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Summary

The present thesis is devoted to the application of the wave-packet convergent-

close coupling (WP-CCC) method to ion-atom collisions. We apply the method

to three- and four-body problems and compare the obtained results with exper-

imental and other theoretical results, where available. We study proton scatter-

ing on excited states of hydrogen, collisions of bare ions (He2+ and C6+) with

hydrogen, and proton collisions with the helium atom and He+ ion.

In our approach, the collisional system is described by the total scatter-

ing wave function, which satisfies the time-independent Schrödinger equation

(TISE). Interactions between the particles are given by the long-range Coulomb

potential. The scattering wave function is expanded within the two-centre ap-

proach in terms of the basis made of target- and projectile-centred eigenstates

and pseudostates. To describe positive-energy states we employ the wave-packet

approach. The continuum of all involved atoms are discretised sufficiently dense

using bin states. Depending on the considered collisional system the basis con-

sists of the wave functions for the hydrogen-like atom of charge Z and the

helium atom. The helium wave functions are found by numerically solving the

Schrödinger equation for helium. Then, inserting the expansion into the TISE

using a semiclassical approximation, where the projectile motion relative to the

target is treated classically and target is treated fully quantum-mechanically,

leads to a set of coupled differential equations for the expansion coefficients.
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The obtained system of equations is solved to find transition amplitudes, which

are used to calculate cross sections for elastic scattering, target excitation, elec-

tron capture and ionisation, as well as differential ionisation cross sections.

Main results

• The WP-CCC method is applied to the three-body problem of proton

scattering on the excited (2s, 2p0, 2p1) states of hydrogen:

– The total cross sections are calculated for elastic scattering, excita-

tion, ionisation and electron capture.

– The density matrix elements for excitation of 2-shell states of hydro-

gen are also provided.

• The method is also applied to C6+-H(1s) collisions:

– The total cross sections are calculated for electron capture and ioni-

sation.

– Singly differential cross section is provided for 1 and 2.5 MeV/amu

C6+-impact ionisation of atomic hydrogen.

– Doubly differential cross sections in the ejected-electron energy at

certain fixed ejection angles, and in ejected-electron angle for fixed

ejection energies are calculated for 1 and 2.5 MeV/amu C6+-impact

ionisation of atomic hydrogen.

• He2+-H and p-He+ collisions are studied using the WP-CCC approach:

– Total cross sections are calculated for electron capture and ionisa-

tion for both collisional systems in the range from 10 keV/amu to 1

MeV/amu.
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– Fully differential cross section for He2+-impact ionisation of atomic

hydrogen is provided as a function of the electron ejection angle.

– Doubly differential cross section for He2+-impact ionisation of atomic

hydrogen is provided in the energy and the angle of the ejected elec-

tron.

– Singly differential cross section for He2+-impact ionisation of atomic

hydrogen is calculated in the angle of the ejected electron.

– Balmer-α emission cross section is calculated in He2+-H collisions.

• The WP-CCC approach is extended to a four-body problem of proton-

helium collisions:

– The helium atom is treated using the frozen-core approximation where

electron-electron correlation is fully taken into account.

– Total cross sections are calculated for electron capture and single

ionisation in the range from 15 keV to 1 MeV.

– Total double-ionisation cross sections are calculated by using the in-

dependent event model.

– Partial cross sections for electron capture into 2s and 2p states of

hydrogen, and excitation of the 2s and 2p states of the target are

calculated.

The thesis is organised in the following way:

In Chapter 1 we describe the motivation and background of ion-atom col-

lisions. Existing theories and their applications to the considered collisional

systems are briefly discussed in Chapter 2. Chapter 3 is devoted to the de-

scription of the WP-CCC approach to collisions of protons and bare ions with
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excited atomic hydrogen. Application of the method to a four-body problem

of proton-helium collisions is described in Chapter 4. Analytical formulas for

calculating probabilities, total and differential cross sections, as well as density

matrices using the transition amplitudes are presented in Chapter 5. In Chap-

ter 6 we provide the results of the single- and two-center WP-CCC methods in

proton scattering on excited states of atomic hydrogen and make comparisons

with experimental data and other calculations, where available. The total and

differential cross sections for collisions of fully-stripped carbon ion with hydro-

gen are given in Chapter 7. Chapter 8 is devoted to the description the present

WP-CCC results for He2+-H and p-He+ collisions. In Chapter 9 we present

our results for the total electron-capture and ionisation cross sections for p-He

collisions and compare with experimental and other theoretical results. Finally,

in Chapter 10 we draw conclusions and give some possible outlook for further

research.
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Chapter 1

Introduction

The study of ion-atom collisions is one of the intensive research areas in atomic

physics. These collisions create an opportunity to enlarge our knowledge of the

structure of atoms, the few-body dynamics and driving mechanisms through

the experiments and theoretical calculations. A thorough understanding of the

underlying processes including ionisation, excitation and charge-exchange is es-

sential for applications in a wide range of fundamental and practical sciences.

Collisions of hydrogen and helium atoms are of particular importance due to

their abundance in nature and involvement in fundamental physical processes.

Examples of the application of these scattering studies include the sciences such

as astrophysics, astrophysical modelling and plasma physics. Ion-atom colli-

sions lie behind many occurring astrophysical processes. In particular, mod-

elling astrophysical shocks rely on accurate cross sections for proton-hydrogen

collisions [1]. They play an important role in fusion research, where collisions

data are needed for plasma heating methods to produce the hot plasma and

investigating the physical properties of the fusion plasma [2]. In this process,

the confined plasma is known to create excited hydrogen atoms, therefore pro-

ton scattering on excited states of hydrogen has also practical importance, for

example in the ITER project (see Fig. 1.1 for a projected ITER tokamak). Also

1



Introduction 2

Figure 1.1: Tokamak. Image courtesy of ITER.

in plasma modelling, applications of the diagnostic methods such as charge-

exchange recombination spectroscopy, beam emission spectroscopy and motional

Stark effect spectroscopy require accurate data on charge-exchange, ionisation

and excitation cross sections [3, 4].

In terms of the practical application, scattering studies of atoms by proton

and bare ions are relevant to hadron therapy of cancer [5, 6]. Hadron ther-

apy has considerable advantages over conventional X-ray therapy as illustrated

in Fig. 1.2. In proton beam therapy, high doses of radiation can be delivered

precisely to tumours without significantly harming surrounding tissue. This

leads to a more efficient treatment and fewer side effects. Using carbon ions

as projectiles is considered to be even more efficient than protons because of a

sharper Bragg peak in the radiation dose distribution curve, which reduces the

damage to healthy tissue. Latest advancements in technology, medical imaging

and computing allowed implementing proton and carbon therapies in medicine.
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Figure 1.2: Comparison of proton and traditional x-ray therapies [7].

However, establishing influence of radiation to living organisms has always been

an important issue. Therefore, accurate cross-section data for carbon and pro-

ton collisions with relevant targets is crucial in improving our understanding

of the radiation damage. The helium and hydrogen targets are not of the pri-

mary importance in the collisional processes applicable to hadron therapy, but

studying simplest targets and testing theoretical models are considered to be the

first necessary steps towards studying more complex targets such as the water

molecule.

Ion-atom collisions have been very attractive both theoretically and experi-

mentally for several decades. The pioneering studies for simple processes taking

place in ion-atom collisions date back to the first half of the last century [8, 9]

and more advanced works appeared in 1950s [10–14]. Due to progress in ex-

perimental and computing technologies, various experimental techniques and

theoretical approaches were developed to study scattering of the targets from

simple hydrogen atom to more complex many-electron atoms by singly- and
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multiply-charged ions (see [15–18] for detailed description of the field). In par-

ticular, many theoretical works were devoted to study a three-body problem of

proton and multiply-charged ion collisions with atomic hydrogen [19–37]. From

a theoretical point of view, studying atomic hydrogen and hydrogen-like targets

is much simpler than other many-electron systems because of the analytically

known hydrogenic wave functions and the absence of the electron-electron cor-

relations. Therefore, these three-body problems are convenient for applying

various approaches and approximations.

The helium atom is a good starting point of studying many-electron tar-

gets because it is the simplest multi-electron atom and is easily available for

experimental studies. Collisions of helium with ions allow us to study the

dynamic-correlation effects between the target electrons in the underlying pro-

cesses including charge exchange. However, describing the helium atom as a

two-electron system is rather challenging. Therefore, in some theoretical meth-

ods the electron-electron correlations are simply ignored. Another challenge

in studying the helium target is related with the wave functions and the cor-

responding energy levels. Since, the Schrödinger equation for helium has no

analytical solutions, their accuracy depends on applied approximations and nu-

merical approaches. Therefore, collisions involving helium provide a sensitive

test for employed theoretical methods. For these reasons, collisions of helium

with various ions, particulary proton-helium collisions, have been investigated

to a great extent both theoretically [38–58] and experimentally [59–69].

The breakup processes provide detailed, often more complete, information

about dynamics of ion-atom collisions. Studying geometries of the scattered

particles helps to understand the interaction effects between the projectile and

recoil-target ion and ejected electrons. Post-collisional behavior of the particles

can be explained by the total cross sections to a certain extent, but impor-
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tant information is lost due to integration over the momenta of the particles

in the final channels. Differential studies of ejected electrons in the ionisa-

tion process are rather challenging, but can describe the driving mechanisms

in the collisions in more detail. Experimental differential studies of the ionisa-

tion processes involve determining momentum vectors of all collision particles.

The first experimental techniques for such studies became available about six

decades ago. Ehrhardt et al. [70] provided differential ionisation cross sections

for electron-helium collisions by measuring momenta of the outgoing electrons.

Perturbative methods [71] at high, and non-perturbative methods [72] at low,

projectile energies were quite successful in reproducing the experimental data.

However, unlike for light projectiles, the ionisation processes in scattering of

atoms by heavy particles are not yet fully understood. Kinematically complete

experimental study of differential ionisation in ion-atom collisions is very chal-

lenging, as it requires measuring the momenta of scattered ions in addition to

the momenta of ejected electrons. The problem remained unsolved for a long

time even after the experimental techniques became available for electron mo-

mentum. Complete experiments became possible with the introduction of such

experimental techniques as COLTRIMS (cold-target recoil-ion momentum spec-

troscopy) [73]. Since the advancement of these techniques, differential studies

of the breakup processes in ion-atom collisions, particularly single ionisation of

helium by proton impact, attracted an increasing interest [74–85]. However, a

wide range of unexplained discrepancies between theory and experiment empha-

sise the need for more studies on these collisional systems both theoretically and

experimentally.



Chapter 2

Overview of existing theories

Together with the progress in experimental techniques for investigating ion-atom

collisions, various theoretical approaches have been developed and successfully

applied to model them. One of the well-known and widely used theoretical

methods is the classical-trajectory Monte Carlo (CTMC) model. Semiclassical

and quantum-mechanical methods can be classified as perturbative and non-

perturbative approaches. Perturbative treatment is applicable for systems with

a relatively small interaction time between the projectile and the atomic electron.

The latter is the case when the speed of the projectile significantly exceeds that

of the atomic electron. For collision systems where perturbative approaches are

not applicable, non-perturbative methods are used. It should be noted that most

of the theories are based on solving the Schrödinger equation corresponding to

a many-body system, which cannot be solved analytically. Below we describe

typical approaches that were applied to ion-atom collisions and give examples

of their application.

6



Overview of existing theories 7

2.1 Classical-trajectory Monte Carlo model

The first rather simple form of the classical-trajectory Monte Carlo method

was developed to analyse hydrogen-deuterium reactions by Hirschfelder et al.

[86]. However, only one trajectory was included in the study because of the

calculation difficulties, as the classical trajectories had to be calculated using a

mechanical calculator. With the advancement of super-computers, the classical-

trajectory method became an active tool in investigating electron-capture and

ionisation processes in ion-atom collisions [22, 25]. The CTMC approach to

three-body problems is based on numerically solving a set of first-order differ-

ential equations obtained from the classical Hamiltonian of a collision system.

The interactions between the projectile, the target nucleus and the electron are

described by the Coulomb forces. The orientation and momentum of the target

electron as well as the impact parameter within the interaction range are selected

randomly using a Monte Carlo method. Then high-order Runge-Kutta method

is employed to integrate the equations of motion, and an occurred collision pro-

cess is established. Calculated trajectories are used to obtain charge-transfer

and ionisation cross sections. They can also be used to generate differential

cross sections. Accuracy of calculations depends on the number of evaluated

trajectories. Accordingly, a sufficient number of trajectories needs to be calcu-

lated to avoid errors. The method is applicable for a wide range of scattering

problems including collisions of multiply-charged ions with atomic hydrogen and

is most effective in the intermediate energy range. Examples of successful appli-

cations include the calculations of ionisation and electron-capture cross sections

in multiply-charged ion-hydrogen collisions by Olson and Schultz [27], Fiol and

Olson [30] and Jorge et al. [37].

The CTMC method is also applicable to multi-electron targets. The effec-
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tiveness and validity of the method was studied in collisions of highly-charged

ions with Ne by Olson et al. [87]. All interaction forces between the projectile,

the target nucleus and electrons were taken into account. In this approach, the

existence of more electrons increases the number of coupled differential equations

multiple times in comparison with three-body problems. However, computing

time did not change significantly because of the use of vector-processors to solve

the system of equations. In another work, the method was used to investigate

bare-ion collisions with helium by Zajfman and Maor [88], where the He atom

was stabilised using the Heisenberg uncertainty principle on the classical sys-

tem. Schultz and Olson [89] also employed this approach to study proton and

antiproton scattering on helium. The target was treated as one electron system

neglecting the electron-electron correlation. Then, the well-known three-body

CTMC method was applied to calculate the cross sections for ionisation and

charge transfer. The obtained results agreed with the available experimental

data reasonably well at the incident projectile energies from 25 keV to 500 keV.

As we mentioned above, the accuracy of the results are dependent on the statis-

tics. Therefore, a large number of trajectories need to be evaluated that might

be quite time consuming even with abilities of modern computers.

2.2 Perturbative methods

Perturbative methods are proven to be very efficient for fast collisions, where

interaction time between the incident projectile and the target electron is rela-

tively short. We describe several perturbative approaches that were successfully

applied to the systems considered in this work.
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2.2.1 Born approximation

At very high energies, perturbation by the projectile is not very strong, there-

fore the scattering wave function can be expanded in fast convergent series.

This procedure is known as the Born approximation. Simplest form of this ap-

proximation, the first Born approximation (FBA) involves replacing the total

scattering wave function with the incident-channel wave function. The FBA

approach is especially practical in treating hydrogen-like targets, where scat-

tering amplitudes can be evaluated analytically making calculations fairly easy.

However, because of the absence of coupling between channels, charge effects are

lost in obtaining the scattering amplitudes. Therefore, projectiles with the same

mass but opposite charges give the same result. The first application of the Born

approximation to ion-atom collisions was performed by Brinkman and Kramers

[9] without including the Coulomb interaction between the nuclei. Later, Bates

and Dalgarno [11], Bates and Griffing [12] and Jackson and Schiff [14] employed

this method to describe the charge-exchange processes in proton-hydrogen col-

lisions including the heavy-particle interaction. In all these works, the Born

calculations agreed well with experiment at impact energies above 25 keV. This

approach was also applied to study differential ionisation of hydrogen by proton

impact by Kuyatt and Jorgensen [90], where the calculations for double differen-

tial cross section and angular dependence of the ejected electrons were provided

based on the Born approximation. Belkic et al. [26] reviewed the validity of the

approach in a number of scattering problems. Outcomes of the work showed

effectiveness of the method at high energies.

The application of the Born approximations in multi-electron systems is not

straightforward. The charge-exchange processes in proton-helium collisions were

studied by Belkić [39], where the FBA was corrected for the boundary condi-
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tions. The helium atom was treated as a one-electron system and described by

the Roothaan-Hartree-Fock and hydrogen-like wave functions. Good agreement

with the experiment was obtained at energies from 50 keV to 50 MeV with the

Roothaan-Hartree-Fock wave functions. Also, validity of the first Born approxi-

mation was studied by Popov et al. [91] for differential charge-transfer processes

for the same system. The differential cross sections for transfer excitation and

transfer ionisation were calculated and electron-electron correlations were found

to be important in the initial helium state. Overall, it was concluded that the

FBA is applicable for the collisions at incident proton energies above 500 keV

and for sufficiently small scattering angles.

2.2.2 Distorted-wave Born approximation

Another commonly-used perturbative method based on the ideas of the Born

approximation is the distorted-wave Born approximation (DWBA), where the

unperturbed plane wave is replaced by a distorted wave. The purpose of the

method is to include part of the interaction between the target nucleus and the

electron in the wave functions, so-called distorted waves, describing initial or fi-

nal channels. This also enables to achieve faster convergence of the perturbation

series because of the weaker remaining perturbation. This method was applied

to various many-body scattering problems including proton-helium collisions.

A number of distorted-wave theories were discussed by Toshima et al. [92] and

the DWBA results for electron capture in p-He collisions are compared with the

existing experiments and other theoretical calculations. The four-body DWBA

method was employed by Mancev et al. [93] and Jana et al. [44]. In the recent

work of Rahmanian et al. [94] the three-body DWBA was applied. These works

demonstrated that DWBA method is quite effective in describing the three-body

and four-body systems at high energies.
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2.2.3 Continuum-distorted-wave approaches

The perturbative models described above are valid at sufficiently high energies.

At energies close to the intermediate energy region, distortion of the target wave

functions by the projectile becomes important. One of the models that take

this distortion into account successfully is the continuum-distorted-wave (CDW)

approach. The approach was first developed by Cheshire [95] to study fast proton

collisions with atomic hydrogen. Belkic and Gayet [96] employed this method

to calculate the electron-capture cross sections for proton and alpha particle

collisions with hydrogen. Later, it was extended to the ionisation problem [97].

A detailed review of the CDW approach including the description of its validity

was reported by Belkic et al. [26] for electron-capture processes in various ion-

atom collisions. After some developments, the CDW method was applied also

to a multi-electron target by Belkić et al. [98], where proton-helium collisions

were considered.

One of the widely used forms of the CDW method is the continuum-distorted-

wave eikonal-initial-state (CDW-EIS) approach, where the distortion in the

initial and final states are treated using the eikonal approximation and the

continuum-distorted-wave approximation, respectively. This approach was de-

veloped by Crothers and McCann [99] to calculate the total cross section for

ionisation of hydrogen by multiply-charged ions, a significant improvement was

achieved in comparison with the existing theoretical models. Later, the method

was applied to describe proton impact ionisation of the excited hydrogen atom

by Fainstein et al. [100]. The CDW-EIS method was also applied to multi-

electron targets including the helium atom. Fainstein et al. [101] presented the

CDW-EIS calculations for collisions of bare ions with helium. Helium atom was

treated as a one electron system. They observed some deviations in comparison
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with the experiment, which was suggested to be because of neglecting the resid-

ual target and the projectile fields. A generalisation of the CDW-EIS approach

to collisions of bare ions with multi-electron targets (He, Ne, Ar) was presented

by Abufager et al. [102] employing the independent event model (IEM). The re-

sults of this generalised approach provided better agreement with the experiment

in comparison with the previous CDW-EIS calculations. The fully differential

cross section for single ionisation of helium by 75-keV protons was calculated

by Ciappina et al. [81] within the CDW-EIS approach. The importance of the

post-collisional interactions between the projectile and the residual target ion

and the electron were also analysed.

2.3 Non-perturbative methods

When relative speed of the projectile is smaller or comparable with the classical

speed of the orbiting target electron the perturbative models are not valid. At

these energies, different non-perturbative methods are more suitable. Most of

the non-perturbative approaches are based on solving the differential Schrödinger

equation for the collisional system, either directly or using basis-expansion (close-

coupling) methods.

2.3.1 Close-coupling approach

The close-coupling method is a sophisticated approach to studying ion-atom

collisions. In this approach the total scattering wave function is expanded in

terms of suitably chosen basis functions. The expansion is inserted into the

Schrödinger equation to obtain a set of coupled equations for time-dependent

coefficients. In solving the coupled equations, initial conditions should be taken

into account. The coefficients are used to calculate the probabilities and cross
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sections for transitions into included channels. Effectiveness of the close-coupling

method depends on the choice of the basis functions and the completeness of

the basis. The basis functions approximate both negative- and positive-energy

eigenstates of the participating atoms. The negative-energy eigenfunctions can

directly be used to approximate bound states, but to incorporate the continuum

it needs to be discretised. Convergence of the final results depends on density

of discretisation. One of the ways of discretising the continuum states is to

superpose the continuum eigenfunctions in a given energy range, first suggested

by Bethe and Salpeter [103]. The negative-energy states (unless they are taken

to be the eigenstates) are not necessarily orthogonal to the continuum states

and together are called pseudostates. However, using eigenstates is not a unique

way of forming a basis. In order to increase convergence of the results, different

basis sets were used. Examples of such bases include the Sturmian functions,

the Gaussian functions, the Slater-type orbitals and others.

A number of close-coupling models with different basis functions and size

of the basis were tested on proton-hydrogen collisions. The pioneering close-

coupling approach was introduced by Bates [20]. Later, a two-state approxima-

tion was applied to calculate the electron-capture cross section into the ground

state of hydrogen by McCarroll and Bates [21]. Good agreement was obtained

in comparison with the available experiments. Following the success of these

works the problem was studied actively by applying the close-coupling approach

with more basis functions [23, 24]. This enabled to study excitation and cap-

ture cross sections into excited states. Cheshire et al. [23], Gallaher and Wilets

[104], Shakeshaft [105] extended the close-coupling method by including positive-

energy pseudostates to study the ionisation process too. Results of all these

calculations agreed fairly well with the experimental data, however convergence

of the results was not established because of the incompleteness of the employed
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bases. There were more featured works with larger bases: 10-molecular-state

calculations by Kimura and Thorson [106], one-centre calculations with a basis

made of the Slater-orbitals by Ford et al. [107], calculations with 394-Gaussian

pseudostates by Toshima [28] and calculations with the Sturmian pseudostates

by Winter [34]. More complete bases with positive-energy eigenstates allowed

to investigate all involved processes in proton-hydrogen collisions including ion-

isation, excitation and electron capture.

The close-coupling method was successfully applied to study many-electron

systems too. The first rather simple two-state close-coupling calculations were

performed by Green et al. [43] for electron capture into the ground state of

hydrogen in proton-helium collisions. After more than two decades, more so-

phisticated calculations with a larger basis were performed by Winter [48]. He

calculated the electron-capture and single-ionisation cross sections employing

50 Sturmian-basis functions, but electron exchange in the final transfer channels

was neglected. Slim et al. [47] presented 51-state calculations with Gaussian

basis functions, where electron exchange in the H-He+ channel was taken into

account. Both calculations failed to achieve a sufficient level of convergence,

however fairly good agreement with the experimental data was observed in both

of the works.

2.3.2 Impact-parameter Faddeev approach

As we have seen above and will see later, most of the theoretical approaches are

based on solving the Schrödinger equation for the scattering problem of inter-

est. However, this is not a unique way of describing the collisions. An alterna-

tive approach to the system of three particles is based on the Faddeev integral

equations, which include all interactions in a quantum-mechanical formulation.

There are several methods of solving the Faddeev equations. One of them was
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proposed by Avakov et al. [108, 109], where the three-particle equations were

reduced to the two-particle Lippmann-Schwinger type equations using the Alt-

Grassberger-Sandhas method. Further, the partial-wave expansion was used to

bring them into one-dimensional integral equations. The integral equations were

solved in the K-matrix Born approximation within the impact-parameter rep-

resentation. The approach was applied to study electron-transfer processes in

ion-atom collisions. Particularly, calculations were performed for the partial and

total charge-exchange cross sections in hydrogen and helium collisions with fully

stripped ions. Also, this method was successfully extended to proton collisions

with alkali atoms [110]. Later, it was shown that the used charge-exchange am-

plitudes can be written as a product of two terms, the first of which is explicitly

written by the internuclear Coulomb potential and the second one is indepen-

dent of this interaction. This modification significantly simplified the numerical

calculations. Collisions of fully stripped ions (H+, He2+ and Li3+) with helium

were studied with this new approach by Alt et al. [111]. Later, the Coulomb po-

tentials used within the method were replaced by the full two-particle off-shell

Coulomb T-matrices [112] and the method was applied to calculate the total

and differential electron-transfer cross sections. For both processes, calculations

were in very good agreement with the available experimental data.

2.3.3 Methods based on direct numerical solution

Direct solution of the time-dependent Schrödinger equation (TDSE) or the

Hartree-Fock equation on a numerical lattice is another theoretical approach.

This method was successfully applied by Maruhn-Rezwani et al. [113] to calcu-

late charge-transfer probabilities in proton-hydrogen collisions. The TDSE was

solved numerically in cylindric coordinates and the calculated wave functions

were used to obtain the probabilities for corresponding processes. The results
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were in good agreement with the experimental data. Another successful attempt

in solving the TDSE directly was presented by Bottcher [114]. They were able

to calculate the total-charge cross sections for H+-H and C6+-H collisions.

Ko lakowska et al. [115] also used the direct solution method to study the

excitation and charge-transfer processes in proton-hydrogen collisions, where

the TDSE was solved on a three-dimensional Cartesian lattice. The results of

the calculations agreed with the available experiments and other close-coupling

calculations. Advantages of these kinds of lattice methods are in their appli-

cation in wide range of projectile energy and possibility of visually observing

collision dynamics in the three-dimensional lattice. However, direct solution of

the equation of motion can be very time-consuming depending on the considered

processes; therefore, a limited success was achieved to study collisions beyond

simpler three-body systems.

Another direct method, which is based on solving the Lippman-Schwinger

equations, was developed by Kadyrov et al. [116]. These three-dimensional equa-

tions can be solved using the partial-wave expansion in momentum-space, but

employing the expansion method for some collisional systems requires including

a large number of partial waves. This may complicate calculations or make them

not feasible at all. For such scattering problems, the direct solution method was

found to be very efficient and demonstrated in electron-hydrogen collisions. The

calculations reproduced the partial-wave-expansion results showing the validity

of the approach. Later this method was extended to ion-atom collisions [32].

The calculated electron-capture cross section for proton collisions with hydro-

gen was in good agreement with experiment on a wide range of impact energy.

The method was also applied to calculate the total and differential cross sec-

tions for charge transfer in proton-hydrogen collisions and elastic scattering in

antiproton-hydrogen collisions by Kadyrov et al. [35].
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2.3.4 Convergent close-coupling approach

The convergent close-coupling (CCC) approach is one of the most powerful basis-

expansion methods that allows studying all underlying processes in light- and

heavy-ion collisions with atoms. It was first developed for electron-hydrogen

collisions by Bray and Stelbovics [117, 118]. The method is based on solving the

Lippmann-Schwinger equation in momentum space. The target Hamiltonian is

diagonalised in a complete basis of the Laguerre functions. With increasing basis

size the negative- and positive-energy pseudostates of the target respectively

converge to eigenstates and provide sufficiently dense continuum discretisation.

The advantage of the method is that convergence of the results is established by

simply increasing number of the Laguerre functions. The method was extended

to two-electron targets by Fursa and Bray [119], who reported differential and

integrated cross section calculations for processes taking place in electron-helium

scattering. Results for both the hydrogen and helium targets were in good

agreement with the available experimental data. It was also successfully applied

to electron collisions with targets such as hydrogen-like atoms [120], helium-like

atoms [121] and the hydrogen molecule [122]. The method is considered to be

one of the most successful approaches to studying electron-atom collisions.

Another significant achievement of the CCC approach came with the appli-

cation to positron collisions with hydrogen by Kadyrov and Bray [29]. Studying

positively-charged projectiles is more challenging than electrons because of the

existence of capture channels (positronium-formation channels in the case of

positron-atom collisions) that requires a two-centre treatment. Convergence of

the two-centre expansion was studied within the s-wave model. Later, the prob-

lem of convergence was re-addressed using the full CCC formalism [31]. It was

found that a two-centre expansion leads to a convergent result when complete set
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of pseudostates are included on both centres. Ionisation of the atomic hydrogen

by positron impact near threshold was studied by Kadyrov et al. [33] using the

s-wave and full CCC methods. The two-centre CCC method was also applied to

antiproton-positronium collisions. A significant enhancement between the anti-

hydrogen formation in antiproton scattering on an excited and the ground states

of positronium was found by Kadyrov et al. [123]. This was especially large at

low energies, which have not been observed in previous experimental studies.

The developed method was applied to calculate (anti)hydrogen formation in

positronium collisions with (anti)protons at near threshold energies by Rawlins

et al. [124]. Later, an overview of the theories applied to describe positron scat-

tering on atoms and molecules in recent years, including the CCC method was

presented by Kadyrov and Bray [125]. Recently Kadyrov et al. [126] reported

the results of comprehensive quantum calculations for antihydrogen formation

in antiproton-positronium collisions using the CCC method.

Heavy-particle collisions with atoms is another application area of the ap-

proach. The single-centre convergent close-coupling method was developed by

Abdurakhmanov et al. [127] for antiproton-hydrogen collisions and later was

extended to calculate differential ionisation cross section for the same system

[128]. The results of both integrated and differential cross section calculations

were in agreement with the experimental data. The method was extended to

more complex targets too, such as noble gases and molecules. Abdurakhmanov

et al. [129] developed a time-dependent CCC method to antiproton collisions

with the hydrogen molecule (H2). These single-centre approaches were devel-

oped for negatively-charged projectiles, which were not applicable to proton

scattering problems unless energy of the protons is sufficiently high. The first

two-centre fully quantum-mechanical (QM) CCC approach was developed by

Abdurakhmanov et al. [130] to calculate electron-capture and ionisation cross
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sections in proton -hydrogen collisions at lower and intermediate energies.

A new approach to ion-atom collisions within the CCC method based on con-

structing continuum states using wave-packets was developed by Abdurakhmanov

et al. [131]. It was also applied to study differential ionisation in proton-hydrogen

scattering [132]. The main idea of the wave-packet convergent close-coupling

(WP-CCC) approach is discretising the continuum and constructing square-

integrable continuum states by subdividing the continuum into bins and then

integrating the continuum eigenfunction within each bin. This method will be

explained in detail in Chapter 3. The wave-packet CCC approach was proven to

be very advantageous to study differential cross sections, as it allows discretising

the continuum as dense as needed and investigating ejected electrons with arbi-

trary energy in the breakup processes. The WP-CCC method was also applied

to study proton scattering from excited states of hydrogen [133]. Recently, we

applied this method to bare-ion scattering on hydrogen [134].

The applications of the CCC approach cover collisions of many-electron

atoms with heavy particles too. Abdurakhmanov et al. [135] studied single-

ionisation processes in antiproton-helium collisions using the QM-CCC method.

Generally good agreement between calculations and experiments was observed.

Also, the single-centre CCC approach was employed for energetic C6+ scatter-

ing on helium by Abdurakhmanov et al. [136]. The results were in reasonable

agreement with the experiments since the single-centre approach is valid for pos-

itively charged projectiles at high energies. Later, the wave-packet continuum-

discretisation treatment of helium was developed by Abdurakhmanov et al. [137].

It was applied to study single ionisation of helium by antiprotons and energetic

protons. Quite recently, we have extended this approach to calculate total cross

sections for electron capture and ionisation in proton-helium collisions at impact

energies where the single-centre approach is not applicable [138].



Chapter 3

Convergent close-couling
approach to collisions of
multiply-charged ions with
hydrogen

3.1 Introduction

This chapter describes the wave-packet convergent close-coupling (WP-CCC)

approach to scattering of singly- and multiply-charged ions on the ground and

excited states of hydrogen. The method is developed for a fully-stripped pro-

jectile of charge Z, with Z = 1 corresponding to proton. We assume that the

electron of the target is initially in the α0 channel of the atom. With a suffi-

ciently large basis, constructed from bound and continuum states, and taking

into account coupling between channels we investigate all underlying processes

including excitation

P(Z) + H(α0)→ P(Z) + H(α), (3.1)

electron capture

P(Z) + H(α0)→ P(Z−1)(β) + p, (3.2)

20
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and ionisation

P(Z) + H(α0)→ P(Z) + p+ e, (3.3)

where P(Z) is a fully-stripped projectile ion of nuclear charge Z, P(Z−1) is a

hydrogen-like ion of charge (Z− 1). For protons we use the symbol p. Indices α

and β denote the full set of quantum numbers representing states in the P(Z)-H

and P(Z−1)-p channels, respectively.

In our approach, a semiclassical treatment of the three-body system (the

projectile, the target nucleus and the electron) is employed, where the projectile

motion relative to the target is treated classically and target electron is treated

fully quantum-mechanically. The target nucleus is located at the origin and we

assume that the projectile is moving along a classical trajectory R ≡ R(t) =

b + vt, where b is the impact parameter vector and v is the initial velocity of

the projectile relative to the target. The vector b is defined to be perpendicular

to the direction of the moving projectile, that is b · v = 0 (see Fig. 3.1).
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Figure 3.1: An illustration of collisions of multiply-charged ions with hydrogen in the
coordinate system, with the origin set at the target nucleus.

In the stationary formulation, this three-body system is described by the
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total scattering wave function, which satisfies the three-body time-independent

Schrödinger equation (SE). Interactions between the particles are given by the

long-range Coulomb potential. The scattering wave function is expanded within

the two-centre approach in terms of the basis made of target- and projectile-

centred eigenstates and pseudostates. Then, inserting this expansion into the

SE leads to a set of coupled differential equations for the expansion coefficients.

The obtained system of equations is solved to find transition amplitudes, which

are used to calculate cross sections for elastic scattering, electron capture and

ionisation, as well as differential ionisation cross sections.

Throughout the work, the indices P and T denote the projectile and the

target, respectively. Unless otherwise specified, hereafter we use atomic units. In

this chapter, the projectile is a multiply-charged ion and the target is hydrogen.

3.2 The Schrödinger equation for scattering of

multiply-charged ions on hydrogen

The total scattering wave function Ψ, describing collisions of multiply-charged

ions with atomic hydrogen, satisfies the exact three-body time-independent

Schrödinger equation

(H − E)Ψ = 0, (3.4)

where H is the 3-body Hamiltonian, E is the total energy of the system

E =
k2α
2µ1

+ εα =
k2β
2µ2

+ εβ (3.5)

where, kα is the momentum of the projectile relative to the hydrogen atom in the

α channel, µ1 = mPmT/(mP +mT ) is the reduced mass of this system with mP

and mT being masses of the projectile and the target and εα is the eigenenergy

of the state α, kβ is the momentum of the formed hydrogen-like atom relative
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to the residual proton in the β channel, µ2 = (mP + 1)(mT − 1)/(mP + mT ) is

the reduced mass and εβ is the eigenenergy of the state β of the hydrogen-like

atom.

The total Hamiltonian H of the scattering system can be represented in two

equivalent forms as

H =Kσ +HT + VP , (3.6)

H =Kρ +HP + VT , (3.7)

where

Kσ = −∇
2
σ

2µ1

and Kρ = −
∇2
ρ

2µ2

(3.8)

are the kinetic energy operators,

HT = −
∇2
r1

2
− 1

r1
and HP = −

∇2
r2

2
− Z

r2
(3.9)

are the target and projectile Hamiltonians,

VP =
Z

R
− Z

r2
and VT =

Z

R
− 1

r1
(3.10)

are the interactions between the projectile and the target and between the hy-

drogenlike ion and the target nucleus, respectively.

Here R is the position vector of the incident projectile, r1, r2 and r are the

position vectors of the electron relative to the target nucleus, the projectile and

the midpoint of the nuclei respectively, σ is the position vector of the projectile

relative to centre of mass of the hydrogen atom and ρ is the position vector of

the formed hydrogen-like atom relative to the residual proton (see Fig. 3.2).

There are various ways of expanding the total scattering wave function. In

our approach, it is expanded in terms of N target-centred and M projectile-
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Figure 3.2: The Jacobi coordinates for the scattering system.

centred states as

Ψ =
N∑
α=1

aα(t, b)ψH
α (r1)e

ikασ +
M∑
β=1

bβ(t, b)ψ
(Z)
β (r2)e

ikβρ, (3.11)

where ψH
α and ψ

(Z)
β are the corresponding wave functions for the atomic hy-

drogen and the hydrogen-like atom of nuclear charge Z, respectively. Their

detailed definitions will be given later. The exponential argument consists of a

dot product of two vectors. Separation of the electronic and nuclear motions is

explained by the Born-Oppenheimer approximation [15]. The expansion coeffi-

cients aα(t, b) and bα(t, b) at t → +∞ represent the transition amplitudes into

the corresponding target and projectile states.

We insert this expansion of the scattering wave function into the Schrödinger

equation (3.4), and taking two equivalent forms of the total Hamiltonian in
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Eqs. (3.6) and (3.7) into account, obtain

N∑
α=1

(Kσ +HT + VP )aα(t, b)ψH
α (r1)e

ikασ

+
M∑
β=1

(Kρ +HP + VT )bβ(t, b)ψ
(Z)
β (r2)e

ikβρ

= E

(
N∑
α=1

aα(t, b)ψH
α (r1)e

ikασ +
M∑
β=1

bβ(t, b)ψ
(Z)
β (r2)e

ikβρ

)
. (3.12)

The action of the operator Kσ (Kρ) is independent of the position vector r1

(r2) therefore we have

Kσ

(
aα(t, b)ψH

α (r1)e
ikασ

)
= −∇

2
σ

2µ1

(
aα(t, b)eikασ

)
ψH
α (r1), (3.13)

Kρ

(
bβ(t, b)ψ

(Z)
β (r2)e

ikβρ
)

= −
∇2
ρ

2µ2

(
bβ(t, b)eikβρ

)
ψ

(Z)
β (r2), (3.14)

where the Laplacians of the products can be expanded as

∇2
σ

(
aα(t, b)eikασ

)
=∇2

σ(aα(t, b))eikασ + 2∇σ(aα(t, b))∇σeikασ

+ aα(t, b)∇2
σe

ikασ, (3.15)

∇2
ρ

(
bβ(t, b)eikβρ

)
=∇2

ρ(bβ(t, b))eikβρ + 2∇ρ(bβ(t, b))∇ρeikβρ

+ bβ(t, b)∇2
ρe
ikβρ. (3.16)

Functions aα(t, b) and bβ(t, b) vary slowly with σ and ρ, therefore terms

containing ∇2
σaα and ∇2

ρaβ can be neglected (see [16]) in the last two equations.

We take into account the actions of the gradient and Laplacian operators on the

plane waves

∇σeikασ = ikαe
ikασ, ∇2

σe
ikασ = −k2αeikασ, (3.17)

∇ρeikβρ = ikβe
ikβρ, ∇2

ρe
ikβρ = −k2βeikβρ. (3.18)

In addition, we write
kα
µ1

∇σ =
∂

∂t
,
kβ
µ2

∇ρ =
∂

∂t
. (3.19)
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With these, after simple algebra Eq. (3.12) is rewritten in the following form

N∑
α=1

((
− ∂

∂t
+

k2α
2µ1

)
aα(t, b)

)
ψH
α (r1)e

ikασ

+
M∑
β=1

((
− ∂

∂t
+

k2β
2µ2

)
bβ(t, b)

)
ψ

(Z)
β (r2)e

ikβρ

+
N∑
α=1

(HT + VP )aα(t, b)ψH
α (r1)e

ikασ +
M∑
β=1

(HP + VT )bβ(t, b)ψ
(Z)
β (r2)e

ikβρ

=
N∑
α=1

(
k2α
2µ1

+ εα

)
aα(t, b)ψH

α (r1)e
ikασ +

M∑
β=1

(
k2β
2µ2

+ εβ

)
bβ(t, b)ψ

(Z)
β (r2)e

ikβρ,

(3.20)

where on the right-hand side we replaced the total energy E with the explicit

forms given in Eq. (3.5).

After deleting similar terms from both sides, the equation is reduced to

N∑
α=1

ȧα(t, b)ψH
α (r1)e

ikασ +
M∑
β=1

ḃβ(t, b)ψ
(Z)
β (r2)e

ikβρ

=
N∑
α=1

(HT − εα + VP )aα(t, b)ψH
α (r1)e

ikασ

+
M∑
β=1

(HP − εβ + VT )bβ(t, b)ψ
(Z)
β (r2)e

ikβρ, (3.21)

where a dot over the coefficients stands for the derivative with respect to time.

Now we successively multiply all terms of the resulting equation by ψH∗
α′ (r1)e

−ikα′σ

for α′ = 1, ..., N and ψ
(Z)∗
β′ (r2)e

−ikβ′ρ for β′ = 1, ...,M . Then, by integrating over

the variables r1 and r2 we obtain a set of coupled first-order differential equa-

tions for the time-dependent coefficients:

iȧα′ + i
M∑
β=1

ḃβK
T
α′β =

N∑
α=1

aαD
T
α′α +

M∑
β=1

bβQ
T
α′β,

i
N∑
α=1

ȧαK
P
β′α + iḃβ′ =

N∑
α=1

aαQ
P
β′α +

M∑
β=1

bβD
P
β′β,

α′ = 1, 2, ..., N, β′ = 1, 2, ...,M.

(3.22)
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Here, DT
α′α and DP

β′β are the direct matrix elements of the forms

DT
α′α =

∫
dr1ψ

H∗
α′ (r1)e

i(kα−kα′ )σ(HT − εα + VP )ψH
α (r1), (3.23)

DP
β′β =

∫
dr2ψ

(Z)∗
β′ (r2)e

i(kβ−kβ′ )ρ(HP − εβ + VT )ψ
(Z)
β (r2) (3.24)

and for the rearrangement matrix elements we have

KP
β′α =

∫
dr1ψ

(Z)∗
β′ (r1 −R)ei(kασ−kβ′ρ)ψH

α (r1), (3.25)

KT
α′β =

∫
dr1ψ

H∗
α′ (r1)e

i(kβρ−kα′σ)ψ
(Z)
β (r1 −R), (3.26)

QP
β′α =

∫
dr1ψ

(Z)∗
β′ (r1 −R)ei(kασ−kβ′ρ)(HT − εα + VP )ψH

α (r1), (3.27)

QT
α′β =

∫
dr1ψ

H∗
α′ (r1)e

i(kβρ−kα′σ)(HP − εβ + VT )ψ
(Z)
β (r1 −R). (3.28)

In the definition of the matrix elements we used the relation between the position

vectors r2 = r1 −R.

The system of equations (3.22) is solved subject to the following initial

boundary condition

aα(−∞, b) = δα,α0 , α = 1, ..., N,

bβ(−∞, b) = 0, β = 1, ...,M,
(3.29)

which assumes that the electron of the target atom is initially in the α0 state

that can be the ground or an excited state of hydrogen.

In the single-centre approach, the total scattering wave function in Eq. (3.11)

is written simpler as

Ψ =
N∑
α=1

aα(t, b)ψH
α (r1)e

ikασ, (3.30)

and the system of differential equations (3.22) reduces to

iȧα′ =
N∑
α=1

aαD
T
α′α, α′ = 1, 2, ..., N, (3.31)

with the initial boundary condition

aα(−∞, b) = δα,α0 , α = 1, ..., N. (3.32)
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3.3 Hydrogenic wave functions

Here we describe the wave functions of a hydrogen-like atom of arbitrary nu-

clear charge Z used in the expansion of the total scattering wave function

(3.11). There are two ways of generating the continuum states within the

CCC approach: Laguerre-basis [117] and wave-packet [131] methods. In this

work, the continuum states are constructed using the wave-packet continuum-

discretisation method.

Each state β of the hydrogen-like atom is described by three quantum num-

bers {n, l,m}, the principal, orbital and magnetic quantum numbers, respec-

tively. For negative-energy states (bound states), the wave functions are sepa-

rated into radial and angular parts as

ψ
(Z)
β (r) = φ

(Z)
nl (r)Ylm(r̂) (3.33)

and for positive-energy states (continuum states) as

ψ
(Z)
β (r) =

√
2

π

∑
lm

il exp(−iηl)R(Z)
κl (r)Y ∗lm(κ̂)Ylm(r̂), (3.34)

where Ylm are the spherical harmonics, κ =
√

2ε is the momentum of the con-

tinuum state, with ε being the energy of the state and ηl is the Coulomb phase

shift.

For bound states, the orthonormal radial wave functions can be written

analytically as

φ
(Z)
nl (r) =

√
Z

(n− l − 1)!

(n+ l)!
e−Zr/n

(2Zr)l+1

n2+l
L2l+1
n−l−1

(
2Zr

n

)
, (3.35)

where L2l+1
n−l−1 denotes an associated Laguerre polynomial. Corresponding ener-

gies of the bound states for each principal number n are found as

εn = − Z
2

2n2
, n = 1, 2, ... (3.36)
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For a positive energy ε = κ2/2, the corresponding continuum radial wave

function is given as

R
(Z)
κl (r) =

1√
2π

(2κr)l+1 exp

(
Zπ

2κ

)
|Γ (l + 1− iZ/κ)|

(2l + 1)!

× e−iκr 1F1

(
iZ

κ
+ l + 1, 2l + 2, 2irk

)
, (3.37)

where 1F1 is a confluent hypergeometric function. These continuum functions are

not square-integrable, and therefore not suitable for the close-coupling approach.

To overcome this problem we construct wave packets to generate continuum

states as

φ
(Z)
il (r) =

1
√
wi

∫ κi

κi−1

dκR
(Z)
κl (r), (3.38)

where

wi = κi − κi−1, (3.39)

and κi =
√

2Ei. Non-overlapping intervals [Ei−1, Ei]Nc
i=1 divide the interval [0, Emax]

into Nc subintervals, where Emax is the maximum allowed energy of the ejected

electron. The intervals [Ei−1, Ei]Nc
i=1 are called discretisation bins, with Nc as the

number of bins.

The wave packets constructed in this way are orthonormal

〈φ(Z)
il |φ

(Z)
jl 〉 = δij, (3.40)

and satisfy the following relation

〈φ(Z)
il |HT |φ(Z)

jl 〉 = εiδij, (3.41)

where εi is the corresponding energy of the bin state defined as

εi =
Ei−1 +

√
Ei−1Ei + Ei
3

. (3.42)
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Then, continuum pseudostates are obtained as

ψ
(Z)
ilm(r) = φ

(Z)
il (r)Ylm(r̂). (3.43)

These continuum pseudostates together with the eigenstates form a basis to

describe the hydrogen-like atom of charge Z. For the wave functions of hydrogen

(i.e., when Z = 1) we use the notation ψH instead of ψ(1).

3.4 Matrix elements

Next, using the definitions of the wave functions we simplify the matrix ele-

ments (3.23)-(3.28) to the form convenient for calculations. As described in

Appendix A, the exponential factors entering in the direct matrix elements in

Eqs. (3.23) and (3.24) can be written as

(kα − kα′)σ = q⊥b+ (εα′ − εα)t, (3.44)

(kβ − kβ′)ρ = q⊥b+ (εβ′ − εβ)t. (3.45)

The same in the rearrangement matrix elements (3.25)–(3.28) are written as

kασ − kβ′ρ = q⊥b+ qα,β′‖vt− vr1, (3.46)

kβρ− kα′σ = q⊥b+ qβ,α′‖vt+ vr1, (3.47)

where q⊥ is the perpendicular component of the momentum transfer which is

the same in all transitions. Parallel components qα,β′‖ and qβ,α′‖ depend on

transition states and given as

qα,β′‖ =
v

2
+
εβ′ − εα

v
, qβ,α′‖ = −v

2
+
εα′ − εβ

v
. (3.48)

As eq⊥b is the same in all matrix elements, it can be factored out and canceled

when the matrix elements are inserted into Eq. (3.22). Therefore, we omit them
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but keep the original notations. However, in calculating differential cross sections

we take these factors into account. With these relations, the matrix elements

can be rewritten in the following forms

DT
α′α = ei(εα′−εα)tD̃T

α′α, (3.49)

DP
β′β = ei(εβ′−εβ)tD̃P

β′β, (3.50)

KP
β′α = ei(εβ′−εα)teiv

2t/2K̃P
β′α, (3.51)

KT
α′β = ei(εα′−εβ)te−iv

2t/2K̃T
α′β, (3.52)

QP
β′α = ei(εβ′−εα)teiv

2t/2Q̃P
β′α, (3.53)

QT
α′β = ei(εα′−εβ)te−iv

2t/2Q̃T
α′β, (3.54)

where

D̃T
α′α =

∫
dr1ψ

H∗
α′ (r1)(HT − εα + VP )ψH

α (r1), (3.55)

D̃P
β′β =

∫
dr2ψ

(Z)∗
β′ (r2)(HP − εβ + VT )ψ

(Z)
β (r2), (3.56)

K̃P
β′α =

∫
dr1ψ

(Z)∗
β′ (r1 −R)e−ivr1ψH

α (r1), (3.57)

K̃T
α′β =

∫
dr1ψ

H∗
α′ (r1)e

ivr1ψ
(Z)
β (r1 −R), (3.58)

Q̃P
β′α =

∫
dr1ψ

(Z)∗
β′ (r1 −R)e−ivr1(HT − εα + VP )ψH

α (r1), (3.59)

Q̃T
α′β =

∫
dr1ψ

H∗
α′ (r1)e

ivr1(HP − εβ + VT )ψ
(Z)
β (r1 −R). (3.60)

According to the definition of the wave functions both for eigenstates and

continuum states, we have

〈ψH
α′|HT − εα|ψH

α 〉 = 0, α, α′ = 1, ..., N, (3.61)

〈ψ(Z)
β′ |HP − εβ|ψ(Z)

β 〉 = 0, β, β′ = 1, ...,M. (3.62)
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Therefore, the direct matrix elements can be further simplified as

D̃T
α′α =

∫
dr1ψ

H∗
α′ (r1)VPψ

H
α (r1), (3.63)

D̃P
β′β =

∫
dr2ψ

(Z)∗
β′ (r2)VTψ

(Z)
β (r2). (3.64)

However, in the rearrangement matrix elements Q̃P and Q̃T , the terms con-

taining (HT − εα)ψH
α and (HP − εβ)ψ

(Z)
β remain for the continuum states (wave

packets representing the continuum). For a function

f(r) =
1√
w

∫ κ2

κ1

dκgκ(r), (3.65)

where gκ is an eigenfunction of an operator h, i.e.,

hgκ(r) = εκgκ(r) =
κ2

2
gκ(r), (3.66)

we have

(h− ε)f(r) =
1√
w

∫ κi

κi−1

dκ

(
κ2

2
− ε
)
gκ(r). (3.67)

Applying this to the positive-energy states of hydrogen and the hydrogen-like

atom, we introduce

χH
α (r) = (HT − εα)ψH

α = χH
α (r)Ylαmα(r̂), (3.68)

with

χH
α (r) =

1
√
wnα

∫ κnα

κnα−1

dκ

(
κ2

2
− εα

)
φH
κlα(r), (3.69)

where εα is the energy of the target electron in channel α. Similarly, we introduce

χ
(Z)
β (r) = (HP − εβ)ψ

(Z)
β = χ

(Z)
β (r)Ylβmβ(r̂), (3.70)

with

χ
(Z)
β (r) =

1
√
wnβ

∫ κnβ

κnβ−1

dκ

(
κ2

2
− εβ

)
φZ
κlβ

(r), (3.71)



The CCC approach to collisions of multiply-charged ions with hydrogen 33

where εβ is the energy of the β state of the hydrogen-like atom. For eigenfunc-

tions ψ
(Z)
β and ψH

α , we have χ
(Z)
β = 0 and χH

α = 0.

Taking into account these definitions and the analytical forms of the poten-

tials VP and VT given in Eq. (3.10), the direct matrix elements can be written

as

D̃T
α′α =

Z

R
δα,α′ − Z

∫
dr1ψ

H∗
α′ (r1)

1

|r1 −R|
ψH
α (r1), (3.72)

D̃P
β′β =

Z

R
δβ,β′ −

∫
dr2ψ

(Z)∗
β′ (r2)

1

|r2 +R|
ψ

(Z)
β (r2) (3.73)

and the rearrangements matrix elements as

K̃P
β′α =

∫
dr1ψ

(Z)∗
β′ (r1 −R)e−ivr1ψH

α (r1), (3.74)

K̃T
α′β =

∫
dr1ψ

H∗
α′ (r1)e

ivr1ψ
(Z)
β (r1 −R), (3.75)

Q̃P
β′α =

Z

R

∫
dr1ψ

(Z)∗
β′ (r1 −R)e−ivr1ψH

α (r1)

− Z
∫
dr1

ψ
(Z)∗
β′ (r1 −R)

|r1 −R|
e−ivr1ψH

α (r1)

+

∫
dr1ψ

(Z)∗
β′ (r1 −R)e−ivr1χH

α (r1), (3.76)

Q̃T
α′β =

Z

R

∫
dr1ψ

H∗
α′ (r1)e

ivr1ψ
(Z)
β (r1 −R)−

∫
dr1

ψH∗
α′

r1
(r1)e

ivr1ψ
(Z)
β (r1 −R)

+

∫
dr1ψ

H∗
α′ (r1)e

ivr1χ
(Z)
β (r1 −R). (3.77)

Now let us define the following operators for arbitrary wave functions f and g

D[f, g] =

∫
drf ∗(r)

1

|R− r|
g(r), (3.78)

A[f, g] =

∫
drf ∗(r −R)e−ivrg(r), (3.79)

B[f, g] =

∫
dr
f ∗(r −R)

|r −R|
e−ivrg(r). (3.80)

Dependence of the operators on R is omitted for brevity. With these definitions
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we can express the matrix elements in the final forms used in calculations

D̃T
α′α = Z

(
1

R
δα,α′ −D[ψH

α′ , ψ
H
α ]

)
, (3.81)

D̃P
β′β =

Z

R
δβ,β′ − (−1)`β+`β′D[ψ

(Z)
β′ , ψ

(Z)
β ], (3.82)

K̃P
β′α = A[ψ

(Z)
β′ , ψ

H
α ], (3.83)

K̃T
α′β = A∗[ψ

(Z)
β , ψH

α′ ], (3.84)

Q̃P
β′α = Z

(
1

R
A[ψ

(Z)
β′ , ψ

H
α ]−B[ψ

(Z)
β′ , ψ

H
α ]

)
+ A[ψ

(Z)
β′ , χ

H
α ], (3.85)

Q̃T
α′β =

Z

R
A∗[ψ

(Z)
β , ψH

α′ ]− (−1)`β+`α′eiv
2tB[ψH

α′ , ψ
(Z)
β ] + A∗[ψ

(Z)
β , χH

α′ ], (3.86)

where the symbol ∗ stands for the complex conjugation. In obtaining the final

forms of the matrix elements we used a change of variable whenever needed and

the relation ψnlm(−r) = (−1)lψnlm(r). Also, we substituted the variable r2 with

the equivalent form of (r1 − R). From the equations (3.81)-(3.86) we can see

that calculating three types of integrals enables to derive all the matrix elements

needed in solving the set of differential equations (3.22).

3.4.1 Evaluation of matrix elements

In this subsection, we provide the calculation details for integrals D[ψβ′ , ψβ]

needed for the direct matrix elements as well as A[ψβ′ , ψα] and B[ψβ′ , ψα] needed

for the rearrangement matrix elements. The first integral is calculated in spher-

ical and the latter two in spheroidal coordinates.

Direct matrix elements

First, we deal with the integral operator D for the wave functions ψβ′ and ψβ

(which can be the wave functions of either hydrogen or the hydrogen-like atom)
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given as

D[ψβ′ , ψβ] =

∫
drψ∗β′(r)

1

|r −R|
ψβ(r). (3.87)

Radial and angular parts of the wave functions ψβ′ and ψβ can be separated as

ψ∗β′(r) = φnβ′mβ′ (r)Y
∗
lβ′mβ′

(r̂), ψβ(r) = φnβmβ(r)Ylβmβ(r̂). (3.88)

We also use the following expansion

1

|r −R|
= 4π

∑
λµ

1

2λ+ 1
Uλ(R, r)Y

∗
λµ(R̂)Yλµ(r̂), (3.89)

with

Uλ(R, r) =

{
Rλ/rλ+1 for r ≥ R,
rλ/Rλ+1 for r < R.

(3.90)

Inserting these into Eq. (3.87) we obtain

D[ψβ′ , ψβ] =4π
∑
λµ

Y ∗λµ(R̂)

2λ+ 1

∫
dr r2φnβ′mβ′ (r)Uλ(R, r)φnβmβ(r)

×
∫
dr̂Ylβmβ(r̂)Yλµ(r̂)Y ∗lβ′mβ′ (r̂).

(3.91)

The spherical harmonics and Clebsch-Gordan coefficients satisfy the following

relation ∫
dr̂Ylβmβ(r̂)Yλµ(r̂)Y ∗lβ′mβ′ (r̂) =

√
[λ][lβ]

4π[lβ′ ]
C
lβ′0

lβ0 λ0C
lβ′mβ′

lβmβ λµ, (3.92)

where [l] = 2l + 1. This yields the final expression for the integral

D[ψβ′ , ψβ] =

√
4π[lβ]

[lβ′ ]

∑
λµ

Y ∗λµ(R̂)√
[λ]

C
lβ′0

lβ0 λ0C
lβ′mβ′

lβmβ λµ

×
∫
dr r2φnβ′mβ′ (r)Uλ(R, r)φnβmβ(r)

=

√
4π[lβ]

[lβ′ ]

∞∑
λ=|q|

Y ∗λµ(R̂)√
[λ]

C
lβ′0

lβ0 λ0C
lβ′mβ′

lβmβ λq

∫
dr r2φnβ′mβ′ (r)Uλ(R, r)φnβmβ(r),

(3.93)

where q = mβ′−mβ. In the second line of the equation we used well-known prop-

erties of the Clebsch-Gordan coefficients to simplify the sums. The remaining

radial integrals are calculated numerically.
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Rearrangement matrix elements

Here we present our calculation method for the integrals A and B for arbitrary

wave functions ψβ′ and ψα. Specifically, we have

A[ψβ′ , ψα] =

∫
dr1ψ

∗
β′(r1 −R)e−ivr1ψα(r1), (3.94)

B[ψβ′ , ψα] =

∫
dr1

ψ∗β′(r1 −R)

|r1 −R|
e−ivr1ψα(r1). (3.95)

These are calculated using a molecular frame. First, the integrals are written in

a more convenient form for application of the method. The vector r1 and r2 are

expressed in terms of r (see Fig. 3.2) as

r1 = r +R/2 (3.96)

and

r2 = r −R/2. (3.97)

Therefore, the integral A can be written as

A[ψβ′ , ψα] = e−iv
2t/2

∫
drψ∗β′(r −R/2)e−ivrψα(r +R/2). (3.98)

Next, we express the wave functions in a molecular frame and use spheroidal co-

ordinates. In this frame, the origin of a coordinate system is set in the midpoint

of the two centres (the projectile and the target nucleus) and z′ axis is directed

along the vector R as in Fig. 3.3.

In the molecular frame, absolute values of the vectors remain unchanged and

angular parts are rotated using the Wigner d-matrix dlmq(Θ) [139]. Accordingly,

the spherical harmonics can be expanded as

Ylm(r̂) =
∑
q

Ylq(r̂
′)dlmq(Θ), (3.99)
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Figure 3.3: The Jacobi coordinates for the scattering system. The origin is set at the
midpoint of the nuclei.

where Θ is the polar angle of R, the position vector of the projectile relative to

the target nucleus, and given as

Θ = arcsin

(
b

R

)
. (3.100)

Then, Eq. (3.98) is written as

A[ψβ′ , ψα] = e−iv
2t/2
∑
q,q′

d
lβ′

mβ′q
′(Θ)d lαmαq(Θ)

∫
dr′ψ∗β′(r

′
2)e
−iv′·r′ψα(r′1). (3.101)

The absolute values and polar angles of the vectors r′1, r
′
2 and r′ can be expressed

in the new cartesian coordinates (x′, y′, z′) as

r1 =
√

(z′ −R/2)2 + x′2, (3.102)

r2 =
√

(z′ +R/2)2 + x′2, (3.103)

r =
√
z′2 + x′2 (3.104)
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and

cos θ′r1 =
z′ −R/2

r1
, (3.105)

cos θ′r2 =
z′ +R/2

r2
, (3.106)

cos θ′r =
z′

r
. (3.107)

As the absolute values of the vectors r′ and r are the same, we kept the notation

r for the absolute value of the vector r′ too (the same for r′1 and r′2). Now

we introduce spheroidal coordinates (η, τ, ϕ), where coordinates of the electron

(x′, y′, z′) are described as

x′ =
R

2

√
(η2 − 1)(1− τ 2) cosϕ,

y′ =
R

2

√
(η2 − 1)(1− τ 2) sinϕ,

z′ =
R

2
ητ, (3.108)

with 1 ≤ η < ∞, −1 ≤ τ ≤ 1 and 0 ≤ ϕ ≤ 2π. In this new coordinates,

expressions (3.102)-(3.107) take the following forms

r1 =
R

2
(η − τ), (3.109)

r2 =
R

2
(η + τ), (3.110)

r =
R

2

√
η2 + τ 2 − 1 (3.111)

and

cos θ′r1 =
ητ − 1

η − τ
, (3.112)

cos θ′r2 =
ητ + 1

η + τ
, (3.113)

cos θ′r =
ητ√

η2 + τ 2 − 1
. (3.114)
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In Eqs. (3.109)-(3.111) we set ϕ = 0 in x′, because r1, r2 and r are independent

of ϕ. Direction of the vector R was defined by v, therefore

cos θ′v = cos θ′R =
vt

R
, sin θ′v = sin θ′R =

b

R
. (3.115)

Now we calculate the dot product of the vectors v′ and r′, which is used in

Eq. (4.88), as

v′·r′ = vr (sin θ′v sin θ′r cosϕ+ cos θ′v cos θ′r) . (3.116)

Taking into account Eqs. (3.114), (3.115) and

sin θ′r =

√
(η2 − 1)(1− τ 2)√
η2 + τ 2 − 1

, (3.117)

we obtain the expression for the dot product in terms of spheroidal coordinates

v′·r′ = vb

2

√
(η2 − 1)(1− τ 2) cosϕ+

vt2

2
ητ. (3.118)

The spherical harmonics are written as

Ylm(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (3.119)

where Pm
l are the associated Legendre polynomials. Using these we can write

Eq. (4.88) as

A[ψβ′ , ψα] = e−iv
2t/2 R3

32π2

√
(2lβ′ + 1)(2lα + 1)

×
∑
q,q′

d
lβ′

mβ′q
′(Θ)d lαmαq(Θ)

√
(lβ′ − q′)!(lα − q)!
(lβ′ + q′)!(lα + q)!

×
∫ ∞
1

dη

∫ 1

−1
dτ(η2 − τ 2)e−i

vt2

2
ητφnβ′ lβ′

(
R(η + τ)

2

)
φnαlα

(
R(η − τ)

2

)
× P q′

lβ′

(
ητ + 1

η + τ

)
P q
lα

(
ητ − 1

η − τ

)∫ 2π

0

dϕei
vb
2

√
(η2−1)(1−τ2) cosϕei(mα−mβ′ )ϕ.

(3.120)
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We note that ∫ 2π

0

eix cosϕeimϕdϕ = 2πimJm(x), (3.121)

where Jm are the Bessel functions, which have the following property

Jm(−x) = (−1)mJm(x). (3.122)

By taking this fact into account Eq. (3.120) can be further simplified as

A[ψβ′ , ψα] = e−iv
2t/2 R

3

16π

√
(2lβ′ + 1)(2lα + 1)

×
∑
q,q′

(−i)q−q′d lβ′mβ′q′(Θ)d lαmαq(Θ)

√
(lβ′ − q′)!(lα − q)!
(lβ′ + q′)!(lα + q)!

×
∫ ∞
1

dη

∫ 1

−1
dτ(η2 − τ 2)e−i

vt2

2
ητφnβ′ lβ′

(
R(η + τ)

2

)
φnαlα

(
R(η − τ)

2

)
× P q′

lβ′

(
ητ + 1

η + τ

)
P q
lα

(
ητ − 1

η − τ

)
Jq−q′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
.

(3.123)

It can be seen that the integrand in the equation

B[ψβ′ , ψα] =

∫
dr1

ψ∗β′(r1 −R)

|r1 −R|
e−ivr1ψα(r1) (3.124)

differs from the integrand in A[ψβ′ , ψα] only by the factor |r1−R| divided in the

first wave function, thereforeB[ψβ′ , ψα] can be found by replacing φnβ′ lβ′ (R(η + τ)/2)

with φnβ′ lβ′ (R(η + τ)/2) / (R(η + τ)/2) in the final expression Eq. (3.123), that

is

B[ψβ′ , ψα] = e−iv
2t/2R

2

8π

√
(2lβ′ + 1)(2lα + 1)

×
∑
q,q′

(−i)q−q′d lβ′mβ′q′(Θ)d lαmαq(Θ)

√
(lβ′ − q′)!(lα − q)!
(lβ′ + q′)!(lα + q)!

×
∫ ∞
1

dη

∫ 1

−1
dτ(η − τ)e−i

vt2

2
ητφnβ′ lβ′

(
R(η + τ)

2

)
φnαlα

(
R(η − τ)

2

)
× P q′

lβ′

(
ητ + 1

η + τ

)
P q
lα

(
ητ − 1

η − τ

)
Jq−q′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
.

(3.125)
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The remaining integrals entering the final expressions (3.123) and (3.125)

are evaluated numerically.

3.5 Chapter summary

We presented details of the theoretical approach based on the convergent close-

coupling method for a three-body problem of fully-stripped projectiles scattering

on the ground and excited states of hydrogen. We applied the wave-packet ap-

proach to discretise the continuum for both target and projectile, and obtained

the pseudostates to describe the positive-energy states. The eigenstates and

pseudostates of both target and projectile (only target in the single-centre ap-

proach) were used to expand the total scattering wave function. This expansion

was inserted into the exact three-body Schrödinger equation to obtain a system

of differential equations for the time-dependent transition amplitudes. The co-

efficients present in the system of equations, consist of direct and rearrangement

matrix elements. The matrices were simplified using spherical and spheroidal

coordinates and brought to the forms ready for numerical calculations. Our

theoretical approach for the four-body proton-helium system will be described

in the next chapter.



Chapter 4

Wave-packet convergent
close-coupling approach to
proton collisions with helium

4.1 Introduction

In this chapter we develop a semiclassical wave-packet convergent close-coupling

(WP-CCC) method for proton scattering on helium. We treat the latter as a

four-body system of the projectile, the target nucleus and two electrons, where

the electron-electron correlation effects are fully taken into account. A frozen-

core approximation is employed, where one of the electrons remains in the ground

state of He+ throughout the collision. Under this assumption the helium wave

functions and corresponding energy levels are obtained numerically by solving

the Schrödinger equation for the helium atom. The positive-energy states of the

target and the hydrogen atom formed after electron capture by the projectile

are constructed using the wave-packet approach.

The projectile motion relative to the target nucleus is treated classically as

in the previous chapter. We assume that the projectile moves along the straight-

line trajectory R ≡ R(t) = b+vt, where b is an impact parameter and v is the

42
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initial velocity of the projectile relative to the target (see Fig. 4.1). Vectors b

and v are perpendicular to each other.
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Figure 4.1: An illustration of the coordinate system, with the origin set at the target
nucleus.

The total scattering wave function is expanded in a basis made of target-

and projectile-centred functions. The projectile-centred functions are written

as products of the He+ and H wave functions. In the single-centre approach

only target-centred functions are used. We follow the same procedure described

in Chapter 3 to obtain a set of coupled differential equations for the transition

amplitudes. The obtained transition amplitudes are used to calculate various

cross sections.

The indices P and T denote the projectile and the target, respectively. In

this chapter, the projectile is proton and the target is helium.
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4.2 The Schrödinger equation for proton colli-

sions with helium

In the stationary formalism, the total scattering wave function Ψ of the proton-

helium system satisfies the exact four-body time-independent Schrödinger equa-

tion

(H − E)Ψ = 0, (4.1)

where H is the full 4-body Hamiltonian and E is the total energy. The latter

can be written in the following alternative forms

E =
k2α
2µ1

+ EHe
α

=E0 +
k21β
2µ2

+ ε1β

=E0 +
k22β
2µ2

+ ε2β, (4.2)

where E0 is the ground state energy of the He+ ion. Index α denotes the full

set of quantum numbers representing a state in the direct p-He channel. Index

β denotes the same but in the rearrangement channel H-He+, formed after the

projectile captures the active electron of the target. Furthermore, kα is the

momentum of the projectile relative to the helium atom in the α channel, µ1 =

mPmT/(mP + mT ) is the reduced mass of this system with mP and mT being

masses of the projectile and the target, and EHe
α is the energy of helium with the

active electron being in the α channel, k1β (and k2β) is the momentum of the

formed hydrogen atom relative to the residual helium ion in the 1β (2β) channel,

µ2 = (mP + 1)(mT − 1)/(mP + mT ) is the reduced mass, and ε1β (ε2β) is the

energy of the electron of the hydrogen atom in the 1β (2β) channel. Channel 1β

is the same as channel 2β but with the electron of the residual target and that

of the hydrogen atom exchanged. In the work we refer to channels of the active
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electron as helium channels for simplicity, e.g., α channel of helium means that

the active electron of helium is in the α channel.

The total Hamiltonian H of this scattering system can be represented in the

following equivalent forms

H =Kσ +HT1 +HT2 + VP + V12, (4.3)

H =Kρ1 +HP1 +HT2 + V1, (4.4)

H =Kρ2 +HP2 +HT1 + V2, (4.5)

where

Kσ = −∇
2
σ

2µ1

, Kρi = −
∇2
ρi

2µ2

, i = 1, 2 (4.6)

are kinetic-energy operators,

VP =
2

R
− 1

x1
− 1

x2
(4.7)

is the interaction between the projectile and the target,

V1 =
2

R
− 2

r2
− 1

x1
+

1

|r1 − r2|
(4.8)

is the interaction between the hydrogen atom, formed after one of the electrons

captured by the projectile, and the remaining helium ion,

V2 =
2

R
− 2

r1
− 1

x2
+

1

|r1 − r2|
(4.9)

is the same as the latter one but for another electron captured by the projectile,

V12 =
1

|r1 − r2|
. (4.10)

is the interaction between two electrons of the target. The Hamiltonians of

the hydrogen atom and the He+ ion formed by each of the target electrons are

written as

HPi = −
∇2
xi

2
− 1

xi
, i = 1, 2, (4.11)

HTi = −
∇2
ri

2
− 2

ri
, i = 1, 2, (4.12)
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respectively. Here R, r1, and r2 are the position vectors of the incident proton

and the two electrons relative to the helium nucleus, x1 and x2 are the position

vectors of the electrons relative to the incident proton, σ is the position vector

of the proton relative to centre of mass of the helium atom, and ρ1 (ρ2) is

the position of the proton and the first (second) electron system relative to the

helium ion (see Fig. 4.2).
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  P	
  

Figure 4.2: The Jacobi coordinates for the proton-helium system.

With these definitions the Hamiltonian of the helium atom is written as

HT = HT1 +HT2 + V12. (4.13)

We assume that the total electronic spin is conserved in the collision process

and neglect spin effects. Then the total scattering wave function is expanded in
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terms of N target-centred and M projectile-centred pseudostates as

Ψ =
N∑
α=1

aα(t, b)ψHe
α (r1, r2)e

ikασ

+
1√
2

M∑
β=1

bβ(t, b)
[
ψH
β (x1)ψ

He+

1s (r2)e
ik1βρ1 + ψH

β (x2)ψ
He+

1s (r1)e
ik2βρ2

]
,

(4.14)

where ψHe
α is the wave function for helium, which will be described below, ψH

β

and ψHe+

1s are the wave function of hydrogen and the ground-state wave function

of He+, respectively, defined in Chapter 3. The exponential argument consists

of a dot product of two vectors. The expansion coefficients aα(t, b) and bα(t, b)

at t → +∞ represent the transition amplitudes into the various target and

projectile states.

We substitute the expansion (4.14) into Eq. (4.1) taking into account three

equivalent forms of the total Hamiltonian (4.3)-(4.5):

N∑
α=1

(Kσ +HT1 +HT2 + VP + V12 − E)aα(t, b)ψHe
α (r1, r2)e

ikασ

+
1√
2

M∑
β=1

[
(Kρ1 +HP1 +HT2 + V1 − E)bβ(t, b)ψH

β (x1)ψ
He+

1s (r2)e
ik1βρ1

+ (Kρ2 +HP2 +HT1 + V2 − E) bβ(t, b)ψH
β (x2)ψ

He+

1s (r1)e
ik2βρ2

]
= 0. (4.15)

First, we note that for the ground-state wave function of the He+ we have

(HTi − E0)ψ
He+

1s (ri) = 0, i = 1, 2 (4.16)

and therefore the terms containing these operators cancel out in the sums. With

this and taking into account the the actions of the gradient and Laplacian op-

erators on the plane waves

∇σeikασ = ikαe
ikασ, ∇ρ1eik1βρ1 = ik1βe

ik1βρ1 , ∇ρ2eik2βρ2 = ik2βe
ik2βρ2 , (4.17)

∇2
σe

ikασ = −k2αeikασ, ∇2
ρ1
eik1βρ1 = −k2βeik1βρ1 , ∇2

ρ2
eik2βρ2 = −k2βeik2βρ2 ,

(4.18)
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and the relations

kα
µ1

∇σ =
∂

∂t
,
k1β
µ2

∇ρ1 =
∂

∂t
,
k2β
µ2

∇ρ2 =
∂

∂t
, (4.19)

Eq. (4.15) can be rewritten as

N∑
α=1

ȧα(t, b)ψHe
α (r1, r2)e

ikασ

+
1√
2

M∑
β=1

ḃβ(t, b)
[
ψH
β (x1)ψ

He+

1s (r2)e
ik1βρ1 + ψH

β (x2)ψ
He+

1s (r1)e
ik2βρ2

]
=

N∑
α=1

(HT + VP − EHe
α )aα(t, b)ψHe

α (r1, r2)e
ikασ

+
1√
2

M∑
β=1

[
(HP1 + V1 + V12 − εHβ )bβ(t, b)ψH

β (x1)ψ
He+

1s (r2)e
ik1βρ1

+
(
HP2 + V2 + V12 − εHβ

)
bβ(t, b)ψH

β (x2)ψ
He+

1s (r1)e
ik2βρ2

]
= 0. (4.20)

In obtaining the last expression we used the definitions of the total energies and

neglected the terms ∇2
σaα, ∇2

ρ1
bβ and ∇2

ρ2
bβ, because coefficients aα and bβ vary

slowly with t and are very small.

Next we successively multiply all terms of Eq. (4.20) by ψHe∗
α′ (r1, r2)e

−ikα′σ

for α′ = 1, ..., N and ψH∗
β′ (x1)ψ

He+

1s (r2)e
−ik1β′ρ1 + ψH∗

β′ (x2)ψ
He+

1s (r1)e
−ik2β′ρ2 for

β′ = 1, ...,M from both sides. After integrating over all variables except for

σ,ρ1 and ρ2, we obtain a set of coupled first-order differential equations for the

time-dependent coefficients:

iȧα′ + i

M∑
β=1

ḃβK
T
α′β =

N∑
α=1

aαD
T
α′α +

M∑
β=1

bβQ
T
α′β,

i
N∑
α=1

ȧαK
P
β′α + i

M∑
β=1

ḃβL
P
β′β =

N∑
α=1

aαQ
P
β′α +

M∑
β=1

bβD
P
β′β,

α′ = 1, 2, ..., N, β′ = 1, 2, ...,M.

(4.21)
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Here the direct matrix elements have the forms

DT
α′α =〈kα′ , ψHe

α′ |HT − EHe
α + VP |ψHe

α ,kα〉, (4.22)

LPβ′β =
1

2

∑
i,j=1,2

〈kiβ′ , ψH
β′ , ψ

He+

1s |ψH
β , ψ

He+

1s ,kjβ〉, (4.23)

DP
β′β =

1

2

∑
i,j=1,2

〈kiβ′ , ψH
β′ , ψ

He+

1s |HPi − εHβ |ψH
β , ψ

He+

1s ,kjβ〉

+
1

2

∑
i,j=1,2

〈kiβ′ , ψH
β′ , ψ

He+

1s |Vi|ψH
β , ψ

He+

1s ,kjβ〉. (4.24)

For the rearrangement matrix elements we have

KP
β′α =

1√
2

∑
i=1,2

〈kiβ′ , ψH
β′ , ψ

He+

1s |ψHe
α ,kα〉, (4.25)

KT
α′β =

1√
2

∑
i=1,2

〈kα′ , ψHe
α′ |ψH

β , ψ
He+

1s ,kiβ〉, (4.26)

QP
β′α =

1√
2

∑
i=1,2

〈kiβ′ , ψH
β′ , ψ

He+

1s |HT − EHe
α + VP |ψHe

α ,kα〉, (4.27)

QT
α′β =

1√
2

∑
i=1,2

〈kα′ , ψHe
α′ |HPi − εHβ + Vi|ψH

β , ψ
He+

1s ,kiβ〉. (4.28)

We will return to the explicit calculations of the matrix elements after defining

the wave functions for the helium pseudostates.

The above system of equations is solved subject to the initial boundary

condition

aα(−∞, b) = δα,1s, α = 1, ..., N,

bβ(−∞, b) = 0, β = 1, ...,M,
(4.29)

which assumes that the active target electron is initially in the 1s orbital.

The single-centre approach to proton-helium collisions is much simpler in

comparison with the two-centre one, due to the absence of capture channels.

In this case, the total scattering wave function is expanded using only target-

centred functions as

Ψ =
N∑
α=1

aα(t, b)ψHe
α (r1, r2)e

ikασ. (4.30)
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As a result the set of differential equations (4.21) for the time-dependent coeffi-

cients simplifies to

iȧα′ =
N∑
α=1

aαD
T
α′α, α′ = 1, 2, ..., N, (4.31)

where DT
α′α is given by Eq. (4.22).

Helium wave functions

The target description is more complicated in this case, since we have a two-

electron system and electron-electron correlation as well as electron-exchange

effects must be incorporated. The Schrödinger equation for this system cannot

be solved analytically. Therefore, a numerical approach needs to be developed

to find the solutions. Various existing theoretical works revealed that a careful

choice of the helium wave functions is important in dealing with collisions of ions

with the helium atom. Especially in the close-coupling approach they should

be defined very accurately to obtain good convergence. In the present work

we use the wave-packet-based description of the helium atom in the frozen-core

approximation developed in [140]. Assuming that the total electronic spin of He

in the ground state, S = 0, is conserved during the collision, we write the spatial

part of the wave function in the symmetric form

ψHe
α (r1, r2) = ψα(r1)ψ

(Z)
1s (r2) + ψα(r2)ψ

(Z)
1s (r1), (4.32)

where ψ
(Z)
1s is the 1s orbital of the hydrogen-like atom of nuclear charge Z given

in (3.35). This is a generalisation of the wave function used by Abdurakhmanov

et al. [140], where it was set Z = 2 to correspond to the ground-state wave

functions of He+.

To obtain the functions ψα for each state α, we numerically solve the Schrödinger
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equation for helium

HTψ
He
α (r1, r2) = Eαψ

He
α (r1, r2), (4.33)

where Eα is the total energy of the state α. Solutions of this equation depend

on the parameter Z. We slightly vary Z so that the total ground-state energy

of the helium atom is equal to the experimental value of −2.904 a.u. [141].

Substituting the expansion (4.32) of the helium wave functions into Eq. (4.33),

then projecting the result onto ψ
(Z)
1s , and taking into account 〈ψ(Z)

1s |ψ
(Z)
1s 〉 = 1,

we obtain the following integro-differential equation for ψα:[
∇2
r1
− 2V1(r1) + 2εα + 2(2− z)V2

]
ψα(r1)

+

(
2εα +

2(2− z)

r1

)〈
ψ

(Z)
1s

∣∣ψα〉ψ(Z)
1s (r1) +

〈
ψ

(Z)
1s

∣∣∣∣∇2
r2

+
4

r2

∣∣∣∣ψα〉
r1

ψ
(Z)
1s (r1)

− 2

〈
ψ

(Z)
1s

∣∣∣∣ 1

|r1 − r2|

∣∣∣∣ψα〉
r1

ψ
(Z)
1s (r1) = 0,

(4.34)

where

V1(r1) = −2/r1 +
〈
ψ

(Z)
1s

∣∣ 1

|r1 − r2|
∣∣ψ(Z)

1s

〉
r1

(4.35)

is the Hartree potential for the electron of the hydrogen-like ion of charge Z,

and

V2 =
〈
ψ

(Z)
1s

∣∣ 1

r2

∣∣ψ(Z)
1s

〉
=

∫ ∞
0

ψ
(Z)
1s (r2)

1

r2
ψ

(Z)
1s (r2)dr2 . (4.36)

Separating the radial and angular parts of the wave functions for both bound

and continuum states, we obtain from Eq. (4.34) the following equation for the

radial function Rα(r):

d2Rα(r)

dr2
−
[
l(l + 1)

r2
− 4

r
+ 2W0[ψ

(Z)
1s , ψ

(Z)
1s ]− 2εα − 2(2− z)V2

]
Rα(r)

=

[
2

2l + 1
Wl[ψ

(Z)
1s , Rα]− 2

∫ ∞
0

ψ
(Z)
1s (t)W0[ψ

(Z)
1s , ψ

(Z)
1s ]Rα(t)dt

−
(

2εα +
2(2− z)

r

)∫ ∞
0

ψ
(Z)
1s (t)Rα(t)dt

]
ψ

(Z)
1s (r),

(4.37)
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where

Wl[f, g] =
1

rl+1

∫ r

0

f(t)g(t)tldt+ rl
∫ ∞
r

f(t)g(t)

tl+1
dt. (4.38)

We use an iterative approach to solve Eq. (4.37), where the Numerov method

is applied in each iteration to find solutions of the linear inhomogeneous second-

order differential equation for R
(i)
α (r), where i is the index of iteration. R

(0)
α (r)

is found by replacing the right-hand side of Eq. (4.37) with zero. To ensure

sufficient accuracy of the solution, the number of iterations Nit was set to be

large enough so that for all values of r there is at least four digit agreement

between R
(Nit−1)
α (r) and R

(Nit)
α (r).

Equation (4.37) was solved several times by slowly varying the parameter

Z until the corresponding ground-state total energy of helium best matches to

the experimental value. The specific value of Z was found to be 1.99. Table 4.1

presents the total energies of the helium atom, where one electron is frozen in the

1s orbital while the other one is active. The calculated total energies of various

states of helium are compared with the theoretical results of Abdurakhmanov

et al. [140] and Slim et al. [47], and also with the measured values of Bashkin

and Stoner [141]. Except for the ground state, all energies agree up to three

digits in all of the aforementioned works.

For negative energies this system has a discrete set of solutions. For positive

energies the equation has a continuous solution with a non-normalisable radial

wave function. Therefore, as in the case of hydrogen, we construct wave packets

using the helium continuum-state wave functions. We define

φil(r) = νil

∫ κi

κi−1

dκRκl(r), (4.39)

where νil is the normalisation coefficient. Discretisation points κi, i = 1, .., Nc

and Emax are defined in a similar way as for hydrogen. Then the wave packets
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Table 4.1: Total binding energy (in a.u.) of the helium atom in a specific state. Only
the active orbitals in the (1snl) singlet states are listed in the first column.

state present Ref. [140] Ref. [47] Expt. [141]

1s -2.9040 -2.8725 -2.8655 -2.9036
2s -2.1432 -2.1434 -2.1430 -2.1459
3s -2.0605 -2.0606 -2.0604 -2.0613
4s -2.0332 -2.0333 -2.0309 -2.0336
2p -2.1223 -2.1224 -2.1224 -2.1239
3p -2.0546 -2.0547 -2.0547 -2.0552
4p -2.0308 -2.0309 -2.0307 -2.0311
3d -2.0555 -2.0556 -2.0555 -2.0556

based on the two-electron helium wave functions are written as

ψHe
α (r1, r2) =ψ

(Z)
1s (r2)φnαlα(r1)Ylαmα(r̂1) + ψ

(Z)
1s (r1)φnαlα(r2)Ylαmα(r̂2), (4.40)

where the normalisation coefficients are given as

νnαlα =
[
2
(
〈φnαlα|φnαlα〉+ δlα0δmα0〈φnαlα|φ

(Z)
1s 〉
)]−1/2

(4.41)

and φ
(Z)
1s is the radial part of the function ψ

(Z)
1s .

Both hydrogen and helium wave packets are referred to as bin states. To-

gether with the eigenstates, they form the bases for the hydrogen and helium

atoms. We note that the basis parameters Emax and Nc must be sufficiently

large to obtain accurate cross sections. Their choice will be discussed in the

results chapter.

4.3 Matrix elements

Matrix elements (4.23)–(4.28) are written in integral forms as

DT
α′α =

∫
dr1dr2ψ

He∗
α′ (r1, r2)e

i(kασ−kα′σ)
(
HT − EHe

α + VP
)
ψHeα (r1, r2), (4.42)
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LPβ′β =
1

2

[∫
dr1dr2ψ

H∗
β′ (x1)ψ

He+

1s (r2)e
i(k1β−k1β′ )ρ1ψHβ (x1)ψ

He+

1s (r2)

+

∫
dr1dr2ψ

H∗
β′ (x1)ψ

He+

1s (r2)e
i(k2βρ2−k1β′ρ1)ψHβ (x2)ψ

He+

1s (r1)

+

∫
dr1dr2ψ

H∗
β′ (x2)ψ

He+

1s (r1)e
i(k1βρ1−k2β′ρ2)ψHβ (x1)ψ

He+

1s (r2)

+

∫
dr1dr2ψ

H∗
β′ (x2)ψ

He+

1s (r1)e
i(k2β−k2β′ )ρ2ψHβ (x2)ψ

He+

1s (r1)

]
, (4.43)

DP
β′β

=
1

2

[∫
dr1dr2ψ

H∗
β′ (x1)ψ

He+

1s (r2)e
i(k1β−k1β′ )ρ1

(
HP1 − εHβ + V1

)
ψHβ (x1)ψ

He+

1s (r2)

+

∫
dr1dr2ψ

H∗
β′ (x1)ψ

He+

1s (r2)e
i(k2βρ2−k1β′ρ1)

(
HP2 − εHβ + V2

)
ψHβ (x2)ψ

He+

1s (r1)

+

∫
dr1dr2ψ

H∗
β′ (x2)ψ

He+

1s (r1)e
i(k1βρ1−k2β′ρ2)

(
HP2 − εHβ + V1

)
ψHβ (x1)ψ

He+

1s (r2)

+

∫
dr1dr2ψ

H∗
β′ (x2)ψ

He+

1s (r1)e
i(k2β−k2β′ )ρ2

(
HP1 − εHβ + V2

)
ψHβ (x2)ψ

He+

1s (r1)

]
.

(4.44)

For the rearrangement matrix elements we have

KP
β′α =

1√
2

[∫
dr1dr2ψ

H∗
β′ (x1)ψ

He+

1s (r2)e
i(kασ−k1β′ρ1)ψHeα (r1, r2)

+

∫
dr1dr2ψ

H∗
β′ (x2)ψ

He+

1s (r2)e
i(kασ−k2β′ρ2)ψHeα (r1, r2)

]
, (4.45)

KT
α′β =

1√
2

[∫
dr1dr2ψ

He∗
α′ (r1, r2)e

i(k1βρ1−kα′σ)ψHβ (x1)ψ
He+

1s (r2)

+

∫
dr1dr2ψ

He∗
α′ (r1, r2)e

i(k2βρ2−kα′σ)ψHβ (x2)ψ
He+

1s (r2)

]
, (4.46)

QP
β′α =

1√
2

[∫
dr1dr2ψ

H∗
β′ (x1)ψ

He+

1s (r2)e
i(kασ−k1β′ρ1)

(
HT − EHe

α + VP
)
ψHeα (r1, r2)

+

∫
dr1dr2ψ

H∗
β′ (x2)ψ

He+

1s (r2)e
i(kασ−k2β′ρ2)

(
HT − EHe

α + VP
)
ψHeα (r1, r2)

]
,

(4.47)

QT
α′β =

1√
2

[∫
dr1dr2ψ

He∗
α′ (r1, r2)e

i(k1βρ1−kα′σ)
(
HP1 − εHβ + V1

)
ψHβ (x1)ψ

He+

1s (r2)

+

∫
dr1dr2ψ

He∗
α′ (r1, r2)e

i(k2βρ2−kα′σ)
(
HP2 − εHβ + V2

)
ψHβ (x2)ψ

He+

1s (r2)

]
.

(4.48)
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In this section we reduce the matrix elements (4.42)–(4.48) into forms that

are suitable for numerical evaluation by taking into account the definitions of

the wave functions. As described in Appendix B, exponential factors entering

the direct matrix elements can be written as follows:

(kα − kα′)σ = q⊥b+ (εα′ − εα)t, (4.49)

(k1β − k1β′)ρ1 = q⊥b+ (εβ′ − εβ)t, (4.50)

(k2β − k2β′)ρ1 = q⊥b+ (εβ′ − εβ)t, (4.51)

k1βρ1 − k2β′ρ2 = q⊥b+ (εβ′ − εβ)t, (4.52)

k2βρ1 − k1β′ρ2 = q⊥b+ (εβ′ − εβ)t (4.53)

and the exponential terms in the rearrangement matrix elements as

kασ − k1β′ρ1 = kασ − k2β′ρ2 = q⊥b+ qα,β′‖vt− vr1, (4.54)

k1βρ1 − kα′σ = k2βρ1 − kα′σ = q⊥b+ qβ,α′‖vt+ vr1, (4.55)

where q⊥ is the perpendicular component of the momentum transfer, which is

the same in all transitions. The parallel components qα,β′‖ and qβ,α′‖ depend on

the transition states and are given as

qα,β′‖ =
v

2
+
εβ′ − εα

v
, qβ,α′‖ = −v

2
+
εα′ − εβ

v
. (4.56)

As eq⊥b is the same in all matrix elements, it can be factored out and cancels

when the matrix elements are inserted into Eq. (4.21). Therefore, we omit them

but keep the original notations. Using these results and summing similar terms,

the matrix elements (4.42)–(4.48) can be written in the forms

DT
α′α = 2ei(εα′−εα)tD̃T

α′α, (4.57)

LPβ′β = δβ′,β + ei(εβ′−εβ)tL̃Pβ′β, (4.58)

DP
β′β = ei(εβ′−εβ)tD̃P

β′β, (4.59)
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KP
β′α =

√
2ei(εβ′−εα)teiv

2t/2K̃B
β′α, (4.60)

KT
α′β =

√
2ei(εα′−εβ)te−iv

2t/2K̃A
α′β, (4.61)

QP
β′α =

√
2ei(εβ′−εα)teiv

2t/2Q̃P
β′α, (4.62)

QT
α′β =

√
2ei(εα′−εβ)te−iv

2t/2Q̃T
α′β, (4.63)

where

D̃T
α′α =

∫
dr1dr2ψ

He∗
α′ (r1, r2)VPψ

He
α (r1, r2), (4.64)

L̃Pβ′β =

∫
dr1dr2ψ

H∗
β′ (r2 −R)ψHe+

1s (r1)e
−ivr2ψH

β (r1 −R)ψHe+

1s (r2)e
ivr1 , (4.65)

D̃P
β′β =

∫
dr1dr2ψ

H∗
β′ (r1 −R)ψHe+

1s (r2)V1ψ
H
β (r1 −R)ψHe+

1s (r2)

+

∫
dr1dr2ψ

H∗
β′ (r2 −R)ψHe+

1s (r1)e
iv(r1−r2)[HP1 − εHβ + V1]ψ

H
β (r1 −R)ψHe+

1s (r2),

(4.66)

and

K̃P
β′α =

∫
dr1dr2ψ

H∗
β′ (r1 −R)ψHe+

1s (r2)e
−ivr1ψHe

α (r1, r2), (4.67)

K̃T
α′β =

∫
dr1dr2ψ

He∗
α′ (r1, r2)e

ivr1ψH
β (r1 −R)ψHe+

1s (r2), (4.68)

Q̃P
β′α =

∫
dr1dr2ψ

H∗
β′ (r1 −R)ψHe+

1s (r2)e
−ivr1 [HT − EHe

α + VP ]ψHe
α (r1, r2),

(4.69)

Q̃T
α′β =

∫
dr1dr2ψ

He∗
α′ (r1, r2)e

−ivr1 [HP1 − εHβ + V1]ψ
H
β (r1 −R)ψHe+

1s (r2). (4.70)

Here the vectors x1 and x2 were replaced with the equivalent forms of (r1−R)

and (r2 −R), respectively.

In the direct matrix element D̃T and the first term of D̃P the terms with

(HT − EHe
α ) and (HP − εHβ ) vanish, since for both eigenstates and bin states we

have

〈ψHe
α′ |HT − EHe

α |ψHe
α 〉 = 0, α′, α = 1, .., N, (4.71)

〈ψH
β′ |HP − εHβ |ψH

β 〉 = 0, β′, β = 1, ..,M. (4.72)
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However, in the rearrangement matrix elements Q̃P , Q̃T and in the second term

of D̃P , the terms containing [HT − EHe
α ]ψHe

α and [HP − εHβ ]ψH
β remain, because

the wave packets representing the continuum are not eigenstates. As in the

Chapter 3 we define

χH
β (r) =

[
HP − εHβ

]
ψH
β (r) = χH

β (r)Ylβmβ(r̂), (4.73)

with

χH
β (r) =

1
√
wnβ

∫ κnβ

κnβ−1

dκ

(
κ2

2
− εHβ

)
φH
κlβ

(r), (4.74)

where εHβ is the energy of the β state of hydrogen. Similarly, we introduce

χHe
α (r) = χHe

α (r)Ylαmα(r̂), (4.75)

with

χHe
α (r) =

1
√
wnα

∫ κnα

κnα−1

dκ

(
κ2

2
− εHe

α

)
φHe
κlα(r), (4.76)

where εHe
α is the energy of the active helium electron in channel α. Consequently,

we have

[
HT − EHe

α

]
ψHe
α (r1, r2) =

[
HT − EHe

α

] (
ψα(r1)ψ

(Z)
1s (r2) + ψα(r2)ψ

(Z)
1s (r1)

)
= χHe

α (r1)ψ
z(r2) + χHe

α (r2)ψ
z(r1). (4.77)

For eigenfunctions ψH
β and ψHe

α , we have χH
β = 0 and χHe

α = 0.

Using the expansion of the helium wave function the matrix elements L̃Pβ′β,

K̃P
β′α and K̃T

α′β [Eqs. (4.65), (4.67) and (4.68), respectively] can be written as

L̃Pβ′β = δβ,β′ + A[ψH
β′ , ψ

He+

1s ](A[ψH
β , ψ

He+

1s ])∗, (4.78)

K̃P
β′α = 〈ψHe+

1s |ψ
(Z)
1s 〉A[ψH

β′ , ψα] + 〈ψHe+

1s |ψα〉A[ψH
β′ , ψ

(Z)
1s ], (4.79)

K̃T
α′β = (K̃P

β,α′)
∗, (4.80)
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and the rearrangement matrix elements (4.69) and (4.70) as

Q̃P
β′α =

K̃P
β′α

R
− 〈ψHe+

1s |ψ
(Z)
1s 〉B[ψH

β′ , ψα]− 〈ψHe+

1s |ψα〉B[ψH
β′ , ψ

(Z)
1s ]

−D[ψHe+

1s , ψ
(Z)
1s ]A[ψH

β′ , ψα]−D[ψHe+

1s , ψα]A[ψH
β′ , ψ

(Z)
1s ]

+ 〈ψHe+

1s |ψ
(Z)
1s 〉A[ψH

β′ , χ
He
α ] + 〈ψHe+

1s |χHe
α 〉A[ψH

β′ , ψ
(Z)
1s ], (4.81)

Q̃T
α′β =

K̃T
α′β

R
−
(
〈ψHe+

1s |ψ
(Z)
1s 〉A[ψH

β , ψ̃α′ ] + 〈ψHe+

1s |ψα′〉A[ψH
β , ψ̃

(Z)
1s ]

+D[ψHe+

1s , ψ
(Z)
1s ]A[ψH

β , ψα′ ] +D[ψHe+

1s , ψα′ ]A[ψH
β , ψ

(Z)
1s ]

− A[ψH
β , ψα′D[ψHe+

1s , ψ
(Z)
1s ]]− A[ψH

β , ψ
(Z)
1s D[ψHe+

1s , ψα′ ]]

− 〈ψHe+

1s |ψ
(Z)
1s 〉A[χH

β , ψα′ ]− 〈ψHe+

1s |ψα′〉A[χH
β , ψ

(Z)
1s ]
)∗
, (4.82)

where operators D, A and B are defined in Eqs. (3.78)-(3.80) in Chapter 3. We

also introduced short-hand notations ψ̃α′ = ψα′/r and ψ̃
(Z)
1s = ψ

(Z)
1s /r.

For the direct matrix elements we have

D̃T
α′α =D[ψα′ , ψα] + 〈ψ(Z)

1s |ψα〉D[ψα′ , ψ
(Z)
1s ] + 〈ψα′|ψ(Z)

1s 〉D[ψ
(Z)
1s , ψα]

+ 〈ψα|ψα′〉D[ψ
(Z)
1s , ψ

(Z)
1s ], (4.83)

D̃P
β′β =δβ,β′D[ψHe+

1s , ψHe+

1s ] + (−1)lβ+lβ′D[ψβ′ , ψβ] + E[ψH∗
β′ ψ

H
β , D[ψHe+

1s , ψHe+

1s ]]

+
2

R
A[ψH

β′ , ψ
He+

1s ](A[ψH
β , ψ

He+

1s ])∗ −B[ψH
β′ , ψ

He+

1s ](A[ψH
β , ψ

He+

1s ])∗

− A[ψH
β′ , ψ

He+

1s ](A[ψH
β , ψ̃

He+

1s ])∗ + Cβ′,β + A[χH
β′ , ψ

He+

1s ](A[ψH
β , ψ

He+

1s ])∗,

(4.84)

where

E(f, g) =

∫
drf(r−R)g(r), (4.85)

Cβ′,β =

∫
dr1dr2ψ

H∗
β′ (r1 −R)e−ivr1ψHe+

1s (r1)ψ
H
β (r2 −R)eivr2ψHe+

1s (r2)
1

|r1 − r2|
.

(4.86)



The WP-CCC approach to p-He collisions 59

4.4 Evaluation of matrix elements

Calculations of the integrals A, B and D were described in details in the previous

chapter, here we calculate the remaining integrals E and C. We start with

E(ψβ, ψα) =

∫
drψβ(r−R)ψα(r) =

∫
drψβ

(
r − R

2

)
ψα

(
r +

R

2

)
(4.87)

and follow the same method provided in the previous chapter, changing a co-

ordinate system and using spheroidal coordinates. Thus the integral can be

represented as

E(ψβ, ψα) =
∑
q,q′

d
lβ
mβq′

(Θ)d lαmαq(Θ)

∫
dr′ψβ(r′2)ψα(r′1), (4.88)

where

r′1 =
R

2
(η − τ), r′2 =

R

2
(η + τ), (4.89)

and

cos θ′r1 =
ητ − 1

η − τ
, cos θ′r2 =

ητ + 1

η + τ
. (4.90)

This expansion and the relation between spherical harmonics and the associated

Legendre polynomials

Ylm(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (4.91)

allow reducing Eq. (4.87) to

E(ψβ, ψα) =
R3

32π2

√
(2lβ + 1)(2lα + 1)

×
∑
q,q′

d
lβ
mβq′

(Θ)d lαmαq(Θ)

√
(lβ − q′)!(lα − q)!
(lβ + q′)!(lα + q)!

×
∫ ∞
1

dη

∫ 1

−1
dτ(η2 − τ 2)φnβ lβ

(
R(η + τ)

2

)
φnαlα

(
R(η − τ)

2

)
× P q′

lβ

(
ητ + 1

η + τ

)
P q
lα

(
ητ − 1

η − τ

)∫ 2π

0

dϕei(mα−mβ)ϕ. (4.92)
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By taking into account the fact that∫ 2π

0

eimϕdϕ = 2πδm,0, (4.93)

it can further be simplified as

E(ψβ, ψα) =δmβ ,mα
R3

16π

√
(2lβ + 1)(2lα + 1)

×
∑
q,q′

d
lβ
mβq′

(Θ)d lαmαq(Θ)

√
(lβ − q′)!(lα − q)!
(lβ + q′)!(lα + q)!

×
∫ ∞
1

dη

∫ 1

−1
dτ(η2 − τ 2)φnβ lβ

(
R(η + τ)

2

)
φnαlα

(
R(η − τ)

2

)
× P q′

lβ

(
ητ + 1

η + τ

)
P q
lα

(
ητ − 1

η − τ

)
. (4.94)

Next we describe how to further simplify the most computationally demand-

ing term, Cβ′,β. This term is a part of the matrix element that corresponds to

electron exchange between the two possible final transfer channels β′ and β con-

taining the hydrogen atom and the He+ ion. The term |r1 − r2|−1 is expanded

as

1

|r1 − r2|
= 4π

∑
λµ

1

2λ+ 1
Uλ(r1, r2)Yλµ(r̂1)Y

∗
λµ(r̂2), (4.95)

where

Uλ(r1, r2) =

{
rλ1/r

λ+1
2 for r2 ≥ r1,

rλ2/r
λ+1
1 for r2 < r1.

(4.96)

Then we have

Cβ′,β =
∑
λµ

4π

2λ+ 1

[∫
dr1dr2ψ

H∗
β′ (r1 −R)e−ivr1ψHe+

1s (r1)

× ψH
β (r2 −R)eivr2ψHe+

1s (r2)Uλ(r1, r2)Y
∗
λµ(r̂1)Yλµ(r̂2)

]
=
∑
λµ

1

2λ+ 1

[∫
dr1ψ

H∗
β′ (r1 −R)e−ivr1φ0(r1)Yλµ(r̂1)

×
∫
dr2ψ

H
β (r2 −R)eivr2φ0(r2)Y

∗
λµ(r̂2)Uλ(r1, r2)

]
, (4.97)
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where φ0 is the radial part of ψHe+

1s . Each integral entering the sum is calculated

as∫
dr1ψ

H∗
β′ (r1 −R)e−ivr1φ0(r1)Yλµ(r̂1)

×
∫
dr2ψ

H
β (r2 −R)eivr2φ0(r2)Y

∗
λµ(r̂2)Uλ(r1, r2)

=
R6

28π2
(2λ+ 1)

√
(2lβ′ + 1)(2lα + 1)

×
∑
p,p′

∑
q,q′

(−i)q−q′−p+p′d lβ′mβ′q′(Θ)dλµq(Θ)d
lβ
mβp′

(Θ)dλµp(Θ)

×

√
(lβ′ − q′)!(λ− q)!
(lβ′ + q′)!(λ+ q)!

√
(lβ − p′)!(λ− p)!
(lβ + p′)!(λ+ q)!

×
∫ ∞
1

dη

∫ ∞
1

dη′
∫ 1

−1
dτ(η2 − τ 2)e−i

vt2

2
ητdη

∫ 1

−1
dτ ′((η′)2 − (τ ′)2)ei

vt2

2
η′τ ′

× φnβ′ lβ′
(
R(η + τ)

2

)
φ0

(
R(η − τ)

2

)
φnβ lβ

(
R(η′ + τ ′)

2

)
φ0

(
R(η′ − τ ′)

2

)
× U

(
R(η − τ)

2
,
R(η′ − τ ′)

2

)
× P q′

lβ′

(
ητ + 1

η + τ

)
P q
λ

(
ητ − 1

η − τ

)
P p′

lβ

(
η′τ ′ + 1

η′ + τ ′

)
P p
λ

(
η′τ ′ − 1

η′ − τ ′

)
× Jq−q′

(
vb

2

√
(η2 − 1)(1− τ 2)

)
Jp−p′

(
vb

2

√
((η′)2 − 1)(1− (τ ′)2)

)
. (4.98)

We can see that the integral is reduced to a 4-dimensional entity. Generally,

it can be evaluated for all channels, but the calculations are extremely time

consuming. Also, including them in the calculations do not change the results

considerably provided the collision energy is not too small. Therefore, we include

only the C1s,1s term and neglect all others. This approximation imposes a lower

limit on the incident energy below which the results may deteriorate. No further

approximations were used in the numerical evaluations of all other direct and

rearrangement matrix elements.
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4.5 Chapter summary

We presented the semiclassical convergent close-coupling method for the four-

body problem of proton collisions with helium. The wave-packet approach was

applied to discretise the continuum both for the target and the projectile. The

target was treated as a three-body system, where the electron-correlation effects

were fully taken into account. We assumed that one of the helium electrons is

frozen in the 1s orbital of He+ throughout the collision. The target states were

described by parameter-dependent wave functions, with the parameter fixed

in such a way that the calculated ground-state energy of the active electron

matches the measured value. With this modification, all calculated energy levels

of the active electron of helium are in excellent agreement with the corresponding

experimental values.

After obtaining positive- and negative-energy states both for the target and

the projectile, we expanded the total scattering wave function in terms of the

target- and projectile-centred states (only target-centred in the single-centre

approach). This expansion was substituted into the Schrödinger equation of the

system to obtain the set of coupled differential equations for the time-dependent

transition amplitudes for direct and rearrangement scattering. Details of the

corresponding matrix elements were provided.



Chapter 5

Experimental Observables

In this chapter we present analytical formulas for calculating total and differen-

tial cross sections by using the transition amplitudes defined in Chapters 3 and

4. We use general notations α and β to denote target and projectile channels.

5.1 Total cross sections

When all matrix elements are calculated, we are able to solve the systems of

differential equations (3.22) and (4.21). We apply Runge-Kutta method to solve

the coupled equations in the region [−zmax, zmax] with sufficiently large zmax.

The transition amplitudes aα(+∞, b) and bβ(+∞, b) are obtained for a required

range of impact parameters. These amplitudes are used to obtain the probability

to find the system in direct-scattering (DS) channel α and electron-capture (EC)

channel β for each impact parameter as

PDS
α (b) = |aα(+∞, b)− δα,α0|2, PEC

β (b) = |bβ(+∞, b)|2, (5.1)

where α0 is the initial channel index. The partial cross sections for the transition

into states α and β are calculated by integrating the corresponding weighted

63
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probability functions over the impact parameters in the range [0, bmax] as

σDS
α = 2π

∫ bmax

0

db bPDS
α (b), σEC

β = 2π

∫ bmax

0

db bPEC
β (b), (5.2)

where bmax, the upper limit for the impact parameter, is chosen to be sufficiently

large. We used various values for bmax in calculations depending on the consid-

ered system and process. The total electron-capture cross section is the sum

of the cross sections for transitions into the bound states of the formed atom

after electron capture (the hydrogen-like ion in P(Z)-H collisions and hydrogen

in p-He collisions):

σEC
tot =

∑
β,εβ<0

σEC
β . (5.3)

The total ionisation (single-ionisation (SI) for the helium target) cross section

is the sum of the partial cross sections for excitation of the positive-energy

pseudostates of the target and electron transfer into the continuum of the formed

atom after electron capture:

σSI
tot =

∑
α,εα>0

σDS
α +

∑
β,εβ>0

σEC
β . (5.4)

The total excitation cross section is found as

σexc
tot =

∑
α 6=α0,εα<0

σDS
α , (5.5)

where σα0 is excluded in the sum, as it corresponds to elastic scattering.

In our work, we also investigate double ionisation of the helium atom. For

this purpose, we employ an independent-event model. In this model, double

ionisation is modelled as a combination of two independent processes: single

ionisation of helium and subsequent ionisation of the helium ion. Accordingly,

the double-ionisation probability is the product of the two individual ionisa-

tion probabilities. The total probabilities for single ionisation of helium and
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ionisation of the helium ion are found as

PHe
ion(b) =

∑
α,εα>0

PDS
α (b) +

∑
β,εβ>0

PEC
β (b), (5.6)

PHe+

ion (b) =
∑
γ,εγ>0

QDS
γ (b) +

∑
ξ,εξ>0

QEC
ξ (b), (5.7)

where PDS
α (PEC

β ) is the probability for direct scattering into channel α (for elec-

tron capture into channel β) in p-He collisions, and QDS
γ (QEC

ξ ) is the probability

for direct scattering into channel γ (for electron capture into channel ξ) in p-He+

collisions. Finally, the double-ionisation (DI) cross section is calculated as

σDI
tot = 2π

∫ bmax

0

db bPHe
ion(b)PHe+

ion (b). (5.8)

5.2 Differential ionisation cross section

To calculate fully and doubly differential cross sections for ionisation of hydrogen

by multiply-charged ions and single-ionisation of helium by protons, we first

define transition amplitudes. According to Ref. [142] the full direct-scattering

amplitude TDS(kα′ ,kα0) for the projectile momentum transfer from kα0 to kα′

and electron-capture amplitude TEC(kβ′ ,kα0) from kα0 to kβ′ are found as

TDS(kα′ ,kα0) = 〈Φα′|
←−
H − E|Ψα0

〉, (5.9)

and

TEC(kβ′ ,kα0) = 〈Φβ′|
←−
H − E|Ψα0

〉, (5.10)

respectively, where Ψα0
is the total scattering wave function, H is the total

Hamiltonian operator, the arrow over H indicates the direction of its action,

E is the total energy of the system, Φα′ and Φβ′ are the asymptotic states

corresponding to the final channels α′ and β′, respectively. This definition of the
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scattering amplitude applicable for all processes taking place in the considered

collisional systems. Using the definitions of the asymptotic states we obtain

TDS(kα′ ,kα0) = 〈kα′ ψTα′ |
←−
H − E|Ψα0

〉, (5.11)

TEC(kβ′ ,kα0) = 〈kβ′ ψPβ′ |
←−
H − E|Ψα0

〉, (5.12)

where ψTα′ and ψPβ′ are pseudostates used to describe the target and projectile,

respectively. These scattering amplitudes are calculated using the transition-

probability amplitudes in the impact-parameter space as

TDS(kα′ ,kα0) =
1

2π

∫
dbei(pα′,α0 )⊥·b[aα′(+∞, b)− δα′,α0 ]

=eim(ϕα′+π/2)

∫ ∞
0

dbb [ãα′(+∞, b)− δα′,α0 ] Jm((pα′,α0)⊥b), (5.13)

TEC(kβ′ ,kα0) =
1

2π

∫
dbei(pβ′,α0 )⊥·bbβ′(+∞, b)

=eim(ϕβ′+π/2)

∫ ∞
0

dbb
[
b̃β′(+∞, b)

]
Jm((pβ′,α0)⊥b), (5.14)

wherem is the magnetic quantum number of the bound state in the final channel,

pα′,α0 = kα0 − kα′ and pβ′,α0 = kα0 − kβ′ , ϕα′ and ϕβ′ are the azimuthal angles

of kα′ and kβ′ , respectively,

ãα′(t, b) = eimφbaα′(t, b), b̃β′(+∞, b) = eimφbbβ′(+∞, b). (5.15)

The amplitudes for direct ionisation (DI) is written as

TDI(κ,kα′ ,kα0) =〈ϕκ|ψTα′〉TDS(kα′ ,kα0) (5.16)

and for electron capture into the continuum (ECC) of the atom formed after the

target electron captured by the projectile as

TECC(κκκ,kβ′ ,kα0) =〈ϕκκκ|ψPβ′〉TEC(kβ′ ,kα0), (5.17)

where κ (κκκ) is the momentum of the ejected electron relative to the target

nucleus (projectile), ϕκ and ϕκκκ are the corresponding true Coulomb states. In
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the single-centre WP-CCC approach, electron capture into the continuum is

absent and therefore we set TEC(kβ′ ,kα0) = 0.

The DI and ECC amplitudes are used to calculate differential cross sections

for ionisation. First, we should note that the amplitudes from the target and the

projectile centres with the same projectile momentum should be combined to-

gether. However, this is not straightforward as they are given in different frames.

To overcome the problem we use the common laboratory frame. The electron

momentum relative to the projectile κκκ is written as κ − v in the laboratory

frame. When the projectile momentum vectors kα′ and kβ′ are equal, we use

general notation kf to denote them. In the laboratory frame, differential cross

sections can be formed by the coherent (coh) or incoherent (inc) combinations

of the DI and ECC amplitudes. The fully differential cross sections (FDCS) are

calculated coherently

d3σcoh(κ,kf ,kα0)

dEedΩκdΩkf
= µ2kfκ

kα0

∣∣TDI(κ,kα′ ,kα0) + TECC(κ− v,kβ′ ,kα0)
∣∣2, (5.18)

and incoherently

d3σinc(κ,kf ,kα0)

dEedΩκdΩkf
= µ2kfκ

kα0

(∣∣TDI(κ,kα′ ,kα0)
∣∣2 +

∣∣TECC(κ− v,kβ′ ,kα0)
∣∣2),
(5.19)

where Ee is the energy of the ejected electron, Ee = κ2/2. Solid angle Ωκ

represents the direction in which the electron is ejected and Ωkf is the solid angle

of the scattered projectile. In the laboratory frame, the momentum transfers

pα′,α0 and pβ′,α0 are replaced by pα′,α0−κ and pβ′,α0−κ, respectively. Therefore,

perpendicular components of these momentum transfers are substituted with

(pα′,α0 − κ)⊥ and (pβ′,α0 − κ)⊥ in calculating the integrals in Eqs. (5.13) and

(5.14), respectively.

The doubly differential cross section (DDCS) in energy of the ejected electron

and angle of the scattered projectile is found by integrating the corresponding
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FDCS over the solid angle of the ejected electrons as

d2σ(κ,kf ,kα0)

dEedΩkf
=

∫
d3σ(κ,kf ,kα0)

dEedΩκdΩkf
dΩκ. (5.20)

The DDCS in angles of the ejected electron and scattered projectile is found by

integrating the FDCS over the ejected electron energies as

d2σ(κ,kf ,kα0)

dΩκdΩkf
=

∫
d3σ(κ,kf ,kα0)

dEedΩκdΩkf
dEe. (5.21)

The singly differential cross sections (SDCS) in the energy of the ejected

electron is obtained by integrating the DDCS of Eq. (5.20) over the solid angle

of the scattered projectile as

dσ(κ,kf ,kα0)

dEe

=

∫
d2σ(κ,kf ,kα0)

dEedΩkf
dΩkf . (5.22)

The SDCS in the ejection angle is obtained

dσ(κ,kf ,kα0)

dΩκ
=

∫
d2σ(κ,kf ,kα0)

dEedΩkf
dEe. (5.23)

Total integrated cross section can be obtained by integrating the SDCS. This

should lead to the same result as direct summation of cross sections for excitation

of the positive-energy pseudostates. This fact is used to test the computer code.

We also state a formula to calculate the density matrix for two arbitrary

direct channels. For channels α and α′, this matrix is obtained using the time-

dependent direct-transition amplitudes aαα0(+∞, b) and aα′α0(+∞, b) as follows:

ρα0

α′α =2π

∫ ∞
0

dbba∗α′α0
(+∞, b)aαα0(+∞, b). (5.24)

The matrix ρα0
αα is real for all channels and coincides with integrated cross sec-

tions, that is ρα0
αα ≡ σDS

α . In Chapter 6, we will present density matrices in

proton scattering on the excited states of hydrogen.
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5.3 Chapter summary

We provided formulas for calculating transition probabilities and total cross

sections using the transition amplitudes defined in the previous chapters. Ex-

pressions for fully, doubly and singly differential cross sections for ionisation

were also presented. Using the theories described in Chapters 3 and 4 and the

formulas given in the present chapter, we can calculate the cross sections for

elastic scattering, electron capture, excitation and ionisation, as well as the dif-

ferential ionisation cross sections for both collisional systems (P(Z)-H and p-He).

Results of the calculations will be discussed in the next three chapters.



Chapter 6

Proton scattering on excited
states of hydrogen

The CCC approach has been successfully applied to proton collisions with the

ground state hydrogen [130, 132]. In this chapter, we present results of the

two-centre WP-CCC calculations for proton scattering on excited states of hy-

drogen. We employ two identical bases to describe the target and projectile

centres. Our predictions depend on the accuracy of the wave functions and the

matrix elements defined in Chapter 3. These were thoroughly checked during

calculations. We also investigated the dependence of the resulting cross sections

on the number of bins Nc, on the maximum principal quantum number nmax

and the maximum angular-momentum quantum number lmax of included states,

as well as on the maximum energy of the ejected electron εmax. The convergence

of the cross sections was studied by systematically increasing the number of the

basis functions.

For given Nc, nmax and lmax, the total number of states is found as

N =
lmax∑
l=0

(nmax +Nc − l)(2l + 1). (6.1)

Our calculations showed that setting nmax = 10 and Nc = 20 is sufficient to

achieve an acceptable level of convergence. The system of differential equations

70
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(3.22) was solved using the Runge-Kutta method for the z component of the

projectile position in the range of [−100, 100] at all incident projectile energies.

As mentioned in the previous chapter, results also depend on the choice of bmax,

the upper limit for the impact parameter. In our calculations we set bmax = 50.

Increasing this parameter further had no significant effect on the final results.

6.1 Convergence studies

In this section, we describe the results of the convergence study with respect

to the maximum orbital-angular momentum number lmax. Fig. 6.1 presents

the cross section for electon capture, ionisation and elastic scattering in proton

scattering on the exited 2s state of atomic hydrogen. The cross sections are given

as functions of the projectile energy within the range from 10 keV to 1 MeV.

It can be seen that the results are convergent for all processes at all considered

energies. In general, reasonable convergence is achieved with lmax = 6, while the

rates of convergence for elastic scattering and electron capture are faster than

that for ionisation. It should be pointed out that at higher energies convergence

can be achieved even with smaller lmax.

Similar results for proton scattering on the 2p0 and 2p2 states of hydrogen

are demonstrated in Fig. 6.2. One can see that the ionisation cross section

converges a bit slower in comparison with that for electron capture and elastic

scattering. A sufficient level of convergence is achieved with lmax = 6 for all

processes. Therefore, in calculations we set this value for maximum orbital

quantum number to produce the final results. As in the case of scattering on the

2s state, a faster convergence is observed at higher energies for all the considered

channels. At energies above 50 keV, results with lmax = 2 approximate the final

results perfectly well.
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Figure 6.1: Cross sections for elastic scattering, electron capture and ionisation in
p-H(2s) collisions: convergence of the present WP-CCC results with respect to lmax.
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Figure 6.2: Cross sections for elastic scattering, electron capture and ionisation in
p-H(2p0) and p-H(2p1) collisions: convergence of the WP-CCC results with respect to
lmax.

6.2 Final results for proton scattering on ex-

cited states of hydrogen

As was discussed in the previous section, setting nmax = 10, lmax = 6 and

Nc = 20 was sufficient to obtain convergent results for elastic scattering, elec-

tron capture and ionisation at all considered energies. The basis with these

parameters consists of the 1022 states on each centre. In this section we discuss

the final WP-CCC results with the basis of this size, and make comparisons with
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Figure 6.3: Cross sections for super-elastic (2s → 1s), elastic (2s → 2s) and quasi-
elastic (2s → 2p0) scattering in p-H(2s) collisions as functions of the incident proton
energy.

the experiments and other theories whenever available.

6.2.1 Proton scattering on the 2s state of hydrogen

The cross sections for elastic scattering as well as for excitation and electron

capture up to 3d states were calculated in the energy range from 10 keV to

1 MeV. In figure 6.3 we provide the current results for super-elastic, elastic and

quasi-elastic scattering on the excited 2s state of atomic hydrogen. It can be

seen that elastic scattering (2s → 2s) is dominant, while super-elastic cross

section is significantly smaller. It should also be noted that in the entire energy

range, the cross sections for the transitions 2s → 2s and 2s → 2p0 decrease

exponentially, while the cross section for the 2s→ 1s transition reaches its peak

around 40 keV and then decreases steadily as the energy increases.
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The cross sections for excitation of the n = 3 states of the target are given in

Fig. 6.4. The results are aggregated over the magnetic quantum numbers for the

final 2p, 3p and 3d states. We can see that for the 2s→ 3s and 2s→ 3d transi-

tions, the WP-CCC results and the calculations of Pindzola et al. [143] based on

the atomic-orbital close-coupling with pseudostates (AOCC-PS) method have

similar shapes, however there is a discrepancy in the magnitudes especially in

the low-energy region. Reasonably good agreement is obtained for the 2s→ 3p

transition below 40 keV, however the AOCC-PS results are systematically lower

at higher energies. The CTMC calculations of Pindzola et al. [143] are in con-

siderable disagreement with both AOCC-PS and WP-CCC results, nevertheless

providing a similar pattern for the 2s → 3p and 2s → 3d transitions. For the

2s → 3p transition, the CTMC calculations are significantly different from the

other results both in terms of shape and magnitude. It should also be pointed

out that the calculations based on the first Born approximation merge with the

present WP-CCC results at high energies, and coincide with the present results

at energies above 200 keV.

The cross sections for electron capture into the ground and excited states

up to n = 3 shell of hydrogen are shown in Fig. 6.5. It can be observed that

the cross sections for all considered transitions except for 2s → 1s fall off very

sharply as the energy increases. The current results for electron capture into all

the selected states of atomic hydrogen are in overall good agreement with the

AOCC-PS calculations [143]. However, there are some noticeable disagreements

in comparison with the CTMC results [143]. The CTMC results for the 2s→ 1s

transition are higher than other results below 20 keV and lower for the 2s→ 3d

transition above 40 keV.

By analysing Figs. 6.4 and 6.5, and comparing the WP-CCC calculations

with the AOCC-PS and CTMC results of Pindzola et al. [143], one can see that
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Figure 6.4: Cross sections for excitation of the n = 3 shell (3s, 3p, 3d) states in p-
H(2s) collisions as a function of the incident proton energy. The CTCM and AOCC-PS
results are due to Pindzola et al. [143]. The FBA results are also shown for comparison.
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Figure 6.5: Cross sections for electron capture into the 1s, 2s, 2p, 3s, 3p and 3d states
of hydrogen in p-H(2s) collisions. The WP-CCC results are represented by the red
solid line. The CTMC and AOCC-PS results are due to Pindzola et al. [143].

the agreement with AOCC-PS results is much better. However, at some ener-

gies there are discrepancies for excitation and electron capture. As described

in Chapter 3, in the AOCC-PS calculations, the time-dependent Schrödinger

equation of the system is solved by discretising the space on a three-dimensional

Cartesian lattice. Pindzola et al. [143] employed the same lattice space to de-

scribe the electron-capture and excitation processes. However, the WP-CCC

calculations have revealed that an accurate description of excitation requires
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Figure 6.6: Cross sections for super-elastic, elastic and quasi-elastic scattering and
electron capture for proton scattering on the excited 2p0 and 2p1 states of hydrogen
as a function of the incident proton energy.

significantly larger space, which is most likely the reason for the observed dif-

ference between the results.

6.2.2 Proton scattering on the 2p0 and 2p1 states of hy-
drogen

In Fig. 6.6 we provide the energy dependence of the cross sections for elastic

scattering and electron capture in proton scattering on the excited 2p0 and

2p1 states of hydrogen. We can see that the electron-capture cross sections

for all transitions decrease monotonically and exhibit exponential fall off above

a certain point as the energy increases. Below 30 keV, the cross section for

electron capture into the ground state of hydrogen lower than other transition

cross sections, while at high energies it is dominant for both p-H(2p0) and p-

H(2p1) collisions.
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Table 6.1: Density matrix elements ρ2sα′α (in 10−16cm2) for excitation of H(2s) into the
final n =1-4 shell states of the target by proton impact at 50 keV. Notation: A[-N]
implies A×10−N, the final states α′ and α are given in nlm notations.

α′ α Re Im α′ α Re Im α′ α Re Im α′ α Re Im

100 100 1.60[-1] 0 210 321 -1.68[-2] 1.63[-1] 310 420 -6.65[-3] 1.64[-2] 400 431 1.73[-1] 3.40[-2]

100 200 -1.21 8.42[-1] 210 322 -2.85[-1] 3.18[-2] 310 421 3.06[-1] 5.64[-2] 400 432 8.43[-2] 1.06[-1]

100 210 -6.68[-2] 1.19[-1] 210 410 1.43[-1] 8.69[-2] 310 422 -3.96[-1] 5.68[-1] 400 433 -7.35[-2] 1.17[-1]

100 211 4.05[-1] 1.74[-1] 210 411 -6.90[-2] 2.30[-2] 310 430 -1.70[-1] 2.19[-1] 410 410 6.39[-1] 0

100 300 2.44[-1] -1.65[-1] 210 420 8.01[-2] 7.98[-2] 310 431 -3.56[-1] -2.09[-1] 410 411 2.38[-2] 4.53[-1]

100 310 -5.26[-2] 1.65[-1] 210 421 1.90[-2] 4.76[-2] 310 432 -8.39[-2] -4.71[-1] 410 420 9.20[-3] 4.57[-2]

100 311 -9.75[-3] 3.46[-2] 210 422 -1.20[-1] 3.35[-2] 310 433 4.55[-1] -2.37[-1] 410 421 1.49[-1] 4.64[-2]

100 320 -1.63[-1] 1.57[-1] 210 430 -9.16[-2] -6.34[-3] 311 311 2.27 0 410 422 -2.25[-1] 2.95[-1]

100 321 -6.04[-2] 1.45[-2] 210 431 -4.30[-3] -8.69[-2] 311 321 7.08[-1] -8.43[-1] 410 430 -1.10[-1] 7.94[-2]

100 322 -3.92[-2] -1.14[-1] 210 432 4.60[-2] -4.15[-2] 311 322 1.33 1.11 410 431 -1.60[-1] -1.33[-1]

100 400 1.28[-1] -7.45[-2] 210 433 5.55[-2] 3.06[-2] 311 411 9.19[-1] 7.75[-2] 410 432 -3.02[-2] -2.27[-1]

100 410 -3.27[-2] 1.03[-1] 211 211 ∞ 0 311 421 3.67[-2] -2.08[-1] 410 433 2.19[-1] -1.15[-1]

100 411 -1.14[-2] 1.11[-2] 211 311 -7.14 2.28[-2] 311 422 3.20[-1] 3.30[-1] 411 411 4.11[-1] 0

100 420 -9.70[-2] 3.53[-2] 211 321 -2.86 3.59 311 431 -9.97[-2] 2.36[-1] 411 421 2.31[-2] -1.04[-1]

100 421 -1.82[-2] 1.02[-2] 211 322 -5.55 -4.08 311 432 -3.75[-1] 4.71[-2] 411 422 1.90[-1] 1.59[-1]

100 422 -1.95[-2] -5.94[-2] 211 411 -3.19 -9.03[-2] 311 433 -1.77[-1] -3.88[-1] 411 431 -6.32[-2] 1.14[-1]

100 430 1.65[-2] -6.06[-2] 211 421 -1.87[-1] 9.22[-1] 320 320 1.11 0 411 432 -1.76[-1] 2.96[-2]

100 431 4.32[-2] 2.64[-3] 211 422 -1.70 -1.25 320 321 3.80[-1] 5.52[-1] 411 433 -9.70[-2] -1.73[-1]

100 432 1.78[-2] 1.28[-2] 211 431 6.56[-1] -1.08 320 322 -7.04[-1] 7.21[-1] 420 420 1.41[-1] 0

100 433 -5.44[-3] 1.98[-2] 211 432 1.45 -2.14[-1] 320 420 2.63[-1] 5.51[-2] 420 421 2.00[-2] 1.65[-3]

200 200 15.9 0 211 433 6.60[-1] 1.39 320 421 1.82[-1] 6.68[-2] 420 422 2.16[-2] 4.28[-2]

200 210 1.25 -8.08[-1] 300 300 2.01 0 320 422 -1.85[-1] 3.41[-1] 420 430 -6.47[-2] 6.04[-2]

200 211 -2.41 -10.3 300 310 -1.40 1.11 320 430 -2.56[-1] 1.71[-1] 420 431 -4.44[-2] -2.34[-2]

200 300 -4.14 -9.67[-1] 300 311 -6.19[-1] -5.95[-1] 320 431 -2.30[-1] -1.99[-1] 420 432 8.11[-3] -6.53[-3]

200 310 3.39 -9.38[-1] 300 320 -1.17 5.90[-1] 320 432 1.98[-2] -2.28[-1] 420 433 7.29[-3] 1.37[-2]

200 311 1.79[-1] 1.28 300 321 -9.23[-1] -7.51[-2] 320 433 2.24[-1] -4.71[-2] 421 421 4.74[-2] 0

200 320 3.24 -5.09[-1] 300 322 -1.42[-1] -1.51 321 321 7.31[-1] 0 421 422 -2.10[-2] 1.01[-1]

200 321 1.39 9.51[-1] 300 400 8.89[-1] -6.43[-3] 321 322 1.30[-1] 1.14 421 431 -6.24[-2] -2.39[-2]

200 322 -1.28 2.58 300 410 -6.92[-1] 6.41[-1] 321 421 1.51[-1] -8.48[-2] 421 432 -2.33[-2] -5.71[-2]

200 400 -2.01 -4.63[-1] 300 411 -3.44[-1] -3.24[-1] 321 422 6.63[-2] 3.71[-1] 421 433 4.70[-2] -4.27[-2]

200 410 1.79 -6.57[-1] 300 420 -3.16[-1] -8.19[-2] 321 431 -2.31[-1] 3.93[-2] 422 422 2.61[-1] 0

200 411 1.04[-1] 6.89[-1] 300 421 -2.53[-1] 8.76[-2] 321 432 -1.93[-1] -1.61[-1] 422 432 -1.04[-1] 9.12[-2]

200 420 1.03 2.58[-1] 300 422 -1.07[-1] -6.14[-1] 321 433 9.44[-2] -2.47[-1] 422 433 -1.30[-1] -6.27[-2]

200 421 4.82[-1] 8.74[-2] 300 430 2.03[-1] -2.98[-1] 322 322 1.90 0 430 430 9.18[-2] 0

200 422 -4.53[-1] 1.12 300 431 3.97[-1] 4.74[-2] 322 422 6.53[-1] 4.41[-3] 430 431 2.34[-2] 7.90[-2]

200 430 -6.77[-1] 5.75[-1] 300 432 2.26[-1] 2.27[-1] 322 432 -2.99[-1] 2.80[-1] 430 432 -3.72[-2] 4.04[-2]

200 431 -6.66[-1] -4.74[-1] 300 433 -1.37[-1] 2.90[-1] 322 433 -3.96[-1] -1.97[-1] 430 433 -4.80[-2] -2.67[-2]

200 432 -1.23[-1] -5.84[-1] 310 310 3.08 0 400 400 4.06[-1] 0 431 431 9.82[-2] 0

200 433 5.20[-1] -3.09[-1] 310 311 1.54[-1] 2.38 400 410 -3.11[-1] 2.58[-1] 431 432 5.48[-2] 6.19[-2]

210 210 1.62[-1] 0 310 320 1.15 -3.42[-1] 400 411 -1.15[-1] -1.43[-1] 431 433 -4.11[-2] 7.30[-2]

210 211 6.20[-1] -6.35[-1] 310 321 1.14 8.75[-1] 400 420 -1.61[-1] -2.61[-2] 432 432 9.02[-2] 0

210 310 2.22[-1] 1.87[-1] 310 322 -1.27 1.84 400 421 -1.11[-1] 2.78[-2] 432 433 3.34[-2] 9.13[-2]

210 311 -1.29[-1] 2.68[-2] 310 410 1.31 7.09[-3] 400 422 -2.16[-2] -2.65[-1] 433 433 1.08[-1] 0

210 320 2.70[-1] 1.98[-1] 310 411 2.19[-2] 1.02 400 430 9.79[-2] -1.37[-1]
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Table 6.2: Density matrix elements ρ2p0α′α (in 10−16cm2) for excitation of H(2p0) into
the final n =1-4 shell states of the target by proton impact at 50 keV. Notation: A[-N]
implies A×10−N, the final states α′ and α are given in nlm notations.

α′ α Re Im α′ α Re Im α′ α Re Im α′ α Re Im

100 100 3.06[-1] 0 210 321 1.57[-1] 2.40 310 420 -5.49[-1] 6.56[-1] 400 431 -1.03[-1] -2.26[-2]

100 200 1.88[-1] -4.57[-2] 210 322 1.58[-1] -1.44[-1] 310 421 -6.55[-1] -5.12[-1] 400 432 4.33[-3] -6.79[-2]

100 210 -1.14 -2.81[-1] 210 410 -8.09[-1] -4.61[-1] 310 422 3.89[-2] 9.78[-2] 400 433 -8.00[-3] 3.13[-3]

100 211 -2.01[-1] -2.00[-1] 210 411 3.40[-1] 2.51[-1] 310 430 3.38[-1] -4.77[-1] 410 410 2.77[-1] 0

100 300 -3.95[-2] -3.94[-2] 210 420 1.05 -1.63[-1] 310 431 4.25[-1] -5.50[-2] 410 411 -1.02[-1] 4.13[-2]

100 310 3.78[-1] 3.41[-1] 210 421 7.00[-2] 1.09 310 432 7.40[-2] 2.58[-1] 410 420 -2.18[-1] 3.44[-1]

100 311 -1.36[-1] -1.16[-1] 210 422 8.92[-2] -1.39[-1] 310 433 2.59[-2] -2.20[-2] 410 421 -3.41[-1] -1.95[-1]

100 320 -6.96[-1] 2.71[-1] 210 430 -9.82[-1] 2.44[-1] 311 311 2.19[-1] 0 410 422 2.56[-2] 4.46[-2]

100 321 -1.90[-1] -7.21[-1] 210 431 -3.57[-1] -3.95[-1] 311 321 4.42[-1] 8.91[-1] 410 430 1.51[-1] -2.52[-1]

100 322 -4.25[-2] 5.29[-2] 210 432 2.26[-1] -2.44[-1] 311 322 2.53[-2] -6.58[-2] 410 431 1.91[-1] -5.15[-2]

100 400 -2.61[-2] -5.47[-2] 210 433 -4.00[-2] -1.42[-2] 311 411 1.13[-1] -1.13[-2] 410 432 5.04[-2] 1.11[-1]

100 410 1.71[-1] 2.05[-1] 211 211 4.30[-1] 0 311 421 1.69[-1] 3.49[-1] 410 433 9.84[-3] -1.16[-2]

100 411 -8.26[-2] -6.95[-2] 211 311 2.94[-1] -5.36[-2] 311 422 -3.13[-3] -5.09[-2] 411 411 6.23[-2] 0

100 420 -3.38[-1] 4.02[-2] 211 321 9.45[-1] 1.03 311 431 -2.01[-1] -7.76[-2] 411 421 7.93[-2] 1.78[-1]

100 421 -4.87[-2] -3.39[-1] 211 322 9.90[-3] -1.06[-1] 311 432 3.11[-2] -1.34[-1] 411 422 1.72[-4] -2.76[-2]

100 422 -2.36[-2] 4.27[-2] 211 411 1.53[-1] -3.92[-2] 311 433 -1.71[-2] 3.42[-3] 411 431 -9.61[-2] -4.37[-2]

100 430 2.64[-1] -7.23[-3] 211 421 3.64[-1] 4.32[-1] 320 320 6.80 0 411 432 1.93[-2] -6.48[-2]

100 431 1.28[-1] 9.65[-2] 211 422 -1.96[-2] -7.32[-2] 320 321 -2.58[-1] 6.13 411 433 -8.57[-3] 1.22[-3]

100 432 -4.49[-2] 8.78[-2] 211 431 -3.03[-1] -2.95[-2] 320 322 3.41[-1] -2.11[-1] 420 420 8.28[-1] 0

100 433 1.24[-2] 8.57[-5] 211 432 -1.29[-2] -1.94[-1] 320 420 2.22 3.34[-1] 420 421 2.61[-2] 8.07[-1]

200 200 1.61[-1] 0 211 433 -2.14[-2] 1.22[-2] 320 421 -2.90[-1] 2.22 420 422 3.85[-2] -8.90[-2]

200 210 -8.30[-1] -4.26[-1] 300 300 3.05[-1] 0 320 422 1.31[-1] -2.08[-1] 420 430 -4.92[-1] 1.19[-1]

200 211 -3.81[-2] -1.88[-1] 300 310 -2.48[-1] -1.55[-1] 320 430 -1.26 2.52[-1] 420 431 -3.31[-1] -2.96[-1]

200 300 3.17[-2] -9.28[-2] 300 311 2.12[-1] -1.81[-2] 320 431 -8.23[-1] -9.62[-1] 420 432 1.55[-1] -2.38[-1]

200 310 1.37[-1] 2.67[-1] 300 320 1.23 -3.70[-1] 320 432 5.34[-1] -6.11[-1] 420 433 -3.58[-2] -5.42[-3]

200 311 -3.95[-2] -1.34[-1] 300 321 3.36[-1] 1.10 320 433 -9.78[-2] -3.11[-2] 421 421 8.18[-1] 0

200 320 -3.50[-1] -2.32[-1] 300 322 3.64[-2] -5.59[-2] 321 321 5.71 0 421 422 -9.02[-2] -4.49[-2]

200 321 2.83[-1] -3.58[-1] 300 400 1.19[-1] 1.22[-2] 321 322 -2.26[-1] -3.20[-1] 421 431 -3.07[-1] 3.28[-1]

200 322 -4.12[-2] 3.24[-3] 300 410 -9.84[-2] -6.78[-2] 321 421 2.10 1.86[-1] 421 432 -2.42[-1] -1.62[-1]

200 400 1.76[-2] -5.85[-2] 300 411 9.45[-2] -2.51[-2] 321 422 -2.11[-1] -1.24[-1] 421 433 -5.49[-3] 3.70[-2]

200 410 6.19[-2] 1.45[-1] 300 420 3.85[-1] -9.46[-2] 321 431 -8.77[-1] 8.03[-1] 422 422 1.42[-2] 0

200 411 -3.15[-2] -7.66[-2] 300 421 1.07[-1] 3.79[-1] 321 432 -6.01[-1] -4.84[-1] 422 432 3.52[-2] 5.00[-3]

200 420 -1.64[-1] -1.08[-1] 300 422 -1.88[-3] -4.39[-2] 321 433 -2.46[-2] 9.60[-2] 422 433 -1.55[-3] -4.37[-3]

200 421 1.19[-1] -1.63[-1] 300 430 -1.68[-1] 1.79[-1] 322 322 3.20[-2] 0 430 430 3.88[-1] 0

200 422 -3.05[-2] 1.22[-2] 300 431 -2.12[-1] -1.12[-1] 322 422 1.93[-2] -6.22[-3] 430 431 1.33[-1] 2.28[-1]

200 430 1.72[-1] 7.52[-2] 300 432 5.16[-2] -1.46[-1] 322 432 5.48[-2] -1.49[-2] 430 432 -1.29[-1] 1.02[-1]

200 431 6.26[-4] 1.04[-1] 300 433 -1.93[-2] 1.42[-3] 322 433 -5.11[-3] -5.68[-3] 430 433 1.81[-2] 9.50[-3]

200 432 -6.77[-2] 6.63[-3] 310 310 1.07 0 400 400 5.77[-2] 0 431 431 2.54[-1] 0

200 433 4.48[-3] 7.80[-3] 310 311 -3.94[-1] 1.18[-1] 400 410 -7.34[-2] -1.51[-2] 431 432 2.64[-2] 1.64[-1]

210 210 6.60 0 310 320 -1.05 1.88 400 411 4.97[-2] -2.09[-2] 431 433 1.77[-2] -1.22[-2]

210 211 7.24[-1] 7.03[-1] 310 321 -1.69 -1.11 400 420 1.59[-1] -9.28[-2] 432 432 1.10[-1] 0

210 310 -1.59 -7.48[-1] 310 322 9.74[-3] 1.54[-1] 400 421 1.03[-1] 1.50[-1] 432 433 -6.36[-3] -1.32[-2]

210 311 5.42[-1] 4.56[-1] 310 410 5.35[-1] 7.28[-2] 400 422 -7.47[-3] -2.34[-2] 433 433 2.02[-3] 0

210 320 2.18 -4.75[-1] 310 411 -2.13[-1] 6.50[-2] 400 430 -7.43[-2] 1.02[-1]
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Table 6.3: Density matrix elements ρ2p1α′α (in 10−16cm2) for excitation of H(2p1) into
the final n =1-4 shell states of the target by proton impact at 50 keV. Notation: A[-N]
implies A×10−N, the final states α′ and α are given in nlm notations.

α′ α Re Im α′ α Re Im α′ α Re Im α′ α Re Im

100 100 2.28[-1] 0 210 321 -8.87[-1] 7.04[-1] 310 420 -1.69[-1] -3.33[-2] 400 431 1.29[-2] 8.12[-4]

100 200 -1.23 2.32[-1] 210 322 -1.17 -1.28 310 421 2.58[-2] -2.82[-1] 400 432 -2.96[-2] 2.05[-2]

100 210 -1.84[-1] 1.60[-1] 210 410 -4.66[-2] -4.82[-2] 310 422 4.19[-1] 1.95[-2] 400 433 -3.68[-2] -2.76[-2]

100 211 6.69[-1] -1.29 210 411 3.79[-1] -7.70[-2] 310 430 8.06[-2] -2.76[-2] 410 410 2.08[-2] 0

100 300 -1.75[-1] -6.42[-2] 210 420 1.36[-1] 2.12[-1] 310 431 2.90[-2] 1.55[-1] 410 411 -1.12[-2] 5.09[-2]

100 310 6.68[-2] 2.27[-2] 210 421 -3.80[-1] 3.27[-1] 310 432 -1.55[-1] 9.14[-2] 410 420 -5.62[-2] -2.81[-2]

100 311 -3.80[-1] 5.19[-1] 210 422 -5.28[-1] -5.43[-1] 310 433 -1.27[-1] -1.26[-1] 410 421 3.11[-2] -8.77[-2]

100 320 -1.57[-1] 5.04[-3] 210 430 -9.08[-2] -3.96[-2] 311 311 2.28 0 410 422 1.29[-1] 4.29[-2]

100 321 -1.40[-1] -4.39[-1] 210 431 1.74[-1] -2.06[-1] 311 321 -1.77 1.15 410 430 3.31[-2] -1.30[-3]

100 322 6.86[-1] -2.16[-1] 210 432 2.79[-1] 6.56[-2] 311 322 -1.89 -2.61 410 431 -1.20[-3] 5.12[-2]

100 400 -6.72[-2] -3.14[-2] 210 433 1.03[-2] 2.76[-1] 311 411 1.00 4.02[-2] 410 432 -5.92[-2] 1.56[-2]

100 410 1.35[-2] 1.03[-2] 211 211 13.0 0 311 421 -8.49[-1] 5.82[-1] 410 433 -3.16[-2] -5.67[-2]

100 411 -1.93[-1] 2.27[-1] 211 311 -3.90 -6.00[-1] 311 422 -9.26[-1] -1.17 411 411 4.58[-1] 0

100 420 -7.26[-2] 3.79[-3] 211 321 2.64 -5.18[-1] 311 431 4.40[-1] -3.59[-1] 411 421 -3.29[-1] 2.35[-1]

100 421 -4.16[-2] -2.40[-1] 211 322 7.40[-1] 4.54 311 432 4.97[-1] 1.95[-1] 411 422 -3.62[-1] -4.54[-1]

100 422 3.59[-1] -8.02[-2] 211 411 -1.90 -3.09[-1] 311 433 -5.87[-2] 4.94[-1] 411 431 1.78[-1] -1.43[-1]

100 430 8.67[-4] -1.58[-2] 211 421 1.36 -3.70[-1] 320 320 1.45 0 411 432 1.85[-1] 7.88[-2]

100 431 1.69[-2] 1.25[-1] 211 422 4.78[-1] 2.14 320 321 3.04[-1] 2.50 411 433 -3.26[-2] 1.85[-1]

100 432 -7.69[-2] 8.26[-2] 211 431 -7.77[-1] 2.87[-1] 320 322 -3.68 5.99[-1] 420 420 2.28[-1] 0

100 433 -9.22[-2] -4.25[-2] 211 432 -4.91[-1] -5.82[-1] 320 420 5.52[-1] -6.96[-2] 420 421 6.10[-3] 3.72[-1]

200 200 ∞ 0 211 433 4.48[-1] -5.79[-1] 320 421 1.20[-1] 9.04[-1] 420 422 -5.60[-1] 2.98[-2]

200 210 1.88 -2.30 300 300 3.29[-1] 0 320 422 -1.33 2.13[-1] 420 430 -9.32[-2] 6.68[-2]

200 211 -9.21[-1] 8.17 300 310 2.97[-2] -4.93[-2] 320 430 -2.14[-1] 2.04[-1] 420 431 -5.89[-2] -1.78[-1]

200 300 -7.02[-1] 2.88[-1] 300 311 2.23[-1] -3.51[-1] 320 431 -2.17[-1] -4.04[-1] 420 432 1.80[-1] -1.52[-1]

200 310 -1.80 3.56[-1] 300 320 -2.78[-1] -7.09[-2] 320 432 3.94[-1] -4.33[-1] 420 433 1.99[-1] 1.38[-1]

200 311 2.85 -4.58 300 321 1.80[-1] -3.44[-1] 320 433 5.22[-1] 2.83[-1] 421 421 7.03[-1] 0

200 320 6.02 1.14 300 322 4.64[-1] 3.25[-1] 321 321 4.69 0 421 422 5.13[-2] 1.04

200 321 -5.57[-1] 12.3 300 400 1.27[-1] 2.16[-2] 321 322 2.36[-1] 6.76 421 431 -3.41[-1] 7.75[-2]

200 322 -16.5 -2.35[-1] 300 410 1.79[-2] -3.02[-2] 321 421 1.70 3.29[-2] 421 432 -2.61[-1] -3.17[-1]

200 400 -3.75[-1] 3.92[-2] 300 411 1.28[-1] -1.66[-1] 321 422 4.40[-2] 2.53 421 433 2.37[-1] -3.33[-1]

200 410 -5.19[-1] 2.00[-1] 300 420 -8.03[-2] -1.74[-2] 321 431 -8.08[-1] 2.55[-1] 422 422 1.58 0

200 411 1.14 -1.74 300 421 7.95[-2] -1.53[-2] 321 432 -6.79[-1] -8.08[-1] 422 432 -4.92[-1] 3.73[-1]

200 420 2.41 1.74[-1] 300 422 1.80[-2] 1.67[-1] 321 433 6.19[-1] -8.45[-1] 422 433 -4.94[-1] -3.68[-1]

200 421 -2.39[-1] 3.99 300 430 7.29[-2] -4.53[-2] 322 322 1.01 0 430 430 6.57[-2] 0

200 422 -6.41 -1.37[-1] 300 431 2.19[-2] -1.49[-2] 322 422 3.85 1.23[-1] 430 431 -2.01[-2] 8.44[-2]

200 430 -9.89[-1] 7.05[-1] 300 432 -6.33[-2] 1.13[-2] 322 432 -1.26 9.50[-1] 430 432 -1.16[-1] 6.17[-3]

200 431 -6.30[-1] -2.05 300 433 -3.95[-2] -8.20[-2] 322 433 -1.25 -9.92[-1] 430 433 -3.64[-2] -1.17[-1]

200 432 2.09 -1.63 310 310 1.45[-1] 0 400 400 5.73[-2] 0 431 431 1.92[-1] 0

200 433 2.02 1.61 310 311 -1.47[-1] 3.76[-1] 400 410 7.86[-3] -1.86[-2] 431 432 8.27[-2] 1.91[-1]

210 210 4.30[-1] 0 310 320 -3.92[-1] -1.55[-1] 400 411 5.32[-2] -6.80[-2] 431 433 -1.59[-1] 1.24[-1]

210 211 -1.30 9.50[-1] 310 321 1.55[-1] -7.04[-1] 400 420 -4.64[-2] 6.32[-3] 432 432 2.54[-1] 0

210 310 -1.25[-1] -1.74[-1] 310 322 1.06 1.33[-1] 400 421 1.94[-2] -2.52[-2] 432 433 6.72[-2] 2.46[-1]

210 311 9.02[-1] -1.75[-1] 310 410 4.94[-2] -1.21[-2] 400 422 4.62[-2] 4.35[-2] 433 433 2.64[-1] 0

210 320 2.49[-1] 5.33[-1] 310 411 -4.10[-2] 1.54[-1] 400 430 2.87[-2] -2.79[-2]
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For direct scattering, the super-elastic cross sections for the 2p0 → 1s and

2p1 → 1s transitions are much smaller than the cross sections for elastic and

quasi elastic scattering. The cross sections for super-elastic scattering increase

at the beginning for both transitions reaching their peaks around 60 keV and

80 keV, respectively, then decline almost linearly as the energy increases. The

cross sections for the remaining transitions show exponential decay on the entire

energy range.

6.2.3 The density matrix

With the formula described in Chapter 5 we are able to generate the density ma-

trices for various projectile energies. As an example, in tables 6.1–6.3 we present

the results of our calculations for density matrices in 50 keV proton scattering

on the excited 2s, 2p0 and 2p1 states of atomic hydrogen. The calculations

are provided for excitation of these states into the n = 1−4-shell states. The

data on the density matrix elements are of great importance in fusion plasma

diagnostics, where the density matrix elements are required for modelling the

injection of neutral hydrogen beams.

6.3 Chapter summary

We applied the two-centre WP-CCC approach, described in Chapter 3, to cal-

culate the cross sections for excitation, ionisation and electron capture in proton

collisions with the 2s, 2p0 and 2p1 states of hydrogen. We first demonstrated

convergence of the cross sections for all considered processes by increasing the

maximum orbital quantum number of included states at all energies. Conver-

gence of the results was slightly slower at lower energies, but at energies above

100 keV the results converged significantly faster. Once the convergence was
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achieved, we presented the cross sections for elastic scattering, electron capture

and ionisation from all selected excited states of hydrogen at the impact ener-

gies from 10 keV to 1 MeV. We observed significant disagreement in comparison

with the AOCC and the CTMC calculations for scattering on the 2s state of

hydrogen. We emphasise that the reason for the discrepancy with the former

might be not sufficient discretisation of the three-dimensional Cartesian lattice

employed by Pindzola et al. [143]. Overall good agreement was obtained for

the other states. We also provided the cross sections data for transitions into

particular states for the first time.



Chapter 7

C6+-H collisions

In this chapter, we describe the results of the single- and two-centre WP-CCC

calculations for collisions of bare ions with atomic hydrogen. The underlying

theory and calculation details were given in Chapter 3. The convergence of the

calculated cross sections with respect to the maximum allowed orbital angular

momentum number lmax is demonstrated for all underlying processes. The final

results are compared with the experimental data and other theoretical results.

To obtain the total cross sections, we fixed the maximum principal number

at nmax = 10 and the number of bins at Nc = 20. These values were sufficient for

the integrated cross sections, however a denser discretisation of the continuum

was required to obtain convergent differential cross sections, which will be spec-

ified later. Other parameters, such as the maximum allowed energy εmax of the

ejected electron and maximum impact parameter bmax were chosen sufficiently

large depending on the considered process. The total cross sections for electron

capture and ionisation are calculated for impact energies up to 10 MeV/amu.

We also provide the singly and doubly differential cross sections for ionisation

in terms of the ejected-electron energy and angle at higher projectile energies (1

and 2 MeV/amu).

84
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Figure 7.1: Total cross section for electron capture in C6+-H(1s) collisions: conver-
gence of the present WP-CCC results with respect to lmax (top and bottom panels are
on linear and logarithmic y scales, respectively).

7.1 Convergence studies

We first investigate the convergence of the total cross section for electron capture

in C6+-H(1s) collisions with respect to the maximum orbital quantum number,

lmax, of the included states. The results of calculations for different values of

lmax up to 6 are represented in Fig. 7.1. The cross sections are provided for the

projectile energies ranging from 1 keV/amu to 10 MeV/amu on linear y scale



C6+-H collisions 86

0

5

10

15

20

25

30

10−1

100

101

101 102 103 104

cr
o
ss

se
ct
io
n
,
σ
io
n
(1
0
−
1
6
cm

2
)

l-convergence
lmax = 0
lmax = 1
lmax = 2
lmax = 3
lmax = 4
lmax = 5
lmax = 6

cr
o
ss

se
ct
io
n
,
σ
io
n
(1
0
−
1
6
cm

2
)

projectile energy (keV/amu)

Figure 7.2: Total cross section for ionisation in C6+-H(1s) collisions: convergence of
the present WP-CCC results with respect to lmax (top and bottom panels are on linear
and logarithmic y scales, respectively).

(the upper panel), and the same in logarithmic y scale (the lower panel) to high-

light the higher energy region. A systematic convergence of the results can be

observed with increasing the values of lmax. An acceptable level of convergence

is achieved with lmax = 6 at all considered energies. However, the rate of con-

vergence is faster at higher energies. The results are sufficiently convergent even

with lmax = 2 above 500 keV/amu.

In Fig. 7.2, we show the present total cross section for ionisation of hydro-
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Figure 7.3: Singly differential cross section in the ejected-electron angle for
1 MeV/amu C6+-impact ionisation of atomic hydrogen: convergence of the present
two-centre WP-CCC results with respect to lmax.

gen by C6+ impact with respect to maximum allowed orbital number on linear

and logarithmic y scales. As in the case for electron capture, the results for

ionisation are also well convergent. One can see that the convergence is not

always monotonic with increasing lmax. The cross sections go up until lmax = 2

and then decrease systematically and converge with lmax = 6. Here also, the

convergence rate is faster at higher energies. At energies above 200 keV/amu,

the cross section with lmax = 2 approximates the results with larger lmax very

well.

The two-centre WP-CCC results for singly differential ionisation cross sec-

tion with respect to lmax at 1 MeV/amu impact energy is presented in Fig. 7.3.

We considered the entire range of the electron ejection angle. The continuum

was discretised denser to obtain more accurate results and better convergence

rate. The number of bins was fixed at Nc = 30. In comparison with the inte-
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Figure 7.4: The same as in Fig. 7.3, but for the single-centre WP-CCC approach.

grated cross section, convergence of the differential ionisation cross section is not

systematic and relatively slower. Nevertheless, fair convergence is achieved by

performing calculations up to lmax = 8. One can see that the differential ionisa-

tion cross section demonstrates clear convergence with increasing lmax at larger

ejection angles. However, at smaller ejection angles full convergence appears to

require lmax = 10.

Together with the two-centre calculations we also performed the single-centre

calculations to verify the accuracy of the methods. The single-centre approach is

simpler and calculations are easier to perform, though it requires including the

states with larger orbital numbers. We will see later that the electron-capture

cross section is very small in comparison with the cross section for ionisation at

projectile energies around 1 MeV/amu and higher. Therefore, at high energies

the single-centre results should reproduce the two-centre calculations reasonably

well. Accordingly, the internal consistency of the calculations can be established
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Figure 7.5: Singly differential cross section for 1 MeV/amu C6+-impact ionisation of
atomic hydrogen. Dependence of the present single- and two-centre WP-CCC results
on lmax at θ = 0◦.

by comparing the two approaches. Convergence of the single-centre WP-CCC

results with respect to lmax is shown in Fig. 7.4. In the single-centre calculations

we were able to include the states with orbital quantum number up to 10. The

figure demonstrates reasonably good convergence. Again, the convergence is

slower for small angles as in the two-centre case.

In Fig. 7.5, we demonstrate the convergence of both the single- and the two-

centre results for singly differential ionisation cross section for electrons ejected

in the direction of the projectile. One can see that the convergence of the two-

centre results is somewhat faster than that of the single-centre approach. Also,

the figure reveals that the final results of the two approaches agree with each

other very well, the difference being only within a few percent. This shows the

internal consistency of the employed approach.
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7.2 Final results for C6+ ion scattering on hy-

drogen

In this section, we present the final total cross sections for electron capture and

ionisation as well as the singly and doubly differential cross sections for ionisation

in C6+-H collisions. We start from integrated cross sections.

7.2.1 Total cross sections

As we have seen in the previous section, setting nmax = 10, lmax = 6 and Nc = 20

is sufficient to obtain convergent total cross sections. With these parameters,

there are 1267 states included on both centres.

Electron capture

In Fig. 7.6, the WP-CCC results for the total electron-capture cross section are

compared with the experimental data of Meyer et al. [144] and Goffe et al. [145],

as well as other theoretical results. The present results are in overall agreement

with the experimental data which are available at energies below 10 keV/amu

and in the energy range from 100 keV/amu to 200 keV/amu. A good agreement

is observed with the calculations based on the molecular-orbital close-coupling

(MOCC) method of Harel et al. [146] and the CTMC method of Jorge et al.

[37] in the entire energy range. It should be noted that the WP-CCC results

are in excellent agreement with the AOCC calculations of Igenbergs et al. [147]

at all energies, where the visual discrepancy at very low energies is due to the

lack of calculated data by Igenbergs et al. [147]. This can be explained by the

similarity of the employed methods and basis functions.

Toshima [148] employed the Gaussian-type basis functions within the AOCC
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Figure 7.6: Total cross section for electron capture in C6+-H(1s) collisions as a function
of incident proton energy (top and bottom panels are on linear and logarithmic y
scales, respectively). The present WP-CCC results are represented by the dark blue
solid line. The experimental data are due to Goffe et al. [145] and Meyer et al. [144].
The other theoretical results are from Harel et al. [146], Toshima [148], Igenbergs et al.
[147], Jorge et al. [37], and Belkic et al. [149]. The FBA results are also given.

approach, their calculations are slightly lower than other results at energies from

20 to 400 keV/amu. Possible reasons for this discrepancy might be the smaller

number of included bound states of C5+ and the fact that Toshima [148] used

a linear combination of the Gauss-type functions to obtain the bound states of

the C5+ ion. The latter are not true eigenstates. The energies calculated by

this method are slightly different from the exact values for some states. Another

theoretical result is the B1B method of Belkic et al. [149], where distortion
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was included in calculating the projectile wavefunction. This fixes incorrect

boundary conditions in the FBA approximation. We can see that their results

are generally higher at energies below 100 keV/amu and agree with the other

results well at higher energies. In addition, the FBA results are also included for

comparison. The cross section calculated using this method overestimates the

other calculation and the experiment even at very high projectile energies. This

shows the importance of higher-order terms in the corresponding perturbation

series.

Ionisation

In Fig. 7.7 we present WP-CCC calculations for the total ionisation cross sec-

tion together with the experimental point of Shah and Gilbody [150] and other

theoretical results. The experimental result is available only for one energy of

the projectile, where the current WP-CCC results overestimate the experiment

by about 10%. It appears to be a common feature of the coupled-channel ap-

proaches considered for comparison, as all calculations based on this method

overestimate the experiment almost by the same amount. However, it should

be noted that the CDW-EIS calculations of Rivarola et al. [151] is in better

agreement with the experimental data. Their calculated cross section is lower

than all other theoretical calculations including the WP-CCC results at energies

from 50 keV/amu to 1 MeV/amu.

Igenbergs et al. [147] and Toshima [148] also applied the AOCC approach,

however the figure reveals some discrepancies between their results and the WP-

CCC calculations at energies below 300 keV/amu. This is probably because of

the difference in the expansion bases employed in these approaches. Toshima

[148] uses Gaussian-type functions. In addition, similarly to the present ap-

proach, both the projectile- and target-centred continuum states are included
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Figure 7.7: Total cross section for ionisation in C6+-H(1s) collisions as a function
of incident proton energy (top and bottom panels linear and logarithmic y scales
respectively). The present WP-CCC results are represented by the dark blue solid
line. The experimental point is due to Shah and Gilbody [150]. The other theoretical
results are from Igenbergs et al. [147], Toshima [148], Jorge et al. [37], and Rivarola
et al. [151]. The FBA results are also given for comparison.

in the calculations. However, the size of the employed basis, made of Gaus-

sian functions, was comparatively smaller. Igenbergs et al. [147] included only

the target-centred continuum states. However, if the continuum states are in-

cluded only on the target centre, the results might be non-convergent unless the

projectile energy and lmax are sufficiently high (see [152, 153]).

In comparison with other theoretical approaches, the WP-CCC results sig-

nificantly overestimate the CDW-EIS calculations of Rivarola et al. [151] and
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lower than the CTMC calculations of Jorge et al. [37] at all considered energies.

However, above 1 MeV/amu, all the presented theories agree with each other

very well. We can also notice that unlike in the case of electron capture, the FBA

calculations merge with the current ionisation cross section above 2 MeV/amu.

7.2.2 Differential cross sections

Obtaining accurate differential cross sections within the employed approach re-

quires denser discretisation of the continuum. This can be achieved simply by

increasing the number of bins. Also, the convergence study has revealed the

need of inclusion of the continuum states with larger angular momenta. In the

two-centre calculations, these parameters were chosen large enough to achieve

full convergence. The parameters were set as nmax = 10, lmax = 8 and Nc = 30.

This basis consists of 2796 states on each centre. In the single-centre approach

we chose parameters as nmax = 11, lmax = 10 and Nc = 30. The basis consists

of 4136 states on the target centre.

Singly differential cross section

In Figs. 7.8 and 7.9, we present the calculated singly differential cross sections

as functions of electron ejection angle θe at projectile energies of 1 MeV/amu

and 2.5 MeV/amu, respectively. The results are compared with the experimental

data and the CDW-EIS calculations of Tribedi et al. [154, 155]. The single-centre

WP-CCC calculations are included at 1 MeV/amu for comparison. One can see

that the two-centre results are in excellent agreement with the experimental

data at 1 MeV/amu except for smaller ejection angles. However, at smaller

ejection angles the single- and two-centre approaches agree with each other well

and show another peak in the direction of the projectile, which is absent in the
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Figure 7.8: Singly differential cross section in the ejected-electron angle for
1 MeV/amu C6+-impact ionisation of atomic hydrogen. The measurements and other
calculations are due to Tribedi et al. [154, 155]. The FBA results are also shown for
comparison.

other results. It should be pointed out that the existence of background noise

in the measurements was emphasised by Tribedi et al. [154], which might have

affected the final results. The single- and two-centre results and the CDW-EIS

calculations agree at the ejection angles above 90◦. We can also note that the

FBA results are not in agreement with other calculations and the experimental

data except for some intersection points.

At 2.5 MeV/amu impact energy, the present results agree with the experi-

ment very well except for large electron ejection angles. However, above 90◦ our

calculations are in excellent agreement with the theoretical results of Tribedi

et al. [154, 155] based on CDW-EIS method. Comparing the discrepancies

between the FBA and the two-centre WP-CCC results at 1 MeV/amu and

2.5 MeV/amu one concludes that in the second case, the FBA describes the

two-centre calculations considerably better.



C6+-H collisions 96

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 30 60 90 120 150 180

d
σ
io
n
/
d
Ω
e

(1
0
−
1
6

cm
2
sr

−
1
)

ejection angle, θe (deg)

Ein = 2.5 MeV/amu
Tribedi
FBA
CDW-EIS
WP-CCC

Figure 7.9: The same as in Fig. 7.8 but for 2.5 MeV/amu C6+-H(1s) collisions.

Doubly differential cross section

In figure 7.10, we present the results of the calculations for doubly differential

cross section at 1 MeV/amu impact energy. Electron ejection into angles 15◦,

45◦, 90◦ and 120◦ is considered and dependence of the DDCSs on the ejected

electron energy is shown in the energy range from 1 eV to 300 eV. The present

results are compared with the experimental data and the CDW-EIS calculations

of Tribedi et al. [154, 155] and with the FBA results.

The WP-CCC results are in overall fairly good agreement with the exper-

iment. At the smallest considered electron ejection angle, the present calcula-

tions slightly overestimate the data at all measured energies except for 40 eV

and 100 eV. However, at larger ejection angles the agreement is reasonably good.

For 45◦, our results are higher than the data at 1 and 3 eV, but are in very good

agreement at all remaining energies. The best agreement with the experiment is

observed for θe = 90◦, where the WP-CCC calculations agree with the measure-
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Figure 7.10: Doubly differential cross sections in the ejected-electron energy at certain
fixed ejection angles for 1 MeV/amu C6+-impact ionisation of atomic hydrogen. The
measurements and the CDW-EIS calculations are due to Tribedi et al. [154, 155]. The
FBA results are also shown for comparison.
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ments very well except for only 10 eV. At the largest considered ejection angle,

agreement is observed at energies from 3 to 40 eV. Comparing the current results

with the CDW-EIS calculations, one can see overall fairly good agreement at

all ejection angles and energies, the difference being within 20%. However, for

ejection angles 45◦ and 120◦, we observe clear discrepancies at higher ejection

energies. We also notice that the FBA results are systematically lower than the

present results for θe = 15 and 45◦ and higher for θe = 90 and 120◦ on the entire

energy region considered.

The current results for doubly differential cross section at 2.5 MeV/amu

impact energy are given in Fig. 7.11. The results are compared with the mea-

surements and the CDW-EIS calculations of Tribedi et al. [154, 155] as well as

the FBA results at several electron ejection angles. Generally good agreement

can be observed at all considered ejection angles (θe = 15◦, 45◦, 90◦, and 120◦)

and for all ejection energies except for higher energies. The current results un-

derestimate the data above 50 keV/amu for θe = 15◦ and 45◦ and slightly lower

for θe = 120◦. Here also the best agreement for all considered ejection energies

is observed for θe = 90◦. It should be pointed out that for θe = 90◦ and 120◦,

the CDW-EIS calculations are also available for comparison and are in excellent

agreement with the current results. It is also interesting to compare the two-

centre WP-CCC and the FBA results. We can see that the difference between

the results is smaller at 2.5 MeV/amu impact energy in comparison with the

1 MeV/amu ones. For 2.5 MeV/amu, the FBA results are slightly lower than the

present results for θe = 15 and 45◦ and higher for 120◦ on the entire considered

energy region, however very good agreement is obtained for 90◦.

In Figs. 7.12 and 7.13 we show the doubly differential cross sections similar

to the previous two figures but as functions of electron ejection angle at several

ejection energies for 1 MeV/amu and 2.5 MeV/amu impact energy, respectively.
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Figure 7.11: The same as in Fig. 7.10, but for 2.5 MeV/amu C6+-H(1s) collisions.
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Figure 7.12: Doubly differential cross sections in the ejected-electron angle at certain
fixed ejection energies for 1 MeV/amu C6+-impact ionisation of atomic hydrogen. The
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Figure 7.13: The same as in Fig. 7.12, but for 2.5 MeV/amu C6+-H(1s) collisions
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For all considered electron ejection energies, the current results agree with the

experiments very well for both impact energies. Only some discrepancies are

observed for smaller ejection angles for 1 MeV/amu projectiles. It should be

pointed out that at 2.5 MeV/amu impact energy the FBA results approach the

WP-CCC results closer than at 1 MeV/amu. We recall that at 1 MeV/amu

there are large discrepancies between the FBA and WP-CCC results especially

at lower ejection energies. The CDW-EIS calculations also in good agreement

with the present results at all calculated electron ejection energies.

7.3 Chapter summary

We studied collisions of bare carbon ions with atomic hydrogen using the wave-

packet-based convergent close-coupling method. In the two-centre approach

described in Chapter 3, the total scattering wave function of the three-body

system was expanded in terms of the target- and projectile-centred eigenstates

and pseuodostates. The pseudostates were constructed using the wave-packet

continuum discretisation method. By substituting the expansion in the cor-

responding three-body time-independent Schrödinger equation, we obtained a

set of coupled differential equations for the transition amplitudes into different

target- and projectile-centred states. These time-dependent amplitudes were

used to obtain the total cross sections for each of the underlying processes as

well as the singly and doubly differential cross sections for ionisation.

The convergence of the results was studied in terms of the size of the basis

for all calculations. In particular, the convergence was demonstrated with re-

spect to lmax of the included states. The total electron-capture and ionisation

cross sections were calculated for impact energies in the range from 1 keV/amu

to 10 MeV/amu. For electron capture, excellent agreement with the experiment



C6+-H collisions 103

was obtained at all considered projectile energies. However, due to the lack of

experimental data, the total ionisation cross section results were only compared

with a single measured point where the current results were slightly higher.

The calculated singly and doubly differential ionisation cross sections were also

compared with the available experimental data and very good agreement was

observed for 2.5 MeV/amu impact energy. However, for 1 MeV/amu some dis-

crepancies with the experiment still remain, especially at very small electron

ejection angles. At these angles, the current calculations for both SDCS and

DDCS showed a peak, which has not been observed in the experimental and

other theoretical studies.



Chapter 8

He2+-H and p-He+ collisions

Results of the WP-CCC approach applied to He2+-H and p-He+ collisions are

described in this chapter. These collisions involve all possible reactions in the

system of an α particle, a proton and an electron, but for two different ini-

tial states. The theory of the WP-CCC approach to collisions of fully-stripped

ions with atomic hydrogen was given in Chapter 3. The described method can

be directly applied to the hydrogenlike-ion targets by replacing the hydrogen

wave functions with that for hydrogenlike ion. These wave functions were de-

scribed in the same chapter. First we look at the convergence of the results for

all considered processes. Then, the final integrated cross sections for electron

capture, excitation and ionisation are presented and compared with experiments

and other theories, when available. We also discuss the calculations for the fully,

singly and doubly differential cross sections for ionisation in He2+-H collisions.

8.1 Convergence studies

As we have discussed in the previous chapters, our calculations depend on several

parameters. These parameters need to be chosen to yield accurate results. The

calculations showed that the upper limit for the impact parameters should be

104
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Figure 8.1: Total cross section for electron capture in H2+-H(1s) collisions: conver-
gence of the present WP-CCC results with respect to lmax.

chosen larger with increasing the incident energy. In calculations, bmax was

varied up to bmax = 70 to achieve convergence. The maximum principal number

of the included eigenstates and the number of discretisation bins were set at

nmax = 10 and Nc = 20, respectively. Finally, to find the transition amplitudes,

the sets of differential equations, corresponding to two collisional systems, were

solved in the range of z ∈ [−150, 150].

8.1.1 Convergence of the total cross sections

In Figs. 8.1 and 8.2 we demonstrate the convergence of the total cross section

for electron capture and ionisation in H2+-H(1s) collisions. We increased the

maximum allowed orbital number, lmax, of the included states up to 5. It can be

seen that the results systematically converge with increasing lmax, and overall

acceptable level of convergence is achieved with lmax = 4. For electron capture,

the convergence is reached with lmax = 3.
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Figure 8.2: Total cross section for ionisation in H2+-H(1s) collisions: convergence of
the present WP-CCC results with respect to lmax.

Similar results for p-He+ collisions are presented in Figs. 8.3 and 8.4. Cross

sections demonstrate good convergence for this collisional system too. The con-

vergence rate of the electron-capture cross section is relatively faster, where the

difference between the results with lmax = 2 and with higher lmax is negligibly

small. But for ionisation, the full convergence is achieved only with lmax = 4.

8.1.2 Convergence of the differential cross sections

Next, we discuss the convergence of the differential ionisation cross sections in

200 keV/amu He2+-H collisions. In Fig. 8.5 we present the FDCS for ionisa-

tion, where the results with various values of lmax are given as functions of the

electron ejection angle. We study the electrons with the fixed ejection energy of

εe=20 eV in the coplanar plane, that is ϕp = 0◦ and ϕe = 0◦. The perpendic-

ular component of the momentum transfer is set at p⊥ = 0.3. The FDCS was

obtained as an incoherent combination of the DI and ECC components. We can
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Figure 8.3: Total cross section for electron capture in p-He+ collisions: convergence
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Figure 8.5: Fully differential cross section for He2+-impact ionisation of atomic hydro-
gen as a function of the electron ejection angle: convergence of the WP-CCC results
with respect to lmax. The arrow points in the momentum-transfer direction.

observe that the convergence rate of the differential cross section is compara-

tively slow, nevertheless the results systematically converge. A sufficient level

of convergence is achieved with lmax = 8. The arrow near ϕe = 30◦ indicates the

momentum-transfer direction. As one can notice that a binary peak appearing

in the WP-CCC results and the direction of the momentum transfer slightly

differ, however in the FBA calculations they coincide.

Figure 8.6 demonstrates the dependence of the DDCS on the maximum

allowed angular momentum number. The DDCS is given as a function of the

ejection angle for a fixed value of the electron ejection energy (εe=20 eV) in the

scattering plane. As discussed in Chapter 5, the DDCS is obtained by integrating

the FDCS (shown in Fig. 8.5) over the projectile scattering angle. The DDCS

also appears to be convergent with increasing lmax. A fair level of convergence

is achieved with lmax = 8.

In Fig. 8.7 we show the convergence of the singly differential ionisation cross
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Figure 8.6: Doubly differential cross section for He2+-impact ionisation of atomic
hydrogen in the energy and the angle of the ejected electron: convergence of the
WP-CCC results with respect to lmax.
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Figure 8.7: Singly differential cross section for He2+-impact ionisation of atomic hy-
drogen in the angle of the ejected electron: convergence of the WP-CCC results with
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Figure 8.8: Singly differential cross section in the angle of the scattered projectile for
He2+-impact ionisation of atomic hydrogen: convergence of the WP-CCC results with
respect to lmax.

sections for the same collisional system. In the previous figure we demonstrated

the DDCS results for a fixed electron ejection energy. Here the SDCS is obtained

by integrating the DDCS over all the ejection energies. One can see that this

cross section converges relatively faster than the FDCS and the DDCS. Good

convergence is obtained with lmax = 8. The SDCS with the largest lmax consid-

ered, has a sharp peak at θe = 0◦ and sharply decreases with increasing ejection

angle.

Similar results for the SDCS in the projectile scattering angle and in the

electron ejection energy are presented in Figs. 8.8 and 8.9, respectively. Sim-

ilar to the SDCS in the electron ejection angle, these cross sections are also

convergent with lmax = 8.
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Figure 8.9: Singly differential cross section in the energy of the ejected electron for
He2+-impact ionisation of atomic hydrogen: convergence of the WP-CCC results with
respect to lmax.

8.2 Final results for the total cross sections in

He2+-H and p-He+ collisions

The convergence study revealed that setting nmax = 10, Nc = 20 and lmax = 5 is

sufficient to obtain well-convergent results for the total cross sections. The basis

with these parameters consists of 955 states on each centre. Also, the energy

dependence of the SDCS, presented in Fig. 8.7, allows us to set the maximum

energy, εmax, of the ejected electrons in constructing the continuum pseudostates.

εe = 250 eV was shown to be sufficiently large for the SDCS to decrease several

orders of magnitude. Therefore, in our calculations we chose εmax = 250 eV.

In Fig. 8.10 we compare our final total cross section calculations for electron

capture with the experimental data [156–159] and other theoretical calculations.

The upper and the lower panels are in linear and logarithmic scales, which

highlight the lower and the higher energy regions, respectively. One can see
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Figure 8.10: Total cross section for electron capture in H2+-H(1s) collisions: the WP-
CCC results are compared with the experimental measurements [156–159] and the
close-coupling calculations [160, 161]

that the present results are in generally good agreement with the experimental

data of Olson et al. [157], Shah and Gilbody [158], Hvelplund and Andersen

[159]. Also, our results agree with the close-coupling calculations of Toshima

[160], Minami et al. [162] and Winter [161] very well. It should be pointed out

that the data of Bayfield and Khayrallah [156], which are available at lower

energies, significantly exceed all other experimental and theoretical results.

The present results for the total ionisation cross section are shown in Fig. 8.11
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Figure 8.11: Total cross section for ionisation in H2+-H(1s) collisions: the present
WP-CCC results are compared with the experimental measurements of Shah and
Gilbody [163], Shah et al. [164] and the close-coupling calculations of Winter [161]
and Toshima [160].

together with the experimental data of Shah and Gilbody [163], Shah et al.

[164] and the close-coupling calculations of Winter [161] and Toshima [160]. We

can see that, the WP-CCC results exceed the measurements in the intermedi-

ate energy range, especially at energies where the peak is observed. Above 100

keV/amu, the calculations of Winter [161] agree with experiment better than the

other close-coupling results. It should also be noted that above 400 keV/amu,

all the theoretical results agree with each other as well as with the experimental

data very well. Below 50 keV/amu, the present results are in good agreement

with the experimental measurements and the calculations of Toshima [160]. The

reason for the disagreement between theory and experiment around the peak

cannot be due to the lack of convergence in the employed close-coupling cal-

culations. In Fig. 8.4 we have demonstrated the systematic convergence of the

results. As there is very good agreement between the close-coupling calculations

in this range, we conclude that it is a common feature of all presented two-centre
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Figure 8.12: Cross sections for excitation of the n = 1, 2 and 3 shell states in He2+-
H(1s) collisions: the present WP-CCC results are compared with the theoretical cal-
culations of Winter [161]. The experimental data for 2s, 2p and 3p excitation are due
to Hughes et al. [165] and Detleffsen et al. [166].

close-coupling calculations. The reason for the observed discrepancy remains un-

explained. Therefore, further experimental and theoretical studies, especially in

the intermediate energy range, would be of great help for understanding this

disagreement.

Figure 8.12 presents the cross sections for excitation of the n = 1 − 3-shell

states in He2+-H(1s) collisions. We compare our results with the experimental

data of Hughes et al. [165] and Detleffsen et al. [166] available for excitations
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into 2s, 2p and 3p states. Also for all these transition, except for the elastic

scattering, we make comparison with the close-coupling calculations of Winter

[161]. We can see in panel (a) that the elastic scattering cross section declines

monotonically with increasing incident energy. The cross sections for excitation

into the n = 2 and 3 shell states peak at different impact energies, but otherwise

have similar shapes. Also, the results reveal that the 2p-state excitation cross

section is several times larger than that for the other states at the maximum.

The present cross section for excitation of the 2s state is in good agreement with

the experimental data of Hughes et al. [165] at the lowest two measured energy

points. However, at higher energies (especially around the peak), our results

are significantly lower than the experimental measurements. The calculations

of Winter [161] also underestimate the data at these energies, and agree well

with the WP-CCC results at the high and low end of the energy range.

For excitation of the 2p state, the present results and the calculations of Win-

ter [161] are generally in agreement, the latter being slightly higher in the in-

termediate energy range. In comparison with the experiments of Hughes et al.

[165] and Detleffsen et al. [166], the calculations are within the error bars of

the data starting from 50 keV/amu of the incident energy. However, at low

energies the measurements of Hughes et al. [165] significantly exceed both of

the close-coupling calculations and suggest the second peak which is absent in

the theoretical predictions. The cross sections for the transition into the n = 3

shell target states are presented in panels (d)-(f). Overall, we can see that the

WP-CCC results and calculations of Winter [161] agree well with each other at

the lowest and highest energies considered. There are some clear disagreements

in the intermediate energy range, where the results of Winter [161] are higher

than the present results for all these transitions. However, for the 1s→ 3p tran-

sition, the discrepancy is relatively smaller. For this transition, results of both
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Figure 8.13: Cross sections for electron capture into the n = 1, 2 and 3 shell states in
He2+-H(1s) collisions: the present WP-CCC results are compared with the theoretical
calculations of Winter [161] and Minami et al. [162]. The experimental data are due
to Shah and Gilbody [158] and Bayfield and Khayrallah [156].

calculations are within the error bars of the experimental results of Detleffsen

et al. [166].

The present cross sections for electron capture into the n = 1, 2 and 3 shell

states of the He+ ion are shown in Fig. 8.13. The results are compared with the

close-coupling calculations of Winter [161], as well as the calculations of Minami

et al. [162] based on the AOCC and the lattice time-dependent Schrödinger

equation (LTDSE) approaches. Also, we compare with the experimental data



He2+-H and p-He+ collisions 117

0.0

0.1

0.2

0.3

0.4

0.5

101 102 103
0.0

0.1

0.2

0.3

0.4

0.5

101 102 103

σ
(H
α
)
(1
0
−
1
6
cm

2
)

projectile energy (keV/amu)

Winter
WP-CCC
WP-CCC×2

Donnelly

Figure 8.14: Balmer-α emission cross section in He2+-H collisions as a function of the
impact energy: the present WP-CCC results are compared with the experimental mea-
surements of Donnelly et al. [167] and the close-coupling calculations of Winter [161].
The WP-CCC results multiplied by a factor of 2 are also presented for comparison.

of Shah and Gilbody [158] and Bayfield and Khayrallah [156], which are only

available for the 1s→ 2s transition. In the entire energy range, the theoretical

calculations perfectly agree with each other for all the transitions, except for

electron capture into the 3d state. For the latter transition, the results are

in good agreement below 200 keV/amu, however calculations of Winter [161]

and the AOCC calculations Minami et al. [162] deviate at higher energies. In

comparison with the experiments, we can observe very good agreement which is

demonstrated in panel (b).

In Fig. 8.14, we demonstrate the dependence of the cross section on the inci-

dent energy for the Balmer-α emission in He2+-H collisions. The present results

are compared with the experimental data of Donnelly et al. [167] and the calcula-

tions of Winter [161]. The theoretical results are in overall fair agreement except

for the intermediate energy range, where the calculations of Winter [161] exceed



He2+-H and p-He+ collisions 118

0

0.1

0.2

0.3

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

20 40 60 80 100 120 140 160 180 200

cr
o
ss

se
ct
io
n
(1
0−

1
6
cm

2
)

projectile energy (keV/amu)

Reading
Minami
Winter
WP-CCC

expt
Peart
Watts
Rinn

Figure 8.15: Total electron-capture cross section in p-He+ collisions: the present WP-
CCC results are compared with the experimental measurements of Peart et al. [169],
Watts et al. [170] and Rinn et al. [171] and the close-coupling calculations of Reading
et al. [172], Minami et al. [173] and Winter [174].

the present results by about 30 %. However, in comparison with the experiment,

one can observe significant disagreements. The measurements of Donnelly et al.

[167] overestimate the WP-CCC results almost two times, which is seen com-

paring the experimental points and the line obtained by multiplying the present

results by the factor of two. It should be pointed out that in the experiment,

a contribution of cascades is not taken into account. However, including the

cascades even worsens the disagreement. A similar situation was observed for

p-H collisions by Abdurakhmanov et al. [168]. The calculated Balmer-α emis-

sion cross section underestimated the corresponding measurements of Donnelly

et al. [167] also by approximately a factor of two. However, good agreement was

obtained in comparison with the experimental data of Detleffsen et al. [166].

Figure 8.15 presents the final total cross section for electron capture in

He2+-H collisions. The results are provided for the incident energies up to 200
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Figure 8.16: Total ionisation cross section in p-He+ collisions: the present WP-CCC re-
sults are compared with the experimental measurements of Watts et al. [170] and Rinn
et al. [175] and the close-coupling calculations of Reading et al. [172], Minami et al.
[173] and Winter [174].

keV/amu and compared with the experimental data of Peart et al. [169], Watts

et al. [170] and Rinn et al. [171] as well as the close-coupling calculations of Read-

ing et al. [172], Minami et al. [173] and Winter [174]. We can see that the present

calculations and the experimental results are in overall good agreement. Also, it

should be noted that our results are in perfect agreement with the calculations

of Winter [174] at all considered energies.

In Fig. 8.16 we show the final WP-CCC results for ionisation in p-He+ colli-

sions. The results are compared with the experimental data of Watts et al. [170]

and Rinn et al. [175] and the close-coupling calculations of Reading et al. [172]

and Winter [174]. Again, our calculations are in good agreement with the corre-

sponding calculations of Winter [174]. The small difference between the results

is likely to be due to a lack of convergence in calculations of Winter [174], where

lmax = 3 was used to produce the results. As we have seen in the convergence

study above, the ionisation cross section converges only with lmax = 5, which was
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Figure 8.17: Total cross section for electron loss by the target in p-He+ collisions:
the present WP-CCC results are compared with the experimental data of Peart et al.
[169, 176], Mitchell et al. [177], Angel et al. [178], Rinn et al. [175], Watts et al. [170]
and the single-centre calculations of Hall et al. [179].

taken into account in our calculations. Also, we can see that the present results

agree well with the experimental data of Rinn et al. [175], which is available

on the incident energy range of 20-130 keV/amu. However, there is significant

disagreement in comparison with the measurements of Watts et al. [170]. In the

one and a half centre calculations of Reading et al. [172], the AOCC equations

were solved using the perturbative approach. They employed only 54 states on

the target centre and only the ground state on the projectile centre. We can see

that their results are lower than our calculations at the intermediate incident

energies but are higher at lower energies, at high energies they tend to merge.

The results for the total electron loss in p-He+ collisions are provided in

Fig. 8.17. The experimental data of Peart et al. [169, 176], Mitchell et al.

[177], Angel et al. [178], Rinn et al. [175] and the single-centre calculations of Hall

et al. [179] are also shown for comparison. The figure reveals that there are some
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Figure 8.18: Cross sections for excitation and electron capture into the n = 1, 2 and
3 shell states in p-He+ collisions.

discrepancies among the experimental results in the intermediate energy range.

At these energies, our calculations only slightly exceed the experimental data

of Rinn et al. [175] but significantly overestimate the results of Angel et al.

[178], Peart et al. [169, 176]. At high energies, the WP-CCC results somewhat

higher than the data of Mitchell et al. [177] and agree well at several measured

points. Also, it should be pointed out that our results overestimate the single-

centre calculations of Hall et al. [179] at all considered energies. The difference

is more significant at lower energies, and relatively small at higher energies.

Figure 8.18 presents the WP-CCC results for the cross section for excitation

[panel (a)] and electron capture [panel (b)] into the n = 1, 2 and 3 shell states.

One can see that excitation of the 2s and 2p states of the target is the dominant

process at lower and higher energies, respectively. The excitation cross section of

the 3d state provides the lowest contribution in the entire incident energy range,

except for the lowest energies. We can also see in panel (b) that the transfer

into the 1s state is the dominant process in electron capture.
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8.3 Chapter summary

In this chapter we discussed the WP-CCC results applied to He2+-H and p-He+

collisions. We first studied the convergence of the results for each considered

process in terms of maximum orbital number of the included states. Having

obtained a sufficient level of convergence, we presented the final results and com-

pared with the available experimental data and other theoretical calculations. A

level of agreement with other results for the considered processes was mixed. In

particular, the present calculations for electron capture into the selected states

agreed with the experiment very well, but for excitation we observed some dis-

crepancies. For Balmer-α emission, our results underestimated the experimental

data by a factor of 2. For other processes, overall, the WP-CCC results correctly

describe the experiment.



Chapter 9

Proton-helium collisions

In this chapter, we discuss the results of the two-centre WP-CCC calculations

for underlying processes in proton-helium collisions. The details of the approach

was given in Chapter 4. Convergence of the predicted cross sections is studied

in terms of the number of the included negative-energy eigenstates and positive-

energy pseudostates. After establishing the convergence of the results, we de-

scribe the total electron-capture, direct-excitation, single- and double-ionisation

cross sections in the energy range from 15 keV to 1 MeV. We also provide the

partial cross sections for electron capture and direct excitation into the n = 2

shell states of hydrogen and helium, respectively. The results will be compared

with experimental data and other theoretical results wherever available.

A number of calculations were performed to check the accuracy of the param-

eters employed in the approach. Our calculations showed that setting nmax = 5

for the maximum principal quantum number of eigenstates is sufficient. As men-

tioned in Chapter 5, the resulting cross sections are also dependent on the choice

of bmax, the upper limit for the impact parameter. In our calculations we set

bmax = 10. Increasing these parameters further had no significant effect on the

final results for total cross sections.

123
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9.1 Convergence studies

We first describe the convergence of the predicted cross sections in terms of the

number of target- and projectile-centred states. For simplicity, we used the same

number of basis functions on both centres. We systematically increased the basis

size by increasing the number of bins and the maximum orbital quantum number

of the included states. While increasing the basis size, we carefully checked the

accuracy of the employed wave functions for the target and the atom formed by

the projectile.

The dependence of the predicted electron-capture and single-ionisation cross

sections on the number of bin states is shown in Fig. 9.1. The number of bins

Nc was increased up to 20 at projectile energies of 50 keV, 100 keV, 500 keV,

and 1 MeV, respectively. In calculations we set nmax = 5 and lmax = 3. It can be

seen that both electron-capture (upper panel) and single-ionisation (lower panel)

results appear sufficiently convergent. For both processes, the difference between

the cross sections calculated with Nc = 16 and Nc = 20 is within 0.5% at all

considered impact energies. The calculations revealed that including positive-

energy pseudostates is not only important to obtain an accurate result for the

single-ionisation cross section, but also improves the accuracy of the electron-

capture cross section. This can be observed in the upper panel of Fig. 9.1.

Similar conclusions were drawn by Slim et al. [47]. The ionisation cross section

is particularly sensitive to the number of positive-energy pseudostates and the

density of the continuum discretisation. To get accurate results and better

convergence with respect to the number of positive-energy pseudostates, the

maximum energy of the included bin states, Emax, needs to be sufficiently large.

Depending on the projectile energy, kmax(=
√

2Emax) ranged from 3.5 for lowest

incident energy to 7.5 for highest incident energy. The parameter was checked
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Figure 9.1: Total cross sections for electron capture (upper panel) and single ionisation
(lower panel) in p-He collisions: convergence of the present WP-CCC results with
respect to the number of bin states Nc. The four lines represent the cross sections at
the incident proton energies of 50 keV, 100 keV, 500 keV and 1 MeV, respectively.

for each incident energy individually. Note that Nc = 0 yields no ionisation cross

section due to the lack of positive-energy states.

Next, we investigate the convergence of the electron-capture and ionisation

cross sections in terms of the maximum allowed orbital angular momentum

quantum number, lmax. The results are presented in Fig. 9.2 for lmax ranging

from zero to 4 at impact energies of 50 keV, 100 keV, 500 keV, and 1 MeV.

Both electron-capture (upper panel) and ionisation (lower panel) cross sections
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Figure 9.2: The same as in Fig. 9.1, but with respect to lmax. The number of bins
was set to Nc = 20.

appear convergent in terms of lmax too. In general, convergence was achieved

with lmax = 3 for all energies considered. It should also be pointed out that as

in the case of the number of bins, convergence of the results at higher energies

is faster for both electron capture and ionisation.

9.2 Total cross sections

As discussed above, setting nmax = 5, lmax = 3 and Nc = 20 was required to

obtain sufficiently accurate results. The basis with these parameters consists of
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366 target- and projectile-centred functions. Below we present our main results

for the integrated cross sections.

9.2.1 Electron capture and excitation

The present results for the total electron-capture cross section as a function of

the incident energy are presented in Fig. 9.3 in comparison with the experimen-

tal data and the results of other theoretical works. As described in Chapter 5,
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Figure 9.3: Total cross section for electron capture in p-He(1s2) collisions as a function
of the incident proton energy (top and bottom panels linear and log y scales respec-
tively). The present results are compared with the experimental data [59–63], and the
other theoretical results [38, 39, 45–48].
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the total electron-capture cross section is the sum of the cross sections for the

transitions into all included negative-energy states of hydrogen. Capture into

the 1s state provides the dominant contribution. It can be seen from the figure

that the total electron-capture cross section reaches its peak around 25 keV. The

present results are in good agreement with the experimental data of Shah and

Gilbody [60] and Shah et al. [61], except for the energy range of 30-100 keV,

where our calculated cross section exceeds the data by about 15%. In this energy

range only the results of Baxter and Kirchner [38] agree with the measurements

of Shah et al. [61], while the results of all other calculations are slightly higher,

most likely due to the frozen-core approximation used to treat the target struc-

ture. It is also interesting to compare our results with the close-coupling calcu-

lations of Winter [48] and Slim et al. [47]. Winter neglected electron exchange in

the final transfer channel and the calculations included only 50 Sturmian basis

functions. The result of Winter [48] exceeds ours by about 30% at 50 keV but

agrees at 200 keV, the largest incident energy considered by him. Slim et al.

[47] succeeded to include electron exchange between H and He+ in the transfer

channel, even though they used only 51 basis functions. Their electron-capture

results exceed the CCC predictions by about 15% near the peak, but agree for

the higher energies. Measurements by Stier and Barnett [63], Allison [59] and

Rudd et al. [62] are also shown, however these include the transfer-ionisation

cross section in addition to electron capture with the second electron staying

bound.

In the lower panel of Fig. 9.3, the same results are given on a logarithmic

y scale to highlight the higher energy region. In the energy range from 100 keV

to 1 MeV, our calculations agree well with the experimental results of Shah and

Gilbody [60]. The theoretical results of Baxter and Kirchner [38] are also in good

agreement with the experimental data up to 400 keV, whereas they deviate from



p-He collisions 129

0.00

0.05

0.10
Cr

os
s s

ec
tio

n 
(1

0-1
6  c

m
2 )

Experiment
 Andreev
 Hughes
 Ryding

0.00

0.05

0.10

Theory
 Kimura
 Slim
 Jain
 CCC

0.00

0.01

0.02

0.03

0.04

0.05

Cr
os

s s
ec

tio
n 

(1
0-1

6  c
m

2 )

Experiment
 Andreev
 Hippler
 Hughes

0.00

0.01

0.02

0.03

0.04

0.05

101 102 103

Proton energy (keV)

Theory
 Jain
 Slim
 Kimura
 CCC

Figure 9.4: Cross sections for electron capture into the 2s (upper panel) and 2p (lower
panel) states of hydrogen in p-He(1s2) collisions. The CCC results are represented
by the black solid line. The experimental data are due to Hughes et al. [64], Hippler
et al. [66], Ryding et al. [67], Andreev et al. [180]. The other theoretical results are
from Kimura and Lin [45], Slim et al. [50], Jain et al. [51].

the data and other calculations at higher energies. In this energy range the B1B

calculations of Belkić [39], using the Roothaan-Hartree-Fock wave functions, also

yield excellent agreement with the experimental data.

Electron capture into the 1s state of hydrogen dominates the charge-transfer

process, but capture into other specific states is also important for plasma mod-

elling. In Fig. 9.4 we present the partial cross sections for electron capture into

the n = 2 shell of hydrogen. At low and high energies the CCC results for elec-
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tron capture into the 2s state agree with the experimental data. However, clear

discrepancy between the experimental and theoretical results is seen in the in-

termediate energy range, where the CCC results are in good agreement with the

calculations of Slim et al. [50] and Jain et al. [51], but exceed the experimental

data. For electron capture into the 2p state we observe fairly good agreement

with the cross sections obtained experimentally, except for the results of Hippler

and Schartner [65], which exceed other results at the intermediate energy range.

In Fig. 9.5 we provide the cross sections for direct excitation of helium into

the 2p state and the sum of the cross sections for excitation into the 2s and 2p

states of helium. We obtained agreement with the experimental data of Park

and Schowengerdt [68] for both cases in the low and intermediate energy regions.

The CCC results for excitation of helium into the 2p state lie slightly below the

experimental data and other theoretical results above 150 keV, the difference

with experiment being within 10%. The sum of the calculated cross sections

for excitation into the 2s and 2p states is in good agreement with the results

of Begum et al. [53] in the intermediate energy range. At higher energies our

results are below all the other theories, including the calculations by van den

Bos [56] and Joachain and Vanderpoorten [55].

9.2.2 Ionisation

In Fig. 9.6 the total single-ionisation cross section is compared with the experi-

mental data [60, 61] and other calculations [38, 42, 47, 48]. It can be seen that

the ionisation cross section reaches its maximum around 100 keV and decreases

almost linearly with increasing energy of the projectile. On the other hand, as

we have observed in the previous section, the electron-capture cross section falls

off exponentially after reaching its maximum near 25 keV. The CCC results for

single ionisation exceed the experimental data of Shah and Gilbody [60] and
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Figure 9.5: Sum of the cross sections for target excitation into the 2s and 2p states
(upper panel), and the cross section for excitation into the 2p state (lower panel)
of helium in p-He(1s2) collisions. The CCC results are represented by the black
solid line. The experimental data are due to Hippler and Schartner [65], Park and
Schowengerdt [68]. The other theoretical results are from Begum et al. [53], Joachain
and Vanderpoorten [55], van den Bos [56].

Shah et al. [61] by about 10% below 200 keV. The calculations of Baxter and

Kirchner [38] based on the time-dependent density-functional theory, where the

Wilken-Bauer model is applied, agree with the experiments except for the lower

energies. Below 60 keV their results lie slightly below the data. Experimental

data of Rudd et al. [62] that include double ionisation in addition to single ion-

isation are also shown. As we will see later, the double ionisation cross section

is very small and cannot explain the difference between the data of Shah and
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Figure 9.6: Cross section for single ionisation in p-He(1s2) collisions as a function of
incident energy. The CCC results represented by the black solid line. The experimen-
tal data are due to Shah and Gilbody [60], Shah et al. [61], Rudd et al. [62]. The other
theoretical results are from Baxter and Kirchner [38], Dı́az et al. [42], Slim et al. [47],
Winter [48].

Gilbody [60], Shah et al. [61] and Rudd et al. [62].

Our results are in fair agreement with the close-coupling calculations by

Winter [48]. The results of Slim et al. [47], which take into account electron

exchange in the final states, exceed the experimental data as well as the CCC

calculations at 100 keV. Above 200 keV all theoretical predictions, including

ours, and the experimental data agree very well with each other, with the ex-

ception of the results of Dı́az et al. [42], which are moderately higher. Note that

employing a more accurate multicore description of the helium target will likely

result in a reduction of the theoretical cross sections [49].

In Fig. 9.7 we present our results for double ionisation, as obtained with the

IEM model. Below 40 keV we observe good agreement with experiment, but

for the higher energies our cross sections significantly exceed the measured data.

Significantly larger double-ionisation cross sections were also obtained in IEM
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Figure 9.7: Cross section for double ionisation of helium in p-He(1s2) collisions as a
function of incident energy. The CCC results are represented by the black solid line.
The experimental data are due to Shah and Gilbody [60], Shah et al. [61], Puckett and
Martin [69]. The other theoretical results are from Baxter and Kirchner [38], Ford
and Reading [57], Kumar and Roy [58].

calculations by Baxter and Kirchner [38], Kumar and Roy [58], and Ford and

Reading [57]. The present results and those of all displayed IEM calculations are

overall in reasonable agreement with each other. The observed large discrepancy

with experiment suggests that there exist a strong correlation between one- and

two-electron processes as far as double ionisation of helium is concerned. In

other words, the representation of double ionisation using the IEM does not

seem appropriate.

9.3 Chapter summary

To summarise, we studied the convergence of the WP-CCC results in terms of the

number of basis functions and the maximum allowed orbital angular momentum

of the included states at several energies of the projectile. Having obtained

satisfactory convergence, the total electron-capture and single-ionisation cross
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sections were calculated in the energy range from 15 keV to 1 MeV.

There are many experiments and theoretical results available for these pro-

cesses for comparison. We observed noticeable discrepancies among them below

150 keV. In this energy range agreement between our calculations and the ex-

perimental data of Shah and Gilbody [60] and Shah et al. [61] was found to be

within 15% for both electron capture and single ionisation. Above 150 keV our

results and all experiments agreed very well. It is worth mentioning that among

the close-coupling calculations for electron capture, the CCC results were found

to be in better agreement with experiment. This was likely due to the more

accurate target description and a significantly larger size of the basis used in

the CCC method. Apart from the total cross sections, we calculated the cross

sections for capture into the 2s and 2p states of hydrogen, and excitation into

the 2s and 2p states of helium. Fair agreement with other works was obtained

in these particular cases as well. Furthermore, we used the independent-event

model to study double ionisation of the target, where double ionisation is formu-

lated as a combination of two independent processes: single ionisation of helium

and sequential ionisation of the resulting helium ion by proton impact. However,

except for lower energies, we failed to get agreement with the experimental data.

In this work we discretised the continuum using the wave-packet method.

An advantage of this method is that it allows us to study electrons ejected with

arbitrary energies without interpolation. This is achieved by including a bin

state exactly matching the ejected-electron energy. Therefore, this approach

can be applied to study differential ionisation. Specifically, the partial cross

sections for transfer into all positive-energy pseudostates that we calculated can

be used to obtain the differential cross sections for ionisation of helium.



Chapter 10

Conclusion and Outlook

In this thesis, we described the extension of the WP-CCC method to proton

scattering on excited atomic hydrogen, collisions of multiply-charged bare ions

(He2+ and C6+) with hydrogen and proton collisions with the helium atom and

the He+ ion. We first discussed the background of ion-atom collisions and briefly

described some theoretical methods, which have been applied to these collisions.

We also stated the importance of these collisions in different fields of science and

the practical application areas. The underlying theory of the WP-CCC method

to three- and four-body problems was described including the details of the

performed numerical calculations. We presented the results of our calculations

for various processes in these collisional systems and compared with experiment

and other theories when available. Together with the integrated cross sections,

we also provided the differential cross sections for ionisation of the hydrogen and

helium atoms.

In our approach, we employed a semiclassical treatment for both three- and

four-body systems, where the projectile motion was treated classically and the

target structure was treated fully quantum mechanically. The target nucleus was

set at the origin and we assumed that the projectile moves along the classical

straight-line trajectory. The z axis of the coordinate system was chosen to be

135
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parallel to the projectile direction. We applied the impact-parameter method.

A collisional system was described by the time dependent Schrödinger equa-

tion. The corresponding total scattering wave function was expanded in terms

of the target- and projectile-centred basis functions. The basis functions were

formed by a number of negative-energy eigenstates and positive-energy pseu-

dostates. The pseudostates were constructed using the wave-packet approach,

where they were obtained by discretising the continuum and superposing the

continuum eigenfunctions in a given energy range. For collisions of fully-stripped

ions with atomic hydrogen and p-He+ collisions, the basis functions were written

analytically. The expansion of the scattering function was substituted into the

exact three-body Schrödinger equation and we obtained a set of the differential

equations for the time-dependent coefficients, the transition amplitudes. The

matrix elements, present in the system of equations, were reduced to the forms

ready for numerical calculations using spherical and spheroidal coordinates. The

resulting system was solved numerically to obtain the transition amplitudes. The

amplitudes were used to calculate the total and differential cross sections for the

considered processes.

The WP-CCC method was also applied to the four-body problem of proton

collisions with helium. The helium atom was treated as a three-body system.

The electron-electron correlations were fully taken into account. We employed

the frozen-core approximation, where one of the electrons remains in the ground

state of He+ throughout the collision. The wave functions of the active electron

were obtained numerically by solving the Schrödinger equation for helium. Then,

the scattering wave function was expanded in the target- and projectile-centred

pseudostates, where the former are helium wave functions and the latter were

written as products of the ground-state wave function of the He+ ion and the

hydrogen wave functions. Then we followed the same procedure as in the case
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for the three-body problem.

For all the considered processes and collisional systems, we first investigated

the dependence of the results on the basis size. The maximum principal and

orbital angular-momentum numbers of the included states, as well as the number

of the discretisation bins were carefully checked to obtain well-converged results.

The convergence of the results was demonstrated for selected processes. Together

with the two-centre calculation, we provided the single-centre calculations for

some collisions. In the single-centre approach, the scattering wave function

was expanded only in the target basis functions. The convergence studies have

revealed that the single-centre results converge relatively slower with respect to

the maximum allowed orbital number, lmax. To obtain a sufficiently convergent

integrated cross section, values of lmax were set between 3 and 6, depending on

a considered process. But for differential cross sections, the parameter had to

be increased to lmax = 8 in the two-centre approach, and to lmax = 10 in the

single-centre approach.

For proton collisions with the excited atomic hydrogen, the convergence of

the results were studied for all processes in the entire incident energy range (from

10 keV to 1MeV). We observed the systematic convergence. The convergence

rate was especially fast at higher energies. Having obtained the full convergence,

we presented our final results and compared with the available experimental and

theoretical results. We calculated the total cross section for elastic scattering,

electron capture and ionisation in proton scattering on the excited 2s, 2p0 and

2p1 states of hydrogen. The present results for excitation of the n = 3-shell states

in p-H(2s) collisions were in noticeable disagreement with the existing AOCC

and CTMC calculations. However, for electron capture into the selected states

of the projectile, we obtained overall good agreement. Also, we presented the

results for the cross section for super-elastic, elastic and quasi-elastic scattering
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and electron capture in proton scattering on the excited 2p0 and 2p1 states of

atomic hydrogen. Additionally, we provided the data for the density matrices

for excitation of the n = 2-shell states into the final n = 1-4-shell states of the

target.

Establishing the convergence of the results in collisions of bare ions (He2+

and C6+) with hydrogen required including the states with larger lmax. The

full convergence of the total cross sections was obtained with lmax = 6 and the

differential cross sections with lmax = 10. For C6+-H collisions, together with the

two-centre WP-CCC approach, we also showed the results of the single-centre

approach. We demonstrated the l-dependence of the single- and two-centre

results for the singly differential cross sections for ionisation of hydrogen by

1 MeV C6+ ions. Outcomes of these two approaches were compared at a certain

electron ejection angle. The results of both methods were convergent. The

convergence rate of the single-centre results was a bit slower than the two-centre

method. The results of these methods approached each other with increasing

lmax, the difference between the final results was within a few percent.

For C6+-H collisions, we compared the calculated results for the total cross

section for electron capture and ionisation with the available experiments and

other theoretical calculations. Overall, good agreement was observed. Also, we

studied the dependence of the singly differential ionisation cross section on the

angle of the ejected electron at 1 MeV and 2.5 MeV incident energies. Apart from

these, the doubly differential cross section results for ionisation were presented

for the same impact energies. The dependence of the DDCS on the electron

ejection angle was shown for several fixed ejection energies (3 eV, 10 eV, 40 eV,

100 eV, respectively), as well as on the electron ejection energies for certain

ejection angles (15◦, 45◦, 90◦, 120◦, respectively). The results were found to be

in good agreement with the available experimental data.



Conclusion and Outlook 139

We also provided the total cross sections for electron capture, excitation

and ionisation in He2+-H and p-He+ collisions. For all underlying processes

we obtained generally good agreement with the experimental data. However,

our results for Balmer-α emission underestimated the data by a factor of two

and agreed with the other close-coupling calculations. It should be pointed

out that the present results for electron capture into the selected states of He+

ion in He2+-H(1s) collisions were found to be in excellent agreement with the

corresponding experimental measurements, as well as with the corresponding

close-coupling and AOCC calculations.

The cross sections for electron capture and single ionisation in p-He(1s)

collisions were also investigated. We studied the dependence of the results on the

maximum orbital quantum number of the included states and on the number of

the discretisation bins. Once we obtained an acceptable level of convergence for

all parameters, we provided the cross sections for total electron capture, single-

and double-ionisation, as well as electron capture into the selected states of the

projectile and excitation of the n = 2-shell states of the target. We observed

overall good agreement with the experimental results of Shah and Gilbody [60]

and Shah et al. [61] for both total electron capture and single ionisation. Our

results exceeded the data by 10 to 15% in intermediate energies and agreed very

well at high energies for both processes. We emphasise that this difference is

due to the frozen-core approximation we employed. To calculate the double-

ionisation cross section, we applied the independent event model. The results

agreed with other similar calculations, however in comparison with experiment,

the present results significantly exceed the data except for the lowest energy

region. The employed model was not directly applicable for the double-transfer

processes. A proper treatment would be developing the multicore description of

the helium atom. Our results for electron capture into n = 2-shell states of the
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projectile and excitation of the n = 2-shell states of the target were also in good

agreement with experiment.

Calculations for the fully differential cross sections for single ionisation of

helium by 75 keV proton impact in both coplanar and perpendicular planes are

underway. The FDCS will be studied in both planes for different scattering

angles of the projectile. We will investigate the dependence of the FDCS on

the ejection angle of the ionised electrons with the energy of 5.4 eV. Also, the

dependence of the doubly differential cross section on the electron ejection angle

will be calculated for several ejection energies for ionisation of helium by 50 keV,

75 keV, 100 keV, and 150 keV incident protons.

Summarising, the WP-CCC approach was shown to generally describe the

considered collisional systems and the processes well, although we observed

some disagreements with the experiment for certain processes. The results pre-

sented in this work and the previous successful applications of the WP-CCC

method to various collisions give an optimistic outlook for further extension of

the method to more complex collisional systems, involving many-electron atoms

and molecules. In particular, one of the potential areas of the development

of the method could be collisions of multiply-charged bare ions with helium.

The approach employed for proton scattering on helium could be directly ap-

plied to these collisions. Another important step in the development of the

approach would be to apply the method to collisions of heavy particles with wa-

ter molecule. The data for these collisions are very valuable for hadron therapy.



Appendix A

Momentum-transfer vectors

In this appendix, we derive formulas for the momentum-transfer vectors used

in Chapter 3. The position vectors of the projectile and the target nucleus (σ

and ρ, respectively) relative to the centres of mass of the target atom and the

atom formed after the electron capture by the projectile are expressed as (see

Fig. 3.2)

σ = γ1r1 − r2, ρ = r1 − γ2r2, (A.1)

where γ1 and γ2 are the reduced masses of the target nucleus-electron and the

projectile-electron systems

γ1 =
mT − 1

mT

, γ2 =
mP

mP + 1
, (A.2)

with mT and mP being the masses of the target and the projectile, respectively

(in atomic units electron mass is 1).

Let us introduce the following vectors

k = kα − kα′ , q = γ1kα − kβ′ , p = kα − γ2kβ′ . (A.3)

Using these notations, the exponential terms present in the direct matrix element

(3.23) can be rewritten as

kασ − kα′σ = kσ = k(γ1r1 − r2) = kR+ (γ1 − 1)r1 ≈ kR
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and in the rearrangement matrix element (3.25) as

kασ − kβ′ρ = kα(γ1r1 − r2)− kβ′(r1 − γ2r2)

= (γ1kα − kβ′)r1 − (kα − γ2kβ′)r2

= qr1 − pr2 = q(r1 − r2)− (q − p)r2. (A.4)

For the term q − p in Eq. (A.4), we have

q − p = (γ1kα − kβ′)− (kα − γ2kβ′) = − kα
mT

− kβ′

mP + 1
. (A.5)

Absolute values of the vectors kα and kβ′ are found as

kα = µ1v =
mPmT

mP +mT

v, (A.6)

kβ′ = µ2v =
(mT − 1)(mP + 1)

mP +mT

v, (A.7)

where µ1 and µ2 are the reduced masses defined as

µ1 =
mPmT

mP +mT

, µ2 =
(mT − 1)(mP + 1)

mP +mT

. (A.8)

Therefore, taking into account the relation

kα
mT + 1

+
kβ′

mP + 1
= −

(
mP

mP +mT + 1
− mT

mP +mT + 1

)
v ≈ −v (A.9)

we get

q − p =
kα

mT + 1
+

kβ′

mP + 1
≈ v. (A.10)

Applying these and the relation r1 − r2 = R, Eq. (A.4) is reduced to

kασ − kβ′ρ = qR+ vr2. (A.11)

We separate the parallel and perpendicular components of the vectors k and q

using the relation R = b+ vt (note that b · v = 0) and write

kR = k‖vt+ k⊥b, qR = q‖vt+ q⊥b.
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Next, we describe the parallel and perpendicular components of the vectors

k and q, starting from the first. The vector kα is directed along the z axis.

Accordingly, k‖ = kα and k⊥ = 0, therefore

k‖ = kα − kα′ cos θ, (A.12)

which can be written using the small angle approximations cos θ ≈ 1 as

k‖ ≈ kα − kα′ . (A.13)

On the other hand, from the conservation of the total energy we have

k2α
2µ1

+ εα =
k2α′

2µ1

+ εα′ . (A.14)

Using this, the momentum kα′ is found as

kα′ = kα

√
1− 2µ1∆E

k2α
, (A.15)

where ∆E = εα′ − εα. Now we consider the expansion series

(1 + x)η =
∞∑
λ=0

η
λ

xλ, (A.16)

where

η
λ

 is the binomial coefficient. By applying this, we can express the

square root in Eq. (A.15) as(
1− 2µ1∆E

k2α

)1/2

= 1− 1

2

(
2µ1∆E

k2α

)
− 1

8

(
2µ1∆E

k2α

)2

− 1

16

(
2µ1∆E

k2α

)3

− . . . .

(A.17)

Therefore,

kα

√
1− 2µ1∆E

k2α
= kα −

µ1∆E

kα
− 1

2

µ2
1∆E

2

k3α
− 1

2

µ3
1∆E

3

k5α
− . . . (A.18)

Finally, using the relation kα = µ1v we obtain

kα − kα′ = kα − kα

√
1− 2µ1∆E

k2α
=

∆E

v
+

1

2v3
∆E2

µ1

+
1

2v5
∆E3

µ2
1

− . . . (A.19)
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If the energy difference ∆E is small enough and v is sufficiently large, we can

neglect all terms in the expansion series except ∆E/v (because µ1 is large) to

get

kα − kα′ ≈
∆E

v
. (A.20)

Next, we deal with the momentum-transfer vector q. The parallel compo-

nent q‖ of the vector q = γ1kα − kβ′ is expressed as

q‖ = γ1kα − kβ′ cos θ, (A.21)

which can be written in the form

q‖ ≈ γ1kα − kβ′ , (A.22)

by applying the small angle approximation (cos θ ≈ 1). From the conservation

of the total energy
k2α
2µ1

+ εα =
k2β′

2µ2

+ εβ′ , (A.23)

where µ1 and µ2 are the reduced masses defined above. Therefore, kβ can be

found as

kβ′ = kα

√
µ2

µ1

− 2µ2∆E

k2α
= kα

√
µ2

µ1

√
1− 2µ1∆E

k2α
, (A.24)

where now ∆E = εβ′−εα. Applying the expansion series described in Eq. (A.16)

yields

kα

√
1− 2µ1∆E

k2α
= kα −

µ1∆E

kα
− 1

2

µ2
1∆E

2

k3α
− 1

2

µ3
1∆E

3

k5α
− . . .

Also, we note that for the reduced massed µ1 and µ2 it holds

µ2

µ1

=
(mT − 1)(mP + 1)

mTmP

=

(
1− 1

mT

)(
1 +

1

mP

)
(A.25)

and therefore√
µ2

µ1

≈

√(
1− 1

mT

)(
1 +

1

mP

)
≈ 1− 1

2mT

+
1

2mP

. (A.26)



Appendix A - Momentum transfer vectors 145

Taking into account this and the relation

γ1kα =
mT

mT + 1
kα =

(
1− 1

mT

)
kα, (A.27)

the parallel component of the vector q is written as

q‖ = γ1kα − kα
√
µ2

µ1

√
1− 2µ1∆E

k2α

= (1− 1

mT

)kα −
(

1− 1

2mT

+
1

2mP

)(
kα −

µ1∆E

kα
− 1

2

µ2
1∆E

2

k3α
− . . .

)
= −kα

(
1

2mT

+
1

2mP

)
+
µ1∆E

kα
+

1

2

µ2
1∆E

2

k3α
+ . . . (A.28)

We also have

−kα
(

1

mT

+
1

mP

)
= v, (A.29)

which yields the final expression

q‖ = −v
2

+
∆E

v
+

1

2v3
∆E2

µ1

+ . . . (A.30)

As in the case of the direct scattering, if energy difference ∆E is small enough

and v is sufficiently large we can neglect all terms except ∆E/v and obtain

q‖ = −v
2

+
∆E

v
. (A.31)

Using the derived expressions for the parallel components, we obtain

(kα − kα′)σ ≈ kR = (kα − kα′)vt+ k⊥b ≈ (εα′ − εα)t+ k⊥b, (A.32)

kασ − kβ′ρ = qR+ vr2 = q‖vt+ q⊥b+ vr2 = −v
2

2
t+ (εβ′ − εα)t+ q⊥b+ vr2.

(A.33)

In a similar way, we have

(kβ − kβ′)ρ ≈ (εβ′ − εβ)t+ (kβ − kβ′)⊥b, (A.34)

kβρ− kα′σ =
v2

2
t+ (εα′ − εβ)t+ q⊥b− vr2. (A.35)
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Momentum-transfer vectors for
proton-helium system

Here, we derive expressions for momentum transfer vectors used in Chapter 4

for proton-helium collisions. Taking into account the coordinates of the centres

of mass both for p-H and H-He+ channels (see Fig. 4.2) the vector σ can be

expressed as

σ = R− γ(r1 + r2) = (1− γ)R− γ(x1 + r2) = (1− γ)R− γ(r1 + x2) (B.1)

and the vectors ρ1 and ρ2 as

ρ1 = R− γ1r2 + γ2x1 = (1− γ2)R− γ1r2 + γ2r1, (B.2)

ρ2 = R− γ1r1 + γ2x2 = (1− γ2)R− γ1r1 + γ2r2, (B.3)

with γ1 = 1/(mT − 1), γ2 = 1/(mP + 1), γ = 1/mT .

Using these expressions, the momentum-transfer vectors entering the direct
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matrix elements (4.42)–(4.44) are approximated in the following forms

(kα − kα′)σ ≈ (kα − kα′)R = (kα − kα′)‖R+ (kα − kα′)⊥b, (B.4)

(k1β − k1β′)ρ1 ≈ (k1β − k1β′)R = (k1β − k1β′)‖R+ (k1β − k1β′)⊥b, (B.5)

(k2β − k2β′)ρ1 ≈ (k2β − k2β′)R = (k2β − k2β′)‖R+ (k2β − k2β′)⊥b, (B.6)

k1βρ1 − k2β′ρ2 ≈ (k1β − k2β′)R = (k1β − k2β′)‖R+ (k1β − k2β′)⊥b, (B.7)

k2βρ1 − k1β′ρ2 ≈ (k2β − k1β′)R = (k2β − k1β′)‖R+ (k2β − k1β′)⊥b. (B.8)

The terms appearing in the rearrangement matrix elements (4.45)–(4.48) can be

written as

kασ − k1β′ρ1 = kα(1− γ)R− γ(x1 + r2)))− k1β′(R− γ1r2 + γ2x1)

= ((1− γ)kα − k1β′)R+ (k1β′γ1 − kαγ)r2 − (kαγ + k1β′γ2)x1,
(B.9)

where the term (k1β′γ1 − kαγ)r2 is very small and can be neglected. Following

the procedure described in Appendix A, we obtain

kασ − k1β′ρ1 = ((1− γ)kα − k1β′)R+ vx1, (B.10)

kασ − k2β′ρ2 = ((1− γ)kα − k2β′)R+ vx2, (B.11)

k1βρ1 − kα′σ = ((1− γ2)k1β − kα′)R− vx1, (B.12)

k2βρ1 − kα′σ = ((1− γ2)k2β − kα′)R− vx2. (B.13)

By using the approximations for the parallel components of the momentum

transfer vectors given in the previous appendix, we have

(kα − kα′)σ = q⊥b+ (εα′ − εα)t, (B.14)

(k1β − k1β′)ρ1 = q⊥b+ (εβ′ − εβ)t, (B.15)

(k2β − k2β′)ρ1 = q⊥b+ (εβ′ − εβ)t, (B.16)

k1βρ1 − k2β′ρ2 = q⊥b+ (εβ′ − εβ)t, (B.17)

k2βρ1 − k1β′ρ2 = q⊥b+ (εβ′ − εβ)t. (B.18)
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The terms appearing in the rearrangement matrix elements (4.45)–(4.48) can be

written as

kασ − k1β′ρ1 = kασ − k2β′ρ2 = q⊥b+ qα,β′‖vt− vr1, (B.19)

k1βρ1 − kα′σ = k2βρ1 − kα′σ = q⊥b+ qβ,α′‖vt+ vr1, (B.20)

where

qα,β′‖ =
v

2
+
εβ′ − εα

v
, qβ,α′‖ = −v

2
+
εα′ − εβ

v
. (B.21)

The perpendicular component of the momentum transfers, q⊥ are the same in

all transitions.
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Abbreviations

Abbreviation Description

AO Atomic Orbital

AOCC-PS Atomic-Orbital Close-Coupling with Pseudostates

CCC Convergent Close-Coupling

CDW-EIS Continuum-Distorted-Wave Eikonal-Initial-State

CTMC Classical-Trajectory Monte Carlo

DI Double Ionisation

DS Direct Scattering

DW Distorted Wave

DWBA Distorted-Wave Born Approximation

EC Electron Capture

FBA First Born Approximation

IEM Independent event model

LTDSE Lattice Time-Dependent Schrödinger equation

MO Molecular Orbital

QM Quantum Mechanical

SE Schrödinger equation

SI Single Ionisation

TDSE Time-Dependent Schrödinger equation

WP Wave Packet
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[6] D. Belkić, Theory of Heavy Ion Collision Physics in Hadron Therapy (El-

sevier, Amsterdam, 2013).

[7] J. Hansen, “Proton therapy: The new weapon of choice against cancer is

coming to Australia,” The Daily Telegraph (20/9/2014), Accessed: May,

2019.

[8] E. Rutherford, Philos. Mag. 6, 21 (1911).

[9] H. C. Brinkman and H. A. Kramers, Proc. Acad. Sci. Amsterdam 33, 973

(1930).

164

http://dx.doi.org/10.1111/j.1365-2966.2012.20787.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20787.x
http://stacks.iop.org/0741-3335/54/i=9/a=095010
http://stacks.iop.org/0741-3335/54/i=9/a=095010
http://stacks.iop.org/1402-4896/89/i=11/a=114010
http://dx.doi.org/10.1007/s10910-010-9662-x
https://goo.gl/pua2rC
https://goo.gl/pua2rC


Bibliography 165

[10] J. B. Hasted and H. S. W. Massey, Proc. R. Soc. Lond. A. Math. Phys. Sci.

212, 235 (1952).

[11] D. R. Bates and A. Dalgarno, Proc. Phys. Soc. A 65, 919 (1952).

[12] D. R. Bates and G. Griffing, Proc. Phys. Soc. A 66, 961 (1953).

[13] J. B. H. Stedeford, J. B. Hasted, and H. S. W. Massey,

Proc. R. Soc. Lond. A 227, 466 (1955).

[14] J. D. Jackson and H. Schiff, Phys. Rev. 89, 359 (1953).

[15] M. R. C. McDowell and J. P. Coleman, Introduction to the Theory of

Ion–Atom Collisions (North-Holland publishing co.-Amsterdam, United

Kingdom, 1970).

[16] B. H. Bransden and M. R. C. McDowell, Charge Exchange and the Theory

of Ion-Atom Collisions (Clarendon, Oxford, 1992).

[17] B. Bransden and C. Joachain, Physics of Atoms and Molecules, 2nd ed.

(Prentice Hall, 2003).

[18] J. Eichler, Lectures on Ion-Atom Collisions, 1st ed. (Elsevier, 2005).

[19] D. R. Bates, Proc. R. Soc. Lond. A. Math. Phys. Sci. 245, 299 (1958).

[20] D. R. Bates, Proc. R. Soc. A 247, 294 (1958).

[21] R. McCarroll and D. R. Bates, Proc. R. Soc. Lond. A. Math. Phys. Sci.

264, 547 (1961).

[22] R. Abrines and I. C. Percival, Proc. Cambridge Philos. Soc. 88, 861 (1966).

[23] I. M. Cheshire, D. F. Gallaher, and A. J. Taylor, J. Phys. B: At. Mol. Phys.

3, 813 (1970).

http://dx.doi.org/10.1098/rspa.1952.0078
http://dx.doi.org/10.1098/rspa.1952.0078
http://dx.doi.org/10.1088/0370-1298/65/11/307
http://dx.doi.org/10.1088/0370-1298/66/11/301
http://dx.doi.org/10.1098/rspa.1955.0024
http://dx.doi.org/10.1103/PhysRev.89.359
http://dx.doi.org/10.1098/rspa.1958.0084
http://dx.doi.org/10.1098/rspa.1961.0217
http://dx.doi.org/10.1098/rspa.1961.0217
http://dx.doi.org/10.1088/0022-3700/3/6/010
http://dx.doi.org/10.1088/0022-3700/3/6/010


Bibliography 166

[24] T. G. Winter and C. C. Lin, Phys. Rev. A 10, 2141 (1974).

[25] R. E. Olson and A. Salop, Phys. Rev. A 16, 531 (1977).

[26] D. Belkic, R. Gayet, and A. Salin, Phys. Rep. 56, 279 (1979).

[27] R. E. Olson and D. R. Schultz, Phys. Scr. 1989, 71 (1989).

[28] N. Toshima, Phys. Rev. A 59, 1981 (1999).

[29] A. S. Kadyrov and I. Bray, J. Phys. B: At. Mol. Opt. Phys. 33, L635

(2000).

[30] J. Fiol and R. E. Olson, J. Phys. B: At. Mol. Opt. Phys. 35, 1759 (2002).

[31] A. S. Kadyrov and I. Bray, Phys. Rev. A 66, 012710 (2002).

[32] A. S. Kadyrov, I. Bray, and A. T. Stelbovics, Phys. Rev. A 73, 012710

(2006).

[33] A. S. Kadyrov, I. Bray, and A. T. Stelbovics, Phys. Rev. Lett. 98, 263202

(2007).

[34] T. G. Winter, Phys. Rev. A 80, 032701 (2009).

[35] A. S. Kadyrov, I. B. Abdurakhmanov, I. Bray, and A. T. Stelbovics, Phys.

Rev. A 80, 022704 (2009).

[36] I. B. Abdurakhmanov, A. S. Kadyrov, I. Bray, and A. T. Stelbovics,

J. Phys. B: At. Mol. Opt. Phys. 44, 075204 (2011).

[37] A. Jorge, L. F. Errea, C. Illescas, and L. Méndez, Eur. Phys. J. D 68,

227 (2014).

[38] M. Baxter and T. Kirchner, Phys. Rev. A 93, 012502 (2016).

http://dx.doi.org/10.1103/PhysRevA.10.2141
http://stacks.iop.org/1402-4896/1989/i=T28/a=013
http://dx.doi.org/10.1103/PhysRevA.59.1981
http://dx.doi.org/10.1088/0953-4075/33/18/101
http://dx.doi.org/10.1088/0953-4075/33/18/101
http://stacks.iop.org/0953-4075/35/i=7/a=312
http://dx.doi.org/10.1103/PhysRevA.66.012710
http://dx.doi.org/10.1103/PhysRevA.73.012710
http://dx.doi.org/10.1103/PhysRevA.73.012710
http://dx.doi.org/10.1103/PhysRevLett.98.263202
http://dx.doi.org/10.1103/PhysRevLett.98.263202
http://dx.doi.org/10.1103/PhysRevA.80.032701
http://dx.doi.org/10.1103/PhysRevA.80.022704
http://dx.doi.org/10.1103/PhysRevA.80.022704
http://dx.doi.org/10.1088/0953-4075/44/7/075204
http://dx.doi.org/10.1140/epjd/e2014-50109-4
http://dx.doi.org/10.1140/epjd/e2014-50109-4
http://dx.doi.org/10.1103/PhysRevA.93.012502


Bibliography 167
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