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Abstract. One of the principal challenge facing the stope production in underground mining is the overbreak 

and underbreak (UB: uneven break). Although the UB features a critical economic fallout to the entire mining 

process, it is much inevitable and usually left as an unpredictable phenomenon in underground mines. The 

complex mechanism of UB must be examined to minimize the UB phenomenon. In this study, the contribution 

of ten primary UB causative parameters is scrutinized investigating a published UB prediction ANN model. 

The inputs (UB causative factors) contributions to the output (percentage of UB) of the ANN model were 

analyzed using Profile methodology (PM). The results PM revealed the essential importance of geological 

parameters to UB phenomenon as the calculated contributions of adjusted Q-rate (GAQ) and average 

horizontal to vertical stress ratio (GSK) are 20.48% and 18.12% respectively. Also, the trends of the other 

eight UB causative factors were investigated. The findings of this study can be used as a reference in stope 

design and reconciliation processes to maximize the productivity of the underground mine. 
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1 Introduction 

In the modern mining industry, many underground metalliferous mines are operating by various type of stoping 

methods due to the flexible applicability over various ground conditions and the ability to mechanization into large 

scale. Pakalins noted that in 1996, 50% underground metalliferous mines were operating by open stoping method 

and in 2011, over 60% of underground production in North America was produced by sublevel stoping method 

(Pakalnis and Hughes 2011). Recently, Jang et al. (2015a) noted that more than 85% of underground metalliferous 

mines rely on various stoping methods. 
Despite the advantages of stoping method, mines are often suffering from unplanned dilution and ore-loss that 

inevitably occur at the stope production blasting. The unplanned dilution can be defined as the influx of over 

broken rocks from beyond the planned stope margin while the unplanned ore-loss is the remaining ore even after 

the production. In other words, the unplanned dilution and ore-loss are overbreak and underbreak from the blasting 

engineers’ perspective and Jang et al. (2015b) noted them as uneven break (UB). Figure 1 schematically 

demonstrates the unplanned dilution and ore-loss. 

 

Fig. 1. Schematic view of dilution and ore-loss throughout stope production stages (a) an example of ore vein shape (b) stope 

production plan (c) production drilling plan (d) stope after production (Jang et al. 2016) 



The overbreak and underbreak (UB: uneven break) directly influence the productivity of a mine. In fact, one 

of the primary tasks of mining engineers is to minimize UB phenomenon under a manageable level. Thus, 

understanding of the causative factors and complex UB causing mechanism is essential. 

Table 1. The list of ten UB causative factors and corresponding percentage of UB 

No. Input parameters  Output 

Blasting Geology Stope design  

BHL BPF BAN BHD BSB GAQ GSK SPT SAR SOB UBP 

m Kg/t ° mm (S/B) – (H/V) tons (W/H) – % 

1 15.20 0.56 2.00 89 1.25 37 1.85 18,480 1.65 1 −2.30% 

2 13.50 0.42 55.00 89 1.50 30 1.99 4,200 2.67 1 4.70% 

2 7.30 0.45 0.00 76 1.11 40 2.12 896 0.5 0 3.10% 

... ... ... ... ... ... ... ... ...  ... ... 

1065 8.00 0.68 17.00 76 1.25 26 2.22 2,980 0.38 0 −18.60% 

1066 16.60 0.91 0.00 89 1.15 14 3.15 16,607 0.83 1 10.10% 

1067 20.20 0.90 0.00 89 1.20 19 3.25 6,804 0.37 0 12.70% 

Min. 0.70 0.15 0.00 76 0.57 6.30 1.74 130 0.07 0 −65.40 

Max. 25.80 3.00 170.20 89 1.50 93.30 14.38 51,450 4.17 1 92.00 
BHL: Average length of blasthole, BPF: Powder factor, BAN: Angle difference between hole and wall, BHD: Diameter of 

blasthole, BSB: Space (S) and burden (B) ratio, GAQ: Adjusted Q rate, GSK: Average horizontal to vertical stress ratio, SPT: 

Tons of stope planned, SAR: Aspect ratio of stope, SOB: Opened or blind of the stope UBP: Percentage of uneven break 

(over and under break) 
The study aims to illuminate the complex causing mechanism of UB adopting an UB prediction model 

published by Jang et al. (2015a). The UB prediction model was developed by investigating 1067 stope production 

results from underground stoping mines in Western Australia. Each dataset consists of 10 input parameters (UB 

causative factors) and the corresponding output (measured percentage of overbreak). Five blasting related factors, 

i.e., average length of blasthole (BHL), powder factor (BPF), angle difference between hole and wall (BAN), 

diameter of blasthole (BHD), and Space (S) and burden (B) ratio (BSB), two geology parameters, i.e., adjusted Q 

rate (GAQ), average horizontal to vertical stress ratio (GSK), and two stope design factors, i.e., tons of stope 

planned (SPT), opened or blind of the stope (SOB) were used as input factors while the corresponding percentage 

of overbreak and underbreak (UBP) was set as the output in the model. The study relied on the historical data thus 

human errors, i.e., the drilling errors and the hole deviation were not considered. The influence of human errors in 

UB phenomenon was indirectly included in the study with the BHL as the drilling accuracy is generally expressed 

as a percentage of the hole depth (Stiehr and Dean 2011). The list of data sets is shown in Table 1. 

2 Current over and Underbreak Management in Underground Stoping 

Mines 

Minimising uneven break (UB) in stope production is one of the essential tasks because it is directly influencing 

not only to the productivity of stope production but also the profit throughout of mining operations. However, UB 

is challenging to manage due to its highly complex causing mechanism. Many engineers and scholars have been 

endeavoring to manage the unwanted phenomenon, but the industry often relies on historical stope reconciliation 

results and intuitions of experienced engineers. 
Few empirical systems have introduced and the stability graph method (Mathews et al. 1981; Nickson 1992; 

Potvin 1988) is widely used to manage the stope overbreak. This method is plotting a stability number (N) against 

a hydraulic radius (HR: area/perimeter of the stope wall) to judge the stability of stope wall. The stability number 

is an integrated geotechnical factor that has been modified by Potvin (1988) and is defined as: 

 N0 ¼ Q0 ABC ð1Þ 



Where N′ presents the modified stability number, Q′ is the modified Q value, and A, B, and C are factors that 

stand for the stress, the joint orientation, and the gravity respectively. 
The stability of a designed stope wall can be easily assessed with the stability graph method but cannot 

guarantee a reliable judgment. Considering the complexity of the overbreak and underbreak phenomenon during 

rock blasting, the stability of a stope wall cannot be adequately assessed with few geotechnical factors in the 

stability graph method (Jang 2014). For example, Fig. 2 demonstrates 134 cases of stability analysis results with 

measured overbreak in each data point. Most of the stopes were designed to be in the stable zone in the stability 

graph but overbreak were randomly occurred. 

 

Fig. 2. Stability graph method analysis results and corresponding overbreak results (Jang, 2014) 

Germain and Hadjigeorgiou (1997) conducted a study on stope overbreak investigating the powder factor of 

stope production blast and Q-value (Barton et al. 1974). The study used a linear regression analysis to find the 

relation between overbreak and the two variables but the result was statistically insignificant as the correlation 

coefficient of less than 0.3. The stress effects on stope overbreak were investigated by Stewart et al. (2005). The 

study found the critical influence of stress on the overbreak phenomenon as more than 50% of overbreak occurred 

where the induced stress was exceeded the damage criterion. Pakalnis (1986) developed an overbreak prediction 

model investigating 133 open stope production results in Canada. The model can predict the percentage of 

overbreak on stope wall investigating the hydraulic radius and rock mass rating (RMR) (Bieniawski 1973, 1974) 

in three different stope conditions, i.e., isolated, adjacent rib, and echelon. Lang (1994) introduced the critical span 

cave method to analyze the stability of the cut and fill stoping mines and updated including 292 case studies in the 

University of British Colombia. In the study, the critical span was defined as the diameter of the largest circle of 

unsupported back in the stope and the stability of a stope back was determined by plotting designed critical span 

of the stope with the RMR value. The method has been used in some Canadian mines but it requires careful 

consideration as it founded with regional data. Despite the endeavors of many researchers, the causing mechanism 

and the exact contributions of causing parameters of over and underbreak are not studied. 

3 UB Prediction ANN Model 

In this study, artificial neural network (ANN) is adopted to examine the contribution of UB causative parameters 

(independent variables) to the UB (a dependent variable). Artificial neural network (ANN) is a parallel 

computation inference model that is comprised of input, hidden, and output layers with a number of mathematical 

elements called the artificial neuron. The neurons in each layer are fully interconnected and the strength of the 

connection is expressed with a weight value. In the ANN model, dependent variables, i.e., inputs, are set in the 

input layer while the independent variable, 
i.e., output, is placed at the output layer. The hidden layer is located between the input and the output layer. The 

artificial neurons in the input and output layer are interconnected through neurons in the hidden layer. 
The UB prediction ANN model consisted of ten inputs, forty hiddens, and one output neuron. The hyperbolic 

tangent function was used as the transfer function in the forward pass while Levenberg-Marquardt (LM) algorithm 

(Levenberg 1944; Marquardt 1963) was employed as the learning function in the backward pass of the model 

training stage. 70% of the collected datasets were randomly allocated to the training stage while 15% of each 

remaining datasets were used for the validation and the test stage. The model trained with 100 iterations and the 

root-mean-square error (RMSE) in training stage was 1.90E-2 and the test resulted with the correlation coefficient 

of 0.719. 



4 Parameter Contribution Analysis of UB Prediction ANN Model 

The UB prediction ANN model had achieved a statically significant result which facilitates to investigate the inputs 

and output sensitivity of the model. Often ANN is treated as ‘a black box’ as it is difficult to demonstrate how the 

model is optimized. Thus, some researches and engineers hesitate to adopt the ANN even it has been successfully 

utilized in many studies through various disciplines. To illuminate the model optimization process of ANN, 

various methods were developed e.g., Garson’s algorithm (Garson 1991), connection weights algorithm (CWA) 

(Olden and Jackson 2002), Partial derivatives (PaD) method (Dimopoulos et al. 1995), Relative Strength of Effect 

(RSE) (Yang and Zhang 1998), and profile method (PM) (Lek et al. 1995). The Garson’s algorithm and CWA can 

be categorized as the connection weights based algorithms while PaD, RSE, and PM can be called as the sensitively 

based algorithms. 
In this study, the profile method is used as it investigates the entire range of inputs and output combinations. 

The percentage of a predicted uneven break when all inputs are set their 80th except GAQ (GAQ, 80th) was 

computed at the entire range of GAQ. The profiling process for GAQ was conducted in other ranges, i.e., 60th, 

40th, and 20th, of remaining input variables. The profile method results of all ten input parameters of the UB 

prediction ANN model is shown in Appendix 1. Appendix 1-a, b, c, d, e, f, g, h, i, and j are profiling results of 10 

inputs, and the overall sensitivity is demonstrated in Appendix 1-k. 

5 Discussion 

Through the PM application, the sensitivity of 10 UB causative factors to UB phenomenon has been analyzed. 

Two geological parameters, i.e., GAQ and GSK, revealed to have the relatively high effect to UB than other 

parameters by achieving a sensitivity of 20.48% and 18.12% respectively. Appendix 1-a shows the PM results of 

GAQ and the percentage of overbreak (UBP) decreased as the quality of rock becomes better. Appendix 1-b 

demonstrates the variance of UBP over the entire range of GSK which implies that UBP tends to decrease as the 

stope is getting deeper. The SAR (stope aspect ratio) shows 12.40% of contribution to UBP and the results are 

graphed in Appendix 1-c. The SAR shows a proportional relationship to UBP which indicates that the overbreak 

likely occurs in broader stope. The proportional trend of SAR over UBP in 60th and 80th are much steeper than 

other ranges which means the SAR (aspect ratio of stope) influences more in good rock condition. In succession, 

BSB revealed to have 10.41% of contribution to UBP which is shown in Appendix 1-d. 

Table 2. Key findings of ten UB causative parameters investigated by the profile method (PM) 

Factor Con. % Key findings 

GAQ 20.48% The better the rock quality, the less the percentage of overbreak 

GSK 18.12% The deeper the stope, the less the percentage of overbreak 

SAR 12.40% The wider the stope, the more the percentage of overbreak 

BSB 10.41% The longer the ring burden, the more the percentage of overbreak 

SPT 8.20% The bigger the stope size, the more the percentage of overbreak 

SPF 7.26% The overbreak increases when the powder factor is increased 

BHD 6.99% The bigger the blasthole dia., the more the percentage of overbreak 

BHL 6.13% The longer the length of blasthole, the less the percentage of overbreak 

SOB 5.25% The percentage of overbreak is increased when the stope is blinded 

BAN 4.77% The percentage of overbreak is increased with the parallel blasthole 

pattern than the fanned pattern 

The UBP is generally increased with increasing BSB except for the range of 40th which can be interpreted as 

the more overbreak would occur when the ring burden is longer. Next contributor to UBP is SPT that shows the 

overall sensitivity of 8.20%. As observed in Appendix 1-e, except the remaining parameter range of 40th, UBP 

generally increased when stope size is bigger. Appendix 1-f is PM results of BPF (powder factor) with the overall 

contribution of 7.26%. The BPF shows relatively high sensitivity in the range of the remaining parameters in 60th 

and 80th. As the rock quality, i.e., GAQ is the highest contributor to UBP form this study, the result of BPF can 

be interpreted as the leverage of BPF to overbreak is higher in the poor rock than the excellent quality rock. The 

PM results of the blasthole diameter (BHD) is shown in Appendix 1-g which has 6.99% of overall contribution to 



UBP. The overbreak is likely increased in 89 mm (3.5 in.) blast hole than 76 mm (3 in.) expect the remaining 

parameter range of 20th. Appendix 1-h demonstrates the relations between the blasthole length (BHL) and UBP. 

The overall sensitivity of BHL to UBP is calculated as 6.13%, and it shows that the percentage of overbreak (UBP) 

is generally decreased in longer blasthole. The next influential contributor to UBP is SOB (opened or blind of the 

stope) with the overall contribution of 5.25% as shown in Appendix 1-i. The magnitude of overbreak is gradually 

increased in the blind stope except for the 20th of remaining parameter range. BAN (angle difference between 

hole and wall) has the overall contribution of 4.77% to the UBP, and the tendency is demonstrated in Appendix 

1-j. Considering GAQ as the most influential contributor to UB phenomenon, the amount of overbreak is likely 

increased in the parallel drilling with the stope wall than the fanned pattern drilling. Finally, the overall 

contribution of the ten UB causative inputs to UBP is shown in Appendix 1-k. The key findings from the profile 

method (PM) application are summarised in Table 2. 

6 Conclusion 

The overbreak and underbreak (UB: uneven break) are unavoidable in underground stope production where the 

drill-and-blast is employed. A thorough examination of UB causative factors is essential to reveal the causing 

mechanism to minimize the unfavorable phenomenon. In this study, the contribution of ten UB causative factors 

to the percentage of the uneven break has been studied by investigating inputs and output sensitivities of a 

published UB prediction ANN model. The UB prediction ANN model is established using 1067 datasets and 

achieved the correlation coefficient of 0.71. The sensitivity of the ANN model inputs and output is investigated 

using profile method (PM) which can thoroughly study the entire ranges of inputs and output relations. The result 

of PM method shows that the uncontrollable geological parameters, i.e., GAQ and GSK, revealed to have more 

influence than other blasting and stope design parameters as the overall contribution of 20.48% and 18.12% 

respectively. In succession, the contribution of SAR and BSB to UBP were 12.40% and 10.41% respectively. The 

other parameters, i.e., SPT, SPF, BHD, BHL, SOB, and BAN demonstrated less than 10% of contribution to the 

percentage of uneven break (UBP). 
The mechanism of the overbreak and underbreak due to the dynamic blasting loads is exceptionally complex, 

and the exact causing parameters and their contributions have not been clearly discovered. The study attempted to 

reveal the contributions of ten key causing factors to overbreak and underbreak phenomenon in the underground 

stope blasting. The findings through the study can be used as a reference for design, production, and reconciliation 

of the underground stope production. 

Appendix 1 

The result of sensitivity analysis of the UB prediction ANN model. (BHL: Average length of blasthole, BPF: 

Powder factor, BAN: Angle difference between hole and wall 
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