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ABSTRACT 

An important bottleneck to the large scale development of utility-scale photovoltaic farms is the output 

power quality issues due to swift cloud cover changes. Cloud-induced sunlight disruption may cause 

significant power output fluctuations in solar power systems, jeopardizing power quality. Forecasting 

the power output with a very short horizon below 30 seconds can be seen as a cloud cover forecasting 

problem solved by processing images from a sky camera, which may involve classifying pixels and 

calculating a 3D rotation matrix. After a pre-processing stage that identifies clouds with a criterion 

based on the red-green blue (RGB) values of each pixel, a Probability Hypothesis Density (PHD) filter 

and a more advanced Cardinalised Probability Hypothesis Density (CPHD) filter can be used to an 

unknown and varying number of clouds. Both filters have been compared for performance by using an 

original centroid-based cloud tracking method and both have also been compared to the state of the art 

optical flow. It has been found that both filters are suitable for very-short term irradiance forecast and 

are fast enough for implementation. Both filters have also proven to be more appropriate for very-short 

forecast than optical flow. 

Also, some cloud types have been identified as causing irradiance peaks on top of shading. After a 

detailed study of the effects of each cloud type on the global horizontal irradiance, it has been observed 

that rain clouds cause the most dramatic shading, for the longest period of time. However, cumulus and 

stratocumulus clouds have been identified as responsible for the most intense irradiance peaks, whereas 

cirrus and cirrostratus cause the smallest irradiance peaks. 

To mitigate the negative effects of both shading and peaks of irradiance on the consistence and quality 

of photovoltaic output, a battery system with bidirectional converter with a proper controller and 

integration of the photovoltaic power has been envisaged and modelled. 
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1 INTRODUCTION AND PROBLEMATIC 

1.1 MAIN OBJECTIVES OF THIS STUDY 

As of now, photovoltaic (PV) resources are deemed non-dispatchable due to the highly stochastic 

nature of sunlight. This issue greatly limits the development of PV installations and deters investments 

on a global scale. This thesis endeavours to address this problem by controlling and improving the 

quality of PV power output by forecasting that power systems within a very short-term timeframe in 

the presence of passing clouds. An exhaustive methodology has been investigated in that regard, with 

an initial limitation to a small geographic area, corresponding to a single PV array. Prior to being 

extended to a larger area, the methodology in question seeks to tackle the following goals: 

Firstly, an appropriate forecasting horizon in terms of temporal and spatial resolution is selected based 

on the information gathered through an exhaustive investigation and comparison of the various 

approaches and techniques used in literature to forecast PV power in very short-term. A suitable 

approach and an appropriate source of data also need to be chosen. 

Secondly, the clear-sky irradiance needs to be modelled to match with experimental observations. The 

purpose is to forecast the global horizontal irradiance for a given place and time in the complete absence 

of clouds and aerosols with a satisfactory accuracy prior to superposing the effects of clouds, for a 

realistic and exhaustive real-time forecast. 

Thirdly, it is necessary to pre-process the images from a sky camera in order to tell apart the pixels 

corresponding to clear sky from the pixels corresponding to clouds. Empirically, the optimal criterion 

depends heavily on the camera sensor that is used. It is thus necessary to define a process to determine 

what criterion is best for a specific sky camera. 

Finally, the last objective is to track the position of clouds with respect to the sun within a series of sky 

images with an accurate and time-efficient statistical method. The position of the sun needs to be 

predicted in every frame and a comparison of several tracking methods is necessary at this stage. 

1.2 CONTRIBUTIONS OF THIS STUDY 

In an effort to fulfil the objectives mentioned in the previous section, this work provides the reader with 

the following original contributions: 



28 
 

 An exhaustive literature review on short-term and very-short photovoltaic forecasts, with 

a comparison of both tools and methods as well as some recommendations. This literature 

review does not only cover the sole needs of this study but also provides a solid guidance 

to other researchers seeking to work in a similar area. An article has been published in a 

reputable peer-reviewed journal from Elsevier in that regard [1]. 

 A comparison of some commonly and widely used empirical have been compared to 1-

minute measurements of the global horizontal irradiance (GHI) made with an affordable 

weather station. A linear regression has been made on the basis of the two models that 

were the closest fits with respect to the measured values, leading to the design of two new 

models that specific fit insolation conditions of Western Australia. This work has been 

presented during an IEEE Power and Energy Society General Meeting Conference [2]. 

 An original method has been designed to pre-process the images supplied by a sky camera. 

In particular, this method is used to assess the accuracy of various clear sky/cloudy pixel 

discrimination criteria. It also finds the optimal thresholds for a specific camera sensor. As 

previously mentioned, this is particularly important since results may vary dramatically 

from a camera sensor to another. The method in question has been introduced in an article 

published in the peer-reviewed IEEE Transactions on Sustainable Energy [3]. 

 Identifying cloud types and studying their effect on the reduction of light intensity when 

they mask the sun.  

 Defining a custom method to identify the tilt angle and the deviation of the camera with 

respect to the true North. This step is absolutely necessary to determine accurately the 

position of the centre of the solar disk over time and thus forecast sunlight dimming. 

 Tracking cumulus clouds within a series of sky images with an accurate and time-efficient 

statistical method. A few methods have been compared in speed and accuracy [3]. 

 An example of practical utilisation of the forecast to control photovoltaic power output. 

1.3 ADVANTAGES OF PV GENERATION 

Solar power is largely underexploited globally. However, the sun can be seen as a gigantic natural 

fusion nuclear reactor [4] that provides the Earth with far more energy that humanity needs [5][6] or 

will most probably ever need in the future [7]. It is a completely free and clean source of energy since 

it does not need any maintenance nor any fuel supply and it does not produce any waste. The solar 

resource is also at the origin of many other sustainable resources like wind energy [8]. It is even reported 

that it is the first source of energy of the planet, exceeding the second largest energy resource by a factor 

104 [9]. Also, the Sun will continue to send a steady quantity of solar energy to the surface of the Earth 

for a period of time stretching far beyond the scale of human history. All of these factors make solar 
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energy an excellent candidate to tackle economic, environmental and public health challenges of our 

developing energy crisis. 

1.4 FAST INCREASING POPULARITY OF PV GENERATION 

PV generation is advantageous and valuable in various markets, as its peak generation matches with the 

timeframe of higher load demand. M. Morjaria et al. [10] mention that the cost of PV generation has 

significantly plummeted, increasing greatly the competitiveness of PV power. These authors have even 

seen that PV-generated electricity has reached grid parity in a large variety of markets, with a price 

equal or lower with respect to electromechanical non-renewable electricity. As a result, the number and 

the size of utility-scale PV farms have skyrocketed. As of today, large capacity utility-scale grid-

connected PV farms already account for 38% of the overall PV generation [11]. Manz et al. [12] have 

reported that some solar power plants are “planned to exceed several hundred megawatts of capacity”. 

To illustrate that growth, the global capacity of utility-scale photovoltaic (PV) plants has exceeded an 

estimated value of 60 GWAC by the end of 2015 with an extra 87 GWAC capacity commissioned and in 

development ever since then [13]. Australia alone accounts for 5.4 GW of PV capacity as of September 

2016, part of which 692 MW has been installed in the preceding 12 months [14]. 

1.5 CHALLENGES OF PV GENERATION 

Nonetheless, despite its increasing popularity, solar power generation is considered unreliable 

because of its direct dependence on stochastic weather conditions, which raises grid integration 

concerns [15] in particular because of the difficulty to dispatch that energy. As a matter of fact, it is 

important to smoothen the PV power output prior to its integration into the grid, for quality purposes 

[10]. This may be achieved through the adequate control of a battery energy storage system (BESS) 

[16] and inverters [17-19]. However, battery banks may be costly and ancillary generators require some 

time to ramp up if they are needed. Therefore, a forecast of PV power fluctuations helps to minimize 

costs and optimize efficiency. 

In particular, for the very large number of small islanded systems in regional Western Australia, 

power continuity in local power generation is vital. Such systems need to be autonomous, which means 

that intermittency cannot be mitigated with a connection to another system. Instead, local reserves must 

be managed in an optimized manner. This means such power systems cannot afford to rely on a large 

share of solar power if they do not have enough visibility over future generation [20][21][22]. An 

accurate very-short term irradiance forecasting method can play a key role in optimizing control 

systems. It can permit to control effectively and efficiently local battery banks or auxiliary energy 

resources. It can also help to manage ramp rates to guarantee PV power output continuity [16, 23, 24]. 
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1.6 SUNLIGHT FLUCTUATIONS AND THEIR EFFECT ON PV POWER  

Severe swift power output oscillations are mostly due to sudden changes in solar irradiance [25, 

26] because irradiance is both the main contributor to the photovoltaic effect and also the fastest 

changing physical quantity [27]. By extension, PV power forecasting can be seen as monitoring the 

cloud cover [11, 28-30]. 

(a) (b)
 

Figure 1.1 – (a) Received DNI and Power Output of a Thin-film Array and (b) Corresponding Ambient 

Temperature and Relative Humidity. 

As pointed out by Ramakumar, Jewel and Hill [31, 32] and Chengrui et al. [33], broken cumulus 

clouds are the cloud type that affects irradiance and thus PV generation the most severely. They can 

cause AC power fluctuations of small 2kW as well as large 1.6MW PV systems in excess of 50% of 

their rated capacity in less than 10 seconds. [26]. This kind of effect is illustrated in Figure 1.1 (a), 

where the power output (in blue) of a 360W amorphous thin film array located at Curtin University, 

Perth, Western Australia, dropped by 76% in a matter of 12 s. The cause was an opaque cumulus cloud 

with an optical thickness  assessed between 0.36 and 0.9. It is visible that the power output closely 

follows the fluctuations of the direct normal irradiance (DNI) (in red), with some extra oscillations due 

to the maximum power point tracking (MPPT) system. In contrast, the ambient temperature (in blue) in 

Figure 1.1 (b) and the relative humidity (in red, in the same figure) did not vary as dramatically as the 

solar irradiance over the exact same period of time. For its part, ground wind speed may vary even faster 

than solar irradiance. However, wind speed on the surface of the ground only plays a secondary role in 

PV power generation in helping the dissipation of heat and by partially affecting the PV cell 

temperature. With that said, most of PV cell models neglect that effect [34]. It is in comparison more 

relevant to focus on cloud velocity, which may significantly differ from ground wind in terms of both 

speed and direction [27, 35]. 
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1.7 THE DYNAMICS OF PV GENERATION 

In terms of dynamics, PV plants’ response to grid system disturbances conceptually differs 

from more traditional synchronous machines. It is however possible to improve ramp-rate controls 

along with the ability to dispatch PV power through sophisticated control algorithms. An adequate 

control of PV power can also provide the grid with a stable, reliable and effective operation. 

Additionally, to manage the variable generation of PV resources, grid operators need short-term 

forecasting methods as well as some support from alternative compensatory controllable resources. 

Indeed, the rapid progress and increasing accuracy of short-term solar generation forecast guarantees 

continued efficient and reliable system operations. 

Although forecasting PV power may seem straight-forward at first glance, it must be noted that the 

dependence on weather conditions is an important obstacle to tackle. Indeed, since the emergence of 

PV power generation, the abundant, free solar energy has been difficult to harvest and dispatch due to 

its entire dependency on uncertain, intermittent solar radiance. The stochastic discontinuities of sunlight 

intensity during the day create PV power fluctuations. Additionally, sunlight is not always available for 

harvest, as it is the case for instance during night time. Also, changing climatic conditions may result 

in changing PV power output. As a result, the uncertainty of solar power makes it difficult to integrate 

into the grid at a high penetration level. This can be an important issue if solar generation is to become 

a major source of energy in the future [12]. While storing solar energy has long been seen as a solution 

to this problem, a precise forecast of the available energy is necessary for the previously mentioned 

control. For the sake of simplicity, the solar radiance in the complete absence of clouds in the 

atmosphere can be modelled analytically. Indeed, the rotation of the Earth causes a daily disruption of 

the flux of extra-terrestrial energy received by the top of the atmosphere. Additionally, the tilt of the 

spin axis of our planet with respect to the Earth’s plane of orbit around the Sun makes the global 

horizontal irradiance, or the rate of total incoming solar energy received on a unitary horizontal area 

will be higher in summer than in winter [36]. 
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Figure 1.2 – Seasonal Variations of Global Solar Irradiance for a Given Place on the Surface of the Earth. 

A unitary horizontal area is defined as measuring 1 square kilometre located on a horizontal plane on 

the Earth's surface. This effect is more dramatic for regions away from the equator, as illustrated in 

Figure 1.2. Additionally, the incidence angle of sunlight when it goes through the atmosphere plays an 

important role. 

Besides those obstacles to a consistent harvest, the light intensity emitted by the Sun varies on a regular 

basis, through magnetic activity cycles. On the other hand, it is not possible to model analytically the 

intermittent variations or disruptions of sunlight due to the presence of clouds and aerosol in the 

atmosphere. Yet, the motion of clouds has a dramatic impact on the performance of a solar generator 

[37] and thus need to be forecasted to avoid undesired issues and costs. 

Due to changes in the cloud cover, some significant drops in PV generated power output may occur, in 

the range of up to 70% in a matter of 5 seconds [11, 38]. This may result in episodes of grid instability 

if not properly compensated. Yet, the cost of such weather-related power outages is far from negligible. 

As an example, in the comparable case of wind generators, errors in power prediction may cost up to 

10% of the income of selling the generated energy [39].  
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1.8 THE CASE STUDY OF PV GENERATION IN WESTERN AUSTRALIA 
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Figure 1.3 – Power networks and major photovoltaic farms in Western Australia [40][41] superposed on 

top of a satellite view of the state shot on the 29th of February 2016 at 5 pm [42], illustrating the geographical 

disparities of cloud cover over a large territory at a given time. 

Only four interconnected systems exist in the state of Western Australia: Hopetoun, Esperance, the 

North-West Interconnected System (NWIS) [43], and the South-West Interconnected System (SWIS) 

[44][45][46]. The major PV farms have been placed on the map of Figure 1.3 with their installed 

capacities. Also, the map features a satellite view of the cloud cover conditions. On the one hand, small 

regional dispersed islanded service areas may suffer from the previously mentioned problems that have 

been identified by Jewel, Ramakumar and Hill. One the other hand, it is visible that potentially all the 

PV farms connected to an interconnected grid such as the SWIS or the NWIS can simultaneously 

experience significant cloud cover fluctuations overhead. This makes PV integration difficult as the 

power output of a significant number of PV farms may oscillate simultaneously, under the effect of 

distinct cloud patterns, and in a fashion that may be difficult to predict precisely. This problem may 

grow if more PV farms are connected in the future. This is also true for dispersed residential PV 

generation, which is not represented in Figure 1.3. Including residential sources, solar generation 

represented 336 MW in the SWIS in 2014, i.e. 6% of the total capacity of the grid, which was 5.5 GW 

[47]. 

An accurate very-short term irradiance forecasting method could play a key role in optimizing control 

systems aiming to maintain a constant output voltage with the help of inverters or a Volt/VAr control 

system responsible for the actions of tap changing transformers, voltage regulators, switched capacitor 

banks [15] or other similar systems [48-51]. 
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1.9 SOLAR POWER FORECASTING AS A SOLUTION AND SIMILARITIES WITH WIND 

FORECASTING 

Generally speaking, power forecasting is a smart option to tackle the problems that have been previously 

mentioned. Power forecasting can help to manage the ramp rate and running time of compensatory 

systems to ensure both power continuity and low operational costs. Diagne, Boland et al. (2013) [29] 

have argued in that sense, stating that both an efficient integration of the variable energy output of PV 

systems and a better quality service require an accurate and reliable forecast of irradiance. Indeed, 

reliable forecast information on the solar resource is needed to adjust the power to the expected load 

profile. In other words, PV forecasting may help to better manage the electrical balance between power 

generation and consumption. However, PV power forecasting is still a relatively recent research topic. 

Forecasting PV power requires many weather parameters to be taken into consideration. In comparison, 

simpler wind power forecasting has been already better studied during the past years and is at a more 

mature stage of research. As a result, PV power forecasting could be inspiring regarding the 

methodologies already in use in wind power forecasting. This idea is supported by Manz et al., who 

state in [12] that “the integration of large-scale PV plants in the transmission system can follow the 

successful model already established by wind integration, with the consequential impact of variability 

treated in the same manner”. Consequently, the methodology used in wind power forecasting has been 

judged relevant and inspirational for the purpose of PV power forecasting. This is the reason why we 

decided it was worth examining the approaches used in wind power forecasting within the next chapter. 

1.10 OUTLINE OF THIS THESIS 

In total, this thesis is composed of seven chapters. The various chapters outline the overall 

methodology used to address the challenges posed by PV generation. 

In this chapter, which is Chapter 1, the reader has already been provided with an overview of the 

problems encountered by PV generation. In introduction to solar power forecasting has also been given. 

The state of the art of solar power forecasting broadly speaking is studied in Chapter 2. As 

previously mentioned, because of its similarities with solar power forecasting and since it is more 

mature topic, wind power forecasting is studied as a source of inspiration. The performance metrics and 

the definition of forecasting horizons used in wind power forecasting are reviewed and compared with 

those used in solar power forecasting. The various forecasting horizons in use for solar power 

forecasting are reviewed and compared. All the prerequisites for solar power forecasting such as PV 

cell temperature modelling, PV cell voltage and current modelling, clear-sky irradiance modelling, 

irradiance forecasting, cloud cover, cloud classification are also covered in that chapter. Finally, an 
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exhaustive review on the advances in very short-term PV power forecasting is given at the end of the 

chapter. 

A detailed view on irradiance modelling is given in Chapter 3, first in the absence of clouds and 

then when taking clouds into consideration. In the complete absence of clouds and aerosols, the positon 

of the sun in the sky and the extra-terrestrial irradiance are very regular and can be quite easily predicted 

with some relatively simple analytical models. The generic astronomical parameters that define the 

solar resource at any given location on the globe are reviewed at the beginning of the chapter. Following 

this, a large number of empirical irradiance models based on measurements made in different regions 

on Earth are reviewed, compared with one another and also with more complex physical models. In 

addition, the empirical models are compared with 1-minute measurements of the irradiance during all 

four seasons. On the basis of commonly used performance metrics, the two best fits are selected and 

used as a basis for a linear regression. In the same chapter, the positions of both the sun and clouds are 

studied as seen from a sky camera installed on the ground. The shading effect of clouds is investigated 

and a calibration method is considered for sky cameras. 

Chapter 4 describes in depth the steps of the method used to track clouds in the images of a sky 

camera. First, the images are pre-processed. They are masked and a criterion needs to be applied to 

identify sky pixels. Since various criteria exist in literature and since the threshold values of each 

criterion are unique for any camera sensor, a novel method has been designed and used to assess the 

accuracy of each criterion and find optimal threshold values. A couple of implementation of Random 

Finite Set (RFS), namely a Probability Hypothesis Density (PHD) filter and a Cardinalised Probability 

Hypothesis Density (CPHD), are introduced and used on a simplified data set to track clouds. Some 

metrics are used to assess the performance of the RFS implementation against an optical flow based 

state of the art method. A full discussion of the advantages of the RFS implementation is given. 

In Chapter 5, the discrimination criterion between clear sky pixel and cloud pixels is reassessed 

to suit a new camera that been used to observe the sky over an extended period of time. As a result, a 

clear-sky library and a cloud library have been collected with a scheduled time lapse. The chromatic 

properties of those two libraries have been studied in details to characterise clear-sky conditions as well 

as each cloud type. All features have been looked at to set up an automatic cloud classification. The 

frequency of the optical thickness of each cloud type has been studied as well by comparing 

observations and the clear sky model obtained by linear regression in Chapter 3. 

Chapter 6 explores a strategy to control PV power in spite of short-term sunlight fluctuations. An 

accurate and experimentally verified model has been designed for a small grid-connected PV system 

with maximum power point tracking (MPPT) and voltage source controller (VSC). The effect of various 

levels of sunlight disruption has been studied on this model to determine a mitigation. A state-of-the-
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art battery model has been implemented. Additionally, a dual active bridge and its controller have been 

designed as an interface between the grid-connected PV system and the battery. The behaviour of the 

complete system has been tested with various sunlight disruptions through simulation studies. In 

complement to this analysis, the hardware implementation of a VSC controller is presented with a 

strategy to optimise its real-time functionality. 

Finally, Chapter 7 concludes the study and discusses the future works that are envisaged to further 

complete and enrich this study. 
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2 STATE OF THE ART OF SHORT-TERM SOLAR POWER 

FORECASTING 

This chapter intends to present exhaustively the state of the art in the field of short-term power 

forecasting. The purpose is to study the latest advances in that area and compare approaches and tools 

in order to choose our own methodology. Some conclusions and recommendations are also provided to 

the reader at the end of each section. This chapter is based on the article “Very short-term photovoltaic 

power forecasting with cloud modeling: A review” published by the author in the peer-reviewed journal 

“Renewable and Sustainable Energy Reviews” from Elsevier. 

The chapter reviews some relevant methods used by the more advanced field of wind power forecasting. 

We also review some tools, metrics and definitions that are commonly used in that field as well as in 

solar power forecasting. After studying a comparison of various approaches of solar power forecasting, 

we look at various PV cell models, in particular PV cell temperature models. We also study clear-sky 

irradiance, the different types of clouds and the effects of clouds on the clear-sky irradiance. Finally, 

we will focus on the various approaches used in very-short term PV power forecasting. 

2.1 RELEVANT METHODS USED IN THE REFERENCE FIELD OF WIND POWER 

FORECASTING 

Solar power forecasting is a relatively new field of research that lags behind wind power forecasting in 

terms of progress. Wind forecasting can consequently be taken as a good reference, as it has been further 

developed over the past years.  

2.1.1 Analysis of the Reference Field of Wind Power Forecasting 

Comprehensive reviews conducted by S.S. Soman et al (2010) [39] and by S.M. Lawan et al (2014) 

[52] both give a good overview of the different horizons that are taken into account in that field. Soman 

et al classified wind forecasting techniques into different categories according to their temporal 

resolution as well as according to their approach. Some studies like the one conducted by Espino and 

Hernandez (2011) [53] have compared several approaches within various time scales in order to define 

which method fitted best for each horizon. The paper focuses on short (from 10 to 240 minutes) and 

very-short term wind forecasting using a statistical approach based on support vector regression (SVR). 

A quick overview of the different time horizons for wind speed and power forecasting is given in Table 

2.1 [39, 52]. These categories are only a popular set and not the sole classification used in literature. 

As illustrated in  
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, the very short-term horizon is also known as ‘nowcasting’ [53] and ranges from a few seconds to 30 

minutes ahead. It is the shortest timeframe considered in prediction, useful for immediate actions like 

electricity market clearing and pricing. Only little literature is available for the very-short term 

timeframe considering both wind and PV power forecasting. 

Table 2.1 – Wind speed/power forecasting time frames [33, 39, 52]. 

Time horizon Range Possible purpose 

Very Short-term / Nowcasting A few seconds to 30 minutes Electricity market clearing 

Short-term 30 minutes to 6 hours Economic load dispatching 

Medium-term 6 hours to 1 day Operational security 

Long-term More than 1 day Maintenance scheduling to 

optimize the operating cost 

 

The actual short-term forecasting horizon is comprised between 30 minutes and 6 hours ahead. This is 

the timeframe used for economic load dispatch as 30 minutes is the usual timeframe for grid operations 

and operating reserve. Most of the research related to wind forecasting has been done in this time scale. 

The medium-term horizon corresponds to a time scale ranging between 6 hours and 1 day whereas the 

long-term horizon exceeds 1 day ahead. 

These previously defined limits of forecasting terms are however not very strict and may vary depending 

on the application of the prediction model. For example, in the application field of meteorology, the US 

National Weather Service considers 0 to 3 hours ahead forecasting as nowcasting [54]. For some other 

agencies, forecasts up to six hours can also be called nowcasting.  

Besides various prediction time frames, several wind speed and power prediction models have already 

been used in scientific literature, the most popular of which are listed in  

. When using the persistence model, also known as ‘naïve predictor’, it is assumed that the physical 

quantity that is forecast, wind speed or direction, as it happens, remains unchanged during a time 

increment Δt. 

This means that for example the wind vector �⃗� is the same at time t+Δt as it was at time t. This approach 

thus implies a very strong correlation between present and future values. This prediction method has 

been reported to be the most accurate for very short-term and short-term forecasts. This approach is 

even commonly used by meteorologists as a reference benchmark tool to assess the performance of 

another wind forecasting method. 

The persistence model can advantageously supplement the physical model, which is mainly elaborated 

using Numerical Weather Prediction (NWP). This approach consists in taking into consideration a 

detailed physical description of the atmosphere. Indeed, the future wind speed and direction both 

strongly depend on other current meteorological quantities such as ambient temperature, solar 

irradiance, atmospheric pressure, relative humidity, and dew point. The topology of the terrain is also 
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considered when using a NWP for wind forecasting purposes. Due to the difficulty to gain live data and 

due to high costs, NWPs are run only a few times per day on powerful hardware resources, using 

complex mathematical models commonly based on kinematic physical equations. 

Table 2.2 – Popular methods used for wind speed/power forecasting [39]. 

Approach Subclass/Tools Examples Characteristics 

Persistence Method  P(t+Δt)=P(t) if k is 

small 

(t)=t)+(t vv


  

Reference benchmark. 

Very accurate for very 

short-term and short-term 

wind forecasting. 

Physical Approach/ 

Numerical Weather 

Numerical Weather 

Prediction (NWP) 

Global Forecasting 

System 

Use of meteorological 

data. 

Accurate for long term 

wind forecasting. 

Statistical Methods Neural Network 

(NN) 

Artificial Neural 

Network (ANN) 

Multilayer perceptron 

Accurate for short-term 

Other techniques Fuzzy Logic 

Genetic Algorithm 

Markov Chain 

SVR 

Good for short-term 

Time-series Models ARMA 

ARMAX 

ARIMA 

AR 

Accurate for short-term 

Hybrid Structures ANN + Fuzzy Logic 

= ANFIS 

 ANFIS is very good for 

very-short term forecast 

 NWP + NN  NWP+NN is very accurate 

for medium and long term 

 

Consequently, this model is not appropriate for relatively short-term forecasts and is only accurate for 

medium and long-term horizons, in excess of 6 hours. It actually performs best with time scales 

comprised between 48 hours and 172 hours ahead. 

Statistical approaches consist in training a model with measurement data and then comparing the 

predicted values with near-past actual values to fine-tune predicted parameters. Such models are 

accurate for relatively short-term horizons. They can be divided into two main subclasses: Time-series 
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based approaches and Artificial Neural Network (ANN) based methods. Other statistical methods like 

fuzzy logic and genetic algorithm can also be used. 

ANN models are powerful nonlinear data driven methods that are easy to model, inexpensive and less 

time consuming than other methods. Their prediction model is based on patterns rather than on any 

predefined mathematical model. However, the accuracy of such prediction models quickly drops as the 

time horizon stretches. Several variants of Neural Networks are used like feed-forward neural networks 

(FNNs), multi-layer perceptrons (MLP), recurrent neural networks (RNNs) and time delay neural 

networks (TDNN) to name a few. More details are given in the next section. 

Furthermore, some additional artificial intelligence (AI) techniques can also be successfully applied for 

short-term predictions, like for example genetic algorithms (GA), fuzzy logic, Markov chains (MC), 

etc. 

Time series based forecasting methods have been very popular for wind prediction in the past years. 

The most commonly used model is the Auto-Regressive Moving Average (ARMA), which is an 

improvement of the regular predictive auto-regressive method (AR). However, this method can only be 

used for stationary time series. Several variations exist like Auto-Regressive Integrated Moving 

Average (ARIMA) and Auto-Regressive Moving Average with exogenous inputs (ARMAX). The 

coupled autoregressive and dynamical system (CARDS) is also a popular method. Other models like 

Bayesian Model Averaging (BMA) or Support Vector Regression (SVR) [53] are also applied. 

Model performance is often assessed by the means of Root Mean Square Error (or deviation) (RMSE), 

normalized (or standardized, or relative) Root Mean Square Error (nRMSE or rRMSE), Mean Absolute 

Error (MBA) or Mean Bias Error (MBE) or other means. 

The root mean square error (RMSE) and normalized root mean square error (nRMSE) are commonly 

used to evaluate the performance of an approach or a model. If we consider the number N of samples, 

both errors are respectively defined by equations (2.1) and (2.2) [55]: 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)2
𝑁

𝑖=1

 (2.1) 

 𝑛𝑅𝑀𝑆𝐸 =
√1
𝑁
∑ (𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)2𝑁
𝑖=1

1
𝑁
∑ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑁
𝑖=1

 (2.2) 

The nRMSE is nothing but the RMSE divided by the range of measurement. It is usually expressed as 

a percentage. 

The mean bias error (MBE) and mean absolute error (MAE) are other statistical quantities used to 

measure how close forecasts or predictions are to the eventual outcomes. The MBE is an average of the 

errors while the MAE is an average of the absolute errors. Both are respectively given by equations 

(2.3) and (2.4): 
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 𝑀𝐵𝐸 =
1

𝑁
∑(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)

𝑁

𝑖=1

 (2.3) 

  
𝑀𝐴𝐸 =

1

𝑁
∑|𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡|

𝑁

𝑖=1

 (2.4) 

Another important metric is the Pearson’s correlation coefficient, which quantifies how well a model 

matches practical data in shape. A perfect match is given by a result of 1. This coefficient is usually 

denoted by ρ and consists in the covariance of both the modeled and the measured GHI divided by the 

standard deviation of both GHI: 

 
𝜌 =

𝑐𝑜𝑣(𝐺𝐻𝐼𝑀𝑜𝑑𝑒𝑙𝑒𝑑 , 𝐺𝐻𝐼𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

𝜎(𝐺𝐻𝐼𝑀𝑜𝑑𝑒𝑙𝑒𝑑) ∙ 𝜎(𝐺𝐻𝐼𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
 (2.5) 

RMSE shows the overall accuracy of a model while the MBE demonstrates if the model is generally 

high or low and the MAE shows how far off the model is. The accuracy and offsets measured by these 

metrics may be easily changed by altering some coefficients in the model. 

Additionally, it is also common practice to combine various approaches, such as for instance the 

physical and statistical approaches. Alternatively, various horizons, such as short-term and medium-

term, may also be combined. Such combinations are referred to as hybrid methods and aim to optimize 

the short-term prediction values. Indeed, many researchers use a combination of methods. They 

unanimously agree that hybrid methods outperform the individual methods [29]. Amongst the large 

number of possible combinations, mixing together NNs and fuzzy logic leads to the popular approach 

of Adapted Neuron Fuzzy Inference (ANFIS). Another popular technique consists in correlating the 

wind speeds at different sites. 

All the discussed time scales and methods are also valid for PV power forecasting. Indeed, wind speed 

and direction is one factor amongst other meteorological quantities that greatly influence the prediction 

of PV power. As a matter of fact, a fast frontal wind may cool down the cell temperature within a PV 

array, which in turn increases the voltage output and by extension also the power output. 

2.1.2 Conclusions on What Can Be Learned From the Field of Wind Power Forecasting 

Although the following considerations are valid for wind power forecasting, they can also be used as a 

guideline for solar power forecasting, which is more complex since more variables are taken into 

account. As a first step, the forecasting horizon is defined according to the grid operation. Secondly, an 

approach is chosen on the basis of the horizon. Studies carried on wind power forecasting show that the 

persistence approach is the best choice for very short-term horizons. On the other hand, time-series and 

ANN-based approaches are only reliable for short term horizons. NWPs, for their part, prove to be only 

accurate for medium to long horizons. 



42 
 

2.2 COMPLEMENTARY INFORMATION ON STATISTICAL METHODS FOR PV 

FORECASTING 

Tools like machine learning methods are very effective to deal with non-linear systems. Some examples 

of commonly used methods are [5]: 

- Expert Systems (ES) 

- Artificial Neural Network (ANN) 

- Genetic Algorithm (GA) 

- Fuzzy Logic (FL) 

- Computer Vision (CV) 

- Hybrid Systems (HS) 

- Many other methods 

2.2.1 Review of the Statistical Methods for PV Forecasting 

ESs interpret data to deal with knowledge processing and make decisions for complex problems. 

Genetic Algorithms utilize a fixed-sized population containing individual possible solutions to a given 

problem, which evolve in time. Genetic operators such as selection, crossover and mutation are applied 

to eliminate the poorest solutions and create new solutions from selected existing ones. These 

algorithms are very popular in machine learning. 

ANNs are based on the emulation of a biological brain. It has the capacity to be trained and to learn. 

The architecture consists in multiple layers of interconnected artificial neurons. The neurons 

communicate through synapses. Each artificial neuron (AN) compares their inputs with a threshold 

value to produce an output. The weight of each input can be adjusted during a preliminary learning 

phase [56]. The ANNs support both supervised and unsupervised learning. 

A multi-layer perceptron (MLP) is an ANN consisting in several fully interconnected layers of ANs. It 

is trained with a supervised learning technique. MLPs are the most popular form of ANNs. They consist 

in an input layer, at least one hidden layer and an output layer. The hidden layers often use a hyperbolic 

tangent function of the input vector x, as shown in equation (2.6) [29]. 

 𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2.6) 

Considering a MLP that processes a number n of input vectors X, is characterized with h hidden neurons 

and a single linear output y, the relationship between the input and the output is given by (2.7) [29]. 

 𝑦 =∑[𝑊𝑖𝑓 (∑𝑊𝑗𝑖,

𝑛

𝑖=0

𝑋𝑖)]

ℎ

𝑗=0

 (2.7) 
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When used for one day-ahead forecasting, MLPs may lead to very accurate results. For example, Mellit 

and Pavan (2010) [57] have successfully used a MLP to forecast the solar radiance 24 hours ahead with 

a 98% precision during sunny days and less than 95% during cloudy days. 

Fuzzy Logic is based on the utilization of logical statements and binary operators to model problem 

treated with a human-like reasoning. It is mainly used in control engineering. 

These artificial intelligence methods have been successfully applied for the purpose of PV power output 

or irradiance forecasting [57]. According to Mellit et al (2010), MLP and Radial Basis Functions (RBF) 

networks as well as fuzzy logic are particularly suited in the case of precise forecasts based on a 

significant number of meteorological and geographical input data. In other words, such methods are 

effective when the forecast irradiance is expressed as follows: 

 𝐺(𝑡 + 1) = 𝑓 (𝑇𝑎𝑚𝑏(𝑡), 𝑅𝐻(𝑡), 𝑇𝐶𝐶(𝑡), 𝑤𝑠𝑝𝑒𝑒𝑑(𝑡), 𝑃(𝑡), 𝐿𝑎𝑡, 𝐿𝑜𝑛𝑔, 𝐺(𝑡)) (2.8) 

In equation (2.8), Tamb is the ambient temperature, RH is the relative humidity, TCC is the total cloud 

cover, wspeed and wdirection are respectively the wind speed and direction, P is the atmospheric pressure, 

Lat and Long are respectively the latitude and longitude, and G is the irradiance. 

On the other hand, recurrent Neural Networks (RNN), wavelet and wavelet-fuzzy networks are more 

suitable for forecasts based on past observed data only. In mathematical terms, the forecast of the 

irradiance, for instance, is then expressed as: 

 𝐺(𝑡 + 1) = 𝑓(𝐺(𝑡), 𝐺(𝑡 − 1), 𝐺(𝑡 − 2),… ) (2.9) 

Alternatively, ANFIS methods are suitable when the forecast irradiance is modelled as a combination 

of the two previous models: 

 𝐺(𝑡 + 1) = 𝑓 (
𝐺(𝑡), 𝐺(𝑡 − 1), 𝐺(𝑡 − 2),… , 𝑇𝑎𝑚𝑏(𝑡), 𝑅𝐻(𝑡), 𝑇𝐶𝐶(𝑡),

𝑤𝑠𝑝𝑒𝑒𝑑(𝑡), 𝑃(𝑡), 𝐿𝑎𝑡, 𝐿𝑜𝑛𝑔
) (2.10) 

Computer vision deals with image processing and motion analysis. Many systems of this type have been 

developed for a large number of applications. However, the strategy employed depends mainly on the 

system that is analysed. 

Other methods may include Markov Random Filters (MRF), Probability Hypothesis Density filters 

(PHD), k-nearest neighbour (kNN) or State Vector Machine (SVM). 

The kNN approach is used in particular by Heinle et al [58] and Kazantzidis et al [59] to classify clouds 

into cloud classes according to some of their features. This operation is performed by majority vote. 

However, kNNs can be slow to run and may require a large amount of memory. 

A SVM is a nonlinear model that demonstrates faster computing features than an ANN as well as good 

convergence [60]. It requires nonetheless a large amount of data for regression. 

For the purpose of solar power forecasting, Diagne, Boland et al (2013) recommend the use of statistical 

methods for short forecasting horizons (intra-hour or intra-day), hence for high temporal resolutions 



44 
 

(less than 10 hours) and high spatial resolutions (up to 500 meters). Even though hybrid models are 

more robust, single methods can present a particular strength within for a specific resolution. Indeed, 

ANNs may be recommended for temporal resolutions between 30 minutes and 10 hours as long as the 

targeted spatial resolution is between 10 and 500 metres. The persistence method is the best choice for 

very fine resolutions below 10 minutes and 10 meters. On the other hand, ARIMA, ARMA and CARDS 

are suitable for temporal resolutions from a few seconds to 1 hour and spatial resolutions up to 12 

meters. 

2.2.2 Conclusions of the Review of Statistical Methods Used for PV Forecasting 

A large number of statistical methods are available. ANNs can be accurate, especially when they are 

combined with other artificial intelligence methods like genetic algorithms. However, they show slow 

computational features. On the other hand, SVM-based method can be faster but require more data. 

2.3 COMPARISON OF SOME POPULAR PV POWER FORECASTING APPROACHES 

The definition of forecasting horizons for PV power forecasting may differ when compared to wind 

forecasting, and so does the choice of approaches. 

As an example, a statistical and a physical approach have been confronted to each other in a study 

conducted by Yuehui et al [61] by considering the case study of a 1 MW PV farm comprising 6006 

panels. Firstly, this quick review of PV power forecasting methods defines the various time scales used 

in power system operation with different limits, compared to wind forecasting. The new definitions of 

the various horizons are summarized in Table 2.3. 

The very short-term horizon ranges from several minutes to several hours, aiming for intraday real-time 

control. The short-term horizon ranges from a few hours to up to 3 days and is used for day-ahead 

economic dispatch. As an illustration of short-term horizon, Diagne, Boland et al [29] mention that load 

patterns need to be forecast 2 days ahead for the purpose of scheduling power plants and for planning 

transactions in the electricity market. The long-term forecast is defined as ranging from a week to a year 

and targets grid balance operations. 

Table 2.3 – One possible definition of the various horizons for PV power forecasting [61]. 

PV Horizon Time resolution Possible purpose. 

Very Short-term / Nowcasting A few minutes to several hours Real-time control 

Short-term Up to 3 days Economic dispatch 

Long-term A week to a year Grid balance 
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Table 2.4 – Alternative definition of the various horizons for PV power forecasting [29]. 

PV Horizon Time resolution Possible purpose 

Intra-hour 15 minutes to 1 hours Ramp rates control, variability management 

Intra-day 1 to 6 hours Load following 

Day ahead 1 to 3 days Transmission scheduling 

This classification of PV forecasting horizons is not unique and Kostylev and Pavlovski (2011) also 

distinguish 3 forecasting horizons: intra-hour, intra-day and day ahead. This alternative discrimination 

of horizons has been used by Diagne, Boland et al and is exposed in Table 2.4 [29]. 

The effect of irradiance intermittency can be attenuated through the use of energy storage, spinning 

reserve and demand response [38]. All these methods need an accurate forecast on various timescales 

to be optimally operated. Indeed, day-ahead forecasting is required to determine pricing in the market. 

In contrast, sub-hour-ahead forecast is useful to schedule spinning reserves. 

The comparison focuses on short-term horizon and compares the results of a physical approach with 

the ones of a statistical method by using the same days over a period of one month during each season 

of the year in a place located in the northern hemisphere. The physical model that is utilized for PV 

generation consists in a clear sky model and diode PV model. The statistical method uses a neural 

network (NN). 

The measured output power of one representative month of each season is compared with the clear sky 

model power prediction, adjusted with NWP data. Measurements have been made in the northern 

hemisphere. 

Unsurprisingly, the best match is achieved during clear days of each month whereas the biggest 

mismatch is obtained during the month of October and December, which have been chosen to represent 

respectively autumn and winter of Northern Hemisphere. Both seasons are characterized by a measured 

power output much lower than the prediction. Overall, the nRMSE values range between 11.48% and 

16.58%, as shown in Table 2.5. 

Table 2.5 – nRMSE for different forecasting methods. Data collected by Yuehui (2010) [61]. 

Month/Season Physical Model 

(NWP input) 

Physical Model  

(measured G and T inputs) 

Statistical Approach  

(NN) 

March/Spring 11.48 8.78 11.05 

June/Summer 11.54 5.17 10.45 

October/Autumn 16.58 4.93 15.49 

December/Winter 15.33 5.61 12.62 

Overall Year 12.45 5.51 10.5 
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When the actually measured values of temperature and irradiance are additionally fed to the physical 

model, the precision increases dramatically and the nRMSE values drop down to 4.93%-8.78%. This 

makes the biggest discrepancy occur in spring for the cloudy month of March. This enhanced precision 

validates the physical model, provided it is fed with sufficient weather data. 

In Table 2.5, the central column corresponds to a physical model using the measured irradiance G and 

temperature T as inputs. The nRMSE of the predictions from the best trained NN model are shown in 

the rightmost column of Table 2.5. The optimal NN is set to have 11 neurons and is fed with several 

weather data such as the ambient temperature, the cloud cover, the irradiance and the position of the 

sun. Compared to the NWP physical model predictions, the results appear to be significantly better for 

the wintry month but only slightly more accurate for all other seasons. Overall, there is only little 

improvement with respect to the NWP physical model. The study concludes that both approaches are 

valid for the considered horizon and that the precision mainly depends on the data input itself. 

Another study, carried out by Guarnieri et al (2008) [62] has demonstrated that the ANNs using training 

data can reduce the nRMSE of daily average global horizontal irradiance by 15% compared to a 12-18 

hours ahead irradiance forecast based on a NWP approach as pointed out by Diagne et al in their review 

paper [29]. 

2.3.1 Conclusions of the Comparison between Popular PV Power Forecasting 

Approaches 

For solar power forecasting purposes, very short-term may be defined on a longer time frame than for 

wind power forecasting. Indeed, this horizon may be in range of several minutes rather than in range of 

several seconds. However, a forecasting horizon beyond very short-term is required for power dispatch 

and grid balance. For such horizons, the input data proves to be actually more important than the chosen 

method. Nonetheless, neural network based forecasting methods are more accurate than NWP-based 

approaches for periods of the year characterized by heavy rain and snow falls like winter. 

2.4 PV CELL MODELLING STRATEGY 

Solar irradiance is the main driving parameter that influences PV power output [33]. The effect of the 

irradiance on the current output and on the power output for a fixed temperature are respectively 

illustrated in Figure 2.1 and Figure 2.2 with the example of a mono-junction polycrystalline module.  
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Figure 2.1 – I-V curves for various solar radiances with a Kyocera KC200GT [27]. 

 

Figure 2.2 – P-V curves for various solar radiances with a Kyocera KC200GT [29]. 
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Figure 2.3 – I-V curves for different temperatures with a Kyocera KC200GT [29]. 

 

Figure 2.4 – P-V curves for different temperatures with a Kyocera KC200GT [29]. 

Although high-efficiency multi-junction PV cells are under development, the large majority of the 

current PV installations use mono-junction modules. Also, most of the current studies also concentrate 

on mono-junction modules. 

Consequently, the focus of this study has also been restricted to mono-junction modules. Additionally, 

the cell temperature and by extension the ambient temperature play an important role as well, though 

not as important as the solar radiance. 

Knowing the operating temperature of photovoltaic modules is necessary to improve the energy 

performance. The reason is because the operating temperature Tc greatly affects the energy efficiency 

of the conversion of light into electricity. This is visible on the example of current voltage and power 

voltage characteristic curves of a PV module respectively shown in Figure 2.3 and Figure 2.4. 
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Amongst several empirical formulas, Evans’ expression of efficiency summarizes the effect of both cell 

temperature and solar irradiance [56, 63]: 

 
𝜂 = 𝜂𝑟𝑒𝑓 ∙ [1 − 𝛽 ∙ (𝑇𝑐 − 25) + 𝛾 ∙ log10 (

𝐺

𝐺𝑟𝑒𝑓
)] (2.11) 

In equation (2.11), β = 4.5*10-3 °C-1 and γ = 0.12 for crystalline silicon modules. 

The cell temperature can either be modelled or alternatively assessed through the utilization of adaptive 

techniques such as artificial neural networks (ANNs). An adaptive technique can actually be used as an 

advantageous tool for a fast and precise forecast of the cell temperature and to guarantee high 

performance. Only 10 to 20% of sunlight is converted into a current by mono-junction modules whereas 

the rest is converted into heat that is partially transferred to the surrounding environment according to 

a specific coefficient. Consequently, the temperature of a module automatically rises as soon as it 

absorbs some irradiance, which in turn affects the operating point and leads to a diminished electrical 

conversion of light [56]. Yet, a comprehensive analytical model would be excessively complex to use 

for calculations. 

This is why the various temperature cell models found in literature assume some simplifications and do 

not consider accurately the full complexity of the irradiance absorption effect. However, an artificial 

neural network can help to deal with such complexity in a timely efficient manner. In addition, it must 

be noted that the current-voltage curves provided by manufacturers in their datasheets cannot be used 

to reliably assess the thermo-electrical behaviour of a PV module as they are given for a constant 

temperature or a constant irradiance. Indeed, datasheet curves do not consider actual conditions, which 

involve cell temperature and irradiance changes. 

2.5 CELL / MODULE TEMPERATURE MODEL 

Various empirical models are available in literature [34, 56]. Table 2.6 comprises some of them. In this 

table, the instantaneous solar insolation is referred as G (kW/m2) whereas Tamb is the ambient 

temperature given in °C. The NOCT conditions are defined as GNOCT=800 W/m2, wspeed = 1 m/s and 

Tc, NOCT = 20°C. 
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Table 2.6 – Various empirical models available in literature to evaluate PV cell temperatures, as listed by 

Jakhrani et al (2011) [32] and Ciulla et al (2013) [22]. 

Year Authors Empirical Model Comments 

1976 Ross [64] 𝑇𝑐 = 𝑇𝑎𝑚𝑏 + 𝑘 ∙ 𝐺 k = 0.02-0.04°C·m2/W 

1980 Rauschenbach [65] 
𝑇𝑐 = 𝑇𝑎𝑚𝑏 +

𝐺

𝐺𝑁𝑂𝐶𝑇
∙ (𝑇𝑐,𝑁𝑂𝐶𝑇 − 𝑇𝑎𝑚𝑏,𝑁𝑂𝐶𝑇)

∙ (1 −
𝜂𝑚
𝜏𝛼
) 

wspeed>1m/s and constant 

heat loss coefficient UL 

1983 Risser-Fuentes [66] 
𝑇𝑐 = 3.81 + 0.0282 ∙ 𝐺 1.31 ∙ 𝑇𝑎𝑚𝑏 − 165

∙ 𝑤𝑠𝑝𝑒𝑒𝑑  
Model verified with 

MPPT 

1985 Schott [67] 𝑇𝑐 = 𝑇𝑎𝑚𝑏 + 0.028 ∙ 𝐺-1 

Model verified for 

1m/s<Vw<1.5m/s and 

0°C<Tamb<35°C 

1985 Servant [68] 

𝑇𝑐 = 𝑇𝑎𝑚𝑏 + 𝛼 ∙ 𝐺 ∙ (1 + 𝛽 ∙ 𝑇𝑎𝑚𝑏)

∙ (1 − 𝛾 ∙ 𝑤𝑠𝑝𝑒𝑒𝑑)

∙ (1 − 1.053 ∙ 𝜂𝑚) 

Α=0.0138, β=0.031, 

γ=0.042, Tamb is given in 

°C with a constant wind 

speed wspeed=1m/s 

1986 Ross-Smokler [69] 𝑇𝑐 = 𝑇𝑎𝑚𝑏 +
𝐺

𝐺𝑁𝑂𝐶𝑇
∙ (𝑇𝑐,𝑁𝑂𝐶𝑇 − 𝑇𝑎𝑚𝑏,𝑁𝑂𝐶𝑇) 

only valid for free 

standing modules with 

wspeed=1m/s and constant 

UL 

1990 Lasnier-Ang [70] 
𝑇𝑐 = 30.006 + 0.0175 ∙ (𝐺 − 300) +  1.14

∙ (𝑇𝑎𝑚𝑏 − 25) 

For p-Si only, Tamb is 

given in °C whereas the 

wind speed and heat loss 

coefficient are not taken 

into account 

2000 Hove [71] 𝑇𝑐 = 𝑇𝑎𝑚𝑏 +
𝐺 ∙ (𝜏𝛼 − 𝜂)

𝑈𝐿
 

Tamb is given in °C, the 

ratio τα/UL (with the 

transmittance τ, 

absorbance product α 

and heat loss coefficient 

UL) is determined 

experimentally by 

assuming that the 

efficiency η = 0 

2004 Krauter [72-74] 
𝑇𝑐 = 𝑇𝑎𝑚𝑏 + 𝑘 ∙ 𝐺 

 

k = 0.0058 for lower 

modules, 0.012 for upper 

modules and 0.03 for 

usual modules 

2005, 

2007 
Mondol et al. [75] 𝑇𝑐 = 𝑇𝑎𝑚𝑏 + 0.031 ∙ 𝐺 − 0.058 

Tamb is given in °C, 

Wspeed>1m/s with 

constant heat loss 

coefficient UL 

2006 
Duffie-Beckman 

[76] 

𝑇𝑐 = 𝑇𝑎𝑚𝑏 +
𝐺

𝐺𝑁𝑂𝐶𝑇
∙ (

9.5

5.7 + 3.8 ∙ 𝑤𝑠𝑝𝑒𝑒𝑑
)

∙ (𝑇𝑐,𝑁𝑂𝐶𝑇 − 𝑇𝑎𝑚𝑏,𝑁𝑂𝐶𝑇)

∙ (1 − 𝜂𝑚) 

The product τ α of 

transmittance τ, 

absorbance product α is 

taken as 0.9 whereas the 

heat loss coefficient UL is 

associated with wind 

speed 

2007 Chenni et al [37] 
𝑇𝑐 = 0.943 ∙ 𝑇𝑎𝑚𝑏 + 0.028 ∙ 𝐺 − 1.528 ∙ 𝑤𝑠𝑝𝑒𝑒𝑑

+ 4.3 

The coefficient of heat 

loss UL is not taken into 

account. 
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In any case, the two main parameters always remain the irradiance and the ambient air temperature. 

Amongst popular models, the Ross and Smokler formula from 1986 is widely used [77]: 

 
𝑇𝑐 = 𝑇𝑎𝑚𝑏 +

𝐺

𝐺𝑁𝑂𝐶𝑇
∙ (𝑇𝑐,𝑁𝑂𝐶𝑇 − 𝑇𝑎𝑚𝑏,𝑁𝑂𝐶𝑇) (2.12) 

It must be noted that the Ross and Smokler model is only valid for a free standing module. 

Another more precise example that considers 3 weather parameters is Chenni et al’s model. The 

coefficients are average values of measurements performed on 6 different PV technologies (amorphous 

silicon, monocrystalline silicon, copper indium diselenide, EFG-polycrystalline silicon, polycrystalline 

silicon, and cadmium telluride) located on two different geographical sites [78]: 

 
𝑇𝑐 = 0.943 ∙ 𝑇𝑎𝑚𝑏 + 0.028 ∙ 𝐺 − 1.528 ∙ 𝑤𝑠𝑝𝑒𝑒𝑑 + 4.3 (2.13) 

Nevertheless, this still remains an imperfect model as it does not take heat losses into account. 

The approach of assessing and predicting the cell/module temperature is particularly interesting for 

hybrid PV/thermal systems containing a fluid cooling the PV modules. Controlling the temperature of 

the PV modules help to increase the voltage output. Additionally, the heat that is extracted from the 

module can be in turn exploited to improve the efficiency of the complete system. As mentioned by 

Ciulla, Lo Brano, and Moreci [56], best results are achieved through the employment of a multilayer 

perceptron network. In this publication, the MLP is composed of 2 non-linear threshold function blocks, 

2 weight layers, 1 hidden layer, 1 error criterion block and 2 input sources that consider the following 

parameters: 

- ambient temperature Tamb 

- wind speed wspeed 

- irradiance G 

- electrical power output of the module Pelec = I∙V 

- short circuit current of the module ISC 

- open circuit voltage of the module VOC 

The weather data comes from a weather station and the actual temperature of the panels of the 

experimental setup is measured with thermocouples. The electrical data are measured as well. 

As a result, the confidence band of the evaluation is narrower than ±1°C. For different cell temperature 

correlations, the mean absolute error (MAE) obtained with the ANN is around 0.1–0.2, according to the 

type of PV panel. This is much below the MAE of the analytical empirical correlations like Servant, 

Duffie-Beckman and Hove. These models display an MAE between 4 and 16, making the ANN 
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superiorly accurate. Additionally, the authors suggest that the very short learning time enables to 

implement the ANN on a real-time system to evaluate the cell temperature in run-time conditions. 

2.6 FURTHER CONSIDERATIONS OF THE PV MODEL 

Knowing the operating temperature of the cell helps to determine the maximum solar power per m2 as 

expressed in equation (2.14) [79]. 

 
𝑃𝑚 = 𝑃𝑝 ∙ 𝜂𝑡 ∙

𝐺

𝐺𝑆𝑇𝐶
 (2.14) 

Where Pp is the nominal power (W) given by the manufacturer at standard test conditions (STC) solar 

irradiance 1000 W/m2, air mass of 1.5 and cell temperature of 25°C, GSTC is the reference irradiance 

(1000 W/m2) and the normalized efficiency ηt is defined by equation (2.15). 

 
𝜂𝑡 = 1 + 𝛾𝑚𝑝 ∙ (𝑇𝑐 − 𝑇𝑆𝑇𝐶) (2.15) 

In equation (2.15), γmp is the maximum power thermal coefficient, typically about – 0.5%/°C for 

crystalline modules. The efficiency rate η = η0∙ ηt is defined on the basis of η0, which is the nominal 

conversion rate in STC and for which the value depends on the PV technology.  

Table 2.7 – Mean nominal conversion rate η0 by technology [80]. 

Monojunction technology Monocrystalline Polycristalline Amorphous thin film 

𝜼𝟎 (%) 14.96 14.36 10.49 

The average nominal efficiency of the three main categories of mono-junction PV technologies is 

summarized in Table 2.7 [80]. Monocrystalline PVs have the highest nominal conversion rate whereas 

thin film amorphous silicon systems have the lowest. 

The maximum power of an array characterized by an area Area is given by equation (2.16) [81]. 

 
𝑃𝑚,𝐴𝑟𝑒𝑎 = 𝑃𝑚 ∙ 𝐴𝑟𝑒𝑎 (2.16) 

The cell temperature also both affects current and voltage [8]: 

 
𝐼 = 𝐼𝑁𝑂𝐶𝑇 ∙

𝐺

𝐺𝑁𝑂𝐶𝑇
∙ [1 + 𝛼 ∙ (𝑇𝑐 − 𝑇𝑐,𝑁𝑂𝐶𝑇)] (2.17) 

 
𝑉 = 𝑉𝑁𝑂𝐶𝑇 ∙ [1 + 𝛽 ∙ (𝑇𝑐 − 𝑇𝑐,𝑁𝑂𝐶𝑇)] ∙ [1 + 𝛿 ∙ ln (

𝐺

𝐺𝑁𝑂𝐶𝑇
)] (2.18) 

In equation (2.17) and (2.18), the coefficients α, β and δ must be determined from an initial condition. 
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Figure 2.5 – Two-diode model of a single PV cell [50]. 

The two-diode model is the most precise for a photovoltaic cell [82] as shown in Figure 2.5, where: 

 
𝑉 = 𝑉𝑑 − 𝑅𝑠 ∙ 𝐼 (2.19) 

 
𝐼 = 𝐼𝑆𝐶 ∙ 𝐼0 ∙ {𝑒

𝑞∙𝑉𝛼
𝑘∙𝑇 − 1} −

𝑉𝑑
𝑅𝑝

 (2.20) 

It should be noted that at 25°C, q∙Vα/k∙T = 38.9. 

Additionally, the series resistance 𝑅𝑠 is typically significantly smaller than the parallel resistance 𝑅𝑝. 

When n cells are arranged as a module with all cells equally insolated, the voltage of the module 

becomes: 

 
𝑉𝑚𝑜𝑑𝑢𝑙𝑒,𝑖𝑛𝑠𝑜𝑙𝑡𝑎𝑡𝑒𝑑 = 𝑛 ∙ (𝑉𝑑 − 𝑅𝑠 ∙ 𝐼) (2.21) 

However, if only one of the cells gets shaded, the parallel resistance of the shaded cell will cause a 

dramatic voltage drop: 

 
∆𝑉 = 𝐼 ∙ (𝑅𝑝 − 𝑅𝑠) ≅ 𝑅𝑠 ∙ 𝐼 (2.22) 
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Figure 2.6 – Two-diode model of a PV module with partial shading of one cell among a module of n cells 

[50]. 

This effect is illustrated in Figure 2.6. In that case, the output voltage then becomes: 

 
𝑉𝑚𝑜𝑑𝑢𝑙𝑒,1𝑠ℎ𝑎𝑑𝑒𝑑𝑐𝑒𝑙𝑙 = (

𝑛 − 1

𝑛
) ∙ 𝑉𝑚𝑜𝑑𝑢𝑙𝑒,𝑖𝑛𝑠𝑜𝑙𝑎𝑡𝑒𝑑 − ∆𝑉 (2.23) 

The voltage drop compared with a fully insolated module is 

 
𝑉𝑚𝑜𝑑𝑢𝑙𝑒,1𝑠ℎ𝑎𝑑𝑒𝑑𝑐𝑒𝑙𝑙 − 𝑉𝑚𝑜𝑑𝑢𝑙𝑒 =

𝑉𝑚𝑜𝑑𝑢𝑙𝑒,𝑖𝑛𝑠𝑜𝑙𝑎𝑡𝑒𝑑
𝑛

∙ −∆𝑉 (2.24) 

Using shunt diodes to compensate this effect is a common practice. It is also possible to work on the 

design to attenuate the effects of partial shading. 

2.6.1 Conclusions on PV Modelling 

Ross and Smokler’s expression of the cell temperature is very popular and widely used by 

manufacturers in their datasheets. However, Chenni et al’s formula is the most precise to date although 

it can still be improved as it does not take the coefficient of heat dissipation into consideration. It must 

also be noted that the 2-diode model is the most precise to date for a mono-junction PV cell. From the 

point of view of the nominal conversion rate, monocrystalline PV cells and modules are the most 

productive, most expensive and also most sensitive to temperature gradient amongst mono-junction 

modules. Thin film modules are on the contrary the least efficient but cheapest and most robust ones. 
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2.7 ADVANCES IN IRRADIANCE FORECASTING 

2.7.1 Review of Clear-Sky Irradiance Forecasting 

Using the output power of fast growing utility-size solar photovoltaic (PV) farms as base load supplies 

arises serious challenges that are yet to be overcome. In particular, managing the fluctuations and 

uncertainty of solar power has been identified as a major problem [24]. The purpose of power smoothing 

is to mitigate large power fluctuations due to clouds passing over a PV array. Such an event may induce 

PV power output losses in range of 70% in a matter of 5 seconds [11, 83]. In contrast, the utility 

operators of grids with high renewable energy penetration only tolerate ramp rates up to 10% per minute 

[26]. On the other hand, peak shifting may be used to shift the excess peak load generation to hours 

when the demand cannot be met with instantaneous PV power, such as during mornings, evenings or 

night times. It has been long thought that both problems could be addressed with the help of an 

adequately sized battery energy storage systems (BESS) [11, 83]. Prior to forecasting the instantaneous 

irradiance under realistic conditions at any given place or time, it is necessary to accurately model the 

clear-sky Global Horizontal Irradiance (GHI). After obtaining the clear-sky GHI, perturbations due to 

cloud cover, aerosols, water vapour, ozone, and dust in the atmosphere and on PV modules are added 

to the initial state. It must be noted that the orientation of the PV receiver may affect the incidence angle 

θ of the Direct Normal Irradiance (DNI), which is an important component of the GHI. 

Diagne, Boland et al have stated that forecasting global horizontal irradiance GHI is the first and 

necessary step for most of PV power prediction models [29]. They also have stated the fact that an 

accurate and efficient irradiance forecast can help grid operators to maintain grid balance. Two steps 

are needed for a comprehensive irradiance forecast. First, a clear sky irradiance needs to be modelled 

based on astronomical facts. The actual irradiance can be forecast in a second time by considering the 

effects of clouds on the clear sky solar radiance. 

Some more accurate models have been defined on a physical basis. These clear-sky irradiance models 

have not been designed to fit one particular region of the world but require the measured values of many 

specific atmospheric parameters. For example, the intermediate precision models by Kasten [84] and 

Ineichen and Perez [85] both need the Linke turbidity [86, 87], which can be defined as the total optical 

thickness of the atmosphere. Some even more precise and thus mode complex models like for instance 

Bird [88, 89], MAC [90, 91], Iqbal [92], ASHRAE [93], and REST2 [94, 95] need a larger number of 

atmospheric input parameters, like the optical depth of the ozone layer in the atmosphere, or the ground 

albedo. Such data may be provided by AERONET [96]. 

Some simpler empirical models can be obtained through regression of local measurements. Sandia 

National Laboratories [97] have listed several empirical approaches. Masters also mentions one model 
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[98]. Such models are based on irradiance measurements made in a specific part of the world and may 

not always be suitable to model the clear-sky irradiance away from the original measurement site [99]. 

Most of these models are a simple function of the zenith angle z, expressed in degrees. 

The equations of the empirical clear-sky irradiance models cited by Sandia will be shown in further 

detail in the next chapter. They have been originally developed for various geographical regions mainly 

located in the northern hemisphere. For example, the Kasten-Czeplak (KC) GHI model [100] is based 

on continuous records made at Hamburg, Germany, between 1964 and 1973. The Haurwitz GHI model 

[101, 102] has been designed on the basis of data gathered by the Meteorological Observatory of 

Harvard University in the Northeast of the United States. The Threlkeld and Jordan (TJ) [98, 103] model 

has also been designed the United States and requires the day number. The Berger-Duffie (BD) GHI 

model [104] and the Adnot-Bourges-Campana-Gicquel (ABCG) [105] are both based on data collected 

in France. The Robledo-Soler (RS) GHI model [106] has been defined on the basis of some data 

obtained during the period from 1994 to 1995 in Madrid, Spain. The Laue DNI model [107] calculates 

the DNI thanks to data collected in California. Besides the zenith angle, the Laue model also takes the 

air-mass ratio as well as the site elevation as inputs. The Meinel DNI model [108] can be seen as a 

simplified variant of the Laue model where the site elevation is considered to be at sea level (0 m ASL). 

It must be added that some empirical models can sometimes be a good fit for an area that is very different 

from its area of origin. This is for example the case for the ABCG model that inspired of the Dazhi 

model, which consists in a regression of measurements of the clear-sky GHI made in Singapore [109, 

110]. That means at least one of these models can possibly be a good fit for Western Australia. 

Also, empirical models are very relevant for very-short-term irradiance forecasting because of they are 

fast to compute and do not require any sophisticated measurements. This why many popular empirical 

models will be compared in the next chapter to find the best match with clear-sky irradiance conditions 

in Western Australia. 

This topic is covered in further details within the next chapter.  

2.7.2 Review of Irradiance Forecasting considering clouds 

The precision of a PV power forecast depends greatly on the precision of the solar radiance forecast. 

So conclude E. Lorenz et al [111]. In their study, these authors have managed to use one-day ahead 

irradiance forecasts at the scale of a country to predict regional PV power output up to three days ahead. 

Overall, the method consists in considering a regional observation, which greatly improves forecasts 

with respect to a single site observation. It must be noted that the precision of this method depends on 

the size of the observed region. Indeed, the larger the region where the PV systems are distributed, the 

more precise the forecast. As an illustration, the overall nRMSE for a day ahead for a single PV site is 
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37%. This value is decreased to 19% for a region that is 3° latitude high and 3° longitude wide in size. 

The nRMSE is further reduced to 13% for the whole of Germany, which corresponds of an area of size 

9° × 10°. To describe the methodology that is used, a global numerical weather prediction (NWP) model 

of resolution 3 hours and 0.25° × 0.25° (which is approximately 27 km × (16-19) km in Germany) from 

the European Centre for Medium-Range Weather forecasts (ECMWF) is used as the source of 

forecasted irradiance data. A network of 11 PV systems with a resolution of 200 × 120 km is also used 

to measure the power output. Finally, 200 weather stations spread over Germany are utilized to measure 

the irradiance over a period of 10 months. A spatial interpolation technique on a region of 100 km × 

100 km is first utilized to refine the ECMWF global irradiance forecasts for a specific given site. 

Additionally, a temporal interpolation is performed by combining the 3-hourly forecast data Gforecast,3h 

provided by the ECMWF with a clear sky model. The 3-hourly mean value clear sky index k3h is 

calculated as k3h=Gforecast,3h ⁄ Gglobal irradiance,3h. The hourly mean value k1h is then derived by linear 

interpolation. Alternatively, the mean hourly irradiance can be directly interpolated from the original 3-

hourly data Gforecast,3h, but this method has proved to be less accurate in situations without clouds or with 

only a few. A correction may be necessary in some sky configurations. For example, in the case of the 

German region, the forecast irradiance is underestimated in overcast situations with low irradiance (k < 

0.2) and overestimated in the case of variable cloud cover (0.3 < k < 0.8). The values are thus replaced 

by the clear sky model irradiance in the case of a total cloud cover below 0.03. 

In addition, a situation-specific bias is introduced for correction purposes. Other studies also use linear 

time series of global irradiance, possibly normalized with respect to a clear sky model, as an input with 

a two stage approach. During the first stage, either a PV system network [112] or satellite data [55] are 

utilized to forecast the irradiance. In a second stage, some autoregressive models such as autoregressive 

moving average (ARMA) [55] or autoregressive with exogenous input (ARX) [112] are also used.  

Table 2.8  – Possible reference sources of data for PV forecasting. 

Type of forecast Very short-term/Grid management Utility Applications 

Approaches 

based on 

Sky camera Sensor network Satellite NWP 

Temporal 

resolution 

Seconds-

minutes 

Minutes Minutes-hours Day-days 

Usage cloud cover 

and cloud 

classification 

Benchmark and 

only direct mean 

of measurement 

cloud cover Forecast of atmospheric 

conditions (ambient 

temperature, wind 

speed) 
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However, such methods only focus on the irradiance and neglect the effect of temperature and wind on 

the performance of the systems. Moreover, sudden changes in cloud cover may not be described in the 

model. As a matter of fact, the wind plays an import role in the abrupt changes of irradiance due to the 

passing of clouds. With an increasingly fine temporal resolution, the swift changes of cloud cover play 

a more and more important role. 

Independently from the irradiance forecasting method, the source of data can be chosen on the basis of 

the desired temporal resolution. A finer resolution can always be obtained through interpolation. 

Such temporal interpolations can be satisfactory during periods when the sky is completely clear or 

overcast. However, they may lead to significant errors in situations during which the sky cover varies 

stochastically, as it is the case in sub-hourly forecasts. Table 2.8 gives a broad overview of the various 

sources of data that may be used to forecast solar radiation. Hassanzadeh et al (2010) suggest that 

satellite data is well adapted for very short-term forecasting, whereas numerical weather prediction 

(NWP) data are better suited for long term forecasting, beyond two days. However, for fine temporal 

resolutions, real-time measured irradiance data can dramatically improve the performance of now-

casting. In particular, Bacher et al (2009) have demonstrated that direct measurements of the irradiance 

prevail in forecasts up to 2 hours ahead whereas NWP inputs are more valuable beyond that horizon. 

On top of the input source, the targeted temporal resolution also defines the choice of forecasting 

methodology. For example, grid-connected photovoltaic plants require a horizon of at least 24 hours 

for integration purposes. Mellit et al [57] have chosen to use an ANN-based approach for such a 24-

hour irradiance forecast. More specifically, this team has utilized a multilayer perceptron to process the 

daily average irradiance and daily average temperature. The data consists in measurements taken in 

Italy over the course of several months. The choice of a method based on artificial intelligence is 

justified by the nature of the input data, as it is a time series containing several meteorological variables. 

With the help of a cross validation method, the team has managed to evaluate a performance above 98% 

during sunny days but below 95% during cloudy days. The authors suggest that adding more input 

parameters such as cloud, pressure, and wind speed and sunlight duration could possibly improve the 

accuracy of the forecast. 

2.7.3 Review of Irradiance Forecasting considering clouds 

A clear sky model requires two main sub-models. The position of the sun needs to be precisely defined. 

The solar position algorithm developed by Reda and Andreas [113] is the most precise to date. 

Additionally, the direct or global horizontal solar radiance also needs to be modelled. The Meeus and 

Bird and Hulstrom [114, 115] model is the most accurate with respect to measured insolation values. 

After modelling the irradiance in absence of clouds, the solar radiance must be modelled by considering 

the effect of clouds. Doing so requires to follow a methodology. The temporal resolution is chosen in 
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accordance with the grid application that is sought. The selected temporal resolution influences the 

choice of the source of input data. A sky camera is the best source of input data for very short-term 

forecasting, whereas sensor networks and satellite images are both very suitable for short term. NWP 

data only performs well for longer horizons. In addition, the temporal resolution also conditions the 

forecasting method. For very-short horizons, persistence-based methods are the best, time series and 

ANN methods are the most appropriate for short term whereas an NWP approach is well-fitted for 

longer terms. 

2.8 CLOUD COVER MODELLING AND CLOUD CLASSIFICATION 

2.8.1 Overview 

Using energy storage units (ESU) has long been proposed as a solution to dispatch PV power. Frequency 

domain has been previously utilized to specify PV power. Yet, this approach is not suitable for sizing 

an ESU. It is indeed necessary to know the peak energy amount corresponding to a charge or discharge 

of the battery [13]. Therefore, modelling and predicting cloud-related PV power intermittency is 

required for an efficient ESU control strategy with a deterministic scheduling approach. Studies have 

proven that two parameters can strongly impact the generation of PV power: the cloud cover of the sky 

and the cloud type or class [59]. The cloud cover can either be expressed as a percentage or in octas 

(also spelled oktas), which is a unit corresponding to 1/8th of the sky, i.e. 12.5% of the entire sky. 

Indeed, the size, thickness and altitude of the clouds covering the sky can greatly influence the direct 

solar irradiance received by a photovoltaic module [33, 58]. As a matter of fact, both the total cover of 

the sky and the altitude of the cloud define the size of the shaded area on the ground, whereas the 

thickness of the cloud is linked to its opacity and by extension to its ability to block sunbeams. 

Consequently, considering a precise sky model is very relevant for PV power forecasting purposes. 

Such aspects are covered in Chapter 4. 

The cloud cover can be measured by analysing the individual pixels of digital pictures obtained from a 

sky camera. Clear sky pixels are characterized with a high saturation of colours and a predominance of 

blue. As opposite to cloud-free pixels, cloudy pixels display dull colorations featuring different shades 

of whites, possibly tinted of colourful hues ranging from red to blue. 

These characteristics have been notably used by Martins et al (2003) and Souza-Echer et al (2006) to 

define a method to estimate the cloud coverage [59]. Alternatively, in the absence of a sky camera, the 

cloud cover can also be defined as the percentage of the ground area that is covered by cloud shadow 

[33]. This last approach implies however the use of an accurate cloud shadow model. This is an 

approach that can be used for example with a regional network of dispersed ground sensors. After 
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correction of shading due to permanent obstacles that are not clouds, the clear-sky index K of a location 

can be defined as: 

 
𝐾 =

𝐺

𝐺𝑐𝑙𝑒𝑎𝑟
 (2.25) 

In equation (3.42), G is the instantaneous irradiance and Gclear the predicted clear sky irradiance [38]. 

By convention, there is a total of 27 identified types of clouds, equally divided within three altitude 

levels also called étages. Each étage thus contains 9 types of clouds.  

Table 2.9 – Approximate heights of cloud levels. 

Level Polar Region Temperate Region Tropical Region 

High Clouds 10,000-25,000 feet  

(3-8 km) 

16,500-40,000 feet  

(5-13 km) 

20,000-60,000 feet  

(6-18 km) 

Middle 

Clouds 

6,500-13,000 feet (2-4 km) 6,500-23,000 feet (2-7 km) 6,500-25,000 feet (2-8 km) 

Low Clouds Surface-6,500 feet  

(0-2 km) 

Surface-6,500 feet  

(0-2 km) 

Surface-6,500 feet  

(0-2 km) 

 

Table 2.10 – Cloud classification for PV forecasting purposes. 

# Cloud Classification Level of the cloud Altitude range of 

obstruction 

1 Clear Sky (Cl) Not applicable Not applicable 

2 Cumulus (Cu) Low Up to 6,500ft/2,000m 

3 Stratocumulus (Sc) Low Up to 6,500ft/2,000m 

4 Stratus-altostratus (St-As) Middle - Low Up to 20,000ft/6,100m 

5 Cirrocumulus-

altocumulus (Cc-Ac) 

Middle - High From 6,500ft/2,000m 

6 Cirrus-cirrostratus (Ci-

Cs) 

High Above 20,000ft/6,100m 

7 Cumulonimbus-

nimbostratus (Cb-Ns) 

Low-middle-high Very low base below 

6,500ft/2,000m and high 

top potentially above 

20,000ft/6,100m 
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It must be noted that the elevation of the base of each type of cloud depends on local atmospheric 

conditions. This elevation varies according to the season and the location. Table 2.9 illustrates some 

approximate heights [116]. A cloud scatters a portion of the sunlight intensity depending on its own 

optical depth τ, as shown in Equation (2.26) [117]. 

 

𝐼

𝐼0
= 𝑒−𝜏 (2.26) 

In Equation (2.26) , τ is the specific optical depth or optical thickness of the cloud, I is the light intensity 

transmitted by the cloud while and I0 is the original incident light intensity received on top of the cloud. 

An example shown by Raschke and Cox is that an atmospheric depth of 6 would reduce a direct beam 

intensity of 1356 W/m2 at the top of the atmosphere to only 3.3 W/m2 at ground level [117]. 

From a shading point of view, it may not be relevant to deal with the whole complexity of all 27 types 

of clouds. Indeed, several types may cause similar shading effect. Heinle et al have managed to 

automatically classify clouds into the 7 following categories [58, 59] summarized in Table 2.10.  

Table 2.11 – Cloud classification by optical thickness and top pressure. 

Cirrus Cirrostratus Deep Convection

Altocumulus Altostratus Nimbostratus

Cumulus Stratocumulus Stratus

Optical thickness

Cloud
Top

Pressure
(mb)

0 3.6 23 379

50

440

680

 

Some values of optical thickness defined by the International Satellite Cloud Climatology Project 

(ISCCP) [118] are given in Table 2.11. This quantity is directly related to the opacity of the clouds. 

However, the average values of the optical depth or thickness for each type of clouds are not available 

as yet. A study is currently in progress to define simple and reliable values that could be used to define 

the transparency of clouds. Indeed, the type and thickness of cloud directly both affect the beam 

component of sunlight as mentioned by Chengrui et al [33]. The 7 categories of clouds mentioned in 

Table 2.10 are shown in Figure 2.7. Clouds can be categorized in four main categories according to 

their altitude level. 
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6,500ft/
2,000m

20,000ft/
6,100m

Clear Sky 
(Cl)

Cumulus 
(Cu)

Altostratus 
(As)

Stratus 
(St)

Stratocumulus 
(Sc)

Altocumulus 
(Ac)

Cirrocumulus 
(Cc)

Cirrus 
(Ci)

Cirostratus 
(Cs)

Cumulonimbus 
(Cb)

Nimbostratus
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1 2 3 4 5 6 7
 

Figure 2.7 – Illustration of the various types of clouds. 

Low level clouds occur below 6,500 feet i.e. 2,000 meters and are either named cumulo- (meaning 

‘heap’) or strato- (which means ‘layer’) [119]. Stratus, cumulus and stratocumulus clouds are the only 

types that exclusively populate the lower level. Stratus (St) clouds are composed of a uniform and 

diffuse flat layer of grey cloud cover [120]. As they are partially transparent, the outline of the sun is 

clearly visible when seen through such clouds. This type of cloud may remain stationary from several 

hours to a couple of days but some layers may break up or dissipate, partially revealing some clear sky. 

They develop horizontally. In contrast, cumulus (Cu) clouds are detached and dense with a sharp 

outline. They grow vertically and eventually mature as cumulonimbus clouds prior to eventually 

dissipating. They are characterized with flat horizontal bottoms and rounded tops that resemble 

cauliflowers. The sunlit parts of such clouds are bright white while the base is darker. They usually 

develop during clear sky conditions, due to diurnal convection. Low-altitude cumulus clouds may move 

fast and cause significant sunlight discontinuity as these clouds have a clearly defined edge and cast a 

deep shadow [33]. On the other hand, stratocumulus (Sc) clouds are a hybrid type composed of several 

individual cumulus clouds distributed in characteristic stratus layers. They consist in a mix of thick and 

thin layers of grey or whitish patches. They also almost always have dark rounded masses resembling 

a honeycomb. 

Mid-level clouds occur between 6,500 and 20,000 feet i.e. between 2,000 and 6,100 meters. Their names 

are given the prefix alto- (meaning ‘high’). The two main types are altostratus and altocumulus. 
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Altostratus (As) clouds are similar to stratus in structure and can be associated with them. They present 

grey or bluish layers of fibrous cloud sheets that may totally cover the sky. They are very thin and 

commonly reveal the sun as if it was seen through ground glass. They will thus not cause any significant 

decrease of insolation. They do not create any halo phenomena and do not cast any shadow on the 

ground. Similarly to stratocumulus clouds in low levels, altocumulus (Ac) clouds are constituted of 

clusters of cumulus type features in middle levels. They are the most common mid-level clouds, 

composed of thin semitransparent white or light grey layers of rounded shapes that may be partly diffuse 

and fibrous. Several layers may appear, often in presence of other types of clouds. A corona appears 

when such clouds pass in front of the sun. This ring has blue in the inside and red on the outside. 

High level clouds appear above 20,000 feet i.e. 6,100 metres and are given the prefix cirro- (which 

means ‘wisp of hair’). Cirrus clouds (Ci) are wispy and feathery as they are entirely composed of ice 

crystals. They consist in delicate separate hair-like semitransparent white silky filaments and they 

hardly diminish the insolation. Cirrostratus (Cs) clouds form a widespread layer of whitish transparent 

veil-like clouds similar to low level stratus clouds. They almost always cover the whole sky with an 

extensive sheet cover. The sun produces a halo when hidden by a layer of cirrostratus. 

Cirrocumulus (Cc) clouds are layered with small cumulus-like clouds. They correspond to a degraded 

stage of cirrus or cirrostratus. They are composed of more or less regularly arranged very small thin 

white grains, forming a ‘mackerel sky’ or ‘buttermilk sky’. 

Finally, some enormous clouds may be present in all three levels of the sky. This is the case for 

cumulonimbus (Cb) clouds, which correspond to a mature stage of vertical development of cumulus 

cloud. These dense clouds are responsible for storms, hail and heavy rains. The base is very dark and 

the overall cloud is very large and extremely opaque. The upper part is usually smooth and flat, 

reminding the shape of an anvil. Like cumulonimbus clouds, nimbostratus (Ns) clouds also occupy a 

large range of altitude, although not necessarily as high. 

They are dark grey, very opaque and they obscure the sky, causing very low insolation. Nimbostratus 

clouds result from thickening dense stratus, altostratus or stratocumulus clouds. They cause episodes of 

continuous rain or snow. 

Regarding the impact of a specific type of cloud on the solar irradiance, it must be noted that to the 

knowledge of authors like Cai et al [33], no universal algorithm can deal with all types of clouds due to 

the complexity of a comprehensive atmospheric model. Indeed, many occurrences may simultaneously 

happen on various levels of altitude, caused by unrelated parameters. The hereinabove mentioned 

authors recommend to focus on low level cumulus clouds as they are the type of clouds that are 

responsible for most of fluctuations. The same authors also propose to model the solar irradiance in a 
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probabilistic manner. Climate science has established that the shape of cumulus cloud shadows contours 

have a fractal structure [11, 33]. 

Cai et al use a midpoint displacement algorithm to model this structure. The algorithm used result in a 

3-dimensional fractal output, which is only a mathematical artefact that enables to generate cloud 

shadows by intersecting a cross section of this output with a horizontal plane. Barnes et al [11] point 

out that the size x a cumulus clouds shading a ground area for a period of time t follows the power law 

distribution where A and b are distribution parameters: 

 
𝑓(𝑥) = 𝐴 ∙ 𝑥𝑏 (2.27) 

It has been inferred that the clear and shaded conditions distribution of the same ground area follow a 

generalized Pareto distribution where k, σ and θ are parameters of the distribution. The duration of the 

clear condition is truncated based on the length of the day. The distribution is as follows: 

 𝑓(𝑡|𝑘, 𝜎, 𝜃) =
1

𝜎
∙ [1 + 𝑘 ∙

(𝑡 − 𝜃)

𝜎
]

−1−
1
𝑘

 (2.28) 

In order to evaluate the area shaded by a cloud, it matters to know the altitude of the cloud base. This 

can be either done by using a ceilometer or indirectly by calculating the lifted condensation level. A 

laser ceilometer uses a laser beam that is reflected back by the base of clouds. 

By using either time travel method or triangulation, the device can measure the distance of a light beam. 

Generally speaking, the altitude range for such a device is 25,000 feet (7,620) metres and clouds above 

this height are not detected. Alternatively, knowing the dew point temperature, the ambient temperature 

and the altitude of the weather station with respect to the sea level, it is possible to evaluate the altitude 

of the base of low level clouds like cumulus clouds. The lifted condensation level above sea level (ASL) 

corresponding to this altitude can be evaluated in meters with the following expression [121]: 

 
𝐿𝐶𝐿 = 400 ∙ 0.3048 ∙ (𝑇𝑎𝑚𝑏 − 𝑇𝑑𝑒𝑤) + ℎ (2.29) 

In equation (2.29), LCL is given in meters, h is the altitude above sea level (ASL) of the weather station 

expressed also in metres and Tamb and Tdew are respectively the ambient and the dew point temperature 

expressed in °C, at the location of the weather station. 

Furthermore, identifying accurately the type of cloud and classifying clouds also helps to get an idea of 

the altitude range. This is mainly useful for high level clouds. 



65 
 

A full classification of clouds helps to evaluate the cloud cover and as well as the type of clouds above 

a specific site. 

2.8.2 Assessment of Cloud Cover 

It is necessary to process images from a whole sky camera to evaluate the cloud coverage. This can be 

performed through a pixel by pixel classification and sorting pixels as either ‘clear sky’ or ‘cloudy’ 

pixels. As a first step, an image-mask must be applied onto the images in order to filter out any irrelevant 

information that are not related to the sky, like the ground or surrounding infrastructures. The solar disk 

and visible sunrays may also bias the estimation of cloud coverage and must be eliminated from the 

image as well. This can be done by using the fact that the related pixels in the image are usually 

completely white, revealing an overexposure of the camera’s sensor. In addition, a whitening effect of 

cloud-free pixels around the solar disk may lead to a misclassification of these pixels. After filtering all 

irrelevant pixels, the remaining pixels need to be classified as ‘clear sky’ or ‘cloudy’. An interesting 

property of the atmosphere can be used at this effect. As a matter of fact, in a clear atmosphere, which 

means in absence of natural (like fog or mist) or artificial (like haze or fog) aerosols, air molecules 

scatter more blue light than red light, making the sky appear blue to the human eye. 

In contrast, clouds scatter blue and red light in similar proportion, leading us to see them light grey or 

even white [58, 122]. Pfister et al (2003) and Long et al (2006) have developed a method to process 

colour sky images by comparing the RGB images with some blue and red thresholds in order to estimate 

the total cloud coverage. By using this method, pixels can be classified as cloudy or not cloudy 

according to the value of the red/blue (R/B) signal ratio. According to Long et al’s method, pixels with 

values above 0.6 are classified as cloudy. However, some problems may arise to detect thick clouds or 

to classify circumsolar pixels. 

To tackle these issues, Heinle et al [58] have proposed to use the difference R − B as a criterion instead 

of the ratio R⁄B. The value R − B = 30 is used by this team as an optimal reference threshold. Kazantzidis 

et al [59] could also check that the difference R−B outperformed R⁄B for a sufficient set of images. 

Nevertheless, this team also discovered that a multi-colour criterion combining R, G and B thresholds 

(B < R + Th1 & B < G + Th2 & B < Th3) outperforms the R-B difference method in some common cases 

of cloud cover. The threshold values Th1 = 20, Th2 = 20, and Th3 = 60 provided by the authors are 

completely indicative and may drastically vary accordingly with the camera sensor. 

However, the discrimination of thin cirrus or cumulus clouds or even clouds close to the sun is 

problematic and a source of uncertainty, leading to significant errors such an underestimation of the 

cloud cover. It must however be noted that this method has not been proven yet to be accurate when the 

sun is covered by clouds. 
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2.8.3 Identification of Cloud Types 

Table 2.12 – Relevant features to process images from sky cameras based on the works of Heinle (2010) 

[24] and Katzanzidis (2012) [25]. 

Type of 

Feature 

Name Expression Comment 

Spectral 

Mean (R) 𝑀𝑅 =
1

𝑁
∙ ∑ 𝑝𝑅,𝑖

𝑁−1

𝑖=0

 
Useful to define the average 

tonal values 

Mean (B) 𝑀𝐵 =
1

𝑁
∙ ∑ 𝑝𝐵,𝑖

𝑁−1

𝑖=0

 

Standard 

Deviation (B) 
𝑆𝐷𝐵 = √

1

𝑁 − 1
∙ ∑(𝑝𝐵,𝑖 −𝑀𝐵)

2
𝑁−1

𝑖=0

 

These features give some 

information about the tonal 

variations 

Skewness (B) 𝑆𝐾𝐵 =
1

𝑁
∙ ∑ (

𝑝𝐵,𝑖 −𝑀𝐵

𝑆𝐷𝐵
)
3𝑁−1

𝑖=0

 

Difference (R-G) 𝐷𝑅𝐺 = 𝑀𝑅 −𝑀𝐺 

Difference (R-B) 𝐷𝑅𝐵 = 𝑀𝑅 −𝑀𝐵 

Difference (G-B) 𝐷𝐺𝐵 = 𝑀𝐺 −𝑀𝐵 

Textural 

Energy (B) 
𝑀𝐵 = ∑∑𝑃𝑑𝑖𝑠𝑡(𝑎, 𝑏)

2

𝐺−1

𝑏=0

𝐺−1

𝑎=0

 

This shows the homogeneity of 

monochromatic level 

differences 

Entropy (B) 

𝐸𝐵 = ∑∑𝑃𝑑𝑖𝑠𝑡

𝐺−1

𝑏=0

(𝑎, 𝑏)

𝐺−1

𝑎=0

∙ log2 (∑𝑃𝑑𝑖𝑠𝑡

𝐺−1

𝑏=0

(𝑎, 𝑏)) 

This measures how random 

the monochromatic level 

differences are. 

Contrast (B) 
𝐶𝐵 = ∑∑(𝑎 − 𝑏)2 ∙

𝐺−1

𝑏=0

𝑃𝑑𝑖𝑠𝑡(𝑎, 𝑏)

𝐺−1

𝑎=0

 

This measures local variations 

of monochromatic level 

differences 

Homogeneity (B) 
𝐻𝐵 = ∑∑

𝑃𝑑𝑖𝑠𝑡(𝑎, 𝑏)

1 + |𝑎 − 𝑏|

𝐺−1

𝑏=0

𝐺−1

𝑎=0

 

This measures how similar 

neighbour pixels are in terms 

of monochromatic levels. 

Total 

Cloud 

Cover 

Cloud Cover 

(R,G,B) 
𝐶𝐶 =

𝑁𝐶𝑙𝑜𝑢𝑑𝑦𝑃𝑖𝑥𝑒𝑙𝑠

𝑁
 

This is a measure of the 

average cloud cover, useful to 

distinguish stratiform clouds 

Heinle et al (2010) [58] have automated the classification of clouds according to their type as a further 

step following the clear/cloudy classification. On the basis of their Fisher Distances, a technique used 
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in satellite imagery (Pankiewicz, 1995), 12 features have been selected to classify clouds. Seven of 

these features are spectral while 4 are textural and 1 is simply the total cloud cover. Indeed, the spectral 

features of an image do not provide any information about the spatial distribution of clouds. 

As a matter of fact, solely using colours proves to be insufficient to distinguish altocumulus from 

stratocumulus clouds. This is why textural features must also be taken into consideration. In addition, 

the cloud cover is also used as a feature to tackle the issue of spatial distribution. In particular, this helps 

to distinguish stratiform clouds from the rest. 

The colour information of each cloud image is partitioned into a set of three monochromatic (also 

referred to as Grey Level) red (R), green (G) and blue (B) data sets. Each monochromatic partial image 

is treated separately as levels of R or G or even B. The average colour and the tonal variation of the 

image both provide some useful information to distinguish thick and thin clouds, or even high altitude 

bright clouds from the others. The colour component B proved to have the highest separation power 

because it is the dominant colour of the sky. 

Heinle et al (2010) [58] have automated the classification of clouds according to their type as a further 

step following the clear/cloudy classification. On the basis of their Fisher Distances, a technique used 

in satellite imagery (Pankiewicz, 1995), 12 features have been selected to classify clouds. Seven of 

these features are spectral while 4 are textural and 1 is simply the total cloud cover. Indeed, the spectral 

features of an image do not provide any information about the spatial distribution of clouds. 

As a matter of fact, solely using colours proves to be insufficient to distinguish altocumulus from 

stratocumulus clouds. This is why textural features must also be taken into consideration. In addition, 

the cloud cover is also used as a feature to tackle the issue of spatial distribution. In particular, this helps 

to distinguish stratiform clouds from the rest. 

The colour information of each cloud image is partitioned into a set of three monochromatic (also 

referred to as Grey Level) red (R), green (G) and blue (B) data sets. Each monochromatic partial image 

is treated separately as levels of R or G or even B. The average colour and the tonal variation of the 

image both provide some useful information to distinguish thick and thin clouds, or even high altitude 

bright clouds from the others. The colour component B proved to have the highest separation power 

because it is the dominant colour of the sky. 

 comprises some details related to the 12 hereinabove mentioned features. Each feature is calculated for 

a colour that is abbreviated between the brackets within the name of the feature. In the expressions, N 

represents the total number of pixels in the image under consideration, pR,i and pB,i are respectively the 

monochromatic intensity value of red and blue for an individual pixel referred to with the number i so 

that 0 < i < N – 1. The variables 𝑎 and 𝑏 represent monochromatic intensity levels of two pixels of the 
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same image. The values of these variables is comprised between 0 and G = 256. The value 𝑃𝑑𝑖𝑠𝑡(𝑎, 𝑏) 

is the pixel distance between both pixels, using a Grey Level Co-occurrence Matrix (GLCM). 

A very accurate k-nearest-neighbour (kNN) classifier is used to discriminate sky images into one of the 

seven cloud conditions on the basis of these features. 

Heinle and al. used a sample of 1500 reference images for training purposes, containing about 200 

independent images per cloud class, with a wide variety of cloud forms. After training the system and 

processing the input images, the Manhattan Distance is calculated to assess the difference between the 

normalized feature vector f of each element and the reference feature vector fref. On this purpose, the 

following formula is used: 

 
𝑑(𝑓, 𝑓𝑟𝑒𝑓) = ∑|𝑓𝑖 − 𝑓𝑟𝑒𝑓,𝑖|

𝑑𝑖𝑚

𝑖=0

 (2.30) 

The cloud visualized in the input images is classified according to the majority vote of the k closest 

matches to each known cloud class. The parameter k has been set as 3 by Heinle et al, leading to an 

average performance of 96% elements classified correctly over all 7 cloud classes.  

The performance is measured by using a Leave-One-Out Cross-Validation (LOOCV). 

The authors noticed that the only difference between cumulus and altocumulus clouds is the size of 

individual cloudlets.  

Additionally, some noticeable misclassification errors appear due to a confusion between stratiform 

clouds and thick rain clouds, such as nimbostratus. This is due to the fact that stratiform clouds such as 

stratus and stratocumulus can build up to form thick rain clouds that still display the same 

characteristics. Moreover, the presence of rain drops on the camera dome may distort images and lead 

to some further misclassifications. 

To address these problems, Kazantzidis et al (2012) [59] improved this classification method by 

introducing subclasses and by proposing a method to detect the presence of raindrops over the camera 

lens. A circle factor (CF) is used to evaluate how close to a perfect circle the fish-eye image of the 

camera is. In the presence of rain drops, the contour of image is distorted, leading to a circle factor of 

about CF = 0.6 whereas this factor is close to CF = 0.9 with a dry dome. This factor does not only help 

to prevent a misinterpretation of texture values but can also detect the presence of rain clouds. 

Furthermore, as there is only small differences of entropy feature among the various cloud classes, 

Kazantzidis et al have decided not to use this feature. A set of 1050 images have been used to train the 

algorithm after visual inspection, while 1500 images are used for testing. A minimum of 150 images 
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per cloud class has been used for the training, with only one cloud class per image. In order to tackle 

the problem of variability of cloud within the same cloud class, three new parameters have been 

introduced, as per Table 2.13. According to the values of these parameters, three tiers are defined. These 

new parameters lead to the creation of a certain number of new subclasses for each cloud class as per 

Table 2.14. 

Table 2.13 – Additional relevant image processing parameters [25]. 

Criterion Tier 1 Tier 2 Tier 3 

Solar Zenith Angle φs (degrees) <40 40-65 >65 

Fraction of Cloud Coverage (octas) <3 3-6 7-8 

Visible Fraction of the Solar Disk (%) <20 20-80 >80 

 

Table 2.14 – Additional sub-classes [25]. 

Cloud Class St-As Cb-Ns Cu Cc-Ac Sc Ci-Cs Cl 

Number of sub-classes 4 6 8 9 10 12 1 

The accuracy of the overall classification ranges between 78% and 95%. In particular, cumulus clouds 

are detected with a success rate of about 92%. Despite these innovations, a small confusion remains 

between the cloud classes St-As and Cb-Ns. The misclassification of St-As engenders the lowest 

performance of 78%. However, a correct classification of clouds is very relevant for PV power 

forecasting when the optical depth of each cloud class is known. 

2.8.4 Conclusions 

The shorter the forecasting timeframe, the more dramatic the impact of clouds on the power output of 

PV systems. Sky imagers are the best source of input images is indeed the only one that can help to 

distinguish the different types of clouds. Considering the dynamics of clouds, a sampling period of 

approximately 1 second between each consecutive images is ideal to extract an accurate cloud motion 

vector. Adequate post-processing of the images is necessary to determine the cloud cover as well as the 

type of clouds present in the sky. A multicolour criterion combining different thresholds for R, G and 

B data is the optimal method for this step. The images from a sky camera can also possibly be used to 

estimate the size of clouds are therefore the area of the cast shadow. After identifying the type of a cloud 

masking the sun by comparison with a database, it is also possible to infer the opacity of that cloud and 

thus the instantaneous irradiance. For this purpose, it is indeed vital to be able to identify each type of 

cloud among a set of 7 classes. Heinle’s method performs very well to identify clouds accurately. It 

consists in working on monochromatic R, G and B images. A set of 12 features are extracted and 
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discriminated through a kNN classifier with k ideal set to 3. A risk of misclassification nonetheless 

remain leading to a possible confusion between stratiform clouds and rain clouds, which both scatter 

sunlight differently. A solution proposed by Katzantzidis consists in introducing 3 more criteria and 

subclasses. However, considering the effect of shading on PV systems, a sensor network remains the 

ideal option as it measures directly the area and shape of the shadow cast by clouds on the surface. For 

this reason, such networks are often utilized as reference data. Pyranometer networks are precise but 

expensive although it is possible to use an existing PV network to cut costs. The size and configuration 

of the network must nonetheless match with the required spatial resolution. Independently from the 

source of input data, the altitude of the base of low altitude clouds, which are responsible for the fastest 

variations, can be assessed from the ambient temperature, the dew temperature and the elevation of the 

weather station. The full topic is covered in further details within Chapter 4. 

2.9 WEATHER CLASSIFICATION FOR MID-TERM PV OUTPUT FORECASTING 

2.9.1 Review of Weather Classifications 

For many utility applications including power dispatch and grid balance, a short-term to long-term 

horizon suffices, as previously mentioned in Table 2.4. In this instance, PV power forecasting methods 

consist in focusing on a period of time that ranges between 30 minutes and several days ahead. Such 

methods may mix statistical and physical approaches with either PV networks or numerical weather 

prediction (NWP) as an input. Peder Bacher et al [112] have demonstrated that direct solar power 

observations are the most appropriate source of input data for forecasts up to 2 hours ahead whereas 

NWP is better suited beyond the horizon of 2 hours. 

Weather classification is widely used for forecasting purposes for horizons exceeding 24 hours. For 

example, a day-ahead or week-ahead PV power output profile can be obtained with a classification of 

simple daily weather patterns such as rainy, cloudy, sunny (clear sky) and foggy days. Historical data 

of solar irradiance (for an indirect forecasting approach) [81] or PV output (for a direct forecasting 

approach) [60, 123] and meteorological forecasts are used as input data on this purpose.  

These two frequently used PV output forecasting methods can play a pivotal role to size the storage 

batteries required to complete the PV system under consideration. As an illustration, the case study of 

a sun-powered house in the Tokyo area, Japan, within the government supported smart city project, as 

described by Niimura et al (2012) the text weather forecast from 9 years of historical data has been used 

to establish the classification [81]. Table 2.15 is an example of how the weather conditions can be 

reinterpreted in simple terms, based on various key words that may appear within the descriptive text 

of a weather forecast. Such a simplification of weather patterns is very suitable to forecast the power 

generation from a day to a week ahead. The hourly profile of insolation is obtained based on the values 

that are statistically the most likely considering the time and weather conditions. The most likely 
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insolation values from 4 am to 8 pm under various weather conditions are obtained from the probability 

distribution of insolation, which is based itself on hourly solar radiance data. 

Table 2.15 – Simple weather classification based on a textual forecast [49]. 

Key words Classification 

Clear 

Sunny Fair 

Slightly overcast 

Heavily overcast 
Cloudy 

Cloudy 

Rain/Snow Rainy 

Fog/Mist Foggy 

The estimated radiation of a specific day and at a specific hour t is then defined based on the weather 

forecast by g(t) = Gmax∙gmost(t)∙Pprecipitations where Gmax is the maximum monthly insolation, gmost(t) is the 

most likely normalized value of solar radiation at the hour t and Pprecipitations is a factor that indicates the 

probability of rain. Finally, in that case study, the maximum seasonal Mean Absolute Error (MAE) of 

the forecast is about 0.33 for seven consecutive days. The major prediction errors occur during spring 

and summer in the northern hemisphere. The authors conclude that the major of the errors cause is the 

80% of uncertainty of weather forecasts. 

A support Vector Machine can be used for the same purpose of weather classification based PV power 

output forecasting for a one-day horizon. For example, Jie Shi and al. [60] have selected a simple 

weather model out of four possibilities (sunny, cloudy, rainy, foggy) on the basis of historical data and 

weather forecast of the next day. The historical input data are similar to what has been used by Niimura. 

The performance is best for sunny days with mean Relative Error (MRE) of 4.85% whereas the MRE 

is 12.42% for cloudy days, with an average of 8.64% for all models. 

2.9.2 Conclusions on Weather Classification 

For the purpose of power dispatch, SVM and weather classification prove to be extremely accurate for 

sunny or uniformly overcast days. Such an approach lacks precision for cloudy days though, because 

of the dynamic variation of the cloud cover. It can be applied when an average daily value of the solar 

radiance is sought but some significant errors may be expected during cloudy days. 
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2.10 VERY-SHORT TERM PV POWER FORECASTING 

Accurate very-short term PV power output forecasting methods are required for safety and efficiency 

reasons. In particular, utility operators require a ten-minute warning to bring spinning reserves online. 

Besides ramp rates issues, an accurate forecast within a solar-aware smart grid can also help to prevent 

keeping industrial-scale loads such as water-pumps on when not needed. Additionally, a precise 

prevision enables to plan when to turn such loads on. Nevertheless, the main problem with very short-

term PV power forecasting is the swift intermittency of sun radiation, which is essentially due to cloud 

motions. Tracking and forecasting such cloud movements is therefore necessary in order to deal with 

this problem. However, when it comes to deterministic prediction of PV output power, adequate 

temporal and space resolutions are critical [11, 33]. A first group of studies have favoured the use of a 

numerical weather prediction (NWP) model whereas a second group prefers to use sky imagers, or 

geographically dispersed sensors or even satellite images to track clouds. A third group utilizes a 

random-sequence and time series models. 

2.10.1 NWP Approach 

NWP models can provide very valuable outputs such as forecasts of cloudy conditions, wind direction, 

wind speed and even sometimes irradiance with a large spatial and temporal resolution. Such a 

resolution fits well with the day-ahead forecasts needed to determine energy pricing or for energy 

dispatch purposes. However, the accuracy of such an approach is quite variable. In the case of a weather 

research and forecasting (WRF) numerical atmospheric model that would be made 30 hours in advance, 

the best result seem to be obtained in the occurrence of large-scale cirrus clouds or in the event of an 

entirely covered skies. Such a model may otherwise sometimes fail to predict the presence of clouds 

during a day or be mistaken in the timing of clouds. Overall, this approach is not suited to deal with 

small clouds in a partially cloudy day. Additionally, substantial computation time is required for NWP 

models. Indeed, 2 hours of computation may be needed to provide only 2 minutes of forecast [38]. 

2.10.2 Sky, Satellite Images and Sensor Array Approach 

For studies that use image processing and sensor analysis, three variables must be taken into account 

when tracking clouds: position, velocity (as a vector) and size [124]. 
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Figure 2.8 – Temporal resolutions compared to the spatial range of observation for various types of input 

data. 

A few bottlenecks faced by this approach are respectively the effectiveness of the feature extracting 

filter and the associated extensive computation time. Additionally, time resolution may sometimes be 

too coarse for a reliable forecast of power variation caused by clouds. This is because cloud-induced 

fluctuations of power output happen in matter of seconds. Figure 2.8 gives a rough idea of the temporal 

resolution with respect to the area that is observed for three different categories of input data. The range 

of observation must not be confused with the spatial resolution. On the other hand, the spatial resolution 

may vary a lot among each type of input data source and the format of the spatial resolution may differ 

too much to make comparisons. For instance, sky imagers are commonly used to observe the base of 

clouds and are characterized by a resolution expressed in pixels. In contrast, satellites observe the top 

of clouds or the ground with a precision expressed in metres or kilometres. For their part, neighbouring 

PVs or sensors of weather stations may often be dispersed in an irregular manner. 

An important challenge is to determine the velocity of clouds. It might be challenging because ground-

based measurements of the wind are not reliable for this purpose [38]. Indeed, the wind direction and 

speed may vary according to the altitude. The only relevant wind measurement would need to be done 

at the level of clouds. 

2.10.2.1 Sky Images 

In most cases, a fish-eye lens is mounted on whole sky cameras to give a panoramic field view of 180 

degrees in every direction, so that the entire sky can be observed. However, the spatial resolution is 

limited to a local range consisting in a radius of a few kilometres around the camera. On the other hand, 

the time resolution of whole sky cameras is excellent as the time between two consecutive shots can be 

less than a second, which virtually enables real-time observations. This basically gives a significant 

advantage to whole sky imagers for a detailed examination of the cloud cover. 
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Additionally, sky cameras can be used to identify the types of clouds and small-scale variations of cloud 

cover over a specific spot. Combined with a solar radiation sensor, this enables to uncover the effect of 

specific types of clouds on the insolation. 
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Figure 2.9 – Typical sky imaging processing flow. 

A 1-second sampling period is a popular choice for taking and storing snapshots of the sky [125] but 

slower periods ranging from 15 seconds [58] to up to 5 minutes [30, 59, 126, 127] are also considered. 

The resolution of sky camera images vary within the range of 8 to 30-bit JPEG 640×480 [30, 59, 125, 

127], 512×512 [126], 1024×1280 [28], or up to 3648×2736 pixels [58]. One or two axis sun trackers as 

well as sun-masking techniques can be sometimes added. It must be noted that processing colour images 

is an important step to classify clouds. Colour [126] or infrared [127] filters can possibly be applied on 

the camera. In any case, due to the high amount of data, sky images must be automatically classified 

with high accuracy. The classification is usually either based on a binary clear/cloudy basis or on an 

identification of cloud types. Various filtering methods are applied to the images after classification. 

The extraction of features lead to the determination of a cloud motion vector including cloud velocity, 

which is used in turn for prediction purposes. An example of complete processing flow is given in 

Figure 2.9. It must be noted that the methods used in each step of the flow may vary, especially the 

statistical method used prior to forecasting. 

Optical flow based on Lucas-Kanade method has been successfully used by Wood-Bradley et al [125] 

to process whole sky images with a prediction error from 5.3% (1 second off) to 21.2% (7 seconds off) 

in the estimation of the obstruction time of the sun by a cloud, with times to shading ranging from 20 

to 40 seconds. Based on JPEG images, the method follows a flow of cloud detection, cloud movement 

tracking, cloud movement forecasting, and image processing through OpenCV functions. 

Unfortunately, the excessive computational time of this method may not permit to implement it online. 

2.10.2.2 Satellite Images 

Satellite images offer a wide spatial range stretching over a few thousands of kilometres. The time 

resolution of forecasts based on velocimetry from satellite images is often comprised between 1 and 6 

hours, which however may not be well suited for the observation of small-scale or fast cloud motion 

[38].  
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Figure 2.10 – Satellite images processing flow. 

As an example, forecasts based on GOES satellite images have a 10 km spatial resolution and are 

updated every hour. Because of their limited temporal resolution, satellite-based forecasts can 

sometimes be outperformed by forecasts based on persistence models [124]. Additionally, low-

resolution large-scale cloud observation from satellites does not permit cloud-radiation studies, e.g. 

determining the impact of a specific type of cloud on the solar irradiance reaching the ground. 

Nevertheless, satellite images are very useful to forecast Global Horizontal Irradiance (GHI) on a 

relatively short-term basis, for horizons shorter than 6 hours [128]. In particular, for up to 5 hours ahead 

GHI forecasts, satellite derived methods outperform considerably NWP based forecasts. It has even 

been demonstrated that satellite based methods are the best option for a temporal horizon comprised 

between 30 minutes and 6 hours [129]. This makes satellite images valuable to maintain dynamically 

the balance between solar energy supply and consumption. Satellite observation generally involve cloud 

motion vector field extraction from the images. 

Some high quality services such as EUMETCAST [130] can deliver satellite images on a 15-minute 

basis for Europe, Africa and South America, which is an excellent temporal resolution. In particular, 

Dambreville et al (2014) have used an estimation of the GHI forecast provided by HelioClim-3 images 

with a high resolution of 3 km × 3 km per pixel sampled every 15 minutes. In comparison, Hammer, 

Heinemann, Lorenz and Lückehe (1999) could observe cloudiness with 30 minutes precision and a 

resolution of 2.5 km × 2.5 km from METEOSAT satellite. Based on a year-long database, Dambreville 

et al have used a 3-step method, which consists in the following. Firstly, a block matching algorithm is 

used to extract the cloud motion vector field after comparing two consecutive satellite images Im(t-h) 

and Im(t) where t is the time and h = 1 corresponds to a 15 minutes sampling period. This cloud motion 

vector field represents the global movement observed between the images. As a second step, a region 

of interest (ROI) is found in the upstream direction. A third step consists in using statistical method or 

trained conversion within the ROI to define a minimum, a maximum and a mean forecast of the GHI at 

time t+h. Finally, the forecast is compared to ground measurements and corrected if needed. This flow 

is illustrated in Figure 2.10. 
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During the first step, two consecutive images are divided into square-shaped pixels blocks characterized 

by a side b = 20 pixels. A research horizon rh = 10 pixels (corresponding to a wind speed of 120 km/h) 

is defined as the furthest possible translation (diagonally) of one block between the first and the second 

image. A block in the second image Im(t) is identified as the same block from the first image Im(t-h) 

through a maximum correlation coefficient. The vector of each block is defined by the difference of the 

coordinate of the block centre between both images. 

The global motion vector is drawn from the average of the vectors within the 9 closest blocks from the 

site that is considered. 

The region of interest is calculated on the basis of a window size expressed by: 

 
𝑤𝑠 = 1 + 2 ∙ 𝑇𝑠 (2.31) 

In equation (2.31), Ts is the sampling period. 

The atmospheric transmission k(t) = GHI(t,p)/GHIClearSky(t,p) at the instant t is defined as the ROI’s GHI 

normalized with respect to the clear sky GHI(t,p) at the same time t and for the same pixel p, based on 

the European Solar Radiation Atlas model. The value is defined as k = 1 in clear sky conditions and k 

= 0 in case of complete obstruction. The average forecast value for k is used to get the average forecast 

GHI, on the basis of a wind persistence hypothesis. The average forecast GHI is: 

 
𝐺𝐻𝐼̅̅ ̅̅ ̅(𝑡 + 𝑇𝑠, 𝑝) = �̅�(𝑡 + 𝑇𝑠) ∙ 𝐺𝐻𝐼𝐶𝑙𝑒𝑎𝑟𝑆𝑘𝑦(𝑡 + 𝑇𝑠, 𝑝) (2.32) 

Similarly, the minimum and maximum values of the forecast k lead to a minimum and maximum 

forecasted GHI. However, comparisons with the ground measurements obtained with a sensor network 

show systematic errors. This is why a post-processing stage is introduced for correction. The 

performance of the forecast has been assessed against ground measurements. With an nRMSE between 

23.5% and 30%, the corrected forecast outperforms slightly the persistence model for horizons between 

15 and 45 minutes. 

Variability poses a serious tracking and forecasting problem. As clouds are not plastic but continuously 

vary in shape and number, cloud tracking can be seen as a multi-target tracking (MTT) problem. A 

framework able to deal with variable number of targets is thus required. A probability hypothesis 

density filter (PHD) filter has been successfully applied to track cloud features (such as position, size 

and motion vectors) by Paolo Addesso, Roberto Conte, Maurizio Longo, Rocco Restaino and Gemino 

Vivone [124]. 
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To complete the flow, a time-dependent penalty term feeds a Maximum a Posteriori Markov Random 

Fields (MAP-MRF) algorithm used for classification. Features are extracted after classification and 

used to update the multi-target state. The penalty term considers the classification of previous 

acquisitions for the current image classification, reducing the risk of misclassification. The purpose of 

such a method is to reach a trade-off between classification accuracy and reduced computation. The 

entire flow except the MAP-MRF takes less than a second to compute on single-core 3.4 GHz Intel 

CPU for each image. Nevertheless, the MAP-MRF takes 82 seconds to run in the same conditions. One 

of the main benefits is an increased classification accuracy compared with other methods. In particular, 

the accuracy has been significantly improved around the cloud borders, which often tends to generate a 

high misclassification rate, due to the fact that edges fade into the background with low contrast. 

2.10.2.3 Sensor Network 

Geographically dispersed sensors or a largely distributed PV network can be another source of 

observation data for cloud cover. As it enables direct measurements, it is often used as a reference to 

assess the performance of an irradiance forecasting method. It provides with an intermediate and 

probably complementary spatial and temporal resolution with respect to sky imaging and satellite views. 

In particular, this approach offers a better resolution than forecasts based on satellite images. Indeed, 

the distributed range of the 83 residential rooftop PV network used by Jayadevan, Lonij, Cronin et al 

[38, 83, 131] covers an area of 50 km × 50 km with an average spacing of 3 km between two 

neighbouring sensors. It records average AC power normalized by the system rating at 15-minutes 

intervals. A disadvantage of dealing with such a sensor network is the installation cost. 

This problem can be tackled by using an existing infrastructure, as Lonij et al did. Unlike with sky or 

satellite images, the sun radiation is directly measured. There is thus no need to know about the optical 

properties of clouds or to use radiative models [38]. The infrastructure in question consists in a network 

of residential PV modules. The main limitation in precision is due to the relative small size of the 

network compared with time resolution. The sampling rate is also too low. Moreover, the same 

publication mentions that cloud edge velocity may not always be the same as wind velocity, which may 

lead to significant errors as a result. It must also be noted that Weather Research and Forecasting (WRF) 

numerical atmospheric models are better at forecasting the impact of slowly varying cirrus (high 

altitude, 9 to 12 km) clouds for up to 50 hours ahead whereas PV network is better to forecast the effects 

of quickly varying cumulus (low altitude, up to 5 km) clouds. 

2.10.2.4 Hybrid Solutions 

Satellite and sky images can be combined to optimize the resolution of nowcasting of clouds in near-

medium future. This is a solution used by Gonzalez et al [127] by interpolation. This team also use an 
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ANN to detect clouds. A k-nearest-neighbour (kNN) algorithm is often used to classify cloud types 

[58]. 

Even all three approaches (NWP, satellite and sensor network) can be combined together to optimize 

even further the overall temporal and spatial resolution of the forecast. This is done by Lonij, Cronin et 

al [38] to perform a 45-minute forecast. 

2.10.3 Random-sequence and Time Series Models 

Considering the third group, the methodology involves acquiring and processing power output data 

commonly coming from a couple of 200-300 W PV panels with MPPT ability as well as irradiance data 

fed by a sensor like a pyronameter. Sampling these data at a 1-second interval is the most popular 

practice [11, 33]. However, it must be noted that high solar angles of incidence around sunrise time and 

sunset time usually result in a poor accuracy of the measurement of the power output, leading to 

corrupted samples. Nevertheless, little generation is expected during those times. Considering a dataset 

of valid samples, a threshold is usually defined to separate clear and shaded periods. Cai et al [33] 

consider the irradiance to define a constant threshold of 85% of the mean direct normal irradiance (DNI) 

Gclear,avg. Any period of time Tshaded characterized by a DNI below this threshold can be considered as 

shaded. With the help of a sky camera, it has been observed by this team that the most dramatic 

variations of the average DNI level Gshaded normalized with respect to Gclear,avg occur during short shaded 

periods of time, shorter than 200 s. Within these short shaded periods, the normalized irradiance may 

vary in range from 5% to 90% of the mean Gclear,avg DNI. With the help of a sky camera, it has been 

established that shaded periods longer than 200 s may be due to opaque and slow-moving cumulus 

clouds. Similarly, Barnes et al [11] also classify the clear-sky irradiance profile into clear and shaded 

data by using a classification algorithm. This algorithm consists in performing a second-order curve fit 

on the irradiance profile completed by normalization of the irradiance profile and K-means clustering 

with two centroids. The probability for a PV generator to be shaded or fully insolated in the future is a 

crucial information to size the energy storage unit (ESU) needed to mitigate the effect of sunlight 

disruptions. It must be noted that only the discharge power of the ESU is taken into account to assess 

its size. The likelihood for a PV generator to be shaded is calculated on the basis of the time series of 

binary states (either clear or shaded) considering the duration of each state. A semi-Markov discrete-

time process has been modelled and applied. The maximum number of tap changes per day as well as 

the minimal clear-sky output power that is required to induce a tap change need to be established based 

on the lifetime of system elements and load-flow analysis. 
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Figure 2.11 – Expected number of tap-changing operations and ESU throughput with respect to time. 

 

Figure 2.12 – Irradiance vs. time and corresponding ESU state vs. time. A state of +1 indicates 

discharging, –1 indicates charging, and 0 indicates standby [12]. 

For the specifically studied day, ESU throughput has been established as 2.625 MWh with 20 tap-

changes per day. Nonetheless, this method is used by Barnes et al for selecting an offline control 

strategy. The authors would recommend to consider a live feed of weather data to improve the 

performance. The results presented by the same authors related to this method are shown in Figure 2.11 

and Figure 2.12 [11] (courtesy of A.K. Barnes, Dr. J.C. Barda and J.K. Hayes, university of Arkansas). 

2.10.4 Conclusions on Very Short-Term PV Forecasting 

An optical flow based forecast is very accurate but takes too long to compute. Hence, such a method 

can only be used off-line. Since the spatial resolution plays a pivotal role in irradiance forecasting, sky 

cameras can provide with the ideal space resolution to define very-short term cloud motion vectors. Sky 

cameras are also needed for cloud classification. A persistence approach also proves to outperform 

satellite-based methods. However, sensor networks are the reference source of input data since they can 

measure directly the irradiance and do not require complex cloud models. Such networks are 

nonetheless costly and may not have the adequate temporal and spatial resolution to track clouds 
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precisely. Consequently, sky images sampled every second combined with a sensor network with a 

refresh of data every few minutes is reported to be an ideal combination for an optimal accuracy of 

irradiance forecasting. Indeed, the correlation of both systems enable to uncover the effect of shading 

of each type of cloud. Satellite images may also considered in addition to increase the spatial resolution 

and to observe the top of clouds. 

2.11 CONCLUSIONS ON THE LITERATURE REVIEW 

As of now, PV power remains not fully predictable and hence relatively expensive and difficult to 

dispatch. However, a few approaches can be envisaged to improve the possibility to dispatch PV energy, 

to optimize its generation and to plan its storage, making it a more reliable energy resource. In particular, 

controlling the energy storage can mitigate the discontinuity of PV generation over various periods of 

time. However, an accurate forecast of the PV power output is necessary to control a system containing 

PVs, energy storage and additional machines. The temporal and spatial definition of the system must 

be defined as a first step, accordingly with the intended grid operation. In particular, to guarantee power 

continuity and safety, a very fine resolution is needed. Nonetheless, various approaches can address the 

problem, the persistence model tends to be the most accurate approach for very short-term forecasting. 

ANNs and SVM are appropriate approaches for short-term horizons while NWP is better suited for 

longer horizons. Although a probabilistic method based on historical data may be valuable for very long 

term forecasts, such an approach cannot take into consideration the complex variations of the cloud 

cover causing short-term sunlight disruptions. Only a deterministic atmospheric modelling approach 

can deal with the stochastic changes of solar radiance during the day. Within this type of model, NWP 

data-based models are well adapted for day ahead forecasts but suffer from a too coarse temporal 

resolution. On the other hand, sky imagers, geographically dispersed sensors or satellite images are 

excellent sources of data for cloud identification and tracking. Satellite images give a large-scale 

overview of cloud events, possibly with a good resolution. Sky imagers are a precious tool to identify 

cloud types and anticipate the impact of the shading on PV power generation. A hybrid system 

combining at least a sensor network and a sky camera performs better than separate systems. Even 

combining all three solutions can outweigh the drawbacks of all individual solutions. Low altitude 

clouds like cumulus clouds may cause fast occurring power discontinuity whereas thick rain clouds like 

nimbostratus clouds may cause long-lasting and severe power outing. Finally, it has been found that an 

offline observation of the effect of cloud-related shading on solar power generation over an adequate 

period of time can help to calculate the size of the required energy storage. This can notably be 

successfully done by using random sequence and clear/shaded classification. Some further 

improvements can be sought in the future. In particular, it would be valuable to elaborate algorithms 

that can calculate cloud coverage and classify clouds using online data and a fine sampling period. In 
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addition, measuring precisely the effects of each type of cloud on the solar irradiance could greatly help. 

Finally, finding a method do distinguish reliably rain clouds from stratiform clouds would be valuable. 

  



82 
 

3 IRRADIANCE, CLOUD, SUN AND SHADOW MODELLING 

A comprehensive state of the art of solar power forecasting has been presented in the previous 

chapter. This review has helped define the whole strategy to achieve to forecast solar power output 

through cloud tracking. The overall strategy is presented in the next section. In that strategy, it can be 

seen that the clear sky irradiance plays a very important role since the accuracy of the clear-sky 

irradiance determines the accuracy of the whole forecast. Thus, we will focus first on the solar radiation 

models in the absence of clouds. In particular, we will review some astronomical considerations that 

determine the position of the sun and the extra-terrestrial beam intensity. Since our application focus 

on very short term solar forecasting, it makes sense to consider the fastest irradiance models to compute, 

which are empirical models. We will thus compare a large number of simple irradiance empirical 

models with one another, as well as with irradiance measurement made at the location of our PV site. 

We will also study how to model clouds and their cast shadow. In particular, we will see how clouds 

appear through the lens of a sky camera installed on the ground. In addition, we will calibrate and 

characterise the lens of a sky camera that has been used for this study. 

It must be noted that this chapter is strongly based on a publication presented during the IEEE 

Power and Energy Society General Meeting that took place in Boston, USA, in July 2016 [2]. 

3.1 RELEVANCE OF THE OVERALL STRATEGY 

To mitigate power discontinuities, a BESS needs to be charged when the generation exceeds the 

demand and to be discharged in the opposite case, through the use of a power converter and a controller. 

It is safe to say that the effectiveness of the power smoothing method depends on the reactiveness of 

the BESS controller. A forecast of the sky conditions, and thus of the irradiance, may greatly help. Since 

solar irradiance is the physical quantity that influences the most the output power of PV arrays, the 

precision of the irradiance forecast may in turn dictate the accuracy of the power output smoothing [29]. 
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Figure 3.1 – Flowchart of an ensemble forecasting method. 

The overall strategy intended for power discontinuity mitigation is presented in Figure 3.1. It and uses 

a sky camera to observe the cloud cover. The strategy basically consists in three main parts there are 

related to the processing of sky images, forecasting of irradiance, and modelling of PV system. 

3.2 CLEAR-SKY IRRADIANCE MODELLING CONSIDERATIONS 

The stochastic variations of global horizontal irradiance cannot be dealt with without a proper model of 

the clear sky solar radiation. Astronomical considerations are necessary to implement this model [7]. 

Yet, such considerations relate mainly to cyclic variations. The calendar day number of the year, 

referred to as 𝑛 is a fundamental parameter. The number 𝑛 hence represents how many days have 

elapsed since the 1st of January of the current year. 
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For any day of the year, the declination of the Earth δ can be simply expressed with Equation (3.1): 

 
𝛿 = 23.45 ∙ sin [

360 ∙ (𝑛 − 81)

365
] 

 
(3.1) 

Another expression of the declination of the Earth δ has been formulated by in the form of Fourier series 

by Spencer in 1971 as given in Equation (3.2) [99]. 

 

𝛿 = 0.006918 − 0.399912 ∙ cos(𝑇𝑑) + 0.07257 ∙ sin(𝑇𝑑) − 0.006758

∙ cos(2 ∙ 𝑇𝑑) + 0.000907

∙ sin(2 ∙ 𝑇𝑑) − 0.002697 ∙ cos(3 ∙ 𝑇𝑑) + 0.001480 ∙ sin(3 ∙ 𝑇𝑑) 

(3.2) 

Td is the angular fraction of the year calculated by Spencer as per equation (3.3). 

 𝑇𝑑 =
2 ∙ 𝜋 ∙ (𝐽𝑑𝑎𝑦 − 1)

365
 (3.3) 

In equation (3.3), Jday is the Julian ephemeris day. The Julian calendar starts on the 1st of January – 4712 

at Greenwich mean noon and is calculated as per equation (3.4) according to the Gregorian day with 

decimal time tdd, month tmth, and Gregorian year tyr. 

 

𝐽𝑑𝑎𝑦 = ⌊365.25 ∙ (𝑡𝑦𝑟 + 4716)⌋ + ⌊30.6001 ∙ (𝑡𝑚𝑡ℎ + 1)⌋ + 𝑡𝑑𝑑 + 2 − ⌊
𝑡𝑦𝑟

100
⌋

+ ⌊
𝑡𝑦𝑟

400
⌋ − 1524.5 

(3.4) 

The Julian day is adjusted from the local time zone htz to Greenwich Mean Time expressed as per 

equation (3.5). 

 𝐽𝑑𝑎𝑦,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝐽𝑑𝑎𝑦 −
ℎ𝑡𝑧
24

 (3.5) 

The altitude angle of the sun 𝛽 is, expressed in degrees: 

 
𝛽 = sin−1[cos(𝐿𝑎𝑡) ∙ cos(𝛿) ∙ cos(𝐻) + sin(𝐿𝑎𝑡) ∙ sin(𝛿)] (3.6) 

The zenith angle z is the complementary angle of the altitude angle β: 

 
𝑧 = cos−1[cos(𝐿𝑎𝑡) ∙ cos(𝛿) ∙ cos(𝐻) + sin(𝐿𝑎𝑡) ∙ sin(𝛿)] (3.7) 

In equation (3.6) and (3.7), δ is the declination of the Earth, H is the hour angle and Lat is the latitude. 

 
𝐻 = (𝑆𝑜𝑙𝑎𝑟𝑇𝑖𝑚𝑒 − 12) ∙ 15 (3.8) 
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𝑆𝑜𝑙𝑎𝑟𝑇𝑖𝑚𝑒 = 𝐿𝑜𝑐𝑎𝑙𝑇𝑖𝑚𝑒 + 4 ∙ (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑀𝑒𝑟𝑖𝑑𝑖𝑎𝑛 − 𝐿𝑜𝑐𝑎𝑙𝑀𝑒𝑟𝑖𝑑𝑖𝑎𝑛) + 𝐸𝑜𝑇 (3.9) 

 
𝐸𝑜𝑇 = 9.87 ∙ sin(2 ∙ 𝑥) − 7.53 ∙ cos(𝑥) − 1.5 ∙ sin(𝑥) (3.10) 

 𝑥 =
360

365
∙ (𝑛 − 81) (3.11) 

The hour angle H (3.8) requires a conversion of the civil time into solar time (3.9) by the use of the 

equation of time (3.10) and (3.11). The meridians are expressed in degrees. The local time meridian is 

defined according to the time zone of the considered location. For example, the time zone for Perth, 

Western Australia, is UTC+8 and the corresponding local meridian is 120° East. The coefficient 4 

min/degree features the rotation speed of the Earth. Hence, the solar noon can be deduced from the 

previous equation if the solar time is 12 PM. 

The hour angle is defined as H = 15°∙h, where h is the decimal number of hours before solar noon, so 

that H is equal to + 15° at 11:00 A.M. solar time and H = – 15 ° at 1:00 P.M. solar time. 

The altitude angle of the sun β might need to be corrected, as mentioned by Annear and Wells in their 

comparison of clear-sky solar radiation models [99]. An atmospheric refraction term is added, as shown 

in equation (3.12). 

 
𝛽𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝛽 + 𝐶𝐹 (3.12) 

The value of this correction term depends on the value of the altitude angle 𝛽 as per Table 3.1. 

Table 3.1 – Values recommended by the NOOA (2004) for the atmospheric refraction correction [17]. 

β Correction factor CF 

85° to 90° 0 

5° to 85°  

- 0.575° to 5°  

< - 0.575°  

At a given hour of the day, the solar azimuth angle is defined in degrees by Equation (3.13). 

 
𝜑𝑠 = sin

−1 [
cos(𝛿) sin(𝐻)

cos(𝛽)
] (3.13) 
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It must be noted that |φS| > 90° unless  cos(𝐻) ≥
tan(𝛿)

tan(𝐿𝑎𝑡)
, in which case |φS| ≤ 90°. 

At solar noon, the altitude angle of the sun becomes βN, expressed in degrees (°) by Equation (3.14). 

 
𝛽𝑁 = 90° − 𝐿𝑎𝑡 + 𝛿 (3.14) 

In the case of fixed orientation, the PV collector tilt angle should be set up according to βN: 

 
𝑇𝑖𝑙𝑡 = 90° − 𝛽𝑁 (3.15) 

There are few alternative ways to determine the position of the sun. A very exhaustive report has been 

published by Sandia National Laboratories [97] to describe clear sky models of various complexities 

and precisions. The report mentions that NREL has developed the most accurate Solar Position 

Algorithm (SPA) to date, which can be used as the current reference. Based on location, date, and time 

inputs over a period of 8000 years, this algorithm show as little uncertainties as  0.0003 degrees and 

has been described by Meeus [114] as well as by Reda and Andreas [113]. NREL has provided an online 

calculator version of this algorithm [132]. 

Some parameters are often required to compute these empirical models. Among them, there is the 

extraterrestrial irradiance I0 that reaches the outer surface of the Earth’s atmosphere may be expressed 

through a Fourier series [133]: 

 

𝐼0 = 𝐼𝑆𝐶 ∙ [1.00011 + 0.034221 ∙ cos(𝑥) + 0.00128

∙ sin(𝑥) − 0.000719 ∙ cos(2 ∙ 𝑥) + 0.000077 ∙ sin(2 ∙ 𝑥)] 
(3.16) 

The solar constant Isc is commonly used with the value Isc = 1366.1 W/m2. The quantity x has been 

previously defined in Equation (3.11). 

The air mass ratio is another important parameter. The expression used by the Laue and Meinel models 

is the simple following: 

 
𝐴𝑀 =

1

cos(𝑧)
 (3.17) 

This expression of the air mass ratio is nonetheless not unique as many others exist [97]. For example, 

the expression m formulated by Masters [98] for the TJ model is another possible model among many 

others for the air mass ratio: 

 𝑚 = √(708 ∙ sin(𝛽))2 + 1417 − 708 ∙ sin(𝛽) (3.18) 
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The Sun-Earth distance varies slightly by a factor of ±1.7% throughout the year. This is because the 

trajectory of the Earth is not perfectly circular but slightly elliptical. The distance can be expressed in 

km in function of the calendar day number with Equation (3.19): 

 
𝑑 = 1.5 ∙ 108 ∙ {1 + 0.017 ∙ sin [

360 ∙ (𝑛 − 93)

365
]} (3.19) 

As a matter of fact, the extra-terrestrial radiation emitted by the sun follows a few cycles. As per 

observation ranging from 1699 to 2008, some sunspot activities occur every 11 years in average, to 

which some rapid irradiance variations with even larger amplitude are superimposed [9]. The extra-

terrestrial solar insolation is defined as the solar flux from outer space entering radially through the 

atmosphere, on any point at the top of the atmosphere. When a sunspot peak happens, the extra-

terrestrial solar irradiance may increase by about 1.5% [7]. By neglecting the effect of sunspots, the 

extra-terrestrial solar radiation varies by about 6.8% during a year and can be expressed in W/m2 by: 

 𝐸𝑇 = 𝑆𝐶 ∙ [1 + 0.034 ∙ cos (
360 ∙ 𝑛

365
)] (3.20) 

Where SC is the solar constant and n is the day number during the year. 

The value of SC is actually not constant and varies with time. This value fluctuates about ±1 W/m2 

around a mean value during a typical 11-year cycle [134]. The latest and most accurate value is 

1360.8±0.5 W/m2 as per the latest measurement performed by NASA SORCE (Solar and Climate 

Experiment) during the 2008 solar minimum period. This new measurement is much lower than the 

canonical value of 1365.4±1.3 W/m2 defined in the 1990s [9]. Often 1366.1 W/m2 is used as an average 

solar constant, as defined by Gueymard in 2004 [134]. During the same year 2004, NASA defined the 

average of all the minimum and maximum data values collected from the 1970s as 1367.4 W/m2 [99]. 

This is why the value of 1367 W/m2 may also be often used in literature. 

The global horizontal irradiance (GHI) is the total radiation that reaches the surface of the Earth on a 

flat horizontal plane. It is composed of three components, namely the direct normal irradiance (DNI), 

the diffuse horizontal irradiance (DHI) and the reflective irradiance, which is often neglected. 

 
𝐺𝐻𝐼 = 𝐷𝑁𝐼 + 𝐷𝐻𝐼 + 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 (3.21) 

The DNI is also often referred to as beam radiance, noted IB. Likewise, the DHI may be also known as 

diffuse horizontal irradiance, which is noted IDH. The DNI and DHI are given by the various models 

available in literature that will be covered further down in this chapter. 
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Figure 3.2 – Incidence angle of direct sunlight on a fixed tilt and fixed orientation PV collector [4]. 

Let us consider a single PV module as shown in Figure 3.2. The collector surface is oriented with a 

fixed angle Φc with respect to north in the southern hemisphere (or south in the northern hemisphere) 

and with a tilt Σ with respect to the ground. If the sun is positioned with a zenith angle z and an azimuth 

angle Φs, then the direct beam sunrays strike the collector with an angle θ so that: 

 
cos(𝜃) = cos(90° − 𝑧) ∙ cos(Φ𝑠 −Φ𝑐) ∙ sin(Σ) + sin(90° − 𝑧) ∙ cos(Σ) (3.22) 

The Global Collected Irradiance (GCI) is the sum of the collected direct or beam component of light on 

the collector IBC and the collected diffuse radiation IDC (3) [98]. Using tracking devices enable to 

optimize the harvest of solar energy. However, the orientation of the PV collector with respect to the 

position of the sun must be carefully studied. If the direct beam of the sun strikes the PV collector with 

an incidence angle θ with respect to a normal vector to the collector face and with an amplitude DNI, 

the global collected irradiance GCI, the collected beam irradiance IBC, the collected diffuse irradiance 

IDC and the reflected irradiance IRC received by the collector respectively are: 

 
𝐺𝐶𝐼 = 𝐼𝐵𝐶 + 𝐼𝐷𝐶(𝐼𝑅𝐶) (3.23) 

 
𝐼𝐵𝐶 = 𝐷𝑁𝐼 ∙ cos(𝜃) (3.24) 

 
𝐼𝐷𝐶 = 𝐷𝐻𝐼 ∙ (

1 + cos(Σ)

2
) (3.25) 

 
𝐼𝑅𝐶 = 𝜌 ∙ (𝐼𝐵𝐻 + 𝐼𝐷𝐻) ∙ (

1 + cos(Σ)

2
) (3.26) 

The reflective component IRC of the GCI is often neglected. This component depends on the ground 

reflectivity or albedo ρ as well as on the orientation of the PV collector. Typically, ρ ranges between 

approximately 0.1 for bitumen and gravel to 0.8 for fresh snow. The reflectance of grass is about 0.2. 

Considering a fixed collector with a tilt angle Σ, the reflective irradiance is defined as by equation 

(3.26). 
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As mentioned in the previous chapter, several models have been developed to model either or all of the 

irradiance components. There are basically two categories of irradiance models: the highly accurate 

physical models and the simpler empirical models. 

3.3 EMPIRICAL IRRADIANCE MODELS 

The irradiance of most empirical models is mainly based on the zenith angle z of the sun or its 

complementary angle, the altitude angle β = 90° – z, respectively defined by (3.6) and (3.7). The zenith 

angle and the altitude angles are expressed in degrees in this studies. However, most of empirical models 

have been defined based on measurements made in the Northern Hemisphere, as it will be shown further 

down. 

The clear-sky GHI may either be forecast through complex physical models or through simple empirical 

models. Physical clear-sky irradiance models present the advantage to be independent from the site 

location. However, they require many specific atmospheric input parameters. As an alternative, 

researchers may use the best fitting empirical models for the local conditions. This chapter aims to 

present an approach in comparing empirical GHI models that can be repeated and transposed to any 

other any location on the globe. The measured insolation in Western Australia has been used as the 

benchmark to compare a set of ten empirical models. 

3.3.1 Kasten-Czeplak (KC) Empirical Model 

The Kasten-Czeplak (KC) GHI model [100] is based on continuous records made at Hamburg, 

Germany, between 1964 and 1973. The GHI is the following: 

 
𝐺𝐻𝐼 =  910 ∙ cos(𝑧) − 30 (3.27) 

3.3.2 Haurwitz Empirical Model 

The Haurwitz GHI model [101, 102] has been designed on the basis of data gathered by the 

Meteorological Observatory of Harvard University in the northeast of the United States. The GHI is 

expressed like so: 

 𝐺𝐻𝐼 =  1098 ∙ cos(𝑧)  ∙ 𝑒
−0.057
cos(𝑧)  (3.28) 

3.3.3 Berger-Duffie (BD) Empirical Model 

Berger-Duffie (BD) GHI model [104] is based on data collected in France and is formulated as: 
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𝐺𝐻𝐼 =  𝐼0 ∙ 0.70 ∙ cos(𝑧) (3.29) 

3.3.4 Robledo-Soler (RS) Model 

The Robledo-Soler (RS) GHI model [106] has been defined on the basis of some data obtained during 

the period from 1994 to 1995 in Madrid, Spain. The GHI is expressed as a function of both the azimuth 

angle and its complementary altitude angle: 

 
𝐺𝐻𝐼 = 1159.24 ∙ [cos(𝑧)]1.179 ∙ 𝑒[−0.0019∙𝛽] (3.30) 

3.3.5 Laue Model 

The Laue DNI model [107] calculates the DNI thanks to data collected in California. Besides the zenith 

angle z, the Laue model also takes the air-mass ratio m as per (3.32) as well as the site elevation h as 

inputs: 

 𝐷𝑁𝐼 = 𝐼0  ∙ [(1 − 0.14 ∙ ℎ)] ∙ 0.7
𝑚0.678

+  0.14 ∙ ℎ] (3.31) 

 
𝑚 =

1

sin(𝛽)
=

1

cos(𝑧)
 (3.32) 

The diffuse radiation used in this study is the same as for the Denashyar-Paltridge-Proctor model. 

3.3.6 Meinel Model 

The Meinel DNI model [108] can be seen as a simplified variant of the Laue model where the site 

elevation is considered to be at sea level or 0 m above sea level (ASL). The air-mass ratio m is the 

expression as with the Laue model (3.32). 

 𝐷𝑁𝐼 =  𝐼0 ∙ 0.7
𝑚0.678

 (3.33) 

Like for the Meinel model, the diffuse radiation used in this study is the same as for the Denashyar-

Paltridge-Proctor model. 

3.3.7 Denashyar-Paltridge-Proctor (DPP) Model 

The direct beam component of Denashyar-Paltridge-Proctor (DPP) model is based on some data 

collected across all of Australia [135]. However, the diffuse radiation of the DPP model as referred by 

Sandia is based on measurements made in Tehran, Iran, at a relatively high altitude (1191 m). The 

diffuse part may thus not be applicable to a low altitude location in Australia like Perth, Western 
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Australia [136]. However, in the absence of a more appropriate diffusion model, this expression has 

been currently retained. 

 
𝐷𝑁𝐼 = 950.2 ∙ [1 − 𝑒−0.075∙𝛽] (3.34) 

 
𝐷𝐻𝐼 = 14.29 +  21.04 ∙ 𝛽 ∙ (

𝜋

180°
) (3.35) 

 
𝐺𝐻𝐼 =  𝐷𝑁𝐼 ∙ cos(𝑧) +  𝐷𝐻𝐼 (3.36) 

3.3.8 Adnot-Bourges-Campana-Gicquel (ABCG) Empirical Model 

The Adnot-Bourges-Campana-Gicquel (ABCG) [105] is based on data collected in France. 

 
𝐺𝐻𝐼 =  951.39 ∙ [cos(𝑧)]1.15 (3.37) 

3.3.9 Dazhi Empirical Model 

Some empirical models can sometimes be a good fit for an area that is very different from its area of 

origin. This is for example the case of the Dazhi model, which is based on the ABCG model and which 

consists in a regression of measurements of the clear-sky GHI made in Singapore [109, 110]. The result 

of the regression is as follows: 

 
𝐺𝐻𝐼 =  0.8298 ∙ 𝐼0 ∙ [cos(𝑧)]

1.3585 ∙ 𝑒–0.00135 (3.38) 

3.3.10 Threlkeld and Jordan (TJ) Empirical Model 

The model developed by Threlkeld and Jordan (TJ) (1958) is based on data collected in a moderately 

dusty atmosphere with an average atmospheric vapour content for the United States [98, 103], as 

mentioned by Gilbert M. Masters [7]. 

3.3.10.1 Direct Beam Radiation 

 
𝐼𝐵 = 𝐴 ∙ 𝑒

−𝑘∙𝑚 (3.39) 

 
𝐼𝐵𝐻 = 𝐼𝐵 ∙ sin(90° − 𝑧) (3.40) 

Where IB is the direct beam radiation, normal to the rays whereas IBH is the horizontal beam solar 

radiance. The horizontal beam irradiance is defined as the solar beam radiation reaching the surface of 

the Earth on a flat horizontal plane. A is the apparent extra-terrestrial solar flux, k is the optical depth of 

the atmosphere and m is the air mass ratio. Both parameters have been defined by the American Society 

of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) [7]. 
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𝐴 = 1160 + 75 ∙ sin [

360

365
∙ (𝑛 − 275)] (3.41) 

 
𝑘 = 0.174 + 0.035 ∙ sin [

360

365
∙ (𝑛 − 100)] (3.42) 

Recently, G.M. Masters has amended the expression of the air mass ratio with a more accurate equation 

that takes the spherical nature of the atmosphere into account [98]: 

 𝑚 = √(708 ∙ sin(𝛽) + 1417)2 + 1417 − 708 ∙ sin(𝛽) (3.43) 

3.3.10.2 Diffuse Radiation 

Assuming the sky to be isotropic, the diffuse radiation on a horizontal plane on the surface of the Earth 

is proportional to the direct beam radiation: 

 𝐼𝐷𝐻 = 𝐶 ∙ 𝐼𝐵 (3.44) 

 𝐶 = 0.095 + 0.04 ∙ sin [
360

365
∙ (𝑛 − 100)] (3.45) 

In equation (3.45), C is referred to as the sky diffuse factor. 

3.4 PHYSICAL MODELS: CASE STUDY OF THE MEEUS, BIRD AND HULSTROM MODEL 

Annear and Wells have compared several models to calculate the position of the sun and the irradiance 

[99]. Such comparisons lead to the conclusion that the more complex the model, the more accurate it 

is. On the other hand, the simpler the model, the faster it is to compute. 

Based on the same comparison of solar models, the Meeus (1999) and Bird and Hulstrom (1981) model 

has proven to be the most accurate option with RMS errors in average 6 W/m2 lower than the other 

tested methods for 17 sites in North America over a period of 2,726 clear days. The Meeus and Bird 

and Hulstrom model may thus be recommended for optimal accuracy although it is only one model 

among many other accurate physical clear-sky models, like for instance MAC [90, 91], Iqbal [92], 

ASHRAE [93], and Christian Gueymard’s REST2 [94, 95] and many others, as already mentioned in 

the previous chapter. These models need a larger number of atmospheric input parameters, like the 

optical depth of the ozone layer in the atmosphere, or the ground albedo. Such data may be provided by 

AERONET [137]. However, data are scarce and often outdated for Perth and Western Australia 

generally speaking. Due to the lack of access to relevant input parameters, no physical model has been 

considered for this study and empirical models have been preferred for very-short forecasts. 
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Just to give a taste of the complexity of physical clear-sky models, the Meeus and Bird and Hulstrom 

model will be specifically analysed. This model requires the ratio of forward-scattered irradiance to the 

total scattered irradiance, the aerosol absorption, and the atmospheric turbidity as input parameters. 

Wunderlish (1972) has formulated a precise first order approximation of the optical air mass ratio m on 

the basis of an expression found by Kasten (1964) modified in the light of the variations of atmospheric 

pressure according to the altitude z presented by List (1958). This expression of air mass ratio (3.46) is 

used by Meeus and Bird and Hulstrom, with the sun altitude angle β calculated as per equation (3.6). 

 𝑚 =
[
(288 − 0.0065 ∙ 𝑧)

288 ]
5.256

sin(𝛽) + 0.1500 ∙ (𝛽 + 3.885)−1.253
 

(3.46) 

Klein (1948) has identified two distinct effects of dust on the solar radiation that are the scattering ds 

and the absorption da. However, the absorption is negligible and the total effect of dust d equals the 

scattering effect ds, which means d = da + ds ≈ ds. Kimball (1930), Bolsenga (1964), along with Klein, 

have established a set of values for the effect of dust according to the environment. The dust values d 

range from 0 to 0.08 in remote areas and from 0.03 to 0.13 in urban areas. 

In order to calculate the total irradiance, several parameters need to be taken into account. The relative 

position of the Earth if respect to the sun is one of them. Please note that all the following astronomical 

considerations are drawn from Meeus (1999). Based on the mean anomaly of the sun MeanAn and on 

the centre of the sun CentSun, the true anomaly of the sun expressed in degrees is by equation (3.47). 

 
𝜈 = 𝑀𝑒𝑎𝑛𝐴𝑛 + 𝐶𝑒𝑛𝑡𝑆𝑢𝑛 (3.47) 

Considering the current Julian century t, the current eccentricity of the Earth’s orbit e is expressed 

without dimensions as: 

 
𝑒 = 0.016708634 − 𝑡 ∙ (0.000042037 + 𝑡 ∙ 0.0000001267) (3.48) 

The current distance between the Earth and the Sun expressed in astronomical units (AU) both depend 

on ν and e: 

 
𝑟 =

1.000001018 ∙ (1 − 𝑒2)

1 + 𝑒 ∙ cos(𝜈)
 (3.49) 

The eccentricity correction, which is dimensionless, depends on the current Earth-Sun distance r 

compared to the average distance r0, which is 1 AU. 
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𝐸0 = (

𝑟

𝑟0
)
2

 (3.50) 

This leads to a new expression of the apparent extra-terrestrial irradiance A that is function of the solar 

constant SC and of the uncorrected sun altitude angle β: 

 
𝐴 = 𝑆𝐶 ∙ 𝐸0 ∙ sin(𝛽) (3.51) 

This model takes into account 4 different causes of sunlight scattering. 

The water vapour suspended in the atmosphere participates to scatter sunlight. Indeed, depending on 

the dew-point temperature Tdpt, the mean hourly content of water that can potentially precipitate wc, 

expressed in cm, as per Reitan (1963) and Bolsenga (1965), is given by equation (3.52). 

 𝑤𝑐 = 𝑒(−0.0592+0.06912∙𝑇𝑑𝑝𝑡) (3.52) 

All the following formulas are based on the expression of the air mass ratio m given by equation (3.46). 

The transmittance of water vapour Xw in cm is as follows: 

 
𝑋𝑤𝑐 = 𝑤𝑐 ∙ 𝑚 (3.53) 

Bird and Hulstrom (1981) have determined the transmittance of water vapour Tw as the dimensionless 

expression given by (3.54): 

 
𝑇𝑤 = 1 −

2.4959 ∙ 𝑋𝑤
(1 + 79.034 ∙ 𝑋𝑤)

0.6828 + 6.385 ∙ 𝑋𝑤
 (3.54) 

The ozone content in the atmosphere also scatters sunlight. 

The ozone content value U0 has been empirically measured as 0.31 cm for mid-latitude summer 

atmospheric conditions. 

Still according to Bird and Hulstrom (1981), using (3.46), the amount of ozone in a slanted path X0 is: 

 
𝑋0 = 𝑈0 ∙ 𝑚 (3.55) 

As a result, the transmittance of ozone content is given: 

 
𝑇0 = 1 − 0.1611 ∙ 𝑋0 ∙ (1 + 139.48 ∙ 𝑋0)

−0.3035 −
0.002715 ∙ 𝑋0

1 + 0.044 ∙ 𝑋0 + 0.0003 ∙ 𝑋0
2 (3.56) 
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Uniformly mixed gases like carbon dioxide and oxygen are responsible for scattering sunlight as well. 

The transmittance of such gases is the following: 

 𝑇𝑈𝑀 = 𝑒
−0.0127∙𝑚0.26

 (3.57) 

In addition, the transmittance of Rayleigh scattering is given by: 

 𝑇𝑅 = 𝑒
(−0.0903∙𝑚2∙(1+𝑚−𝑚1.01))

 (3.58) 

Finally, aerosols scatter sunlight too. Considering the aerosol optical depth τA0.38 in a vertical path for a 

wavelength of 380 nm, for which there is no molecule absorption, and the aerosol optical depth τA0.50 at 

500 nm wavelength, which corresponds to ozone absorption, the overall turbidity τA is the following: 

 
𝜏𝐴 = 0.2758 ∙ 𝜏𝐴0.38 + 0.35 ∙ 𝜏𝐴0.50 (3.59) 

The values of τA0.38 and τA0.50 vary significantly with the location and must be empirically measured. 

Their values may typically be between 0 and 1. Similarly, the overall atmospheric turbidity τA may have 

values typically comprised between 0.02 and 0.5. 

The transmittance of aerosol absorption and scattering TA is function of the overall atmospheric turbidity 

τA and the air mass ratio: 

 𝑇𝐴 = 𝑒
(−𝜏𝐴

0.873∙𝑚0.9108∙(1+𝜏𝐴−𝜏𝐴
0.7088))

 (3.60) 

Considering an empirical transmittance of aerosol absorption K1, with a recommended value of 0.1, up 

to 0.35 in urban areas, the transmittance of aerosol absorption TAA is: 

 
𝑇𝐴𝐴 = 1 − 𝐾1 ∙ (1 − 𝑚 +𝑚1.06) ∙ (1 − 𝑇𝐴) (3.61) 

Considering the transmittance of empirical ratio of forward-scattered irradiance Ba, for which the 

recommended value is 0.84 according to Bird and Hulstrom (1981), the atmospheric albedo rs is 

expressed as: 

 
𝑟𝑠 = 0.0685 + (1 − 𝐵𝑎) ∙ (1 −

𝑇𝐴
𝑇𝐴𝐴

) (3.62) 

The atmospheric albedo rs depends on the transmittance of aerosol absorption and scattering and on the 

atmospheric turbidity. 
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Using the previous expressions from the equations (3.51), (3.54), (3.56), (3.57), (3.58), and (3.60), the 

direct horizontal beam radiation is expressed as: 

 
𝐼𝐵𝐻 = 0.9662 ∙ 𝐴 ∙ 𝑇𝐴 ∙ 𝑇𝑤 ∙ 𝑇𝑈𝑀 ∙ 𝑇0 ∙ 𝑇𝑅 (3.63) 

Similarly, it can be inferred from equations (3.46), (3.51), (3.54), (3.57), (3.56), (3.60), and (3.58), 

(3.61), that the diffuse radiation from atmospheric scattering is: 

 
𝐼𝐷𝐻 = 0.79 ∙ 𝐴 ∙ 𝑇𝐴𝐴 ∙ 𝑇𝑤 ∙ 𝑇𝑈𝑀 ∙ 𝑇0 ∙ (

0.5 ∙ (1 − 𝑇𝑅) + 𝐵𝑎 ∙ (1 −
𝑇𝐴
𝑇𝐴𝐴

)

1 −𝑚 +𝑚1.02 ) (3.64) 

Ba is the empirical ratio of forward-scattered irradiance which, as already mentioned above, has a 

recommended value of 0.84 according to Bird and Hulstrom (1981), although this value may vary 

between 0 and 1, according to the type of scattering. 

Finally, the total horizontal irradiance ITH is expressed as follows, on the basis of equations (3.63), 

(3.64), and (3.62). 

 
𝐼𝑇𝐻 =

𝐼𝐵𝐻 + 𝐼𝐷𝐻
(1 − 𝜌 ∙ 𝑟𝑠)

 (3.65) 

Where ρ is the ground reflectivity or albedo, and rs is the atmospheric albedo. 

3.4.1 Comparison of the some Relevant Empirical Models for Western Australia. 

We are looking to model the GHI of the Perth area in Western Australia. Although most of empirical 

models are based on measurements made in the northern hemisphere, the direct beam component of 

Denashyar-Paltridge-Proctor (DPP) model is based on some data collected across all of Australia [135]. 

However, the diffuse radiation of the DPP model as referred by Sandia is based on measurements in 

Tehran, Iran, at a relatively high altitude (1191m). The diffuse part may thus not be applicable to a low 

altitude location in Australia [136]. However, in absence of a more appropriate diffusion model, this 

expression has been retained and also applied to the Laue and Meinel models. 

Also, for optimal results, the zenith angle has not been calculated according to (3.7) but with the use of 

the Solar Position Algorithm (SPA) developed by NREL [113], which is used as a benchmark when it 

comes to the sun’s position [97]. The chosen location is Curtin University’s Green Energy Electric Park 

(GEEP) within the Bentley campus of Curtin University (32.01 S, 115.89 E, 18 m above sea level). In 

the absence of reliable and consistent measurements of the atmospheric pressure, the average value of 

1011.11 hPa has been fed to the SPA algorithm. This value corresponds to the typical value of 

barometric pressure at the altitude h = 18 m above sea level (ASL) of the chosen site [138]: 
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 𝑃 = 100 ∙ [
44331.514 − ℎ

11880.516
]

1
0.1902632

 (3.66) 

However, the actual GHI and the ambient temperature have been both measured through a weather 

station Vantage Pro2™ that has been installed in the GEEP. A sampling period of 1 minute has been 

considered. For information, the resolution of the solar sensor is 1 W/m2. The weather station is 

mounted on a pole that shows a slight tilt comprised between 1 and 2 degrees. This tilt and the sensor 

delay has been taken into account in the models. The measurements have been made during 16 days of 

the period from June 2014 to October 2015 between 6 AM and 8 PM with a 1-minute sampling period. 

As per Table 3.2, each season is represented by 4 days. These measurements have been used as a 

benchmark against which all empirical models are compared. 

Table 3.2 – Measurement dates of the GHI and ambient temperature. 

Measurement Dates (yyyy/mm/dd) Season 

2015/03/05 

Summer 
2015/03/07 

2015/03/08 

2015/03/11 

2015/05/08 

Autumn 
2015/05/13 

2015/05/30 

2015/06/10 

2014/06/25 

Winter 
2015/06/27 

2015/07/11 

2015/08/14 

2015/09/21 

Spring 
2015/09/23 

2015/10/06 

2015/10/21 

Since all the models that are compared are fast, simple and empirical, speed is not expected to be an 

issue. After being given an array containing 960 zenith angle values, each model need less than 5ms to 

calculate 960 GHI values with a MATLAB® program running on a DELL Latitude E7440 laptop 

equipped with a 64-bit Intel processor i7-4600 2.10 GHz / 2.70 GHz. Therefore, accuracy prevails upon 

speed as a more relevant discriminator. 
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Table 3.3 – Average values of the accuracy metrics for some existing models. 

Pearson’s Correlation Coefficient (ρ) 

Model Summer Autumn Winter Spring Overall 

Haurwitz 0.999586 0.998877 0.998833 0.999247 0.999136 

DPP 0.999694 0.999519 0.999497 0.999653 0.999591 

BD 0.997681 0.995012 0.994903 0.996997 0.996148 

ABCG 0.999630 0.998430 0.998386 0.999432 0.998970 

KC 0.999073 0.997876 0.997816 0.998593 0.998340 

RS 0.999306 0.998220 0.998174 0.998937 0.998659 

Meinel 0.997597 0.997339 0.997282 0.998051 0.997567 

Laue 0.997625 0.997381 0.997326 0.998076 0.997602 

TJ 0.999882 0.999804 0.999777 0.999733 0.999799 

Dazhi 0.999228 0.999432 0.999477 0.999446 0.999396 

nRMSE (%) 

Model Summer Autumn Winter Spring Overall 

Haurwitz 12.86 25.18 24.97 14.39 19.35 

DPP 5.76 12.87 12.52 6.97 9.53 

BD 9.93 21.18 20.64 10.23 15.50 

ABCG 3.10 8.23 8.64 3.98 5.99 

KC 8.54 8.12 8.37 8.48 8.38 

RS 11.32 24.53 24.38 12.94 18.29 

Meinel 17.95 11.38 11.10 16.47 14.23 

Laue 18.06 11.50 11.16 16.58 14.33 

TJ 19.25 16.00 13.26 16.71 16.31 

Dazhi 7.52 3.59 5.59 6.22 5.73 

MBE (%) 

Model Summer Autumn Winter Spring Overall 

Haurwitz 10.61 18.82 18.55 11.85 14.96 

DPP 4.76 11.12 10.74 5.90 8.13 

BD 8.09 16.31 15.65 7.81 11.96 

ABCG -0.44 5.56 5.32 0.58 2.75 

KC -4.56 4.10 3.97 -3.43 0.018 

RS 9.66 18.87 18.66 10.94 14.53 

Meinel 11.41 6.47 5.09 10.64 8.40 

Laue 11.53 6.64 5.27 10.76 8.55 

TJ 14.98 11.22 9.04 12.99 12.06 

Dazhi 4.20 0.72 -0.49 3.43 1.97 

MAE (%) 

Model Summer Autumn Winter Spring Overall 

Haurwitz 10.75 19.11 18.84 12.00 15.18 

DPP 5.05 11.13 10.82 6.11 8.28 

BD 8.15 16.40 15.75 7.88 12.04 

ABCG 2.24 5.70 6.10 2.91 4.23 

KC 6.27 5.33 5.47 6.24 5.83 

RS 9.73 18.99 18.78 11.01 14.63 

Meinel 13.49 9.38 9.20 12.52 11.15 

Laue 13.56 9.43 9.23 12.59 11.20 

TJ 15.14 11.64 9.60 13.23 12.40 

Dazhi 5.28 2.45 3.85 4.56 4.03 

The Mean Bias Error (MBE), the Mean Absolute Error (MAE) and the normalised Root Mean Square 

Error (nRMSE) are three widely used metrics to assess the accuracy of an irradiance model or an 

irradiance forecast [24, 97]. The nRMSE quantifies the overall accuracy of a model while the MBE 

demonstrates if the model is too high or too low. The MAE shows how far off the model is. The accuracy 
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and offsets measured by these metrics may be easily changed by altering some coefficients in the model. 

Additionally, the Pearson’s correlation coefficient (ρ) quantifies how well a model matches the shape 

of the curve of practical data. A perfect match is returns a result of 1. The respective expressions of the 

MBE, MAE, nRMSE and ρ, with respect to the modelled GHI and the measured GHI have been given 

in the previous chapter as (2.3), (2.4), (2.2), and (2.5). 

The average values of the Pearson’s correlation coefficients, the RMSE, the MBE, and the MAE for 

each season and for the entire period are shown in Table 3.3. Pearson’s correlation coefficients greater 

than 0.9990, RMSE below 10%, and MBE and MAE below 5% appear in bold characters. 

It can be observed that 7 models out of 10 (KC, RS, Haurwitz, DPP, ABCG, TJ, and Dazhi) demonstrate 

a Pearson’s correlation coefficients greater than 0.9990 during summer time. The same models, except 

RS and RS also show a similarly good fit in spring time. However, only DPP, TJ and Dazhi demonstrate 

Pearson’s correlation coefficients greater than 0.9990 for all seasons.  

Only four models manage to show an RMSE below 10% for the whole period: DPP, TJ, ABCG and 

Dazhi. The lowest nRMSE comes however to ABCG and Dazhi with some results around 6%. 

The KC, Dazhi and ABCG models demonstrate the best MBE results. In particular, the KC model is 

nearly as low in summer and in spring as it is high in winter and autumn.  

As a result, the mean MBE of the KC model over the whole period is remarkably close to 0.  

Dazhi and ABCG show the best MAE results, with mean values below 5% over the entire period. 

As a first conclusion, empirical irradiance functions may be both practical and sufficiently accurate 

tools when used with a very accurate solar position algorithm like NREL’s SPA. In particular, the DPP, 

TJ and Dazhi model demonstrate a close fit with the bell shape of the measured GHI over all seasons. 

The KC model is the best centred model while overall, Dazhi and ABCG models perform very well. 

Dazhi appears to be more accurate for Western Australia than the ABCG model it is derived from. It 

must also be noticed that the TJ model proves to have the closest shape with respect to the actual data. 

The GHI curves are shown in Figure 3.3. 
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Figure 3.3 – Empirical GHI model curves compared with measured GHI every minute on 21/10/2015. 

3.4.2 Initial Regression of Empirical Data. 

After comparison of the empirical models, it appears that none is a perfect match for the measured data, 

despite some very good fit for some of the considered models. Thus, a regression can be a solution to 

ensure to have an optimal model for Western Australia. Such a regression can inspire from models that 

proved to be the most accurate as per the previously made comparison. 

3.4.2.1 Initial Dazhi-based Regression 

As per the previous comparison of empirical clear-sky models, the smallest overall error over the whole 

period in terms of MAE and nRMSE proves to be from the Dazhi model. It has thus been hypothesised 

that a regression could be made on the basis of the Dazhi model, by using the measured data, to further 

improve this model. In particular, the Dazhi model does not have the most accurate Pearson’s 

correlation coefficient with respect to the data. It has been hoped that this coefficient could be improved 

after regression. The new regression model under investigation is in the form: 

 
𝐺𝐻𝐼 = 𝑎 ∙ 𝐼0 ∙ cos(𝑧)

𝑏 ∙ 𝑒−𝑐∙(90°−𝑧) (3.67) 
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As per (3.16) and (3.11), I0 is constant for any given day number n. Hence, to simplify the problem, the 

measured GHI has been normalised with respect to the solar constant I0: 

 
𝐺𝐻𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =

𝐺𝐻𝐼

𝐼0
 (3.68) 

 

Figure 3.4 – Normalised GHI in function of the zenith angle z, used for the initial Dazhi-based regression. 

Now, the problem is to determine a, b, and c, given the following equation: 

 𝐺𝐻𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 = 𝑎 ∙ [cos(𝑧)]
𝑏 ∙ 𝑒(𝑐∙(90°−𝑧)) (3.69) 

MATLAB®’s curve-fitting toolbox has been used to determine the optimal curve fit with a custom 

equation. In particular, the data shown in Figure 3.4 has been fed to the regression tool from Figure 

3.5.The output parameter ‘y’ is the normalised GHI whereas the input parameter ‘x’ is the apparent 

zenith angle. 
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Figure 3.5 – Screenshot of the curve-fitting toolbox used for the initial Dazhi-based regression. 

Different values have been tested manually for the exponential factor c with the non-linear least square 

Levenberg-Macquardt method. By dichotomy, it has been found that the value with the best fit is c = –

0.0039. The following custom equation is thus finally used to determine a and b: 

 𝐺𝐻𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 = 𝑎 ∙ [cos(𝑧)]
𝑏 ∙ 𝑒(−0.0039∙(90°−𝑧)) (3.70) 

Eventually, it has been found that values within 95% confidence bounds are a = 0.9127 and b = 1.385. 

The final equation is thus: 

 𝐺𝐻𝐼 = 0.9127 ∙ 𝐼0 ∙ [cos(𝑧)]
1.385 ∙ 𝑒(−0.0039∙(90°−𝑧)) (3.71) 

3.4.2.2 Initial TJ-based Regression 

With a Pearson’s correlation coefficient of 0.999739 across all seasons and especially an astounding 

0.999913 during summer days, the TJ model displays the closest shape with regards to actual data. 

However, the TJ model is characterized with one of the largest errors in terms of nRMSE, MBE and 

MAE. It has been nonetheless thought that the shape must be the most important property of a model 

and that altering the coefficients of the model through a regression could help to keep the advantage of 

a well-fitting shape while minimizing the error with respect to the actual data for any given apparent 

zenith angle. 

Hence, the regression will be made on the basis of the following expression, where z is the apparent 

zenith angle, m is the air-mass ratio defined as per Equation (3.43) , k is determined by equation (3.42), 

and A and C are functions of the day number n. 
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𝐺𝐻𝐼 = 𝐴 ∙ 𝑒−𝑘∙𝑚 ∙ (𝐶 + cos(𝑧)) (3.72) 

 
𝐴 = [𝑎 + 𝑏 ∙ sin(

360

365
∙ (𝑛 − 275))] (3.73) 

 
𝐶 = 𝑐 + 𝑑 ∙ sin(

360

365
∙ (𝑛 − 100)) (3.74) 

Like for the previous regression, the curve-fitting toolbox from MATLAB® is used to find out the best 

values for the new coefficients a, b, c, and d. However, to simplify the problem, the GHI can be 

normalised with respect to e-km, which is an already known parameter. On the one hand, the optical 

depth of the atmosphere k is constant for a given day since it solely depends on the day number n. On 

the other hand, the air-mass ratio m is constant for any given altitude angle β or zenith angle z. The new 

normalised GHInormal is: 

 𝐺𝐻𝐼𝑛𝑜𝑟𝑚𝑎𝑙 =
𝐺𝐻𝐼

𝑒−𝑘∙𝑚
=
𝐷𝑁𝐼 ∙ cos(𝑧) + 𝐷𝐻𝐼

𝑒−𝑘∙𝑚
= 𝐴 ∙ (𝐶 + cos(𝑧)) (3.75) 

It must be reminded that GHI = DNI∙cos(z) + DHI. 

In (3.75), the apparent extra-terrestrial irradiance A also represents the normalised DNI or beam 

irradiance since DNI = IB = A∙e–k∙m, as expressed in (3.39) while the diffuse coefficient C also represents 

the normalised DHI since DHI = DNI∙C= A∙e–k∙m∙C as per (3.44). However, C is a function of the day 

number n. 

 

Figure 3.6 – Normalised GHI in function of the zenith angle z, used for the Initial TJ-based regression. 
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The normalised GHI is shown in Figure 3.6. The samples corresponding to a zenith value close to 90 

degrees are ignored because and only values up to 86 degrees are considered. Indeed, the closer the 

zenith is to 90 degrees and the further the normalised GHI diverges to infinity, since it has been divided 

by m, which is also a function of z. Another aspect of the problem lies in the fact that the GHI was 

measured directly while the TJ expression considers both the DNI and the DHI into account. Finally, 

the problem consists in looking for the coefficients a, b, c, and d in a function of z and n: 

 

𝐺𝐻𝐼𝑛𝑜𝑟𝑚𝑎𝑙 = 𝐴 ∙ 𝐶2 = 𝑓(𝑧, 𝑛)

= [𝑎 + 𝑏 ∙ sin (
360

365
∙ (𝑛 − 275))]

∙ [𝑐 + 𝑑 ∙ sin(
360

365
∙ (𝑛 − 100)) + cos(𝑧)] 

(3.76) 

The expression (3.76) takes into account both the DNI and the DHI. The problem has been investigated 

by using the non-linear least square method and the Levenberg-Macquardt algorithm. In the curve-

fitting toolbox, the output ‘z’ is GHInormalised, the first input ‘x’ is the zenith angle z with values up to 86 

degrees and the second input ‘y’ is the day number n. 

 

Figure 3.7 – Screenshot of the curve-fitting toolbox used for the initial TJ-based regression. 

Finally, as shown in Figure 3.7, the best coefficients within 95% confidence bounds are: 

 

𝐺𝐻𝐼𝑛𝑜𝑟𝑚𝑎𝑙 = 1056 + 31.16 ∙ sin (
360

365
∙ (𝑛 − 275))

∙ [0.07212 + 0.04027 ∙ sin (
360

365
∙ (𝑛 − 100)) + cos(𝑧)] 

(3.77) 

It can thus be inferred that the final expression of the DNI as per the TJ-based regression model is: 

 
𝐷𝑁𝐼 = 𝐴 ∙ 𝑒−𝑘∙𝑚 (3.78) 
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𝐴 = 1056 + 31.16 ∙ sin [

360

365
∙ (𝑛 − 275)] (3.79) 

The coefficient A is the apparent extra-terrestrial irradiance. The coefficients k and m are still the same 

as the ones used in the regular TJ model, given by (3.42) and (3.43). The DHI is: 

 
𝐷𝐻𝐼 = 𝐶 ∙ 𝐷𝑁𝐼 (3.80) 

 𝐶 = 0.07212 + 0.04027 ∙ sin [
360

365
∙ (𝑛 − 100)] (3.81) 

Finally, the GHI is the following, with the DNI given by (3.78) and the DHI given by (3.80): 

 
𝐺𝐻𝐼 = 𝐷𝐻𝐼 ∙ cos(𝑧) + 𝐷𝐻𝐼 (3.82) 

3.4.3 Refined Regression Made with an Extended Dataset 

To enhance the performance of the regression models, the dataset has been extended to 88 days. An 

exhaustive table of all the dates has been documented in reverse chronological order in Table 3.4. The 

new dataset comprises 15 summer days, 16 winter days, 24 spring days, and 33 autumn days, within a 

period running from the 24th of June 2014 to the 1st of March 2018. Arguably, the days in this dataset 

have been selected to get a large number of days. Although this dataset may not be as balanced as the 

previous smaller dataset in terms of seasons, the dominant seasons are spring and autumn, which are 

characterised by a highly variable weather pattern. 

Table 3.4 – Second set of measurement dates for the GHI and ambient temperature. 

Date Season Date Season Date Season Date Season 

1/03/2018 Summer 13/09/2017 Winter 1/04/2017 Autumn 1/06/216 Autumn 

28/02/2018 Summer 25/08/2017 Winter 31/03/2017 Autumn 30/05/2016 Autumn 

14/02/2018 Summer 29/06/2017 Winter 30/03/2017 Autumn 12/05/2016 Autumn 

12/02/2018 Summer 28/06/2017 Winter 29/03/2017 Autumn 11/05/2016 Autumn 

11/02/2018 Summer 18/06/2017 Autumn 25/03/2017 Autumn 10/05/2016 Autumn 

4/01/2018 Summer 9/06/2017 Autumn 10/03/2017 Summer 21/10/2015 Spring 

3/01/2018 Summer 8/06/2017 Autumn 17/02/2017 Summer 6/10/2015 Spring 

1/01/2018 Summer 5/06/2017 Autumn 2/11/2016 Spring 23/09/2015 Spring 

31/12/2017 Summer 4/06/2017 Autumn 1/11/2016 Spring 21/09/2015 Spring 

21/12/2017 Spring 25/05/2017 Autumn 30/10/2016 Spring 14/08/2015 Winter 

20/12/2017 Spring 7/05/2017 Autumn 23/10/2016 Spring 11/07/2015 Winter 

14/02/2017 Spring 29/04/2017 Autumn 22/10/2016 Spring 27/06/2015 Winter 

7/11/2017 Spring 28/04/2017 Autumn 18/10/2016 Spring 10/06/2015 Autumn 

6/11/2017 Spring 27/04/2017 Autumn 12/10/2016 Spring 30/05/2015 Autumn 

5/11/2017 Spring 25/04/2017 Autumn 29/09/2016 Spring 13/05/2015 Autumn 

4/11/2017 Spring 20/04/2017 Autumn 21/09/2016 Winter 8/05/2015 Autumn 

1/11/2017 Spring 11/04/2017 Autumn 5/09/2016 Winter 11/03/2015 Summer 

30/10/2017 Spring 8/04/2017 Autumn 24/08/2016 Winter 8/03/2015 Summer 

15/10/2017 Spring 5/04/2017 Autumn 14/08/2016 Winter 7/03/2015 Summer 

9/10/2017 Spring 4/04/2017 Autumn 2/08/2016 Winter 5/03/2015 Summer 

2/10/2017 Spring 3/04/2017 Autumn 1/07/2016 Winter 25/06/2014 Winter 

18/09/2017 Winter 2/04/2017 Autumn 2/06/2016 Autumn 24/06/2014 Winter 
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In this dataset, the GHI, the ambient temperature and the atmospheric pressure have been measured 

every minute. Although a measurement of the atmospheric pressure was available for most of the days, 

the average value of 1011.11 hPa has been taken for the days during which no measurement of the 

atmospheric pressure was available.  

It must also be noted that over the four years that the dataset spans, the Davis weather station might 

have been turned on and off a few times. Although this might have caused some inconsistencies in terms 

of calibration, this problem can only affect the amplitude of the measured GHI and not its overall shape 

over a single day. Thus, the Pearson’s correlation coefficient remains a very robust indicator to assess 

the accuracy of every model. Since the same measurements are used for each clear-sky model, this 

should not affect the relative accuracy of each model in terms of MAE, MBE, or NRMSE. Although, it 

may affect the absolute performance of the regression model, the relatively large number of samples 

within the dataset enables to find a good fit with the dominant calibration for the whole period. 

Since the Dazhi model and the Trelkeld-Jordan model proved to be the most accurate, these models can 

be reused as a basis for a new regression. 

3.4.3.1 Refined Dazhi model-based Regression 

The data shown in Figure 3.8 have  been used to perform a bisquare Levenberg-Macquardt regression 

as per the screenshot in Figure 3.9, to find a more refined model inspired from the Dazhi model. A 

different colour has been chosen  for each day in Figure 3.8. However, the excessively large number of 

colours present in the graph prevents from showing an exhaustive legend featuring every single day. 

 

Figure 3.8 – Normalised GHI in function of the apparent zenith angle z, used for the refined Dazhi-based 

regression. 
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Figure 3.9 – Screenshot of the curve-fitting toolbox used for the refined Dazhi-based regression. 

The best fit has been found to correspond to the equation (3.83): 

 𝐺𝐻𝐼 = 0.8215 ∙ 𝐼0 ∙ [cos(𝑧)]
1.295 ∙ 𝑒(−0.0021∙(90°−𝑧)) (3.83) 

3.4.3.2 Refined Trelkeld-Jordan model-based Regression 

Similarly to the refined regression made by inspiring from the Dazhi model, the same data, shown in 

Figure 3.10 has been used to perform a bisquare Levenberg-Macquardt linear regression with the results 

shown in Figure 3.11. 

 

Figure 3.10 – Normalised GHI in function of the apparent zenith angle z, used for the refined Trelkeld-

Jordan model--based regression. 
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Figure 3.11 – Screenshot of the curve-fitting toolbox used for the refined TJ-based regression. 

 𝐴 = 1064 + 50.84 ∙ sin [
360

365
∙ (𝑛 − 275)] (3.84) 

 
𝐶 = 0.07661 + 0.05351 ∙ sin [

360

365
∙ (𝑛 − 100)] 

(3.85) 

The value of k remains unchanged compared with the original TJ model. It has been verified that the 

best fit was obtained with the expression previously introduced in Equation (3.42). 

3.4.4 Accuracy of the Regression Models 

3.4.4.1 Original Dataset Regression 

The accuracy of the two new models obtained by regression on the basis of the original 16-day dataset 

has been tested and compared against the previously mentioned models. 

Table 3.5 – Average values of the accuracy metrics for the refined regression models. 

Pearson’s Correlation Coefficient (ρ) 

Model Summer Autumn Winter Spring Overall 

Dazhi Regres. 0.999785 0.999555 0.999569 0.999726 0.999659 

TJ Regres. 0.999887 0.999840 0.999797 0.999804 0.999832 

nRMSE (%) 

Model Summer Autumn Winter Spring Overall 

Dazhi Regres. 2.02 3.19 4.99 2.88 3.27 

TJ Regres. 1.54 2.02 4.18 2.61 2.59 

MBE (%) 

Model Summer Autumn Winter Spring Overall 

Dazhi Regres. 0.46 0.55 -0.57 -0.067 0.095 

TJ Regres. -0.21 0.12 -1.07 -0.32 -0.37 

MAE (%) 

Model Summer Autumn Winter Spring Overall 

Dazhi Regres. 1.45 1.87 3.42 2.19 2.24 

TJ Regres. 1.13 1.30 2.99 1.99 1.85 
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Table 3.5 shows the performance of both initial regressions according to the season and overall during 

the whole period. Both regressions fit best with the shape of the measured GHI curve during summer 

days. On the other hand, one of the poorest fit and highest error is achieved during winter days. The 

reason is most likely because the measured curves are the smoothest in the summer and the roughest in 

the winter. Table 3.6 compares the regression models with the original empirical models. 

Table 3.6 – Ranking of the top four most accurate empirical models overall over 16 days. 

 ρ nRMSE (%) MBE (%) MAE (%) 

Rk. Model Over. 

Value 

Model Over. 

Value 

Model Over. 

Value 

Model Over. 

Value 

1 TJ Reg. 0.999832 TJ Reg. 2.59 KC -0.018 TJ Reg. 1.85 

2 TJ 0.999799 Dazhi Reg. 3.27 Dazhi Reg. 0.095 Dazhi Reg. 2.24 

3 Dazhi Reg. 0.999659 Dazhi 5.73 TJ Reg. -0.37 Dazhi 4.03 

4 DPP 0.999591 ABCG 5.99 Dazhi 1.97 ABCG 4.23 

The initial TJ-based regression is the most accurate for all four considered metrics, with exception to 

the MBE. As shown in Table 3.6, the Dazhi-based model is the second most accurate model in terms 

of nRMSE, MBE, and MAE, but only comes in fourth position concerning Pearson’s correlation. If we 

look at the error of both regression in terms of MBE, it is visible that both achieve an error below 1%, 

which is much better than the regular Dazhi model, which happens to be the next accurate model. Thus, 

considering that all top 3 models in terms of MBE, namely KC, Dazhi-based and TJ-based regression 

models all display a less than 1% error, all three may be considered as equivalent and equally accurate. 

Following this reasoning, it can concluded that the TJ-based model is the most accurate option. The 

Dazhi-based regression also has superior accuracy compared with the already established empirical 

models selected by Sandia. It is visible on Figure 3.12 that the shape of the regression models may not 

be a very good fit for dawn and dusk irradiance. However, this discrepancy can be considered as 

negligible since the difference is small in terms of absolute value. Moreover, the clear-sky irradiance at 

dawn and dusk is so low that the PV power output is negligible. 

Although the accuracy of both the TJ and Dazhi models has been improved, the performance of both 

regression models could be even further improved if the regressions were based on a larger set of data. 

This is why a second regression based on both models has been carried out on new data set comprising 

a larger number of days, encompassing a longer period of time. 



110 
 

 

Figure 3.12 – First regression GHI model curves compared with measured GHI every minute on 

21/10/2015. 

3.4.4.2 Extended Dataset Refined Regression 

The average values of all four metrics over the three and a half year long period are summarised in 

Table 3.7. In that table, the initial regressions performed over 16 days are notes TJ-Reg1 and 

Dazhi_Reg1 while the refined regressions obtained over 88 days are referred to as TJ-Reg2 and Dazhi-

Reg2. All four regression models are noted in italic. 

Table 3.7 – Ranking of the top four most accurate empirical models. 

 ρ nRMSE (%) MBE (%) MAE (%) 

Rk. Model Over. 

Value 

Model Over. 

Value 

Model Over. 

Value 

Model Over. 

Value 

1 TJ-Reg1 0.999145 TJ-Reg2 3.70 TJ-Reg2 -0.10 TJ-Reg2 2.29 

2 TJ-Reg2 0.999142 TJ-Reg1 4.01 Dazhi-Reg2 0.58 TJ-Reg1 2.61 

3 TJ 0.999119 Dazhi-Reg2 4.44 ABCG 0.70 Dazhi-Reg2 2.68 

4 DPP 0.998934 Dazhi-Reg1 4.59 Dazhi-Reg1 -1.05 Dazhi-Reg1 2.96 

5 Dazhi-Reg1 0.998932 Dazhi 6.16 TJ-Reg1 -1.41 Dazhi 4.19 

6 Dazhi-Reg2 0.998901 ABCG 6.32 Dazhi 1.46 ABCG 4.20 

It clearly appears in Table 3.7 that the two TJ-based regressions are the most accurate empirical models 

with respect to the 88 days data, for all four metrics. In particular the refined TJ regression, TJ-Reg2 
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seems to outperform all of the other models, including the first regression model TJ-Reg1, in terms of 

nRMSE, MBE, and MAE. The Pearson’s correlation coefficient of the refined TJ regression appears 

slightly lower than its counterpart from the first TJ regression. However, the difference is not extremely 

significative as it is only 0.000003. This difference is due to the fact that a certain number of curves 

from the large 88 day set that has been used to define TJ-Reg2 are no perfectly smooth, as opposed to 

the smoother curves from the 16 day set, which has been used as a basis to determine TJ-Reg1. This 

fact also explains the relatively low numbers for the overall Pearson’s correlation coefficient of every 

model, compared to the results from Table 3.6. To illustrate how well the refined regression models fit 

with the measured data, the measured data as in Figure 3.12 has been compared with the two refined 

regression models in Figure 3.13. 

 

Figure 3.13 – Regression GHI model curves compared with measured GHI every minute on 21/10/2015, 

based on the extended 88-day dataset. 

3.4.5 Conclusions on the Regression Models 

The refined Threlkeld and Jordan-based regression model TJ-Reg2 performs best overall, when 

considering all four criteria. The model could be even further improved if it could be built on the basis 

of a large number of perfectly smooth curves, which is difficult to measure over the years. Nonetheless, 

using on an extended dataset spreading over a period of three and a half years has led to finding a new 

model that clearly outperforms all the original empirical models considered in this study, both in terms 

of shape fitness as well as error minimisation. In addition, none of the newly found regression models 

take more time to compute than their original counterparts. For all of these reasons, the refined TJ-based 

regression model TJ-Reg2 will be used further in this study as a reference for clear-sky irradiance. 
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3.5 CLOUD, SUN AND SHADOW PROJECTION MODELLING 

As mentioned in a previous chapter, passing clouds can be monitored through several means of 

observations. In particular, satellite and ground cameras involve image processing, leading to 

potentially very accurate forecasts. In order to model the position and motion of a cloud, we will use a 

referential for the satellite view and a referential for the camera view. 

3.5.1 Single-point cloud model 

3.5.1.1 From sky Cartesian coordinates to camera sensor Cartesian coordinates 

When modelling a cloud as it would be seen from an observer in the sky, e.g. an airplane or a satellite, 

spherical coordinates, also referred as sky coordinates, are the best-suited representation. Figure 3.14 

shows a point represented with such sky coordinates. 
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Figure 3.14 – Cartesian and spherical coordinates of a point object in the sky. 

It is also important to define the equivalence between the Cartesian coordinates (x, y, z) and the 

equivalent spherical coordinates (r, θ, ϕ) of any given point object present in the sky: 

 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 (3.86) 

 𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑧

√𝑥2 + 𝑦2 + 𝑧2
) 

(3.87) 

 

𝜙 =

{
 
 
 

 
 
 

0 𝑖𝑓 𝑥 = 0

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑥

𝑦
) 𝑖𝑓 𝑦 ≥ 0 & 𝑥 ≠ 0

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑥

𝑦
) +

𝜋

2
𝑖𝑓 𝑦 < 0 & 𝑥 ≥ 0

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑥

𝑦
) −

𝜋

2
𝑖𝑓 𝑦 < 0 & 𝑥 < 0

 (3.88) 
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Figure 3.15 – Cartesian and spherical coordinates of a point object in the sky. 

The same point seen through a ground camera located at the origin of the spherical frame shown in 

Figure 3.14 would have a 2-D projection with the polar coordinates (ρ, ϕ).as shown in Figure 3.15. 

It must be noted that the azimuth angle ϕ is the same in both Figure 3.14 and Figure 3.15.  

The radial distance ρ actually fully depends on the mapping function of the lens mounted on the camera, 

as illustrated in Figure 3.16. It is commonplace to use a fisheye lens on sky camera in order to have a 

180 degree field of view, which enables to assess the total cloud sky cover. 
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Figure 3.16 – Projection of a specific point object on the camera sensor. 

Table 3.8 – Fisheye lens projection types and their respective mapping functions. 

Projection type Mapping function 

ρ = radius (mm) 

f = focal distance (mm) 

θ = angle (radians) 

Equidistant ρ = f∙θ 

Stereographic ρ = 2∙f∙tan(θ/2) 

Orthographic ρ = f∙sin(θ) 

Equisolid ρ = 2∙f∙sin(θ/2) 

Rectilinear ρ = f∙tan(θ) 
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As shown in Table 3.8, fisheye lenses do not have a unique projection. Instead, they can have a relatively 

wide spectrum of mapping functions. In our case, we have considered an equisolid projection, which is 

the mapping function of the Sigma F2.8 EX DC lens we have used to shoot pictures of the sky. For that 

type of projection, the ideal radial distance, expressed in mm, is given by (3.83): 

 
𝜌 = 2 ∙ 𝑓 ∙ sin (

𝜃

2
) = 2 ∙ 𝑓 ∙ sin(

1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥2 + 𝑦2 + 𝑧2
)) (3.83) 

As already mentioned, the azimuth angle ϕ given by (3.82) is the same in the sky and on the camera 

sensor. When converting the polar coordinates (ρ, ϕ) of the projected punctual image to the Cartesian 

distance coordinates (dX, dY) on the camera sensor, expressed in mm, we get the following expressions 

of the image coordinates in function of the object coordinates (x, y, z): 

 

𝑑𝑋 = 𝑑𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + 𝜌 ∙ sin(𝜙)

= 𝑑𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + 2 ∙ 𝑓 ∙ sin(
1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥2 + 𝑦2 + 𝑧2
)) ∙ sin(𝜙) 

(3.89) 

 
𝑑𝑌 = 𝑑𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − 𝜌 ∙ sin(𝜙)

= 𝑑𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − 2 ∙ 𝑓 ∙ sin(
1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥2 + 𝑦2 + 𝑧2
)) ∙ cos(𝜙) 

(3.90) 

It must be noted that dCentreX and dCentreY are the horizontal and vertical position of the centre of the image, 

expressed in mm. It is however far more convenient to get to know the Cartesian coordinates (X, Y) in 

pixels rather than in mm. This is the purpose of the following section. 

Firstly, it must be noted that lenses are imperfect. Their mapping functions may varies from one lens to 

the next, even with the same projection type. Hence, it is safer to write down the mapping function of 

an equisolid fisheye lens as follows, where cst and a are two coefficients to be determined empirically: 

 
𝜌 = 𝑐𝑠𝑡 ∙ sin (

𝜃

𝑎
) = 𝑐𝑠𝑡 ∙ sin(

1

𝑎
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥2 + 𝑦2 + 𝑧2
)) (3.91) 

However, for the sake of simplicity, we will assume for modelling purposes that the projection of our 

lens is perfectly equisolid. 

Secondly, it must be noted that pixels of camera sensors are seldom perfect squares. For example, a 

Nikon D7100 has been used for verification purposes within this study. The size of its sensor is 23,500 

μm (horizontally) × 15,600 μm (vertically) with a maximum resolution of 2992 horizontal pixels × 2000 

vertical pixels. Thus, pixels have a size of dx = 7.85 μm (horizontally) × dy = 7.80 μm (vertically). 
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dx = 7.85 μm

dy = 7.80 μm

 

Figure 3.17 – A sensor pixel of a Nikon D7100 DSLR camera. 

Given the rectangular shape of a pixel, as shown in Figure 3.17, the mapping function of an ideal 

equisolid lens mounted on the camera body is as follows: 

 𝜌𝑥 = 𝑐𝑠𝑡𝑥 ∙ sin (
𝜃

2
) (3.92) 

 𝜌𝑦 = 𝑐𝑠𝑡𝑦 ∙ sin (
𝜃

2
) 

(3.93) 

 𝑐𝑠𝑡𝑥 =
2 ∙ 𝑓

𝑑𝑥
 (3.94) 

 𝑐𝑠𝑡𝑦 =
2 ∙ 𝑓

𝑑𝑦
 

(3.95) 

Therefore, the pixel Cartesian coordinates (X, Y) of the projected image of a sky object (x, y, z) on the 

camera sensor, centred around CentreX and CentreY, expressed in pixels, are: 

 

{
 
 
 
 

 
 
 
 

𝑋 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + ‖𝜌𝑥 ∙ sin(𝜙)‖

= 𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + ‖𝑐𝑠𝑡𝑥 ∙ sin(
1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥2 + 𝑦2 + 𝑧2
)) ∙ sin (𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦

𝑥
))‖

𝑌 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − ‖𝜌𝑦 ∙ cos(𝜙)‖

= 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − ‖𝑐𝑠𝑡𝑦 ∙ sin(
1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥2 + 𝑦2 + 𝑧2
)) ∙ 𝑐𝑜𝑠 (𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦

𝑥
))‖

 (3.96) 

It must be noted that the quantity added to CentreX or subtracted to CentreY must be rounded.  

Since we have used a Sigma 4.5mm equisolid lens mounted on the body of our Nikon D7100 camera, 

the constant values should theoretically be cstx = 1146 and csty = 1154. 

With an equisolid lens or any other mapping function, the image is a disk of radius Rmax as shown in 

Figure 3.18. 
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Rmax

Center

 

Figure 3.18 – Typical projection of a circular fisheye lens on a sensor. 

In the equisolid case, the radius Rmax in mm of the projected image on the frame in radians is as 

formulated in Equation (3.97). 

 𝑅𝑚𝑎𝑥 = 2 ∙ 𝑓 ∙ 𝑠𝑖𝑛 (
𝐹𝑜𝑉

4
) (3.97) 

The pixel equivalent Rmax,pix of Rmax depends on the pixel unit size dx (horizontally) and dy 

(vertically) previously shown in Figure 3.17. The effective frame across the field of view, which is the 

projection of the image within the full frame, is a circle if pixels are exactly square shaped but it is an 

ellipse if pixels are rectangular in shape, as shown in Figure 3.19. In any of these cases, the relationship 

between the radius of the projection of the image and the pixel size on the horizontal and vertical axis 

are respectively given by Equations (3.98) and (3.99). 

 𝑅max _𝑝𝑖𝑥_𝑥 =
𝑅𝑚𝑎𝑥
𝑑𝑥

 (3.98) 

 
𝑅max _𝑝𝑖𝑥_𝑦 =

𝑅𝑚𝑎𝑥
𝑑𝑦

 (3.99) 

Rmax,pix_y

Rmax,pix_x
= 

Rmax,pix_y

Rmax,pix_y

Rmax,pix_x
≠  

Rmax,pix_y

(a) (b)  

Figure 3.19 – Projection with square shaped pixels (a) and with rectangular shaped pixels (b). 
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θ = 0° 

θ = FoV/2 
(= 90°) 

θ = FoV/4 
(= 45°) 

Rmax

Rmax/2

 

Figure 3.20 – Position of the projections of point objects on the frame according to their angle θ with 

respect to the optical axis. 

In ideal conditions, the circle or ellipse featuring the projection of the image is centred at the centre of 

the sensor. Also, the centre ideally features a remote point situated far away on a vertical axis, provided 

the camera is installed perfectly vertically. Therefore, the centre represents the projection of the normal 

axis with respect to the ground, with an angle of 0 degrees, while the edge of the complete disk-image 

of radius Rmax represents an angle of half the field of view FoV/2. In the example shown in Figure 

3.20, the field of view is assumed to be 180 degrees, or π radians. Thus, FoV/2 corresponds to an angle 

of 90 degrees. The circles comprised between the centre and the rim of the circle-image represent angle 

values for θ between 0 and FoV/2. For instance, the circle with a radius Rmax/2 represents an angle of 

Fov/4, which is in this case 45 degrees. However, the centre of the projection might be slightly 

systematically off-centre, due to manufacturing flaws. What has been explained above theoretically still 

holds when we consider the centre of the disk-image rather than necessarily the centre of the frame. 

Besides some possible construction flaws, realistically, it is virtually impossible for the camera to be 

installed perfectly vertically or face exactly the true North, in which case the camera is oriented with a 

yaw, a pitch and a roll that all need to be considered. The yaw, pitch and roll of the camera are illustrated 

in Figure 3.21. 

It is capital to be able to determine the deviation of the camera with respect to the vertical axis and with 

respect to the direction of true North. Neglecting those deviations within the 3-D referential leads to a 

non-linear 2-D projection error. For this reason, an object like the sun or stars must be observed over a 

reasonably long period of time in order to find a 3D correction matrix that corrects the effects of yaw, 

pitch and row. More details on the 3D rotation matrix will be given further in this chapter. 
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Figure 3.21 – Illustration of the roll, pitch, and yaw of a sky camera (a) and their respective deviations on 

their respective planes (b). 

However, considering at first a simple and ideal model, if an ideal camera was installed on the ground 

perfectly vertical and perfectly facing North and if that camera was to shoot a 50 km wide mesh 

consisting of perpendicular and parallel lines as shown in Figure 3.22, located 3km above the camera, 

with each parallel line being 3.125 km apart from each other, the photo taken would look like the 

MATLAB ® model shown in Figure 3.23.  

 

Figure 3.22 – A 50-km wide mesh in the sky at 3000 m of altitude above the camera. 
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Figure 3.23 – Same mesh seen through a 4.5 mm equisolid circular fisheye lens. 

3.5.1.2 From camera sensor Cartesian coordinates to sky Cartesian coordinates 

Reciprocally, it may be useful to convert the Cartesian coordinates (X, Y) of the image on the camera 

sensor back to the Cartesian coordinates (x, y, z) of the corresponding object in the sky, provided the 

altitude z of the object is known. 

The polar camera sensor (ρ, ϕ) coordinates of the punctual projected image, when its Cartesian camera 

sensor (X, Y) coordinates are known, are: 

 𝜌 = √(𝑋 − 𝐶𝑒𝑛𝑡𝑟𝑒𝑋)2 + (𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − 𝑌)2 (3.100) 

 

𝜙 =

{
 
 
 
 

 
 
 
 

0 𝑖𝑓 𝑋 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑋

𝑎𝑟𝑐𝑡𝑎𝑛 (
(𝑋 − 𝐶𝑒𝑛𝑡𝑟𝑒𝑋)

(𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − 𝑌)
) 𝑖𝑓 𝑌 ≤ 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 & 𝑋 ≠ 𝐶𝑒𝑛𝑡𝑟𝑒𝑋

𝑎𝑟𝑐𝑡𝑎𝑛 (
(𝑋 − 𝐶𝑒𝑛𝑡𝑟𝑒𝑋)

(𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − 𝑌)
) +

𝜋

2
𝑖𝑓 𝑌 > 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 & 𝑋 ≥ 𝐶𝑒𝑛𝑡𝑟𝑒𝑋

𝑎𝑟𝑐𝑡𝑎𝑛 (
(𝑋 − 𝐶𝑒𝑛𝑡𝑟𝑒𝑋)

(𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − 𝑌)
) −

𝜋

2
𝑖𝑓 𝑌 > 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 & 𝑋 < 𝐶𝑒𝑛𝑡𝑟𝑒𝑋

 (3.101) 

The zenith angle θ of the sky object can be inferred from (3.102), with ρ and f expressed in mm: 

 
𝜃 = 2 ∙ 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝜌

2 ∙ 𝑓
) (3.102) 
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Since the value of ρ given by (2.5) is expressed in pixels, the expression of θ depends on whether a 

projection is considered on the x-axis or on the y-axis: 

 
𝜃𝑥 = 2 ∙ 𝑎𝑟𝑐𝑠𝑖𝑛 (

√(𝑋 − 𝐶𝑒𝑛𝑡𝑟𝑒𝑋)2 + (𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − 𝑌)2

𝑐𝑠𝑡𝑥
) (3.103) 

 𝜃𝑦 = 2 ∙ 𝑎𝑟𝑐𝑠𝑖𝑛 (
√(𝑋 − 𝐶𝑒𝑛𝑡𝑟𝑒𝑋)2 + (𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − 𝑌)2

𝑐𝑠𝑡𝑦
) 

(3.104) 

The altitude z is supposed to be known. Indeed, all information related to the altitude has been lost 

during the projection of the 3-D object into the 2-D sensor. The altitude should thus be retrieved from 

another source than the photos. Finally, the sky Cartesian coordinates (x, y, z) of the original object for 

a given altitude z are expressed on the basis of (3.101), (3.103), and (3.104) according to pixel 

coordinates (X, Y) of the image on the camera sensor: 

 {
𝑥 = 𝑧 ∙ 𝑡𝑎𝑛(𝜃𝑥) ∙ 𝑠𝑖𝑛(𝜙)

𝑦 = 𝑧 ∙ 𝑡𝑎𝑛(𝜃𝑦) ∙ 𝑐𝑜𝑠(𝜙)
𝑧

 (3.105) 

3.5.2 Four-point cloud model 

Although clouds are 3-dimensional objects, it is the 2-dimensional projection of the cast shadow that 

may create light disruption on a PV system. It matters thus to model clouds as a surface corresponding 

to that projection. 

3.5.2.1 From sky Cartesian coordinates to camera sensor Cartesian coordinates 
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yA yB

xA xD
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Figure 3.24 – Cartesian and spherical coordinates of a parallelogram object ABCD in the sky. 
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Figure 3.25 – Polar coordinates of the image of the parallelogram object on a ground camera sensor. 

The coordinates of each 4 points of the parallelogram can be inferred from the previous calculation 

(3.105) made for a single-point object. For the sake of simplicity, we assume that all 4 points are located 

at the same altitude z. This is assumption is particularly true when considering the base of cumulus 

clouds, which is a flat horizontal surface. The Cartesian coordinates (XA, YA), (XB, YB), (XC, YC) and (XD, 

YD) of the projected single-point images of a sky single-point object (xA, yA, z) on the camera sensor, 

expressed in pixels, are: 

 

{
 
 
 
 

 
 
 
 

𝑋𝐴 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + ‖𝜌𝑥 ∙ sin(𝜙)‖

= 𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + ‖𝑐𝑠𝑡𝑥 ∙ sin(
1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥𝐴
2 + 𝑦𝐴

2 + 𝑧2
)) ∙ sin (𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦𝐴
𝑥𝐴
))‖

𝑌𝐴 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − ‖𝜌𝑦 ∙ cos(𝜙)‖

= 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − ‖𝑐𝑠𝑡𝑦 ∙ sin(
1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥𝐴
2 + 𝑦𝐴

2 + 𝑧2
)) ∙ 𝑐𝑜𝑠 (𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦𝐴
𝑥𝐴
))‖

 (3.106) 

 

{
 
 
 
 

 
 
 
 

𝑋𝐵 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + ‖𝜌𝑥 ∙ sin(𝜙)‖

= 𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + ‖𝑐𝑠𝑡𝑥 ∙ sin(
1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥𝐵
2 + 𝑦𝐵

2 + 𝑧2
)) ∙ sin(𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦𝐵
𝑥𝐵
))‖

𝑌𝐵 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − ‖𝜌𝑦 ∙ cos(𝜙)‖

= 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − ‖𝑐𝑠𝑡𝑦 ∙ sin(
1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥𝐵
2 + 𝑦𝐵

2 + 𝑧2
)) ∙ 𝑐𝑜𝑠 (𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦𝐵
𝑥𝐵
))‖

 (3.107) 

 



122 
 

 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑋𝐶 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + ‖𝜌𝑥 ∙ sin(𝜙)‖

= 𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + ‖
‖𝑐𝑠𝑡𝑥 ∙ sin

(

 
 1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠

(

 
𝑧

√𝑥𝐶
2 + 𝑦𝐶

2 + 𝑧2
)

 

)

 
 
∙ sin(𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦𝐶
𝑥𝐶
))‖
‖

𝑌𝐶 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − ‖𝜌𝑦 ∙ cos(𝜙)‖

= 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − ‖
‖𝑐𝑠𝑡𝑦 ∙ sin

(

 
 1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠

(

 
𝑧

√𝑥𝐶
2 + 𝑦𝐶

2 + 𝑧2
)

 

)

 
 
∙ 𝑐𝑜𝑠 (𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦𝐶
𝑥𝐶
))‖
‖

 (3.108) 

 

{
 
 
 
 

 
 
 
 

𝑋𝐷 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + ‖𝜌𝑥 ∙ sin(𝜙)‖

= 𝐶𝑒𝑛𝑡𝑟𝑒𝑋 + ‖𝑐𝑠𝑡𝑥 ∙ sin(
1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥𝐷
2 + 𝑦𝐷

2 + 𝑧2
)) ∙ sin(𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦𝐷
𝑥𝐷
))‖

𝑌𝐷 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − ‖𝜌𝑦 ∙ cos(𝜙)‖

= 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − ‖𝑐𝑠𝑡𝑦 ∙ sin(
1

2
∙ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑧

√𝑥𝐷
2 + 𝑦𝐷

2 + 𝑧2
)) ∙ 𝑐𝑜𝑠 (𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦𝐷
𝑥𝐷
))‖

 (3.109) 

The quantities ρx, ρy, cstx, and csty, are respectively given by Equations (3.92), (3.93), (3.94), and (3.95). 

3.5.2.2 From camera sensor Cartesian coordinates to sky Cartesian coordinates 

As calculated previously for a single-point object, for a fixed value of z for all 4 points of sky object, 

the Cartesian sky coordinates (xA, yA, z) respectively in function of the Cartesian sensor coordinates (XA, 

YA) are: 

 {
𝑥𝐴 = 𝑧 ∙ 𝑡𝑎𝑛(𝜃𝐴,𝑥) ∙ 𝑠𝑖𝑛(𝜙𝐴)

𝑦𝐴 = 𝑧 ∙ 𝑡𝑎𝑛(𝜃𝐴,𝑦) ∙ 𝑐𝑜𝑠(𝜙𝐴)
𝑧

 (3.110) 

3.5.3 A possibly more Realistic Cloud Model 

Since the contour of cumulus clouds is composed of fractals, it is possible to model it with a 

realistic random pattern [33]. Such a feature can be added to the four-point cloud model previously 

presented. Such a feature helps to take the dynamics of clouds into account, with respect to a simple 

warped rectangular shape. 

3.5.4 Simple shadow model 

3.5.4.1 In the sky domain 

Since the Sun is about 109 times bigger than the Earth in diameter, sunrays seemingly strike the surface 

of the Earth with the same incidence angle, which corresponds to the zenith angle zen of the Sun. It 
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must be noted that both the zenith angle of the Sun and the altitude of the cloud influences the position 

of the cast shadow. However, the altitude of a cloud does not determine the size of its cast shadow. In 

Figure 3.26 , an example is given showing two clouds of identical shape and size located in a 2-D plane 

(x, z). Assuming this plane corresponds to a projection of the 3-D sky referential (x, y, z), the centroids 

of both clouds have the same coordinates (x, y) but two different altitudes h1 and h2. As one can see, the 

width w of the cast shadow is the same for both clouds. 

z

h1

h2

w w

centroid

centroid

x

w

zen

w

Camera

d_edge

 

Figure 3.26 – Shadow model of a couple of clouds in a sky frame. 

Also, if the small yellow circle on the ground in Figure 3.26 represents the camera, provided the wind 

pushes clouds to the right hand side of the picture, towards the positive side of the x-axis, the top cloud 

starts casting a shadow over the camera as soon as the closest edge of the cloud gets located with an 

angle that equals the zenith angle zen. 

In other words, this means the site of the camera will start to be shaded as soon as the distance between 

the vertical axis crossing the camera site and the edge of a cloud with a base at an altitude h1 becomes 

d_edge = h1×tan(zen). 

In sum, in a sky referential, it is the position of the cast shadow with respect to the positon of the 

camera/solar module that must be used to determine if the sunlight is dimmed. 

3.5.4.2 Projected on the camera sensor 

If the camera shown in Figure 3.26 was to take a shot of the moment that immediately precedes a 

shading episode, triggered by a lone cloud of rectangular shape, the photo taken would look like Figure 

3.27. The projection of the cloud gets distorted by the mapping function of the lens. If the cloud moves 

downwards within the image, i.e. towards the positive side of the y-axis, the cloud basically starts 

masking the sun as soon as the edge of the cloud overlaps the solar disk. Also, it suffices to consider 
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only clouds located within a region of interest around the sun. This region of interest is represented by 

an orange circle centred on the Sun in Figure 3.27. 
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Figure 3.27 – Image referential frame. 

To summarize, in a camera sensor referential, it is the position of the image of a cloud with respect to 

the positon of the solar disk that must be used to define whether a shading episode occurs. However, 

only the actual size of the solar disk matters to define whether the Sun gets covered or not. This means 

that an object obstructing the glare around the solar disk does not cause any interruption of direct 

sunlight. 

3.5.5 Camera Calibration 

As discussed in literature [139], calibrating sky cameras is primordial prior to processing 

images. It is in fact necessary to characterize all the angular offset of the camera as they significantly 

affect the 2D projection of sky objects onto the sensor. In particular, it matters to find the exact location 

of the centre of the camera sensor, which corresponds to the location of the projection of the optical 

axis onto the sensor. The centre can be approximately found geometrically by fitting the circular image 

within a rectangle and by drawing diagonals from each corner. It helps to greatly enhance the contrast 

and luminosity of the image as shown in Figure 3.28. The crossing intersection of the diagonals is the 

estimated centre. This centre is the projection of the optical axis and does not necessarily match with 

the centre of the image. However, using a polynomial approximation of the projection by using a known 

pattern leads to more accurate results. 
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Figure 3.28 – Geometrical approximate method to locate the centre of the projected image. 

With that latter approach, the OcamCalib Calibration Toolbox [140] developed by Davide 

Scaramuzza for MATLAB ® on the basis of the Caltech Calibration Toolbox by Jean-Yves Bouguet 

[141] is an interesting tool to serve the purpose of characterizing a sky camera equipped with a fisheye 

lens. To fit with most of cameras, the distortion mapping function of the lens is approximated by a 

polynomial function. In order to do so, the toolbox needs to be fed with a certain number of input images 

showing various orientations of a given checkerboard pattern. The toolbox is able to detect corners. 

Then, based on the information of the size of each square of the checkerboard specified by the user, the 

position of detected corners are used to model the mapping function.  
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Figure 3.29 – Orientation of the reference checkerboard with respect to the camera. 

(a) (b) (c)

(d) (e) (f)
 

Figure 3.30 – Camera calibration procedure. 

In our case, we know that the mapping function should be in the form of 2ˑfˑsin(θ/2) since we 

chose to use an equisolid Sigma 4.5mm circular fish-eye lens. 
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A set of 61 24-JPEG images with a resolution of 2992×2000 has been fed to the toolbox to approximate 

the position of the centre along with the mapping function. The orientation of the checkerboard with 

respect to the camera is shown in Figure 3.29 As an illustration, some of the positions as seen from the 

camera during the calibration process are shown in Figure 3.30. 

Assuming that both the camera and its lens are well aligned, the centre of the image has been found to 

be [1004.935883, 1484.065429]. In an ideal case, where the camera sensor is compound of perfectly 

square pixels and where the centre of the optical axis perfectly matches with the centre of the sensor, 

the 2D projection p of a vector P in the 3D world f is approximated with a 4th degree polynomial function 

F such that: 

 𝑖𝑓 𝑝 = [
𝑢
𝑣
]  𝑡ℎ𝑒𝑛 𝑃 = [

𝑥
𝑦
𝑧
] = [

𝑢
𝑣

𝑓(𝑢, 𝑣)
] = [

𝑢
𝑣

𝑓(𝜌)
]  𝑤ℎ𝑒𝑟𝑒 𝜌 = √𝑢2 + 𝑣2 (3.111) 

The distance ρ corresponds to the length of the vector p. 

In a realistic case where pixels are not squares and where the optical axis is off-centre, we have the 

additional following relationship between the coordinates of the actual vector [u’, v’], the ideal vector 

[u, v] and the actual centre [xc’, yc’]. 

 
[𝑢′
𝑣′
] = [

𝑐 𝑑
𝑒 1

] ∙ [
𝑢
𝑣
] + [

𝑥𝑐′

𝑦𝑐′
] (3.112) 

Any given point p (u,v) within the circular region of the camera sensor is the 2D projection of a unit 

vector P (x,y,z) in the 3D world. In terms of length ρ, the retroprojection function F is in the following 

form: 

 𝐹(𝜌) = 𝑎0 + 𝑎1 ∙ 𝜌 + 𝑎2 ∙ 𝜌
2 + 𝑎3 ∙ 𝜌

3 + 𝑎4 ∙ 𝜌
4 (3.113) 

The retroprojection has been found to be: 

 𝐹(𝜌) = −561.61 + 6.49 ∙ 10−2 ∙ 𝜌2 − 3.18 ∙ 10−9 ∙ 𝜌3 + 2.29 ∙ 10−10 ∙ 𝜌4 (3.114) 
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Figure 3.31 – Retroprojection function of the lens. 

That retroprojection function is illustrated in the graph in Figure 3.31 and every point of a retroprojected 

image is characterised by an error along the X-axis and the Y-axis expressed in pixels as shown in 

Figure 3.32: 

X-axis Error 
(pixels)

Y-axis Error 
(pixels)

 

Figure 3.32 – Error of the retroprojection function along the X and Y axes. 

A sine wave can be represented per a Taylor series as shown in Equation (3.115): 

 𝑠𝑖𝑛(𝑥) = 𝑥 −
𝑥3

3!
+
𝑥5

5!
 (3.115) 
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3.5.6 3D rotation matrix 

As mentioned in the Single-point cloud model discussed in Section 3.5.1, an ideal sky camera should 

be installed so that its optical axis perfectly matches with the normal vector to the ground, which is the 

vertical direction, and so that the top edge of the sensor perfectly faces North, as shown in Figure 3.33. 

In particular, Figure 3.33 (a) illustrates the camera and the sky frame F in 3D space while Figure 3.33 

(b) represents the corresponding 2D projection on the camera sensor. 
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Figure 3.33 – Configuration of an ideal camera and the projected image on the sensor. 

In reality, the optical axis of the camera may be characterized by a tilt with respect to the normal to the 

horizon, which is in the vertical direction, on a vertical plane. Also, on a horizontal plane, the orientation 

of the camera may be twisted with respect to the direction indicating true North, as shown on Figure 

3.34. These angles in the 3D frame have the effect of introducing a non-linear error in the 2D projection. 

As a result, it is difficult to correlate the expected position of the solar disk and clouds with the position 

of their projections on the camera sensor. A methodology is thus necessary to correct such a projection 

error whenever needed.  

Like in the previous figure, Figure 3.34 (a) illustrates the camera and the sky frame F and the camera 

F’ in 3D space while Figure 3.34 (b) represents the corresponding 2D projection on the camera sensor. 

However, unlike previously, it must be noted that the projected optical axis do match with the vertical 

direction. This affects the position, size and shape of the solar disk as well as any passing cloud. 
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Figure 3.34 – Configuration of a real camera and the projected image on the sensor. 

Therefore, in the 3D space, from the point of view of a frame of reference F composed of the true North 

for the X’ axis, the true West for the Y’ axis, and the true vertical for the Z’ axis, following the left hand 

rule, the camera possesses its own frame of reference [X, Y, Z]. A 3D rotation can be applied to translate 

coordinates from one frame to the other, through the use of a 3 × 3 rotation matrix R. 

Let us consider the unit vector M’ of a given direction in the 3D sky frame of reference F’ composed 

of the unit axis [u’, v’, z’] as shown in Figure 3.35 with u’ and v’ respectively aligned with the North 

and West directions while z’ is aligned with the vertical axis.  The vector M’, which could feature the 

sun position in the sky for example, can either be represented by a zenith angle θ, an azimuth angle ϕ 

and a radius r of 1 in spherical coordinates or by the Cartesian coordinates [x’, y’, z’]: 

M′ = [
𝑥′
𝑦′

𝑧′

]   𝑖𝑛 𝑢𝑛𝑖𝑡 𝑓𝑟𝑎𝑚𝑒 𝐹′ = [
𝑢′
𝑣′
𝑤′
] 

 

{
 
 

 
 𝑟 = √𝑥′

2 + 𝑦′2 + 𝑧′2 = 1

θ = cos−1(𝑧′)                      

𝜑 = tan−1 (
𝑦′

𝑥′
)                   

 (3.116) 
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Figure 3.35 –Cartesian and spherical coordinates of a given point M’ within the 3D unit frame F’. 

The same vector is seen as the unit vector M rotated by R in the 3D camera frame of reference F’, so 

that: R∙M’ = M, as illustrated in Figure 3.36.  

𝑀 = [
𝑥
𝑦
𝑧
]  𝑖𝑛 𝑢𝑛𝑖𝑡 𝑓𝑟𝑎𝑚𝑒 𝐹 = [

𝑢
𝑣
𝑤
] 

u
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z
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w’ Frame F’
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α 

 

Figure 3.36 – Cartesian and spherical coordinates of a given point M within the 3D unit frames F and F'. 

The frame F corresponds the frame F’ after an anticlockwise rotation α about the w’ axis, while staring 

down at it, which corresponds to an azimuth twist, followed by an anticlockwise rotation β about the u’ 

axis while staring down at it, which is in fact a zenith twist. The convention of staring down the axes 

will be adopted for every rotation angle. Also, it matters to twist the azimuth first and then the zenith. 

Similarly, the single anticlockwise rotation by an angle α about the w’ axis as shown in Figure 3.37 is 

performed with the elementary azimuth rotation matrix Rz: 
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𝑅𝑧 = [
cos(𝛼) − sin(𝛼) 0
sin(𝛼) cos(𝛼) 0
0 0 1

] 
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v’v
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α  

α  
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cos(α)  
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Figure 3.37 – Simple rotation of the unit frame around the w' axis by an angle α as seen in the u’-v’ plane. 

Similarly, the single anticlockwise rotation by an angle β about the u’ axis as shown in Figure 3.38 is 

performed with the elementary zenith rotation matrix Rx: 

𝑅𝑥 = [

1 0 0
0 cos(𝛽) −sin(𝛽)

0 sin(𝛽) cos(𝛽)
] 

w’u’

v’v

w

β 

β 

- sin(β)  

sin(β)  

cos(β)  

cos(β)  

 

Figure 3.38 – Simple rotation of the unit frame around the u' axis by an angle β as seen in the v’-w’ plane. 

The complete 3D transformation of the frame of reference after two rotations can thus be modelled by 

the following rotation matrix R that consists in the product of the two elementary rotation matrices: 

𝑅 = 𝑅𝑧 ∙ 𝑅𝑥 = [

cos(𝛼) −sin(𝛼) ∙ cos(𝛽) sin(𝛼) ∙ sin(𝛽)

sin(𝛼) cos(𝛼) ∙ cos(𝛽) − cos(𝛼) ∙ sin(𝛽)

0 sin(𝛽) cos(𝛽)
] 

In order to find the position of the corresponding 2D projection m on the camera sensor starting from 

m’, it is necessary to convert m’ in 3D. This can be done by using the projection function found during 

the calibration phase of the camera. The rotation R must then be applied to the resulting 3D vector M, 

giving the transformed vector M so that R∙M’ = M. Likewise, the retroprojection function can be used 

to find the 2D projected position m of the 3D rotated vector M. 
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3.5.7 Solar disk and cloud model 

3.5.7.1 Solar disk in the sky domain 

The solar disk as it can be observed in the sky is characterized by a couple of parameters, as shown in 

Figure 3.39. 

- The position of its centre, characterized by its azimuth and zenith (az, zen), expressed in degrees 

- Its radius Rsun,angular also expressed in degrees. 

3.5.7.2 Simplified solar disk projection on the camera sensor 

Earth

Rsun,angular

dSun

r

 

Figure 3.39 – Angular radius of the sun as seen from the earth. 

The contour of the sun, also called solar disk, gets projected as an ellipsoid on the camera sensor. Also, 

the projected image of the solar disk on the camera sensor is characterized by the following parameters, 

all expressed in pixels: 

- The position of its centre (Xsun, Ysun) 

- Its horizontal and vertical radius (Rimage_sun_x, Rimage_sun_y)  

The relationship between the position of the centre solar disk (az, zen) in the sky and the position of the 

centre of its projection on the camera sensor is exactly identical to the single-point object projection 

previously mentioned. 

Therefore, such a relationship is defined by a couple of equations that are similar to (3.117). 

 {
𝑋𝑠𝑢𝑛 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑋 − ‖𝑐𝑠𝑡𝑥 ∙ 𝑠𝑖𝑛 (

𝑧𝑒𝑛

2
) ∙ 𝑠𝑖𝑛(𝑎𝑧)‖

𝑌𝑠𝑢𝑛 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑌 − ‖𝑐𝑠𝑡𝑦 ∙ 𝑠𝑖𝑛 (
𝑧𝑒𝑛

2
) ∙ 𝑐𝑜𝑠(𝑎𝑧)‖

 (3.118) 

The quantities cstx and csty are respectively given by (3.94) and (3.95). 
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Given that the mean distance between the sun and the earth is d = 149.6 million km and given that the 

mean equatorial radius of the sun is r = 696,342 km, an elementary geometry calculation gives the 

angular radius of the Sun seen from the Earth in degrees: 

 𝑅𝑠𝑢𝑛,𝑎𝑛𝑔𝑢𝑙𝑎𝑟 = 𝑡𝑎𝑛 (
𝑑

𝑟
) = 𝑡𝑎𝑛 (

149.6

0.696342
) ≈ 0.7° (3.119) 

Since the pixels of the camera sensor are not necessarily perfect square, the projection of the sun is 

characterised by a horizontal radius and a vertical radius, both expressed as follows in pixels: 

 
𝑅𝑖𝑚𝑎𝑔𝑒𝑠𝑢𝑛𝑥 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑋

− ‖
𝑐𝑠𝑡𝑥
2

∙ (𝑠𝑖𝑛 (
𝑎𝑧 + 𝑅𝑠𝑢𝑛,𝑎𝑛𝑔𝑢𝑙𝑎𝑟

2
) − 𝑠𝑖𝑛 (

𝑎𝑧 − 𝑅𝑠𝑢𝑛,𝑎𝑛𝑔𝑢𝑙𝑎𝑟

2
))‖ 

 

(3.120) 

 

𝑅𝑖𝑚𝑎𝑔𝑒_𝑠𝑢𝑛_𝑦 = 𝐶𝑒𝑛𝑡𝑟𝑒𝑌

− ‖
𝑐𝑠𝑡𝑦

2
∙ (𝑠𝑖𝑛 (

𝑧𝑒𝑛 + 𝑅𝑠𝑢𝑛,𝑎𝑛𝑔𝑢𝑙𝑎𝑟

2
) − 𝑠𝑖𝑛 (

𝑧𝑒𝑛 − 𝑅𝑠𝑢𝑛,𝑎𝑛𝑔𝑢𝑙𝑎𝑟

2
))‖ 

(3.121) 
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Figure 3.40 – Angular position and angular radius of the sun in the sky. 
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Figure 3.41 – Position of the projected solar disk on the camera sensor. 

Figure 3.40 and Figure 3.41 respectively illustrate the position of the Sun in the sky and the position 

and size of the projected image of the solar disk on the camera sensor.  

3.5.7.3 Actual solar disk projection on the camera sensor 

If the camera was ideally set up, it should be sufficient to calculate the position of the sun in the sky in 

terms of zenith and azimuth angle by using NREL’s Solar Position Algorithm (SPA) that convert the 

circular coordinates to a Cartesian unit vector M’ = [x’, y’, z’] and 2D-project that sun position onto the 

camera sensor with the reciprocal of the projection function to find the position m = [X, Y]. However, 

as previously mentioned, cameras are actually characterised by a tilt and twist angle that induce a 

mismatch between the position of the sun as it should be and as it actually appears on the image. As an 

illustration, we considered a set of 56 images shot every 30 minutes to constitute a clear-sky images 

covering all 4 seasons. Over that sample, the error on the sun position can be as much as 45 pixels in 

the images of resolution 2992 × 2000 and 21 pixels in average, which is quite significant. This is visible 

in Figure 3.42, which shows a clear sky picture taken on 28/11/2016 at 11:05 AM. The cross in red in 

that picture indicates the predicted position of the sun whereas the cross in black shows the location of 

the actual centre of the solar disk. A tool inspired from Son Lam Phung’s MATLAB ® function from 

2004 [142] and similar to the “magic wand” feature in Adobe Photoshop has been used to identify the 

actual centre of the solar disk featured by that cross in black. 
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Figure 3.42 – Clear sky picture showing the position mismatch between predicted and actual projection of 

the centre of the solar disk. 

The error of the sun position can be mitigated with a 3D rotation matrix. However, since the orientation 

of the camera can be affected by maintenance operation, it has been necessary to recalculate the rotation 

matrix every day. The matrix is determined by the location of the sun itself, as performed by Gauchet 

et al. [143] and Savoy et al. [144] rather than the stars like in astronomical studies. It is indeed more 

convenient to work on daytime conditions given the fact that the camera has been set up for direct 

sunlight conditions in the middle of the day. 

The rotation matrix is find by solving a system so that R∙M’ = M, where M’ is the theoretical 3D unit 

vector of the sun position and M is the actual 3D unit vector of the sun position, both in given in 

Cartesian sky coordinates. The rotation matrix R is in a 3 × 3 matrix with 9 coefficients to find: 

𝑅 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] 

In order to solve the system, both M’ and M actually need to be n × 3 matrices containing n vectors: 

𝑀′ = [
𝑀′11 𝑀′12 𝑀′13
… … …
𝑀′𝑛1 𝑀′𝑛2 𝑀′𝑛3

] , 𝑀 = [
𝑀11 𝑀12 𝑀13
… … …
𝑀𝑛1 𝑀𝑛2 𝑀𝑛3

] 
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Each vector is drawn from each individual image shot throughout the day. Nevertheless, we have only 

considered zenith angles up to 70 degrees. 

For example, the rotation matrix R has been identified as the following respectively as of the 1st of July 

2016, as of the 28th of November 2016, as the 1st of January 2017, and as of the 4th April 2017: 

𝑅01_07_2016 = [
1.0174  0.0184 0.0022
0.0172 1.0055 0.0277
−0.0011 0.0159 0.9652

] 

𝑅28_11_2016 = [
0.9539 0.0491 −0.0717
−0.0839 1.0088 −0.0400
0.0536 0.0346 0.9954

] 

𝑅25_01_2017 = [
1.0089 0.0331 −0.0356
−0.0261 1.0000 −0.0221
0.0554 0.0225 1.0011

] 

𝑅04_04_2017 = [
0.9833 0.0408 −0.0449
−0.0463 1.0012 −0.0237
0.0338 0.0238 0.9987

] 

 

It can be observed that all four matrices slightly vary from one day to another. However, it is essential 

to calculate an individual rotation matrix for each day to achieve an optimal correction and a minimum 

error. Since the camera in use has been uninstalled and reinstalled for maintenance purposes over the 

months, it is unfortunately impossible to find a unique rotation matrix for every day of the year that 

would minimize the error as effectively as a daily matrix. 

Also, it is worth noticing that the matrix does not look exactly like the rotation matrix as previously 

introduced, possibly due to the non-linear nature of the projection function through the fisheye lens as 

well as the occasional swing of the camera pole on windy days. 

The dataset features a day from each season and the time resolution has been set to 30 minutes.  

Table 3.9 – Distance error between the predicted and the actual position of the sun on four different days, 

expressed in pixels, before and after application of each respective 3D rotation matrix. 

 Before Correction After Correction 

Dates Season Start 

Time 

End 

Time 

No. of 

images 

RMSE 

(pix.) 

Min 

Error 

(pix.) 

Max 

Error 

(pix.) 

RMSE 

(pix.) 

Min 

Error 

(pix.) 

Max 

Error 

(pix.) 

1/07/2016 Winter 12:00 15:00 7 8.71 1.67 12.58 1.43 0.37 2.97 

28/11/2016 Spring 11:05 16:05 11 30.17 18.01 45.17 0.57 0.13 1.35 

25/01/2017 Summer 7:29 17:29 21 24.13 9.09 33.30 1.69 0.20 3.85 

4/04/2017 Autumn 8:30 16:00 16 22.64 7.02 40.12 2.34 0.26 6.86 
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The distance error for the specific day of 28th of November 2016 expressed in pixels between the 

predicted and the actual position of the sun is plotted in Figure 3.43, before and after correction. 

 

Figure 3.43 – Distance error between the expected projected position of the centre of the solar disk on the 

camera sensor and its actual position, expressed in pixels, before and after 3D matrix correction. 

To further illustrate the effectiveness of the 3D rotation to minimize the error, the actual positions in 

are shown in red and the predicted positions are shown in blue in Figure 3.44. The part on the left noted 

(a) shows the actual and predicted trajectories of the sun over the course of the day on the 25th of January 

2016 with the background masked, without any correction while the part on the right noted (b) shows 

the same trajectories after correction with an adequately calculated rotation matrix. 

(a) Theoretical and Actual Sun 
Position before Correction

(b) Theoretical and Actual Sun 
Position after Correction  

Figure 3.44 – Expected projected position of the centre of the solar disk and its actual position on the camera 

sensor on 28/11/2016 for all the studied hours before (a) and after correction (b). 

Although Savoy et al. [144] used a 2-minute time resolution, a high temporal resolution may not be 

needed to generate an effective 3D correction matrix. Especially considering the fact that the 3D matrix 

analysis can be time consuming, it matters to define the optimal minimum time resolution and number 
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of sky images required for an effective 3D correction. In our application, it takes an average time of 0.8 

seconds per image to generate an effective 3D rotation correction matrix. 

Table 3.10 – Investigating the optimal time resolution to calculate the 3D rotation matrix on 25/01/2017. 

 Before Correction After Correction 

Time 

Res. 

(min) 

Number 

of 

Images 

Analysis 

Time 

(seconds) 

RMSE 

(pix.) 

Min 

Error 

(pix.) 

Max 

Error 

(pix.) 

RMSE 

(pix.) 

Min 

Error 

(pix.) 

Max 

Error 

(pix.) 

2 358 241.18 

24.16 8.34 35.58 

1.73 0.09 6.73 

4 155 130.95 1.73 0.10 6.61 

10 62 46.42 1.73 0.16 6.71 

20 31 25.38 1.73 0.10 6.65 

30 21 16.87 1.73 0.15 6.48 

60 10 8.54 1.77 0.11 7.29 

As shown in Table 3.10, the RMSE remains completely unchanged between 2 minutes and 30 minutes 

while the processing time varies by a factor 14 and the number of images varies by a factor 17. The 

lowest maximum distance error is even achieved for a resolution of 30 minutes. Thus, the optimal time 

resolution that guarantees the most accurate result with a minimal computation effort is 30 minutes on 

that day. 

Table 3.11 – Investigating the optimal number of sky images to calculate the 3D rotation matrix on 

25/01/2017 with a 30 minutes time resolution. 

 Before Correction After Correction 

Number 

of Images 

Analysis 

Time 

(seconds) 

RMSE 

(pix.) 

Min 

Error 

(pix.) 

Max 

Error 

(pix.) 

RMSE 

(pix.) 

Min 

Error 

(pix.) 

Max 

Error 

(pix.) 

5 5.82 

24.16 8.34 35.58 

17.83 0.13 47.35 

7 7.59 8.25 0.12 26.69 

9 8.67 4.08 0.06 15.72 

11 10.24 4.11 0.10 15.06 

15 12.02 2.47 0.05 9.90 

17 13.48 2.17 0.20 9.20 

19 16.31 1.84 0.07 7.68 

21 16.63 1.78 0.0089 6.95 

A further optimisation would consist in determining the minimum number of sky images required for 

an effective 3D correction. An increasing number of sky images centred on and around solar noon has 

been selected to answer that question. A rotation matrix has been calculated for each set of images. 

Table 3.11 shows the RMSE obtained after correction on 25/01/2017 when a 30 minutes time resolution 

is applied to generate a rotation matrix.  
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Figure 3.45 – Scatter plot of the distance error between the expected and actual centre of the solar disk in 

function of the number of sky images, with asymptotes. 

The RMSE has been scatter-plotted with blue crosses in Figure 3.45. The asymptotes corresponding to 

the lowest and the highest RMSE intersect around a number of images of 8. Since the RMSE does not 

increase significantly passed this value, we can conclude that the optimal setting to calculate the 3D 

rotation matrix is at least 8 sky images centred around solar noon, with a time resolution of 30 minutes. 

3.5.7.4 Simplified cloud model 

When the projection function is known, the position of clouds can be modelled in a similar manner to 

what has been previously cased in the simplified solar disk projection model. Figure 3.46 shows the 

example of a cloud located above the camera as it could be seen by a satellite. The cloud has been 

modelled as a square with a side 1.8 km. The entire image in picture 10 shows clouds within a 50 km 

radius, featured by a green circle, around the location of the camera is indicated by a green cross in the 

centre. 

 

Figure 3.46 – Example of a position for a cloud in satellite view. 
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Figure 3.47 – Same cloud seen by the camera with the solar disk shown in yellow. 

Figure 3.47 shows the exact same cloud as in Figure 3.46, as seen by the previously mentioned fisheye 

ground camera. The solar disk is also represented by a yellow circle. This circle may look quite small 

though. Indeed, as previously demonstrated, the actual solar disk is 1.4° wide in the sky. The brightness 

of Sun induces a glaring effect that makes it look bigger that it actually is. 

3.5.7.5 Realistic cloud model 

In the simplified model presented above, clouds have been modelled as rectangular in shape. 

However, the shape of clouds may be very complex. If we focus on the specific case of cumulus clouds, 

their contour can be modelled as fractals [33]. Thus, in order to forecast as accurately as possible the 

moments when the sun gets covered or uncovered by the sun, it matters to take into account the actual 

contour of clouds, especially for those located within the region of interest. 

With that said, tracking every single point of a cloud may be excessively time-consuming and even not 

absolutely necessary. Instead, each target identified as a cloud of significant size within the region of 

interest can be fitted inside a bounding box (BB). It is then sufficient to track the centroid of that BB. 

Also, the contour of the cloud may be saved as a binary image and may be called to check if an overlap 

will occur between the solar disk and a predicted future position of the cloud. 

 

Figure 3.48 – First example of cloud tracking and sun cover measurement. 

As an example, a cumulus cloud could be entirely enclosed inside a BB as shown in Figure 3.49 (a). 

The centroid of this BB is marked by a cross inside it. Also, since one of the edges of the BB is in 
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contact with the rim of the solar disk, the sun could possibly be covered by the cloud enclosed in the 

BB. For that reason, it is useful to save the shape of the cloud at the current instant k in order to determine 

whether the sun is indeed being covered or not. A light-weight binary image containing the contour of 

the cloud like in Figure 3.49 (b) superposed to its bounding box leads to the conclusion that the sun is 

actually not being covered as it can be seen in Figure 3.49 (c). Also, in Figure 3.49 (c), the trajectory 

followed by cloud has been drawn to show the direction that has been taken by the cloud since the 

beginning of the sequence. The size of each segment shows the distance that has been travelled by the 

cloud between two steps, which corresponds to the speed of the clouds per step. 

 

Figure 3.49 – Second example of cloud tracking and sun cover measurement. 

The actual moment step when the solar disk gets covered may happen in a later stage within the same 

sequence, as shown in the second example in Figure 3.49. Although the BB covers a fair part of the 

solar disk, given the shape of the cloud, the sun just starts getting covered. It must also be noted that the 

shape of the cloud has been updated and has changed since the time of the first example. An advantage 

of the approach is to take into account the dynamics of the cloud with minimum calculations. 

 

Figure 3.50 – Third example of cloud tracking and sun cover measurement. 

Another case that may happen in an even later stage is depicted in Figure 3.50. In that case, the BB 

entirely encapsulates the solar disk. One could thus assume that the sun might be entirely covered. 

However, superposing an updated version of the shape of the cloud on top of its bounding box shows 
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that sun is actually only partially covered. The cloud covered pixels inside the solar disk are shown in 

orange in Figure 3.50 (c). The trajectory of the centroid is also featured in the same figure. 

When a prediction filter tracks the BB that encloses a cloud, two quantities can be tracked: the position 

of the centroid of the cloud and the speed. It makes sense to track the speed because clouds follow a 

continuous movement, even though they may be characterized by some dynamics such as shape and 

size changes over time. 

 

Figure 3.51 – Example of an image of the sky simplified with Photoshop. 

 

Figure 3.52 – Bonding boxes enclosing binary shapes. 
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The image on Figure 3.51 features a sky configuration with only two sufficiently large clouds. The solar 

disk has been masked in green to be easily recognized. As it can be seen in Figure 3.52, it is the bounding 

boxes and centroids of sufficiently large clouds that are tracked rather than their entire contour. The BB 

and the centroid of each cloud is represented in blue. 

The binary shape of the cloud is saved at every sample but only used to detect shading rather than for 

tracking purposes. A shading occurs when as soon as there is an overlap between the solar disk and the 

actual shape of a cloud occurs, like shown in Figure 3.53. 

 

Figure 3.53 – Shading episode as seen through a sky camera. 

3.5.8 Estimation of the shading time and duration 

As previously mentioned, the position of the centroid of the bounding boxes encapsulating relevant 

clouds is tracked. To be considered as relevant, clouds must be large enough and their centroid must be 

within the region of interest around the sun. Using a predictive filter that will be described in the further 

chapters, the future position of the centroid is forecast a few runs ahead. The current position of the 

upper-left (UL) corner of the BB is saved at each run. By combining both pieces of information, it 

becomes relatively easy to forecast the next positions of the upper-left corner of the BB in a sky 

referential, assuming the BB will not change in shape nor size. Based on the previous positions of the 

centroid of a specific relevant cloud, a recursive prediction filter can estimate a transformation function 

F. Provided this function F is known at time k, it can be used to predict the future positions of the 

centroid of the same cloud one step ahead: Xcentroid(k+1) = F × Xcentroid(k). The same function can also 

be used iteratively n times to predict the future state of the cloud n steps ahead: Xcentroid(k+n) = F(n) × 

Xcentroid(k). By applying the same transformation to the upper left corner of the bounding box UL: 

XUL(k+n) = F(n) × XUL(k) as shown in Figure 3.54. 
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Figure 3.54 – Current position and predicted positions of a single cloud bonding box. 

Such an approach is particularly relevant for very short-term forecasts, up to a few steps ahead, for 

which the persistence assumption has proven to be very accurate [53]. Up to a few steps ahead, this 

method can be applied in both the sky referential and the camera sensor referential. As an example, 

when the sun is just merely a few steps away from beginning to be shaded, the position of the solar disk 

as seen on the camera sensor can be assumed to be virtually fixed and the shape of the cloud can assumed 

to be fixed as well, both in terms of actual shape and size but also in terms of distortion. It may thus be 

sufficient to apply this method directly in the camera sensor domain, without retro-projecting the image. 

As shown in Figure 3.55 (a), by using bounding box-centroid method, the position of the bounding box 

that encloses the cloud can be forecast n steps in the future through an extrapolation based on the last 

measurement of the motion of the centroid of the cloud. The latest updated shape of the cloud can thus 

be superposed on the position of the forecast the bounding box to assess the possible overlap with the 

solar disk. Alternatively, a state of the art method would consist in extrapolating the position of several 

features located around the contour of the cloud shape. By drawing linear approximations of the 

trajectory of such features, it can be found that at least one feature may cross the solar disk n’ steps 

ahead, where n’ is not necessarily found to be the same number as n. 
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Figure 3.55 – Direct application of the bonding box and centroid forecasting approach and the feature 

approach in the camera sensor referential. 

Besides the possible variations in shape, size and altitude of clouds, a Euclidian space referential like 

the sky does not imply any distortion, unlike the projection on the camera sensor. Hence, for forecasts 

several dozens or hundreds of steps ahead, it may be greatly preferable to apply this method to a sky 

Euclidian referential, which means converting camera images to sky coordinate images. An example is 

illustrated in Figure 3.56 and Figure 3.57. The image as seen on the camera sensor that is shown Figure 

3.56 actually corresponds to the real three-dimensional world situation shown in Figure 3.57. The mask 

is shown on both figures and the axes corresponding to the true cardinal directions is shown in Figure 

3.56. The cloud that is shown with a warped shape and at a warped distance for the centre of the sun in 

Figure 3.56 can be retro-projected onto the surface of the unit sphere as shown in Figure 3.57. The 

actual shape, size and motion of the cloud is comprised onto the actual altitude plane. However, for 

tracking purposes, the actual altitude of clouds is not required and it sufficient to track clouds within 

the unit altitude plane only. 

 

Figure 3.56 – Example of a reprocessed sky image taken on 28/01/2017 at the GEEP lab at 9:23 am.  
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Figure 3.57 – Retro-projection of the reprocessed sky image taken on 28/01/2017 at the GEEP lab at 9:23 

am onto the unit sphere, unit altitude plane and actual altitude plane, within the actual 3D world. 

The only difference between tracking cloud at the actual altitude they move and at the unit altitude is 

the value of the speed. Thus, it is necessary and also sufficient to retro-project clouds onto the unit 

altitude plane. Figure 3.58 (a) features the bounding box and a forecast position of the bounding box 

several steps ahead within the sky image sensed by the camera. The projected bounding box gets more 

and more warped as it gets closer to the rim of the image, or conversely less and less warped as it moves 

towards the centre of the image. This contrasts with the situation of the equivalent bounding box that 

fits the same cloud when it is retro-projected onto the unit altitude plane. On this plane, as shown in 

Figure 3.58 (b), the bounding box can be safely assumed to retain the same size as it is not affected by 

any optical projection function. 

 

Figure 3.58 – Comparison the bounding boxes within the camera sensor domain (a) and within the unit 

altitude plane. 

Only the dynamic changes of the shape of the cloud due to the effect of the wind may affect the bounding 

box size. However, such an effect may be slow and may only have a limited impact on the size of the 
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bounding box. It must be noted that for optimum results, it is additionally absolutely necessary to update 

the position of the centre of the solar disk and the size of the solar disk itself at every forecast step. 

The exact same reasoning can also be applied to forecasts of cloud clearing times. The time when a 

cloud clears out after covering the sun can thus be forecast through the bounding box approach or 

through the feature approach that has just been described. However, due to the significant effect of 

distortion due to the use of a fisheye lens, it is strongly recommended to track the cloud on the unit 

altitude plane rather than directly within the domain of the camera sensor. Although the dynamic change 

of shape of the cloud can hardly be forecast and needs to be assumed to remain constant, the  

Considering some cloud images in sky coordinates, the projection of the cast shadows matters a lot 

more than the position of the clouds themselves. Yet, as shown in Figure 3.54, the position of the cast 

shadow on the ground depends on both the altitude of the base of the cloud and on zenith angle of the 

sun. A cumulus clouds with a typical flat base located at an altitude h while the zenith of the sun is zen 

casts a shadow on the ground with the same size and shape. Indeed, the shadow is nothing but a 2-D 

projection of the base of the cloud. The shadow may be enclosed within a bonding box the same way 

as the cloud itself can be. However, at the instant ks, the upper-left corner of the bonding box of the 

shadow is shifted by a distance of dCS(ks) = h×tan(zen) with respect to the upper-left corner of the 

bonding box of the cloud. Figure 3.59 shows a side view of the possible movement of a single cloud 

alongside the x-axis on the ground. 

Figure 3.60 represents the same cloud and the same movement seen from above, with a top view. In 

such a situation, with the cloud moving towards the camera, the exact spot occupied by the camera 

starts to be shaded when the edge of the shade crosses that spot. 

Vertical axis
z

h

x

zen

w(ks)

Camera

w(kc)

xc(ks) xc(kc) xs(ks) xs(kc)

w(ks) w(kc)

dcs(ks)
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Figure 3.59 – Shading Model in (y, z) two-dimensional sky plane or side view of a shading episode. 
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Figure 3.60 – Shading model in (x, y) two-dimensional sky plane or top view of a shading episode. 

That spot remains shaded until the opposite edge crosses it. That means the shading lasts for the time it 

takes for the cloud to move over a distance corresponding to its diagonal dimension according to the 

direction of movement, noted w in Figure 3.60. After getting pushed by the wind, the centroid of the 

cloud moves from (xc(ks), yc(ks)) to (xc(kc), yc(kc)). Assuming its diagonal dimension w remains 

unchanged during the period [ks, kc], the cloud then moves across its own diagonal w during that time. 

The duration of the shade thus corresponds to the time the cloud needs to move across its own diagonal 

w. 
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Figure 3.61 – Shading model as seen through a ground camera of a shading episode. 

The same shading episode can be observed through the ground camera. As seen in Figure 3.61, as soon 

as the edge of a cloud crosses the contour of the solar disk, it induces some shade. In the example of a 
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single cloud moving from the bottom to the top of the image, the shade starts at the instant ks, when the 

upper edge of the actual shape of the cloud gets in contact with the solar disk. The cloud has to stop 

covering entirely the solar disk for the shade to cease. This happens at time kc, when the lower edge of 

the actual shape of the cloud crosses the solar disk and when the solar disk gets completely uncovered. 

The predicted time of sun cover and uncover are exactly the same as in a sky referential. Therefore, it 

is always possible to convert the position of clouds from a camera sensor referential into a sky 

referential, by applying the transformation equations mentioned in the previous paragraphs. This 

method is valid for any forecast horizon. If however, the forecast is only intended to be a few steps 

ahead, the sun cover and uncover times may be worked out directly on the camera images, without any 

conversion. Indeed, a distortion of shapes and distances is still involved due to the mapping function of 

the lens but it can be considered as relatively negligible and accounted for by the prediction filter, 

especially from one step to the next. 

3.5.9 Shading intensity 

It must be duly noted that the thickness of clouds of all types is not uniform. This thus results in a non-

uniform shading on the ground. The intensity of the shading depends on the optical thickness of the 

cross section of the cloud that obstructs a given point at a given time. For clouds to be characterised 

with a perfectly even and consistent optical thickness, their density would need to be perfectly 

homogeneous and they would need to be shaped as perfect parallelepipeds with an angles that fit with 

the sun azimuth at all time as shown in Figure 3.62. This situation is obviously impossible since the 

density of clouds may vary with the altitude, since the shape of clouds changes dynamically and since 

the sun azimuth angle varies continuously throughout the day. 

 

Figure 3.62 – Model of an ideal cloud with a perfectly uniform optical thickness and sides. 
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The intensity of the cast shadow received at a given point on the ground actually depends on the optical 

thickness of the entire path crossed by the sun ray that illuminates that given point. It is noticeable that 

the diffraction angle of the sun ray through the cross section of the cloud is dependent on the sun altitude 

angle. For the sake of simplicity, we shall assume that the sunlight passing through a cloud, in particular 

a low altitude cloud such as a cumulus cloud, is not bent. This means that we assume that direction of 

a sunray remains linear even through a cloud. As a result, the intensity of the shading that is perceived 

on the ground due a cloud depends on the density of the cloud, the thickness of the cloud and the sun 

altitude angle. For a cloud in motion, the instantaneous shading is determined by the path followed by 

sunlight through the section of the cloud overhead the shaded point that intersects with the plane of 

direction of the cloud motion. Compared with that vertical section of the cloud, the global shape of the 

cloud is irrelevant and does not play a role in the shading intensity of the shaded point, which happens 

to be a PV array in our application. That situation is illustrated in Figure 3.63, in which the vertical 

cross section is shown with a thick contour. 

 

Figure 3.63 – A model corresponding to realistic shading conditions. 

The specific example of the estimated vertical cross section of the cloud shown in Figure 3.63 has been 

obtained based on the calculated optical thickness of a small cumulus cloud on 19th of April 2016 

passing over our monocrystalline solar array at the Green Electric Energy Park at Curtin University 

between 9:07:32am and 9:07:45am. The estimated sun altitude angle at each instant has also been used 

to reconstruct the vertical section of the cloud. Both the reconstructed shape of the cloud cross-section 

and the calculated optical thickness of the section of the cloud that hovered over the PV array at a 
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specific time are shown in Figure 3.64. The section of the cloud passing over the array and the 

corresponding optical thickness is shown for every second of the period.  

 

Figure 3.64 – Reconstructed vertical cross-section of the cloud passing over the monocrystalline PV array, 

the times when each section of the clouds passed over the array and the corresponding optical thicknesses. 

Since cumulus clouds grow vertically, the top of the cloud has been reconstructed from the bottom up, 

starting from the flat base that is a typical characteristic of cumulus clouds. 

It is noticeable that the calculated optical thickness varies significantly. The smallest value 

corresponding to the edge of the cloud and the highest value to the centre. Thus, understandably, the 

shading is minimal when only the edge of the cloud passes over and the shading climaxes when the 

thickest centre passes over. The sun altitude angle was estimated to be 27.7  for that day and time. For 

the same vertical profile, a different sun altitude angle would result in a different length for the path 

followed by the sunlight through the cloud, resulting in a different optical depth for each instant, 

compared with the values featured in Figure 3.64. Those optical depths values are shown in Figure 3.65 

with a one-second time resolution between 9:07:33am and 9:07:45am. 

 

Figure 3.65 – Optical depth of the detected small passing cloud. 
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The optical thickness shown in Figure 3.65 has been calculated based on the beam intensity that was 

inferred from the measured current output from the monocrystalline array compared with the modelled 

clear-sky beam intensity, as shown in Figure 3.66. The refined TJ-based regression model has been 

used to estimate the clear-sky beam intensity while the optical depth τ has been calculated by using the 

expression (3.122) which is derived from an expression introduced in the previous chapter. 

 𝜏 = 𝑙𝑜𝑔 (
𝐼0
𝐼
) (3.122) 

 

Figure 3.66 – Measured and simulated beam intensities. 

In the expression (3.122), I represents the instantaneous actual beam intensity whereas I0 is the estimated 

clear-sky beam intensity. However, it must be noted that the exact same value of optical depth can be 

found with a ratio of measured and modelled clear-sky GHIs. 

It is also noticeable in the indirectly measured value of beam irradiance that not only the light intensity 

is dimmed when a cloud blocks the sunlight but also that the close proximity of a cloud that does not 

obstruct the sun or no longer obstructs the sun induces an amount of sunlight received by the PV array 

that exceeds the clear-sky light intensity. This can be due to the large reflection of sun light on the 

surface of cloud, effectively transforming the cloud in a secondary source of light. The quantity of 

reflected sunlight can indeed increase as the edge of a cloud moves closer to the target and it can 

decrease as the edge of the cloud moves away. This latter effect is visible in Figure 3.66, as the small 

cloud that was completely obstructing the sun clears away from 9:07:45. 
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3.5.10 Sun-Pixel Angle 

It can be useful to know how to define the angle between centre of the sun and the actual 3D position 

of an object corresponding to a specific projection on the sensor. This angle is called sun-pixel angle. 

In particular, some cloud tracking methods may require to know whether a cloud is located within a 

close angular perimeter from the centre of the solar disk. Also, it can be sometimes necessary to carry 

out a separate chromatic analysis and clear sky pixel discrimination between the circumsolar region, 

which is prone to strong scattering and the extrasolar region. In those examples, it may be required to 

know the sun-pixel angle for every pixel within the sky area. When a single point M_pixel is considered 

on the camera sensor, a simple dot product suffices to calculate the sun-pixel angle, as per Equation 

(3.123). In this equation, θ is the sun pixel angle between 𝑀 ⃗⃗ ⃗⃗ ⃗⃗ , the vector in the 3D world within the unit 

sphere centred on the position of the camera that points towards the spherical position of the centre of 

the sun and 𝑀_𝑝𝑖𝑥𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, the equivalent vector of M_pixel within same the unit sphere. 

 cos(𝜃) =
�⃗⃗⃗� ∙ 𝑀_𝑝𝑖𝑥𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

‖𝑀‖ ∙ ‖𝑀_𝑝𝑖𝑥𝑒𝑙‖
 (3.123) 

 

Figure 3.67 – 3D unit sphere (a) and 2D projection (b) featuring the sun and a pixel located in a 20 degrees 

periphery of the sun on 25/01/2017 at 9:19:41 am. 

This is illustrated in Figure 3.67 (a) where the unit sphere is featured with the vector M_sun pointing at 

the sun on 25/01/2017 at 9:19:41 am and the vector M_pixel pointing at a pixel located at an angle θ of 

20 degrees from M_sun. In this figure, the ground is represented in green and the sky in blue. The actual 

cardinal directions are shown with black axes while the cardinal directions seen by the camera is shown 

as red frame. Also, the horizon is shown with a blue gradient [145] and the outline of the masked 

background is shown with a grey line The equivalent 2D projection on the camera sensor is shown 
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Figure 3.67 (b) where the projected position of the both the sun and the same pixel with an angle of 20 

degrees are shown for the exact same moment. Also, the horizon is shown in blue and the true cardinal 

directions are shown in red. 

However, the process of calculating the dot product can be excessively time consuming when browsing 

every pixel of a high-definition large sky image. For example, when processing the 2992 × 2000 pixel 

images of our application, even after excluding masked pixels, 1,612,194 pixels remains to be 

processed. This means that it takes 95s to identify the pixels that are in the periphery of an angle with 

the sun in only one single image. 

Instead, it is about 600 times faster to draw a vertical cone with the desired opening angle θ and then 

rotate it by the zenith angle first and then by the azimuth angle of the centre solar disk, as shown in 

Figure 3.68. With this method, it only takes 0.16 s to identify the pixels that are within a given angle θ 

around the sun. 

 

Figure 3.68 – 3D unit sphere showing the original cone and the rotated cone. 

After applying this method, the 3D position of the vector pointing at the sun on 25/01/2017 at 7:19:41 

AM  looks like what is shown in Figure 3.69. 
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Figure 3.69 – 3D unit sphere showing the position of the sun and all of the pixels within 10 degrees around 

it on 25/01/2017 at 7:19:41 am. 

 

Figure 3.70 – 3D unit sphere showing the position of the sun and all of the pixels within 10 degrees around 

it on 25/01/2017 at 7:19:41 am. 
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The corresponding 2D projection on the camera sensor is shown in Figure 3.70. It can be noticed that 

the circle that represents the pixels within 10  around the centre of the solar disk is distorted, because 

of the projection function of the fisheye lens. To further illustrate that fact, the position of the sun every 

couple of hours has been plotted in Figure 3.71 throughout the day on 25/01/2017. 

 

Figure 3.71 – 3D positions of the sun every two hours during daytime on 25/01/2017. 



158 
 

The corresponding 2D projections of the position of the sun and of the 10  perimeters around it can be 

seen in Figure 3.72. It can be noticed that the higher the zenith angle, the lower the sun and thus the 

closer it appears to the horizon and the more distorted the angular perimeter around it. 

 

Figure 3.72 – Projected 2D positions of the sun every two hours during daytime on 25/01/2017. 

3.6 CONCLUSIONS ON IRRADIANCE, CLOUD, SUN AND SHADOW MODELLING 

Some astronomical considerations are sufficient to define the extra-terrestrial solar irradiance that 

would be received on the surface of the earth at a given place and time if there was no atmosphere. 

However, gases, aerosols and moisture in the atmosphere diffracts the extra-terrestrial beam radiance 

differently from one region of the world to another. This why empirical and physical irradiance models 

have been developed. For our application, we considered empirical models only and compared them 

with our own empirical measurements. It resulted from comparisons that the KC and Dazhi models 

were closest fits with the measurements. Based on this conclusion, we made a couple of linear 

regression inspired from each model and found that the lowest error was based on KC. This is thus the 

model we will consider using throughout this study. We also studied the optics of fisheye lenses that 

are used in ground sky-cameras like ours. It is important to calibrate properly a sky camera in order to 

translate accurately the 2D projection of the solar disk and clouds into their actual 3D positions in the 

sky.  
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4 CLOUD/SKY DISCRIMINATION AND CLOUD TRACKING 

4.1 INTRODUCTION AND PREREQUISITES 

Tracking clouds cannot be possible without two crucial preliminary steps. The first one consists in 

making sure of the quality of the pictures by choosing a proper sky camera and setting up the camera 

adequately. In addition, a regular maintenance routine is also needed to make sure that the shots can 

actually be processed. Once this first step is complete, the next step consists in defining a method to 

distinguish in every individual sky image the pixels corresponding to cloud and the pixels corresponding 

to clear sky.  

Thus, throughout this chapter, we will exhaustively review the hardware considerations that should 

be taken when installing and using a sky camera. An example of application of the advisory tool for 

cloud/clear sky pixel discrimination criterion will be shown and used on a dataset of sky images that 

have been adequately prepared. 

Introducing the cloud tracking part of the overall methodology, the Bayes theory will be presented 

and a couple of the possible practical implementations will be shown. The practical implementations 

will be tested on the pre-processed sky image dataset and their performance will be assessed. The 

implementations will be compared to each other and compared to the state-of-the-art methods in the 

field of cloud tracking. The results of the comparisons will then be discussed in depth. 

This chapter is strongly based on an article published in the peer reviewed IEEE journal 

Transactions on Sustainable Energy [3]. 

4.2 HARDWARE CONSIDERATION, CAMERA SETTINGS AND MAINTENANCE 

It must be stressed that it has been found that any hardware-related loss of information in the input 

pictures can unfortunately not be compensated by any software-based processing method at a later stage 

of the workflow. In other words, like many other systems, the quality of the hardware setup along with 

proper settings determine the quality of the input data, guaranteeing that this input data, which consists 

in sky images, are usable. This means that the hardware should be carefully chosen and maintained to 

avoid any loss of information that could compromise the entire system. 

4.2.1 Preparation of a Hardware Setup 

In order to ensure the quality of the entire sky imaging system, prior to installing an effective sky 

camera, four important points should be taken into account: 
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- Choosing an adequate camera can be a very tough since most of cameras that are available on 

the market have not been designed to take direct photographs of the sun. For most cameras, 

direct sun exposure does not correspond to normal lighting conditions and may result in overly 

overexposed pictures, unfit for the purpose of cloud tracking. In particular, the very large 

majority of automatic cameras such as compact cameras and surveillance cameras may be 

designed with some fixed settings that the user cannot change. Such fixed setting may 

unfortunately not be incompatible with sun tracking. Moreover, such settings cannot be 

modified on automatic cameras. Thus, the ability to set up light exposure on the photographs 

must be considered first and foremost. In addition to the availability of light exposure settings, 

the resolution of the camera sensor is another factor that can affect both the quality of images 

and the period of the time lapse. 

- The choice of a lens is also very important since it determines the field of view of the camera. 

- The camera must be enclosed in a proper weatherproof casing to be protected from the rain, 

hail, snow wind, dust, UV radiation, birds and insects. That casing must be reasonably easy to 

reach to be wiped on a regular basis or whenever needed. 

- The location of the camera is another extremely important factor. The wider the field of view 

of the camera, the more objects become visible on the pictures. In particular, with a fisheye 

lens, undesirable objects do not only constitute clutter but can also obstructs the view. 

Therefore, a sky camera should be ideally installed a few meters away for the solar panels for 

which the forecast is planned but away from light poles, fences and tall buildings. For that 

purpose, it is desirable to mount the sky camera on a rooftop or up a high pole. 

4.2.2 Recommended Choices and Recommended Settings 

We have endeavoured to cover the above mentioned problems. Any type of leisure camera (i.e. 

either a compact, bridge or digital single-lens reflex camera) equipped with a relatively narrow angle 

lens could be easily mounted on a tracking device that follows the course of the sun. However, this 

considerably limits the field of view of the camera and it does not enable to estimate the total cloud 

cover (TCC), which is a necessary parameter to consider when identifying cloud types. Thus, we chose 

to use a camera equipped with a fisheye lens, which has the widest available angle. Also, in order to be 

able to mount a fisheye lens on the camera and take photos with a reasonably high definition, change 

the exposure settings manually and take photos with a programmed time lapse, we chose a digital single-

lens reflex (DSLR) camera. In particular, we chose a Sigma 4.5 fisheye lens and used images from two 

DSLR cameras that enabled exposure settings: a Canon 500D and a Nikon D7100. The Nikon D7100 

was preferred in the end since it is a cheaper option and since the sensor features some very good 

chromatic properties, which is important for clear-sky and cloudy pixels discrimination. In addition, the 

D7100 features a larger range of exposure settings than its competitors of the same price range. 
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Empirically, the best settings for the Nikon D7100 have been defined as a centred-weighted area 

corresponding to a circle with a 10 mm diameter, along with a sensitivity of 100 ISO and a white balance 

set as direct sunlight 5200K. In terms of size of images, the size of 2992 × 2000 has been determined 

as the best compromise between high resolution and ease to process. 

However, we will mostly focus on the images we got from the Canon 500D to expose the 

principles of our proposed method. The images from the Nikon D7100 will be used in the next chapter 

to implement the method in actual online conditions and to correlate cloud tracking with PV power 

variations. 

It must also be noted that the solar disk itself on the images constitutes the most overexposed 

part of the picture. For this reason and because the solar disk needs to be told apart and isolated from 

the rest of the picture, some systems dispose of a tracker that follows and masks the sun. We decided 

for our part not to mask the sun, like some other studies before, and rather used a custom software post-

processing method to track the solar disk in the images. This method will be presented in the next 

chapter. 

4.2.3 Notes on Maintenance Routine and Camera Limitations 

For protection purposes, we enclosed our D7100 camera under a dome, in a weather-proof plastic 

box, at the top of a 4 meter high pole. The pole has been altered for the camera to be lowered down for 

maintenance on a weekly basis.  

However, using a DSLR under a dome implies that a large area becomes exposed and susceptible 

to get dirty quickly. It then becomes a requirement to wipe the outside of dome of on a weekly basis to 

remove dust, streak from the rain and bird droppings in order to keep good quality imagery. Failing to 

carry out that maintenance routine leads to a build-up of smudges and streaks, which are out-of-focus 

objects that make the images blurry and overexposed, effectively causing dramatic losses of 

information. 

An additional drawback to using DSLR camera is the lifespan of the system. DSLR cameras 

require the use of a physical shutter, which can only be triggered somewhere between a few 100,000 

and a few 1,000,000 times. This limitation constrains the user to restrain the time lapse to times when 

taking pictures is relevant, for example during day time only.  

It must be said that for research purposes, despite all of the above mentioned drawbacks, DSLR 

cameras remain affordable and very relevant to provide very high quality images that are usable for the 

purpose of cloud tracking. 
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4.3 CLEAR SKY PIXELS / CLOUDY PIXELS DISCRIMINATION 

4.3.1 Preparation of the Input Data 

Once an adequate set of pictures has become available, pre-processing these images is another 

important and possibly difficult task. However, this step is the next essential prerequisite prior to 

tracking clouds. The pre-processing step starts with the discrimination between pixels corresponding to 

clouds and pixels corresponding to clear-sky. For that purpose, for the sake of simplicity, we have 

decided to illustrate the method by using pictures from the Canon 500D that we have edited with 

Photoshop. A video of the time lapse is visible online [146]. Some frames have been extracted from the 

time frame and edited in order to make a new set of images by following the process in Figure 4.1. 

  

Figure 4.1 – Edition of a sky image with Photoshop. 

To illustrate this, from an original frame (a) as shown in the top left corner of, both background 

and clouds have been removed and the sun has been repositioned and coloured in green. The idea is to 

get a pure clear sky, as per the edited image (b) shown in the top right corner of Figure 4.1. In such an 

image, the only elements left from the original picture are:  

- The black corners of the fisheye lens, which have been edited to be perfectly black. 

- The clear sky, which has been extended to the entire panoramic field of view. 

- The sun, which has been deprived from its rays and limited to a simple solar disk. Due to its 

extreme brightness, the solar disk naturally appears both oversized compared to its actual size 

and extremely overexposed. For this reason, the sun can be very easily confused with clouds. 

This why colouring the sun in green helps to differentiate it from both clear sky and clouds. 
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In the meantime, two clouds from the original frame (a) have been retained with their original 

shape, position and colours in order to constitute a separate layer that can be added on top of the clear 

sky. The cloud layer on its own is shown superposed on a black background is visible in (c) at the 

bottom left corner of Figure 4.1. The reconstructed image is obtained by superimposing all the layers 

of both (b) and (c). Finally, a complete sky image is reconstructed as per frame (d) in the bottom right 

corner. A reconstructed image only consists in the superposition of Photoshop layers as shown in Figure 

4.2. 

 

Figure 4.2 – View of the layers stacked to reconstruct an image. 

 

Figure 4.3 – Various pixel classes. 

To summarise, each complete reconstructed image contains pixels that can be classified into 3 classes:  

- Clear-Sky Pixels 

- Cloudy Pixels  

- Other Pixels 
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A manual classification is illustrated in Figure 4.3 in the instance of a specific given sky image. The 

relevant pixels are shown in white. 

A set of 30 sky images has been prepared according to the preparation process explained above. As it 

can be seen in the few samples shown in Figure 4.4 below, in the sequence of images, the top cloud is 

static while the cloud on the left moves from right to left. The sun is initially not covered.  It only starts 

getting covered at the instant k = 17 and remains covered from that instant. Our objective will be to 

automate an accurate pixel classification that could be later on implemented online. 

 

Figure 4.4 – Example of a few images from the dataset at different instants k. 

4.3.2 Chromatic Analysis of the Input Data 

Cloud discrimination methods generally use the chromatic properties of pixels based on the way 

that visible sunlight is scattered according to the molecules that are present in the atmosphere [59]. 

When the atmosphere is clear and does not contain aerosols or clouds, the sky appears blue because the 

molecules present in the dry air scatter more blue light than red light. In contrast, clouds look white or 

grey because blue and red light are scattered in similar proportion [58]. 

Based on their chromatic properties, pixels can be discriminated by either using hue saturation value 

(HSV) or hue saturation level (HSL) colour models. However, red, green, and blue (RGB) colour 

models are more commonly used [58, 59, 147] and have thus been chosen in this study. It must be noted 

that the red (R), green (G) and blue (B) features of the class ‘Clear-Sky Pixels’ and the class ‘Cloudy 

Pixels’ are independent from one another. It is assumed that the number of occurrences of the R, G and 

B values for each pixel of each class follows a normal distribution, as it often occurs in nature. 
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Figure 4.5 – Number of occurrences of each red value (a), green value (b), and blue value (c) for the 

‘clear-sky pixels’ class (in blue) and the ‘cloudy pixels’ class (in red) of a given sky image. 

The number of occurrences of the red (R), green (G), and blue (B) values for each pixel corresponding 

to the classes ‘Clear-Sky Pixels’ and ‘Cloudy Pixels’ of the photo shown in Figure 4.3 (a). Only the 

pixels of each of these two classes (respectively shown in Figure 4.3 (b) and (c)) that have been sorted 

manually. 

It can be observed that there is a significant overlap between both classes, with many cloudy pixels (in 

red) that are closer to the mean value of the clear-sky class than they are from the mean value of their 

own class. This may lead to a significant confusion between both classes since a large number of cloudy 

pixels can be mistaken for clear-sky pixels. This is why a robust and accurate discrimination criterion 

must be used to classify pixels. 
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Figure 4.6 – Flow chart of the pixel discrimination assessment method. 

4.3.3 Pixel Discrimination Criterion Assessment Method 

A method has been designed to assess the accuracy of a given criterion. It consists in automatically 

classifying pixels in a reconstituted image like the one in Figure 4.3 (a) according to a given criterion 

and measure the errors in classification with respect to the count of pixels in references where all pixels 

belong to the same class. The complete flow to assess a pixel discrimination criterion is shown in Figure 

4.6. In all of the binary images shown in Figure 4.6, white pixels correspond to the state 1 while black 

pixels correspond to the state 0. 

The starting point is the RGB cloud layer of each image, shown in Figure 4.6 (b) and previously 

introduced in Figure 4.1 (c). It is used as a basis to obtain a reference binary image CD_REF of the 

cloudy pixels as shown in Figure 4.6 (g). The reference number of cloud pixels counted in the image 

CD_REF is noted ND_C. 

Meanwhile, the corresponding complete RGB frame (Figure 4.6 (a)) is masked (Figure 4.6 (c)) and 

used to obtain a reference binary image of the clear sky CS_REF (Figure 4.6 (d)). Clear-sky pixels are 
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detected in the masked complete RGB frame (Figure 4.6 (c)) with the pixel discrimination criterion that 

is under test. The criterion is used to identify clear-sky pixels, which are shown in white in the binary 

sky pixel criterion image CS_DET shown in Figure 4.6 (e). Also, the complement image is subsequently 

generated to identify the pixels of the original frame that correspond to clouds, as shown in the binary 

cloud pixel criterion image CD_DET shown in Figure 4.6 (f). 

It is possible to assess the accuracy of the discrimination criterion by comparing the binary sky pixel 

criterion image CS_DET (Figure 4.6 (e)) with its reference clear-sky image CS_REF (Figure 4.6 (d)). 

The reference number of clear-sky pixels that are counted in the image CS_REF is noted ND_S. 

There are two different errors to measure between the extracted clear-sky pixel image and its reference 

image. One error is the number UD_S of clear-sky pixels that have not been detected while another 

error is the number ED_S of pixels that have been wrongly detected clear-sky pixels whereas there were 

not. The error of undetected clear-sky pixels is obtained by combining the complement of effectively 

detected clear-sky pixels CS_DET with the reference CS_REF, which can be noted CS_REF & 

CS_DET . The position of the undetected pixels is shown in the resulting image, which is Figure 4.6 

(h). The number of undetected pixels UD_S is the count of pixels in white in Figure 4.6 (h). On the 

other hand, the error of pixels erroneously detected as clear-sky results from the combination of 

CS_DET with the complement of CS_REF, which can be noted CS_DET & CS_REF  . The position 

of the pixels in excess can be seen in Figure 4.6 (i). The number of pixels wrongly detected as clear-

sky is noted ED_S and is the number pixels in white in Figure 4.6 (i). 

The total error in absolute value corresponding to the detection of clear-sky pixels is the sum of the 

undetected pixels and of the pixels that were erroneously detected UD_S + ED_S. The equivalent 

relative error value, expressed as a percentage is then the absolute value divided by the reference number 

of expected clear-sky pixels, which means (UD_S + ED_S) / ND_S. 

A similar process can be conducted to assess the error in the count of cloudy pixels. The number of 

cloudy pixels CD_DET detected by the criterion under test can be compared with the reference number 

of cloudy pixels CD_REF. On the one hand, the position of undetected cloudy pixels as seen in Figure 

4.6 (j) results from the combination of the reference cloudy pixels CD_REF and the complement of 

detected cloudy pixels CD_RET, which is CD_REF & CD_DET  . The number of undetected cloudy 

pixels is noted UD_C and corresponds to the number of pixels in white in Figure 4.6 (j). On the other 

hand, the position of incorrectly detected cloudy pixels as seen in Figure 4.6 (k) results from the 

combination of detected cloudy pixels CD_RET and the complement of the reference cloudy pixels 
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CD_REF and, which is CD_DET & CD_REF  . The number of erroneously detected cloudy pixels is 

noted ED_C and corresponds to the number of pixels in white in Figure 4.6 (k). 

Similarly to what was presented for the clear-sky pixels, the total error in absolute value for the detection 

of cloudy pixels is the sum of the undetected pixels and of the pixels that were incorrectly detected 

UD_C + ED_C. The corresponding relative error value is (UD_C + ED_C) / ND_C. 

4.3.4 Discrimination Criteria 

4.3.4.1 Simple Bayes Filter 

We made the hypothesis that a simple Bayes classifier [148] could be trained to classify pixels 

since the R, G and B features of the each class of pixels are independent from one another. A simple 

Bayes classifier is also sometimes referred to as naïve Bayes classifier and is a classifier based on Bayes’ 

theorem. Its purpose is to classify the data in various classes. In the case of continuous data, it is assumed 

that the distribution of data in each class is Gaussian. For our application, we have trained a simple 

Bayes with the chromatic values of the single layer of clear-sky pixels so that it could recognize clear-

sky pixels. We used for that purpose a reference clear-sky image in which the sun and the background 

have been masked as per Figure 4.7 (b). We have also trained it with the chromatic values of in the 

single layer of cloudy pixels as shown in Figure 4.7 (c). Overall, the training may exceed a full minute 

when run on MATLAB (80 seconds). 

 

Figure 4.7 – Reference clear-sky image (a), masked reference clear-sky image (b), and reference cloud 

layer (c). 
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Figure 4.8 – Comparison between the reference sky (a) and the simple Bayes pixel criterion for sky pixels 

(b) and between the reference cloud (c) and the simple Bayes pixel criterion for clouds (d). 

When assessed with the method explained in the previous section, a simple Bayes filter 

approach proves however to be relatively inaccurate and quite slow. While the average error across all 

30 images happen to be about 20%, it also takes in average around 10 seconds to run the pixel 

discrimination with a trained simple Bayes pixel discrimination method. More detailed results can be 

found in Appendix A. 

Basically, a confusion between both classes can be noticed around the solar disk and in the dark 

shaded parts of the clouds, as one can see in Figure 4.8. The reference clear-sky pixels are shown on 

the top left-hand side of Figure 4.8 (a) while the pixels that are identified as clear-sky by the simple 

Bayes filter are shown on the top right-hand side of Figure 4.8 (b). Similarly, the reference cloud layer 

is shown on the bottom left-hand side of Figure 4.8 (c). That reference cloud image should be compared 

with the pixels that have been identified as clouds shown in the bottom right-hand side of Figure 4.8 
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(d). A significant confusion between both classes can be noticed around the solar disk and near the 

horizon as well as on the edge of clouds. 

Since we would like to discriminate pixels in a less than 1 second with the highest accuracy possible, 

alternative pixel discrimination criteria should be investigated. 

4.3.4.2 Threshold-based Criteria 

A few reliable RGB-based criteria are readily available in literature as shown in Table 4.1, 

despite the fact that automatic cloud detection is a relatively new topic that is still under investigation. 

Generally speaking, these criteria consists in combining the values of two features (mostly R and B) 

with the purpose of separating the mean values of each class apart. In particular, Long et al. have used 

the ratio R/B as a discrimination criterion [147] while Heinle, Macke, and Srivastav have observed an 

improved accuracy with the difference B–R with respect to the ratio [58]. On the other hand, 

Kazantzidis et al., have enhanced the B–R criterion for even more accuracy [59]. Nonetheless, when 

we plot the average number of occurrences of each criterion across all pixels of the entire dataset, Long 

et al.’s R/B ratio criterion, shown in Figure 4.9 (a), spreads each class’s mean values furthest apart, 

compared with the other difference criteria, which can be seen in Figure 4.9 (b) and Figure 4.9 (c). The 

blue component used in Kazantzidis et al.’s approach is shown in Figure 4.5 (c). 

 

Figure 4.9 – Number of occurrences of each R/B value (a), R-B value (b), and B-G value (c). 
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It must be noted that the three above mentioned criteria are intended for directly detecting clear-sky 

pixels and not cloudy pixels. Cloudy pixels are actually inferred indirectly. The criteria are presented 

in with some indicative thresholds Thi, where 1 ≤ i ≤ 4, in Table 4.1. The threshold values suitable for 

times during the middle of the day are listed in Table 4.2, when applied to our dataset.  

Table 4.1 – Criteria used for pixel discrimination. 

Criterion # Criterion Formula Average Minimal Error (%) 

1 [147] R / B ≤ Th1 0.68 

2 [58] B – R > Th2 2.08 

3 [59] ((B – R > Th2) & (B – G > Th3) & (B > Th4)) 2.08 

Table 4.2 – Indicative optimal threshold values for a minimal error. 

Threshold Th1 Th2 Th3 Th4 

Optimal Value 0.77 20-22 0-12 55-57 

Please note that the threshold values for each criterion depend heavily on the camera sensor and may 

significantly vary from a camera to another.  

The performance of all three criteria has been assessed according to the method explained in Section 

4.3.3. The average value of the total error for all 30 images expressed as a percentage in the rightmost 

column of Table 4.1. 

Although the multicolour criterion has been identified in literature as the most accurate, in our specific 

case, Long et al.’s R/B criterion proves to be the most accurate. Also, the R/B criterion demonstrates to 

be extremely robust over all 30 images, as the optimal threshold value for a minimal error is the same. 

In comparison, the two other criteria require variable optimal threshold values from one image to the 

next. For all these reasons, the ratio criterion has been chosen as the preferred criterion for this study. 

4.4 AUTOMATIC CLOUD CLASSIFICATION AND OPTICAL DEPTH 

It might be necessary to classify clouds automatically in the case of an online hardware implementation 

of the forecasting method presented in this thesis. Hence, a set of spectral and textural features needs to 

be used to identify cloud types. Such a set can be the ones used by Heinle et al. [58] on the basis of 

statistical metrics introduced by Haralick et al [149] computed from Grey Level Co-occurrence 

Matrices (GLCM), as already mentioned in Chapter 2 and detailed in Heinle et al (2010) [58] have 

automated the classification of clouds according to their type as a further step following the clear/cloudy 

classification. On the basis of their Fisher Distances, a technique used in satellite imagery (Pankiewicz, 

1995), 12 features have been selected to classify clouds. Seven of these features are spectral while 4 are 

textural and 1 is simply the total cloud cover. Indeed, the spectral features of an image do not provide 

any information about the spatial distribution of clouds. 
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As a matter of fact, solely using colours proves to be insufficient to distinguish altocumulus from 

stratocumulus clouds. This is why textural features must also be taken into consideration. In addition, 

the cloud cover is also used as a feature to tackle the issue of spatial distribution. In particular, this helps 

to distinguish stratiform clouds from the rest. 

The colour information of each cloud image is partitioned into a set of three monochromatic (also 

referred to as Grey Level) red (R), green (G) and blue (B) data sets. Each monochromatic partial image 

is treated separately as levels of R or G or even B. The average colour and the tonal variation of the 

image both provide some useful information to distinguish thick and thin clouds, or even high altitude 

bright clouds from the others. The colour component B proved to have the highest separation power 

because it is the dominant colour of the sky. 

.  

The aspect of automatic cloud classification based on their type will be further investigated in the next 

chapter, based on physical observations. However, an automatic cloud classification is not vital for this 

study since only cumulus clouds have been tracked. For that purpose, a manual selection has been made 

to retain cumulus clouds only in the sky images that have been processed. 

4.5 CLOUD TRACKING AND RANDOM FINITE SET BASED FORECASTING APPROACHES 

A few cloud tracking methods have been developed in recent years [30, 38, 125]. In particular, 

Jayadevan and Cronin, aided by Brooks, Rodriguez, Koch, Leuthold, and Lonij have processed the sky 

images from a wide-angle camera mounted on a dual-axis sun-tracker [38, 150]. They have extracted 

cloud motion vectors from the processed pictures on the basis of a block-motion estimation algorithm, 

determining the cloud velocity in the images, in pixels/second. Assuming cloud velocity to be constant, 

they have managed to forecast cloud position up to 10 minutes ahead. Similarly, Chow, Urquhart, Lave, 

Dominguez, Kleissl, Shields, and Washom have determined cloud velocity and direction up to 5 

minutes ahead through a cross-correlation method applied to two consecutive images [30]. Both 

methods require to project images in sky coordinates to remove the distortion due to the distance of 

objects from the optical axis of the camera. However, these methods do not account for the cloud 

dynamics and may become relatively inaccurate in the case of clouds with fast changing shapes. In 

contrast, Wood-Bradly, Zapata, and Pye have used an implementation of the Lucas-Kanade optical flow 

method with OpenCV functions to track clouds for up to 40 seconds [125]. Although very accurate for 

very-short term forecasts, such an approach is unfortunately too computationally expensive as too many 

features are tracked. Thus, such a method does not permit an online implementation. Also, all of the 

above mentioned techniques used images from automatic cameras that saturated around the sun, 

preventing proper tracking of the clouds that could mask the solar disk. 
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In the method discussed in this thesis, tracking clouds from sky pictures can be seen as a typical multi-

target image processing problem in the random finite set framework.  

Firstly, the number of targets is not known in advance and needs to be assessed. During the time between 

two consecutive shots, some new targets may be born or some known targets may not survive. 

Spawning, e.g. the birth of new targets from existing ones, may also occur [151]. 

Secondly, the identification of individual clouds is not required. The main problem consists in 

forecasting when any cloud whatsoever masks the sun.  

Thirdly, the data captured by sensors is never perfect and may include some clutter mingled with actual 

data. Clutter can be defined as some irrelevant information that does not correspond to any actual target. 

Random Finite Set (RFS) modelling is the most fitted tool to deal with all of these characteristics. The 

Probability Hypothesis Density (PHD) filter and Cardinalised Probability Hypothesis Density (CPHD) 

filter are two practical implementation [152] of the RFS approach. They are actually approximations of 

the RFS model involving a few assumptions that will be described in the upcoming sections. 

4.5.1 Probability Hypothesis Filtering (PHD) 

4.5.1.1 Assumptions made by the PHD Filter 

A PHD filter assumes that all targets evolve and generate measurements independently from one 

another. It also assumes that the predicted targets and clutter are Poisson RFSs. An RFS ψ is Poisson if 

the objects of ψ are spatially distributed according to the distribution Sψ(y), and in which the number 

|ψ| of objects in ψ is Poisson-distributed. The number of targets can be expressed as in Equation 4.1. 

 
𝑁𝜓 = ∫𝐷𝜓(𝑦) 𝑑𝑦 (4.1) 

The Poisson distribution is given by Equation 4.2. 

 𝑃𝜓(𝑛) = 𝑒
−𝑁𝜓 ∙

𝑁𝜓
𝑛

𝑛!
 (4.2) 

This implies in particular that the predicted multi-target distribution fk+1|k (X | Z(k)) is approximated by 

the expression (1) where Dk+1|k (X | Z(k)) is the probability hypothesis density a time k+1 knowing 

measurements Z(k) at time k: 

 
𝑓𝑘+1|𝑘(𝑋|𝑍

(𝑘)) ≅ 𝑒𝑁𝑘+1|𝑘 ∏𝐷𝑘+1|𝑘(𝑋|𝑍
(𝑘))

𝑥 ∈ 𝑋

 (4.3) 
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Additionally, the birth RFSs and the surviving RFSs are assumed independent from one another. 

Finally, the clutter RFS is assumed independent from measurement RFSs. The PHD filter can either be 

implemented with a particle filter as a Sequential Monte-Carlo (SMC) filter [153, 154] or with a Kalman 

filter as a Gaussian-Mixture (GM) filter [151]. While a SMC-PHD has been successfully used for the 

purpose of cloud tracking with satellite images by Addesso et al. [124], the GM approach has been 

preferred in this study. Indeed, it is better-suited for linear systems and has also been identified as 

superior [155]. 

PHD filters are meant to propagate the intensity. However, in our practical cloud tracking application, 

the filter actually assesses and propagates the information related to the centroid of each relevant cloud. 

If we consider the ith cloud among the total number of Jk at time k, the propagated information is in the 

form of the triplet {w(i)
k, m

(i)
k, P

(i)
k}. The quantity w represents the weight of the triplet, m the mean 

value of the cloud’s centroid coordinates and P is the covariance. In the case of a GM-PHD, the Kalman 

filter is characterized at any given time k by its transformation matrix Fk, the noise related to 

transformation matrix Qk, the observation matrix Hk and the noise related matrix Rk. With that said, the 

following three conditions must be fulfilled for linear GM-PHD implementations: 

Each target follows a linear Gaussian dynamic model and is detected with a sensor that has linear 

Gaussian measurement model. In other words, the transition function fk|k-1(x|ζ) and the likelihood 

function gk(z|x) are both assumed to follow a normal distribution, as shown in the equations 4.4 and 4.5. 

The target x is characterized by a previous state ζ while z is a measurement. 

 
𝑓𝑘|𝑘−1(𝑥|𝜁) = 𝑁(𝑥; 𝐹𝑘−1𝜁, 𝑄𝑘−1) (4.4) 

 
𝑔𝑘(𝑧|𝑥) = 𝑁(𝑧;𝐻𝑘𝑥, 𝑅𝑘) (4.5) 

The probabilities for targets to be detected pD,k or to survive pS,k at time k are state independent, which 

means pS,k(x) = pS,k and pD,k(x)= pD,k. 

The intensities of birth γk, spawn υβ, and survival υS RFSs are the following respective Gaussian 

mixtures: 

 𝛾𝑘(𝑥) =∑𝑤𝛾,𝑘
(𝑖)
𝑁(𝑥;𝑚𝛾,𝑘

(𝑖)
, 𝑃𝛾,𝑘

(𝑖)
)

𝐽𝛾,𝑘

𝑖=1

 (4.6) 

 𝜐𝛽,𝑘|𝑘−1(𝑥) = ∑∑𝑤𝑘−1
(𝑗)
 𝑤𝛽,𝑘

(𝑙) ∗ 𝑁 (𝑥;𝑚𝛽,𝑘|𝑘−1
(𝑗,𝑙)

, 𝑃𝛽,𝑘|𝑘−1
(𝑗,𝑙)

)

𝐽𝛽,𝑘

𝑙=1

𝐽𝑘−1

𝑗=1

 (4.7) 
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 𝜐𝑆,𝑘|𝑘−1(𝑥) = 𝑃𝑆,𝑘∑𝑤𝑘−1
𝑗

𝑁(𝑥;𝑚𝑆,𝑘|𝑘−1
(𝑗)

, 𝑃𝑆,𝑘|𝑘−1
(𝑗)

) (4.8) 

The total predicted intensity for time k is a Gaussian mixture given by Equation 4.9. 

 
𝜐𝑘|𝑘−1(𝑥) = 𝜐𝑆,𝑘|𝑘−1(𝑥) + 𝜐𝛽,𝑘|𝑘−1(𝑥) + 𝛾𝑘(𝑥) (4.9) 

The quantities Jγ,k, w(i) γ,k, m(i) γ,k, and P(i) γ,k , with i=1,…, Jγ,k, are given model parameters upon which 

depends the shape of the birth intensity. In a similar manner, Jβ,k, w
(i)

β,k, F
(i)

β,k-1, d
(i)

β,k-1, and Q(i)
β,k-1 , with 

j = 1,…, Jβ,k, are responsible for the shape of a target with a previous state ζ. 

If all the conditions previously mentioned are fulfilled, the intensity at time k–1 is the following 

Gaussian mixture, as per Equation 4.10: 

 𝜐𝑘−1(𝑥) = ∑ 𝑤𝑘−1
𝑖

𝐽𝑘−1

𝑖=1

𝑁(𝑥;𝑤𝑘−1
(𝑖) , 𝑃𝑘−1

(𝑖) ) (4.10) 

Assuming all the conditions above mentioned are fulfilled, the predicted intensity for time k is in the 

Gaussian mixture form given by Equation 4.11. 

 𝜐𝑘|𝑘−1(𝑥) = ∑ 𝑤𝑘|𝑘−1
(𝑖)

𝐽𝑘|𝑘−1

𝑖=1

𝑁(𝑥;𝑚𝑘|𝑘−1
(𝑖)

, 𝑃𝑘|𝑘−1
(𝑖)

) (4.11) 

Then, the posterior intensity at time k is also in Gaussian mixture form and is shown in Equation 4.12. 

It models the intensity of the sum of all missed terms and all possible combinations between targets and 

measurements. 

 
𝜐𝑘(𝑥) = (1 − 𝑃𝐷)𝜐𝑘|𝑘−1(𝑥) + ∑ 𝜈𝐷,𝑘(𝑥; 𝑧)

𝑧 ∈ 𝑍𝑘

 (4.12) 

In Equation 4.12, the various parameters are expressed as follows: 

 𝜐𝐷,𝑘(𝑥; 𝑧) = ∑ 𝑤𝑘
(𝑗)(𝑧)𝑁 (𝑥;𝑚𝑘|𝑘

(𝑗)
∙ 𝑃𝑘|𝑘

(𝑗)
)

𝐽𝑘|𝑘−1

𝑗=1

 (4.13) 

The implementation of the overall PHD filter recursion can be summarized in Figure 4.10. The 

implementation starts with an initialization stage, with the initial weight w0, initial mean m0, initial 

covariance P0, and the cardinality of the filter. Also, the number of targets is initialized to 0. 
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Figure 4.10 – Flowchart of the implementation of a PHD filter. 

The total predicted intensity for time k is a Gaussian mixture given by Equation 4.9. If all the conditions 

previously mentioned are fulfilled, the intensity at time k–1 is a Gaussian mixture given by Equation 

4.10. Assuming all the conditions above mentioned are fulfilled, the predicted intensity for time k is in 

Gaussian mixture form as per Equation 4.11. Then, the posterior intensity at time k is also in Gaussian 

mixture form and is shown in Equation 4.12. It models the intensity of the sum of all missed terms and 

all possible combinations between targets and measurements. 

4.5.1.2 Initialization of the Filter 

In each image, only the objects with an area greater than 600 square pixels are considered as targets 

since smaller targets cannot create any significant shade. In our application, only two clouds of 

significant size are present in the images. They are identified as targets and their shape are enclosed 

within bounding boxes. It is drastically simpler and faster to track bounding boxes instead of entire 

clouds. The main information is the centroid of each target. The precise shape of the cloud is also saved 

at every run. 
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4.5.2 Kalman Prediction of Births 

The next step of the filter is the prediction of the triplet {wk|k-1,mk|k-1,Pk|k-1} based on the triplet {wk-1,mk-

1,Pk-1} from the previous run. The weight wk|k-1 is predicted on the basis of the probability rate pS,k at 

time k that a target survives until the next step, as per Equation 4.14. In our implementation, the survival 

rate is fixed at a constant value of 99%, at any time, as it is very unlikely for a genuine target to vanish 

from one step to the next. On the other hand, the mean mk|k-1 and the covariance Pk|k-1 are predicted 

through a Kalman filtering method, as per equations 4.15 and 4.16 respectively. 

 
𝑤𝑘|𝑘−1
(𝑗)

= 𝑃𝑆,𝑘 ∗ 𝑤𝑘−1
(𝑗)

 (4.14) 

 
𝑚𝑘|𝑘−1
(𝑗)

= 𝐹𝑘 ∗ 𝑚𝑘−1
(𝑗)

 (4.15) 

 
𝑃𝑘|𝑘−1
(𝑗)

= 𝑄𝑘 + 𝐹𝑘 ∗ 𝑃𝑘−1
(𝑗)

∗ 𝐹𝑘
𝑇 (4.16) 

4.5.2.1 Kalman Update of Predicted Targets 

The step that follows consists in updating the state {wk|k,mk|k,Pk|k} based on the measurement z made at 

time k. However, in the absence of measurements for this run, the updated mean value and covariance 

remain the predicted ones. This means mk|k=mk|k-1 and Pk|k=Pk|k-1. Also, the updated weight becomes the 

predicted weight multiplied by the probability of non-detection pnD=2%, wk|k= pnD×wk|k-1. 

 
𝑤𝑘|𝑘
(𝑗)(𝑧) =

𝑃𝐷,𝑘 ∗ 𝑤𝑘|𝑘−1
(𝑗)

∗ 𝑞𝑘
(𝑗)(𝑧)

𝐾𝑘(𝑧) + 𝑃𝐷,𝑘 ∑ 𝑤𝑘|𝑘−1
(𝑙)

∗ 𝑞𝑘
(𝑙)(𝑧)

𝐽𝑘−1
𝑙=1

 (4.17) 

 
𝑚𝑘|𝑘
(𝑗) (𝑧) = 𝑚𝑘|𝑘−1

(𝑗)
+ 𝐾𝑘

(𝑗)
∗ (𝑧 − 𝐻𝑘 𝑚𝑘|𝑘−1

(𝑗)
) (4.18) 

 
𝑃𝑘|𝑘
(𝑗)
= 𝑃𝑘|𝑘−1

(𝑗)
∗ (𝐼 − 𝐾𝑘

(𝑗)
𝐻𝑘) (4.19) 

The quantities qk and Kk are defined as follows: 

 
𝑞𝑘
(𝑗)(𝑧) = 𝑁 (𝑧; 𝐻𝑘 ∗ 𝑚𝑘|𝑘−1

(𝑗)
, 𝑅𝑘 +𝐻𝑘 ∗ 𝑃𝑘|𝑘−1

(𝑗)
∗ 𝐻𝑘

𝑇) (4.20) 

 𝐾𝑘
(𝑗)
= 𝑃𝑘|𝑘−1

(𝑗)
∗ 𝐻𝑘

𝑇(𝑗)
∗ (𝐻𝑘 ∗ 𝑃𝑘|𝑘−1

(𝑗)
∗ 𝐻𝑘

𝑇 + 𝑅𝑘)
−1

 (4.21) 

4.5.2.2 Pruning 

The increasing number of Gaussian components over time pauses a computational problem. The 

number of components in the posterior intensity increases without any limit. Therefore, a simple 

pruning method can be used to reduce the number of components that are propagated to the next step 
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through the recursion. This can be done by truncating components that are characterized by a weight wk 

below a given threshold. In our application, this threshold is set to T=10-5. Also targets verifying a 

Mahalanobis distance below U=20 are labelled. The Mahalanobis distance is a measure of the distance 

between a point P and a distribution D. It is widely used in clustering. For any given observation 𝑥 from 

a set X defined by a mean value m and a covariance matrix S, the Mahalanobis distance is defined as: 

 𝑑𝑀(𝑥) = √(𝑥 −𝑚) ∙ 𝑆 ∙ (𝑥 −𝑚)
𝑇 (4.22) 

Targets are also merged if their number exceeds a maximum of Jmax=100, which is not the case in 

our example where only two clouds are featured. 

4.5.2.3 Extraction and Forecast 

To compute the forecasted position of the centre of mass of each target j at time k+1, the extracted mean 

value mex,k at time k is multiplied by the transformation matrix Fk as per the equation (21). In our 

application, the position of a target j is forecasted 60 steps ahead, based on the same fixed Fk, as per 

(21) where i represents the number of steps ahead. As a downside, the estimate of the number of targets 

tends to lose accuracy in the presence of false alarms and missed detections. As an improvement of the 

PHD filter, Mahler [156] has designed the CPHD as a generalization of the recursion. 

 
𝑚𝑘+𝑖|𝑘
(𝑗)

= 𝐹𝑘
𝑖 ∗ 𝑚𝑘|𝑘

(𝑗)
    𝑖 = 1,… , 60 (4.23) 

4.5.3 Cardinalised Probability Hypothesis Filtering (CPHD) 

The overall design of the CPHD filter is similar to the PHD with the exception that the CPHD 

assumes generalized Poisson RFSs. Another difference is the nature of the prior, predicted and clutter 

RFSs, which are assumed to be independent and identically distributed with a probability density ν/N, 

where N =  ν (x) dx. Also, the Newton-Girard formula is used to compute the elementary symmetric 

function of order j [157] as per Equation 4.24), where conventionally, e0 (Z) = 1. 

 
𝑒𝑗(𝑍) =  ∑ (∏𝜁

𝜁 𝜖 𝑆

)

𝑆 ⊆ 𝑍,|𝑍|=𝑗

 (4.24) 

Moreover, for a posterior intensity νk–1 and a posterior cardinal distribution pk–1 given at time 

t–1, the intensity νk|k–1 and the cardinality distribution associated with the predicted multi-target state 

pk|k–1 are given by equations 4.25 and 4.26. 

 
𝜈𝑘|𝑘−1(𝑥) = ∫𝑃𝑆,𝑘(𝜁)𝑓𝑘|𝑘(𝑥|𝜁)𝜐𝑘−1(𝜁) 𝑑𝜁 + 𝛾𝑘(𝑥) (4.25) 
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𝑝𝑘|𝑘−1(𝑛) =∑𝑝Γ,𝑘(𝑛 − 𝑗)∏ [𝜈𝑘−1, 𝑝𝑘−1]

𝑘|𝑘−1
(𝑗)

𝑛

𝑗=0

 (4.26) 

Where: 

 
∏ [𝜐, 𝑝](𝑗) =∑𝐶𝑗

𝑙
〈𝑝𝑆,𝑘 , 𝜐〉

𝑗〈1 − 𝑝𝑆,𝑘, 𝜐〉
𝑙−𝑗

〈1, 𝜐〉𝑙

∞

𝑙=𝑗
𝑘|𝑘−1

𝑝(𝑙) (4.27) 

Similarly, if the posterior intensity νk|k–1 and the posterior cardinal distribution pk|k–1 are given 

at time t, then the updated cardinality distribution state pk and the updated intensity νk are given by the 

equations 4.28 and 4.29. 

 
𝑝𝑘(𝑛) =

𝑌𝑘
0[𝜈𝑘|𝑘−1, 𝑍𝑘](𝑛)𝑝𝑘|𝑘−1(𝑛)

〈𝑌𝑘
0[𝜈𝑘|𝑘−1, 𝑍𝑘], 𝑝𝑘|𝑘−1〉

 (4.28) 

 

𝜐𝑘(𝑛) =
〈𝑌𝑘
1[𝜈𝑘|𝑘−1, 𝑍𝑘], 𝑝𝑘|𝑘−1〉

〈𝑌𝑘
0[𝜈𝑘|𝑘−1, 𝑍𝑘], 𝑝𝑘|𝑘−1〉

[1 − 𝑃𝐷,𝑘(𝑥)]𝜈𝑘|𝑘−1

+∏
〈𝑌𝑘
1[𝜈𝑘|𝑘−1, 𝑍𝑘\{𝑧}], 𝑝𝑘|𝑘−1〉

〈𝑌𝑘
0[𝜈𝑘|𝑘−1, 𝑍𝑘], 𝑝𝑘|𝑘−1〉

𝜓𝑘,𝑧(𝑥)𝜐𝑘|𝑘−1(𝑥)

𝑧𝜖𝑍𝑘

 

(4.29) 

Where: 

 

 

𝑌𝑘
𝑢[𝜐, 𝑍](𝑛) = ∑ (|𝑍| − 𝑗)! 𝑃𝐾,𝑘(|𝑍| − 𝑗)𝑃𝑗

𝑛

𝑚𝑖𝑛(|𝑍|,𝑛)

𝑗=0

+ 𝑢

∗
〈1 − 𝑃𝐷,𝑘 , 𝜐〉

𝑛

〈1, 𝜐〉𝑛
𝑒𝑗(Ξ𝑘(𝜐, 𝑍)) 

(4.30) 

 𝜓𝑘,𝑧(𝑥) =
〈1 − 𝐾𝑘〉

𝐾𝑘(𝑧)
𝑔𝑘(𝑧|𝑥)𝑃𝐷,𝑘(𝑥) (4.31) 

 
Ξ𝑘(𝜐, 𝑍) = {〈𝜐,Ψ𝑘,𝑍〉: 𝑧 ∈ 𝑍} (4.32) 

The number of targets can be estimated through a maximum a posteriori (MAP) estimator. The 

number of components to propagate is pruned by the minimum between the MAP estimator and the 

weight threshold. Further details regarding the CPHD filter and its implementation can be found in 

Mahler’s [155] and Vo et al.’s [157] analyses. 

4.5.4 State of the Art Methods 

In contrast with the proposed Bayes filter, a few state-of-the-art approaches have been used in 

literature for the purpose of cloud tracking for very-short term solar power forecasting. An extensive 

literature review has been conducted to depict the state-of-the-art of very short-term PV power 

forecasting [1]. Among recent projects, Jayadevan, Cronin, Brooks, Rodriguez, Koch, Leuthold, and 

Lonij have extracted cloud motion vectors (CMV) from the pictures of a wide-angle camera mounted 

on a dual-axis sun-tracker [38, 150]. They utilized a block-motion estimation algorithm to determine 

the cloud velocity in pixels/second in each image. With a persistence approach, they have managed to 
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forecast cloud positions up to 10 minutes ahead. Similarly, Chow, Urquhart, Lave, Dominguez, Kleissl, 

Shields, and Washom have determined cloud velocity and direction up to 5 minutes ahead through a 

cross-correlation method (CCM) applied to two consecutive images [30]. However, these methods do 

not account for the cloud dynamics and may become relatively inaccurate when dealing with clouds 

that are characterized by fast changing shapes. Another team composed of Wood-Bradley, Zapata, and 

Pye have used the Lucas-Kanade optical flow (OF) method to track clouds for up to 40 seconds [125]. 

With a 5.3% to 21.2% error in sun-shading time (also called ‘time to collision’) estimates, it is well 

suited for very-short term forecasts. However, such an approach is unfortunately computationally too 

expensive and thus may not be suitable since it requires to extract a large number of features to track 

clouds. Thus, such a method may not permit an online implementation. 

 

Figure 4.11 – Movement of all extracted features over time. 

The Lucas-Kanade algorithm for Optical Flow (LKOF) has been implemented in Python with the 

mathematical toolbox Numpy for comparison purposes. The implementation has been based on Wood-

Bradley, Zapata, and Pye’s work [125]. The method consists in discriminating the cloudy pixels from 

the clear-sky pixels in each RGB sky image on the basis of the R/B ratio criterion, as previously 

described. The resulting binary cloud image is then smoothed with a 5×5 Gaussian kernel by using an 
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OpenCV function. Some relevant features have been extracted where high gradients of colours are 

detected, which effectively, enabled to identify the edges of clouds. Across all pictures, a total of 119 

features have been identified. A view of the movement of these features over time is visible in Figure 

4.11. Among those features, the feature identified as #35 has been identified as very relevant since its 

trajectory covers the sun. The trajectory of this feature over time can be seen in Figure 4.12 (a). One 

can see that the direction of the lines joining two consecutive positions of the same feature may change 

quite a lot over time. The trajectory lines at step k=2, k=14, and k=28 are featured in Figure 4.12 (a). 

 

Figure 4.12 – Position of the feature 35 over time (a) and after linear regression (b). 

 

Figure 4.13 – Cloud Signal along regression line for feature #35 at step 28. 
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At each step, the features are tracked using a Lucas-Kanade Optical Flow function in OpenCV. The 

locations of the features across all images is stored in a list. However, since the locations of the features 

do not form a straight line, a linear regression of all the locations is undertaken to obtain the average 

direction of the movement of each feature. As an example, the linear regression for the feature number 

35 is shown in Figure 4.12 (b). Such a regression line can be read as 1-dimensional representation of 

the trajectory of the feature as seen in Figure 4.13. Across each line, the pixels encountered 

corresponding to clear-sky pixels are given the value 0 while pixels corresponding to a cloudy pixel is 

given the value 255. If some pixels along the line belong to the sun, there are given the value 100 and 

the corresponding feature is then considered as risky in terms of sun cover. The time to sun cover is 

calculated by dividing the distance from the current feature position to the nearest sun pixel by the 

average speed of the feature along the regression line. 

Comparison and Discussion 

4.5.4.1 Performance Metrics 

To evaluate the prediction performance of each filter, the input images themselves are used as 

a benchmark and two different metrics are assessed against that benchmark. 

Firstly, we look at how accurately we can forecast in advance the time when the sun will start being 

covered. In other words, we assess during each step how many more steps are incorrectly forecast until 

the sun gets covered by any cloud. This is the Time to Sun Collision (TSCE). Although, that metric is 

assessed at every step, it takes 5 steps for the filter to model properly the dynamics of the system. 

Secondly, for a finer assessment, from k = 15 onward, when the sun starts being covered, we compare 

the predicted portion of the sun that gets covered with the reference ratio of the solar disk that actually 

gets covered as per our reference images. The error in prediction of the coverage of the solar disk for 

the next step is the Solar Disk Cover Ratio Error (SDCRE). It can only be assessed after the sun gets 

covered, which is after k = 15. 

Both errors are relative and thus expressed as a percentage. 
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Table 4.3 – Relative prediction errors against the benchmark. 

Step 

TSCE (%) SDRCE (%) 

LKOF 
PHD CPHD PHD CPHD 

Max. Min. 

5 45.5 45.5 100.0 100.0 N/A N/A 

6 50.0 50.0 33.3 33.3 N/A N/A 

7 288.9 44.4 125.0 125.0 N/A N/A 

8 312.5 50.0 114.3 114.3 N/A N/A 

9 314.3 14.3 -33.33 -33.3 N/A N/A 

10 350.0 0.0 0.00 0.0 N/A N/A 

11 380.0 20.0 50.0 50.0 N/A N/A 

12 600.0 0.0 66.7 66.7 N/A N/A 

13 666.7 0.0 0.0 0.0 N/A N/A 

14 7300.0 0.0 0.0 0.0 N/A N/A 

15 1900.0 0.0 0.0 0.0 0.15 0.15 

16 1500.0 0.0 0. 0.0 0.70 0.70 

17 1500.0 0.0 0.0 0.0 0.23 0.23 

18 1300.0 0.0 0.0 0.0 0.54 0.54 

19 1100.0 0.0 0.0 0.0 0.54 0.54 

20 1700.0 0.0 0.0 0.0 1.16 1.16 

21 800.0 0.0 0.0 0.0 3.03 3.03 

22 500.0 0.0 0.0 0.0 2.80 2.80 

23 400.0 0.0 0.0 0.0 2.40 2.40 

24 300.0 0.0 0.0 0.0 0.31 0.31 

25 0.0 0.0 0.0 0.0 3.03 3.03 

26 0.0 0.0 0.0 0.0 0.23 0.23 

27 0.0 0.0 0.0 0.0 1.40 1.40 

28 0.0 0.0 0.0 0.0 1.86 1.86 

29 0.0 0.0 0.0 0.0 0.85 0.85 

30 0.0 0.0 0.0 0.0 0.15 0.15 

ATE 1030.8 22.4 45.6 45.6 N/A N/A 

ACE N/A N/A N/A N/A 1.21 1.21 

Average 

Total Error 
819.5 8.6 15.2 15.2 1.21 1.21 
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4.5.5 Comparison Results 

Table 4.3 shows the TSCE and SDCRE. It can be observed that both filters perform with almost 

identical accuracies regarding both the cover time and the cover ratio. The precision of the sun-cloud 

collision time is absolute up to 2 steps (k = 13) before it actually happens (k = 15). That means that both 

filters can forecast shading times up to 6 seconds ahead with an absolute accuracy. Also, the precision 

varies but remains within an acceptable range, up to 6 steps ahead (k = 9). 

This means the RFS filters can be safely used to forecast 18 seconds ahead. The forecast 9 steps 

ahead (at k = 6) even suggest that a forecast 27 seconds is achievable with some improvement. When 

there are some errors of sun-cloud collision times, like at k = 5-9 and k = 11-12, these errors can be 

large but also quite inconsistent. For example, the collision time is largely underestimated at time k = 8 

and then overestimated at the next time k = 9. The problem may come from an imperfect time lapse or 

the fact that the filter was given a too short time to adapt before a sun collision happens. Thus, more 

datasets would need to be tested in the future. 

The three bottom rows of the table correspond to average errors. For each method, the relative 

Average Time Error (ATE) is the mean error across all Time to Sun Collisions prior to k = 15. The 

Average Cover Error (ACE), presented in second last position, is the mean error across all Solar Disk 

Cover Ratios, which means, after k = 15. The last row is the average total error, which is the global 

mean value of all the errors for every k value, before and after the sun gets covered 

The Lucas-Kanade Optical Flow (LKOF) prediction results can be seen in the left most column of 

Table 4.3. The second leftmost column, right to the step numbers is the maximum TSCE while the next 

column on the right is the minimum TSCE. As one can see, the minimum TSCE of the LKOF is only 

half of that of the PHD/CHPD and hence better. However, the maximum TSCE is considerably much 

higher. The reason is that only one single feature has been identified as relevant and tracked in the case 

of the PHD/CPHD. This feature is the centroid of the cloud that eventually covered the sun. That means 

that for one object, only one feature was tracked, leading to minimal calculations and to one single 

forecast result. In contrast, the LKOF identified and tracked all along 115 features among which only 

between 1 and 8 features were actually relevant. That means that the LKOF resulted in a number of 

forecasts between 1 and 8 at each step, after some extra computation for the 114 to 107 irrelevant 

features. As previously mentioned, one single feature, tracked as feature #35 has been identified as very 

accurate and led to the minimal TSCE. However, the features #27 and #39 led the maximum TSCE 19 

times over 25. To summarize, the LKOF can be very accurate as well as it can be very inaccurate, 

depending on the proper selection of features. The PHD and CPHD are more consistent in that regard. 
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The error in terms of SDRCE for the PHD and CPHD fluctuates between 0.15% and 3%, which is 

very low. For reference, with cross-correlation method (CCM), Chi et al. managed to forecast collisions 

at 6% for 30 seconds [30]. 

Also, it has been successfully tested that all types of false alarms could be effectively filtered out by 

both PHD and CPHD. 

Indicatively, the runtime for 60 forecasts ahead with the PHD is 0.0021 s whereas it may take 0.0157 

s, i.e. 7.5 times longer, for the CPHD to run with MATLAB® on the same laptop computer equipped 

with an Intel 7-4600U dual core 2.1 GHz / 2.7 GHz. However, both filters are definitely fast enough for 

online applications. To iterate over 29 images, the PHD and CPHD may only require respectively 

0.06111 s and 0.45 s, leaving the PHD with a very comfortable margin for heavy image processing and 

intense calculations. In comparison, the optical-flow based method LKOF requires 0.6724 s per image 

on the same machine. This corresponds to a total execution time of 19.50 s over 29 images. This number 

may even further increase in the case of real image with a large number of small clouds and hence a 

large number of features. This would then make the LKOF a less suitable for real-time forecasts in the 

second-range [125]. Unlike optical flow-based approaches, the number of features tracked by the RFS-

based is very limited and the number of targets could easily be increased without affecting too much 

the computation time. 

Pre-processing is also simpler and faster with the RFS approach. OF and CCM-based methods may 

require a sky coordinate transformation of the images since the fisheye distortion may affect their ability 

to recognize a given individual cloud. These methods may also require to compute the angle of each 

sky pixel with respect to the centre of the solar disk, which might be challenging for a real-time 

application with high-resolution images. 

4.5.6 Conclusion of the comparison 

In this simple application, both the PHD and CPHD filters prove to be adequate tools for cloud cover 

motion forecasting using a ground camera. As expected in such a simplified case, no significant 

difference in the accuracy of the estimate is discernible between both filters. 
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5 DATA COLLECTION AND ANALYSIS 

5.1 INTRODUCTION 

The effectiveness of the RFS based approach that is used in this study has been demonstrated in the 

previous chapter on a simplified dataset. Although the dataset was representative of the sunlight 

dimming conditions that may cause dramatic photovoltaic power disruption, it did not necessarily 

include all of the clutter that an online hardware implementation would have to deal with. 

This chapter presents the experimental setup that has been designed, installed and used for shade 

forecasting. The setup consists of some hardware equipment, more precisely a camera body and a lens 

enclosed under a sealed dome that is installed at a certain height as well as a piece of software to control 

the camera. 

A chromatic analysis of the sky images is performed in order to determine the optimal criterion and its 

optimal thresholds. This step is necessary since the camera in use in this chapter is different from the 

one used in the previous chapter. As part of this analysis, a clear sky library has been constituted and 

the chromatic properties of each cloud class has been analysed for the purpose of automating cloud 

classification.  

Finally, clouds have been tracked on several datasets that are representative of the most extreme corner 

cases the system can encounter in summer and in winter. 

5.2 EXPERIMENTAL SETUP 

From its installation on the 26th of February 2015 onwards, a Moonlight AllSkyCam video camera has 

been used to get a first set of images. Although the pictures obtained when the sun is completely hidden 

by a cloud are somewhat passable, the pictures shot when the sun was visible were excessively 

overexposed, due to some fixed internal exposure settings. This leads to an irremediable loss of 

important information for the purpose of sun cover time forecasting. Unfortunately it is not possible to 

amend those settings. Therefore, the images from a Canon 500D have been used first to showcase the 

forecasting method, providing a single dataset. However, in order to obtain more datasets that could be 

properly used to experiment with the method, a Nikon D7100 DSLR camera has been installed on the 

site of Green Electric Energy Park (GEEP) within the Bentley campus of Curtin University (32.01 S, 

115.89 E, 18 m ASL). To compare the performance of AllSkyCam with that of Nikon D7100, a photo 

of the sky has been taken just a few metres apart at the exact same moment on the 24th of February 2016 

at 1:22:33 pm with the already installed AllSkyCam Figure 5.1 (a) and with the newly installed Nikon 
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7100 Figure 5.1 (b). The picture from the Nikon D7100, when optimal settings have been applied 

manually, does not only feature a different frame format and a higher resolution, but, first and foremost,  

also enables to distinctively tell the solar disk apart from the nearby clouds, which is not the case on the 

picture obtained with the AllSkyCam. 

 

Figure 5.1 – Comparison between pictures of the sky obtained with the AllSkyCam (a) and with the Nikon 

D7100 (b) at the exact same instant (24/02/2016, 1:22:33 pm) a few metres apart. 

The sky images collected from the camera have been cross-correlated with the global horizontal 

irradiance, the ambient temperature and the atmospheric pressure measured by a Davis Vantage Pro 2 

weather station [158] located only about 10 metres away from the camera. The images from the camera 

have also been compared with the current, voltage and power output of a 1.5kW photovoltaic array 

composed of 8 monocrystalline SUNTECH STP190S – 24/Ad+ modules [159] connected in series, 

mounted on an East-West single axis tracker and located about 6 metres away from the camera. The 

array has been connected to the grid through an SMA SunnyBoy 1700 rated for 1.7kW [160], the DC 

link voltage of the PV system being controlled via an MPPT. In addition to this, the direct normal 

irradiance received by the PV array and the measured temperature of its modules have also been 

collected to be compared with the images. 

The above mentioned weather station, photovoltaic array and sky camera are featured in Figure 5.2 

among some other pieces of equipment at the GEEP lab. A close-up view of the camera setup mounted 

on its bracket can be seen details in Figure 5.3. It can be noted that a computer and a portable hard-drive 

have been fitted in a weather proof box at the bottom of the pole. More details about the installation of 

this camera can also be found in the Appendices B and C. 
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Figure 5.2 – View of the camera setup among other installations at the GEEP lab. 

 

Figure 5.3 – View of the camera setup mounted on its pole. 

The data coming from the weather station and from the solar array have been sampled every second 

and saved on the GEEP lab local server. Whenever required, the data has been queried via the LabView 

custom GEEP client software shown in Figure 5.4. It must be noted that the GEEP lab and GEEP 

software have been managed since 2012 by Assoc. Prof. Sumedha Rajakaruna. 
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Figure 5.4 – Labview-based GEEP client software. 

The capture and storage of the sky images has been managed with the free open-source software 

DigiCamControl, which has been originally developed in C# in a .NET framework by Duka Istvan 

[161][162]. A screenshot of the main window of the program is visible in Figure 5.5. The version 

2.0.21.0 of the software has been further developed and customised to match up with our needs [163]. 

In particular, a 3-second time lapse feature has been developed with the ability to save every picture 

directly onto an external hard-drive with a name corresponding to the exact date and time of the instant 

that photo was shot. The time lapse has been programmed to run every day during sunlight hours only. 

The start and stop times were set manually every month to match with the length of the day. 
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Figure 5.5 – Overview of the main window of the enhanced DigiCamControl software version 2.0.21.0. 

 

Figure 5.6 – Time lapse window of the DigiCamControl software. 

The time lapse is controlled from the window that is visible in Figure 5.6. The following pseudo-code 

illustrates the strategy used in the file CameraControl\ViewModel\TimelapseViewModel.cs to achieve 

a tested average absolute error in the shot time of 26 ms over a sample of 1000 shots [164]. A timer has 

been used for optimal results. A comparison of consistency in shooting times has led to the 

recommendation to use a timer and an event handler rather than comparing times to trigger a shot. 
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Given that (the START TIME LAPSE button has been pressed) & (a Time Lapse has been scheduled) then: 

step 1. (initialisation) 

TotalNumberOfShots=0 

Get TimeBetweenShots as defined by the user in seconds in the graphical interface 

Create a local timer Timer with a period per = TimeBetweenShots*1000 

Start Timer 

On each incrementation of Timer, run the event handler 

step 2. (checking whether the time lapse should start) 

If (no Time Lapse is already running) then: 

If (a Time Lapse is scheduled on a week day like today) & (the scheduled start time is passed) then: 

step 3. (starting a new Time Lapse) 

StartTime = Now 

If (Timer is active) then 

TimeOfLastShot = Now 

TotalNumberOfShots++ 

step 4. (shooting a picture) 

Execute the adequate command to shoot a picture 

step 5. (checking if the timer needs to be stopped) 

If (the Time Lapse is to be stopped on a week day like today) & (the scheduled stop time is passed) then: 

ShouldStop = true 

If (Timer is active) & (ShouldStop) & (Timer has been scheduled to start daily) then: 

Timer is set to inactive 

Step 6. (stopping the local timer and re-initialisation of the status flags) 

Reset the flags to indicate that no Time Lapse is running anymore 

Stop Timer and dispose of Timer 
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5.3 QUICK CHROMATIC ANALYSIS 

An initial step towards tracking clouds in actual sky images is to discriminate clear-sky pixels on one 

side and cloudy pixels on the other side. For that purpose, a couple of images have been selected. One 

image consists in picture of the clear sky taken on 21st of April 2016 at 12:48:47 PM and the other one 

is a picture of cumulus clouds. The colour of the pictures have not been touched. However, the clear 

sky picture has been masked so that only clear-sky pixels remained. Similarly, a selection of cloudy 

pixels has been made in the image featuring clouds so that only cloudy pixels remained. An effort has 

also been made to make sure that the contour of clouds was preserved as much as possible. This is 

important since the correct detection of complex contours can be a discriminating factor. The process 

is shown throughout the Figures 5.7 – 5.11. 

 

Figure 5.7 – Original clear-sky image. 

 

Figure 5.8 – Fully masked clear-sky image. 
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Figure 5.9 – Original image containing cumulus clouds. 

 

Figure 5.10 – Masked cumulus cloud image. 

 

Figure 5.11 – Recomposed complete masked image. 

The original clear-sky image in Figure 5.7 has been masked manually by using Photoshop in order or 

get the masked clear-sky only image in Figure 5.8. Similarly, the cloudy image shown in Figure 5.9 has 

been masked manually to obtain the masked cloud only image in Figure 5.10. A chromatic analysis of 

the masked clear-sky image, shown in Figure 5.8, and the masked cloud image shown in Figure 5.10 

has been made in order to determine the range of R, G and B values of the class of clear sky pixels and 

the values of cloudy pixels. Based on these two images, the chromatic range is shown in Table 5.1. 
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Table 5.1 – Chromatic range of clear-sky and cloudy Images. 

Class Clear-Sky Pixels 

Primary Colour Red Green Blue 

Minimal Value 0 12 24 

Maximal Value 107 117 144 

Rounded Mean Value 11 31 54 

Class Cloudy Pixels 

Primary Colour Red Green Blue 

Minimal Value 8 15 18 

Maximal Value 255 255 255 

Rounded Mean Value 150 159 166 

By superposing Figure 5.8 and Figure 5.10 as two distinct layers in Photoshop, it is possible to make a 

recomposed image shown in Figure 5.11 that contains both clear sky pixels and clouds. The advantage 

is that the exact number of clear sky pixels and clouds is known. This way, it is possible to compare 

each pixel discrimination method and to determine which one is the best. A first qualitative guess can 

nonetheless be made by looking at the number of occurrences of each chromatic value for each class. 

For the two images mentioned, the complete chromatic analysis of the R, G, and B value distribution is 

shown in Figure 5.12, Figure 5.13, and Figure 5.14, respectively. A Gaussian distribution has been 

assumed as it most often occurs in the nature. This is why normal distribution curves of each class are 

shown based on the mean values and variance values. 

 

Figure 5.12 – Chromatic analysis of the R component of clear-sky and cloudy pixels. 
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Figure 5.13 – Chromatic analysis of the G component of clear-sky and cloudy pixels. 

 

Figure 5.14 – Chromatic analysis of the B Component of clear-sky and cloudy pixels. 

It is clearly visible in the distribution of R, G, and B that clouds diffuse each component of sunlight in 

a similar manner. However, as already mentioned in reference [122], the molecule present in the air in 

the absence of cloud diffuse more blue light than red light. This fact is also visible in the chromatic 

range shown in Table 5.1. For this reason, it is far easier to identify clear-sky pixels than cloudy pixel 

in a sky image that has been taken with a proper exposure. Also, it makes perfect sense to detect sky 

pixels by comparing the blue values with respect to red values, since there is a ratio of 5 between them. 

However, another feature that is visible is the overlap of both classes. The minimal R, G, and B values 

of pixels belonging to the class Clouds is lower than the average value of pixels belonging to the class 

Clear-Sky. This results in many cloudy pixels having a closer R, G, or B value to the average value of 

clear-sky pixels than the average value of the class they belong to. Theoretically, a simple probabilistic 

classifier like a simple Bayes filter, or naïve predictor, could theoretically be trained to classify pixels 
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as either cloudy or clear sky pixels. However, the mean values of the features of each class are so close 

that there is a significant overlap between both classes and a lot of confusion can be expected between 

both classes. In particular, after training and naïve Bayesian classification, an error of about 44% was 

found. In order to tell both classes apart more easily, an operation must be made in order to move away 

the average value of each class. In particular, combining two colours together is a common way to 

proceed. The figures below show various criteria used in the literature. The criteria in question have 

been mentioned by Heinle et al. [58] and are described in Table 5.2 below. 

Table 5.2 – Clear-sky pixel discrimination criteria under consideration. 

Criterion Criterion Formula 

1 [147] R / B ≤ T1 

2 [58] B – R > T2 

3 [59] ((B – R > T2) & (B – G > T3) & (B > T4)) 

Those criteria have already been mentioned in Chapter 3. However, it must be reminded that their 

threshold values vary greatly according to the camera sensor that is used. Thus, a completely new 

chromatic analysis is required for the Nikon D7100 camera. 

For the sake of simplicity, the chromatic analysis is first made on the entire sky. The second criterion 

in Table 5.2, also often referred to as difference criterion, R – B, is shown in Figure 5.15. Although the 

average values of both sky pixels and cloud pixels class seem to be relatively far apart, there is a 

significant overlap of both classes. 

 

Figure 5.15 – B-R chromatic analysis. 
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Figure 5.16 – B-G chromatic analysis. 

To compensate for this overlap and the class confusion that may result from it, Kazantzidis et al [122] 

suggested to consider another difference term, namely the B – G difference shown in Figure 5.16. Also, 

it has been suggested to consider the B criterion, previously featured in Figure 5.14. The combination 

of the two difference criterion with the blue criterion is presented as the third criterion in Table 5.3. 

This criterion can also be called multicolour. Although, it has proven to be effective and reliable for 

some camera sensors, there is still too much overlap with every different criterion, when using the 

Nikon D7100. As an alternative, the difference criterion G – R seem to be characterised by the biggest 

overlap among all difference criteria, as shown in Figure 5.17. 

Visibly, when the entire sky is analysed, the ratio criterion R/B displays the largest gap between both 

classes, as seen in Figure 5.18. Thus, a simple visual analysis of the chromatic analysis can already lead 

to suspect that the ratio criterion, or first criterion as per Table 5.3, is likely to be the most suitable for 

the Nikon D7100. 

 

Figure 5.17 – G-R chromatic analysis. 
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Figure 5.18 – R/B chromatic analysis. 

For each clear-sky pixel criterion shown in Table 5.2, thresholds are sought to minimise the error due 

to incorrectly detected pixels. Either too many or too few clear-sky pixels may be identified by an 

imperfect criterion. Figure 5.19 illustrates the modus operandi that is applied to estimate the best 

thresholds for each criterion, which generates the lowest error. For a given criterion, the same algorithm 

is run for various thresholds and the corresponding relative error is calculated. The threshold value 

generating the lowest error is kept as the best. In further details, black pixels are filtered out of the clear-

sky image. The result is the binary image CS that only features clear-sky pixels. The same filter is also 

applied to the cloud-only image. The result is the binary image CL that only features cloudy pixels. 

 

Figure 5.19 – Algorithm applied to calculate the error in clear-sky pixel detection. 
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Table 5.3 – Optimal threshold values. 

Thresholds 

T1 T2 T3 T4 

0.55 28 15 30 

The thresholds of each criterion obtained by using the above mentioned method is shown in Table 5.4  

The results of the process are shown in further details throughout the sky images shown in Figures 5.20–

5.24. The white pixels in Figure 5.20 correspond to the position of the pixels that have been manually 

identified as clear-sky pixels in a given sky image. This image can thus be used as a reference. With 

respect to this reference, a simple naïve Bayes filter as shown in Figure 5.21 confuses a large number 

of clear-sky pixels for cloudy pixels, mostly in the central region of the sky image. In Figures 5.21-

5.24, the pixels of the original image are shown where each respective criterion has identified a clear-

sky pixel. 

 

Figure 5.20 – Reference binary sky image featuring clear-sky pixels only. 

 

Figure 5.21 – Clear-sky pixels detected with a Naive Bayes classifier. 
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Figure 5.22 – Clear-sky pixels detected with the R/B criterion. 

 

Figure 5.23 – Clear-sky pixels detected with the B-R criterion. 

 

Figure 5.24 – Clear-sky pixels detected with the multicolour criterion. 

Similarly to what has been done with Figure 5.21, a simple visual examination of the pixels identified 

as clear-sky pixels by the ratio R/B criterion in Figure 5.22 proves this criterion to be quite accurate, 

due to the resemblance of the reference sky image from Figure 5.20. In comparison, a relatively large 

number of cloudy pixels get misclassified as clear-sky pixels when using the difference criterion R – B 

in Figure 5.23. Although complementing the difference criterion with a couple of more criterion to 
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practically implement the multicolour criterion does reduce the number of cloud pixels incorrectly 

detected as clear-sky pixels, too many cloud pixels remain misclassified. 

As a result, the ratio criterion proves once again to be the most accurate of all four criteria through a 

simple quick visual evaluation of the accuracy of each criterion. 

Table 5.4 – Best relative errors corresponding to the optimal threshold values. 

Criterion R/B B-R Multicolour Simple Bayes 

Rel. Error (%) 4.35 15.62 12.08 44.46 

Table 5.4 summarises the quantitative relative pixel classification errors. Arguably, this finally confirms 

that the R/B ratio to be the most accurate approach to detect clear-sky pixels with the sensor of Nikon 

D7100 DSLR camera. However, it must be reminded that only a special case has been considered, in 

which the scattering effect around the solar disk and at the horizon are minimal. The analysis of a larger 

number of sky configurations is still required at this stage to draw some more relevant conclusions. 

5.4 DETAILED CHROMATIC ANALYSIS OF A CLEAR-SKY LIBRARY 

For a more detailed analysis of the sky, selection of 54 clear-sky images has been made to be used as a 

reference clear-sky library. Within this clear-sky library, a separate analysis of chromatic features has 

been performed for the clear sky pixels located within the circumsolar region and outside of it. 

Following a recommendation given in [165], only times of the days corresponding to an azimuth angle 

lower or equal to 70 degrees have been considered. The underlying reason for that selection is because 

most of the solar power generation occurs whenever the azimuth angle of the sun remains lower than 

70 degrees. The dataset corresponding to the clear-sky library is described in Table 5.5 and covers a 

wide range of times across all four seasons. 

Table 5.5 – Description of the clear-sky dataset. 

Date Frequency Frequency Number of Images Season 

01/07/2016 12:00:01 - 15:00:00 30 minutes 7 Winter 

28/11/2016 11:05:01 - 16:05:02 30 minutes 11 Spring 

25/01/2017 07:29:41 - 17:29:22 30 minutes 21 Summer 

04/04/2017 08:30:54 - 16:00:56 30 minutes 16 Autumn 
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Table 5.6 – Average values of features for the circumsolar region and for the extrasolar region within the 

dataset.  

Feature Circumsolar Clear Sky Extrasolar Clear Sky 

Number of pictures 54 54 

Mean (R) 57.6250 18.7972 

Mean (G) 78.6470 41.5237 

Mean (B) 105.1245 70.1827 

Standard Deviation (B) 32.7548 18.7942 

Skewness (B) 0.3326 0.3907 

Difference (R-G) -21.0220 -22.7264 

Difference (R-B) -47.4995 -51.3855 

Difference (G-B) -26.4775 -28.6591 

Ratio R/B 0.5340 0.2639 

Energy (B) 0.0065 0.0165 

Entropy (B) 0.5324 0.4443 

Contrast (B) 68.2780 7.0902 

Homogeneity (B) 0.7078 0.8665 

When analysing the features of every clear-sky pixels across the entire clear-sky library, a distinction 

has been made between the circumsolar region, which corresponds to a radius of 35 degrees around the 

centre of the solar disk and the extrasolar region, which corresponds to the rest of the sky. After such 

an analysis, the average values of each feature have been compiled in Table 5.6. 

It appears that the average threshold values for the R/B criterion varies quite significantly between the 

circumsolar region and the extrasolar region. Thus, a different threshold value should be considered for 

each region. The difference of threshold seems less dramatic for some alternative criteria, such as the 

difference criterion R – B and even less so for G – B and R – G. However, the ratio criterion R/G has 

proven to be the most accurate for the totality of the sky in the previous section. Thus, despite this 

inconsistency, it has been decided to use the ratio criterion to discrimination clear-sky pixels from cloud 

pixels. 

5.5 CLOUD FEATURE ANALYSIS AND AUTOMATED CLOUD CLASSIFICATION 

The previous step has consisted in analysis a clear-sky library to determine an accurate criterion and 

some thresholds to distinguish clear-sky pixels from clouds, effectively to identify some clouds, broadly 

speaking. However, as already mentioned in Chapter 2, there are 6 cloud types on top of a clear-sky 

situation and each has a different effect on a photovoltaic system. Hence, a further step would consist 

in analysing the features of each cloud type to identify some characteristic features that are particular 

to each cloud type, as perceived by the Nikon D7100 sensor. Once the features of each type of clouds 

are known, it is then relatively easy to automate the cloud classification and effectively activate the 

forecast when cumulus clouds are detected. Also, some alerts may be given when a dramatic long-term 

sunlight disruption is to be expected, like what may happen with rain clouds. 



203 
 

5.5.1 Clear-sky and Cloud Data Collection 

To carry out an analysis of the features of each cloud type, a manual cloud classification has been done 

across a collection of 860,579 sky images. Those images were taken during daytime over a period of 

159 days spanning from 15/04/2016 to 17/03/2017 and covering all four seasons.  

Although the camera was not in operation every day during that period, all cloud types have been 

recorded. After a manual classification, the frequency of each cloud type has been documented in Table 

5.7 and represented graphically in Figure 5.25. It must be noted that only a relative small number of 

days could be recorded in the spring and in the winter. 

Table 5.7 – Cloud type frequency for the period under consideration. 

Cloud Type 
Total 

Frequency (%) 

Autumn 

Frequency (%) 

Summer 

Frequency (%) 

Spring 

Frequency (%) 

Winter 

Frequency (%) 

1 26.3 14.9 37.1 53.8 17.4 

2 18.6 15.7 19.0 23.1 30.4 

3 5.1 7.4 4.3 0.0 0.0 

4 4.0 5.8 2.6 0.0 4.3 

5 25.5 30.6 22.4 7.7 21.7 

6 10.9 14.9 6.9 15.4 8.7 

7 9.5 10.7 7.8 0.0 17.4 

Number of days 159 64 75 9 11 

 

Figure 5.25 – Graphical representation of the cloud type frequency distribution for the period under 

consideration. 

It can be noticed that overall for the whole period, the type Cirrocumulus-Altocumulus dominates and 

was recorded as occurring a quarter of the time. A large proportion of those clouds have been detected 

during all seasons. This type of clouds correspond to high altitude clouds that often cover a large portion 

of the sky as it will be shown in the next section. Also, being located at a high altitude, such clouds 
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have a relative slow movement when seen from the surface, which does not result in swift irradiance 

variations. 

Cumulus clouds come next and occur overall 18% of the period while this type of clouds has been 

identified as causing most of fast stochastic sunlight disruption [31, 32]. Such clouds were present 

during all four seasons but largely dominant in the winter. 

Some other cloud type that were also significantly present were cirrus and cirrostratus that are thin 

clouds located at a very altitude. However, such clouds are not expected to cause swift sunlight 

variations. Also, rain clouds occurred quite often in winter and autumn. Considering their thickness, it 

is expected for those clouds to dim sunlight very significantly. However, due to the size of those clouds 

and the portion of the sky they usually cover, such clouds are very likely to obstruct sunlight for a period 

of time that may largely exceed 30 minutes, which is a timeframe beyond the scope of very short-term 

forecasting. 

5.5.2 Clear-Sky and Cloud Feature Characterisation 

The Fisher Distance based automatic cloud classification method developed by Pankiewicz in 1995, 

and used by Heinle et al. in 2010 [58], has been applied to the sky and cloud dataset. As already 

presented in details in Section 2.8.3, this method consists in analysing 12 different features. The results 

have been compiled within Table 5.8 – 5.10. The features have been calculated for the pixels that have 

been identified as cloudy pixels for all classes except for the clear-sky class, for which clear-sky pixels 

only have been considered. Some additional features such as the normalised (B-R)/(B+R) difference, 

as well as the saturation and the Euclidean geometric distance (EGD) have been also been added. The 

analysis includes the average as well as the extreme minimum and maximum values of every feature.  

Table 5.8 – Cloud feature characterisation of sky images – red (R) and green (G) features. 

Number of pictures 26,318 29 18 26 20 46 23 

Feature Type Cl Cu Sc St-As Cc-Ac Ci-Cs Cb-Ns 

Min (R) 

Min 1 1 1 1 1 1 1 

Avg 1 1 1 9.845 1 1 9.391 

Max 1 1 1 68 1 1 43 

Mean (R) 

Min 10.293 58.342 136.468 95.290 92.447 71.171 120.584 

Avg 34.212 153.535 152.153 136.065 122.415 113.434 142.120 

Max 144.282 216.024 178.680 155.670 159.988 168.890 150.407 

Max (R) 

Min 251 188 243 181 226 220 182 

Avg 254.997 249.276 252.500 226.077 246.650 243.217 227.870 

Max 255 255 255 255 255 255 255 

Min (G) 

Min 1 1 1 1 1 1 1 

Avg 1 1 1 10.654 1 1 10.826 

Max 1 1 1 73 1 1 47 

Mean (G) 

Min 25.362 63.172 143.310 102.268 103.193 82.028 126.506 

Avg 58.934 161.223 160.534 142.814 131.833 122.621 151.255 

Max 176.818 219.034 189.681 162.932 170.550 180.157 162.853 

Max (G) 

Min 251 194 244 185 229 225 189 

Avg 254.997 249.379 252.889 228.270 246.850 244.674 232.522 

Max 255 255 255 255 255 255 255 
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Table 5.9 – Continuation of the cloud feature characterisation of sky images from the Nikon D7100 

camera – blue (B) feature. 

Number of pictures 26,318 25 18 26 32 46 23 

Feature Type Cl Cu Sc St-As Cc-Ac Ci-Cs Cb-Ns 

Min (B) 

Min 1 1 1 1 1 1 1 

Avg 1 1 1 11 1 1 10.696 

Max 1 1 1 76 1 1 50 

Mean (B) 

Min 39.383 67.485 153.647 108.031 117.048 95.737 129.478 

Avg 86.895 169.110 170.045 149.137 143.441 132.824 158.463 

Max 207.104 221.180 198.220 169.330 179.399 191.152 173.357 

Max (B) 

Min 246 198 251 188 234 223 198 

Avg 254.935 249.655 170.045 229.500 247.250 245.717 236.435 

Max 255 255 255 255 255 255 255 

Standard 

Deviation (B) 

Min 11.523 33.730 35.962 8.564 25.6494 23.070 13.227 

Avg 28.150 61.66 49.185 22.875 38.9614 44.034 24.885 

Max 46.061 93.417 62.453 42.194 49.307 71.869 43.230 

Skewness (B) 

Min -4.178 -2.815 -2.517 -1.407 -2.760 -1.870 -1.666 

Avg 1.627 -1.476 -1.849 -0.345 -1.149 -0.654 -0.746 

Max 6.949 0.692 -1.187 1.076 0.0459 0.811 0.502 

Energy (B) 

Min 0.0030 4.88∙10-4 7.31∙10-4 0.0014 0.0010 6.45∙10-4 0.0021 

Avg 0.0119 0.0099 0.0016 0.0092 0.0019 0.0023 0.0062 

Max 0.0392 0.0810 0.0026 0.0274 0.0044 0.0078 0.0185 

Entropy (B) 

Min 0.418 0.312 0.648 0.295 0.606 0.373 0.337 

Avg 0.551 0.774 0.884 0.457 0.772 0.686 0.528 

Max 0.753 0.961 0.970 0.812 0.919 0.930 0.653 

Contrast (B) 

Min 4.0064 116.252 183.422 1.904 34.586 11.784 2.069 

Avg 27.759 1030.0 448.232 20.337 173.217 246.929 16.599 

Max 922.456 2512.1 652.713 151.504 537.156 1024 106.738 

Homogeneity 

(B) 

Min 0.739 0.275 0.396 0.552 0.417 0.326 0.567 

Avg 0.836 0.462 0.497 0.756 0.543 0.543 0.743 

Max 0.908 0.568 0.591 0.877 0.644 0.776 0.867 
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Table 5.10 – Cloud feature characterisation of sky images from the Nikon D7100 camera – other features. 

Number of pictures 26,318 25 18 26 32 46 23 

Feature Type Cl Cu Sc St-As Cc-Ac Ci-Cs Cb-Ns 

Difference 

(R-G) 

Min -155 -69 -76 -55 -65 -103 -51 

Avg -24.721 -7.689 -8.387 -6.749 -9.418 -9.187 -9.135 

Max 142 18 26 24 30 50 21 

Difference 

(R-B) 

Min -167 -137 -135 -98 -119 -130 -88 

Avg -52.683 -15.575 -17.892 -13.073 -21.026 -19.390 -16.342 

Max 179 26 64 61 50 89 65 

Difference 

(G-B) 

Min -135 -73 -100 -57 -60 -110 -82 

Avg -27.961 -7.887 -9.505 -6.324 -11.608 -10.202 -7.207 

Max 155 31 46 56 40 87 61 

Ratio R/B 

Min 0.0066 0.0625 0.0526 0.0588 0.0200 0.0102 0.0714 

Avg 0.320 0.893 0.885 0.906 0.833 0.833 0.898 

Max 96 8 9 6 20 60 23 

Normalised 

(R-B)/(R+B) 

Min -1 -1 -1 -1 -1 -1 -1 

Avg -0.535 -0.0683 -0.0671 -0.0507 -0.0996 -0.102 -0.0554 

Max 1 1 1 1 1 1 1 

Saturation 

Min 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 

Avg 0.678 0.192 0.163 0.0968 0.196 0.213 0.105 

Max 1 1 1 1 1 1 1 

Euclidian 

Geometric 

Distance 

Min 1.155 1.155 1.155 1.155 1.155 1.154 1.154 

Avg 155.648 379.073 383.713 349.195 320.468 294.208 368.955 

Max 624.620 624.620 624.620 624.620 624.620 624.620 624.620 

Cloud Cover 

(R,G,B) (%) 

Min 0.0445 5.085 28.897 69.846 38.718 7.455 94.193 

Avg 0.499 26.533 49.526 96.667 69.261 54.084 99.423 

Max 9.997 54.787 75.533 100 96.3414 99.058 100 
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Excluding clear-sky conditions, the cloud type that covers the least the sky happens to cumulus clouds 

with a maximum total cloud cover slightly over 50%. Following this clouds type, the closely related 

stratocumulus cover the sky up to about 75%. As a comparison, stratus and altostratus clouds cover at 

least about 70% of the sky and over 95% in average. There is wide variation of the sky covered by 

cirrocumulus/altocumulus and an even wider range covered by cirrus/cirrostratus clouds. In contrast, 

rain clouds always cover a very large portion of the sky, with average total cloud cover close to 100%. 

Although the ratio R/B criterion is effective to tell apart clear-sky pixels from any sort of cloud pixel, 

due to the homogeneity of the average values for all clouds and their contrast with respect to the sky 

value. However, it is not sufficient to tell apart cloud types due to the lack of difference of average value 

across all types of cloud types regarding this feature. 

Across all the explored features, besides the total cloud cover, contrast, standard deviation and skewness 

of the blue component seem to be the most discriminant features to distinguish clearly each cloud type. 

Thus, it can recommended to use the latter as priority to distinguish cloud types, when using a Nikon 

D7100. 

5.6 MEASUREMENT OF THE OPTICAL THICKNESS 

An even further analysis of clouds would be the observation of their direct and indirect effect on the 

sunlight. The most obvious direct effect is how much clouds have dimmed the light of the sun, which 

is in relation with their optical thickness, and how long for. 

Several days’ worth of recording between 4am and 8pm have been considered for each cloud type, with 

1 second of time resolution. However, for practical reasons, as already discussed in Section 5.4 of this 

chapter, only azimuth angles smaller than 70 degrees have been considered. One motivation for doing 

that is of course the fact that the irradiance is particularly weak when the sun is lower that an elevation 

of 30 degrees, limiting the effect of clouds on sunlight dimming. However, the same decision is also 

motivated by the fact that it is quite difficult to model the low level of irradiance that occurs when the 

sun is particularly low. As a result, for zenith angles above 70 degrees, the inaccuracy of the model 

rather than the effect of clouds would cause most of the discrepancy between modelled clear-sky 

irradiance and measured irradiance. 

The images of the Nikon D7100 have been used to select the days when only one single of cloud has 

been detected. 
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5.6.1 Cloud type 2: Cumulus Clouds 

Cumulus clouds have been identified as the sole cloud type during 9 different days within the dataset. 

Those days are noted at the top of Table 5.11. The time mentioned as total cloud time effectively 

corresponds to the total duration, in seconds, during which some cumulus clouds has been identified 

throughout the day, when the azimuth was below 70 degrees. The time resolution in use is 1 second. 

Table 5.11 – Observations made on cumulus clouds. 

Days 19/04/2016 2/05/2016 25/05/2016 27/05/2016 10/07/2016 27/12/2016 12/01/2017 19/01/2017 5/02/2017 

Total cloud 

time (s) 
5949 18940 9522 7431 3869 12566 10174 6861 2820 

Number of 

clouds 
19 11 20 21 14 18 28 7 12 

Min cloud 

duration (s) 
39 49 17 50 50 49 101 255 48 

Mean cloud 

duration (s) 
312.1052632 1720.818182 475.1 352.8571429 275.3571429 697.1111111 362.3571429 979.1428571 234 

Max cloud 

duration (s) 
1025 3996 1793 1178 1383 3844 2265 2664 1178 

Min cloud τ 0.070000109 0.073783758 0.070031344 0.073580276 0.070009868 0.070390772 0.072536438 0.127726961 0.070002461 

Mean cloud τ 1.044621473 0.817862478 0.907447985 0.521725511 0.735419933 1.163301755 0.861775301 0.853993206 0.793624763 

Max cloud τ 1.805447147 2.3555839 1.746411466 1.86864493 1.991883105 2.001238301 1.553876941 1.408658465 2.194907803 

σ cloud τ 0.400800013 0.403553516 0.404483384 0.345088463 0.478118976 0.376406302 0.356528783 0.283366398 0.636569322 

Total peak 

time (s) 
12098 5072 8876 6627 14584 25116 26753 8678 11238 

Number of 

peaks 
30 13 22 42 24 31 35 15 23 

Min peak 

duration (s) 
7 100 9 0 18 29 24 12 26 

Mean peak 

duration (s) 
402.2666667 389.1538462 402.4545455 156.7857143 606.6666667 809.1935484 763.3714286 577.5333333 487.6086957 

Max peak 

duration (s) 
1891 1228 1792 664 2869 6860 2919 1946 3484 

Min peak τ -0.362145087 -0.351956192 -0.448637771 -0.459790748 -0.480305556 -0.324205268 -0.364156733 -0.382051957 -0.252412032 

Mean peak τ -0.100033621 -0.148088712 -0.155252168 -0.119635915 -0.133260615 -0.104543549 -0.113785958 -0.113252257 -0.064761781 

Max peak τ -0.02000154 -0.024759552 -0.020014036 -0.020010096 -0.020037968 -0.020006903 -0.020077914 -0.020000919 -0.020006843 

σ peak τ 0.072776942 0.079337471 0.101576708 0.117812901 0.087308681 0.063448801 0.069677562 0.088751574 0.054416615 

From the results compiled in Table 5.11, it appears that cumulus clouds created some shading that lasted 

continuously in average between 4 and 29 minutes, accompanied by some peak amplitude episodes that 

lasted in average between 2 minutes 36 seconds and 13 minutes 29 seconds. It must also be noted that 

irradiance peaks do not occur systematically in the presence of clouds. The average optical thickness of 

the clouds varies significantly from day to day between approximately 0.52 and 1.04. 

Figure 5.26 is a good illustration of the effect of passing cumulus clouds on the global horizontal 

irradiance (GHI) when clouds pass by all day long, as they did on 2/05/2016. The clear-sky irradiance 

modelled with the refined TJ regression is shown in blue whereas the measured GHI is shown in red. 

Some peaks can be occasionally observed between a few consecutive shadings. The maximum shade 

around 13:17 corresponded to an irradiation reduction of 85.7%. The corresponding optical thickness 

values throughout the same day, for zenith angles smaller than 70 degrees, are shown in Figure 5.27. 
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The green and blue horizontal lines in that figure represent the thresholds of tolerance. As a comparison, 

the power output from the PV array is shown in Figure 5.28. 

 

Figure 5.26 – Measured and clear-sky GHI on 2/05/2016. 

 

Figure 5.27 – Optical thickness on 2/05/2016. 

 

Figure 5.28 – Power output on 2/05/2016. 

It can be observed in Figure 5.28 that the peaks in irradiance create power surges up to 1.7kW, which 

exceeds the rated power of the solar array, which is 1.5kW. Some similar quantities are represented in 

Figures 5.29-5.31 based on some measurements performed on 19/01/2017. 



210 
 

 

Figure 5.29 – Measured and clear-sky GHI on 19/01/2017. 

 

Figure 5.30 – Optical thickness on 19/01/2017. 

 

Figure 5.31 – PV Power output on 19/01/2017. 

An illustration of a possible cause of irradiance peaks is shown in Figure 5.32. A cloud that is close 

enough from the sun but that does not obstruct the sun may act as a reflector if the incidence angle of 

the sunlight enables a reflection. In this case, the cloud will act as a secondary source of light. It is for 

example the case for the illuminated cloud that is visible on the left of the solar disk in Figure 5.32. 
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Figure 5.32 – View of the sky on 19/01/2017 at 9:59 am. 

5.6.2 Cloud type 3 : Stratocumulus Clouds 

Some stratocumulus have been identified during 8 days of the dataset. Those days are mentioned on the 

top of Table 5.12. Similarly to the classification of cumulus clouds, the zenith angle of the selected 

samples has been filtered to remain below 70 degrees and the time resolution of the samples is 1 second. 

Table 5.12 – Observations made on stratocumulus clouds. 

Days 7/05/2016 25/05/2016 28/05/2016 6/01/2017 5/02/2017 17/03/2017 24/03/2017 26/03/2017 

Total cloud 

time (s) 
13688 9522 4722 19979 2820 7821 5078 10677 

Number of 

clouds 
24 20 24 24 12 12 19 31 

Min cloud 

duration (s) 
49 17 3 102 48 69 6 50 

Mean cloud 

duration (s) 
569.33333 475.1 195.75 831.45833 234 650.75 266.263158 343.419355 

Max cloud 

duration (s) 
2510 1793 923 6406 1178 2010 819 1075 

Min cloud τ 0.0703764 0.07003134 0.07001551 0.0714931 0.0700025 0.07002348 0.07017843 0.07003247 

Mean cloud τ 0.9278182 0.90744798 0.84663228 1.0085809 0.7936248 0.75475442 0.92185024 0.85208469 

Max cloud τ 2.2165052 1.74641147 1.55082513 2.0712714 2.1949078 1.56735083 1.60996877 1.70340863 

σ cloud τ 0.4631798 0.40448338 0.43102746 0.3743414 0.6365693 0.24339903 0.47158736 0.35032563 

Total peak 

time (s) 
8426 8876 11561 18308 11238 1940 18498 16852 

Number of 

peaks 
24 22 32 25 23 11 22 44 

Min peak 

duration (s) 
40 9 12 100 26 43 6 4 

Mean peak 

duration (s) 
350.08333 402.454545 360.28125 731.32 487.6087 175.363636 839.818182 382 

Max peak 

duration (s) 
1332 1792 1794 3151 3484 511 2407 1998 

Min peak τ -0.519597 -0.4486378 -0.3616931 -0.301512 -0.252412 -0.4169338 -0.2474739 -0.3497863 

Mean peak τ -0.167384 -0.1552522 -0.0992819 -0.132999 -0.064762 -0.1763909 -0.1004807 -0.1504563 

Max peak τ -0.02001 -0.020014 -0.0200211 -0.020022 -0.020007 -0.0200286 -0.0200599 -0.0200007 

σ peak τ 0.1031319 0.10157671 0.07129267 0.0695594 0.0544166 0.10347209 0.05498564 0.08793759 

The shading caused by individual stratocumulus clouds lasted between 3 minutes 15 second and 14 

minutes, accompanied by some peak amplitude episodes that lasted in average between 3 minutes and 

14 minutes. The average optical thickness of the clouds is more consistent than for cumulus clouds as 

it varies between approximately 0.75 and 0.92. 

Figure 5.33 features the clear-sky and measured GHI on the day of 17/03/2017 during which shading 

only occurred in the afternoon. It can be observed that the effect of stratocumulus clouds looks very 

similar to the effect of cumulus clouds, as previously observed, in terms of duration and intensity. 
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Figure 5.33 – Measured and clear-sky GHI on 17/03/2017. 

 

Figure 5.34 – Optical thickness on 17/03/2017. 

 

Figure 5.35 – PV Power output on 17/03/2017. 

The corresponding optical thickness and the resulting PV power output on the same day can be seen 

respectively in Figure 5.34 and Figure 5.35. Some intense irradiance peaks are present in Figure 5.33, 

leading to some very strong reverse optical thickness values in Figure 5.34 and some equally important 

power surges in Figure 5.35 that largely exceed the rated power of the PV array. 
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5.6.3 Cloud type 4 : Stratus/Altostratus Clouds 

A total of 11 days have been identified as being characterised by the passage of stratus and altostratus 

clouds. As shown in Tables 5.13 and 5.14, a single cloud can shade for up to 6 hours 33 minutes. Some 

broken pieces of a cloud can alternatively create some shading for at least 9 minutes and 26 seconds. 

Table 5.13 – Observations made on stratus and altostratus clouds – First part. 

Days 17/04/2016 18/04/2016 24/04/2016 27/04/2016 29/04/2016 19/05/2016 

Total cloud time (s) 27940 27132 21832 18151 21701 23609 

Number of clouds 1 5 21 10 14 1 

Min cloud duration (s) 27939 103 51 6 32 23608 

Mean cloud duration (s) 27939 5425.4 1038.61905 1814.1 1549.07143 23608 

Max cloud duration (s) 27939 18956 3639 7891 7225 23608 

Min cloud τ 0.13844912 0.0883357 0.0700986 0.07007278 0.07002974 0.69049541 

Mean cloud τ 1.05894744 0.95422079 0.56480456 0.83688376 0.7963897 1.02043845 

Max cloud τ 2.84217499 1.87742377 1.68360657 2.08838741 1.99688668 1.35219421 

σ cloud τ 0.44757282 0.38788681 0.32583347 0.38061275 0.39198905 0.15965802 

Total peak time (s) 0 460 3144 7969 4304 0 

Number of peaks 0 4 15 17 13 0 

Min peak duration (s) 0 49 16 0 101 0 

Mean peak duration (s) 0 114 208.6 467.764706 330.076923 0 

Max peak duration (s) 0 204 359 2046 768 0 

Min peak τ 0 -0.1645708 -0.3730512 -0.3958562 -0.3629718 0 

Mean peak τ 0 -0.0863214 -0.1266405 -0.1378324 -0.1498863 0 

Max peak τ 0 -0.0218016 -0.0200395 -0.0200256 -0.0231545 0 

σ peak τ 0 0.04506961 0.08378251 0.10121516 0.08688845 0 

Table 5.14 – Observations made on stratus and altostratus clouds – Second part. 

Days 26/05/2016 7/07/2016 18/01/2017 2/02/2017 11/02/2017 

Total cloud time (s) 17405 22062 14190 16566 32169 

Number of clouds 29 1 25 10 24 

Min cloud duration (s) 31 22061 11 4 49 

Mean cloud duration (s) 599.172414 22061 566.6 1655.6 1339.375 

Max cloud duration (s) 3279 22061 4334 9232 7788 

Min cloud τ 0.07000637 0.3515243 0.07005727 0.0700546 0.07002586 

Mean cloud τ 0.47642489 0.7732448 0.60246503 0.5717536 0.5392232 

Max cloud τ 1.998643 1.1292582 1.47808697 1.1818053 1.52792562 

σ cloud τ 0.33385158 0.1738666 0.31445128 0.2166575 0.28820771 

Total peak time (s) 3910 0 13385 7458 2403 

Number of peaks 21 0 36 17 14 

Min peak duration (s) 17 0 12 3 45 

Mean peak duration (s) 185.190476 0 370.805556 437.70588 170.642857 

Max peak duration (s) 460 0 1434 1639 358 

Min peak τ -0.3432187 0 -0.324853 -0.395484 -0.4476265 

Mean peak τ -0.1300833 0 -0.1379224 -0.148877 -0.2147724 

Max peak τ -0.0200203 0 -0.0200041 -0.020013 -0.0200341 

σ peak τ 0.08207285 0 0.07651672 0.128823 0.13717958 

It can be observed that irradiance peaks occur less often than for cumulus and stratocumulus clouds. 

The reason is the overextended size of this class of clouds. As seen in a previous section of this chapter, 

stratus clouds can spread over such a large horizontal distance that they can cover the sky entirely over 

an extended amount of time. Thus, as shown in Tables 5.13 and 5.14, no irradiance intensity peaks were 

recorded during days when only one single cloud was present. 

A typical shape of the measured GHI drawn in red, and to be compared with its corresponding clear-

sky irradiance shown in blue, can be seen in Figure 5.36. On that day, only one single cloud was present 

all day long and no irradiance intensity peaks were observed.  

The effect of such a single cloud resulted in a consistently strong opacity throughout the entire day, as 

shown in Figure 5.37. 
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Figure 5.36 – Measured and clear-sky GHI on 19/05/2016. 

 

Figure 5.37 – Optical thickness on 19/05/2016. 

 

Figure 5.38 – PV Power output on 19/05/2016. 

The thickness of the cloud slowly varied over time and oscillated around the average value of about 1, 

varying between 0.7 as minimum and 1.35 as a maximum. As a result, the PV power generation for the 

entire day has been very low. The occasional peak generations never exceeded 300W, which 

corresponds to only 20% of the installed capacity. For several hours in a row, the effective operating 

power was even close to 0W.  

It can be concluded from those observations that stratus and altostratus clouds may cause a very 

consistent continuous power cut, which places them out of the scope of very-short term PV power 

forecasting. 
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5.6.4 Cloud type 5 : Cirrocumulus/Altocumulus 

Cirrocumulus and altocumulus clouds have been observed during 14 days of the dataset as shown in 

Tables 5.15 and 5.16. Those clouds may cause very fast variations of irradiance, with shading occurring 

between 3 minutes and 33 minutes in average, with a minimum of 3 seconds only on 16/01/2017. Also, 

it must be noted that the optical thickness of the clouds varied greatly between 0.35 and 1.05 in average. 

From the observations that have been made, irradiance peaks occur very often in presence of these 

clouds, with shading being virtually systematically accompanied by peaks. In average, for the 

investigated days, peaks lasted between 2 minutes 42 seconds and 8 minutes 7 seconds. An extreme 

variability of the peak optical thickness has been observed, between -0.047 and -0.21. 

Table 5.15 – Observations made on cirrocumulus and altocumulus clouds – First part. 

Days 21/06/2016 26/06/2016 16/01/2017 18/01/2017 27/01/2017 28/01/2017 2/02/2017 

Total cloud time (s) 6047 512 1779 14190 1384 5572 16566 

Number of clouds 4 1 10 25 5 10 10 

Min cloud duration (s) 153 511 3 11 51 79 4 

Mean cloud duration (s) 1510.75 511 176.9 566.6 275.8 556.2 1655.6 

Max cloud duration (s) 3843 511 358 4334 716 2920 9232 

Min cloud τ 0.08834771 0.34656324 0.07004569 0.07005727 0.07134518 0.07002575 0.0700546 

Mean cloud τ 0.64289459 0.55657672 0.51936905 0.60246503 0.52013592 1.05077472 0.5717536 

Max cloud τ 1.2774113 0.97660881 1.68046954 1.47808697 1.08540087 1.98376429 1.1818053 

σ cloud τ 0.30515362 0.25190008 0.4715895 0.31445128 0.29952941 0.51498426 0.2166575 

Total peak time (s) 5948 2489 6928 13385 4693 5762 7458 

Number of peaks 14 11 29 36 16 25 17 

Min peak duration (s) 7 14 1 12 2 6 3 

Mean peak duration (s) 423.857143 225.272727 237.896552 370.805556 292.3125 229.48 437.70588 

Max peak duration (s) 1655 770 3482 1434 1127 922 1639 

Min peak τ -0.4415364 -0.0963885 -0.1537618 -0.324853 -0.312408 -0.174301 -0.395484 

Mean peak τ -0.1229816 -0.0468114 -0.0607316 -0.1379224 -0.0933142 -0.0544276 -0.148877 

Max peak τ -0.0200014 -0.0200111 -0.0200071 -0.0200041 -0.0200234 -0.0200071 -0.020013 

σ peak τ 0.11465041 0.02128357 0.03446247 0.07651672 0.07909435 0.03177483 0.128823 

Table 5.16 – Observations made on cirrocumulus and altocumulus clouds – Second part. 

Days 5/02/2017 7/02/2017 8/02/2017 11/02/2017 27/03/2017 28/03/2017 6/04/2017 

Total cloud time (s) 2820 30556 6324 32169 3017 21372 10846 

Number of clouds 12 15 12 24 8 19 28 

Min cloud duration (s) 48 51 27 49 46 50 38 

Mean cloud duration (s) 234 2036.0667 526 1339.375 376.125 1123.84211 386.35714 

Max cloud duration (s) 1178 13118 3177 7788 1844 11018 5893 

Min cloud τ 0.0700025 0.0712886 0.0700088 0.07002586 0.07002236 0.07054546 0.0700056 

Mean cloud τ 0.7936248 0.8061889 0.7628048 0.5392232 0.34497655 0.77143827 0.5139924 

Max cloud τ 2.1949078 1.5689519 1.4876315 1.52792562 0.81206294 1.77992752 1.5128825 

σ cloud τ 0.6365693 0.3201265 0.2792991 0.28820771 0.22964578 0.35405062 0.3287414 

Total peak time (s) 11238 4930 22372 2403 12175 4709 3928 

Number of peaks 23 17 58 14 57 21 24 

Min peak duration (s) 26 16 10 45 1 10 11 

Mean peak duration (s) 487.6087 289 384.72414 170.642857 212.596491 223.238095 162.66667 

Max peak duration (s) 3484 768 6337 358 1638 1946 563 

Min peak τ -0.252412 -0.394791 -0.177641 -0.4476265 -0.3573679 -0.4792665 -0.264155 

Mean peak τ -0.064762 -0.144943 -0.048884 -0.2147724 -0.0567133 -0.1740411 -0.091857 

Max peak τ -0.020007 -0.020048 -0.020001 -0.0200341 -0.0200004 -0.0200117 -0.020005 

σ peak τ 0.0544166 0.0966714 0.0363307 0.13717958 0.06068089 0.11979943 0.05543 

A comparison of the measured GHI and the clear-sky GHI has been made in Figure 5.39. The large 

intensity of both shading and peaks can be observed. Also, both shading and peaks look very brief. 
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Figure 5.39 – Measured and clear-sky GHI on 26/06/2016. 

 

Figure 5.40 – Optical thickness on 26/06/2016. 

 

Figure 5.41 – PV power output on 26/06/2016. 

The resulting optical thickness through the day, as seen in Figure 5.40, is characterised by very sharp, 

swift variations. The PV power output on the same day that is plotted in Figure 5.41 looks overall 

consistent and almost like it could be expected on a clear-sky day, with the exception of some very brief 

and large power drops preceded and followed by some equally brief power surges. 

5.6.5 Cloud type 6 : Cirrus/Cirrostratus 

A total of 15 days have been classified as days during which either cirrus or cirrostratus clouds passed 

over the sky camera and the PV array. 
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Table 5.17 – Observations made on cirrus and cirrostratus clouds – First part. 

Days 21/04/2016 22/04/2016 3/05/2016 20/05/2016 26/05/2016 31/05/2016 16/06/2016 

Total cloud time (s) 1095 13936 22902 6111 17405 5251 7915 

Number of clouds 9 16 6 11 29 30 17 

Min cloud duration (s) 18 6 203 41 31 49 32 

Mean cloud duration (s) 120.666667 870 3816 554.545455 599.172414 174.033333 464.588235 

Max cloud duration (s) 306 2973 12663 1434 3279 614 3022 

Min cloud τ 0.07000191 0.07001943 0.082042 0.07002098 0.07000637 0.07005331 0.07373782 

Mean cloud τ 0.15527231 0.42889334 0.7200895 0.86243795 0.47642489 0.29027485 0.55786287 

Max cloud τ 0.37858025 0.96333886 2.7475918 1.48086132 1.998643 1.46703482 1.70696004 

σ cloud τ 0.09287793 0.2406574 0.2990863 0.33107214 0.33385158 0.2436032 0.37200535 

Total peak time (s) 6784 10077 1485 2661 3910 8634 3347 

Number of peaks 18 30 7 12 21 34 17 

Min peak duration (s) 10 16 49 101 17 49 3 

Mean peak duration (s) 375.888889 334.9 211.14286 220.75 185.190476 252.941176 195.882353 

Max peak duration (s) 2407 2153 511 461 460 768 563 

Min peak τ -0.0752579 -0.3226735 -0.14243 -0.368144 -0.3432187 -0.180011 -0.2588884 

Mean peak τ -0.0423849 -0.09926 -0.066978 -0.1433612 -0.1300833 -0.0759811 -0.0773964 

Max peak τ -0.0200056 -0.0200648 -0.020786 -0.0224158 -0.0200203 -0.0200129 -0.0200122 

σ peak τ 0.01429603 0.07320902 0.0331685 0.10798153 0.08207285 0.04106444 0.05977279 

Table 5.18 – Observations made on cirrus and cirrostratus clouds – Second part. 

Days 7/07/2016 29/11/2016 15/12/2016 1/02/2017 3/02/2017 7/03/2017 8/03/2017 27/03/2017 

Total cloud time (s) 22062 570 22086 7012 1794 3275 12668 3019 

Number of clouds 1 6 26 17 7 22 45 8 

Min cloud duration (s) 22061 1 46 50 51 49 14 47 

Mean cloud duration (s) 22061 94 848.461538 411.47059 255.28571 147.86364 280.51111 376.375 

Max cloud duration (s) 22061 204 5278 2509 768 512 1332 1844 

Min cloud τ 0.3515243 0.07000021 0.0700556 0.0713703 0.096666 0.0702194 0.0700099 0.07002236 

Mean cloud τ 0.7732448 0.64513778 0.45119303 0.9254451 0.720678 0.2152958 0.2599684 0.34486928 

Max cloud τ 1.1292582 2.99425572 2.41750935 2.4263691 1.5228519 0.8762939 3.6111322 0.81206294 

σ cloud τ 0.1738666 1.0895309 0.3296937 0.9675387 0.4037574 0.1781556 0.3340134 0.22977835 

Total peak time (s) 0 5514 12498 5114 5527 3823 4987 12174 

Number of peaks 0 35 64 42 22 19 27 57 

Min peak duration (s) 0 1 5 0 14 46 28 1 

Mean peak duration (s) 0 156.542857 194.28125 120.7619 250.22727 200.21053 183.7037 212.578947 

Max peak duration (s) 0 1793 1382 1162 1197 819 870 1639 

Min peak τ 0 -0.1509303 -0.2842887 -0.225167 -0.310316 -0.192571 -0.220567 -0.3573679 

Mean peak τ 0 -0.0571672 -0.0750734 -0.038168 -0.081997 -0.074565 -0.091756 -0.0567236 

Max peak τ 0 -0.02 -0.0200031 -0.020003 -0.02003 -0.020004 -0.020002 -0.0200004 

σ peak τ 0 0.03652224 0.05484804 0.0242874 0.062818 0.0514348 0.0536395 0.06068712 

Figure 5.42 shows an interesting example of measured GHI superposed to its corresponding clear-sky 

irradiance curve. It can be seen that the periods of shading are very short, not unlike for cirrocumulus 

and altocumulus. However, when it occurs, the shading is not as intense as for the previous class. 

In contrast, the irradiance peaks are quite intense and prolonged in time. The optical thickness shown 

in Figure 5.43 demonstrates swift variations of low intensity optical thickness when a shading occurs. 

In comparison, peaks are sustained over time and may be intense, although the intensity of peaks varies 

greatly. 

The curve of the PV array output power shown in Figure 5.44 is quite close to what could be expected 

during a clear-sky day. It is not totally unlike the output power curve from Figure 5.41, with nonetheless 

a major difference in terms of intensity. The sunlight attenuation is more moderate than with 

cirrocumulus altocumulus since the maximum optical depth of clouds did not exceed 0.38 on 

21/04/2016. 
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Figure 5.42 – Measured and clear-sky GHI on 21/04/2016. 

 

Figure 5.43 – Optical thickness on 21/04/2016. 

 

Figure 5.44 – PV power output on 21/04/2016. 

5.6.6 Cloud type 7: Cumulonimbus/Nimbostratus 

Finally, 11 days have been selected because they were characterised by the presence of rain clouds, 

namely cumulonimbus or nimbostratus. The results of the observations during those days has been 

compiled in Tables 5.19 and 5.20. Although some broken pieces of such rain clouds may appear on the 

edge of a large cloud, rain clouds tend to be very large and usually cover the sky entirely for long periods 

of time. The longest period of shading time among the selected days is 10 hours 16 minutes for a single 

cloud. In contrast, the shortest average time is about 15 minutes. However, rain clouds are a mature 

version of cumulus or stratus clouds and some younger clouds can sometimes surround the mature one. 
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Table 5.19 – Observations made on cumulonimbus and nimbostratus clouds – First part. 

Days 17/04/2016 29/04/2016 2/05/2016 15/05/2016 21/05/2016 19/06/2016 

Total cloud time (s) 27940 21701 18941 13240 18157 20536 

Number of clouds 1 14 11 15 12 4 

Min cloud duration (s) 27939 32 50 101 102 1605 

Mean cloud duration (s) 27939 1549.07143 1720.9091 881.666667 1512.08333 5133 

Max cloud duration (s) 27939 7225 3996 3074 14732 10352 

Min cloud τ 0.13844912 0.07002974 0.0737838 0.07011774 0.07716377 0.10750353 

Mean cloud τ 1.05893937 0.7963897 0.8179338 0.80504437 1.57048075 0.86622403 

Max cloud τ 2.84217499 1.99688668 2.3555839 1.82083447 3.97427145 1.75584946 

σ cloud τ 0.44756399 0.39198905 0.4035452 0.38012107 0.77730016 0.30868756 

Total peak time (s) 0 4304 5074 6310 4072 615 

Number of peaks 0 13 13 20 13 3 

Min peak duration (s) 0 101 101 50 101 101 

Mean peak duration (s) 0 330.076923 389.30769 314.5 312.230769 204 

Max peak duration (s) 0 768 1229 1434 819 358 

Min peak τ 0 -0.3629718 -0.351956 -0.438827 -0.3229329 -0.3709165 

Mean peak τ 0 -0.1498863 -0.148243 -0.1513001 -0.1537336 -0.2856986 

Max peak τ 0 -0.0231545 -0.022453 -0.0205882 -0.0200134 -0.1395024 

σ peak τ 0 0.08688845 0.0793206 0.10730688 0.08576833 0.07777129 

Table 5.20 – Observations made on cumulonimbus and nimbostratus clouds – Second part. 

Days 22/06/2016 30/01/2016 7/02/2017 9/02/2017 10/02/2017 

Total cloud time (s) 14384 36994 30556 36168 36077 

Number of clouds 9 1 15 1 1 

Min cloud duration (s) 153 36993 51 36167 36076 

Mean cloud duration (s) 1597.22222 36993 2036.0667 36167 36076 

Max cloud duration (s) 5945 36993 13118 36167 36076 

Min cloud τ 0.07271929 0.8348859 0.0712886 0.7290805 0.37917291 

Mean cloud τ 0.6870043 1.83043166 0.8061889 1.5778994 1.75433701 

Max cloud τ 1.78607164 2.81139471 1.5689519 2.8909436 2.65741139 

σ cloud τ 0.31628096 0.43147137 0.3201265 0.4350542 0.41790509 

Total peak time (s) 4824 0 4930 0 0 

Number of peaks 11 0 17 0 0 

Min peak duration (s) 168 0 16 0 0 

Mean peak duration (s) 437.545455 0 289 0 0 

Max peak duration (s) 1126 0 768 0 0 

Min peak τ -0.3409986 0 -0.394791 0 0 

Mean peak τ -0.129662 0 -0.144943 0 0 

Max peak τ -0.0200075 0 -0.020048 0 0 

σ peak τ 0.09873647 0 0.0966714 0 0 

The optical thickness of those rain clouds varies greatly between 0.8 and 1.83. It can be nonetheless 

said that, overall, the optical thickness is high. This causes some significant, extended periods of time 

during which the sunlight is very strongly dimmed, without any irradiance peaks, as it can be seen in 

Figure 5.45. 

The optical thickness remained remarkably consistent and high throughout the same day, as shown in 

Figure 5.46. As a direct consequence, the power generated by the PV array on the same day is low 

overall, with some occasional peaks around noon. It can be noted that unlike what could be observed 

with some other clouds, the power curve closely follows the GHI curve. 

 

Figure 5.45 – Measured and clear-sky GHI on 10/02/2017. 
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Figure 5.46 – Optical thickness on 10/02/2017. 

 

Figure 5.47 – PV power output on 10/02/2017. 

5.6.7 Comparison of All Types of Cloud 

The average values and standard deviation values for all cloud types have been regrouped in Table 5.21. 

Table 5.21 – Observations made on all cloud types across the whole dataset. 

Cloud Type 2.Cu 3.Sc 4.St-As 5.Cc-Ac 6.Ci-Cs 7.Cb-Ns 

Total cloud time (s) 78132 74307 242757 153154 147101 274694 

Number of clouds 150 166 141 183 250 84 

Min cloud duration (s) 17 3 4 3 1 32 

Mean cloud duration (s) 519.88 446.6325 1720.681 835.9071 587.404 3269.167 

Max cloud duration (s) 3996 6406 27939 13118 22061 36993 

Min cloud τ 0.07 0.070002 0.070006 0.070002 0.07 0.07003 

Mean cloud τ 0.877372 0.907166 0.762451 0.664931 0.559851 1.244716 

Max cloud τ 2.355584 2.216505 2.842175 2.194908 3.611132 3.974271 

σ cloud τ 0.429999 0.41335 0.385201 0.355449 0.413451 0.615569 

Total peak time (s) 119042 95699 43033 108418 86535 30129 

Number of peaks 235 203 137 362 405 90 

Min peak duration (s) 0 4 0 1 0 0 

Mean peak duration (s) 505.5617 470.4236 306.4 298.4972 212.1429 319.5638 

Max peak duration (s) 6860 3484 2046 6337 2407 1434 

Min peak τ -0.48031 -0.5196 -0.44763 -0.47927 -0.36814 -0.43883 

Mean peak τ -0.11304 -0.12367 -0.1432 -0.09131 -0.07543 -0.14915 

Max peak τ -0.02 -0.02 0 -0.02 0 0 

σ peak τ 0.081033 0.083588 0.099628 0.0874 0.061933 0.095938 

Unsurprisingly, rain clouds prove to cause the longest and most dramatic shading. In contrast, cumulus 

and stratus clouds also have a relatively high optical thickness while they cause the shortest disruptions. 

However, the duration and intensity of peaks is fairly consistent regardless of the cloud type. It can 

possibly be said that cirrus and cirrostratus clouds cause shorter and less dramatic irradiance peaks than 
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all of the other types. This result makes sense considering the thin, elongated shape of such clouds. It 

also seems that the longest and most intense irradiance peaks are caused by the densest and most 

compact clouds, which are cumulus and stratocumulus. 

5.7 CONCLUSIONS 

A comprehensive analysis of the chromatic features and properties of the clear sky and of each type of 

cloud has been carried out. It was found that the ratio criterion was the most accurate to discriminate 

clear-sky pixels from cloud pixels. However, when the scattering effect is strong, two separate 

thresholds should be applied in the circumsolar region and in the extrasolar region. Also, an analysis of 

the distribution of clouds over a period covering nearly a year has demonstrated that cumulus clouds 

can be present all year long during all seasons. A study of the features of each cloud type, as 

recommended in the literature has been done, so that the resulting properties of each cloud type could 

be used for a fully automated online cloud classification. Finally, the effect of clouds on sunlight has 

been investigated. A large data set has highlighted the fact rain clouds were blocking sunlight the most 

and the longest. It was also found that cumulus and stratocumulus clouds may cause a significant 

shading as well, making them some of the most light-blocking blocks. However, those two cloud types 

also cause the short sunlight disruption. As a result, both cumulus and stratocumulus clouds are likely 

to make the DC voltage of grid-connected PV systems fairly unstable. A solution to that problem will 

be investigated in the next chapter. 
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6 PV POWER CONTROL 

As seen in the previous chapters, clouds may affect the continuity of sunlight in various ways, 

based on their type. In particular, fast, the significant sunlight variations of irradiance caused by 

compact clouds such cumulus clouds may induce some undesirable power output variations. When such 

problems occurs, a grid-connected PV system may turn into a load and may consume some power from 

the grid. One simple possibility would consist in disconnecting the PV system from the grid by 

curtailing the active power through the MPPT [166]. Alternatively, a more elegant although more costly 

solution would consist in taking advantage of the potential past excess power generated by the system 

to regulate the power on the short-term [11]. Effectively, this latter solution could be applied to 

smoothen the power output of the PV system for quality purposes, prior to injecting it to the grid. This 

solution has been already extensively proposed to smoothen wind and solar power output [16, 17, 167]. 

A case study is carried out in this chapter to illustrate this strategy when applied for short-term PV 

power smoothening. 

6.1 BATTERY STORAGE MANAGEMENT 

Batteries have long been thought as a solution to mitigate the effects that sunlight fluctuations 

may have on PV systems [11]. However, on a relatively short-term horizon, proper control is required 

to manage the state of charge of a battery bank. For that purpose, it has been decided to observe the 

effects of sunlight disruptions of various amplitudes on a verified PV system model.  

6.1.1 PV Array Model 

6.1.1.1 Initial Simulink Model 

The grid-connected 1.5kW monocrystalline PV array ‘Teaching Station 2’ from the GEEP lab, 

which has already been described in the previous chapter, can be modelled as shown in Figure 6.1. A 

model has been developed in MATLAB-SIMULINK to feature the PV array, with 8 SunTech STP190S-

24/Ad+ monocrystalline modules in series, the maximum power point tracking (MPPT), the 1.7kW 

SMA SunnyBoy inverter, the DC link regulator and the grid as shown in Figure 6.2. The simulation 

results of the SIMULINK model have been compared with some measurements taken at the GEEP lab. 
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Figure 6.1 – Diagram of the GEEP lab 1.5kW monocrystalline PV system. 

 

Figure 6.2 – MATLAB SIMULINK model of the GEEP lab 1.5kW Monocrystalline PV system. 

Since the MATLAB SIMULINK model that has been designed is discrete with a sample time of 1μs, 

simulations cannot be run for longer than about 20 seconds. In order to verify the accuracy of the model, 

it is thus necessary to choose a representative sample of measured data to be fed to the model. The data 

measured between 8:45:47 and 9:05:46 am has been identified as a particularly typical situation of 

dramatic transient shading. The measured direct normal irradiance (DNI) received by the array as well 

as the PV output current, voltage and power during that period of time are visible in Figure 6.3. It must 

be noted how close the variations of the DNI and the output current Iout since they are linked by the 

relationship given in Equation 6.1, in which the short-circuit current Isc is proportional to the DNI G. 

 𝐼𝑜𝑢𝑡 = 𝐼𝑠𝑐 − 𝐼0 ∙ (𝑒
𝑞(𝑉𝑜𝑢𝑡+𝑅𝑠∙𝐼𝑜𝑢𝑡)

𝑘∙𝑇𝑐𝑒𝑙𝑙 − 1) −
𝑉𝑜𝑢𝑡 + 𝑅𝑠 ∙ 𝐼𝑜𝑢𝑡

𝑅𝑝
 

(6.1) 

Assuming that the second and third terms much smaller than the first, a simplification can be made as 

in Equation 6.2 where Iref is the output current measured at Gref  =1000 W/m2 and Tcell = 25°C. 

 
𝐼𝑜𝑢𝑡 ≈ 𝐼𝑠𝑐 = 𝐼𝑟𝑒𝑓 ∙ (

𝐺

𝐺𝑟𝑒𝑓
) × [1 + 𝛼 ∙ (𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑐𝑒𝑙𝑙,𝑟𝑒𝑓)] (6.2) 
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Figure 6.3 – DNI and output signals of the 1.5kW monocrystalline array from the GEEP measured on 

19/04/2018. 

By using MATLAB’s linear toolbox, a linear regression between the output current, the cell temperature 

and a coarse measurement of the DNI for the same period of time lead to the relationship from Equation 

6.3 that fits the measurements at 99.64% and only gives an RMSE of 0.1022 A in shown in Figure 6.4. 

 𝐼𝑜𝑢𝑡 ≈ 0.004925 ∙ 𝐺 ∙ [1 + 0.004666 ∙ (𝑇𝑐𝑒𝑙𝑙 − 25)] (6.3) 
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Figure 6.4 – Linear regression model for the simplified irradiance-current relationship. 

Due to simulation constraints, the model is only verified over the 20 first seconds of the time period. 

However, results over that period, which spans between 8:45:47 am and 8:46:08 am show an nRMSE 

of 6.46% for the output current and 3.45% for the output voltage. The graphs comparing measured and 

simulated output currents and voltages for that period are respectively shown in Figure 6.5 (a) and (b). 

 

Figure 6.5 – First comparison between the simulated and measured output current (a) and voltage (b). 

Similarly, a shading episode occurred between 8:47:36 and 8:47:57 am, leading to an nRMSE of 6.57% 

for the output current and 5.42% for the output voltage. The graphs comparing measured and simulated 

output currents and voltages for that new period are respectively featured in Figure 6.6 (a) and (b). 
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Figure 6.6 – Second comparison between the simulated and measured output current (a) and voltage (b). 

It can be seen in both Figure 6.5 and Figure 6.6 that the simulated current follows the exact same trend 

as the measured current even if an offset is present. Now that this model has been verified in a 

satisfactory manner, some parameters can be readjusted to analyse the effect of sunlight dimming. 

6.1.1.2 Adjusted Simulink Model 

Some parameters have been adjusted in the SIMULINK model presented in Figure 6.2 as to obtain 

approximately the voltage levels given in Table 6.1 when referring to the voltages features in the 

diagram from Figure 6.1. 

Table 6.1 – Approximate target voltage levels for the readjusted Simulink model. 

VPV VDC VVSC VAC VGrid 

300 VDC 640 VDC 410 VAC, RMS 400 VAC, RMS 25,000 VAC RMS 

This configuration corresponds to the new diagram shown in Figure 6.7. 

Boost Converter 3-phase Inverter

1.5kW 
monocrystalline

PV array

MPPT

PDCIPV

VPV

300VDC 640VDC

410VAC,RMS

VDC

IDC

Ia VSC

RL feeder 100kVA 
transformer

400 V / 25 kV

400VAC,RMS

Vab VSC

Ia AC

Vab AC

VSC Controller
(Vpv, Ipv)

Duty ratio for 
gate pulses

Vdc
(Va Grid, Vb Grid, Vc Grid, 

Ia Grid, Ib Grid, Ic Grid)

Grid

25kVAC,RMS

Va Grid

Vb Grid

Vc Grid

Ia Grid

Ib Grid

Ic Grid

gate signals

 

Figure 6.7 – Diagram of the GEEP lab 1.5kW monocrystalline PV system with its target voltage levels. 

Also, for the sake of simplification, the DNI input fed to the readjusted PV system is initially set at 1000 

W/m2 and the cell temperature is set to a fixed 35°C throughout the whole simulation. 

The system may require up to 0.4 seconds to reach a completely steady state after a cold start is 

performed. To apply an extreme stress to the system, the DNI is abruptly reduced by a given factor after 
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1 second, which is quite extreme compared with cloud-related shading. The result of the simulation is 

observed until 1.6 second and an analysis of the power flow through the system is carried out between 

0.4 s and 1.6 s. In addition, the signals at every link of the system that has been annotated on the diagram 

in Figure 6.7 is analysed over the same observation period, for each sunlight reduction factor. 

6.1.1.2.1 Sunlight Reduction by 10% 

With a sunlight reduction factor of 10%, the evolution of DNI, the voltage at every link, the reactive 

power at the AC links, the current at all links, the power factor at the AC links and the active power at 

all links are respectively shown from Figure 6.8 to Figure 6.13. 

 

Figure 6.8 – Evolution of the DNI over time when the sunlight dimming factor is 10%. 

It can be seen in Figure 6.9 that because of the MPPT, the output voltage of the PV array is barely 

affected by such a relatively small variation of DNI. It is actually the current output of the array that 

follows almost all the variation of power, as shown in Figure 6.11. This effect is propagated through 

the further links and the DAC link voltage as well as the line to line voltages at the VSC output, RL 

feeder and grid connection point are quite consistent, while the change of current at the same links 

reflect the change in power and corresponds to a 10% drop. 

Further, as it can be seen in Figure 6.13, although the active power gets reduced by 10% under the effect 

of the dimmed sunlight, the power factor remains quite steady as shown in Figure 6.12. 
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Figure 6.9 – Evolution of the voltage at every link over time when the sunlight dimming factor is 10%. 

 

Figure 6.10 – Evolution of the reactive power at the AC links over time when the sunlight dimming factor 

is 10%. 
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Figure 6.11 – Evolution of the current at every link over time when the sunlight dimming factor is 10%. 

 

Figure 6.12 – Evolution of the power factor at the AC links over time when the sunlight dimming factor is 

10%. 
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Figure 6.13 – Evolution of the active power at every link over time when the sunlight dimming factor is 

10%. 

6.1.1.2.2 Sunlight Reduction by 20% 

It could be seen that dimming the DNI by 10% seemingly did not have any visible effect on the link 

voltages of the system and only affected the currents, with virtually no effect on the power factor. Let 

us increase that dimming effect to a reduction of 20% of the original value of the DNI to see how 

doubling the reduction affects more the system than just 10% did. In those conditions, the change of 

DNI, the voltage at every link, the reactive power at the AC links, the current at all links, the power 

factor at the AC links and the active power at all links are respectively shown from Figure 6.14 to Figure 

6.19. While the PV array output voltage remains unchanged, the PV output current and output power 

are cut by 19%, which makes in turn the power that is transmitted to the grid drop by 22%, as seen from 

Figure 6.17 to Figure 6.19. 
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Figure 6.14 – Evolution of the DNI over time when the sunlight dimming factor is 20%. 

 

Figure 6.15 – Evolution of the voltage at every link over time when the sunlight dimming factor is 20%. 
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Figure 6.16 – Evolution of the reactive power at the AC links over time when the sunlight dimming factor 

is 20%. 

 

Figure 6.17 – Evolution of the current at every link over time when the sunlight dimming factor is 20%. 
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Figure 6.18 – Evolution of the power factor at the AC links over time when the sunlight dimming factor is 

20%. 

 

Figure 6.19 – Evolution of the active power at every link over time when the sunlight dimming factor is 

20%. 

The exact same observations apply as for the previous dimming factor. 
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6.1.1.2.3 Sunlight Reduction by 30% 

Since the system reacted very similarly for a DNI dimmed by 20% as it did when it was dimmed 

by 10%, the dimming factor is this time increased to 30%. In that situation, with the DNI dimmed after 

1 second, the voltage at every link, the reactive power at the AC links, the current at all links, the power 

factor at the AC links and the active power at all links are respectively given from Figure 6.20 to Figure 

6.24. This time, the decrease in DNI has a noticeable effect on the output voltage of the PV array, 

although it only drops by 1.3%. However, the VSC controller strongly mitigates this effect and manages 

to maintain the DC link voltage despite of the variations of the PV voltage. The currents and hence the 

active powers are more dramatically affected by the change of DNI. For instance, the PV output current 

and output power have been both cut by 25% as seen in Figure 6.22 and Figure 6.24. Consequently, the 

power transmitted to the grid has dropped by 31%. For its part, however, the power factor changes only 

very slightly, up to 0.2% on the output of VSC and through the feeder. 

 

Figure 6.20 – Evolution of the voltage at every link over time when the sunlight dimming factor is 30%. 



235 
 

 

Figure 6.21 – Evolution of the reactive power at the AC links over time when the sunlight dimming factor 

is 30%. 

 

Figure 6.22 – Evolution of the current at every link over time when the sunlight dimming factor is 30%. 
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Figure 6.23 – Evolution of the power factor at the AC links over time when the sunlight dimming factor is 

30%. 

 

Figure 6.24 – Evolution of the active power at every link over time when the sunlight dimming factor is 

30%. 

Once more, the sunlight dimming factor will be increased to further study its effect on the system. 
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6.1.1.2.4 Sunlight Reduction by 40% 

The output voltage of PV array just started to change when the DNI dropped to a value located 

between 20% and 30% of the initial value. In order to observe a more dramatic effect on the system, 

the sunlight dimming factor has been further increased to 40%. With the DNI being decreased to 600 

W/m2 after 1 second of simulation, the voltage at every link, the reactive power at the AC links, the 

current at all links, the power factor at the AC links and the active power at all links are respectively 

given from Figure 6.25 to Figure 6.29. It can already be seen in Figure 6.25 that the drop of irradiance 

by 40% is accompanied by an immediate decrease of the PV array output voltage by about 5%. As it 

can be seen in Figure 6.27, the change in the output current of the PV array is still quite dramatic and 

corresponds to a 29% drop. It results from all of this that the PV array output active power is decreased 

by 32% while the amount of active power transmitted to the grid is reduced by 38.5%, as seen in Figure 

6.29. 

 

Figure 6.25 – Evolution of the voltage at every link over time when the sunlight dimming factor is 40%. 
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Figure 6.26 – Evolution of the reactive power at the AC links over time when the sunlight dimming factor 

is 40%. 

 

Figure 6.27 – Evolution of the current at every link over time when the sunlight dimming factor is 40%. 
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Figure 6.28 – Evolution of the power factor at the AC links over time when the sunlight dimming factor is 

40%. 

 

Figure 6.29 – Evolution of the active power at every link over time when the sunlight dimming factor is 

40%. 

The effect of dimming the sunlight even further is studied in the next cases. 
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6.1.1.2.5 Sunlight Reduction by 50% 

With the DNI decreased to 600 W/m2 or 40% of its original value, a drop was clearly visible 

concerning the output voltage of the PV array. However, this decrease was still relatively small and it 

can be anticipated that the output voltage of the PV array may further decrease as the DNI drops lower. 

For that purpose, this time, the DNI have been decreased by half after 1 second, which 500 W/m2. This 

leads to the changes in terms of voltages, the reactive power, currents, power factor and active power 

as respectively shown from Figure 6.30 to Figure 6.34. As shown in Figure 6.30, the drop in terms of 

output voltage has doubled compared with the previous case and now represents about 10%. In 

comparison, the output current of the PV array varies by 36% in the same conditions, as seen in Figure 

6.32. As shown in Figure 6.33, the power factor may fluctuate slightly but actually barely changes at 

all since it only losses up to 1.2% of its value at the point of interconnection between the system and 

the grid. 

 

Figure 6.30 – Evolution of the voltage at every link over time when the sunlight dimming factor is 50%. 
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Figure 6.31 – Evolution of the reactive power at the AC Links over time when the sunlight dimming 

factor is 50%. 

 

Figure 6.32 – Evolution of the current at every link over time when the sunlight dimming factor is 50%. 
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Figure 6.33 – Evolution of the power factor at the AC links over time when the sunlight dimming factor is 

50%. 

 

Figure 6.34 – Evolution of the active power at every link over time when the sunlight dimming factor is 

50%. 

Again, the effect of dimming the sunlight will be further studied in the following sections. 
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6.1.1.2.6 Sunlight Reduction by 60% 

So the effect of decreased DNI can be further studied, the DNI is decreased to 60% of its original 

value, which is 400 W/m2 after 1 second. The resulting changes in terms of voltages, the reactive power, 

currents, power factor and active power as respectively shown from Figure 6.35 to Figure 6.39. As 

shown in Figure 6.35, the output voltage of the PV array drops by 19%. Conversely, the output current 

of the PV array is suddenly decreased by 50% in the same conditions, as seen in Figure 6.37. As a result, 

the output power of the array decreases by 57% as seen in Figure 6.39 while the total power injected to 

the grid drops by about 66%. As shown in Figure 6.38, the power factor decreases but remains high as 

it only loses up to 3% at the point of common connection between the PV system and the grid. 

 

Figure 6.35 – Evolution of the voltage at every link over time when the sunlight dimming factor is 60%. 
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Figure 6.36 – Evolution of the reactive power at the AC links over time when the sunlight dimming factor 

is 60%. 

 

Figure 6.37 – Evolution of the current at every link over time when the sunlight dimming factor is 60%. 
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Figure 6.38 – Evolution of the power factor at the AC links over time when the sunlight dimming factor is 

60%. 

 

Figure 6.39 – Evolution of the active power at every link over time when the sunlight dimming factor is 

60%. 

The dimming factor could be even further increased to study its effects. 
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6.1.1.2.7 Sunlight Reduction by 70% 

The DNI is now decreased to only 70% of its original value, which is 300 W/m2 after 1 second in 

order to see how the PV system reacts to this change. The signal of the system, such as the voltages, 

reactive powers, currents, power factors and active powers are respectively shown from Figure 6.40 to 

Figure 6.44. As shown in Figure 6.40, the output voltage of the PV array is decreased by 32%. At the 

same time, the output current of the PV array suddenly drops by 60% after 1 second, as it can be seen 

in Figure 6.42. Consequently, the output power of the array decreases by 72% while the total power 

injected to the grid drops by nearly 85% as shown in Figure 6.44. The power factor starts to decrease 

more significantly since it can drop by up to 7% as seen in Figure 6.43. 

 

Figure 6.40 – Evolution of the voltage at every link over time when the sunlight dimming factor is 70%. 
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Figure 6.41 – Evolution of the reactive power at the AC links over time when the sunlight dimming factor 

is 70%. 

 

Figure 6.42 – Evolution of the current at every link over time when the sunlight dimming factor is 70%. 
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Figure 6.43 – Evolution of the power factor at the AC Links over time when the sunlight dimming factor 

is 70%. 

 

Figure 6.44 – Evolution of the active power at every link over time when the sunlight dimming factor is 

70%. 

Again, the dimming factor will be increased in the following section. 
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6.1.1.2.8 Sunlight Reduction by 80% 

A more extreme situation is envisaged compared with the previous cases, with a decreased of the 

DNI by 80% after 1 second, or 200 W/m2. The voltages, reactive power, currents, power factor and 

active power are respectively shown from Figure 6.45 to Figure 6.49. It is visible in Figure 6.45 that 

the output voltage of the PV array gets decreased by 49%. From Figure 6.47, it can also be seen that the 

output current of the PV array suddenly drops by a dramatic 73%. As a consequence, as shown in Figure 

6.49, the output power of the array itself decreases by 86% and the total power injected to the grid drops 

becomes null. The power factor also plummets quite dramatically as it drops by 26% on the VSC and 

RL feeder links and even becomes close to 0 at the point of interconnection with the grid. Thus, in those 

conditions, the PV array does not supply any power whatsoever to the grid. 

 

Figure 6.45 – Evolution of the voltage at every link over time when the sunlight dimming factor is 80%. 
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Figure 6.46 – Evolution of the reactive power at the AC links over time when the sunlight dimming factor 

is 80%. 

 

Figure 6.47 – Evolution of the current at every link over time when the sunlight dimming factor is 80%. 
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Figure 6.48 – Evolution of the power factor at the AC links over time when the sunlight dimming factor is 

80%. 

 

Figure 6.49 – Evolution of the active power at every link over time when the sunlight dimming factor is 

80%. 

Although the PV array has stopped feeding the grid, there is still a little room to decrease the DNI. 
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6.1.1.2.9 Sunlight Reduction of 90% 

In the previous case, it could be seen that the PV array completely stopped feeding the grid with any 

active power when it was receiving a DNI of only 200 W/m2. However, it could be interesting to see 

what happens when the received DNI is even lower and below this threshold value. If the DNI is 

suddenly cut by 90% after 1 second, and only represents 100 W/m2, the resulting voltages, reactive 

power, currents, power factor and active power are respectively shown from Figure 6.50 to Figure 6.54. 

It is can be seen in Figure 6.50 that the output voltage of the PV array gets decreased by 71%. In Figure 

6.47, it can also be seen that the output current of the PV array drops by as much as 86%. The 

consequence is visible in Figure 6.54, where the output power of the array itself decreases by 96% and 

where some power is actually taken from the grid to maintain the DC link voltage. The power factor 

also plummets by 68 % on the VSC and RL feeder links and is equal to -1 at the point of interconnection 

with the grid.  

 

Figure 6.50 – Evolution of the voltage at every link over time when the sunlight dimming factor is 90%. 



253 
 

 

Figure 6.51 – Evolution of the reactive power at the AC links over time when the sunlight dimming factor 

is 90%. 

 

Figure 6.52 – Evolution of the current at every link over time when the sunlight dimming factor is 90%. 
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Figure 6.53 – Evolution of the power factor at the AC links over time when the sunlight dimming factor is 

90%. 

 

Figure 6.54 – Evolution of the active power at every link over time when the sunlight dimming factor is 

90%. 

For better visibility, the results of all cases are compiled and discussed in the following section. 
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6.1.1.2.10 Summary and Discussion of Results 

The settled values of the voltages, currents and powers for each sunlight dimming case are shown 

in Table 6.2. Observations show that for a constant cell temperature of 35°C, the output voltage of the 

array only starts dropping when the output power of the array drops below 1 kW, which happens when 

the value of the DNI gets below 770.5 W/m2 for the tested cell temperature of 35°C.  

Also, it can be observed that when the irradiance drops down to only 200 W/m2, the power generated 

by the array is insufficient to be transmitted to the grid. It is also just sufficient to maintain the DC link 

voltage to its level. Below the DNI threshold of 200 W/m2, or below the equivalent power of 175 W, 

the power becomes even insufficient to maintain the DC link voltage. In those conditions, not only 

cannot the PV array feed the grid with any active power but it actually also operates as a load and 

consumes some power from the grid in order to maintain the DC link voltage to its desired level. 

Table 6.2 – Summary of the settled signal values of the Simulink PV model for each final value when Tcell 

= 35°C. 

Signal 
Final DNI Value (W/m2) 

1000 900 800 700 600 500 400 300 200 100 

VPV     (VDC) 308.63 308.62 308.67 304.61 294.24 278.88 250.15 209.41 157.46 90.36 

VDC     (VDC) 635.31 635.46 635.23 635.17 635.86 635.34 635.17 635.30 634.75 635.10 

Vab_VSC(VAC,RMS) 413.36 413.34 413.35 413.36 413.37 413.36 413.36 413.36 413.37 413.38 

Vab_AC (VAC,RMS) 395.90 395.90 395.90 395.90 395.91 395.90 395.90 395.90 395.91 395.91 

Va_Grid(kVAC,RMS) 24.36 24.36 24.36 24.36 24.36 24.36 24.36 24.36 24.36 24.36 

IPV      (ADC) 4.13 3.74 3.34 3.11 2.93 2.64 2.19 1.66 1.11 0.56 

IDC      (ADC) 2.09 1.88 1.72 1.49 1.36 1.16 0.86 0.545 0.274 0.08 

Ia_VSC  (AAC,RMS) 8.95 8.90 8.87 8.84 8.82 8.79 8.76 8.74 8.713 8.718 

Ia_AC   (AAC,RMS) 8.95 8.90 8.87 8.84 8.82 8.79 8.76 8.74 8.713 8.718 

Ia_Grid  (AAC,RMS) 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.139 0.139 

PPV     (kW) 1.28 1.16 1.04 0.95 0.87 0.737 0.555 0.355 0.175 0.05 

PDC     (kW) 1.28 1.16 1.04 0.95 0.87 0.737 0.555 0.355 0.175 0.05 

PVSC   (kW) 1.28 1.16 1.04 0.94 0.86 0.731 0.555 0.355 0.184 0.064 

PAC    (kW) 1.28 1.16 1.04 0.94 0.86 0.731 0.555 0.355 0.184 0.064 

PGrid   (kW) 1.09 0.97 0.85 0.75 0.67 0.542 0.365 0.165 -0.006 -0.126 

QVSC   (kVAr) 0.194 0.168 0.170 0.155 0.125 0.0105 0.098 0.126 0.175 0.1916 

QAC    (kVAr) 0.193 0.168 0.170 0.155 0.124 0.105 0.098 0.126 0.175 0.1915 

QGrid   (kVAr) 0.0018 -0.022 -0.020 -0.035 -0.066 -0.085 -0.094 -0.064 -0.015 0.0017 

PFVSC   0.9889 0.9896 0.9868 0.9866 0.9897 0.9898 0.9852 0.942 0.725 0.317 

PFAC    0.9890 0.9897 0.9869 0.9867 0.9899 0.9899 0.9852 0.942 0.725 0.317 

PFGrid   1.0000 0.9997 0.9997 0.9989 0.9952 0.9878 0.9687 0.933 -0.373 -0.999 
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6.1.1.3 Equivalent PSCAD Model 

Although SIMULINK has some advantages like giving the possibility to import some measured data 

from the workspace, PSCAD is a preferred tool in our team. Also, PSCAD can run some faster 

simulations, which may lead to more results than SIMULINK in a timely manner. The 1.5 kW grid-

connected model previously presented has thus been modelled in PSCAD version 4.5 with the same 

characteristics as for the adjusted SIMULINK model from the previous section. 

Although some NREL PV models are available both in MATLAB SIMULINK and in PSCAD, those 

models have been developed independently and may differ significantly. Thus, the PV array has been 

sized and its parameters have been set up in a way to match as closely as possible the array previously 

modelled in SIMULINK. This adjustments lead to the power-voltage (P-V) and current-voltage (I-V) 

characteristics featured in Figure 6.55, where the power is shown in kW, the voltage is expressed in kV 

and the current is in kA. 

 

Figure 6.55 – P-V (a) and I-V (b) characteristics of the PSCAD PV array model when receiving a DNI of 

1000W/m2 and operating at 25°C. 

The developed PSCAD model is composed of the same elements as the Simulink model was. Namely, 

it contains a PV array consisting of 8 monocrystalline modules in series, which is connected to a boost 

converter controlled by an MPPT using the incremental conductance method. It also contains a VSC 

along with its VSC controller. The VSC is connected to the grid via an RL feeder and a transformer. A 

partial view of the system can be seen in Figure 6.56. 



257 
 

 

Figure 6.56 – Partial view of the grid-connected PV system. 

The system has been designed for the voltage and active power levels to be similar to the Simulink 

model. For practical reasons, though, the PV output voltage and the DC link voltage may be somewhat 

lower than in the Simulink model. Also, the AC currents and power factors may be different. However, 

the overall system has been designed so that the main variations of voltage, current and active power 

remain very similar to the Simulink model. 

The values of the various signals of the system are compiled in Table 6.3 for various DNI values. The 

same comments apply concerning the trends of the voltages, currents and active powers as for the 

previously presented Simulink model. The output voltage of the PV array starts dropping by more than 

1% and the PV array starts acting like a load for the same levels of DNIs as for the previous model. 

Table 6.3 – Summary of the settled signal values of the PSCAD PV model for various DNI values when 

Tcell = 35°C. 

Signal 
Final DNI Value (W/m2) 

1000 900 800 700 600 500 400 300 200 100 

VPV     (VDC) 281.19 279.05 276.96 274.03 270.03 263.76 251.21 220.1 167.6 82.81 

VPV change (%) N/A 0.02 0.77 1.82 3.25 5.50 9.99 21.4 39.95 70.33 

VDC     (VDC) 609.64 602.8 608.11 608.8 609.22 609.44 607.5 608.4 608.4 608.6 

Vab_VSC(VAC,RMS) 464.17 464.18 464.12 464.09 464.39 464.44 463.85 464.37 463.99 461.69 

Vab_AC (VAC,RMS) 399.75 399.22 399.69 399.35 399.48 399.71 399.48 399.81 399.33 399.41 

Va_Grid(kVAC,RMS) 24.99 24.99 24.99 24.99 24.99 24.99 24.97 24.99 24.99 24.98 

IPV      (ADC) 4.37 4.15 3.99 3.82 3.59 3.29 2.86 2.25 1.5 0.619 

IPV change (%) N/A 5.03 8.70 12.59 17.85 24.71 34.55 48.51 65.68 85.84 

IDC      (ADC) 2.08 1.98 1.9 1.82 1.68 1.5 1.26 0.9 0.5 0.08 

IDC change (%) N/A 4.81 8.65 12.50 19.23 27.88 39.42 56.73 75.96 96.15 

Ia_VSC  (AAC,RMS) 28.59 28.55 28.56 28.52 28.61 28.71 28.71 28.59 28.51 28.46 

Ia_AC   (AAC,RMS) 4.79 4.77 4.76 4.73 4.72 4.71 4.74 4.6 4.6 4.62 

Ia_Grid  (AAC,RMS) 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 

PPV     (kW) 1.24 1.21 1.16 1.10 0.97 0.87 0.72 0.54 0.3 0.16 

PPV change (%) N/A 4.72 8.66 13.39 23.62 31.50 43.31 57.48 76.38 87.40 

PDC     (kW) 1.24 1.21 1.16 1.10 1.00 0.92 0.77 0.54 0.3 0.16 

PDC change (%) N/A 4.72 8.66 13.39 21.26 34.71 51.03 57.48 76.38 87.40 

PVSC   (kW) 1.13 1.11 1.05 0.99 0.92 0.82 0.66 0.44 0.21 0.09 

PVSC change (%) N/A 5.98 10.26 15.38 21.37 29.91 43.59 62.39 82.05 92.31 

PAC    (kW) 0.919 0.9 0.85 0.77 0.7 0.6 0.45 0.22 -0.07 -0.13 

PAC change (%) N/A 2.07 7.51 16.21 23.83 34.71 51.03 76.06 107.6 114.15 

PGrid   (kW) 0.919 0.9 0.85 0.79 0.68 0.58 0.45 0.21 -0.07 -0.13 

PGrid change (%) N/A 2.07 7.51 14.04 26.01 36.89 51.03 77.15 107.6 114.15 

QVSC   (kVAr) -17.87 -17.87 -17.87 -17.87 -17.87 -17.96 -17.87 -17.86 -17.86 -17.86 

QAC    (kVAr) 0.018 0.018 0.016 0.012 0.013 0.013 0.015 0.01 0.016 0.014 

QGrid   (kVAr) -0.38 -0.38 -0.38 -0.38 -.038 -0.38 -0.36 -0.38 -0.36 -0.37 

PFVSC   0.063 0.061 0.059 0.055 0.051 0.046 0.037 0.025 1.175 0.005 

PFAC    0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.996 -0.996 -0.994 

PFGrid   0.999 0.924 0.913 0.901 0.873 0.836 0.781 0.484 -0.467 -0.331 
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To illustrate the behaviour of the system when the DNI drops from 1000 W/m2 to 100 W/m2, the values 

of the voltages, currents and active powers are shown for every link of the system respectively from 

Figure 6.57 to Figure 6.61. 

 

Figure 6.57 – Evolution of the signals at the PV output over time when the sunlight dimming factor is 

90%. 

 

Figure 6.58 – Evolution of the signals at the DC link over time when the sunlight dimming factor is 90%. 
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Figure 6.59 – Evolution of the signals at the VSC output over time when the sunlight dimming factor is 

90%. 

 

Figure 6.60 – Evolution of the signals at the RL feeder output over time when the sunlight dimming factor 

is 90%. 
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Figure 6.61 – Evolution of the signals at the transformer output over time when the sunlight dimming 

factor is 90%. 

In order to mitigate the observed and discussed effects due to sudden drops of DNI, using a 

battery is a possible solution that would allow to smooth PV output power cuts by storing and shift 

historical excess power. This solution will be explored in the next sections. First, a realistic battery 

model is required. Then, a proper DC-DC converter is also needed with an adequate controller. 

6.1.2 Battery Model 

In the eventuality that the previously presented SIMULINK model was simulated with a battery 

bank, it would then matter to dispose of a proper battery model. Although MATLAB SIMULINK 

dispose of an existing battery model, some imperfections have been reported about this model in 

literature. In particular, from a short-term perspective, the built-in battery block is based on an equation 

that cannot render realistically the non-linear relationship that exists between the battery current and its 

output voltage [168]. Thus, for the sake of accuracy, a custom MATLAB/SIMULINK battery bank 

model has been designed by following an accurate model that has been created empirically based on 

some measurements of the internal resistance and capacitance values for a polymer lithium ion battery 

[169, 170]. The model in question is illustrated for a single cell in Figure 6.62. 
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Figure 6.62 – Accurate electrical battery model as proposed in [168, 169]. 

The top level view of the SIMULINK model is shown in Figure 6.63. 

 

Figure 6.63 – Top view of the MATLAB/SIMULINK battery bank model. 

The state of charge (SOC) of the battery is calculated as per Equation 6.4 where C0 is the capacity of 

one cell of the battery, which is 2 Ah, and Itotal is the controlled series charge/discharge current flowing 

through all battery cells. Effectively, Itotal is the same series current as the current Ibatt that is featured in 

Figure 6.62. The charge/discharge current current Isource flowing to (or from) the battery is regulated 

through a custom made battery charge controller. This controller operates so that the battery stops 

charging as soon as its SOC reached 100% by making Itotal equal to 0. Similarly, the battery is not 

allowed to discharge below 5% of SOC and the current Itotal is also curtailed when that occurs. 

In addition, the model also requires some information on the initial state of charge SOC0 that has been 

defined as 100%, which means that the battery bank is initially fully charged. 

 
SOC = SOC0 −

1

𝐶0
∫𝐼𝑡𝑜𝑡𝑎𝑙 𝑑𝑡 (6.4) 

Further, it is to be noted that the model has been initially designed for a continuous simulation mode. 

A discrete adaptation is needed to integrate this model with the SIMULINK grid-connected PV system 

that has been mentioned in the previous section. However, running a continuous simulation rather than 

a discrete one enables to study a full cycle of discharge and charge, which is more appropriate to verify 

the good functionality of the model. 
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The target voltage of the battery bank is 48V. Given the fact that the open circuit voltage (OCV) of each 

cell is 4.1V, 12 cells are connected in series to constitute the target voltage as shown in Figure 6.64, 

sharing the same current Itotal. 

 

Figure 6.64 – View of the power part of the MATLAB/SIMULINK battery bank model. 

Over a simulation time of 6 hours 40 minutes, the initially fully charged battery bank starts being 

discharged at t1 = 1 hour 40 minutes. The SOC is allowed to go down as low as 5% and is maintained 

at that level until the battery bank is charged up again at t2 = 5 hours and eventually fully recharges. 

When a continuous model is designed as per Figure 6.64 and is subsequently simulated over a full 

discharge and recharge cycle, assuming that the battery is initially full, then the evolution of the state 

of charge of the battery bank in those conditions is shown in Figure 6.65. 
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Figure 6.65 – State of charge of the battery bank. 

The changes occurring within one single cell of the battery bank in the exact same conditions in terms 

of open circuit voltage and output voltage are shown in Figure 6.66 and Figure 6.67 respectfully. As 

expected, the output voltage of the cell loosely follows the open circuit voltage although it plunges to a 

lower level for a relatively short period of time mostly due to the effect of Ctransient_S. 

 

Figure 6.66 – Open circuit voltage of one single cell in the battery bank. 
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Figure 6.67 – Output voltage of one single cell in the battery bank. 

As a result, the output voltage of the complete battery bank is simply proportional to the output voltage 

of a single cell, as seen in Figure 6.68, with a maximum voltage of 49.24V when fully charged and a 

minimum voltage of 35.60V when discharged at 5%. 

 

Figure 6.68 – Output voltage of the complete battery bank. 
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Simulation results prove the battery bank model to be fully functional over a full discharge/recharge 

cycle. The target voltage of 48% is achieved when the battery is fully charged. That voltage is even 

exceeded by 1.24V, which only corresponds to a relative error of 2.58%. 

However, disposing of a battery model is a necessary step towards smoothing PV output power but is 

still insufficient on its own. A proper control is additionally needed to control the charge and discharge 

of the battery through the DC link of the grid-connected PV system. 

6.1.3 Battery and Bidirectional DC/DC Converter with Controller 

The functionality that is sought would ideally require to connect a bi-directional DC/DC 

converter between the DC link and the battery. A good example of a suitable bidirectional converter for 

that sort of application would be a dual active bridge (DAB) [171-174]. 

 

Figure 6.69 – Diagram of the Dual Active Bridge (DAB) envisaged for this study. 

A dual active bridge consists of two H-bridge converters connected via a high-frequency transformer, 

as shown in Figure 6.69. This means that the converter has four switching combinations. Also, the gates 

in each H-bridge are to be switched with a phase shift angle Φ between both bridges. It must be noted 

that the angle Φ constitutes the control variable of the controller. Also, both bridges operate at a 50% 

duty cycle ratio. The full details of the architecture of a DAB can be found in [172]. 

If we consider the state vector x defined in Expression 6.5, where IL is the current flowing through the 

inductor L and Vdc is the output voltage. An input perturbation would be noted �̃�  while an output 

perturbation would be noted �̃�. In our specific application, the input voltage Vbatt is the battery voltage, 

which is chosen as 48 V when the battery is completely charged, which means when the state of charge 

(SOC) of the battery is 100%. The output voltage Vdc, on the other hand is the DC link voltage of the 

PV system, which is maintained close to 610 V by the VSC controller. 

 
𝑥 = [

𝑉𝑑𝑐
𝐼𝐿
] 

(6.5) 
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A relationship between x(t0) and x(t4) can be established as per Equation 6.6: 

 𝑥(𝑡4) = 𝐹 ∙ 𝑥(𝑡0) + 𝐺 ∙ 𝑉𝑏𝑎𝑡𝑡 (6.6) 

Over a switching cycle, the linearized model of a DAB is given in discrete-time domain by Equations 

6.7 and 6.8, where 𝐴 =
𝜕𝐹

𝜕𝑥
 and 𝐵 =

𝜕𝐹

𝜕Φ
+

𝜕𝐺

𝜕Φ
 : 

 �̃�(𝑘 + 1) = 𝐴 ∙ �̃�(𝑘) + 𝐵 ∙ Φ̃(𝑘) 
(6.7) 

 �̃�(𝑘) = [0 1] ∙ �̃�(𝑘) = 𝐶1 ∙ �̃�(𝑘) (6.8) 

If a state feedback with an integral control action is applied to the DAB, then the discrete-time 

equivalent of the integral controller becomes as shown in Equation 6.9 where yref is the reference 

voltage. 

 
{
�̃�(𝑘) = �̃�(𝑘) − �̃�𝑟𝑒𝑓(𝑘)

z(𝑘) = z(𝑘 − 1) − 𝐾𝑖 ∙ e(𝑘)
 

(6.9) 

In Equation 6.9, Ki is an integral gain. From Equations 6.8 and 6.9, a new expression can inferred as 

shown in Equation 6.10. 

 
z(𝑘 + 1) = z(𝑘) + 𝐾𝑖 ∙ 𝐶1 ∙ �̃�(𝑘) − 𝐾𝑖 ∙ �̃�𝑟𝑒𝑓(𝑘) (6.10) 

Also, an extended state vector can be defined as per Equation 6.11. 

 
𝑥𝑒(𝑘) = [

�̃�(𝑘)

z(𝑘)
] 

(6.11) 

It can inferred from Equations 6.18and 6.10 that the extended state space description of the system can 

be written as shown in Equation 6.12. 

 
𝑥𝑒(𝑘 + 1) = [

𝐴 0
𝐾𝑖 ∙ 𝐶1 1

] ∙ 𝑥𝑒(𝑘) + [
𝐵
0
] ∙ Φ̃(𝑘) − [

0
𝐾𝑖
] ∙ �̃�𝑟𝑒𝑓(𝑘) (6.12) 

The DAB controller is then designed through a state feedback control as in Equation 6.13. 

 Φ̃(𝑘) = −𝐾 ∙ 𝑥𝑒(𝑘) (6.13) 

The gain matrix can be computed using the linear quadratic regular (LQR) function in MATLAB. The 

above control law regulates the output voltage of the DAB. However for a power flow control, the 

output voltage needs to be modulated based on the power demand. To achieve this, a PI Controller is 
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employed, whose output is the voltage reference yref mentioned in Equation 6.9. The input to the PI 

controller is the difference between the desired power and the actual power output (or input) of (from) 

the DAB as given in 6.14, where Pref is the reference power and Plink is the power flowing into the DAB 

or out of the DAB. It is to be noted that the positive direction for the power to flow is considered as into 

the DAB. In that case, when the power needs to flow out of the DAB, a negative Pref is considered. 

 
𝑦𝑟𝑒𝑓 = 𝐾𝑝 ∙ (𝑃𝑟𝑒𝑓 − 𝑃𝑙𝑖𝑛𝑘) + 𝐾𝑖 ∙ ∫(𝑃𝑟𝑒𝑓 − 𝑃𝑙𝑖𝑛𝑘)𝑑𝑡 (6.14) 

Finally, in steady-state conditions, assuming that the transformer is ideal, the power transfer through 

the converter can be expressed as in Expression 6.15. 

 𝑃 =
𝑉𝑏𝑎𝑡𝑡 ∙ 𝑉𝑑𝑐 ∙ Φ ∙ (𝜋 − Φ)

2 ∙ 𝜋2 ∙ 𝑓 ∙ 𝐿
 

(6.15) 

Hence, it can be said that the power transfer is maximum when Φ = π/2 and it is 0 when Φ = 0. 

6.1.3.1 DAB Modelling and Testing 

The overall system for the grid connected bidirectional DC-DC converter has been modelled in PSCAD. 

The top view of the model is shown in Figure 6.70. It is composed of a DAB that is initially insulated 

and connected to a local load. After reaching a steady state, it is then disconnected from its load and 

connected to the grid instead. A simplified version of the grid previously shown has been used. The 

battery is assumed initially fully charge and thus its voltage Vbatt is 48 V. Since the duration of the 

simulation is limited to a few second only, the battery has been replaced by an ideal voltage source. 

After calculating the steady state conditions in MATLAB, the transformer of the DAB has been 

designed around a 20 kVA ideal transformer with a base operation frequency f = 10 kHz, a leakage 

reactance X = 0.001 pu, a 2 kV primary winding voltage and a 10 kV secondary voltage. 
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Figure 6.70 – PSCAD DAB model connected to a utility grid block with a local load. 

Also, initially, the DAB is simply connected a load RL = 420  to allow the converter to start up. After 

reaching a steady state, that resistive load is disconnected via the breaker BRK4 and instead, the DAB 

is connected to the utility grid via the breaker BRK3 with a 500 μF filter capacitor. 

The initial value of the phase angle, or nominal phase shift angle Φ0 is chosen as 1.9. Calculating the 

steady state vector x0 for a fixed duty ratio leads to the result shown in Expression 6.16. 

 
𝑥0 = [

659.44 𝑉
128.05 𝐴

] 
(6.16) 

Based on this and the system parameters, the proportional gain matrix mentioned in Equation 6.13 and 

the integral gains are given in Expression 6.17. 

 
{
𝐾 = [1.7635 × 10−6 −3.5468 × 10−11 5.3019 × 10−6]

𝐾𝑖 = 0.01
 

(6.17) 

Before being used to mitigate and compensate for power losses, the DAB is tested to inject some power 

into the grid and to draw some power from the grid. Effectively, this respectively corresponds to 

discharging and recharging the battery. 

As seen in Figure 6.70, the system does a cold start at the initial time t = 0 s with breaker BRK3 open 

and breaker BRK4 closed. Thus, effectively, the DAB is only connected to a local resistive load RL = 

420  to get started. The power flow controller is initially disabled and the power at the DC link junction 

is free to get the value Plink = 0.877 kW. After one second, at t = 1 s, the state of both breakers BRK3 

and BRK4 is toggled to disconnect the local load and connect the DAB to the DC link. At the same 
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time, the power flow controller is activated with a power reference Pref set to 0 kW. Finally, after 4 

seconds, at t = 4 s, the power reference Pref is set to a different value, which is 10 kW. 

 

Figure 6.71 – DC link power when the DAB supplies power to AC grid. 

The resulting output power of the DAB, which is also the power at the DC link can be seen in Figure 

6.71. It is visible that the DAB starts supplying power to the grid via the VSC from t = 4 s. 

 

Figure 6.72 – DAB voltage reference Vref and actual output voltage Vdc when the DAB supplies power to 

AC grid. 
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Figure 6.73 – Grid Power when the DAB supplies power to AC grid. 

The actual output voltage of the DAB Vdc is compared the reference voltage Vref in Figure 6.72. Also, 

it must be noted that the grid power in Figure 6.73 becomes negative since the grid is fed from the DAB 

and absorbs some power. 

The power reference of the DAB can be changed to inverse the power and feature the case when the 

battery needs to charge. When Pref is set so that 10 kW flows into the DAB after 4 s to charge up the 

battery, the corresponding DC link power is shown in Figure 6.74. 

 

Figure 6.74 – DC link power when the DAB absorbs some power from the grid. 
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Figure 6.75 – DAB voltage reference Vref and actual output voltage Vdc when the DAB absorbs some 

power from the grid. 

 

Figure 6.76 – Grid power when the DAB absorbs some power from the grid. 

It can be seen in Figure 6.74 that the Plink is negative, which indicates that the battery is absorbing 

some power and thus charging up. As a result, the grid power is positive, which shows that the grid is 

supplying some power for the operation, as seen in Figure 6.76. The actual output voltage of the DAB 

and the reference voltage are also shown in Figure 6.75. 

6.1.4 PV Power Control 

In order to mitigate the effects of sudden drops of solar irradiance, the architecture shown in Figure 

6.77 could be envisaged [79]. Having a bidirectional DC-DC converter with its controller and a battery 

bank connected to the DC link of the system offers at least two advantages. Firstly, connecting the 

battery with its converter to the PV link would disturb the MPPT. Secondly, the DC link enables the 

battery to charge from both the PV array and the grid since some power can flow from the grid to the 

DC link via the VSC. The complete system is shown in Figure 6.77. 
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Figure 6.77 – Complete grid-connected PV system with battery and bidirectional DC-DC converter. 

Forecasting the PV power loss with the method presented in Chapter 4 could enable to anticipate the 

power losses experienced at the level of the DC link. This could be done by updating the power 

reference of the DAB controller Pref with the forecasted difference of power between the clear-sky 

condition DC link power and its equivalent when a cloud is forecasted to dim the sunlight. 

6.2 VOLTAGE SOURCE CONVERTER CONTROL 

The previously presented PSCAD model of the grid-connected PV system unfortunately features 

a poor VSC power factor. Hence, in order to improve and control the VSC power factor, a further 

improvement of the design could consist in optimising the control of the three-phase voltage source 

converter (VSC) with a topology as shown in Figure 6.78, where the signal on each phase is filtered by 

an LCL filter [175, 176]. The design could optionally function with a battery and its controller although 

this is not an absolute necessity. The whole PV system would need to have the option to be isolated 

from the grid to prevent the system from acting like a load if it does not generate enough power to 

maintain the VSC output voltage. 
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Figure 6.78 – Diagram of the overall system with closed-loop controlled three-phase VSC. 

For an optimal performance, the gates of the switches of the VSC must be driven by a real-time closed-

loop controller [177, 178]. For that purpose, some IGBTs with an optocoupler interface could be used 

to feature the switches of the H-bridge. 

6.2.1 VSC Controller Proposed Equipment and Setup 

The critical real-time nature of the control implies to make some design choices in terms of hardware 

equipment as well as in term of software architecture to that implement the proposed VSC controller. 

Some hardware choices will be discussed in the following part, followed by a presentation of a strategy 

to code the real-time functionality of the VSC controller, with some results that support that strategy. 

6.2.1.1 VSC Hardware 

The VSC itself could consist in an H-bridge composed of IGBT switches that can operate at a maximum 

frequency of 20 kHz, a sampling period between 66 µs and 100 µs could be considered to refresh both 

input readings and output commands. More specifically, a sampling period of 80 µs has been supposed 

as suitable and has subsequently verified to appropriate for such an application. 

The DSP’s embedded 12-bit analogue to digital converter (ADC) could be set up to operate at 12.5 

MHz in sequential mode with a 0-3V input voltage range. Some high precision sensors could be used 

to measure the signals under control such as a LEM LV 25-P [179] to measure the output voltages of 

the VSC and a LEM HAIS 50-P hall-effect transducer to measure currents [180]. Since the current 

transducer need a given number of turns to measure the current, the transfer function of that transducer 

may vary accordingly and needs to be measured manually. 
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Figure 6.79 – Characterisation of the current transducer LEM HAIS 50-P. 

For example, if the number of turns is chosen to be 9, then the output voltage of the LEM current 

transducer with respect to the input current is as shown in the scatter plot in Figure 6.79. Measurements 

show a non-linearity of 0.13% of the full scale when measuring currents from 0.25 to 2.5 A. Given the 

fact that the transfer function is indeed very linear, it is safe to approximate it with a linear function like 

the one given in Equation 6.18. This approximation is characterised by an RMSE of 0.26% a Pearson’s 

correlation coefficient of 0.999992. 

 𝑉𝑜𝑢𝑡 =  1.02 ∙ 𝐼𝑖𝑛 + 0.0264 (6.18) 

Similarly, the transfer function of the voltage transducer needs to be defined through measurements, as 

shown in Figure 6.80.  

 

Figure 6.80 – Characterisation of the voltage transducer LEM LV 25-P. 
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The measurements feature a non-linearity is 0.48% of the full scale when measuring voltages ranging 

between 0 and 60V. Like for the current sensor, it is deemed safe to approximate the transfer function 

is a linear relationship. The linear approximation from Equation 6.19 is characterised by an RMSE of 

4.76% and a Pearson correlation coefficient of 0.999995. 

 𝑉𝑜𝑢𝑡 =  0.0201 ∙ 𝑉𝑖𝑛 + 0.0205 (6.19) 

It is necessary to condition the voltages corresponding to the measured voltage and the measured current 

so they can be read in full scale by the ADC of the digital signal processor (DSP). As to guarantee a 

safe margin, the full scale of the signal has been reconditioned to fit a range [0.25V - 2.75V]. For that 

purpose, a level shifter has been designed and built for each sensor. The design of both level shifter has 

been done using PSPICE and the PCB implementation has been made by using KiCad. The resistance 

have been chosen to match up some standard values for 0.5W resistors. Also, the level shifter have been 

designed around a general purpose operational amplifier Texas Instruments μA741 [181]. For 

comparison, Figure 6.81, Figure 6.82 and Figure 6.83 respectively show the PSPICE schematic, KiCad 

schematic and KiCad layout of the level shifting circuit that is meant to condition the output voltage of 

voltage sensors. Figure 6.84, Figure 6.85 and Figure 6.86 show respectively the same thing but this time 

for the level shifter that is intended for current sensors. 

 

Figure 6.81 – PSPICE schematic and DC analysis of the level shifter for voltage sensors. 
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Figure 6.82 – KiCad schematic of the level shifter for voltage sensors. 

 

Figure 6.83 – KiCad layout of the level shifter for voltage sensors. 
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Figure 6.84 – PSPICE schematic and DC analysis of the level shifter for the current sensors. 

 

Figure 6.85 – KiCad schematic of the level shifter for current sensors. 
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Figure 6.86 – KiCad layout of the level shifter for current sensors. 

6.2.1.2 VSC Controller Implementation 

According to Sepulveda et al [182], both field programmable grid arrays (FPGAs) and digital signal 

processors (DSPs) can be well suited for real-time control of VSCs and can achieve a nearly similar 

performance in terms of dc voltage dynamics. This conclusion was drawn by the same team after testing 

a 20% voltage sag on a 1kVA VSC prototype. After comparing a TMS320F2812 DSP on a Starter Kit 

eZdsp F2812 with a Spartan-3 XCS1000 FPGA on a Digilent Starter Board, Sepulveda et al have 

concluded that FPGAs could be recommended for critical applications that require a reduced 

computation time via a low-level control of hardware resources and through the use of parallel tasks. 

FPGAs can also be a better choice if a large number of general purpose inputs/outputs (GPIOs) need to 

be used. However, generally speaking, besides such specific applications, DSPs are a better choice 

because they allow a much faster development thanks a simplified programming that involves C rather 

than VHDL. Also, DSPs can give the access to some useful proprietary libraries. 

Thus, a digital signal processor (DSP) such as a Texas Instrument TMS320F28335 with a fast modified 

Harvard architecture could be envisaged as an advantageous option, considering the fact it is a more 

advanced model than the TMS320F2812.  

The real-time C program would heavily rely on the interruption service requests (ISRs) of the user 

accessible timer Timer0 every 80μs. An extensive use of lookup tables, macro definitions and built-in 

functions could also be made to guarantee the real time operation of the program. 

6.2.2 VSC Controller Program Testing 

As illustrated in Figure 6.78, the input variables of the control system are the following for each phase: 

- input current of the LC filter ish 

- voltage across the capacitor of the LC filter vcf 

- output voltage of the LC filter and voltage at the point of common coupling with the grid vt  
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- output current of the LC filter and current flowing to the point of common coupling with the 

grid it 

After being digitised through an ADC, these input signals would need to be sensed and subsequently 

conditioned through rescaling, digitisation and filtering. For example, in particular, the specific signals 

vt, vcf and it could be passed through a 1 Hz high-pass filter (HPF) prior to being processed by the 

controller to be stripped of their DC component. On the other hand, the high frequency components of 

the signal ish , which effectively corresponds to a noise, could be extracted through a 2.4 kHz HPF and 

amplified by a gain K2. This noise effectively corresponds to a VSC output current error and is noted 

e2. Meanwhile, an FFT analysis of vt and it should be done via a wave analyser that would contain a 

PLL function. The resulting phasors could be used to generate a reference voltage vcf,ref, to be compared 

with vcf. The difference of the comparison is multiplied by a positive gain K1 and corresponds to the 

output current error of the LC filter, which is noted e1. The sum of the two VSC errors e1 and e2 is 

compared with a reference value eref within a hysteresis control block. The output signals of the 

controller are a pair of complementary commands out and 𝑜𝑢𝑡̅̅ ̅̅̅  that are generated by a hysteresis 

function with a dead-band controller. Those outputs are fed to the driver circuit of the IGBT switches 

in the VSC via some intermediate optocouplers. The complete algorithm is shown in Figure 6.87. 
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Figure 6.87 – Complete overall architecture of the VSC controller. 

To guarantee an effective real-time functionality of the overall controller, the overall operation 

including every block must be located within the Timer0 interrupt service request (ISR). The 

accumulated execution time must not exceed the sampling period of 80 μs, which corresponds to 12,000 

clock cycles. For that purpose, the execution time of every single block composing the overall 

architecture of the controller must be tested and optimised for performance. 

6.2.2.1 Signal Generator 

The purpose of the signal generator block is to generate a reference sine wave signal inside the DSP 

program with an amplitude and frequency that matches up with the desired setpoint. 
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An excessively large number of mathematical calculations may result in a long execution time. It is thus 

wise to try to avoid repetitive calculations and prepare the result of some easily foreseeable calculations 

during the setup stage of the program. Following this idea, a lookup table ref[nb], where nb is the 

number of samples, is filled with the values corresponding to a full period in the main function of the 

program. The content of the table is simply read later on whenever needed in Timer0 ISR in order to 

optimize the execution time of the ISR. 

 𝑟𝑒𝑓[𝑖] = 𝑉 ∙ sin (2 ∙ 𝜋 ∙ 𝑓 ∙ 𝑡 + 𝜑) (6.20) 

An output flag is then defined inside Timer0 ISR and is set to +1 when the values of the reference signal 

are greater than a threshold value h and set to -1 for values smaller than -h. 

With such a strategy, it only takes 52 clock cycles, which is 346ns to run the signal generating function 

in the ISR. This execution time only corresponds to 3% of the total duration of 80µs. 

 

Figure 6.88 – Example of reference signal generated by the signal generator block. 
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Figure 6.89 – Output flag signal corresponding to the reference generated signal given in Figure 6.88. 

In Figure 6.88 and Figure 6.89 is shown an example where the gain has been defined as V = √2, the 

frequency is f = 50Hz, the phase angle is φ = 0, the threshold value is h = 0.8 and the number of samples 

is nb = 250. 

6.2.2.2 FFT Block 

The FFT analysis block is actually composed of a few independent sub-blocks. The performance of 

each block needs to be assessed separately. 

6.2.2.2.1 Integration 

The purpose of this block is to integrate an analogue input signal after conversion through the ADC of 

the DSP. 

A counter is used to differentiate the initial conversion from the ADC from the further conversions. The 

integration of a currently sampled value and the preceding sampled value that was sampled during the 

last cycle is calculated thanks to a trapezoidal approximation. A circular buffer containing two elements 

is used to store and update the sampled converted values. An additional interrupt service request is used 

to acknowledge the interruption to sample and convert the signal though the ADC.  

In the main function, the ADC and the GPIOs are initialised and set up and a PWM is used to trigger 

the start of conversion. In Timer0 ISR, when the ADC is ready for conversion, the first reading 

Voltage_VR1 from the ADC is stored. When the second reading Voltage_VR2 arrives, the area of the 

rectangle defined by the average of both values and spaced by the sampling period is calculated and 
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added to the end result of the integration. Also, after each cycle, the newest value of the previous cycle 

becomes the oldest value of the new cycle. A counter also keeps track of the number of cycle elapsed. 

The resulting execution time needed to run the content of Timer0 ISR function is 21 clock cycles, which 

corresponds to 140 ns or 1.1% of the period Ts = 80µs. 

 

Figure 6.90 – Example of result obtained with the integration block. 

The results shown in Figure 6.90 verify the integration formula from Equation 6.21, where counter has 

to be greater than 1, proving the block to function correctly after 11 iteration cycles. 

 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝑉𝑜𝑙𝑡𝑎𝑔𝑒_𝑉𝑅1 + 𝑉𝑜𝑙𝑡𝑎𝑔𝑒_𝑉𝑅2

2
× (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 − 1) × 𝑇𝑠 (6.21) 

6.2.2.2.2 Low-Pass Filter / DC Value Extractor 

The objective of this block is to extract the DC average value from an AC input signal after conversion 

through the ADC of the DSP. To achieve this goal, a circular buffer containing nb = 250 elements is 

used to store and update the sampled converted values. Once again, in the main function, the ADC and 

the GPIOS are initialised and set up and a PWM is used to trigger the start of conversion. The 

implementation of the filter is done in two times. A counter is incremented at each cycle. For as long 

as the pointer remains smaller than nb, a value is sample via the ADC the instantaneous partial sum, 

noted sum, of all of the values is calculated. When the pointer becomes equal to nb, it is reset to 0 and 

the value of the oldest element is replaced by the newest element in the sum as well as in a table used 

to store all values. If the pointer has reached nb at least once, the average of the AC signal is calculated 

as in Equation 6.22. 

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑣𝑎𝑙𝑢𝑒 =  
𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 𝐴𝐷𝐶 𝑖𝑛𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

(2𝑛 − 1) × 𝑛𝑏
× 𝑠𝑢𝑚 (6.22) 

The program has been tested with an input sine wave characterised by a peak-to-peak amplitude of 

1.02V, an offset DC voltage of 1.028V and a frequency of 50Hz. The time needed to execute this 

function Timer0 ISR function is 52 clock cycles, which is 346 ns or 2.8% of the period Ts = 80µs.  
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After 153 iterations, the error proves to be 0.9155%. Changing the frequency of the signal affects the 

value of this error. As a remedy, the number of samples need to be amended dynamically to match with 

the frequency of the signal. 

6.2.2.2.3 Discrete Fourier Transform (DFT) 

This blocks is meant to obtain the magnitude and phase angle of the fundamental harmonic of an input 

signal after conversion through the ADC of the DSP. The amplitude of the input signal X is calculated 

according to the formula shown in Equation 6.23 where FS represents the full-scale of the ADC input, 

which is 3V, n represents the resolution of the ADC and N represents the number of samples. In order 

to effectively shrink the execution time in the ISR function of Timer0, the values of the cosine and sine 

function shown in Equation 6.23 are pre-calculated and stored in two lookup tables prior in the main 

function of the program to being used during the real-time execution of the Timer0 ISR. The amplitude 

of the signal is subsequently calculated the length of the diagonal formed by the real value and the 

imaginary value. The phase of the signal is simply used with a predefined arctangent function. 

𝑋 =
𝐹𝑆

(2𝑛 − 1) × 𝑁
× ∑ 𝑥𝑛. 𝑒

−𝑖2𝜋𝑛/𝑁 =
𝐹𝑆

(2𝑛 − 1) × 𝑁
×∑ 𝑥𝑛. (cos (

2𝜋𝑛

𝑁
) − i. sin (

2𝜋𝑛

𝑁
))

𝑁−1

𝑛=0

𝑁−1

𝑛=0

 

 
(6.23) 

The same input signal as for the previous block has been used for testing purposes. This signal is visible 

in Figure 6.91. 

The maximum execution time needed to run the content of Timer0 ISR function has been measured as 

872 clock cycles, which is 5.8 µs, or 7.2% of Ts = 80µs. Like for the previous block, all times, the 

number of samples needs to be dynamically amended to match with the frequency of the signal. 
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Figure 6.91 – Input signal used to test the DFT block. 

An error of 4.66% has been found regarding the measurement of the amplitude of the signal and an 

error of 1.01% regarding the measurement of the phase of the signal. 

6.2.2.3 High Pass Filter 

A high pass filter block is required to retrieve the high frequency component of an input signal after 

conversion through the ADC of the DSP. A digital filter is needed for that purpose. This means that a 

typical Laplace domain transfer function for high pass filter like the one shown in Equation 6.24 needs 

to be converted to an equivalent discrete time transfer function. This can be done by using the binomial 

approximation shown in Equation 6.25 where a = 𝜔𝑐 = 15 kHz is the cut-off frequency of the filer and 

Ts = 80µs is the sampling period. This results in z-domain transfer function from Equation 6.26. 

 
𝐻(𝑠) =

𝑠

𝑠 + 𝑎
 (6.24) 

 𝑠 =
2

𝑇𝑠

𝑧 − 1

𝑧 + 1
 

(6.25) 

 𝐻(𝑧) =
1

𝑎.
𝑇𝑠
2  + 1

.
𝑧 − 1

1 +
𝑎.
𝑇𝑠
2 − 1

𝑎.
𝑇𝑠
2 + 1

 

 
(6.26) 

Two circular buffers, one for the input of the digital filter and another for the output, are used to 

implement the filter iteratively by using the following pseudo-code within Timer0 ISR: 
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step 1. (initialisation) 

If this is the first iteration then: 

Write the current value of the input signal at the position 0 of a two-element input circular buffer x 

Write the current value of the input signal at the position 0 of a two-element output circular buffer y 

Else: 

step 2. (running the filter) 

If the input array is not full yet then: 

Write the current value of the input signal at the position 1 of x 

Calculate the output value as y[1] = a0*x[1] + a1*x[0] + b1*y[0] 

Else: 

step 3. (reset the filter) 

If the input array is full then: 

Reinitialise all pointers 

Overwrite the value of the oldest element x[0] of the input buffer with the newest value x[1] 

Overwrite the value of the oldest element y[0] of the input buffer with the newest value y[1] 

Write the current value of the input signal at the position 1 of x 

Update the output value as y[1] = a0*x[1] + a1*x[0] + b1*y[0] 

The execution time needed to run the content of Timer0 ISR function is 317 clock cycles, which is 2.1 

µs or 2.6% of Ts = 80µs. 

When a modulated sine wave is applied at the input of the filter like in Figure 6.92, then the high 

frequency carrier can be retrieved, like in Figure 6.93. 
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Figure 6.92 – Sine modulated input signal. 

 

Figure 6.93 – Retrieved high frequency component of the sine modulated input signal. 

6.2.2.4 Complete Real-time program with all blocks together 

After optimising the execution time of every block that is necessary for the controller, the real-time 

operation of the complete program is tested, excluding the droop and power calculation features. The 

content of all the blocks is included within the same Timer0 ISR while all necessary lookup tables are 

pre-calculated in the main function. The maximum execution time needed to run the content of Timer0 
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ISR function with all the blocks inside it is 1422 clock cycles, which is 9.5 µs. Since this only 

corresponds to 11.8% of the 80µs sampling period, this leaves a very large safe margin for some further 

features. 

6.3 CONCLUSIONS 

An accurate grid-connected PV system model has been designed with MATLAB/SIMULINK. 

The accuracy of this model has been verified against some actual measurements taken on a real system 

of similar size. However, an equivalent model has been made with PSCAD with some equivalent 

voltage and active power levels as the verified SIMULINK model to study the effect of sunlight drops 

with various dimming factors. It has been found that the PV array output voltage does not significantly 

change for dimming factors between 10% and 30% of an initial DNI with a cell temperature of 35°C. 

The output PV array voltage only starts significantly decreasing when the irradiance is below 770.5 

W/m2. However, the PV output current and output power drop along with the DNI. In the meantime, 

the DC voltage can still be maintained and the grid cab still be fed by the PV array until the DNI drops 

by about 80% or more of its initial value. In that case, the output power of the PV array is less than 0.3 

kW, which is insufficient to keep the DC link voltage constant. As a result, the grid has to supply the 

necessary power and the PV array acts like a load. 

To remedy to this problem, compensating for the drop of PV output power has been thought by using a 

battery bank. Although a realistic bank model has been realised in SIMULINK, the overall strategy has 

been partially implemented by using PSCAD. A bidirectional DC-DC converter such as a dual active 

bridge is recommended on the DC link of the system. Such a DAC has been designed and tested both 

for charging and discharging the battery. 

Also, a controller has been proposed to further control the VSC of the system and improve the overall 

dynamic performance. Several blocks of this controller have been tested individually to ensure the good 

real-time functionality of the overall embedded program. Eventually, the optimisation of each 

individual block has guaranteed a large safe margin in term of execution time of the whole program. 
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7 CONCLUSIONS AND FUTURE WORKS 

7.1 CONCLUSIONS 

7.1.1 Conclusions about the Method 

A Bayes filter based forecasting method has been proposed and tested for the purpose of very-

short term cloud tracking. This method has been combined with a clear-sky regression model which has 

been obtained from empirical observations, after thorough comparison of a large number of existing 

models. In addition, a clear-sky library has been constituted and a method has been proposed to 

distinguish with high accuracy clear-sky pixels and cloudy pixels, accordingly with the chosen camera. 

Also, a full calibration methodology has been demonstrated to locate accurately the sun and measure 

angular distance with respect to the centre of the solar disk. 

The forecasting method has been successfully verified with a simplified yet realistic dataset of 

images of the sky taken at regular intervals with a sky camera. The comparison of the proposed 

PHD/CPHD method with optical flow has highlighted the speed and accuracy of our approach. Since 

both speed and accuracy are critical with a very short-term timeframe, this gives a decisive advantage 

to the proposed method. 

A simulation model has been designed to feature a small scale grid-connected PV array that has 

been verified against a real system. The effect of sudden sunlight disruptions have been thoroughly 

investigated on the PV system model. A battery-based power smoothing method is proposed with a 

bidirectional DC-DC converter. The method has been partially tested through simulation. It is envisaged 

to use the forecasting method to anticipate the DC link power drop and schedule an adequate amount 

of power to flow from the battery to the DC link at a scheduled moment as to maintain the DC link 

power constant. Also, in order to improve the performance of the VSC, a controller has been proposed. 

A hardware implementation of this controller has been done and a real-time embedded program has be 

written and tested. 

7.2 FUTURE WORKS 

7.2.1 Full Validation of the Grid-Connected PV System with Battery Storage 

Although a full system has been designed to mitigate the effects of sunlight disruption, this 

system could not be appropriately tested since it requires a lot of fine tuning. Also, many blocks of the 

system have been designed in two different environment, namely MATLAB/SIMULINK and PSCAD, 

due to the fact that each presents their own advantages that cannot be found in the other. Some further 
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modelling and simulations thus need to be done in order to assess the efficiency of the method. 

Additionally, a hardware implementation could be done to finalise the validation of the method and 

reassess its efficiency. 

7.2.2 Further Testing of the Forecasting Method 

Some additional work would be required to improve the preliminary task of pre-processing sky 

images in order to discriminate efficiently clear-sky from cloudy pixels in the presence of strong 

scattering effect, in particular in the circumsolar region. A model could be developed on the basis of 

the clear sky library as to anticipate the chromatic values of the clear-sky pixels at any given point of 

the sky so that pixels that cannot possibly be some clouds could be correctly classified as clear-sky 

pixels. In addition, a deeper separate analysis of the circumsolar region of the sky could be carried out 

and a combination of several criteria could be used to improve the accuracy of the pixel discrimination. 

A particular stress could be given to distinguishing solar beams from overexposed nearby clouds. In 

addition to this, a fast and high resolution de-fisheying method would need to be used in order to extend 

the horizon of forecast while maintain the speed of the forecasting method. 

7.2.3 More Accurate Clear-Sky Irradiance Modelling 

Since the accuracy of the very-short term PV power forecast depends heavily on the accuracy of 

the clear-sky irradiance, a comprehensive comparison of simple empirical clear-sky irradiance models 

readily available in literature has been carried out. A couple of regression models have been inferred 

from the two most accurate empirical models with respect to the global horizontal irradiance observed 

in Western Australia. 

However, a significantly more accurate model could be investigated by using a more reliable 

source of data and a better method, as investigated by Engerer and Mills [183].  

7.2.4 Automation of the Calibration 

A manual method has been proposed to calibrate the rotation matrix of the camera. Also, another 

manual method has been shown to choose a criterion and threshold values that are needed to apply to 

tell apart clear-sky and cloudy pixels. However, both of these manual methods require the selection of 

a relatively large number of images representing the sky in clear conditions. Instead of manually 

visualising and sorting sky images, some existing filters and methods could be applied to classify each 

sky image between the frames containing cloud and aerosols and the frames that are entirely free of 

them. Among these clear-sky detection methods, it is worth citing the Long-Ackerman filter [184, 185], 

Reno’s time series-based clear sky period identification method [186], Inman’s method [187], and 

Djafer’s approach [188]. 
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7.2.5 Application to a Large Solar Farm 

A large solar farm such as a photovoltaic farm with a 500 MW installed capacity is its size. 

According to NREL SAM [189], such farm may include around 64,500 monocrystalline modules, may 

have a total module area of about 105,200 m2 and may stretch over 0.35 km2 where the row spacing is 

considered to be 11 m. This means that passing broken cumulus clouds are very likely to create partial 

shading over some arrays or modules or the farm, simultaneously at various geographical locations. 

This may result either in significant reverse generation if the shaded strings are not short-circuited or in 

significant power generation losses and power oscillation if they are short-circuited by by-pass diodes. 

Thus, forecasting the upcoming position of the partial shades over solar modules could significantly 

optimise power generation and simultaneously avoid problems that may affect the quality of the power 

output. Our method could be used to achieve those goals in the case of a solar farm that does not contain 

any form of energy storage. If a battery storage or supercapacitors are locally available on the site of 

the farm as part of the farm, our method could be used to manage the energy storage and to plan when 

to charge it in order to smooth the power output and improve its quality. 

7.2.6 Application to a Microgrid and Optimisation of Local Energy Resources 

To the upstream network, a microgrid (MG) looks like a controlled coordinated system of 

distributed energy resources (DERs), with three levels of control (local controllers, MG central 

controller (MGCC), and an inter-MG coordination controller). However, operating a MG in grid-

connected mode leads to a problem of voltage control, which can be locally addressed through a power 

or voltage droop control. In islanded mode, the main concern becomes frequency control. A MG that 

gets disconnected from the main grid will experience a frequency deviation and will not reach its 

nominal frequency through the primary reaction of the droop control. This will require the secondary 

control to dispatch some power flow to correct the frequency deviation. In addition, an islanding MG 

will need an energy buffer in the form of batteries or supercapacitors to ensure an initial load-generation 

balance [190]. Thus, the relevance of very short-term solar forecasting and cloud tracking could be 

demonstrated as an improvement for the control of an MG, particularly at the moment when an MG 

gets disconnected from the grid. 

Also, the approach used in this study could be applied to optimise the energy generation and 

storage, as well as minimise the cost and ecological impact of an MG that integrates PV generation. 

Our method could be used for forecasting horizon corresponding to the time needed for costly and 

polluting resources such a diesel generator to ramp up. This means that applying our method with the 

range of several minutes, in order to automate the decision of igniting or not a generator on the basis of 

the forecasted cloud cover. 
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Another possible application within an MG would consist in positioning cameras in regular 

intervals in residential areas in order to cover a significant part of the sky and forecast the cloud cover 

over a residential block. The advantage provided by this information would be to help the local DERs 

to coordinate one another and avoid load shedding in the case of prolonged dimmed sunlight, as well 

as excessive power oscillations in the case of a shading episode that would only affect one specific 

location in the block for a limited period of time. The application would be similar to the previously 

mentioned possible application to a large solar farm although on a smaller scale. 

7.2.7 Hardware implementation 

Unfortunately, the camera that has been used has a limited lifetime, due to the fact that it 

necessarily utilises a physical shutter. This is motivated by the necessity to use proper exposure settings 

that can be compatible with shooting photos of the sun directly. However, such photos were a timelapse 

of single shots while it could be extremely useful to use the camera in video mode and extract the frames 

every second from the video feed. In order to capture useful information on the video feed, the driver 

of the camera would need to be overwritten though. 

Another problem faced by the camera is the fact that the dome of the camera gets very quickly 

dirty and requires regular cleaning. Most of the dirt on the dome gets deposited on the outside of the 

dome and comes from the accumulation of dust particles sticking to rain drops after it rained. Thus, it 

would be a significant practical improvement if an automated cleaning could be programmed on the 

dome on a regular basis, with the option of remotely triggering the cleaning action. 

7.2.8 Transactions 

The use of the forecasting method presented in this study could possibly be extended to helping 

the real-time control of energy transactions in a cluster of interconnected microgrids [191]. 

7.2.9 Scada Communications 

The forecast resulting from the proposed method could be used to improve the centralised 

management of grid-connected renewable energy resources through SCADA communications. The 

communication protocols in use by utility companies could be investigated and integrated into the 

overall method to exchange some information about excess generation and battery state of charge. 

7.2.10 Composite Method 

The temporal and spatial resolution of our very-short solar power forecasting method could be 

broadened by combining it with a longer-term approach involving a larger area, such as satellite imagery 

or sensor networks.  
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APPENDIX A –  FORECASTING METHOD ASSESSMENT 

The detailed results of the assessment of the accuracy of the four criteria that have been considered, 

across all 30 images of the dataset are shown in Table A.1. 

Table A.1 – Threshold values that have been found to minimize cloud detection error for every image and 

in average. 

Image # k Th1 Th2 Th3 B/R Threshold 

1 21 10 56 0.77 

2 21 9 55 0.77 

3 21 9 55 0.77 

4 22 12 57 0.77 

5 22 12 56 0.77 

6 22 12 56 0.77 

7 22 12 57 0.77 

8 22 12 57 0.77 

9 22 0 56 0.77 

10 22 0 56 0.77 

11 22 0 57 0.77 

12 22 0 57 0.77 

13 22 0 57 0.77 

14 21 0 55 0.77 

15 22 0 57 0.77 

16 21 0 56 0.77 

17 21 0 56 0.77 

18 21 1 55 0.77 

19 21 1 55 0.77 

20 21 1 55 0.77 

21 21 1 55 0.77 

22 21 9 55 0.77 

23 21 9 55 0.77 

24 20 10 55 0.77 

25 21 10 55 0.77 

26 21 10 55 0.77 

27 21 10 55 0.77 

28 20 10 55 0.77 

29 20 10 55 0.77 

30 20 10 55 0.77 

Average Values 21 6 56 0.77 
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The training time for the simple Bayes filter has been measured as 79.2189 s. The time needed to assess 

each criterion is shown in Table A.2. Some additional comparison data is given in Table A.2 – A.6. 

Table A.2 – Time needed to evaluate each criterion based on the picture of every step. 

Step k R/B Criterion (s) R-B Criterion (s) Multicolour (s) Bayes (s) 

1 0.0034227 0.0023884 0.0092603 10.3218 

2 0.0033459 0.0028905 0.0096051 10.5962 

3 0.0029099 0.0025214 0.0102 11.098 

4 0.0038545 0.0022158 0.0097275 10.0274 

5 0.0031326 0.0029977 0.012019 10.5148 

6 0.0034341 0.0025043 0.0093417 10.018 

7 0.0033322 0.0024545 0.010539 10.503 

8 0.0031326 0.002464 0.010366 10.2577 

9 0.0032782 0.0024317 0.012304 10.0857 

10 0.0033695 0.0025594 0.0099936 10.1711 

11 0.0033653 0.0026305 0.0094169 10.0826 

12 0.0030787 0.0026126 0.0087707 10.5936 

13 0.0037948 0.0027297 0.0092679 10.1019 

14 0.0030661 0.0025237 0.0093675 10.1342 

15 0.00293 0.0022853 0.0087529 10.5442 

16 0.003347 0.0027871 0.0086225 10.3953 

17 0.0045011 0.0030228 0.0095454 10.3543 

18 0.003547 0.0029179 0.0090908 10.0867 

19 0.0032638 0.002667 0.0098986 9.9484 

20 0.00398 0.002261 0.011863 10.0392 

21 0.0088528 0.0030669 0.0041362 10.4902 

22 0.0034527 0.0022378 0.011749 10.3167 

23 0.009233 0.0029779 0.008968 12.7337 

24 0.0030798 0.0026354 0.011666 11.4509 

25 0.0060479 0.0027955 0.0095728 11.6827 

26 0.0035671 0.003753 0.026002 12.5649 

27 0.0033208 0.0024309 0.0088304 12.5408 

28 0.0032767 0.0026058 0.012285 11.033 

29 0.0099655 0.0029247 0.0038279 11.0017 

30 0.01018 0.0030152 0.0030426 10.6643 

Average 0.004302 0.002677 0.009934 10.67843 
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Table A.3 – Relative classification error expressed as a percentage (%) for each criteria. 

Image # 
k 

B-R Multicolour R/B Simple Bayes Filter 

Sky 
pixels 

Cloud 
pixels 

Sky 
pixels 

Cloud 
pixels 

Sky 
pixels 

Cloud 
pixels 

Sky 
pixels 

Cloud 
pixels 

1 0.24 2.34 0.24 2.33 0.09 0.89 2.92 28.63 

2 0.23 2.26 0.23 2.25 0.08 0.77 2.79 27.09 

3 0.26 2.46 0.26 2.47 0.09 0.87 2.79 26.78 

4 0.25 2.35 0.25 2.35 0.10 0.93 2.79 26.61 

5 0.24 2.28 0.24 2.27 0.09 0.83 2.80 26.37 

6 0.24 2.35 0.25 2.39 0.09 0.90 2.69 25.84 

7 0.22 2.08 0.22 2.08 0.08 0.75 2.69 25.36 

8 0.25 2.33 0.25 2.36 0.09 0.85 2.69 25.14 

9 0.23 2.18 0.23 2.18 0.07 0.64 2.54 23.89 

10 0.26 2.42 0.26 2.43 0.10 0.95 2.55 23.39 

11 0.22 2.01 0.22 2.02 0.07 0.65 2.48 22.94 

12 0.24 2.17 0.25 2.25 0.08 0.70 2.42 22.14 

13 0.24 2.20 0.24 2.20 0.08 0.70 2.39 21.88 

14 0.21 1.98 0.21 1.99 0.07 0.66 2.21 20.69 

15 0.21 1.93 0.21 1.93 0.08 0.68 2.22 20.14 

16 0.21 1.90 0.21 1.91 0.06 0.59 2.22 20.38 

17 0.24 2.17 0.24 2.18 0.08 0.71 2.22 20.11 

18 0.21 1.95 0.21 1.95 0.06 0.54 2.19 20.01 

19 0.22 1.97 0.22 1.97 0.06 0.55 2.19 19.78 

20 0.23 2.06 0.23 2.06 0.07 0.65 2.19 19.61 

21 0.25 2.26 0.26 2.26 0.08 0.71 2.19 19.44 

22 0.22 1.98 0.22 1.98 0.06 0.52 2.17 19.33 

23 0.23 2.02 0.23 2.02 0.07 0.66 2.13 19.15 

24 0.18 1.59 0.18 1.59 0.05 0.47 2.13 19.32 

25 0.19 1.76 0.20 1.77 0.05 0.43 2.09 18.97 

26 0.23 2.06 0.23 2.05 0.08 0.70 2.09 18.84 

27 0.22 1.96 0.22 1.95 0.07 0.60 2.09 18.79 

28 0.18 1.64 0.18 1.62 0.05 0.45 2.08 19.00 

29 0.20 1.80 0.20 1.80 0.06 0.52 2.08 18.79 

30 0.21 1.88 0.21 1.87 0.06 0.57 2.08 18.68 

Average 0.23 2.08 0.23 2.08 0.07 0.68 2.37 21.90 
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Table A.4 – Actual and estimated total cloud cover (TCC) expressed as a percentage (%) for each image 

of the dataset. 

Image # k Actual TCC 
(%) 

(R/B) TCC (%) (B–R) TCC (%) Multicolour 
TCC (%) 

Simple Bayes 
Filter (%) 

1 9.26 9.20 9.12 9.13 11.12 

2 9.33 9.29 9.21 9.21 11.19 

3 9.44 9.38 9.34 9.35 11.23 

4 9.50 9.43 9.41 9.42 11.28 

5 9.58 9.53 9.51 9.51 11.34 

6 9.41 9.35 9.34 9.34 11.22 

7 9.59 9.55 9.54 9.54 11.29 

8 9.68 9.62 9.60 9.60 11.33 

9 9.61 9.57 9.56 9.56 11.25 

10 9.81 9.74 9.73 9.73 11.33 

11 9.75 9.71 9.71 9.71 11.31 

12 9.85 9.80 9.78 9.78 11.39 

13 9.85 9.80 9.79 9.79 11.36 

14 9.66 9.62 9.56 9.56 11.28 

15 9.92 9.88 9.87 9.88 11.36 

16 9.81 9.78 9.72 9.72 11.33 

17 9.93 9.89 9.81 9.81 11.43 

18 9.86 9.84 9.77 9.77 11.36 

19 9.97 9.95 9.87 9.87 11.41 

20 10.06 10.02 9.95 9.95 11.50 

21 10.15 10.10 10.01 10.01 11.60 

22 10.11 10.08 9.99 9.99 11.59 

23 10.04 10.00 9.94 9.94 11.55 

24 9.95 9.92 9.85 9.85 11.44 

25 9.93 9.91 9.84 9.84 11.48 

26 10.00 9.96 9.89 9.89 11.51 

27 10.02 10.00 9.92 9.92 11.54 

28 9.86 9.84 9.76 9.76 11.44 

29 9.97 9.95 9.86 9.86 11.55 

30 10.03 10.00 9.91 9.91 11.58 
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Table A.5 – Relative error in the estimation of the total cloud cover by each criterion, expressed as a 

percentage. 

Image #k R/B (%) B – R (%) Multicolour (%) Simple Bayes (%) 

1 -0.65 -1.45 -1.41 20.11 

2 -0.48 -1.34 -1.30 19.94 

3 -0.64 -0.99 -0.97 19.03 

4 -0.68 -0.89 -0.84 18.73 

5 -0.59 -0.80 -0.74 18.30 

6 -0.66 -0.81 -0.76 19.16 

7 -0.49 -0.59 -0.54 17.72 

8 -0.61 -0.85 -0.81 17.05 

9 -0.38 -0.53 -0.52 17.06 

10 -0.71 -0.88 -0.88 15.51 

11 -0.40 -0.48 -0.48 15.95 

12 -0.45 -0.67 -0.66 15.67 

13 -0.43 -0.58 -0.57 15.42 

14 -0.35 -1.03 -1.03 16.82 

15 -0.42 -0.48 -0.48 14.43 

16 -0.31 -0.93 -0.92 15.56 

17 -0.42 -1.15 -1.15 15.09 

18 -0.25 -0.97 -0.96 15.21 

19 -0.26 -1.00 -0.99 14.44 

20 -0.33 -1.09 -1.08 14.34 

21 -0.48 -1.38 -1.37 14.35 

22 -0.27 -1.16 -1.14 14.62 

23 -0.35 -0.98 -0.97 15.08 

24 -0.22 -1.01 -0.98 15.06 

25 -0.16 -0.89 -0.88 15.66 

26 -0.36 -1.11 -1.10 15.08 

27 -0.28 -1.03 -1.02 15.12 

28 -0.17 -1.00 -0.97 16.05 

29 -0.14 -1.10 -1.09 15.86 

30 -0.25 -1.21 -1.20 15.50 

Average -0.41 -0.95 -0.93 16.26 
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Table A.7.6 – Execution Time for each criterion and each image, expressed in seconds. 

Image #k R/B B – R Multicolour Simple Bayes 

1 0.013 0.012 0.009 3.856 

2 0.010 0.009 0.012 4.267 

3 0.016 0.014 0.012 3.816 

4 0.010 0.011 0.015 3.986 

5 0.010 0.011 0.011 5.174 

6 0.010 0.009 0.011 3.876 

7 0.010 0.012 0.010 4.590 

8 0.011 0.010 0.011 3.781 

9 0.010 0.009 0.011 3.789 

10 0.011 0.009 0.010 3.909 

11 0.010 0.011 0.009 3.917 

12 0.010 0.011 0.010 3.831 

13 0.011 0.011 0.009 3.856 

14 0.010 0.009 0.021 3.851 

15 0.012 0.010 0.010 3.854 

16 0.011 0.010 0.010 3.807 

17 0.009 0.009 0.009 3.844 

18 0.012 0.011 0.010 4.041 

19 0.010 0.010 0.010 3.816 

20 0.011 0.011 0.009 3.737 

21 0.009 0.010 0.010 3.812 

22 0.011 0.011 0.010 3.823 

23 0.009 0.009 0.011 4.300 

24 0.012 0.009 0.010 3.970 

25 0.011 0.009 0.009 3.894 

26 0.010 0.009 0.011 3.800 

27 0.012 0.011 0.009 4.112 

28 0.012 0.010 0.010 3.941 

29 0.011 0.009 0.009 3.965 

30 0.011 0.009 0.009 4.006 
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APPENDIX B –  CAMERA INSTALLATION 

The Nikon D7100 DSLR camera fitted with a Sigma 4.5 mm fisheye lens was installed on the 14th of 

March 2016 with the kind help of the technical staff. It has been placed next to the fence of the premises, 

only a few metres away from three different solar arrays, which use respectively monocrystalline, 

polycrystalline and amorphous technologies. A desktop computer tower running a version of 

DigiCamControl has been fitted in the cabinet at the bottom of the pole with a 3TB hard disk drive, 

onto which the sky images are saved. Also, that desktop computer is connected to the nearby building 

through an Ethernet cable so that it can be remotely accessed. 

 

Figure B.1 – View of the compartment enclosing the power supply of the camera. 

 

Figure B.2 – View of the camera installed in its enclosure box with power and data cables. 
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Figure B.3 – Camera box closed and ready to be installed. 

 

Figure B.4 – View of the cabinet containing the computer and the hard drive. 
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Figure B.5 – Complete camera setup. 
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APPENDIX C –  CAMERA BOX 

Since we chose to use a DSLR camera, a waterproof enclosure needed to be prepared for the camera to 

be installed in the Green Energy Electric Park of the Wembley campus of Curtin University (32.01 S, 

115.89 E, 18 m ASL). The blueprint of the box that was used to enclose the camera and fix it on a 4 

metre high pole is shown in Figure C.1. 

It consists of a bottom part inside of which a metal bracket has been set for the DSLR camera to be 

fixed. A cable gland has been fitted to let a power and a USB cable through and remotely control the 

camera. Also, the bottom of the box has been screwed on a robust metal bracket intended to keep the 

camera solidly fixed on the pole. In addition, the box consists of a lid or a top part on which a dome has 

been fitted. The dome does not only protects the camera but also enables the 4.5 mm fisheye lens of the 

camera to retain its full 180 degrees field of view. 
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Figure C.1 – Blueprint of the top, front, bottom, and side view of the camera enclosure box. 
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