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Abstract

Equilibrium and non-equilibrium molecular dynamics (MD) are used to investigate the thermal

conductivity of binary hard-sphere fluids. It is found that the thermal conductivity of a mixture

can not only lie outside the series and parallel bounds set by their pure component values, but

can lie beyond even the pure component fluid values. The MD simulations verify that revised

Enskog theory can accurately predict non-equilibrium thermal conductivities at low densities and

this theory is applied to explore the model parameter space. Only certain mass and size ratios

are found to exhibit conductivity enhancements above the parallel bounds and dehancement below

the series bounds. The anomalous dehancement is experimentally accessible in helium-hydrogen

gas mixtures and a review of the literature confirms the existance of mixture thermal conductivity

below the series bound and even below the pure fluid values, in accordance with the predictions of

revised Enskog theory. The results reported here may reignite the debate in the nanofluid literature

on the possible existence of anomalous thermal conductivities outside the series/parallel bounds as

this work demonstrates they are a fundamental feature of even simple fluids.
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There has been a great deal of interest in increasing the transport rate of heat through flu-

ids by the addition of nanometer-sized solid particles. Initial experiments on these nanosus-

pensions demonstrated significant enhancements of the thermal conductivity [1]; however,

later measurements on other mixtures generated substantial controversy [2], with confusion

over what results might be “unsurprising” and what might be deemed “anomalous”. Dis-

agreements in reported values led to a comprehensive benchmark study with double blind

tests conducted between several institutions [3]. The primary conclusion was that the vast

majority of the reported “enhancement” effects lie within the classical/continuum bounds

given by the series λ⊥ and parallel λ‖ limits of the thermal conductivity [4], which for a

binary mixture are,
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λ⊥
=

1− φ2

λ1
+
φ2

λ2
(1)

λ‖ = (1− φ2)λ1 + φ2 λ2, (2)

where φ2 is the volume fraction of component 2 in the mixture, and λ1 and λ2 are the fluid

thermal conductivities for pure 1 and pure 2, respectively.

A small number of experimental results still remain outside these conventional bounds,

such as the reported dehancements below the series limit for fullerene-water suspensions [5].

Hence, the question still remains; are results outside these bounds correct and, if so, what

are the underlying mechanisms? Several physical mechanisms have been proposed in an

effort to rationalize the behavior of these systems [4]; however, there is as-yet no unifying

framework for predicting/explaining the thermal performance of nanofluid mixtures. To be

able to understand these results, a deeper understanding of thermal conductivity and its

underlying molecular mechanisms is required.

Some of the confusion in interpreting thermal conductivity arises from the different man-

ners in which it can be defined. The most natural macroscopic/experimental definition

arises from applying a temperature gradient, ∇T , across a system and measuring the resul-

tant heat flux, Jq. The “observed” non-equilibrium thermal conductivity λN is then defined

through the following expression,

〈Jq〉 = −λN∇T, (3)

where the brackets 〈· · · 〉 indicate the implicit averaging over time and volume this approach

entails.
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In contrast, when considering hydrodynamic models it is natural to decompose the heat

flux, Jq, into contributions from thermal and mass diffusion of the individual species; how-

ever, this separation of these two effects is not unique and an arbitrary number of definitions

of the thermal conductivity can be generated. The so-called mainstream, prime, and double

prime definitions [6, 7] are the most common choices. The mainstream definition is used

here as it is convenient for molecular dynamics simulations and is given below for binary

systems,

Jq = −T−1 Luu∇T − Lu1 T ∇
(µ1 − µ2)

T
, (4)

where Luu is the mainstream thermal conductivity, Lu1 is the mainstream thermal diffusivity

of species 1, and µ1 is the chemical potential of species 1. One possible resolution to the

ambiguity in the definition of Luu is to assume local steady-state conditions (zero mass

flux) [4, 8] to yield the following expression,

Jq = −T−1
(
Luu − L2

u1 L
−1
11

)
∇T = −λ∇T, (5)

where L11 is the mutual diffusion coefficient of species 1 through itself and the final equality

implicitly defines the “steady-state” thermal conductivity, λ. The value of λ is independent

of the choice of mainstream, prime, or double prime fluxes; however, it is still distinct

from λN as it is not averaged over the non-equilibrium conditions of a system undergoing

conduction but is instead evaluated at a single temperature, concentration, and density[29].

The first hurdle of this paper is to establish that the macroscopic (λN) and microscopic (λ)

definitions of the thermal conductivity are equivalent at steady state.

In principle, atomistic non-equilibrium molecular dynamics (NEMD) simulations can be

used to directly measure the heat flux Jq through a system’s boundaries to obtain the

“observed” non-equilibrium thermal conductivity, λN . Equilibrium simulations can then be

used to measure λ for comparison, as well as to elucidate any underlying mechanisms behind

“anomalous” behavior. Unfortunately, large and long-duration non-equilibrium simulations

are required to directly study heat conduction in nanofluids [9], and so only a limited range

of molecular models and techniques are computationally accessible using this method. Due

to these limitations, previous simulation work has primarily focused on equilibrium simu-

lations of nanofluids at fixed size and mass asymmetries between the fluid molecule and

nanoparticle [7, 10–14] with only a few studies at larger asymmetries (e.g., [8, 15]). As
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equilibrium molecular simulations are conducted at a single temperature and concentration,

Eq. (3) cannot be used, thus the equivalence between λN and λ cannot be conclusively

established.

In this work, NEMD simulations of binary hard-sphere mixtures, consisting of spheres

of diameter σ1 and mass m1 and spheres of diameter σ2 and mass m2, confined between

two smooth parallel walls (see Fig. 1) are performed using the DynamO [16] event-driven

molecular simulation package. The hard sphere model is both computationally accessible

and well-described by revised Enskog theory [7, 17, 18] which can be used to yield accu-

rate predictions of λ at low densities [15]. Although the hard-sphere model is simple, it

qualitatively captures the fundamental effects of density, molecular size, and mass on the

transport coefficients in gases. This paper explores conditions close to the ideal gas limit

for simplicity (and to avoid crystallisation as σ2/σ1 becomes large); however, the results

obtained in this limit are fundamental to the behavior of all fluids and comparision against

experiments on gas mixtures can be made. This limit is also particularly interesting as the

current discussion in nanofluids echoes previous controversy over reported dehancements

in the thermal conductivity of He-H2 gas mixtures [19]. Although the source of the origi-

nal controversy (a sharp minimum in conductivity with concentration) was later shown to

be unrepeatable [20, 21], a shallower minimum still remains and demonstrates that thermal

conductivity can lie outside the series-parallel bounds and even beyond the pure fluid values.

If this is correct, then it implies that such minima are also possible for nanofluid systems

which are the subject of some controversy even today.

The first aim of this work is to establish an equivalence of the observed, λN , and

steady-state, λ, thermal conductivities. This is conducted using a hard-sphere mass ra-

tio of m2/m1 = 2 corresponding to a He-H2 mixture with the approximate size ratio

σ2/σ1 = 260/289, obtained from diffusion measurements [23]. A constant reduced pres-

sure of p σ3
1/(kB T ) = 0.01 (where kB is the Boltzmann constant) is used and is set by

adjusting the system density. This reduced pressure value corresponds to a packing fraction

of approximately 0.005 over the studied mol fraction, x2. Once the equivalence of λ and λN

is confirmed in this system, a systematic exploration for “anomalous” thermal conductivities

is carried out over the mass and size ratio parameter space using kinetic theory.

Parallel smooth walls are located at both ends of the simulation domain as illustrated in

Fig. 1 with periodic conditions on all other boundaries. On collision with the wall, the nor-
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FIG. 1: A schematic of the system configuration used for the simulations reported here which

use a hard-sphere model consisting of two species with diameters σ1 and σ2, and masses m1 and

m2 respectively. For NEMD simulations, two walls are inserted into the simulation and a 10%

temperature gradient is imposed via velocity reassignment on collision with the wall [22]. The

total number of spheres N and aspect ratio l‖/l⊥ of the simulation are varied to explore the effects

of system size at a constant density/pressure.

mal component of a sphere’s velocity is reassigned to a Maxwell-Boltzmann distribution [22]

at a defined temperature. The heat flux is then measured through the following expression,

〈Jq〉 = 〈Q〉 l‖/(l⊥)2, where 〈Q〉 is the time-averaged rate of energy transferred to the simu-

lation during sphere impacts with the walls averaged over both walls. The two walls have

different temperatures set to 95% and 105% of the system temperature T . This value is a

trade-off between inducing a sufficently large heat flux (compared to thermal fluctuations)

and inducing inhomogeneity in the system.

An example of the inhomogeneity induced by the heat flux is given in Fig. 2. The tem-

perature, number density, and concentration plots appear approximately linear. It is clear

to see the effects of thermophoresis in the concentration profiles. These inhomogeneities

make equating λN and λ suspicious as λ is only evaluated at a single representative concen-

tration, temperature, and density, whereas NEMD simulations measure an average thermal

conductivity across the system as temperature, density, and concentration varies. Boundary
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FIG. 2: The profiles of temperature, kBT , number density, n, and species mol fraction, xi, as a

function of distance between the two heated walls, r‖ for a single representative simulation. This

system has a mass ratio of m2/m1 = 2, a size ratio of σ2/σ1 = 0.899654, N = 102400 spheres,

and an aspect ratio of l‖/l⊥ = 50. All values are reduced by the average values for the system,

which are kB T̄ = 1, n̄ ≈ p σ31/(kB T ) = 0.01, and (1− x̄1) = x̄2 = 0.6. Error bars represent the

standard deviation across 10 simulations and are smaller than the marker size for the temperature

and number density fields. Solid lines are linear fits provided as a guide to the eye.
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layers with high thermal resistance also exist very close to the heated walls and induce a

significant system-size dependence in the NEMD results.

To explore this system-size dependence, the wall temperatures are held fixed while the

aspect ratio l‖/l⊥ and system size are varied with the number of spheres ranging from

N = 5000 up to N = 102400. Each simulation is initialized in an FCC crystal lattice and

equilibrated for 1000N collisions before a further production run of 10000N collisions to

collect data. This procedure is repeated ten times at each state point and average values

between the production runs are collected while the errors of the average measurements are

estimated using the standard deviation of values between each production run. Results are

reported here in reduced units, with σ1 the unit of length, m1 the unit of mass, and kBT

the unit of energy.

A system-size dependence calculation for the mole fraction, x2 = 0.8, in the He-H2 system

is reported in Fig. 3. The figure demonstrates that the aspect ratio of a system is relatively

unimportant and that the system length in the direction of conduction, l‖, dominates the

system-size effects (due to the boundary layer resistance near the walls). To estimate the

infinite system-size (near-zero thermal gradient) value of the thermal conductivity, linear

extrapolation is applied to systems with the three largest aspect ratios (l‖/l⊥ = 10, 25, and

50). This procedure yields a lower-bound for the thermal conductivity as the gradient of

the system-size dependence monotonically increases with system size. The extrapolated λN

value is in excellent agreement with the equilibrium thermal conductivity λ from revised

Enskog theory evaluated at the average conditions of the system.

The above procedure is repeated over a range of mole fractions and the final infinite-

system extrapolated results are reported in Fig. 4. This system exhibits thermal conduc-

tivities that are far outside the predictions of classical approaches such as Maxwell theory

or the limits of series and parallel resistance. In accordance with the experimental results

for He-H2 [19–21], the system displays a minimum in the thermal conductivity below both

the pure fluid thermal conductivities. This conclusively demonstrates that “anomalous”

thermal conductivities are not only possible but a fundamental feature of simple molecular

fluids such as the binary hard-sphere gas.

To further validate the Enskog and NEMD results, equilibrium simulations with N =

32000 spheres in a cubic system are equilibrated for 1000N events before being run for a

further 100000N events to calculate Luu, Lu1, and L11 for this system. The Einstein form of
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FIG. 3: The observed thermal conductivity λN obtained from NEMD simulations as a function

of the distance between the walls σ1/l
‖ from binary hard-sphere systems with varying numbers of

spheres and aspect ratios at a mole fraction of x2 = 0.8 for a m2/m1 = 2, σ2/σ1 = 0.899654, and

p σ31/(kB T ) = 0.01. A linear fit to the data points obtained using an aspect ratio of 10, 25, and 50

(dashed line) is used to extrapolate to infinite system size and approaches the value of λ predicted

by revised Enskog theory (solid line).

the Green-Kubo relations [24, 25] is used with the first 15 mean free times of the correlation

discarded to avoid ballistic motion and a maximum correlation time of 50 mean free times

used to avoid correlations from the periodic boundary conditions. This is beyond the sound

wave traversal time of the system; however, as the density is so low, correlations from the

boundary conditions take much longer to establish than in higher density systems. The

excellent agreement in Fig. 4 between revised Enskog theory and the equilibrium molecular

dynamics completes the verification of the anomalous dehancement reported and the use of

revised Enskog theory to further study the system at low densities.

The full parameter space of the binary hard sphere model is explored using revised En-
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FIG. 4: The extrapolated infinite system-size NEMD, λN , (triangles) and equilibrium steady-

state, λ(MD), (square) thermal conductivities as a function of the non-unit species mole fraction

x2. Parallel (dotted line) and series (dashed line) limits bound the region of classical/continuum

values (shaded). The revised Enskog theory predictions for the steady-state conductivity, λ(E),

(solid line) are in excellent agreement with the simulation results. A slight apparent overestimation

arises from the remaining system-size dependence of our NEMD results.
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skog theory to determine the extent of the anomalous behavior. Fig. 5 maps the maximum

possible departure from series or parallel bounds achievable by varying the mole fraction of

the system for a particular mass and size ratio. A reduced pressure of p σ3
1/(kB T ) = 10−7,

corresponding to packing fractions below 0.044 for this parameter space, is used in these

calculations to reveal the symmetry of the map in the ideal gas limit which is otherwise

prevented by pure species 2 freezing (which occurs at a size ratio of σ2/σ1 & 4.87 for

p σ3
1/(kB T ) = 0.01; however, this change makes little difference to the results below this

boundary). Anomalous enhancement above the parallel bounds is found at extreme mass-

ratios with size-ratios near unity. Reductions below the series bounds are also found for

smaller but heavier spheres. Surprisingly, a maximum achievable reduction in thermal con-

ductivity is found which is ≈ 40% below the series limit (see the cross in Fig. 5). The bulk

of the anomalous parameter space lies in the larger-but-lighter region of the map; however,

the region of anomalous reduction approaches the line where the species 2 mass scales with

its volume which is the experimentally relevant region.

To explore the experimental relevance of the results, the kinetic diameter and molecular

mass ratios for combinations of the noble gases, along with nitrogen and hydrogen gas,

are plotted in Fig. 6. The map indicates that several real mixtures may exhibit anomalous

dehancements; however, care should be taken to verify this as the Enskog theory expressions

used here do not take into account the additional degrees of freedom of diatomic gases and in

general are not capable of quantitatively predicting the behaviour of real gases, only general

trends. It is expected that more complex molecules can exhibit more extreme effective size

and mass ratios, although the anomalous enhancement region probably remains inaccessible

and the applicability of the hard sphere model is dubious in this limit.

In conclusion, the observed thermal conductivity of binary hard-spheres can exhibit values

which lie outside the limits of series-parallel resistance, in agreement with experimental

results on He-H2 systems. These “anomalous” results are present even in the ideal gas limit,

which implies that they cannot be explained by any structural/clustering effect such as those

which are prevalent in the nanofluid literature. To better understand results in nanofluids,

liquid densities can be explored using the techniques outlined here; however, the binary hard-

sphere model has two serious shortcomings: an ideal-gas heat capacity and the absence of

a gas-liquid transition. Future work will explore adding internal degrees of freedom to the

spheres to account for varying heat capacity which will allow a better parameterization of real
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FIG. 5: A contour map of steady-state thermal conductivities outside the series (dashed) and par-

allel (solid) bounds as a function of mass and size ratio. The contours denote the increase/decrease

of the thermal conductivity relative to the parallel/series bound at the concentration of maximum

deviation. A cross indicates the maximum decrease of the steady-state thermal conductivity which

occurs at m2/m1 ≈ 59.6 and σ2/σ1 ≈ 0.102. A dotted line indicates where mass scales with

molecular volume, assuming a constant density.
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FIG. 6: As described in Fig. 5 but focused on the parameter space relevant for the noble gases,

hydrogen, and nitrogen. Kinetic diameters are taken from Ref. [26–28]

fluids. Attractive systems, such as square-wells, may also be used to explore liquid systems

which do not have strong density-pressure dependences, and the comparison at pressures

where the nanoparticle forms a crystalline phase will be explored. Finally, work on a multi-

scale modelling approach using kinetic theory to provide phenomenological closures to a

hydrodynamic description is underway to allow fluid dynamics simulations of nanofluidic

devices where transient effects may dominate over steady-state conduction.
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