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Abstract

Accurate soil moisture monitoring is essential for water resource management and agricultural ap-1

plications and recently it has undertaken using satellite remote sensing or terrestrial hydrological2

models’ products. While both methods have limitations, e.g., the limited soil depth resolution3

of space-borne data and data deficiencies in models, data assimilation techniques can provide an4

alternative approach. Here, we use the recently developed data-driven Kalman-Takens approach5

to integrate satellite soil moisture products with those of the Australian Water Resources Assess-6

ment system Landscape (AWRA-L) model. This is done to constrain the model’s soil moisture7

simulations over Australia with those observed from the Advanced Microwave Scanning Radiome-8

ter - Earth Observing System (AMSR-E) and Soil Moisture and Ocean Salinity (SMOS) between9

2002 and 2017. The main objective is to investigate the ability of the integration framework to10

improve AWRA-L simulations of soil moisture. The improved estimates are then used to investi-11

gate spatio-temporal soil moisture variations. The results show that the proposed model-satellite12

data integration approach improves the continental soil moisture estimates by increasing their cor-13

relation to independent in-situ measurements (∼ 10% relative to the non-assimilation estimates).14
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1. Introduction16

Soil moisture has a significant impact on hydrology and is essential for agriculture and17

the broader ecosystem functioning and productivity (Wyland et al., 1996; Lawless et al., 2008;18

Doraiswamy et al., 2008; Lakhankar et al., 2009). Water contents in the soil surface and root19

zone layers are critical for applications such as drought monitoring and understanding soil moisture20

effects on water cycles (e.g., Jupp et al., 1998; Roderick et al., 2014; Enenkel et al., 2016; Xu et21

al., 2018). Consequently, knowledge of soil moisture status, in time and space, is important for22

management of water, soil and vegetation resources including fire risk assessment. However, the23

utility of soil moisture for such applications is dependent on the accuracy of soil moisture monitoring24

systems.25

Soil moisture monitoring methods include, but are not limited to, ground-based measurements,26

model outputs and use of remotely sensed products. While ground-based measurements are limited27

spatially to the location of in-situ stations, satellite remote sensing data and hydrological modeling28

outputs can provide high spatio-temporal resolution data products with a vast coverage (Khaki et29

al., 2018a). Several studies have applied and validated remotely sensed soil moisture observations30

over Australia (e.g., De Jeu et al., 2008; Liu et al., 2009; Draper et al., 2009; Su et al., 2013;31

Holgate et al., 2016). Although these studies have acknowledged that satellite products deliver32

high spatio-temporal resolution data for soil moisture monitoring, satellite derived soil moisture are33

limited vertically to the top few centimeters of land surface (Njoku et al., 2003) and accordingly,34

do not provide information about the root zone soil layer. On the other hand, hydrological models35

usually provide information on soil moisture at different soil layers. This is very important since36

soil moisture within the root zone is also essential for the growth of plants. The usefulness of37

hydrological model outputs, however, can be degraded due to various factors, e.g., data limitations,38

imperfect modeling, and uncertainties of model parameters (van Dijk et al., 2011; Vrugt et al., 2013;39

Khaki et al., 2017a,b). To address these issues, data assimilation approach has been used to improve40

hydrological model estimates by integrating new observations (e.g., Reichle et al., 2002; Alsdorf et41

al., 2007; Goncalves et al., 2009; Renzullo et al., 2014; Schumacher et al., 2016; Khaki et al., 2017c,42

2018b,c). Previous studies have shown that satellite soil moisture datasets can successfully be used43

for constraining model estimates through data assimilation (e.g., De Jeu et al., 2008; Renzullo et44

al., 2014; Leroux et al., 2016; Tian et al., 2017).45

2



The present study employs a recently developed data-driven approach, Kalman-Takens filter46

(Hamilton et al., 2016), to merge soil moisture components from a model and satellites. This47

data-driven approach does not require a physical model and can perform comparably to dynamic48

methods at a fraction of the computational cost (Hamilton et al., 2016). The main aim of this49

work is to constrain the hydrological model soil moisture outputs using satellite measurements50

to achieve more accurate model-based soil moisture estimates over Australia. For this purpose,51

the Australian Water Resources Assessment system Landscape model (AWRA-L; van Dijk, 2010)52

soil moisture storages are updated using the soil moisture products from the Advanced Microwave53

Scanning Radiometer - Earth Observing System (AMSR-E) and Soil Moisture and Ocean Salinity54

(SMOS) for the time period of 2002–2017. Using the improved estimates of the proposed Kalman-55

Takens approach, spatio-temporal soil moisture variations are investigated within Australia.56

In what follows, we first describe the data and model used in Section 2, then present the method57

in Section 3, and discuss the results in Section 4 before concluding the study in Section 5.58

2. Model and data59

2.1. AWRA-L60

The Australian Water Resources Assessment system Landscape (AWRA-L; van Dijk,61

2010) model soil moisture outputs are obtained from the Bureau of Meteorology (BoM;62

http://www.bom.gov.au/). AWRA-L is a one-dimensional grid-based model, which was first de-63

veloped in 2008 by the Commonwealth Scientific and Industrial Research Organisation (CSIRO)64

to simulate Australian landscape water stored in vegetation and soil systems. Each data cell is in-65

dependent of its neighbors and represents different water compartments (van Dijk, 2010; Renzullo66

et al., 2014). The model parameters include effective soil parameters, water holding capacity and67

soil evaporation, relating greenness and groundwater recession, and saturated area to catchment68

characteristics (van Dijk et al., 2013). AWRA-L soil moisture of top, shallow, and deep-root layers69

broadly correspond to the to 0.10 m, 0.30 m, and 6–10 m depth, respectively (see also Renzullo70

et al., 2014; Tian et al., 2017). The collected data, i.e., water storages in the top, shallow, and71

deep root soil layers, covers the entire Australia for the period 2002–2017 at a 0.05-degree spatial72

resolution.73
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2.2. Satellite-derived soil moisture74

Satellite-based soil moisture products are sourced from the Advanced Microwave Scanning75

Radiometer for EOS (AMSR-E) for the period 2003–2011 and from European Space Agency (ESA)76

Soil Moisture Ocean Salinity (SMOS) Earth Explorer mission for the period 2011-2017. The AMSR-77

E measures the surface brightness temperature, which is correlated to the surface 0-2 cm soil78

moisture content (Njoku et al., 2003). SMOS Microwave Imaging Radiometer using Aperture79

Synthesis (MIRAS) radiometer measures the Earth’s surface emitted microwave to map land soil80

moisture for the 0-5 cm depth. Level 3 CATDS (Centre Aval de Traitement des Donnees SMOS)81

products (Jacquette et al., 2010) with the same spatial resolution (0.25◦×0.25◦) of AMSR-E are82

used. SMOS and AMSR-E are selected from ascending and descending passes subject to their83

higher agreement to in-situ measurements (see, e.g., De Jeu and Owe, 2003; Draper et al., 2009;84

Jackson and Bindlish, 2012; Su et al., 2013).85

The satellite soil moisture products are mainly used to update model state variabilities rather86

than its absolute values. An additional step is required to prepare these observations for data87

assimilation by removing the bias between the model simulations and observations. To this end,88

cumulative distribution function (CDF) matching (Reichle and Koster, 2004; Drusch et al., 2005)89

is applied to rescale the AMSR-E and SMOS observations. CDF matching relies on the assumption90

that the difference between observed soil moisture and that of the model is stationary and guarantees91

that the statistical distribution of both time series is the same (Draper et al., 2009; Renzullo et al.,92

2014). It should be noted that the satellite products are used to constrain every 0.05-degree grids93

of AWRA-L output due to the discrepancy between the model and observation spatial resolution.94

Details of the datasets used in this study are outlined in Table 1.95

Table 1: A summary of the datasets used in this study.

Product Platform Reference

Model’s soil moisture outputs AWRA-L http://www.bom.gov.au/

Soil moisture AMSR-E Njoku et al. (2003)

Soil moisture SMOS Draper et al. (2009)

Precipitation TRMM-3B42 Huffman et al. (2007)

Soil moisture in-situ measurements OzNet Smith et al. (2012)

Soil moisture in-situ measurements CosmOz http://cosmos.hwr.arizona.edu/Probes/australia.

php
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2.3. In-situ data96

In-situ soil moisture measurements are used to validate the results.97

These observations are obtained from the OzNet moisture-monitoring network98

(http://www.oznet.org.au/) in the Murrumbidgee catchment (Smith et al., 2012) and Cos-99

mOz (http://cosmos.hwr.arizona.edu/Probes/australia.php). The acquired datasets contain100

volumetric soil moisture measurements at various soil depths. The anomalies of in-situ measure-101

ments are estimated to assess the data assimilation results for each layer. While the measurements102

for the top 10 cm are used to evaluate the top-layer soil moisture estimates, in-situ measurements103

of the 0–30 cm and 0–90 cm are compared to summations of the model top, shallow, and a portion104

of deep-root (correspond to measurement thickness) from the model soil moisture.105

3. Methodology106

3.1. Data Assimilation107

The model soil moisture of top, shallow, deep layers are composed of the model state (xt108

at time t). The filtering process conditions a prior probability density function (PDF) of the state109

with available observations to compute the posterior PDF based on Bayes’ rule (Koch, 2007) in two110

steps; (1) forecasting the state PDF using a dynamical model and (2) updating the forecast PDF111

by assimilating observations using Bayes’ rule (Khaki et al., 2017a). The unscented Kalman filter112

(UKF) (Julier and Uhlmann, 1997; Julier et al., 2000; Simon, 2006) is used for data assimilation.113

The filter generates random variables and propagates them through a nonlinear function using a114

deterministic sampling approach for producing 2L+ 1 sigma points with L being the dimension of115

the state as,116

x0
t = xt, (1)

xi
t = xt +

(√
(L+ λ)Pt

)
i

i = 1, . . . , L, (2)

xi+L
t = xt −

(√
(L+ λ)Pt

)
i

i = 1, . . . , L, (3)
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where Pt represents the state covariance matrix. The associated weights to the sigma points are117

estimated by,118

w0
s =

λ

(L+ λ)
, (4)

w0
c =

λ

(L+ λ)
+ (1 − α2 + β), (5)

wi
s =

1

2(L+ λ)
i = 1, . . . , 2L. (6)

λ is the scaling parameter with λ = α2(L+β)−L. α (0–1) controls the spread of the sigma points119

and beta is usually set to 0 (Julier and Uhlmann, 1997; Wan and van der Merwe, 2001). The120

generated sigma points are then integrated with model one time step to calculate the forecast state121

xf
t+1. To this end, the proposed Kalman-Takens scheme (Hamilton et al., 2016) is used. Contrary to122

a standard data assimilation filtering, the Kalman-Takens filter does not rely on the physical model123

(i.e., the model’s equations), which significantly decreases computational burden with comparable124

outcomes.125

The Kalman-Takens filter takes advantage of delay-coordinate to replace the dynamical model126

by a surrogate for advancing the state vector forward in time. The training data, i.e., AWRA-L soil127

moisture, is used to create this delay-coordinate vector [xt,xt−1, . . . ,xt−d] (with d the number of128

delays). A local proxy model f̃ is then created using theM nearest neighbors of the delay-coordinate129

vectors [x1
t ,x

1
t−1, . . . ,x

1
t−d], [x2

t ,x
2
t−1, . . . ,x

2
t−d], . . . , [xM

t ,x
M
t−1, . . . ,x

M
t−d], which are selected from130

the above training data based on the Euclidean distance. The proxy model f̃ is an average of131

the nearest neighbors (see more details in Hamilton et al., 2016). The forecast state xf
t+1 is then132

estimated using the nearest neighbors x1
t+1, x

2
t+1, . . . ,x

M
t+1.133

Once the forecast state is computed, forecast means and corresponding covariance matrices are134
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calculated following Wan and van der Merwe (2001) as,135

xf
t+1 =

2L∑
j=0

wj
sx

f,j
t+1, (7)

yf
t+1 =

2L∑
j=0

wj
sHxf,j

t+1, (8)

Pf
t+1 =

2L∑
j=0

wj
c

(
xf,j
t+1 − xf

t+1

)(
xf,j
t+1 − xf

t+1

)T
+ Qt, (9)

P
yf
t+1

=
2L∑
j=0

wj
c

(
Hxf,j

t+1 − yf
t+1

)(
Hxf,j

t+1 − yf
t+1

)T
+ Rt+1, (10)

P
xf
t+1,y

f
t+1

=

2L∑
j=0

wj
c

(
xf,j
t+1 − xf

t+1

)(
Hxf,j

t+1 − yf
t+1

)T
. (11)

where Qt and Rt+1 are covariances of noises associated with the process and observation, respec-136

tively, and are considered to be Gaussian. H is the observation operator that maps the model137

states into observation space to update model top layer storage estimates using the field capacity138

value to achieve relative wetness (Renzullo et al., 2014). Next, the analysis step is employed, which139

updates the forecast state xf
t+1 using incoming observations yt+1 to calculate the analysis state140

xa
t+1 based on the Kalman update equations (see more details in Khaki et al., 2018d),141

xa
t+1 = xf

t+1 + K(yt+1 − yf
t+1), (12)

K = P
xf
t+1,y

f
t+1

P−1
yf
t+1

, (13)

Pa
t+1 = P

xf
t+1

−KP
yf
t+1

KT . (14)

3.2. Evaluation strategy142

Once the soil moisture estimates are updated, these are compared with independent in-143

situ soil moisture measurements (cf. Section 2.3). To this end, soil moisture variation time series144

of the top, shallow- and deep-root before (AWRA-L raw soil moisture,) and after (from xa in145

Equation 12) data assimilation are spatially interpolated to the location of in-situ stations. The146

interpolated pre- and post-assimilation results are then compared with the in-situ soil moisture147

measurements at different depths. For this purpose, we use different soil moisture layers from148

in-situ measurements including 0-8cm (compared to the model top soil moisture layer), 0-30cm149
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(compared to the summation of the model top and shallow soil moisture layers), and 0-90cm150

(compared to the summation of the model top, shallow, and deep soil moisture layers). Note151

that considering the difference between W3RA outputs (i.e., column water storage measured in152

mm) and the OzNet measurements (i.e., volumetric soil moisture) and the fact that converting153

the model outputs into volumetric units may introduce a bias (Renzullo et al., 2014), only a154

correlation analysis is considered here. It is worth mentioning that cross-correlation is applied to155

account for lag differences between the time series. We further undertake a significance test for156

the correlation coefficients using t-distribution. The estimated t-statistic is used to determine the157

probability of getting a value as large or larger being a random outcome. Correlations coefficients158

are declared significant at p < 0.05. The calculated p-values for the correlations lie under 5%159

indicating coefficients are significant.160

3.3. Principal Component Analysis (PCA)161

Historically, principal component analysis (PCA; Lorenz, 1956; Preisendorfer, 1988) has162

been used to a great effect to extract pattern and to better visualize spatio-temporal variations in163

hydroclimatological studies. Frappart et al. (2013) found that PCA modes can better represent164

spatiotemporal variations in time series compared to the full signals by separating dominant water165

mass change signals (see also Abelen et al., 2015). For this reason, PCA is applied on the assimila-166

tion results (cf. Equation 12) to extract to dominant modes (principal components). In this study,167

as it will be shown (Section 2.3), it is found that the first and second modes of PCA are the most168

representative soil moisture signals. A schematic illustration of the assimilation process steps is169

provided in Figure 1.170

4. Results171

4.1. Validation172

We first analyze the impact of data assimilation to determine how well it reflects satellite soil173

moisture observations in the model estimates. Figure 2 displays the results for the soil top layer,174

for which assimilation has the largest impact. The reason for this is that satellite soil moisture175

observations largely represent the moisture variability of the soil top layers, thus, have the greatest176

effect on the corresponding model soil layer estimate during the assimilation. In Figure 2, we also177
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Figure 1: A schematic illustration of the implemented assimilation method. The process starts by reconstructing the
dynamics of the system using AWRA-L data. Afterwards, AUKF is used whenever satellite soil moisture observations
are available to update model simulations.

plot model-free soil moisture simulations, satellite soil moisture, and rainfall products to evaluate178

the effect of data assimilation. A misfit is apparent between model-free run estimates and satellite179

soil moisture observations for the top soil layer (cf. the red and green symbols, Figure 2). Model-180

data assimilation, however, considerably reduced the mismatch between assimilation estimates and181

observations (cf. pattern similarity between the green and blue symbols, Figure 2). There is182
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also larger agreement (∼11%) between assimilation results and precipitation time series compared183

to that between the precipitation and the model-free run estimates (model outputs without data184

assimilation). This indicates that data assimilation effectively reflects the climate variabilities in185

the soil moisture estimates.186

Figure 2: Spatially averaged time series of assimilated top layer soil moisture results (blue), model-free estimates (red),
soil moisture observations (green), and precipitation (black) over Australia. The assimilation time series variation
pattern can be seen to better match to the precipitation pattern, in particular after 2010.

As mentioned in Section 3.2, to asses the validity of the results, these are compared with187

independent in-situ measurements. Figure 3 shows the average time series of shallow-root soil188

moisture for the model-free and assimilation, as well as in-situ observations for all stations. It can be189

seen that the assimilation reduces misfits between the model simulations and in-situ measurements.190

This is more evident generally over the large amplitude variations such as those in 2003, 2007, and191

2009. In addition, the correlation between both the model-free and assimilation time series and in-192

situ soil moisture observations are calculated. For each station within the Murrumbidgee catchment,193

correlations between station observations and the model-free run as well as the data assimilation194

results are presented in Figure 4. Note that the results are spatially averaged in a 0.3-degree195

based on in-situ station distances. It is clearly seen that in most of the cases, data assimilation196

increases the correlation values compared to the model-free run. On average, the magnitude of197

the correlation coefficients between the post- assimilation soil moisture estimates and the in-situ198
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soil moisture measurements are ∼0.13 units larger than that between model-free run estimates and199

station observations. This further indicates the capability of data assimilation for improving the200

model estimates.201

Figure 3: Average soil moisture time series of in-situ measurements (green), model-free run (black), and assimilation
(blue) over all in-situ stations. Larger agreement is observed between the assimilation results and those of in-situs.

Figure 4: Correlation maps of soil moisture estimates within the Murrumbidgee catchment. The left panel indicates
the correlation values between the model-free run results and in-situ measurements, and the right panel shows the
correlation values between the assimilation results and in-situ measurements.

Detailed validation results of soil moisture estimates against in-situ measurements are presented202
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in Table 2. The average correlation values of all in-situ stations are reported in this table. It can203

be seen that data assimilation successfully improves the results of all the soil layers. . Across all204

soil layers, improved correlations (∼9.69%) are obtained with assimilation results compared to the205

model-free run. While the highest correlation is achieved for the shallow layer (0.82 correlation206

value), larger correlation improvements are computed for the top layer (11.74 on average). This207

indicates the more pronounced impact of soil moisture data assimilation on the top soil layer,208

which is reflective of the fact that satellite soil moisture observations mostly represent the moisture209

variability of the soil top layers (2-5 cm). Table 2 shows that integrating satellite-derived soil210

moisture products with model states, not only improves top layer soil moisture estimates but also211

positively affects the other layers estimates. This can be seen from the 9.81% and 7.53% correlation212

improvements for shallow- and deep-root layers, respectively.213

Table 2: Summary of the correlations between model-free run estimates and station data, as well as between assim-
ilation estimates and station data for three soil depth layers. For each method, the correlation average values with
their 95% confidence interval are presented. Improvements in the assimilation results are calculated as [(assimilation
- model-free run)/model-free run] × 100(%).

Reference < 10 cm < 30 cm < 100 cm

Model-free run 0.66±0.21 0.75±0.15 0.68±0.18

Assimilation 0.74±0.14 0.82±0.11 0.73±0.12

Average improvement 11.74 9.81 7.53

Further analyses of comparative performance of the data assimilation in estimating of soil214

moisture are shown in Table 3. Here, the focus is comparison of the magnitude of the correlations215

of model-free run estimates with satellite soil moisture estimates or precipitation against those of216

assimilation products with satellite or precipitation data. It can be seen that data assimilation217

improves correlation with AMSR-E and SMOS measurements (25%) as well as with precipitation218

(9.7%). These results indicate that data assimilation successfully constrains model simulation with219

satellite data leading to a better agreement between the results at all layers and assimilated data220

compared to open loop estimates. There are also considerable improvements in results based on221

their increased correlation to rainfall variations. These comparisons confirm the evaluation against222

in-situ measurements and demonstrate that assimilating new observations improves the agreement223
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between estimates and both in-situ and rainfall measurements by affecting soil moisture variables.224

Table 3: Average correlations, as well as correlation improvements of filtered soil moisture estimates with respect to
model-free run compared to satellite products and precipitation.

Reference < 10 cm < 30 cm < 100 cm

Model-free run
AMSR-E+SMOS 0.71 0.66 0.63

Precipitation 0.82 0.75 0.78

Data assimilation
AMSR-E+SMOS 0.96 0.78 0.76

Precipitation 0.91 0.82 0.84

Improvements (%)
AMSR-E+SMOS 36.35 17.66 21.08

Precipitation 11.74 9.81 7.53

4.2. Soil moisture variations225

Based on the improved soil moisture estimates, the spatio-temporal variations of the com-226

partments are presented. To begin with, Figure 5 shows the average soil moisture time series for the227

shallow- and deep-root layers. Compared to the model top layer soil moisture variations in Figure228

2, it can be seen that larger variabilities exist in the top, and to a lesser extent in the shallow layers229

compared to the deep zone soil moisture. Apart from this, similar trends can be observed in all230

the time series, e.g., a positive trend in 2011 followed by a negative one between 2011 and 2014.231

The time series for both the shallow and deep layers show strong positive anomalies during 2011,232

which can be related to the La Niña impact (Forootan et al., 2016). A long-term drought period233

(2001–2009), known as Millennium Drought (e.g., Ummenhofer et al., 2009; LeBlanc et al., 2012;234

van Dijk et al., 2013), can also be seen that largely impact both soil moisture estimates, especially235

the deep-root soil moisture.236

Figure 6 shows the temporally averaged soil moisture at the top, shallow- and deep-root layers237

between 2002 and 2017 at each grid point. Larger soil moisture in all soil layers are available in238

the northern parts of the country. This could be attributed to the considerable precipitation rate239

in these areas (see, e.g., Awange et al., 2009, 2011; Forootan et al., 2012, 2016). There are more240

soil moisture contents over the eastern and southeastern parts. A similar pattern can also be seen241
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Figure 5: Spatially averaged time series of soil moisture at shallow- and deep-root layers. A negative pattern before
2010 and a significant positive anomaly after 2010 is evident in time series.

in the southwestern parts of Australia. Continentally, the deep root layer and to a lesser degree242

the shallow root layer show the largest range or variability in soil moisture, where as the top layer243

soil moisture varies over a narrower range. All the three layers depict large dry regions, in terms244

of average soil moisture magnitude, in the southern, northwestern and central areas.245

Furthermore, average soil moisture maps in January, April, July, and October for the top,246

shallow- and deep-root layers are displayed in Figure 7. Australia, due to its large size, experiences247

different (e.g., six) climatic zones (e.g., Fleming et al., 2012) and this translates as two main seasonal248

patterns, i.e., four seasons in the temperate zone (coastal areas in the southeast and southwest)249

and a wet/dry pattern in the tropical north areas. It can clearly be seen that larger amounts of soil250

moisture are available in January and April, especially over the northern part possibly due to the251

December-February Monsoon rainfall in the north (e.g., Awange et al., 2009, 2011). While smaller252

changes can be seen for deep-root soil moisture in different months, the top and shallow-root layers253

demonstrate remarkable variations in various months with larger soil moisture in January and April254

compared to July and October. In contrast to the northern parts, the eastern part (towards the255
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Figure 6: Average (between 2002 and 2017) soil moisture maps (wetness) at different soil layers. The upper row
shows values scaled to the same interval [0,1], while the lower bar scales values on a per-dataset basis.

southeast), as well as southwestern parts indicate higher soil moisture amplitudes, especially for256

the top and shallow-root layers in July and October. In general, the shallow-root soil moisture257

has a characteristic intra-annual variability. This includes more soil moisture between January and258

April over northern areas and more soil moisture from July to October over the same areas. The259

deep-root layer soil moisture (the third column maps on the right hand side) is temporally more260

stable throughout the year, i.e., the pattern across the seasons is the same continentally contrary to261

the shallow-root layer where January and April are similar, but differ from July and October. The262

spatial pattern of soil moisture in all zones follows Figure 6, suggesting that most of the variations263

can be found in the north and south-west parts.264
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Figure 7: Average soil moisture maps for the months of January, April, July, and October at different soil layers.
Note that the top layer maps are multiplied by 2 for a better comparison with the other two layers.
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4.3. PCA results265

This section presents the PCA results applied on soil moisture estimates from data assim-266

ilation. Figure 8 depicts the spatial variations of soil moisture within Australia corresponding to267

the first two principal components (PCs) of PCA of different soil moisture layers. A similar pattern268

is evident for all soil moisture layers within the first and second PCs. PC1 maps (accounting for269

between 43% and 53% of the total variance in soil moisture depending on soil layer) show a dis-270

tinct north-south continental pattern of variation in soil moisture. By contrast, PC2 (accounting271

for between 27% and 39% of the remaining total soil moisture variance, depending on soil layer)272

reveals an east-west variation pattern in soil moisture (Figure 8, panels on the right column). Soil273

moisture changes in the southwest are captured by the second PC, particularly for the shallow-274

and deep-root soil moisture layers. The pattern is more regular in the north than other areas.275

Moreover, patterns in root-zone layers, and especially for the deep-root layer are smoother because276

these are less sensitive to rain changes. There is generally negative relationship between soil mois-277

ture on the north and those in the east, southeast, and southwest, which can be explained by their278

different climate zones. These soil moisture maps largely follow the soil moisture variation patterns279

in Figures 6 and 7. Figure 8 suggest that generally higher soil moisture availabilities are apparent280

in the north, east, and southwest parts of Australia.281

The time series corresponding to the first two principal components (PCs) are displayed in282

Figure 9, which allows us to assess temporal soil moisture variations. Distinct seasonal or intra-283

annual variabilities can be seen in PC1. PC time series for the top and shallow-root layers show284

distinct dry and wet patterns in PC1, which is dominant over the north. Positive anomalies exist285

in 2009 and 2011 from PC1, which is more evident in PC2 for all layers in 2011. This shows286

considerable soil water increase in a large part of the country due to the pattern of PC1 and287

PC2, which cover the northern, eastern, and southwestern parts (cf. Figure 8). A remarkable soil288

moisture increase is observed between 2010 and 2012, which is clearer for the deep-root layer (PC1).289

PC2 also shows positive strong variations during 2005 and 2016 mostly in the southeastern parts of290

the continent (see PC2 in Figure 8). Soil moisture PC2 patterns located on the east and northeast291

are less pronounced mainly due to the impacts of the winter (e.g., Queensland) and summer (e.g.,292

New South Wales) rainfalls. A positive anomaly in deep-root PC1 can be seen between 2009 and293

2012, which is followed by a negative trend. The effect of these trends can also be found in PC2294

time series, especially between 2010 and 2012 for shallow- and deep-root soil moisture. These large295
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Figure 8: Spatial variations of soil moisture from the first two dominant PCs of PCA for the top, shallow- and
deep-root soil moisture layers. Dominant patterns are evident over the north and northeast parts for PC1 and over
the east and southeast parts for PC2.

positive anomalies could be due to the effects of the strong La Niña of 2010–2012, which brought296

above-average rainfall to Australia (Forootan et al., 2016). Several large positive soil moisture297

amplitudes exist in the time series, e.g., 2004 (PC1), 2008 (PC2), and 2014 (PC2). There are also298

some negative soil moisture trends in PC time series, e.g., 2003 (PC1), early 2005 (PC2), and 2011299

(PC2).300
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Figure 9: The first two PC time series of soil moisture from PCA for the top, shallow- and deep-root soil moisture
layers.

5. Conclusions301

The Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and302

Soil Moisture and Ocean Salinity (SMOS) soil moisture products are integrated with the Australian303

Water Resources Assessment system Landscape (AWRA-L) model simulations between 2002 and304

2017 over Australia. This is done using a recently developed data-driven approach, Kalman-Takens305

filter. Based on the evaluation of the assimilation results against independent in-situ soil moisture306

measurements, we find that the Kalman-Takens filter successfully improves soil moisture estimates.307

On average, continentally, data-model integration improved soil moisture estimates the correlation308

between soil moisture estimates and precipitation variations (9.70% on average). The results also309

show that the data-driven technique can effectively update soil moisture of various layers. Moreover,310

the assimilation process causes larger improvements in the soil moisture estimates with respect to311

in-situ measurements in cases where significant trends observed such as the strong La Niña of 2010–312

2012. These assessments indicate the efficiency of data assimilation for reducing the discrepancies313

between model simulation results and both in-situ and rainfall measurements. Furthermore, spatio-314

temporal soil moisture variations of improved soil moisture estimates are investigated. Larger soil315
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moisture in all soil layers is observed in Australia’s north, east, and to a lesser degree in south-west316

parts. Positive annual trends in soil moisture are found over the western areas.317
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