (NorESM1-M)e −0.242 −0.248 to –0.237 −92.188 <0.001
Scenario (MIT)a × Year (2070s)b −0.128 −0.134 to –0.121 −38.760 <0.001

Parameter estimates with their associated 95% confidence interval and test statistics (Wald’s z-score and p values for Wald test) of the GLMM for area of lost suitable habitat. The shape parameter of
the Gamma distribution was estimated as 1.756. Standard deviation of random effects was estimated as 1.186. aBaseline (BL) scenario was set as the reference. bThe years of the 2050s were set as the
reference. cSSP2 was set as the reference. dVascular plants was set as the reference. eIPSL-CM5A-LR was set as the reference

Table 2 Result of the GLMM for area of gained suitable habitat

Parameter Estimate 95% CI z p

(Intercept) −26.639 −26.815 to –26.463 −296.805 <0.001
Scenario (MIT)a 0.024 0.018 to 0.029 9.012 <0.001
Year (2070s)b 0.027 0.022 to 0.032 10.234 <0.001
SSP (SSP1)c 0.007 0.002 to 0.013 2.570 0.010
SSP (SSP3)c 0.005 −0.000 to 0.011 1.825 0.068
SSP (SSP4)c −0.014 −0.019 to –0.008 −4.661 <0.001
SSP (SSP5)c 0.038 0.032 to 0.044 13.015 <0.001
Taxonomic group (Amphibians)d 0.676 0.317 to 1.034 3.696 <0.001
Taxonomic group (Reptiles)d 0.568 0.166 to 0.969 2.771 0.006
Taxonomic group (Birds)d 23.218 23.015 to 23.421 224.049 <0.001
Taxonomic group (Mammals)d 2.855 2.582 to 3.128 20.494 <0.001
GCM (HadGEM2-ES)e 0.000 −0.006 to 0.006 −0.077 0.939
GCM (GFDL-CM3)e −0.011 −0.017 to –0.006 −3.906 <0.001
GCM (MIROC-ESM-CHEM)e 0.102 0.096 to 0.108 34.644 <0.001
GCM (NorESM1-M)e 0.028 0.022 to 0.033 9.420 <0.001
RCP (MIT)a × Year (2070s)b −0.027 −0.034 to –0.019 −7.229 <0.001

Parameter estimates with their associated 95% confidence interval and test statistics (Wald’s z-score and p values for Wald test) of the GLMM for area of gained suitable habitat. The shape parameter
of the Gamma distribution was estimated as 1.405. Standard deviation of random effects was estimated as 3.593. aBaseline (BL) scenario was set as the reference. bThe years of the 2050s were set as
the reference. cSSP2 was set as the reference. dVascular plants was set as the reference. eIPSL-CM5A-LR was set as the reference
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substantially more area can be affected by the residual impacts of
climate change relative to that of land-use change.

Note, however, that our results may underestimate the impact
of land-use change for two reasons. First, our models focus on
land-cover change and are based on the assumption that the
effect of land-use intensity within each land-use type does not
affect species’ habitat suitability. For example, all of the five SSP
scenarios more or less estimate an increase in crop yield in the
future resulting from technological development and irrigation
expansion33, as reflected in differences in the expansion rates of
agricultural land use in this study (i.e., if higher yield is expected,
then extension of agricultural land use could be limited). How-
ever, increasing crop yield through agricultural practices (e.g.,
significant input of inorganic fertilizer or pesticide) may add
further risks for biodiversity loss34 and require additional efforts
for conservation35. Although not all technologies that aim to
achieve crop yield increases cause negative impacts on
biodiversity36,37, the lack of this factor in our species distribution
model may have led to underestimated biodiversity losses from
land-use change. As another example, the negative impact of
land-use change associated with GHG emission reduction on
biodiversity within the forest may become large if the afforesta-
tion is conducted with non-native species and without efforts to
restore the environment of the original natural forest21,22. These
changes in habitat suitability arising from differences in envir-
onmental quality may cause systematic bias in our analysis.
Second, our analyses only evaluated those species with enough

data to construct a species distribution model, meaning that
species adapted to a long history of human land use were likely
selected. As a result, the effect of land-use change on the species
vulnerable to human disturbance might be underestimated in
our study.

The beneficial effects of GHG mitigation become more relevant
in the long term, rather than in the near future (Figs 1–3), which
is due to the delayed climate response to a reduction in GHG
emissions. These results have significant implications for policy-
making in the sense that focusing only on the near term provides
limited information to appropriately assess future comprehensive
biodiversity situations. Despite the limited information for a
much longer time scale (e.g., more than a century), the future
climate effects can be much stronger drivers of biodiversity than
land-use change, which highlights the need for stringent GHG
mitigation actions.

Note that our results are highly dependent on assumptions
regarding socio-economic conditions such as lifestyle38 and
technological development related to energy efficiency39 and
biomass utility40, which have the potential to affect future land-use
changes. These aspects are partially expressed as a difference
among SSP scenarios. Because SSPs involve changing several
factors simultaneously and it is impossible to identify the factor
that determines land-use change, several aspects of the land-use
storyline in SSP1 (e.g., strong land-use change regulation,
increasing crop yields, low animal-calorie shares, and low waste)18

may be the candidate feature that contributed to minimize
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Fig. 2 Proportion of total loss, loss due to land-use change, and loss due to climate change in suitable habitat from the present to the 2050s/2070s in
mitigation (MIT) and baseline (BL) scenarios, aggregated by species’ native region. Each box represents 2.5 and 97.5 percentiles of the mean proportion of
each combination of taxonomic group and GCM within each SSP. The bold line in each box shows the median value. Source data are provided as a Source
Data file. World map was generated by using software QGIS ver 2.18.27 and polygon data obtained from http://www.iucnredlist.org/
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conversion of forest and other natural land and prevent the loss of
suitable habitats. For example, the beneficial effects of GHG
mitigation on biodiversity become small in the scenario with
higher agricultural demand induced by bioenergy consumption
(Figs 1–3, Supplementary Figs 7 and 8). This result indicates that
reducing society’s total energy demand may enhance synergies
between GHG mitigation and the prevention of biodiversity loss.
Additionally, improving yields on existing croplands by envir-
onmentally sustainable intensification techniques36,37 and chan-
ging our diet41 might be another option to reduce the additional
pressure on biodiversity resulting from GHG mitigation activity.
Currently, widely used land-use predictions are generated for
single RCP-SSP combinations, which does not allow isolation of
pure differences among socio-economic conditions23. Further
work that explicitly considers various socio-economic conditions
and GHG mitigation options will need to specify the critical socio-
economic factor necessary to achieve both GHG mitigation and
biodiversity targets.

In the regions that experienced large land-use changes, some
species may lose suitable habitat due to changes in land use for
GHG mitigation (Figs 3 and 4). Even if suitable habitat was
artificially created by land-based mitigation, many organisms
with a poor dispersal ability would not immediately disperse into
the new habitat (vascular plants, amphibians, and reptiles in this
study; Fig. 1). We note that our results only shed light on suitable
habitat area, which is only one target of GHG mitigation. Future
research should include various sectors, such as human health
and food security. However, our findings indicate that giving

additional conservation effort to species vulnerable to land-use
change may be necessary to balance GHG mitigation and prevent
further loss of biodiversity.

Our research highlights the importance of considering the
impact of land-use change caused by GHG mitigation activities as
well as climate change. More importantly, there needs to be
careful planning to achieve synergies between GHG mitigation
and the prevention of biodiversity loss. In the political arena,
climate and biodiversity discussions are currently divided; these
two policy frameworks should be integrated or at least commu-
nicated properly. Furthermore, integrated modelling of the
economy–land–biodiversity causal link will enable us to assess the
direct and/or indirect effects of various socioeconomic conditions
on biodiversity, which will encourage the exploration of pathways
to achieve multiple sustainable development goals in the future.

Methods
Species distribution modelling by MaxEnt. Species distribution models, which
predict a species’ probability of occurrence across a landscape, take a correlative
modelling approach to species’ occurrence–environment relationships. This
approach has recently gained importance as a tool to assess the impact of envir-
onmental change on the distribution of organisms42. In this study, we employed
MaxEnt v3.343, one of the most robust modelling approaches, especially for cases in
which only presence data are available and absence data are difficult to collect44.

In this study, we used species distribution models to project the current and
future probability of occurrence of numerous species. This method consists of the
following four phases (Supplementary Fig. 1): pre-processing of data, species level
modelling of occurrence–environment relationships, estimating available habitat,
and decomposing the driver of habitat loss/gain. We used two future scenarios
(mitigation and baseline) to evaluate the integrated effects of climate change and

−30

−20

−10

0

10

20

30 a

b

−30

−20

−10

0

10

20

30

World North
America

South
America

Europe Africa Asia Oceania Multiple
regions

R
ed

uc
tio

n 
in

 lo
ss

 o
f s

ui
ta

bl
e 

ha
bi

ta
t b

y 
m

iti
ga

tio
n 

re
la

tiv
e 

to
 b

as
el

in
e 

(%
)

2050s

2070s

Total loss by LU and CC Loss by LU Loss by CC

Mitigation
gain

Mitigation
loss

Mitigation
gain

Mitigation
loss

SSP 1 2 3 4 5

97.5th percentile
Median
2.5th percentile

Fig. 3 Net benefit of mitigation policy: reduction of proportion of loss of suitable habitat from the present to the 2050s(upper)/2070s(lower) by mitigation
relative to baseline, aggregated by species’ native region. Each box represents 2.5 and 97.5 percentiles of the mean proportion of each combination of
taxonomic group and GCM within each SSP. The bold line in each box shows the median value. Source data are provided as a Source Data file

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13241-y

6 NATURE COMMUNICATIONS |         (2019) 10:5240 | https://doi.org/10.1038/s41467-019-13241-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


land-use change accompanied by stringent mitigation activity in the 2050 s and
2070 s. For each species, the areas of potential suitable habitat under the two future
scenarios were calculated based on a species distribution model. To identify the
drivers causing loss/gain of potential suitable habitat of each species under each
scenario, we calculated the potential suitable habitats based on three hypothetical
future scenarios (land-use change alone, climate change alone, and both). Finally,
we compared the proportion of area loss/gain and the contribution of the two
drivers (land-use change and climate change) between the mitigation and baseline
scenarios. We used R ver. 3.3.245 and R packages rgdal 1.2–646, raster 2.5–847, rJava
0.9–848, dismo 1.1–449, and ENMeval 0.2.250 for the analyses.

Filtering occurrence data from GBIF. We used data from the Global Biodiversity
Information Facility (GBIF)51, which is the largest portal that collects distribution
records of species based on digitized collection and survey data.

First, we obtained the entire GBIF dataset (as of July 2015) from the secretariat
of GBIF. The data contained ~560 million records at this stage. From this, records
of five major taxonomic groups (vascular plants, mammals, amphibians, reptiles,
and birds) were extracted (first-order dataset). We then confirmed geographic
location based on the latitude and longitude information; if the recorded country
name and geographic location showed any discrepancy, those records were
discarded. We also removed occurrence records with no location data and those
that did not fall within land areas by referring the GADM database of Global
Administrative Areas52 (second-order dataset), according to Warren et al.53. It is
common that an occurrence–environmental relationship is not conserved outside
of a species’ native range54. Therefore, from the second-order dataset, we discarded
records labelled as “fossil specimen,” “unknown,” or “living specimen” recorded
outside of their native ranges (third-order dataset). To ascertain the species’ native
ranges in the third-order dataset, we referred to the IUCN Red List of Threatened
Species55 (http://www.iucnredlist.org/), which contains detailed information on the
native ranges of 46,182 species (either continent or country level) for both non-
threatened and threatened species. We matched the third-order dataset and the
IUCN data and discarded those records with a discrepancy in location information
between the two datasets. Then we labelled the native region as belonging to one of
the following seven groups: North America, South America, Europe, Africa, Asia,
Oceania, and multiple regions. Occurrence data in Antarctica were excluded from
the analysis due to a lack of environmental data. As a result, our analysis is limited
to the species already assessed by the IUCN Red List (fourth-order dataset). Finally,
to reduce the effect of spatial clustering of records in the dataset56,57, we confined
the number of records per cell by subsampling the dataset. We sampled one
occurrence record per 0.5 arc degrees grid (ca. 60 × 60 km at the equator) for all
species (final dataset). Also, to avoid the effect of model inaccuracy from small
sample size, we limited our analysis to species with ≥30 refined occurrence
records58.

Based on this data selection process, the total number of species in the final
dataset was 8510. Species distribution models were constructed for these
8510 species. These presence data were used as the response variable for the
construction of MaxEnt models for each species.

Spatial bias of the database: generating background data. A fundamental
assumption of species distribution models is that the entire area of interest has been
systematically or randomly sampled59,60. For example, by default, MaxEnt selects
the background locations (sometimes called pseudo-absences) at the same prob-
ability across the target landscape and contrasts background against occurrence to
estimate the relative probability of occurrence. However, in practice, occurrence
records are likely to be spatially biased towards more easily accessed or better
surveyed areas59, which are affected by various social constraints61,62. When
sampling is biased, the model cannot differentiate whether species are observed in
particular environments because those locations are preferable or because they
receive the largest search effort. This problem seriously affects the outcome for
species distribution models derived from presence-only data and distorts our view
of large-scale biodiversity patterns56,59.

To overcome such problems and formulate models in geographic space,
spatially-explicit information on sampling effort is required. However, as such
information is often unavailable, methods to account for sampling bias are typically
based on target group sampling59. Target group sampling uses the occurrence
records of taxonomically related species observed by the same techniques as the
focal species to estimate sampling. This method assumes that if the taxonomically
related species have been observed in a survey, then the focal species also would
have been observed there. To incorporate sampling bias into MaxEnt, we took the
bias background approach, which uses the prior information on the spatial
distribution of survey effort to preselect background locations before running
MaxEnt. In this approach, the effect of sampling bias cancels out because it is
common to both occurrence and background. To do this, we combined all
occurrence records in the final dataset for each of the five taxonomic groups
(including species with ≤30 records). We generated a set of background data for
each of the five target groups, weighted by the sampling density of occurrence
records59. In the model development procedure, the background data were
extracted within the native range for each species.

Explanatory variables used for modelling. We used land-use variables and cli-
matic variables as candidate explanatory variables. Land-use variables were
obtained from the land-use allocation model of Hasegawa et al.26. For the analyses,
the proportion of each of the five land-use types (cropland, pasture, forest, other
natural land, and settled land) was stored in each grid cell at a spatial resolution of
0.5 arc degrees.
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For the climatic variables, a dataset of monthly minimum temperature,
maximum temperature, and precipitation was downloaded from WorldClim63. The
dataset at a resolution of 30 arc seconds was averaged to values at a resolution of
0.5 arc degrees. Then, we calculated 19 bioclimatic variables based on the three
climatic variables, and these bioclimatic variables were used for the model
construction.

Filtering candidate explanatory variables for modelling. We tried to identify a
species-specific set of explanatory variables for each of the 8510 species by using the
following procedures. First, by using the five land-use and 19 bioclimatic variables,
we generated all the possible combinations (224= 16,777,216) of these variables.
We then excluded explanatory variables showing collinearity64: (1) we excluded the
set of explanatory variables that includes pairs of highly correlated variables
(Pearson’s product moment correlation coefficient ≥ |0.70|)65,66, and (2) we
excluded those explanatory variables for which the variance inflation factor (VIF)
value, which indicates the degree of collinearity between two or more predictor
variables67, was ≥5. VIF values were calculated using “vif()” function of R package
usdm 1.1–1567.

In addition, to reduce computation time, we excluded the combination of
nested subsets of other combinations, which is attainable from the subsequent
regularization process in MaxEnt. After these procedures, there were 91 candidate
combinations of parameters.

Running MaxEnt. MaxEnt is capable of building complex nonlinear functions of
explanatory variables by combining simple mathematical transformations of
explanatory variables, or so-called features60. In the present study, we used linear
and quadratic features only, to avoid producing too complex a model, which could
lead to extrapolation errors44. Within a given combination of explanatory variables,
MaxEnt selects the features for each explanatory variable that contribute most to
model fit using regularization43,60. Regularization is based on a combination of
likelihood and a complexity penalty and reduces overfitting60. This process ensures
that the model is not fit too precisely to the given dataset and removes unimportant
features from the model. At the beginning, we set the regularization coefficient (i.e.,
β-multipliers) to 0, which indicates no regularization.

For each of the 8510 species, we developed a MaxEnt model for predicting the
distribution probability by iteratively using the prepared 91 combinations of
explanatory variables. To select the most parsimonious combination of explanatory
variables, corrected Akaike information criterion (AICc)68 values were compared
among the 91 candidate models, and the model with the minimum value was
selected. Next, we tested 31 regularization coefficients (from 0 to 15 at increments
of 0.5) and choose the one for each species that maximizes model fit under the
given combination of explanatory variables selected, based on AICc69.

Species selection by model performance evaluation. Among the final models
developed for the 8510 species, those with poor performance were discarded for
subsequent analyses based on 10-fold cross validation. In this process, the occur-
rence and background datasets were divided randomly into 10 equal-sized groups,
and models were built using k – 1 bins for calibration in each iteration (training
set), with the left-out bin used for evaluation (test set). Model performance was
assessed using the continuous Boyce index (CBI), which is used to evaluate model
quality for predictions based on presence data only70,71. This index varies from –1
to 1; negative values indicate an incorrect model, values close to 0 mean a chance
model, and positive values indicate a model whose predictions are consistent with
the presence distribution in the test set70. In this study, models with CBI > 0 based
on the 95% confidence interval were used for the subsequent analyses. After these
procedures, final models for 8428 species were retained for subsequent analysis:
1605 vascular plants, 509 amphibians, 381 reptiles, 4796 birds, and 1137 mammals
(Supplementary Data 1).

As a result of data requirements, our target species have a high proportion of
common species with low extinction risk and a low proportion of endangered
species (Supplementary Table 2). Additionally, areas with intensively surveyed
regions (e.g., North America and Europe) had a high proportion of modelled
species (Supplementary Table 2).

Estimation of current suitable habitats of target species. To obtain a map of
suitable habitat for each species under the current conditions, the average value of
the relative probability of occurrence calculated by the 10-fold cross-validation was
translated into a Boolean habitat/non-habitat map. We applied the average of the
90% sensitivity threshold to minimize the false-negative fractions and to avoid
underestimating the suitable habitat area72,73.

Predicted suitable habitats may appear beyond the species’ native ranges. For
each species, we discarded projected suitable habitats if (1) they were beyond the
current native regions recorded in the IUCN species database, or (2) if they are on a
landmass that has not been connected to other landmass(es) with occurrence
points since the last glacial maximum period. In this case, the threshold value for
the paleo-coastline was set to –130 m below the current coastline74, estimated by
using seafloor topography data (ETOPO1)75. Although a few exceptional species
with high dispersal ability may have the potential to go beyond their native range,
to evaluate suitable habitat, we made rather conservative assumptions to minimize

commission errors (i.e., identification of suitable habitats in areas where a given
species has never occurred owing to barriers or other biogeographic limitations).

Estimation of dispersal ability of target species. A species’ ability to disperse
and track the shifting climate is a crucial trait that determines its future potential
for range shifts76–78. However, most of the previous global biodiversity models
have not incorporated such realistic dispersal into their future projections and
assumed only full-dispersal and no-dispersal scenarios, which has been criticized as
unrealistic for most organisms79. The ability to simulate realistic dispersal has been
limited by lack of knowledge about species’ dispersal abilities or by technical
constraints of the modelling. Recently, to incorporate more realistic dispersal,
various approaches have begun to be used. Previous global scale studies8,23,53 have
incorporated a relatively simplistic approach based on the average dispersal rate of
each target taxon. In this study, however, we incorporated variation of dispersal
ability within taxonomic groups, which has not been considered in other global
studies. The dispersal assumptions for each taxon in previous studies8,23,53 were
within the range of our estimated value, and no inconsistency occurred (Supple-
mentary Fig. 9). Dispersal ability is strongly related to life-history traits, such as the
dispersal syndrome and growth form of vascular plants79 or the body mass and
feeding habits of birds and mammals80. In this study, we collected information on
life-history traits for all target species and used allometric equations based on these
traits to estimate dispersal distance and generation length). Species-specific dis-
persal distance (D) between the present (t0) and future (t1) was calculated as (Eq.1)

D ¼ dg ´
t1 � t0

g
; ð1Þ

where dg denotes dispersal distance per generation and g denotes generation length.
For vascular plants, dispersal distance per generation was estimated from the

formula based on Tamme et al.79. We adopted the group 5 formula in the “dispeRsal
()” function, which requires species-specific data for the dispersal syndrome and
growth form. For the dispersal syndrome, we compiled the database from various
sources (see source for Supplementary Fig. 9 in the Source Data file). For the growth
form, we obtained the data from the IUCN Red List of Threatened Species55.
Generation length was estimated based on Marbà et al.81, according to growth form.

For amphibians, dispersal distance per generation was simply estimated from
the allometric relationship between dispersal distance and adult body mass. We
collected the dispersal distance data from Trochet et al.82 and Smith and Green83

and the adult body mass data from Trochet et al.82 and Tacutu et al.84.
Additionally, we collected snout-to-vent length and total length data from Trochet
et al.82 and AmphibiaWeb85. First, we modeled the relationship between snout-to
vent length (or total length) and adult body mass, and then we used this model to
estimate adult body mass of species without this information. We then modeled the
relationship between adult body mass and dispersal distance and used this model to
estimate dispersal distance per generation for each species. Generation length was
calculated based on life-history data (female maturity period, gestation period, and
maximum longevity) derived from Tacutu et al.84, according to the formula
reported in the IUCN Red List of Threatened Species55.

For reptiles, dispersal distance per generation was simply estimated from the
allometric relationship between dispersal distance and adult body mass. We
collected the dispersal distance data from various sources (Supplementary Table 3).
Adult body mass data were derived from Myhrvold et al.86 or estimated from the
length–weight allometric equation reported by Meiri87, based on snout-to-vent
length data from Myhrvold et al.86. We modeled the relationship between adult
body mass and dispersal distance, and then we used this model to estimate
dispersal distance per generation for each species. Generation length was calculated
based on life-history data (female maturity period, gestation period, and maximum
longevity) derived from Myhrvold et al.86 and Tacutu et al.84, according to the
formula reported in the IUCN Red List of Threatened Species55.

For birds, dispersal distance was estimated from the formula reported by
Hilbers et al.80, which requires species-specific data for adult body mass and food
habit (carnivorous or not). Adult body mass data were derived from BirdLife
International88, food habit data were derived from Wilman et al.89, and generation
length data were derived from BirdLife International88.

For mammals, dispersal distance was estimated from the formula reported by
Hilbers et al.80, which requires species-specific data for adult body mass and food
habit (carnivorous or not). Adult body mass data were derived from Pacifici et al.90,
food habit data were derived from Wilman et al.89, and generation length data were
derived from Pacifici et al.90.

This method is currently the best available to incorporate variation in dispersal
ability within taxonomic groups in a global scale study, although improvement is
needed to represent all of the complex mechanisms related to dispersal27.

Future scenarios for land-use and climate changes. We prepared two future
scenarios of predictor variables: the mitigation scenario aimed to attain a radiative
forcing in 2100 of around 2.6Wm−2, whereas the baseline scenario did not
consider GHG emission reductions. Each mitigation and baseline scenario has a
corresponding land-use change scenario and climate change sub-scenario. We set
the target years as the 2050s and 2070s.

To project future changes in suitable habitats, we used three hypothetical future
scenarios (Supplementary Table 1). The first is the land-use change only (LU)
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scenario, which assumed that land use will be changed according to either the
mitigation or the baseline land-use scenario, while climate condition will remain
constant as the current state. The second is the climate change only (CC) scenario,
which assumed that land use will remain constant as the current state while climate
will change according to the mitigation (RCP2.6) or the baseline (RCP8.5) climate
change scenarios. The third is the land-use and climate change (LUCC) scenario,
which assumed that both land use and climate will change.

Changes in land use under the mitigation and baseline scenarios were estimated
by the AIM/CGE25, a computable general equilibrium model representing the
entire global economy. In the model, supply, demand, investment, and trade are
described by individual behavioural functions that respond to changes in the prices
of production factors and commodities, as well as changes in technology and
preference parameters on the basis of assumed population, GDP, and consumer
preferences. Land is represented as a part of the production functions, formulated
as multi-nested constant elasticity substitution functions. The allocation of land by
sector for 17 regions is formulated as a multinomial logit function to reflect
differences in substitutability across land rent, and regional land use is further
downscaled to high spatial resolution with the AIM/PLUM downscaling model26

based on spatially explicit attainable yields. The spatial yields are aggregated and
fed back into AIM/CGE. The AIM/CGE model has been widely used for climate
change impact and adaptation studies91,92.

In this study, we used future land-use variables generated by Fujimori et al.29,
which were based on five alternative socioeconomic conditions in the SSP
framework93. The SSPs are based on five narratives describing how socioeconomic
factors may change over the next century, considering changes in population, GDP,
energy, emissions, and land use. These narratives are designed to span a range of
futures in terms of the degree of difficulty for mitigation and adaption to climate
change. Two of the SSPs describe futures in which challenges to adaptation and
mitigation are both weak (SSP1: sustainability) or both strong (SSP3: regional
rivalry). Two ‘asymmetric cases’ were designed, comprising a case in which strong
challenges to mitigation are combined with weak challenges to adaptation (SSP5:
fossil-fuelled development), and a case in which the opposite is true (SSP4:
inequality). Finally a central case describes a world with intermediate challenges for
both adaptation and mitigation (SSP2: middle-of-the-road). The SSPs employ a
concept called scenario matrix architecture, which has a two-dimensional space
comprising socioeconomic patterns and climate mitigation levels defined by
radiative forcing levels. In this study, we used a radiative forcing level of 2.6 Wm−2

for the mitigation scenario under SSP1, 2, 4, and 5. We used a radiative forcing
level of 3.4Wm−2 for the mitigation scenario under SSP3, because there was no
solution for 2.6Wm−2 in SSP3. For the baseline scenario, we used the baseline
condition in each SSP, which represents the absence of additional climate policy.

As land-use scenarios explicitly incorporate areas for bioenergy crops and
afforestation for GHG mitigation activity, which did not exist in land-use data in
the current condition, we had to merge these land-use types into the one that
existed in 2005. Bioenergy crops were merged into cropland and afforestation into
forests. These assumptions are rather optimistic and may not reflect the variation
of environmental quality within each land-use type. For example, a land-use type’s
environmental condition may vary among management practices, which may cause
large differences in local biodiversity (e.g., selection of tree species planted in
afforestation22, the time required for the forest to mature94,95, and intensification
of agricultural activity34). Although these differences may be less pronounced than
the effect of land-cover change34, we should note that our results may
systematically underestimate the impacts of land-use change on biodiversity. Some
aspects of agricultural intensification (fertilizer use, pesticide use, or machinery
inputs) are endogenously determined in the AIM/CGE model, and all five SSP
scenarios more or less estimate increases in agricultural productivity by
technological development and irrigation expansion33. These effects of crop yield
increments are reflected in the expansion rate of agricultural land in our model.
However, if these increments are achieved through industrial agricultural practices
(such as significant input of inorganic fertilizer or pesticide), it may add further risk
for biodiversity loss34. On the other hand, the yield–biodiversity relationship is
complex and multidimensional, and not all the technologies used to achieve yield
increases have a negative impact on biodiversity36,37. Both the dimension
(industrial or agro-ecological) of land-use intensification and its effect on
biodiversity should be investigated in future research to address the large-scale
impacts on global biodiversity that arise from climate change and mitigation
activity.

Basically, the proportion of land that has changed from the current land use to
another land use was higher in the baseline scenario (Supplementary Fig. 2). The
total area of cropland (including bioenergy crops) and forest (including
afforestation) was larger in the mitigation scenario than in the baseline scenario,
whereas those of pasture and other natural land were smaller. Other main
indicators for these scenarios are shown in Supplementary Figs 2–8.

Changes in climate under the mitigation and baseline scenarios corresponded to
RCP2.630 and RCP8.531, respectively, which were used in the IPCC Fifth
Assessment Report9. These representative concentration pathways are the GHG
concentration pathways stabilizing radiative forcing at the end of the 21st century
at ~2.6 and 8.5Wm−2, respectively. We used future climatic variables based on
five of the GCMs included in the Fifth Coupled Model Inter-Comparison Project
(CMIP5) experiment: GFDL-CM3, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-
CHEM, and NorESM1-M, which were downloaded from WorldClim63. The

mitigation scenario (RCP2.6) represents the most benign situation, with
temperature likely to increase between 0.3 and 1.7 °C for 2081–2100, whereas the
baseline scenario (RCP8.5) is the most extreme scenario, with increases between 2.6
and 4.8 °C projected for 2081–2100. All 19 bioclimatic variables for the future were
calculated by using the same method as for the current climate (see section
“Estimation of the current suitable habitats”).

In this way, we prepared two cases of GHG emission pathways (baseline and
mitigation) and two time periods (2050s and 2070s). Each of the four combinations
of cases contains 35 scenarios: five LU, five CC, and 25 LUCC scenarios
(Supplementary Table 1).

Projection of suitable habitats under future scenarios. The projected relative
probability of occurrence for each target species was calculated by using the
developed MaxEnt model and the prepared future scenarios explained above. Then
the presence/absence map of each species was drafted by using the same methods
used for the current conditions.

To identify potential future habitats constrained by dispersal distance (PFH-
CDD) for the 2050s, the estimated dispersal distance for each species (see section
“Estimation of dispersal ability of target species”) was buffered. Then the areas of
the PFH-CDD were calculated for each species. Next, for the 2070s, based on the
PFH-CDD for the 2050s, the same procedure was applied again. This process was
repeated for LU, CC, and LUCC.

In reality, land-use change and climate change occur simultaneously. Under
such circumstances, losses or gains of suitable habitats occur not only due to land-
use change or climate change, but also due to the combined effects of both.
Therefore, it is necessary to evaluate the degree of contribution to those losses or
gains by land-use change, climate change, or both. In this study, predicted lost
suitable habitats are defined as pixels of suitable habitats under the current
condition that become unsuitable under realistic future conditions (i.e., PFH-CDD
in LUCC). Predicted gained suitable habitats are defined as pixels of non-suitable
habitats under the current condition that become suitable under future LUCC
conditions. Each of the predicted lost or gained suitable habitats were further
divided into three elements: altered by land-use change, altered by climate change,
and altered by the combined effects of land-use and climate changes. Suitable
habitat lost by land-use change was defined as pixels in lost suitable habitats
defined above and not in PFH-CDD in LU, but in PFH-CDD in CC. Suitable
habitat lost by climate change was defined as pixels in lost suitable habitats defined
above and not in PFH-CDD in CC, but in PFH-CDD in LU. Other pixels in lost
suitable habitats are defined as suitable habitat lost by the combined effect of land-
use and climate changes. Suitable habitat gain by land-use change was defined as
pixels in gained suitable habitats defined above and in PFH-CDD in LU, but not
suitable in PFH-CDD in CC. Suitable habitat gained by climate change was defined
as pixels in gained suitable habitats defined above and in PFH-CDD in CC, but not
in PFH-CDD in LU. Other pixels in gained suitable habitat are defined as suitable
habitat gained by the combined effect of land-use and climate changes. The areas of
each lost or gained suitable habitat were summarized for each of the five taxonomic
groups and compared between mitigation and baseline scenarios in the 2050s and
2070s (Supplementary Fig. 1).

To test the significance of the difference in area of total lost or gained suitable
habitat among numerous scenarios, we used generalized linear mixed-effects
models (GLMM) with a gamma distribution of errors and log link function by
using the “glmmTMB()” function of R package glmmTMB 0.2.396. We fitted the
model as a function of mitigation scenario (mitigation or baseline), year (2050s or
2070s), interaction term of scenario × year, SSPs, GCMs, and taxonomic groups,
while using log(area of current suitable habitat) as an offset term. We fitted a
random intercept of species identity to control variation among species in response
to each scenario. In the model-fitting process, we added a very small value (10–6) to
the area of total loss, gain, and current suitable habitat.

Data availability
The source data underlying Figs 1–4 and Supplementary Figs 2–9 are provided as a
Source Data file. The additional data that support the findings of this study are available
from the corresponding author upon request.

Code availability
The code that support the findings of this study are available from the corresponding
author upon request.
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