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Abstract

Distributed Computing is growing up in interest in many applied fields of scientific research. At
the same time power system operation is becoming increasingly complex due to the need to integrate
a relevant amount of energy production coming from Distributed Energy Resources (DERs) connected
at various voltage levels. In this context, the need to automate grid operations is in fact fundamental
to ensure adequate levels of reliability, flexibility and cost effectiveness of power systems. This report
provides methodological aspects and principles for the solution of the power flow problem through
a distributed approach. The focus is on the case in which multiple interacting entities (utilities) by
sharing a small portion of their grids data with the other parties can improve the solution of the
global grid (composed by all the grids involved). The advantage is that the computation is done
locally and in parallel with the others without the need to exchange further data. The aim of this
report is both to give the reader a comprehensive overview of the software used for the implementa-
tion, the Portable Scientific Extensible Toolkit for Scientific Computation (PETSc), and to highlight
the principles followed to build the Distributed Power Flow Solver as well as the specific features
that diversify our approach from others. Finally, two case studies are presented as potential appli-
cations of our model: the capacity calculation between transmission system operators (TSOs), and
the transmission-distribution networks coupling between TSOs and Distribution System Operators
(DSOs). Open issues and future research studies are discussed in the final part of the present report.
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1 Introduction

1.1 Broad Context

Power systems are one of the most complex engineering human-made works. Operating such
a sophisticated system requires constant monitoring, high-automation level, continuous corrective
actions and planning as close as possible to real-time. In recent years power systems have been facing
an arising number of challenges set by the on-going energy transition. In Europe, this has been mainly
driven by European Commission (EC) energy policies (Third Energy Package - TEP, 2009 and Clean
Energy Package - CEP, 2018) that have set important goals for carbon emission reduction and market
harmonisation1 for the member states (MS).

In the past national grids were designed to serve the same scope: that of transmitting electricity
produced in big centralised power plants to final consumers at different voltage levels. The power was
used to flow solely from generating plants to final consumers passing through meshed transmission
networks and radial distribution networks. All grid-related activities were fully under the responsibility
of national Transmission System Operators (TSOs), while the distribution grid was built according to
a fit-and-forget approach, over-staffed and with passive role. At market level, no competitive auctions
were in place (e.g. through a power exchange pool) and all the stages of the electricity supply chain
were managed by a single vertical integrated company. This plain and simple organisation of the
electricity supply chain ensured an easy and reliable operation of the grid in the past, even though
supposedly not in the most economically efficient manner. Moreover this approach proved not suitable
to match the novel ways of consuming and producing electricity.

These reasons have led to a radical re-engineering of the power sector in the last couple of decades.
The complete unbundling of generation electricity companies from transmission sector realised by the
TEP resulted in the introduction of competitive market designs (the Power eXchanges - PXs) at
wholesale level. In practical terms, this allows to auction the use of the grid together with the
energy trade and reward the less costly generators with network access. This new paradigm for
electricity markets from one hand increases market liquidity, lowers prices and provides a framework
for more transparent trades. On the other hand, unbundling makes the operation of power systems
more complex. Generating companies, system operators, market operators and suppliers must all
coordinate with each other and continuously exchange information in order to ensure the security of
supply and the efficient management of the power system as a whole.

At the same time in order to cope with a drastic reduction of the carbon emissions, power
generation must shift from conventional fossil-based technologies to Renewable Energy Sources (RES).
The power production from RES is typically dislocated over the grid and connected at different voltage
levels, often at medium and low voltage levels (MV-LV). Furthermore, new actors are entering the
competitive markets (e.g. prosumers) and new type of loads are challenging the stability of the
system (e.g electric vehicles (EVs)). The intermittent and stochastic nature of such Distributed
Energy Resources (DERs) is strongly influencing the grid operation, as the increasing uncertainty on
flows prediction and real-time grid state, especially at distribution level, makes it difficult to ensure
security of supply and efficient optimisation of resources. In other words, TSOs see volatile flows
appearing on their system as a result of the real-time uncertain behaviour of DERs at distribution
level and hence are moved to procure more often system services (e.g. balancing, voltage support)
and called for corrective actions. At distribution level, investments in proper control systems and
monitoring infrastructure will become necessary.

To summarise, future power systems have to withstand both the uncertainties and complexities
introduced by DERs at operation level, providing a reliable and cost efficient service, while ensuring

1From this point of view, the final goal is to create a fully harmonised Internal Energy Market (IEM) in Europe,
offering one single wholesale price for all member states.
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the unbundling at different stages of electricity supply chain. In this context, where economic and
operational challenges might look in anti-thesis, the integration of smart and intelligent devices as
well as of innovative methodologies for power system analyses play a pivotal role.

1.2 Project Context

Distributed computing is applied in a great number of different research and industry contexts.
The growing importance of distributed computing is mainly related to the advantages of de-centralised
approaches, typically allowing to better exploit computational resources otherwise not used, to re-
duce investments, to keep data-locality and to be fault-tolerant. Among the aforementioned appealing
features of distributed applications, the application presented in the following focuses on input data-
locality. This report discusses the methodology to carry out a distributed solution of power flow
equations and gives guidance on the chosen implementation based on the parallel computing soft-
ware (PETSc). The framework under study is that of cross-border flow exchanges. In this context,
distributed approaches might find application every time that coordination is needed among system
operators managing different parts of a global inter-connected grid. The application aims at automat-
ing such a coordination, by only providing local data as input to the power flow simulation. On this
purpose, we focus here on two situations: at member states level (thus among neighbouring Euro-
pean countries i.e. at the transmission level) and at national level (at the transmission-distribution
interface). A brief description of the current state of the art for both levels is depicted in the following.

At the transmission level, investments in expanding cross-border capacities are one of the main
topic of the recently published CEP2. This will enable more frequent exchanges of electricity and
a more flexible operation between member states. For instance, in cases of unexpected surplus of
electricity or in order to be able to cover shortfalls as a result of the unpredictability of RES (wind
and solar) national TSOs might rely on neighbouring countries at need. The creation of a proper
market design at European level that reflects such exchanges and allocate efficiently cross-border
rights is thus needed. At national level cross-border exchanges at day-ahead (DAM) and intra-
day (IDM) markets3 were firstly organised so that capacity and energy were bid explicitly (i.e. in
different markets) over different time-frames. However this is not economically efficient, since those
agents that procure cross-border capacity ex-ante can exert market power on the spot markets, often
causing the prices to increase. Moved by this reason, three European PXs (OMEL, NORDPOOL
and EPEX Spot) launched in 2009 the Price Coupling of Regions (PCRs) project, an initiative to
promote coordinated (implicit) price formation on their respective spot markets. In other words,
grid constraints are modelled into the price formation algorithm and, as the market clears, quantity
and prices formed are those that maximise welfare subject to grid constraints. Nowadays, the PCR
project involves eight PXs. The market is cleared by solving the market problem centrally, through the
EUPHEMIA algorithm.4 To clear the DA problem, EUPHEMIA needs a set of pre-calculated inputs.
TSOs closely coordinate with each other and with Nominated Electricity Market Operators (NEMOs)
in order to model the grid constraints and find compatible market equilibrium. The procedure to
model cross-border interconnections takes place through a complex and long procedure made up of
several steps that conceptually could be simplified into two main ones: 1) a Capacity Calculation (CC)

2When we refer to the CEP we refer mainly to the Electricity Regulation (Ele, 2019b) and to the Electricity Directive
(Ele, 2019a)

3From now on we refer to DAM and IDM as spot markets. According to finance terminology, spot markets are
those markets that involve the trading of financial instruments for immediate delivery, in contrast with forward markets,
where trade refers to future delivery. Although DAM and IDM are not strictly spot markets, in the electricity sector
they are commonly referred to as such.

4EUPHEMIA stands for Pan-European Hybrid Electricity Market Integration Algorithm. EUPHEMIA clears the
day-ahead market over Europe for more than 50 bidding zones, allocating cross-border transmission capacity for more
than 60 inter-connectors in less than 10 minutes.

5



procedure requiring TSOs coordination; and 2) a Capacity Allocation (CA) mechanism requiring a
common market clearing algorithm. During these steps system operators run several times power flow
computations, in order to calculate parameters, to define physical limits for electrical components,to
foresee contingencies, etc. In this work we focus on step 1, even though distributed approaches can
in principle be thought also for step 2.

At national level the framework is considerable different. Even though long-run investments are
increasingly being planned, distribution grids’ observability and controllability are still very limited
(Prettico et al., 2019). The uncertainty of RES production connected at MV-LV levels thus translate
into volatile flows at transmission level. Nowadays, TSO and DSOs exchange information about the
state of their grids periodically (even though this periodicity differs considerably among MS), though
not carrying out coordinated calculations. As a result, TSOs need to estimate the uncertainty on
generation and demand pattern down to lower voltage levels and procure balancing reserves ex-ante
to account for worst-case scenarios. From the DSOs side, even though the grid is over-staffed,
congestions may occur caused by the increasing penetration of RES. In this context we foresee that
soon DSOs will collect more detailed and fine grained information and will run power flow equations
to improve their knowledge of the actual state of their grids. The inherent uncertainty from DSO to
TSO might be mitigated by allowing a coordinated calculation framework for TSO and DSOs that
provide data-locality and hence do not prejudice competition.

1.3 Project Scope

This report discusses methodologies, issues and applications of an experimental distributed power
flow solver. The aim is to carry out a distributed computation of the load flow problem between two
separated parties (bipartite case) sharing a grid boundary. In other words, the goal is to provide two
grid operators (TSO-DSO or TSO-TSO) with an application capable of performing exact load flow
computations on a joint network by exchanging only a limited piece of information (for instance that
at the interfacing nodes between the two networks). This is in line with unbundling policy indications
and operational issues briefly presented in 1.1 and 1.2. The application framework investigated is thus
that one of cross-border exchanges, among national EU countries, through transmission-distribution
interface, or in general among adjoining grid operators. The implementation takes advantage of the
Portable Extensible Toolkit for Scientific Computation (PETSc), an API (Application Programming
Interface) for writing parallel scientific applications based on the C programming language. For
the sake of completeness, we chose to dedicate a whole chapter to the understanding of PETSc
functionalities (Section 3), in order to provide the reader with an overview of the software and to
build up increasing layers of complexities step-by-step.
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1.4 Organisation

This report may be conceptually broken down into four parts. The first part reviews the power
flow problem and solvers. Then, the mathematical methodology to compute the power flow equations
remotely is introduced. The second part introduces the reader to the PETSc API, providing its
general functioning. In the third part, based on the concepts introduced in Section 2 and Section
3, we explain the Distributed Power Flow. Finally, the last part shows two proposed applications
frameworks (transmission-transmission interface, transmission-distribution interface).

A more detailed overview of the report organisation is provided in the following.

Section 2 starts from recalling power system basics and the power flow problem. Later, we gradually
introduce more complex solvers for the PF equations, reviewing pros and drawbacks. Linear
solvers and parallel implementation become the central topic of discussion during the second
part of this section. A short section is dedicated to parallel communication analysis of station-
ary block preconditioned solvers. In the final part, we provide an example of the distributed
methodology on case13.m by using the Newton-Krylov-Schwarz (NKS) approach.

Section 3 introduces to the use of the Portable Extensible Toolkit for Scientific Computation (PETSc).
This chapter provides a quick hand-guide to the PETSc API and discuss its relevance in this
work.

Section 4 discusses the implementation of the Distributed Power Flow in PETSc.

Section 5 provides an in-depth review of two possible fields of application for the distributed method-
ology: 1) In the context of congestion management at European level, and specifically on the
capacity calculation process for transmission-transmission flow control; 2) In the context of
transmission-distribution network coupling, touching upon the TSO-DSO interaction.

Section 6 draws conclusions and possible future works on power flow distributed solvers.
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2 Power Flow, Numerical Methods & Distributed Power
Flow Methodology

In this chapter the relevant electrical variables, the formulation of the power problem (or load
flow) and the main numerical methods that are used in the current transmission system operator
practice are presented. This background information will turn out useful in the next chapters when
the distributed power flow methodology is presented. It is worth mentioning that the aim of this
section is not to carry out an extensive review of the mathematical methods used to solve power
flow equations, but rather to provide a concise background to the reader willing to grasp the more
complex features of the distributed methodology.

2.1 Electrical Variables, Grid Components, Bus Types

In this section we introduce the relevant electrical variables for the formulation of the power
flow problem and the classification of buses, in line with regular TSOs practices. In AC operation,
electricity is an oscillating flow of electrons at a certain constant frequency5. As a result, current,
voltage and complex power are time-variant quantities that might be difficult to deal with when
writing down equations for grid modelling. Furthermore, in steady-state analysis there is no interest
in knowing the instant values of those variables, but rather to assess some difference among them
(e.g. nodal voltage difference, current-voltage difference, etc.). For these reasons, for steady-state
grid analysis, electrical variables are defined through phasors. Phasors are rotating vectors in the
complex plane that are used to represent time variant oscillating electrical quantities. Phasors allow
to split the information needed to assess an electrical variable into just two components, the phase
and the module. Thus, let us define the following parameters:

The current phasor: I = IejδI = I(cosδI + jsinδI)

The voltage phasor: V = V ejδV = V (cosδV + jsinδV )

The complex power phasor: S = Sejϑ = S(cosθ + jsinθ)

From now on we refer to V as the voltage magnitude and to δV as the voltage angle. Note
that the complex power S is related to the active power P and reactive power Q by the following
expression:

S = P + jQ (1)

Electrical grids may be modeled in many ways. From the mathematical point of view an electric
grid can be interpreted as a graph G(B, E), where B and E denote the set of buses and edges
respectively and G is a mapping between B and E providing the connectivity bus-edges6. From an
engineering and operating side, a power grid is an interconnected network of components that aim at
moving electricity from generators to final consumers. Buses act as sinks, injecting or withdrawing
power to/from the grid, while edges (i.e. transmission/distribution lines) allow for transportation. As
such, electric variables may be branch related or bus related. In this work, we refer to bus variables
with capital letters and to branch variables with lowercase letters. Buses can be categorised into three
types: those that provide net injections to the grid (PV buses); those that make net withdrawals from
the grid (PQ buses); those that have flexible operation and thus compensate for losses (called Slack
buses) (see Fig. 1).

5In Europe the oscillating frequency is 50Hz.
6PETSc extensively makes use of graph theory to store and manage networks. This is shortly deepened in Section

4 and contextualized in power flow.
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PV PQ

Slack

Figure 1: Buses classification and branch/bus quantities in a three node system.

Buses classification into PQ, PV and Slacks relates to the fact that these electrical quantities are
known by system operators. Other quantities, like branch currents, power flows over lines, losses and
state variables (V,δ) are not quantities known in advance, but rather derived from the information
given at PQ, PV and Slacks. This sets the basis for the power flow problem. Summing up, the
unknowns and known variables for the power flow problem for each type of bus are:

Bus Type Known Unknown
PQ P,Q V,δ
PV P,V Q,δ
Slack V,δ P,Q

Before entering into the power flow problem definition, let us clarify the role of Slack buses. The
definition of slack bus serves two functions. First, it sets a reference (1 p.u.7 for V and zero for δ),
so that voltage angles and voltage magnitudes can be computed as deviations. Its second purpose
is to balance power losses. In fact, losses are defined only once the power flows over branches are
computed, which means only after the load flow problem is solved.8

2.2 The Power Flow Problem

Power flow equations are solved continuously over time by grid operators, in order to assess the
security state of the grid, assess contingencies, plan long-run investments, ensure the best cost-
efficient allocation of resources. This is a fundamental tool for grid operators and research in this
field is very active, both from the numerical and methodological side.

In this section we present its mathematical formulation. The power flow problem is the problem of
finding the voltage phasor (i.e. voltage magnitude and voltage angle) for all buses. Currents, power
flows and losses are dependent variables and can hence easily derived once the load flow is solved.

Let us consider a power network made up of N buses, with one single slack bus. Let us also
consider that of the N buses, G, with G < N , is the number of PV buses and that the remaining
N −G− 1 are the number of PQ buses. PQ buses have both the voltage magnitude and the voltage
angle unknown, that means PQ buses introduce 2(N − G − 1) unknowns. On the other hand, PV
buses have only voltage angles which are unknown, introducing then only G unknowns. The total
number of unknowns is thus:

2(N −G− 1) +G = 2(N − 1)−G (2)
7p.u. stands for "per unit". In power systems analysis, a per-unit system is the expression of system quantities as

fractions of some reference unit quantity. It’s usual to take as base quantities a complex power reference and a voltage
reference, from which other references are derived, e.g. current reference. Per unit system allows to greatly simplify
calculations.

8Basically, at least an active power at a bus must be set free to accommodate differences in the active power
balance due to losses. In other words, the slack bus is a need to keep the energy balance verified.
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The same number of equations (not introducing other unknowns) is needed in order to obtain a
unique solution for the mentioned problem. In principle, there’s no constraining rule upon the choice
of these equations. The most common choice is to write nodal power mismatch equations: we can
write the active power balance equation for each PQ and PV buses, for a total of N − 1 equations.
Then we can write a reactive power balance equation for each PQ bus (i.e. N − G − 1), getting a
total number of equations of:

N −G− 1 +N − 1 = 2(N − 1)−G (3)
Which is equal to the number of unknowns. Let us write them down explicitly for the generic bus

i. This is done starting from the net complex power expression injected or withdrawn from bus i:

Si = ViIi (4)
Where Vi, Ii are the bus voltage and bus current related to the bus i. Notice that the underline

of I stands for the complex conjugate operator. The nodal current I may be expressed in terms of
incident branch currents by introducing the Kirchhoff’s Current Law (KCL). The KCL states that the
charge flow cannot be generated, consumed or collected in a bus, so that the current summation at
a node must be zero. In other terms, we can express I as:

I =
m∑
j=1

i (5)

Where m is the number of incident buses at bus i. By introducing Eq.(5) into Eq.(4) we obtain:

Si = Vi

m∑
j=1

ij (6)

The currents ij are unknowns. Introducing the Ohm’s Law we can express them in terms of
complex voltages obtaining:

Si = Vi

N∑
j=1

YijVj (7)

Where Yij is the ij element of the nodal admittance matrix (see Annex 1). According to the
complex expressions introduced in 2.1, the phasors can be expanded as followss:

Si =
N∑
j=1

ViVjYije
j(δi−δj−θij) (8)

Being Eq.(8) a complex equation, it can be separated into its scalar components:

Pi =
N∑
j=1

ViVjYij cos (δi − δj − θij) (9)

Qi =
N∑
j=1

ViVjYij sin (δi − δj − θij) (10)

These are the so-called power flow equations. Note that we are dealing with nodal quantities,
that means, that the δi, δj are voltage angles related to bus i and j. Whilst θij refers to the phase
shift given by line parameters connecting bus i with bus j.
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The power flow equations relate grid state variables with net injection/withdrawals Pi, Qi. Since
in reality, grid operators know the scheduled generation profiles and the demand forecasts, it can be
said that Pi, Qi are known inputs for their power flow computations. Additionally, the grid operators
own all the data about components connected to the grid, e.g. switches state, lines parameters,
bus-edges connectivity (i.e. topology). In other words, the only unknowns are the state variables
V, δ.

Before introducing the solution methods, let us derive an alternative but equivalent formulation
of the power flow equations. Let us consider Eq.(7) and separate the admittance matrix Yij in its
real and imaginary components Gij , Bij . This translates into:

Si = ViIi = Vi

N∑
j=1

YijVj =
N∑
j=1

ViVj(Gij − jBij)(cos δij + j sin δij) (11)

And by separating active and reactive power components:

−Pi +
N∑
j=1

ViVj(Gij cos δij +Bij sin δij) = 0

−Qi +
N∑
j=1

ViVj(Gij sin δij −Bij cos δij) = 0

(12)

This alternative formulation is the one used in the distributed solver discussed in this work. The
power flow problem is thus a system of non-linear algebraic equations. In other words, Eq.(12) belongs
to the general class of problems:

F(x) = 0 with x =
[
V
δ

]
=



V1
...

VPQ
δ1
...

δP Q+P V


(13)

Practically speaking this means to look for the roots vector x of the non-linear vector-valued
function F. Note that all bold quantities refer to vectors. Finding the roots of an algebraic nonlinear
system of equations is not an easy task. Exact (i.e. analytical) solutions exist only for special cases.
For all the other cases since this is not possible the solution is investigated through numerical methods.
The next sections introduce the numerical approaches used to solve the power flow problem. This
has a double aim. From one side, to review the reference methods in the industry practice, from
the other side, to establish a basis for the mathematical approach here proposed to carry out the
distributed power flow computation.

2.3 Non-Linear Solvers for Power Flow Equations

All over the world industry practice, power flow equations are solved by means of a quite standard
approach. An iteration procedure is started to approximate the non-linear problem to a linear one.
Then, the arising linear system is further simplified through a factorisation technique and solved in
one single step. The procedure restarts as a stopping criteria is fulfilled. This approach combines a

11



non-linear Newton step with a direct single-step method, giving a good balance between robustness
and computational time, which motivates the long-time reference of the industry practice9.

Research in numerical solution of power flow equations has in recent years explored outer-inner
iterative methods as well. This approach combines a Newton iteration and an iterative linear proce-
dure. These methods very often offer good parallel features, better scalability and possibility to be
run on distributed platforms.

In the following sections we start by reviewing the Newton’s method, moving then to linear
solvers, and later to the introduction of a particular numerical approach - the Newton-Krylov-Schwarz
algorithm - available in the PETSc libraries and used for a distributed computation of power flow
equations.

2.3.1 Newton-Raphson

The Newton-Raphson (NR) method is a standard approach for many classes of non-linear prob-
lems. The NR iterative procedure is quite straightforward: given a starting point for the iteration,
the problem is approximated locally to a linear problem, solved, and iterated back. The NR iteration
scheme can be expressed in general as:

x(k+1) = x(k) + ∆x(k) (14)

Where the term ∆x(k) works as a "corrective" term at each step k. Hence, the convergence will
depend from ∆x(k).

Solving Monodimensional Case

For sake of clarity, let us first derive the NR method for a single algebraic non-linear equation.
We want to find the zero of a function f(x) : R → R in the single variable x, that means to find x
such that:

f(x) = 0 (15)

Figure 2 shows the idea behind the method. The x(0) is the starting point for the iteration scheme.
Given x(0) as the starting guess10, f(x) is approximated locally through a first-order Taylor expansion
around the point (x(0)) according to:

f(x) ≈ f(x(0)) + f ′(x(0))∆x(0) = 0 (16)

With:

∆x(0) = x(1) − x(0) (17)

Eq.(16) above is a linear equation in the ∆x(0) unknown. By reordering it with respect to ∆x(0),
we obtain:

∆x(0) = − f(x(0))
f ′(x(0))

(18)

9Notice that robustness is an essential feature for a power flow solver. Grid operators face short time-frames and
security challenges continuously over time so that software reliability must be ensured for a broad range of input sets.

10In case an approximated solution of the nonlinear equation is known, it shall be used as first guess. This decreases
greatly the number of iterations needed to get the solution.
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Figure 2: Newton-Raphson method for one-dimensional case

So that the next root x(1) is found as:

x(1) = x(0) − f(x(0))
f ′(x(0))

(19)

Generalising at iteration k, Eq.(19) becomes:

x(k+1) = x(k) − f(x(k))
f ′(x(k))

(20)

Note that, each f ′(x(k)) must never be equal to zero (i.e. no stationary points have to be
encountered) in order to get to convergence.

Solving Multidimensional Cases

In the following , we extend the concept to a system of equations. A system of non-linear equations
is defined as a system of generic equations n inm unknowns, where at least one equation is non-linear.
In this work, we consider only well-posed problems where the number of equations equal the number
of unknowns (i.e. n = m) and all equations are non-linear. Furthermore, we consider the dense case,
where each equation shows dependence on any unknown xi. We will introduce the sparsity later on,
where the Newton methodology will be applied to the power flow problem.

A system of non-linear equations is defined as:
f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0
. . . . . . . . . . . .
fn(x1, . . . , xn) = 0

More concisely:
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f(x) =


f1(x)
f2(x)
...

fn(x)

 with x = (x1, . . . , xn)

As the vector-valued function. The solution of a system of non-linear equations can be thus
interpreted as:

f(x) = 0

Which means once again to find the zero vector of the non-linear vectorial function f. This is the
same form obtained in the mono-dimensional case, hence, the same procedure seen in the previous
paragraph can be applied, taking into account that in this case scalar variables are substituted by
vectors 11. Using the same approach of the mono-dimensional case, we get:

f(x) =


f1(x(k+1))
f2(x(k+1))

...
fn(x(k+1))

 ≈

f1(x(k)) + ∇f1(x(k)) ·∆x(k) = 0
f2(x(k)) + ∇f2(x(k)) ·∆x(k) = 0

...
...

...
fn(x(k)) + ∇fn(x(k)) ·∆x(k) = 0

 (21)

And each equation is solved with respect to ∆x(k), whereas fi(x(k)) and ∇fi(x(k)) (with i =
1, . . . , n) are evaluated by means of the solution of the previous iteration.

x(k+1) = x(k) − f(x(k))
∇f(x(k))

(22)

Exactly as for the mono-dimensional case. Note that the operator ∇ is the gradient operator.
This means that the term ∇f(x(k)) is actually a matrix defined as:

J =


∇f1(x)
∇f2(x)

...
∇fn(x)

 =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂xn...

. . .
...

∂fn

∂x1

∂fn

∂x2

∂fn

∂xn

 (23)

The coefficient matrix J is called Jacobian matrix and it is the matrix of all first order partial
derivatives. Therefore, the solution of equations contained in Eq.(21) with respect to ∆x(k) implies
to solve the linear system:

−J(x(k))∆x(k) = f(x(k)) (24)

Note the important result obtained: the non linear problem has been turned into a succession of
k linear systems.

In principle, the solution of Eq.(24) can be approached analytically (if the Jacobian matrix is
invertible, i.e. det(J) 6= 0). By inverting J the exact solution x is found. In practice, this becomes
soon unfeasible even for relatively small linear systems (i.e. > 101 unknowns). Let n be the order
of J , calculating its inverse requires O(n!) FLOPS (Floating Point Operation Per Second). Table 1
shows how the computational complexity of the problem scales up quickly by solving linear systems
of increasing size, and its relation with computational time.

11Notice that the operator < · > is the dot-product.
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Table 1: Time required to solve a linear system of dimension n through Cramer’s rule. "o.o.r." stands for
"out of reach". (Alfio Quarteroni, 2012)

FLOPs
n 109 1012 1015

10 10−1 10−4 sec negligible
15 17 hours 1 min 0.610−1 sec
20 4860 years 4.86 years 1.7 days
25 o.o.r o.o.r. 38365 years

Linear systems arise pretty much in any scientific discipline and sometimes they may contain
millions or even billions of unknowns, making these problems unsolvable with Cramer’s rule. This has
attracted considerable attention on research methods to solve linear systems. Many techniques have
been developed over the years depending on the features of the problem (e.g. sparsity, spectrum,
positive definiteness, symmetry, etc.), that can be divided into two main categories: direct methods,
which are those that find a solution of the linear system after a finite number of steps, and iterative
methods, that might require a theoretical infinite number of steps.

Before going through linear systems techniques, let us apply the NR method to the power flow
problem, in order to turn the problem into a sequence of linear systems.

Newton-Raphson & Power Flow Problem

Let us recall the power flow equations from section Section 2.2:

Pi =
N∑
j=1

ViVj(Gij cos δij +Bij sin δij) (25)

Qi =
N∑
j=1

ViVj(Gij sin δij −Bij cos δij) (26)

The first action is to split the unknown terms from those that are known, according to power flow
problem definition given in Section 2.1. That means we can write Eq.(25) as:

{
Pi − Pi,comp(x) = 0
Qi −Qi,comp(x) = 0 (27)

Where Pi,comp, Qi,comp contain the unknown vector x. Let define the Power Mismatch Function
(PMF) as:

F(x) =
[
P− P(x)
Q−Q(x)

]
=



P1 − P1,comp(x)
...

PNP Q+NP V
− PNP Q+NP V ,comp(x)

Q1 −Q1,comp(x)
...

QNP Q
−QNP Q,comp(x)


= 0 (28)
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The PMF represents the system of non-linear equations in a compact form. From the PMF
side, the power flow problem consists in determining the vector of state variables x so that the net
injections/withdrawals Pi, Qi equal those computed from state variables.

As mentioned in the previous section, the NR procedure starts with the linearisation of the initial
problem. This gives:

F(x) =



P1 − P1(x(k+1))
P2 − P2(x(k+1))

...
Pn − Pn(x(k+1))
Q1 −Q1(x(k+1))
Q2 −Q2(x(k+1))

...
Qm −Qm(x(k+1))


≈



P1 − P1(x(k)) + ∇P1(x(k)) ·∆x(k) = 0
P2 − P2(x(k)) + ∇P2(x(k)) ·∆x(k) = 0

...
...

...
Pn − Pn(x(k)) + ∇Pn(x(k)) ·∆x(k) = 0
Q1 −Q1(x(k)) + ∇Q1(x(k)) ·∆x(k) = 0
Q2 −Q2(x(k)) + ∇Q2(x(k)) ·∆x(k) = 0

...
...

...
Qm −Qm(x(k)) + ∇Qm(x(k)) ·∆x(k) = 0


(29)

With n = NPQ + NPV and m = NPQ. Exactly as before, the gradient terms are all vectors,
so that they can be gathered into a matrix of dimension (n + m)x(n + m). We call this matrix the
Jacobian matrix of the power flow problem JPF . Reordering, the non-linear problem is turned into a
sequence of linear systems k as:

−J(x(k))∆x(k) = F(x(k)) (30)

With the unknown vector defined as:

x =
[
V
δ

]
=



V1
...

VNP Q

δ1
...

δNP Q+NP V


(31)

Note that JPF has a block structure. By dividing the derivatives of P,Q with respect V, δ, we
recognise a structure made up of four blocks:

JPF =


∂P(x)
∂δ

∂P(x)
∂V

∂Q(x)
∂δ

∂Q(x)
∂V

 (32)

For sake of simplicity from now on we refer to JPF as J . An example of the Jacobian structure is
reported in Fig. 3 (case13), to underline its block structure. This case has been created by merging
case9 and case5 of Matpower libraries (Zimmerman and Murillo-Sanchez, 2016).

It is worth reporting that most power flow software set up the reduced Jacobian, meaning that
rows related to slack and PV reactive power equations are not included. For this reason, the Jacobian
for case13.m has size 19x19, rather than 26x26. From now on we will use the term reduced Jacobian
to indicate the first case and the term full Jacobian to indicate the latter.
Note that the Jacobian structure might differ from case to case, depending on the implementation.
PETSc follows a different rational indeed. The derivatives ordering follows a bus ordering. As a
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Figure 3: Reduced Jacobian of case13.m according to Matpower (Zimmerman and Murillo-
Sanchez, 2016) block-ordering.

result the Jacobian resembles more the structure of Ybus, the bus admittance matrix. Each entry is
actually a 2x2 matrices, containing all the four derivatives, with respect to a generic bus i and j. A
comparison between the full Jacobian of case9.m in Matpower and PETSc is reported in Fig. 4.

(a) Matpower (b) PETSc
Figure 4: Comparison between Matpower and PETSc full Jacobians of case9.

In conclusion, the NR method involves two steps:
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1. Solve J(x(k))∆x(k) = −F (x(k))

2. Update x(k+1) = x(k) + ∆x(k)

Note that when using an iterative linear solver, step 1) of the procedure should be better called:
’solve approximately J(x(k))∆x(k) = −F (x(k))’ due to the fact that iterative solvers solve the Ja-
cobian linear system up to a given a tolerance. This class of methods are called Inexact-Newton
methods and are the main matter of this work. In the next sections aspects regarding linear solvers
will be dealt in detail. Note that proper tolerances shall be used for the linear (Krylov-Schwarz)
iterations: in fact, while an excessive rough solution could lead to an increase of non linear iterations,
an excessive precise solution would lead to a waste of computational resources.

2.3.2 Newton-Raphson with Line Search

The NR method presented in the previous sections is a basic but effective approach to solve
non-linear problems. The NR converges quadratically, which is good, though may not be robust
enough for real applications. In commercial applications, the NR method is implemented with some
modifications to improve convergence properties. The two main techniques are that of the trust-
regions and the line-search technique, more common in the context of power flow equations. Here
we briefly recall the idea.

Let consider the non-linear update scheme derived in the previous section:

x(k+1) = x(k) + ∆x(k), −J(x(k))∆x(k) = F(x(k)) (33)

In this expression the updating vector ∆x(k) can be interpreted as a correction vector, giving the
new direction x(k+1). In principle we expect ∆x(k) to be decreasing over the non-linear iterations,
reaching out the zero value when the exact (up to an accepted tolerance) solution is found. This
could not be the case for any iteration k and the procedure may even diverge. The line-search makes
the NR procedure converging for any starting guess x(0). When this happens we say NR is globally
convergent12. The idea of line-search is quite simple. We introduce a parameter σ in the updating
scheme according to:

x(k+1) = x(k) + σ(k)∆x(k) (34)

And set σ(k) as the term which minimises:

argmin
σ

∥∥∥F (xk − σ(k)∆x(k))
∥∥∥ (35)

This minimisation problem cannot be solved analytically, but usually an approximated solution is
enough to provide the desired result. For more information about line-search and trust region see
for instance (Idema and Lahaye, 2014). This approach belongs to the broader category of gradient
methods. This will be important in the context of non-stationary iterative linear solvers, that will be
the main matter of the next sections.

12Note that this ensures global convergence at local minimum. Which means, in general to the closer solution to
x(0). This shall be strongly taken in mind when interpreting the results.
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2.4 Introduction to Linear Solvers

One of the most well-known scopes of computer science is to study algorithms that can ease the
solution of complex computational problems. Among the many features that an algorithm should
have there are indeed efficiency, elegance and stability. In other words, algorithms shall make minimal
use of computational resources, shall be easy to be read and implemented, and shall not magnify
numerical errors, potentially induced by particular sets of inputs. While a comprehensive discussion
is out of the scope of the present work, a short overview of some notable techniques will be provided
to better motivate the linear solver discussion for distributed power flow.

As mentioned in Section 2.3, linear solvers are divided into direct and iterative. The two approaches
differ in the formulation as well as in their distinctive features. For instance, one of the most relevant
characteristic of direct solvers is their robustness. This has lead direct methods to be preferred over
iterative in the industry practice, as the property of giving reliable solutions on different sets of inputs
is of key importance. On the other hand, iterative methods are mostly still used in research contexts,
as they can perform much better when problems scale up.

Remarkably, the reason behind using iterative linear methods in this work is not strictly the speed-
up to find the solution of the power flow problem, rather than its parallel features that perfectly fit
the scope of a distributed computation. This will gradually become clearer. Here, we start briefly by
introducing the general formulation of direct and iterative methods. After that, we will introduce the
iterative solver actually used and discuss it in detail.

2.4.1 Direct Methods

Let A be the coefficient matrix and b the right-hand side of the linear system:

Ax = b (36)

The solution of the unknown vector x is approached by direct methods by factorising the coefficient
matrix A into a product of two matrices M,N that gives back A, so that Eq.(36) can be re-written
as:

MNx = b (37)

Once the M,N matrices are found, the solution of Eq.(36) is easily found. In practice, the main
effort of the direct methods is on the factorisation of the A matrix. A prominent example of direct
method is the LU factorisation method, which factorises A into a lower triangular matrix L and an
upper triangular matrix U . In practice, the L,U matrices are based on the the Gaussian elimination,
a well-known algorithm proposed by Gauss in the ’800s. The Gaussian elimination process may fail
in some occasions. In order to avoid such occurrences, A rows and columns are permuted before
factorisation. This procedure is called total pivoting and allows to get to an important result: given
any non-singular coefficient matrix A, it is always possible to find a permutation of its columns and
rows so that Gaussian elimination is possible: it is always possible to find the matrices L,U . This fact
gives an immediate proof of the robustness of direct methods. On the other hand, direct methods
suffer from the so-called fill-in process. In practice, it is quite common to deal with sparse linear
systems13; this is usually an advantage, as it lowers the memory storage and simplifies the coupling of
equations in the system. The fill-in phenomena occurs during the factorisation process which induce
a lot of non-zero elements to show up.

13In numerical analysis a sparse system is a matrix in which most of the elements are equal to zero.
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2.4.2 Iterative Methods & Preconditioning

Iterative methods seek for the solution of Eq.(36) through consecutive refinements of approximate
solutions. A common procedure is to find the generic iterate x(k+1) by means of a fixed point iteration
scheme, that means through the general:

x(k+1) = Φ(x(k)) (38)
Most of the iterative schemes in the literature are based on a linear map Φ. This represents

a simple basis for analysis of the properties of the iterative scheme, without actually precluding its
efficiency. More complex features can be added, but also in these cases the updating scheme is still
linear. A linear iterative scheme updates the solution through:

x(k+1) = Bx(k) + f (39)
Where B, f are respectively the iteration matrix and a vector, both function of A,b. In principle,

iterative schemes converge to the exact solution x∗ = A−1b only after an infinite number of iterations.
In practice this is not possible nor actually needed. Let us introduce the error e = xk − x∗ relative to
the step k as the vector depicting the ’distance’ from the exact solution. What would be sufficient is
to stop the iteration process after the iteration k that makes the error norm small enough:∥∥∥e(k)

∥∥∥ =
∥∥∥x∗ − x(k)

∥∥∥ < ε (40)

That is, lower than a certain quantity ε. Of course, the error is an unknown quantity and can
only by estimated at each iteration k. In practice we use an estimator of the error and we check its
value against our tolerance ε. The most common estimator used is the residual, as it is often already
available during the iteration process. We define the residual r as:

r = b−Ax (41)
And do at each iteration k a check on its norm. The check may involve both the residual norm

relative to the right hand side vector b and its absolute norm.
Note that the residual expression equals zero for the exact solution x∗, exactly as it does the error

expression (Eq.(40)). This might give the wrong idea that the residual perfectly estimates the error.
Actually, as the machine can only approximate real numbers to floating point numbers, errors are
constantly introduced in the iteration process acting as perturbations and eventually leading to false
solutions. In other words, we may find a solution that respects our residual tolerance conditions:

‖r‖ < ε1 and
‖r‖
‖b‖

< ε2 (42)

While actually being far from the exact solution x∗. Linking the error norm and the residual
norm is not an easy task. It depends on many factors, among which the coefficient matrix A related
properties (e.g. symmetry or positive definiteness), on the numerical perturbation considered, on
the iterative scheme, on the norm definitions, etc. Generally, is common to find expressions that
relate the error norm to the residual norm through the so-called condition number K(A), which as
stated in the notation is strictly dependent on the coefficient matrix. For instance, if we consider
A symmetric and positive definite (SPD) and we consider numerical perturbations only on the right
hand side vector b, the error norm relates to the residual norm at the generic step k through the
following expression: ∥∥x(k) − x∗

∥∥∥∥x(k)
∥∥ ≤

∥∥r(k)
∥∥

‖b‖ (43)
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With the condition number being equal to:

K(A) = λmax
λmin

(44)

In general, we can consider the condition number as a measure of how much we expect the error
to be small with respect to the residual. The greater the condition number K(A), the greater the
difference between the residual and the error. This introduces us to the concept of preconditioning.
Preconditioning is a widely used technique aiming at facilitating the iterative process by diminishing
the condition number, in other words, to diminish the impact and propagation of numerical errors.
Actually, any linear system that has lower condition number is in turn easier to solve, therefore we
can say that preconditioning helps in general the solution finding process.

Convergence Analysis

Convergence is an important, if not the most important, feature of numerical methods. When
building an iterative scheme, for instance taking into account Eq.(39), two of the most important
things that we would like to know are:

• Does Eq.(39) converge to the exact solution?

• How quick does the Eq.(39) converge?

To answer these questions we need to derive some properties of the iteration matrix B. In order for
the Eq.(39) to converge to the exact solution, it is necessary that the following consistency condition
is fulfilled:

x∗ = Bx∗ + f (45)
(46)

In other words, if we let B to be freely chosen, we are obliged to set f in order to respect the
equality above. Let us now subtract the Eq.(45) from Eq.(39) so that we obtain a recursive expression
for the error:

e(k+1) = Be(k) (47)
As any iterative procedure starts with a first guess x(0), we can also write:

e(k) = Bke(0) (48)
This gives a clear insight on the role of B: the method converges if and only if B acts as a

diminishing factor for the error through iterations. The iteration matrix is the parameter we act on
to design the iterative method according to our needs, as it gives all the convergence properties of
the iterates. We can write a more formal convergence criterion by using eigenvalues and eigenvector
properties. Recall that, given λ ∈ Rn as a scalar, an eigenvector w of B is any vector for which the
following equality holds:

Bw = λw (49)
The λp is called an eigenvalue of B. Let us assume that B has a complete set of eigenvectors

(for instance this occurs when B is SPD)14. This means, given n as the matrix order of B, we have
14The result that we will get here can be extended also in the case B does not have a full set of eigenvectors. This

is not treated here, but can be found for instance in (Saad, 2003) at section 4.2.1.
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a set w1,w2, . . . ,wn independent vectors that form a basis ∈ Rn. As n is also the order of e(0), we
can write e(0) down as a linear combination of the eigenvectors w1,w2, . . . ,wn:

e(0) = c1w1, c2w2, . . . , cnwn (50)

With c1, c2, . . . , cn being a unique set of coefficients. Combining Eq.(48), Eq.(49) and Eq.(50)
we get:

e(k) = c1λ
k
1w1 + c2λ

k
2w2 + · · ·+ cnλ

k
nwn

k → inf
≈ max

p∈{1,...,n}
|λp|k (51)

Which approximates to the term containing the greater eigenvalue in module as k → inf. We
define this term as the spectral radius of B. Explicitly this means:

ρ(B) , max
λp∈{λ1,...,λn}

|λp| (52)

Finally, the expression for e(k) becomes:

e(k) ≈ ρ(B)k (53)

And hence it is a necessary and sufficient condition for the convergence that ρ(B) < 1. Further-
more, the lower the spectral radius the quicker the convergence.

Basic Iterative Methods

Here we want to derive explicitly some basic iterative schemes. A common way to derive an
iterative scheme is through the splitting of the coefficient matrix A. In other words we write A as:

A = M −N (54)

With M necessarily a non-singular matrix. Substituting into Ax = b we get:

x(k+1) = M−1Nx(k) +M−1b (55)

The matrix M is called preconditioning matrix. Recalling Eq.(39), the iteration matrix B is now
defined as:

B = M−1N (56)

Which suggests that the preconditioning matrix actually influences the convergence properties of
the iterates. A further rework can be done on Eq.(55) in order to get an expression of B as a function
only of M and A. Let us set:

N = M −A (57)

Eq.(55) can be written as:

x(k+1) = (I −M−1A)x(k) +M−1b (58)

Which, by comparison with Eq.(39) gives the expression of the iteration matrix:

B = I −M−1A (59)
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As the spectral radius of B gives the convergence rate, the iterative method converges fast in the
case we make:

ρ(B) = ρ(I −M−1A)→ 0 (60)
This happens in the case M ≈ A15. Of course, the extreme case M = A is meaningless since we

are inverting A itself and the preconditioning is of no help. In contrast, taking M very different from
A may lead to spectral radius values just slightly lower than one, making the convergence very slow.
This gives us an important insight: it is important to find the right balance between the application
cost of the preconditioner and the actual ease gained from its introduction, i.e. in terms of spectral
radius.

This highlights another important fact. Direct and iterative methods are not that far as it may
seems, in practice the insights from one are combined into the other. One can make use effectively of
a direct technique to build a preconditioner. Many recipes can be designed in this sense, for instance
one may carry out an incomplete factorisation of A in order to have A ≈ LU , set M = LU and
iterate through Eq.(58). By this approach, as M ≈ A, we can obtain convergence in few iterations,
while saving at the same time computational resources from a full factorisation.

Preconditioning Formulations

Splitting is just one of the methods to derive an iterative scheme. Depending on the idea as
well as on the needs of the iterative solver, one can define the application of the preconditioner
through alternative formulations. An example is to transform the linear system Ax = b into the
left-preconditioned:

M−1Ax = M−1b (61)
Alternative preconditioning formulations may be based on right-preconditioning :

AM−1y = b, x = M−1y (62)
Or split-preconditioning. Assume to have M in a factorised form, that means M = MLMR. The

split-preconditioning formulation modify Ax = b as:

M−1AMy = M−1b, y = M−1x (63)
Split-preconditioning is often used when we want to preserve the symmetry of the problem. For

instance, consider having M in the form:

M = CCT (64)
The split-preconditioned linear system:

M−1AMy = M−1b, y = M−1x (65)
Is always symmetric.
Right-preconditioning can be used to preserve the residual expression, that can be advantageous

for some algorithms for residual check, whereas left-preconditioning uses the preconditioned residual:

z = M−1r = M−1(b−Ax) (66)
Through iterations. In conclusion, preconditioning shall be applied by following the two-step

procedure:
15In fact: M ≈ A means the product M−1A ≈ I, hence ρ(B) ≈ 0
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1. Select a preconditionerM that is easy to build and ensure an easy solution of the preconditioned
linear system Mz = r.

2. Choose the preconditioning formulation that is the most tailored to the application, properties
of the coefficient matrix A (e.g. symmetry), etc.

For more details on preconditioning formulations see (Ferronato, 2012).
Note that we can easily show that Eq.(61) is totally equivalent to a Eq.(39). Let us recall Eq.(58).

This must necessarily holds also for the exact solution x∗, that means one can write it down also as:

x∗ = (I −M−1A)x∗ +M−1b (67)

Gathering the terms in x∗ the Eq.(61) is obtained. In general, regardless of the preconditioning
formulation that we use, we can always lead back to an update scheme of the kind of Eq.(39) and
analyse the convergence characteristics by identifying the expression of the matrix B. For right-
preconditioning this can be done as:

AM−1y = b (68)
AM−1y + y− y = b

y(k+1) = (I −AM−1)y(k) + b

Which gives an expression for B almost16 identical to that of left-preconditioning. The last
equation above can be also written as:

y(k+1) = y(k) + b−AM−1y(k) (69)
Mx(k+1) = Mx(k) + r(k)

Which shows how the right-preconditioning formulation preserves the residual expression.
An interesting question may arise on preconditioning formulations. Does the spectrum of B

changes when applying the three different expressions of preconditioning? It can be proved (see
(Saad, 2003)) that the spectrum of Eq.(61), Eq.(62) and Eq.(63) is equal and hence one should
not expect different convergence properties. This is actually verified only in exact arithmetic. As
problems are more ill-conditioned, in practice we can have different performances depending upon
the preconditioning formulation chosen. For instance, if A resembles a symmetric matrix the split-
preconditioning may be the preferred formulation.

2.4.3 Practical Updating Schemes & Basic Implementation Algo-
rithms

The expressions derived so far about the iteration matrix B are fundamental for convergence
analysis and to the understanding of the properties of an iterative method. However they are not
tailored for implementation schemes. Here we want to introduce expressions that can be used for
implementations. Let us start by reworking a bit the following equations:

16The matrix-matrix product is not commutative. This means in general AM−1 and M−1A differ with each other.
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x(k+1) = M−1(M −A)x(k) +M−1b (70)
= (I −M−1A)x(k) +M−1b
= x(k) +M−1(b−Ax)
= x(k) +M−1r(k)

This gives an updating scheme for x(k) that only involves the residual and the preconditioner. Let
define z(k) = M−1r(k), conceptually the Eq.(70) consists of three steps: solving the preconditioned
linear system in z(k), update the solution and update the residual for the next iteration. A pseudo-
algorithm for a stationary iterative method can be thus:

Algorithm 1 Prototype algorithm for stationary iterative linear solver.
1: Begin
2: initialize x0, r0 = b−Ax0
3: for k = 0, 1, . . . , until convergence do
4: solve Mz(k) = r(k)

5: update the solution x(k+1) = x(k) + z(k)

6: update the residual r(k+1) = r−Ax(k+1)

7: end for
8: End

An alternative way of updating the residual is sometimes used:

r(k+1) = b−Ax(k+1) (71)
= b−A(x(k) + z(k))
= r−Az(k)

From the computational point of view this costs one matrix-vector multiplication exactly as for the
previous update scheme. In more complex iterative schemes, algorithms involve much more steps and
the product Az(k) might be already available at the residual update step, making it less expensive.

The algorithm shows us another important thing. At each step k we solve the preconditioned
linear systemMz(k) = r(k). Again: the closerM ≈ A, the higher the computational cost per iteration
will be. Whereas taking M such that it is easier to solve Mz = r means in general to produce more
iterations k before convergence is reached. Generally, the preconditioning matrix M is chosen so that
it balances the computational cost per iteration k and the ease to obtain the solution of the linear
system. In practice, the design of a proper preconditioner is a complex task and should take into
account many factors, such as the physics of the problem or the sparsity of the coefficient matrix A,
and depend upon the specific needs of the iterative solver (i.e. decrease computational complexity
of the problem, provide numerical stability, enhance condition number of the problem, etc.). For a
more detailed discussion on preconditioning see (Chen, 2005), (Saad, 2003), (Benzi, 2002). In the
context in exam, it is sufficient to consider the preconditioner as a ’facilitator’ for the convergence of
the succession Eq.(39), though, as it will be discussed in Section 2.5, it must fulfil other additional
requirements.
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Non-Stationary Iterative Methods

So far the preconditioning theory has taught us to build an iterative method and to make analysis
on its convergence. The basic schemes seen belong tothe family of the stationary iterative methods.
The term stationary is quite straightforward: the Eq.(70) does not change through the iterations.
However, these schemes are not tailored for real applications as soon as the number of iterations grows,
which is the case of many real problems. To this aim the concept of dynamic iterative methods needs
to be introduced. These methods make use of some parameters that are optimally chosen at each
step k to speed up the convergence.

More formally, let us introduce the scalar α 6= 0 ∈ R and modify Eq.(70) as follows:

x(k+1) = x(k) + αz(k) (72)

Which can also be written as:

x(k+1) = (I − αM−1A)x(k) + z(k) (73)

Due to the introduction of α, the spectral radius is changed into:

ρ(B) = ρ(I − αM−1A) (74)

As known, the lower the spectral radius the faster the convergence is reached. The following
minimisation problem can hence be set:

min
α
ρ(I − αM−1A) (75)

To find an optimal value for α. This simple iterative scheme is known as Richardson’s iteration.
It is possible to do even better by allowing α to change at each iteration k, meaning that α is
dynamically updated through the iterations k. From now on we will denote α as α(k) every time we
intend it as a dynamic parameter. This introduces us to the gradient method. The gradient method
computes α(k) in order to obtain the minimal value for the norm of the residual vector at iteration
k + 1. In short, it sets at each iteration k the minimisation:

min
α

∥∥∥x(k) + α(k)r(k)
∥∥∥ (76)

Empirically, among all the linear vectors x(k) +α(k)r(k) we are looking for the optimal step length
α(k) that makes the next residual minimal. In this conception the residual vector is interpreted as
the search direction along which we move in order to find the next iterate x(k+1). This scheme
can be further improved by choosing alternative directions to the one given by the residual vector.
The conjugate gradient (CG) algorithm, for instance, takes conjugate (i.e. orthogonal) directions to
update the iterate according to the following:

x(k+1) = x(k) + α(k)p(k) (77)

Further insights can be gained by expanding between the first iteration (0) and the generic iteration
(k). This gives:

x(k) = x(0) + α(1)p(1) + α(2)p(2) + · · ·+ α(k−1)p(k−1) = x(0) + δ (78)

Basically, we are looking for a correction vector δ which is the linear combination of the set of
vectors p(1),p(2), . . . ,p(k−1). Since these vectors are all conjugate between each other, they form
a basis for a subspace of dimension equal to k − 1. One could think that as k gets to n − 1, the
constructed basis can be used to describe any vector of dimension n, including the solution vector.
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This is not completely true, as generic n-dimensional vectors could lie in different spaces. In other
words, constructing such a basis is not in general an easy task. For SPD coefficient matrix A we can
prove that CG can find the exact solution in such space by minimsing the error in the A-induced norm.
In other words, the CG method converge in exactly n iterations, other than numerical errors. For this
reason sometimes the CG method is considered a direct method. For a more in-depth derivation of
the conjugate gradient method and mathematical proofs of the concepts presented, see for instance
(Gutknecht, 2007).

In practice, dynamic schemes are always used with proper preconditioners. In other words, we can
interpret dynamic schemes as accelerators for the previously introduced stationary schemes. Notice
that one can decide to solve the linear system only by means of an accelerator (i.e. without any
preconditioner, that means setting M = I) or only by means of a stationary iterative scheme (i.e.
without any accelerator, that means with α(k) = 1 and update direction given by r(k)). Even though
when such techniques are combined together give definitely better performances. Another possible
choice is the ’order’ of the preconditioner-accelerator. In this sense we distinguish preconditioned
accelerators and outer-inner dynamic schemes. In other words, we can either left-precondition the
linear system through:

M−1Ax = M−1b (79)

And apply an accelerator, getting an update scheme as:

x(k+1) = x(k) + α(k)M−1p(k) (80)

Or use the right-preconditioning to obtain an outer-inner scheme that employ the preconditioner
as an inner iteration inside the accelerator. In this configuration some notable mentions go to the
outer-inner Krylov solvers and flexible preconditioned Krylov methods. Outer-inner Krylov solvers
employ a double Krylov Subspace procedure, one for the outer iteration and one as a preconditioner,
which means to solve the preconditioned linear system. On the other hand, flexible preconditioning
allow to change the preconditioner inside Krylov iterations.

Krylov Subspace Projection Methods

In this section we further generalize the idea of dynamic iterative methods by introducing Krylov
methods. Preconditioned Krylov methods are among the more effective iterative techniques to solve
big sparse linear systems. The CG method is for instance part of this large classes of iterative methods.
Despite CG is considered to be the best method to solve symmetric positive-definite (SPD) problems,
Krylov methods offer efficient approaches also for non-SPD problems. In our context, the Jacobian
of the power flow problem is not symmetric17. For this reason, more ’general’ Krylov methods shall
be employed, as the Generalized Minimal REsidual (GMREs) method(Saad and Schultz, 1986). In
this section we want to introduce the Krylov methods and present some of their key features.

A Krylov Projection Subspace can be defined in many ways. A common definition for Krylov
Subspace is the following. Consider a generic n × n matrix A and a n × 1 vector c, we define the
Krylov Subspace K generated by the matrix-vector multiplications of (A, c) as any space constructed
as follows:

Kv(A, c) , {c, Ac, . . . , Av−1c} (81)

In general, the sequence c, Ac, . . . , Av−1c does not yield a linear independent sequence of vectors,
meaning that dim{Kv} ≤ v. How such a sequence can be used to solve a linear system? Say that

17This can be easily noticed by looking at the block structure of the Jacobian Eq.(32). Derivatives in block 1,2 and
block 2,1 are different, hence the matrix is generally not symmetric.
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A is the space spanned by the columns of A and c is a generic n × 1 vector. As we consider only
well-posed problems having det(A) 6= 0, the dimension of A is exactly n. The idea behind Krylov
methods is to extract a subspace K ⊆ A having a dimension v << n so that we can find inside it a
’sufficient good’ solution. More precisely we look for the approximate solution xv in the affine space
x0 +Kv(A, c) which has the form:

xv = x0 + δ = x0 + Vvyv (82)

If xv lies in the affine space, and the dimension v of Kv(A, c) is small, we can compute xv easily.
Notice that the correction vector δ (previously introduced in Eq.(78)) is expressed through the linear
combination Vv, yv, which indicate the matrix for the basis of the Krylov Subspace and a proper
vector of coefficients respectively. In general Krylov methods differ among themselves in the manner
the basis are built and the weights yv are computed.

The GMREs (Generalized Minimal REsidual) method solve a linear system Ax = b by setting up
the following minimisation problem:

min
y∈K(A,b)

‖b−Ax‖ (83)

In other words, GMREs looks for the vector yv that, among all the vectors in K(A,b), gives back
the minimal residual vector. In order to solve the minimisation problem we need a tailored basis for
the Krylov Subspace. This could be done by constructing the sequence:

Kv(A, r(0)) = {r(0), Ar(0), . . . , Av−1r(0)} (84)

As mentioned this is actually not a basis, as such vectors are linear dependent. In principle, we
could stop the matrix-vector multiplications as v gives the first dependent vector. In practice this is
not done as the sequence is poorly linear independent, leading to an ill-conditioned basis that is not
suitable for use. For this reason some ortho-normalisation process must be employed. The GMREs
makes use of a modified version of the Gram-Schmidt ortho-normalisation (i.e. the Arnoldi process)
in order to obtain the Krylov basis. The GMREs algorithm can be outlined in three conceptual steps:

1. Ortho-normalise the sequence {r(0), Ar(0), . . . , Av−1r(0)} to create the Krylov basis Vv;

2. Solve the residual minimisation problem to compute yv;

3. Update the solution with Eq.(82).

The computational cost of the first step scales up much faster than linearly as the dimension of
the Krylov Subspace increases. For this reason a fourth step is usually added to the procedure above.
This sets the possibility to restart the procedure after some dimension v of the subspace is reached.
This modification consist in the Restarted-GMREs (R-GMREs) version of the algorithm. The R-
GMREs starts back the procedure in the case the solution obtained does not fulfil the estabklished
tolerance. If such situation occurs, R-GMREs takes as the first iterate the solution obtained by the
previous subspace, setting then x(0) = x(v).

2.4.4 Computational Complexity of Direct and Iterative Methods

Computational complexity can be retained as the amount of computational resources needed to
solve a computational problem. An important step when solving scientific computing problems is to
assess the computational complexity of the problem in exam. In turn, algorithms are chosen in order
to decrease the amount of resources required to solve the problem. Usually, two main resources are
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considered: the computational space i.e. memory requirements and computational time i.e. the time
required to solve a given computational problem.

In this section we want to give a short insight on the computational complexity of direct and
iterative methods as a function of the size and scale of the problem. This will help us later in
identifying the main ’computational features’ of the power flow problem. We find the FLOPs (floating
point operations) required for a direct and an iterative solver for a dense18 linear system as function
of the dimension n of the linear system and draw some straight conclusion.

Let’s start considering the LU method. The LU method looks for a factorisation of A in a lower
triangular matrix L and an upper triangular matrix U , so that a linear system Ax = b is turned into
the two equivalent linear systems:

Ly = b, Ux = y (85)

Once L and U are found, the solution of the two systems above can be easily found. The triangular
structures of L and U gives a series of equations totally decoupled. For instance, consider the system
Ly = b. The first equation contains only the first unknown, the second equation contains only the
first and second unknown, hence is only function of the first, the third is only function of the first
twos, etc. In other words, we can solve the two triangular linear systems above through backward (U)
and forward (L) substitution. From the computational point of view this costs only n2−n operations.
The expensive stage is the factorisation process. Let’s consider the Gaussian elimination algorithm
as the process to find the matrices L and U . This algorithm costs roughly 2/3n3. A proof for this
can be found for instance in (Farebrother, 1988). As n gets sufficiently large, the computational
complexity of a direct method for dense matrices can be approximated to O(n3).

An iterative method updates the solution through the standard linear fixed point iteration scheme
(Eq.(39)). This costs at each iteration k at least one MVM: which means n ∗ (n + (n − 1)) =
2n2 − n operations plus, at least, 2n summation operations to update the solution and residual with
f. Basically this means that an iterative method cost is in the order of O(kn2). This allows us to
draw some simple conclusions. Suppose the iterative method converges (i.e. iterations usually are
< 100000), problems that scale up over 105 unknowns give a computational advantage to iterative
methods compared to direct methods. In practice, iterative methods are not implemented according
to Eq.(39), though the computational expenditure can still be approximated to the matrix-vector
multiplication only.

Assessing in detail the actual computational complexity of an algorithm is not an easy task and
it is a study subject by itself, as many other factors come into play (e.g. matrix-vector specific
implementations, sparsity, parallelism, ecc.). In the next sections to provide a more comprehensive
view to the reader we discuss (qualitatively) the role of sparsity and parallelism to assess computational
complexity.

Sparsity

Let us now introduce the concept of sparsity19. When dealing with sparse matrices the compu-
tational complexity becomes of the order of O(nz), where nz is the number of non-zero entries of
the coefficient matrix. This represents a further advantage for iterative methods for at least two
reasons. First, direct methods use factorisation processes that lead the initial sparse matrix to be
filled-in. The higher the number of non zero-entries of LU matrices, the greater the computational
complexity, meaning that more memory storage is required as well as more operations to solve the
linear system. The second reason being that in general it is more difficult to develop factorisation

18The matrix A which describes the system has only non-zero entries.
19There is not strict definition of sparsity of a matrix. Simply speaking, a sparse matrix is a matrix whose entries

are mostly zero elements.
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algorithms that take fully advantage of zero entries. In practice, sparsity is one of the reason why
iterative methods perform better for solving large sparse linear systems.

Parallelism

When dealing with complex scientific problems, solving algorithms are designed to efficiently run
in parallel on dedicated computing platforms (e.g. clusters). The benefits from parallelising the source
code in which the algorithm are written are usually measured by comparing the simulation sequential
time with the simulation parallel time. To this aim the speed-up factor S is defined as:

S = sequential computational time [s]
parallel computational time[s] (86)

The program has linear speed-up if S = p where p is the number of cores used in the executing
program. Efficiency is said to be the ratio between speed-up and the number of cores used in the
computation E = S/p. In practice, E is always less than one, mainly for two reasons. First, problems
cannot be completely broken down into sub-tasks, that is, cannot be fully parallelised. For instance,
from Amdhal’s law one can see that even in the favourable case of a 90% of code parallelisable the
maximum theoretical speed-up can be equal to 10. The second reason is that processors need to
communicate with each other when sub-tasks are coupled. Let us consider a simple example to clarify
this last point.

Example 1. Let us consider the dot-product operation of two Rn vectors v and w. The result λ of
the dot-product is a scalar given by the following operation:

λ = 〈v,w〉2 = vTw =
n∑
i=1

viwi = v1w1 + v2w2 + · · ·+ vnwn

How can we parallelise such an operation? Let consider two processors p1 and p2. We can split
equally the number of n products and the n − 1 summations over the two processors. This means
p1 does:

λ1 = v1w1 + v2w2 + · · ·+ vmwm

And p2 does:
λ2 = vm+1wm+1 + vm+2wm+2 + · · ·+ vnwn

In order to compute λ we need to add up the two contributions e.g. send λ2 from p2 and make
p1 ready to receive it. This means we need a global communication operation. The send and
receive operations are message passing primitives and are at the basis of inter-process communica-
tion protocols (IPCs).

Eventually, one processor computes:

λ = λ1 + λ2

This simple example shows us two things:

1. We need to spend some time passing information among processes;

2. We cannot always exploit the whole computational power of a parallel computing platform,
since some operations cannot be further sub-divided.
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These two factors limit the speed-up factor to be lower than the actual available computational
power (in the example < 2). In other words, parallel computing is based on a ’divide-and-conquer’
principle, which may be effective or not depending on the algorithm adopted, the message passing
protocols, the parallel architecture, software and hardware, etc. In this context, it is often said that
some algorithms are more ’parallelisable’ than others, meaning that they contain more operators that
are prompt to the divide-and-conquer principle. If we take n very large, the amount of operations
done locally on a processor exceed the number of operations done together (i.e. the single final
addition) of a great extent. In other words, the dot-product operation (i.e. consequently, matrix-
vector operations) is well-suited to parallelisation.

Distributed vs Parallel Computing Architectures

From an hardware point of view, the concepts previously introduced may have different implications
depending on the type of architecture that is used in the parallel processing. Generally it can be of
distributed (or loosely-coupled systems) or parallel (tightly-coupled systems) type. An example of
tightly-coupled systems is the high performance computing platforms that are usually found in research
institutions (molecular, aerospace, hydraulic to cite a few), but investments on this field are also
growing in industry contexts (e.g. Oil & Gas companies, Investment Banks or High-Tech companies).
On the other hand, loosely coupled systems are for instance wide area networks (WANs), such as
4G or the Internet itself. These systems are often highly geographically dislocated and may need
to communicate through huge distances. Conceptually, a distributed system architecture is typically
characterised by non-shared memory units, that is, each single system owns separately its processing
capacity and memory unit. Parallel computers, in contrast, employ high-speed interconnections
among CPUs and shared memory systems, in order to provide fast IPC communications and overall
increasing the computational efficiency. Notice that the distributed and parallel nomenclature is not
that strict since mixed solutions exist as well. Fig. 5 depicts the physical difference between typical
parallel and distributed architectures.

Figure 5: Parallel architecture (a) and Distributed architecture (b) (Kshemkalyani and Sing-
hal, 2008).

It is clear that, since the two paradigms differ for some key aspects, algorithms shall be differently
designed, taking into account of the architecture on which they will be running. In parallel computing
context, the computational time is higher than the communication time, so it makes sense to design
algorithms that are as much as possible computationally efficient, while ensuring that message passing
operations among processors do not slow down overall the solution process. Rather, in distributed
computing context, as the interconnection among processes may take place through many layers and
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it is usually remote, the communication time overcome the computational time. In this regard, it takes
only a little sense to optimise the model from a computational point of view in the case it requires
many messages to be exchanged among the nodes. The need to carry out distributed computations
usually may regard different reasons: data may be dislocated (e.g. local measurements), there might
be the need to keep separated memory access from different nodes involved in the computation (e.g.
peer-to-peer systems) or simply there might be the possibility to exploit distributed resources more
effectively.

2.5 Iterative Methods, Distributed Power Flow& Current Prac-
tices

As anticipated, this work employs an iterative linear solver for the solution of the sequence of
Jacobian linear systems obtained in Section 2.3. Rather than using an iterative method for solving
the power flow equations faster, we exploit the Krylov-Schwarz approach to carry out a distributed
computation of power flow equations. A remote computation that only involves a minimal amount
of data-sharing have the double advantage to not compromise the overall simulation time while
effectively keep confidentiality of input data for parties involved in the computation.

Thus far, we introduced concepts on linear solvers in order to provide a comprehensive overview
of the topic. Here, the goal is somewhat to put together all the concepts introduced in the previous
sections in the specific context of power flow. We will start from a brief comparison of direct methods
and iterative methods and review in general the potentialities of iterative methods in such a context.

2.5.1 Current Practices and Iterative Methods in Power Flow

From a scientific point of view, power flow problems cannot presently be considered as ’hardly
complex’ problems to solve. For instance, non-linear systems of equations arising from the discretisa-
tion of Partial Differential Equations (PDE) in Computational Fluid Dynamics (CFD) (but in many
other fields as well), are often much bigger in terms of size and present more difficulties to handle
the solution process when compared with power flow problems. In contexts of this kind, where the
size of the problem may even reach n = 109, direct solvers are impractical as the computational cost
of them (O(n3)) can’t be handled by supercomputing platforms. In power flow context this has not
been historically the case, mainly for two reasons. First, TSOs solve currently power flow problems
with 103 unknowns, which can be still efficiently handled by direct methods. The other reason being
that the robustness and the predictable behaviour of direct solvers make them better candidates for
commercial software packages. However, there are at least two important reasons at present that
may see iterative solvers to overcome the use of direct methods in the future at least for some specific
purposes. As the integration of DERs increases in power grids, the need of grid operators to perform
more frequent, more detailed and closer to real-time power system analysis increases at the same pace.
Today, the close-to-real-time power flow simulations are carried out through the Fast Decoupled Load
Flow (FDLF) approach, that allows to simplify the power flow problem by losing a little of precision
on the final solution. Despite its speed performances, a drawback of the FDLF approach is the lack of
robustness, some failure event when the Jacobian is ill-conditioned. Iterative methods offer the possi-
bility to speed-up the solution of problems that are particularly computational demanding and prone
to parallelisation (e.g. N − k contingency analysis). Furthermore, as present grids are being increas-
ingly interconnected at both national and distribution level, the problem size grows; market operations
are more integrated with grid operations, more computational expensive models could be required
(e.g. nodal pricing implemented as an optimal power flow problem in AC); sector coupling (or even
the transmission-distribution coupling itself) may require to carry out coordinated and heterogeneous
modelling among different grids (e.g. gas and electricity networks). These factors may contribute
essentially to increase the computational complexity of the power flow problem, while also requiring
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solvers with different features, able to handle the heterogeneous modelling, able to efficiently run in
parallel, etc. This changing paradigm motivates further research in iterative methods for the power
system context. Relevant insights on performance comparison between iterative methods and direct
methods for solving power flow equations are provided in (Idema, 2012), where direct methods and
mixed direct-iterative approaches are tested and compared in terms of computational time. (Idema,
2012) shows how direct methods for power flow equations stall when the number of buses go over
4 ∗ 105, while proving the robustness of Newton-Krylov methods for different sets of generation/load
profiles. 20 Among the multitude of applications that iterative solvers may have in power system to
decrease computational time, a rather different approach is used here. The next sections detail the
main idea.

2.5.2 Distributed Approaches

In the past, energy utilities were organized as vertical integrated companies. No competitive
auctions were in place and there was no asymmetry of information among different stages of the
supply chain, since the complete process was managed by a single company. For this reason, the
main concern of power flow solver developers in these years was to provide grid operators with
fast and above all reliable softwares, mainly based on direct solvers as discussed in the previous
sections. Over the last years, the economic and operational framework of the electricity sector
has undergone a complete restructuring. Transmission and distribution networks at European level
are managed by different entities, which often share boundaries and inter-connect through lines.
However, power system analysis tools have not changed: power grids planning and scheduling is
still done by solving power flow and optimal power flow simulations at the transmission level only.
In this new configuration of the power system, where the network management is being more and
more distributed and unbundled, we foresee the need of new generation power flow solvers. In the
emerging scenario, distributed solvers shall respect at least three main requirements: They need to
be fast, reliable and information/data protective. In literature some distributed solvers for power
flow equations have been already developed over the years, mainly with reference to the DC OPF
problem (e.g. (Mohammadi et al., 2014), (Kargarian et al., 2016)) which represents a considerable
simplification of the AC version. It is worth mentioning that nomenclature can sometimes be a little
misleading when referring to distributed solvers. For instance, (Kargarian et al., 2016) distinguishes
between distributed and delocalised approaches. In distributed approaches there is the need of a
coordinating entity (i.e. master) that sets the list of operations to execute for coordinated entities
(in a master/slave fashion). This does not imply the definition of a global problem at the master
machine; information may be in fact still inputed from different locations. On the contrary, delocalised
approaches provide an autonomous framework for entities, where each one can collaborate at same
level. From a computer science perspective, this last case coincides with the peer-to-peer framework.

Both approaches (distributed/delocalised) share a similar working methodology composed by two
main parts. First, it is needed to re-formulate the global problem into an equivalent21 set of sub-
problems. Then, a tailored distributed/delocalised algorithm must be chosen to solve the set of
sub-problems in an organized way. The issue of information protection has not been deserved much
attention in the literature so far. This is mainly due to the fact that traditional application scenarios
do not face the requirements that are arising in the power sector between different utilities. In this
work we propose a methodology that is highly scalable and only involves a small amount of data
exchange between the parties involved in the power flow computation. The next sections explain our
approach in detail.

20Note that the simulations carried out in the mentioned work were performed on a single-core platform (i.e. not in
parallel).

21The re-formulation must change only in its form. Equivalent means the mathematical problem is not changed and
hence must deliver the same solution.
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2.5.3 Krylov-Schwarz Methods & Distributed Computation of Power
Flow

In this work we propose the use of iterative preconditioned solvers, that have mainly been used
in parallel computing platforms and in contexts where the computational complexity is the main
factor of attention. We use here such methods in a different perspective. We propose the use of
block preconditioned Krylov methods to solve the power flow equations in a distributed computing
environment, focusing mainly on the limitation of information sharing (i.e. through message passing)
rather than on actual computational performances.

As mentioned in 2.4.4, distributed computing platforms introduce slow-downs due to inter-process
communications. As a matter of fact, we should not expect better computational performances
compared to local (potentially parallel) simulations. The goal is to validate a methodology that allows
to exchange a limited amount of information on input data (generation and load profiles, topology)
as well as on the solution (state variables), by renouncing only to a bit of speed performance.

To achieve this goal, the solver used requires a precise set of features:

• It must be prone to parallelism;

• It shall solve the linear problem in a reasonable number of iterations;

• It shall minimise the number of collective operations, hence of communications;

• It shall be scalable, in order to deal with grid-couplings that may lead to a very large number
of nodes;

• It shall be robust and provide convergence on solution at interface nodes;

Note that keeping the overall number of linear iterations low is an important factor since this
slows down the process. A good candidate to meet the criteria listed above is a solver which is based
on the Block Preconditioned Krylov method, in particular on the Krylov-Schwarz method.

Block Preconditioners

Block preconditioners are often used in order to better resemble the properties of the coefficient
matrix, in practice M ≈ A. As mentioned over sections in 2.4, more complex preconditioners make
more computationally expensive the solution of the preconditioned linear system over each iteration
k while leading to overall less iterations k. Block preconditioners represent a class of preconditioners
quite wide and realize a good compromise between expenditure per iteration and iteration number
reduction. Let us consider a simple example to deepen the idea behind this concept.

Jacobi preconditioning is based on selecting M = D where D = diag(A) is a matrix formed
by only the diagonal entries of A. As for any preconditioned method, we need to solve the easier
preconditioned linear system:

Dz = r (87)

That is a set of equations as: 
a11z1 = r1
a22z2 = r2
. . .
annzn = rn

(88)
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In the regular Jacobi scheme thus, at each step k each unknown xi is updated regardless of the
other. This intuitively works very good on parallel machines. We can divide the set of equations
(we call this set S) in equal (or almost equal) SP subsets (S =

⋃
SP ), assign them to P nodes

of a parallel machine and solve the problem. Eventually, we can gather the results to build the
solution vector x. As the computation of each xi is completely decoupled from the others, the Jacobi
approach requires many iterations to converge. The Jacobi scheme has been one of the first iterative
methods proposed in literature for solution of linear systems and it is thus not really suitable for
real applications. An improvement of the Jacobi scheme is based on introducing more dependencies
among the xi variables at each step k, in order to have more accurate solutions. The Gauss-Seidel
approach uses this principle by setting M = L + D, where L is the strict lower triangular matrix of
A. This means we solve, at each step k, a set of equations in the preconditioned residuals zi as22:

a11z1 = r1
a11z1 + a22z2 = r2
. . .
a11z1 + a22z2 + · · ·+ annzn = rn

(89)

These equations can be solved in one step by forward substitution. It is possible to show that
Gauss-Seidel converges faster than Jacobi by analysis on the spectral radius of its iteration matrix
B. Although Gauss-Seidel improves the convergence properties of the succession x(k), it complicates
its parallel implementation. Let us suppose we use the same approach as before. We call again the
set of equations to solve S and divide it into SP subsets (S =

⋃
SP ). After that we assign them to

P nodes. The generic node p ∈ {1, . . . , P} will need to wait until all the 1, . . . , P − 1 other nodes
have completed the solution of the assigned subset Sp of equations, since the equations in Sp are all
dependent on unknowns contained in S1,S2, . . . ,SP−1.

Since the parallelism is a fundamental requirement in order not to share information and keep
reasonable time of computation, Gauss-Seidel or similar approaches are not really suited for the work at
issue. At the same time we need more effective methods than classical Jacobi scheme, able to deal with
big linear systems without stalling in a huge number of iterations. In this sense, block preconditioners
come in handy. For instance, let consider the extension of the Jacobi preconditioner to its block-
form. Instead of taking only the diagonal entries of A, the block-Jacobi method takes diagonal blocks
extracted out of A. In other way around we construct a preconditionerM = diag(A11, A22, . . . , APP )
made up of subsequent diagonal blocks (we call them App) from A of potential difference size. We
can either have as many blocks as the processors, or give out multiple blocks to single nodes of
the parallel system. Here we consider for sake of simplicity that each block is ideally assigned to a
processor p. The set of preconditioned equations to solve are this time:

A11z1 = r1
A22z2 = r2
. . .
APP zP = rP

(90)

With P the number of total blocks and number of total processors available. Each equation above
is actually a small linear system to solve, which is as much small as the selected number of total
blocks into which we divide A. Notice that as the dimension of blocks P gets to n, block-Jacobi turns
back to the regular Jacobi scheme, as the dimension of the block would be exactly of one diagonal
entry. On the other hand, as P → 1, we are preconditioning the linear system with A itself, hence
the iterative procedure is actually a direct method ending up in exactly one step.

22Here, we are simply assuming A is dense.
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As for the regular Jacobi scheme, block Jacobi preconditioning works really good in parallel. In
both cases we can solve the set of linear systems associated with the generic node P independently
(i.e. locally). As the number of equations in a generic block q ∈ {1, . . . , Q} is usually much lower
than that of A, we can nicely use factorisation techniques (e.g. LU) to solve the blocks, according
to the simple computational complexity analysis presented in Section 2.4.4.

A formal mathematical description of block preconditioners can be derived in many ways. One
way is to do it in terms of projectors23. Here we limit to introduce two operators WT

p (restriction
operator) and Vu (prolongation operator), which applied together allow to define:

Apu = WT
p AVu (91)

Where Apu is a rectangular matrix of dimension p× u, representing the block pu extracted from
A. Dimensionally speaking WT is a q × n matrix and V is a n× u matrix. Note that WT

p , Vu only
get the components from A without applying any transformation, hence those are matrices made up
of only zeros and ones (projectors). In the case of considering the blocks squared, W = V and the
equation Eq.(91) becomes:

App = V Tp AVp (92)

Each block is then allocated along the main diagonal of M , overlapping the portion of blocks
corresponding to variables in common. This brings to a situation as the one depicted in Fig. 6.

Figure 6: Overlapping Block-Jacobi Preconditioner.

At this stage we have a block diagonal preconditioner M made up of P blocks. A prototype
algorithm for block Jacobi could be the one described in Algorithm 2 below.

Notice that the preconditioning matrix (of dimension n× n) in this case would be:

M =
P∑
p=1

WT
p AppVp =

P∑
p=1

WT
p (VpAWT

p )Vp (93)

23See Chapter 5 of (Saad, 2003) for the whole procedure.
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Algorithm 2 Prototype algorithm for block Jacobi solver.
1: Begin
2: initialize x0, r0 = b−Ax0
3: for k = 0, 1, . . . , until convergence do
4: set Aqq = WT

q AVq
5: solve Aqqz(k) = WT

q r(k)

6: update the solution x(k+1) = x(k) + Vqz(k)

7: update the residual r(k+1) = r−Az(k)

8: compute ‖r‖ and check convergence
9: end for
10: End

In practice, this matrix is almost never built up as it would add unnecessarily further cost, both in
terms of memory storage and computational time. In our application this is even more important as
building M implies to collect all the information on the coefficients of matrix A (i.e. the topology,
as it is embedded in the sparsity pattern of the Jacobian).

The Algorithm 2 actually give us an insight on the needed communications in a parallel environ-
ment. The computation of the residual norm is a required step to check convergence for any iterative
algorithm. This requires at least a global communication over processes. Remember the norm-2 (i.e.
Euclidean norm) of a generic vector w is defined as:

‖w‖ =
√
w2

1 + w2
2 + . . . w2

n (94)

So that the square root operation must be done eventually on one processor, which is usually
the master. A further comment on parallel communications can be done regarding matrices A and
M . One may think that we need to store the matrix A explicitly in order to divide the problem into
blocks. Actually, as it will be explained through Section 4, by using a parallel assembling procedure
we do not need to build explicitly neither A nor M . In other words, the input data for the power
flow problem (i.e. topologies, generation and load profiles) remain local on the separated machines.
Assuming the simple case with only two machines (or nodes, in a parallel nomenclature), hence we
would have two blocks. This can then be extended to a generic number of machines. In practice,
each block acts as a local preconditioner.

From a power system perspective, using such an approach may result counter-intuitive. One may
ask: if we solve the two problems separately, how can we manage to obtain convergence on interface
variables? Solving the linear systems separately does not mean we are not taking into account what
happens on neighbouring domains. This is the power of iterative methods. At each linear sweep
we evaluate a new Jacobian, which is in turn function of the new solution vector. Notice that even
if we introduce an accelerator in Algorithm 2, the procedure may still converge slowly, requiring a
remarkable amount of linear iterations to converge. In the next subsection we introduce the concept
of blocks overlap. The idea of overlapping is to share only a small amount of interfacing variables,
gaining on the other hand a considerable speed-up. More strictly, this produces an exponential
speed-up in the solution process, as for instance shown in (Gander, 1996). From the point of view
of shared information, this amounts to share only information about topology (connectivity and
grid parameters), demand and generation profiles about such interfacing nodes. Given the current
resistence to share data for security or strategic reasons, the promise to share only a little amount of
information at the interface between two (or more) utilities gives indeed more chances to our method
to be used from distributed power flow problems.
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Overlapping Block Preconditioners

Another improvement to block preconditioning techniques can be done by allowing the blocks
to overlap. By including overlap (thus more dependences) we can improve the convergence of the
algorithm. In other words, the idea of overlap consists in ’sharing’ some variables (and the related
constraining equations i.e. the power balances at the related nodes) among processes involved in the
computation, solve these equations and eventually weight the solution on the shared variables. The
procedure is then restarted until convergence. The Fig. 7 shows the same (generic) coefficient matrix
A, in the two cases: preconditioned by block Jacobi and overlapping block Jacobi. The preconditioner
M is constructed in the two cases by extracting only elements inside the red blocks.

(a) Block Jacobi. (b) Overlapping block Jacobi.
Figure 7: Block Jacobi preconditioner and overlapping block Jacobi. Only entries inside the
red boxes take up into the preconditioning matrix M .

Note that M 6= A, which means when we solve the preconditioned system we do not get the
exact solution and hence it motivates the need to iterate the procedure. In the overlapping case
we include more dependencies among variables, making M resembling more A. In this case the
overlapping preconditioner involves common solution on the preconditioned residuals z3, z4 (hence
x3, x4). Let us clarify this aspect. Let us write explicitly the equations of the above linear system
and the preconditioned equations with reference to Fig. 7:

a)



a11x1 + a12x1 + a13x3 + a14x4 = b1

a22x2 = b2

a31x1 + a32x2 + a33x3 + a34x4 = b3


a11z1 + a12z2 + a13z3 = r1

a22z2 = r2

a31z1 + a22z2 + a33z3 = r3

 = Mupperblock

a42a2 + a43x3 + a44x4 + a45x5 = b4

a52x2 + a53x3 + a54x4 + a55x5 = b5

{
a44z4 + a45z5 = r4

a52z2 + a53z3 + a54z4 + a55z5 = r5

}
= Mbottomblock

(95)
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b)



a11x1 + a12x1 + a13x3 + a14x4 = b1

a22x2 = b2

a31x1 + a32x2 + a33x3 + a34x4 = b3


a11z1 + a12z2 + a13z3 + a14z4 = r1

a22z2 = r2

a31z1 + a32z2 + a33z3 + a34z4 = r3

a42z2 + a43z3 + a44z4 = r4

 = Mupperblock

a42a2 + a43x3 + a44x4 + a45x5 = b4

a52x2 + a53x3 + a54x4 + a55x5 = b5


a33z3 + a34z4 = r3

a43z3 + a44z4 + a45z5 = r4

a53z3 + z54z4 + a55z5 = r5

 = Mbottomblock

(96)
In case a) the equations of upper and bottom block do not share any unknowns. They can be solved

regardless of each other. In a parallel environment, usually one machine (i.e. the master machine)
assign sub-problems to other processors (i.e. the slaves). For instance, in our case we can think of a
master solving the upper block and distribute the bottom block to a second processor. Hence, each
processor solves locally the owned blocks, in the a) case without exchanging any information (at least
during the solution process of blocks). On the other hand, to complete the linear sweep we need
to update the residual and solution vectors. If we want to avoid inter-communication processes we
shall have such coefficients stored locally from the beginning. Using a parallel input can avoid the
exchange of this information as well.

In case b) overlap is introduced. We introduce one more equation per block to solve. This means,
the upper block now solves with respect z4 as well, whereas the bottom block also gets the value of
z3. As the system of equations differ from upper block to bottom block, we expect different values
on z3, z4 out of each block. How do we update the values of z3, z4 at the end of the linear iteration?
A common choice is to weight the results got out of each block, that means according to:

z3 = ξ3z3,ub + (1− ξ3)z3,bb (97)
z4 = ξ4z4,ub + (1− ξ4)z4,bb

Where ξ is the weight parameter and the subscripts ub,bb stand for upper block and bottom
block respectively. Let us now analyze what changes in terms of parallel communications. Let us
assume a parallel input of data is in place, so that row 1, 2, 3 and 4, 5 of the coefficient matrix are
respectively local on two different processors, which we call proc1 and proc2 respectively. In order
to solve the two blocks on each processor, we need to collect the coefficients a43, a44 from proc2
to proc1, and a33, a34 from proc1 to proc2. Once the blocks are solved, the average on interfacing
variables is carried out according to Eq.(97). This can be done either on proc1 or proc2. z3, z4 are
then distributed back to the other processor so that the local solution and residual vectors can be
updated. A last step that involve parallel communication is that of residual norm check, similarly to
what seen in Example 124.

The brief parallel communication analysis provided here shows how is possible to solve a linear
system by means of block-preconditioners and by only exchanging a limited amount of information
(i.e. 1- Coefficients relative to overlapping variables; 2- Solution on interfacing variables; 3- Local
summation of residuals). In the next section we introduce domain decomposition methods. This will
allow to introduce a preconditioner (i.e. the Additive Schwarz Method (ASM)), an important piece
of our distributed approach for power flow equations.

24Remember that 〈·, ·〉 = ‖·‖2
2
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Domain Decomposition Methods

In science and engineering it is common to formulate modelling equations with reference to
a physical domain of interest. These domains are often continuum and involve complex differential
equations that cannot be analytically solved. For this reason, the common practice consists in defining
a mesh, that is a discrete domain where differential equations are in some sense averaged from point
to point. Many techniques exist in literature one of them being the finite difference approach. This
process allows to turn the origin differential problem into a set of algebraic equations that can be
solved more easily. Although discretisation techniques allow to greatly simplify the problem, typical
algebraic systems may include up to billions of unknowns, remaining a considerable challenging task
to be solved. Domain Decomposition Methods are used to further simplify the problem. The use of
DDM demonstrated very effectively in handling these kind of huge problems. The principle is that
of divide-and-conquer, which implies a domain division into pieces, with each sub-domain (set of
equations) solved separately. This technique is iterated until convergence at the sub-domain interface
variables is obtained. In practice, DDMs are used to build preconditioners that can effectively decouple
problems and help in the solution of complex problems.

It is worth to point out that domain decomposition process can follow different criteria. We
distinguish these criteria in terms of type of partitioning, that is according to one of the following
case:

• Vertex Partitioning - vertices are collected into sub-sets that in turn set the decomposition
into sub-domains;

• Branch Partitioning - branches are collected into sub-sets that in turn set the decomposition
into sub-domains;

• Elements Partitioning - elements are collected into sub-sets that in turn set the decomposition
into sub-domains;

For sake of clarity this is depicted in Fig. 8 as well.
In the power grids context the above approach is to some extent inverted. We already have

a discrete domain: the graph representing the topology of the grid, on which modelling equations
(i.e. power flow equations) are defined are valid bus by bus. In this context we can still use domain
decomposition techniques to further sub-divide the power grid graph into sub-problems. Notice that
usually DDMs are used to decrease the computational complexity of the problems. Again, here we
propose to use them specifically to implement a distributed approach. In the previous sections we
presented some preconditioning approaches that exploit a block partitioning of the coefficient matrix
A to break the starting linear system down into linear problems that are easier to solve and parallelise.
We then extended the approach introducing the possibility of inputing the data in parallel, hence to
avoid the complete share of input information. This has been presented without making any reference
to the graph domain. We will see a specific DDM approach, the ASM procedure, that allow to obtain
a preconditioner that is practically equivalent to the overlapping block Jacobi procedure seen through
Section 2.5.3. The only difference of ASM compared to Overlapping Block Jacobi is that we provide
a mathematical background to decompose the problem starting from the graph-domain and building
up the preconditioning matrix as a result.

Additive Schwarz Preconditioning

The first Schwarz method proposed an alternating technique to solve Boundary Value Problems
(BVPs). A BVP problem is a mathematical problem where the unknown quantities are expressed
in terms of their derivatives through a differential equation, with reference to a domain of interest.
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Figure 8: Type of partitionings. a) Vertex-based, b) Branch-based c) Element-based. (Saad,
2003)

Differently from algebraic problems, where it is sufficient to have same number of (independent)
equations and unknowns, to find a unique solution of a BVP some boundary conditions are needed as
well. Schwarz demonstrated how is possible to solve a BVP on a generic domain, by sub-dividing it
into sub-BVP and iterating over solutions obtained on such sub-domains. This technique is nowadays
often used as a preconditioner to decrease complexity of harsh computational problems. A nice wrap
up of Schwarz techniques can be found in (J. GANDER, 2008). Here we limit ourselves to a simple
example. Let us consider Fig. 9:

(a) Domain decomposition of a struc-
tured grid.

(b) Matrix representation and Schwarz
preconditioning.

Figure 9: Example of a domain decomposition and its respective matrix representation
((Saad, 2003)).

41



In Fig. 9a an example of vertex-partitioning of a structured25 domain into three sub-domains is
reported. In Fig. 9b the matrix (we call it A) representing the graph is depicted, where non-zero entries
are represented by the black dots and the dashed lines corresponding to sub-domain decomposition
give a 3 × 3 block structure. We can use this decomposition as a preconditioner by simply setting
M = blockdiag(A), where blockdiag is a proper operator extracting the red surrounded blocks. We
have already seen this operator in the context of Block Jacobi iteration, when we introduced the
prolongation and restriction operator and as a result we defined the preconditioner in Eq.(93). In
DDM we define these operators with reference to the domain decomposition and according to the
partition criteria chosen (Fig. 8). Let us present it more formally.

Let consider a DDM that divides the starting domain Ω into S subdomains Ωi with i = 1, . . . , S,
where the Ωi are not necessarily disjoint (i.e. they can overlap). Then, we define proper Index Sets (IS)
that gather indexes of either vertices, branches or elements (depending upon the partitioning criteria)
to define which objects belong to a sub-domain Ωi and which not. Using proper nomenclature, the
IS Si with reference to sub-domain Ωi can be defined as:

Si = {j1, j2, . . . , jni
} (98)

Where the jk (with k = 1, . . . , ni) are the indexes of elements belonging to subdomain Ωi. ISs
can be used to define the prolongation Ri and restriction RTi operators. Let RTi an operator from Ω
to Ωi defined as follows: if the generic vector v ∈ Ω, then the vector RTi v ∈ Ωi. Similarly we define
Ri: if the generic vector v ∈ Ωi, then the vector Riv ∈ Ω. We can use these operators to define the
matrix representing the sub-graph Ai relative to Ωi as follows:

Ai = RiAR
T
i (99)

And define the residual vector ri, the unknown vector xi and right-hand side bi relative to Ωi as:

ri = RTi r (100)
xi = RTi x
bi = RTi b

The problem at the generic sub-domain Ωi becomes:

Aixi = bi (101)

By solving these sub-problems we can get the solution vector components of x:

x =
s∑
i=1

Rixi =
s∑
i=1

RiA
−1
i bi =

s∑
i=1

RiA
−1
i RTb =

s∑
i=1

Ri(RiARTi )−1RTb (102)

As the sub-problems are decoupled (or a little coupled through overlapping variables) the Eq.(102)
does not deliver the exact solution. We can thus define a fixed-point linear iteration as:

x(k+1) = x(k) +
S∑
i=1

RTi A
−1
i Ri(b−Ax) (103)

25A structured domain (or grid) is a graph where the position of each element follows some regularity principle.
In other words we can find the position of a node (and its connectivities) by means of a mathematical expression.
In contrast, an unstructured grid is a graph where the position of a generic node must be given through a precise
connectivity relationship (e.g. a graph incidence matrix). Electrical grids, which are represented through graphs, are
typically unstructured grids.
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Which compared Eq.(103) with Eq.(70) gives the expression for the ASM preconditioner:

M−1
ASM =

S∑
i=1

RTi A
−1
i Ri (104)

As for the Block-Jacobi case, one do not need to explicitly build up the preconditioner matrix.
It is possible to set up a procedure to input the sub-domains on each node of a parallel machine
and define locally the sub-problems. The ASM procedure allows to keep domains decoupled and
to build up local problems based on the domain owned. In case of overlapping variables, message
passing are needed to add up spaces to b and as many rows as is the number of overlapping variables.
Another message passing operation will be needed to check the global norm of the residual vector.
The ASM procedure is simple and provides a basis for minimum exchange of communications among
nodes (sub-domains). In practice, accelerators are needed to enlarge the area of convergence and to
obtain reasonable time of computation. In the next section we provide an example of the distributed
methodology applied to a simple case.

2.5.4 Distributed Power Flow

In this section we provide an in-dept explanation, with a concrete example, of the different steps of
the methodology to be followed in order to build a distributed power flow. Wet consider an example
of partitioning applied to a simple grid case: case13 (see Fig. 10).

Figure 10: Topology of case13, obtained by merging case9.m and case5.m from Matpower
libraries (Zimmerman and Murillo-Sanchez, 2016).

In the classic application of a DDM the domain is divided into sub-domains that are possibly
assigned to different processors of a parallel machine. For instance, one can apply the branch-
partitioning depicted in Fig. 10 with reference to the case13, and divide it into case5 and case9.
The case5 and case9 are then assigned to different processors according to the partitioning criteria
chosen. As the aim is to protect grid operators from information sharing about their input data, we
shall adopt a different strategy here. We consider again only two machines. The parallel solution of
power flow problem follows an approach that can be conceptually divided in two stages:
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1. Set-up Phase: In this phase the data are locally read and stored in each of the two machines.
The network layout is set up and the two networks are connected through a shared bus (or
multiple) and additional lines are also considered.

2. Solving Phase: In this phase the Power Flow problem is defined and a suited solver is called
up.

In this section we focus on the solving phase. The Set-up Phase will be described in detail in
the chapter (Section 4) after that the structure and functioning of PETSc has been provided. Before
entering into that, let us recall some key concepts from the previous sections that are important for
this phase:

• The power flow problem is a non-linear problem, hence we need a solver that can deal effectively
with non-linearity;

• Proper use of preconditioning eases the solution of linear systems and attenuates numerical
errors due to floating-point operations;

• Proper use of accelerators eases the solution of linear systems by allowing convergence in few
iterations;

• If the combined use of preconditioner-accelerator involves only operations that can be carried
out in parallel (MVM, norm computation), we can compute the majority of them locally and
exchange only few information (minimising the inter-process communication);

In (Rinaldo et al., 2018) we show that the Newton-Krylov-Schwarz (NKS) approach is a good
candidate to meet the conditions mention above. The NKS uses a Newton approach to initiate an
iterative procedure that gives out a succession of linear systems to solve in the Jacobian coefficient
matrix, as shown in Section 2.3. Then, each linear system is passed to an inner linear iterative
procedure, the Krylov-Schwarz. Krylov works as an accelerator for the iterative procedure, according
to the concepts presented in Section 2.4, whereas Schwarz carries out the blocks and acts as a
preconditioner. When run in parallel on two machines, assuming parallel input of data, the solving
phase with reference to Fig. 10, proceeds by initiating a non-linear procedure (Newton with Line-
Search) and subsequently an inner linear procedure (Krylov-Schwarz) on each machine with reference
to the owned problem (case9 and case5 respectively in this example). Depending on whether the
left or right preconditioning formulation is used, the preconditioner is applied outside or inside the
accelerator procedure, respectively. For instance, let us suppose that we choose as Krylov solver the
right preconditioned GMREs (see Algorithm 4) by Schwarz and overlap=1 (i.e. we share only one
bus between the two parties, bus 9 in this case). The GMREs algorithm starts by building a Krylov
Subspace into which the search for an approximated solution of the linear problem is carried out.
Schwarz is applied inside the Arnoldi process and at solution update (step 3 and step 11 of Algorithm
4, which means, we form locally the block of the linear problem, again with only reference to the
topology owned. What happens at interfacing bus 9? Each processor computes its state variables,
based on its owned topology and input production and demand profiles. In other words, at the end
of the linear sweep, the bus 9 has different values for the state variables defined. At this stage, the
update on the solution of bus 9 is exchanged among both the processors and the solution averaged
according to Eq.(97). The iteration starts again taking this value into account.

What happens if we set the overlap to be equal to 2? A different bus (other than 9) is shared
from both sides. In our case13 example, setting the overlap=2 would make the bus 8 and the bus
10 (as well as the connecting branches and the electrical quantities related to them) to be shared
among processors. This means that the power flow problem is solved on both sides including bus 10
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and 8 and by following the same procedure explained for the case with only one bus overlap. Notice
that the DDM aspect of Schwarz is a bit hidden in the latter description. In practice, this takes
partially place through the Set-Up Phase, where the graphs of sub-networks are built locally on each
processor, rather than on a master machine and then distributed to the slave machines. Based on
this step, the solver understands that the local network is actually part of a bigger network shared
with another entity and builds the solution procedure accordingly. In this sense, the Jacobi blocks are
built up starting from the local graph, but knowing that each block is mathematically part of a bigger
problem, exactly as it would be done after a proper local ’decomposition’ on a master machine and
send through to a slave machine. Another mention goes on parallel communication analysis. This
has been done in this work strictly with reference to stationary block-preconditioned methods 2.5.3.
In practice adding up accelerators (i.e. Krylov solvers) causes the procedure to be more complex
and structured in more steps (see Annex 2 for GMREs full algorithm). A precise analysis of parallel
communications of the Krylov-Schwarz solver shall be employed to understand exactly the information
passed through machines. On the other hand, a Krylov accelerator involves mainly MVM and norm
computations which can be easily carried out in parallel. This means the computation can be carried
out by performing only few collective operations. Further analysis on parallel communications of
Krylov-Schwarz solvers are let to future works.
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3 PETSc

Almost anything that relates to natural phenomena is described through complex time-varying,
and sometimes non linear, PDEs. Their solution is obtained in scientific computing through accurate
discretisation techniques, that approximate the PDE models locally, turning the problem into a set
of algebraic equations. Even though systems of algebraic equations are much easier to solve when
compared with differential ones, the design of effective numerical techniques is not a simple task.
Such issues can be of the following type:

1. Problems should be addressed with the best tailored techniques, in order to decrease the com-
putational complexity and to obtain good levels of method’s robustness;

2. parallelisation is almost always needed due to the computational complexity of the problems,
which often makes the implementation of certain numerical techniques non-trivial.

Tackling both these issues is still a big challenge for many scientific problems. Numerical scientists
struggle nowadays for developing scientific computing tools that address those problems. Among the
many libraries developed in the world there is the Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc). PETSc is "a suite of data structures and routines for parallel solution of complex
scientific problems" according to the definition that its developers at Argonne National laboratory
give. This set of libraries has been developed purposely for parallel computing applications. PETSc
is meant to be used both as a solver and as an API to program with. This allowed many libraries
to be developed starting from PETSc, such as: Hypre, SuperLU, Trilinos and many others. PETSc
has been used for simulations in a broad range of subjects: fluid dynamics, material science, rocket
science and many others. It can be used for application codes in both C, C++, Fortran and Python.
The libraries enable easy customisation and extension of both algorithms and implementations. This
approach promotes code reuse and flexibility, and separates the issues of parallelism from the choice
of algorithms. Moreover, PETSc successfully handles the complexities introduced by MPI (message
passing interface) by managing completely on itself the message passing operations.

3.1 PETSc Structure

PETSc consists of a variety of libraries and each library manipulates a certain family of objects.
The organisation is hierarchical as shown in Figure 11. The most simple objects (Matrices, Vectors
and Index Sets) are built on top of BLAS (Basic Linear Algebra Subprograms) and MPI. BLAS is a
portable library of routines for performing matrix-vector operations while MPI is the interface that
manages inter process communications. For more information about MPI see (Pacheco, 1998).
On top of Matrices, Vectors and Index Sets, user can find KSP (Kryolv solvers) and PC (Precondi-
tioners) family objects. KSP consists of over thirty Krylov subspace methods, for iterative solution of
linear systems. PC objects are used in conjunction with KSP to perform preconditioned linear itera-
tions. KSP is integrated with underlying direct solvers (LU factorisation, QR factorisation) that are
used to solve subproblems generated by either the KSP iteration scheme or by domain decomposition
provided by PC.
The most complex objects built in PETSc are represented by SNES (Scalable Nonlinear Equations
Solvers) and TS (time-steppers) solvers, that are built on top of KSP and PC. SNES is a collection
of nonlinear solvers and TS is used for solving time-dependent PDEs.
All the solvers available can be simply selected by the user at runtime. A more detailed explanation
of PETSc routines can be found in the Users Manual (Balay et al., 2018a). In the next sections
further information on PETSc application codes and solvers will be given and on how the program
copes with large networks.
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Figure 11: PETSc hierarchy. The red encircled solvers are those relevant for the Power Flow
problem and dealt in this work.

3.2 PETSc representation of networks: DMNetwork and DM-
Plex

This section shows how PETSc manages structured and unstructured grids. Networks are used
commonly to represent power distribution systems, water and gas distribution, communication, trans-
portation or electric circuits. DM (Domain Management) are libraries used for managing interactions
between mesh data structures and mathematical objects like vectors and matrices. DMNetwork is a
class of functions in PETSc that is used for network representation. It allows the user to manage the
topology and the physics of large scale networks and the coupling with linear, non linear or time vari-
ant solvers. In (Maldonado et al., ) different application frameworks are presented. DMNetwork data
structure in PETSc provides efficient and convenient ways for network decomposition. It is possible
to split the domain in n sub-domains (through a domain decomposition) or divide a multi-physics
system into different single physical subsystems (field-split).
In order to build a network object, all the components have to be recorded. In power system, the
network components are mainly of four types: buses, branches, generators and loads (protection
devices are not taken into account at this stage). Once those information are recorded DMNetwork
builds a mathematical model that could be a set of linear, non linear or time-dependent equations.
The system of equations is then solved using KSP, SNES or TS libraries.
Some features of this framework include:
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• the possibility of assigning different degrees of freedom to nodes (buses) or edges (branches);

• the possibility of assigning network components (e.g. loads or generators) to each bus;

• the support on network partitioning among different processors;

• the creation of the Jacobian operator (associated to the network) as well as the vectors for
residual evaluation;

• the storing of information on ghost nodes that need to perform communication with the other
processors;

• the full compatibility with KSP, SNES and TS solvers.

DMNetwork is actually built on top of DMPlex, a data management object that embeds the
topology of unstructured grids to provide a range of functionalities common to many scientific ap-
plications (Lange et al., 2015b). The topological connectivities between the components in DMPlex
are expressed as a Directed Acyclic Graph (DAG). A DAG is a graph where vertices are connected
through edges, each edge is directed from a vertex to another so that there is no way to start from
a vertex and loop back to it again.

(a) Edge and vertex numbering (b) Connectivity in a DAG
Figure 12: Example of a tetrahedron and its respective DAG representation (Lange et al.,
2015a).

Fig. 12 illustrates a Directed Acyclic Graph representation of a simple tetrahedron. Component’s
enumeration starts from the entire figure (0), vertices are enumerated from 1 to 4, faces from 5 to
8 and edges from 9 to 14. The DAG is divided in layers and each component belongs to a certain
layer. Once the DAG is built there are several operations inside DMPlex that allow the user to
extract elements of a grid, see connectivities, mapping data layout and distribute data among parallel
processors.
Moreover DMPlex provides other functionalities for grid partitioning and domain decomposition.
There are graph partitioning methods already implemented in PETSc while many others can be
found in external libraries such as Chaco (Hendrickson and Leland, 1993) or ParMetis (Karypis et al.,
1997). Six different partitioners can be chosen. They allow the user to decompose the problem in
the most suitable way for a certain application code; by default PETSc decomposes the grid in such
a way that all the processors own more or less the same number of elements.
Once that creation and distribution steps are carried out, a network object contains:

• a partitioned graph representation of the problem
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• a memory space allocation for the problem’s unknowns in each vertex and edge

• a set of physical data in each bus

• an implicit nonzero structure determination of the Jacobian matrix

3.3 Solving Power Flow Equations using PETSc

In Section 2 the power flow problem has been presented and the most suitable numerical techniques
used over the course of time have been briefly discussed. It has been shown how the power flow
problem needs a proper numerical method to handle the non-linearity and an inner linear solver. In
PETSc, it is done by setting an outer SNES solver and an inner KSP solver, possibly preconditioned
through a PC object. An example written in C (power.c) to solve power flow problems in PETSc can
be found in the following folder:

$PETSC_DIR/src/snes/examples/tutrtials/network/power/

The C code can be divided in three main stages:

1. Reading stage

2. Set up stage

3. Solving stage

Reading Phase

The input file is a Matpower test case. In this example the reference grid is case9.m which can
be found in the Matpower libraries.
MATPOWER is a package of free, open-source Matlab-language M-files for solving steady-state power
system simulation and optimisation problems such as power flow (AC and DC) or Optimal Power
Flow (OPF).
Matpower includes also a set of test cases, ranging from small to large size power grids, up to close
approximations of the European High Voltage Transmission Grid. Details about entries of Matpower
caseformat can be accessed from MATLAB by typing help caseformat. Cases are made of 6 fields, 4
of which are structs. Those structs include data for buses, generators, branches and generator costs.
For more details on MATPOWER test cases the reader can consult (Zimmerman and Murillo-Sanchez,
2016). In the following the categories of each matrix in data struct are shown for sake of clarity. Bus
struct is a n× 13 matrix (where n is the number of buses) containing the following columns:

bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin

Generator data matrix is a ngen × 21 matrix, where ngen is the number of generators, divided as
follow:

bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min
Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf

Branch data matrix is a m× 13 matrix where m is the number of branches

fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax

Finally generator costs data matrix has the following structure:
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1 startup shutdown n x1 y1 ... xn yn
2 startup shutdown n c(n-1) ... c0

Additionally MATPOWER libraries include since 2015 a list of cases which correspond to real world cases.
In (Josz et al., ) different test cases are presented: RTE test cases represent the French very-high
voltage grid, while PEGASE test cases give a snapshot of the European high-voltage grid. Those data
can be read by PETSc application code power.c, previously mentioned. Note that they should be
provided as an input at runtime.
From an implementation point of view the first part of the code is the following:
/* READ THE DATA */
if (!crank) {
/* READ DATA */
/* Only rank 0 reads the data */
ierr = PetscOptionsGetString(NULL,NULL,"-pfdata",pfdata_file,PETSC_MAX_PATH_LEN

-1,NULL);CHKERRQ(ierr);
ierr = PetscNew(&pfdata);CHKERRQ(ierr);
ierr = PFReadMatPowerData(pfdata,pfdata_file);CHKERRQ(ierr);
User.Sbase = pfdata->sbase;
numEdges = pfdata->nbranch;
numVertices = pfdata->nbus;
ierr = PetscMalloc1(2*numEdges,&edges);CHKERRQ(ierr);
ierr = GetListofEdges_Power(pfdata,edges);CHKERRQ(ierr);
}

The conditional operator if(!crank) implies that only rank 0 processor is in charge of reading
data. Using PetscOptionsGetString() it is possible to provide a string for a particular option
in the database. In this case the string "-pfdata" allows to select the test case that is going to be
used at runtime. An empty PETSc object is then created using PetscNew() function. The funtion
PFReadMatPowerData() takes as an input the datafile provided from Matpower library and fills all
the fields in pfdata struct, which are:
typedef struct{
PetscScalar sbase; /* System base MVA */
PetscInt nbus,ngen,nbranch,nload; /* # of buses,gens,branches, and loads */
VERTEX_Power bus;
LOAD load;
GEN gen;
EDGE_Power branch;
} PFDATA

The fields VERTEX_Power, LOAD, GEN and EDGE_Power are structs as well and they are declared
in power.h header file. When all the fields are correctly filled the function GetListofEdges_Power()
creates an array edges of size 2m where m is the number of branches. It is created in this way:
for (i=0;i<m;i++)
{
edges[2*i]= from_bus; /* the first column values in mpc.branch struct */
edges[2*i+1]= to_bus; /* the second column values in mpc.branch struct */
}

After this procedure the reading phase can be considered complete.
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Set Up Phase

Independently from the application code and from the type of mathematical problem to solve, the
Set Up phase has a standard procedure in PETSc when dealing with networks.

/* Create an empty network object */
ierr = DMNetworkCreate(PETSC_COMM_WORLD,&networkdm);CHKERRQ(ierr);

/* Register the components in the network */
ierr = DMNetworkRegisterComponent(networkdm,"branchstruct",sizeof(struct

_p_EDGE_Power),&User.compkey_branch);CHKERRQ(ierr);
ierr = DMNetworkRegisterComponent(networkdm,"busstruct",sizeof(struct

_p_VERTEX_Power),&User.compkey_bus);CHKERRQ(ierr);
ierr = DMNetworkRegisterComponent(networkdm,"genstruct",sizeof(struct _p_GEN),&

User.compkey_gen);CHKERRQ(ierr);
ierr = DMNetworkRegisterComponent(networkdm,"loadstruct",sizeof(struct _p_LOAD)

,&User.compkey_load);CHKERRQ(ierr);

An empty network object and a component library have to be created first. This is done through
the function DMNetworkCreate() and DMNetworkRegisterComponent(). A "component" is a
specific data at any node/edge of the network required for its residual evaluation. For example,
components could be resistor, inductor data for circuit applications or generator/transmission line
data for power grids. In this case components are buses, branches, generators and loads. The
function DMNetworkRegisterComponent() stores component keys in the struct User which has the
following fields:

struct _p_UserCtx_Power{
PetscScalar Sbase;
PetscBool jac_error; /* introduce error in the jacobian */
PetscInt compkey_branch;
PetscInt compkey_bus;
PetscInt compkey_gen;
PetscInt compkey_load;
}

compkey is an integer key that can be used for setting/getting the component at a node or an edge.
The set up phase continues setting network size and edge connectivity:

/* Set number of nodes/edges */
ierr = DMNetworkSetSizes(networkdm,1,0,&numVertices,&numEdges,&NumVertices,&

NumEdges);CHKERRQ(ierr);
/* Add edge connectivity */
ierr = DMNetworkSetEdgeList(networkdm,&edges,NULL);CHKERRQ(ierr);

DMNetworkSetSizes() sets the number of subnetworks, local and global vertices and edges for each
subnetwork. The second and third arguments of the function are the number of subnetworks and the
number of coupling network respectively. In this case we have only one network owned by rank 0
processor.
The function DMNetworkSetEdgeList() takes as an input edges array and copies it in:
networkdm->data->subnet->edgelist.
The layout of the network is then set calling:
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/* Set up the network layout */
ierr = DMNetworkLayoutSetUp(networkdm);CHKERRQ(ierr);

Once that a bare layout is defined components and number of variables can be set in each node/branch.
The process in charge of adding components and variables is rank 0 process again.

if (!crank) {
genj=0; loadj=0;
ierr = DMNetworkGetEdgeRange(networkdm,&eStart,&eEnd);CHKERRQ(ierr);
for (i = eStart; i < eEnd; i++) {
ierr = DMNetworkAddComponent(networkdm,i,User.compkey_branch,&pfdata0->branch[i

-eStart]);CHKERRQ(ierr);
}
ierr = DMNetworkGetVertexRange(networkdm,&vStart,&vEnd);CHKERRQ(ierr);
for (i = vStart; i < vEnd; i++) {
ierr = DMNetworkAddComponent(networkdm,i,User.compkey_bus,&pfdata->bus[i-vStart

]);CHKERRQ(ierr);
if (pfdata->bus[i-vStart].ngen) {
for (j = 0; j < pfdata->bus[i-vStart].ngen; j++) {
ierr = DMNetworkAddComponent(networkdm,i,User.compkey_gen,&pfdata->gen[genj++])

;CHKERRQ(ierr);
}
}
if (pfdata->bus[i-vStart].nload) {
for (j=0; j < pfdata0->bus[i-vStart].nload; j++) {
ierr = DMNetworkAddComponent(networkdm,i,User.compkey_load,&pfdata->load[loadj

++]);CHKERRQ(ierr);
}
}
/* Add number of variables */
ierr = DMNetworkAddNumVariables(networkdm,i,2);CHKERRQ(ierr);
}
}

After that all the components have been successfully added, the network is ready to be distributed
among different processors.

ierr = DMSetUp(networkdm);CHKERRQ(ierr);

This function has to be called every time as it provides a signal that the network is ready to be
distributed. The distribution is made by:

ierr = DMNetworkDistribute(&networkdm,0);CHKERRQ(ierr);

By default PETSc distributes the network object in such a way that each processor owns more or
less the same number of elements. The distribution process can be modified changing the partitioner
used by DMNetworkDistribute().

Solving Phase

Once that each processor has received its sub-problem, the solving phase starts. The master
processor communicates the solving procedure to use and a local solver is built up on each processor.
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The PETSc library provides three layers of solvers: KSP, SNES, and TS to solve these problems,
respectively.

Table 2: PETSc Solvers

Solver Name Description Mathematical Form

KSP and PC Krylov Subspace Methods and Preconditioners Ax − b = 0
SNES Non Linear Solver F (x) = 0
TS Time Stepping Solver F (t, x, ẋ) = 0

As already mentioned, in power flow context according to steady state approximation a non-linear
system of equation of the type F (x) = 0 has to be solved. Using Newton’s method the problem can
be approximated to a set of linear equation:

J(xk)∆xk = −F (xk)
xk+1 = xk + ∆x

(105)

The function F (xk) and the Jacobian matrix J(xk) have to be evaluated at each iteration and
Eq.(105) has to be solved iteratively to obtain the approximated solution xk.
PETSc takes care of parallel distribution, preallocation, partitioning and setting up data structures.
The user needs to provide two functions, one for F (x) evaluation and one for the Jacobian J(x).
The application flow starts creating a non linear solver context and adapting DMNetwork object to
it. After that both residual function and Jacobian have to be created. The non linear problem is then
ready to be solved.

/* HOOK UP SOLVER */
ierr = SNESCreate(PETSC_COMM_WORLD,&snes);CHKERRQ(ierr);
ierr = SNESSetDM(snes,networkdm);CHKERRQ(ierr);
ierr = SNESSetFunction(snes,F,FormFunction,&User);CHKERRQ(ierr);
ierr = SNESSetJacobian(snes,J,J,FormJacobian_Power,&User);CHKERRQ(ierr);
ierr = SNESSetFromOptions(snes);CHKERRQ(ierr);
ierr = SNESSolve(snes,NULL,X);CHKERRQ(ierr);

With the function SNESSetFromOptions() it is possible to set parameters for non linear solver
at runtime. For example it is possible to set the maximum number of iterations, absolute and
relative tolerances, type of solver (Newton, Richardson, GMREs) and many others. Once that
SNESSetFromOptions() is invoked all the underlying layers’ options are enabled.
To summarize, rank 0 processor takes as an input a Matpower test case and saves it into a struct. It
builds a network object and distributes it among the processors involved in the computation. Power
flow equations are then solved using Newton Raphson method coupled with a direct preconditioned
solver. Both linear and non linear methods can be chosen between all the ones implemented in PETSc
libraries.
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4 Distributed Power Flow in PETSc

In the previous section a broad overview of the PETSc functioning principles was given. We
presented how PETSc manages power grid structures and sets up solvers once all network related
objects have been correctly defined. This section is devoted to a comprehensive overview of the
distributed power flow solver in PETSc. We will see in this section how the Set Up process needs to
be modified in order to keep input data locality. Solvers are still created locally on each processor
and work out the solution with reference to the owned network and coupling with other processors’
sub-problems through overlapping variables.

4.1 Introduction

Newton coupled with a preconditioned Krylov method that allows domain decomposition is par-
ticularly interesting in power flow framework. As described in the previous section, power.c example
allows to solve power flow problem using different techniques suitable for parallel or distributed com-
puter environments. Those kind of methodologies (Idema et al., 2012) can provide a better scalability
and performances compared to classical approaches when problem size increases.
As mentioned, the common goal these techniques is that of being able to solve large and complex
grids into a reasonable computational time. DMNetwork class provides an interface to cope with large
scale graphs that usually arise in power system. Despite numerical methods needed in our framework
are already implemented, DMNetwork routines have some limitation which needs to be tackled in
order to run according to our novel/different approach.
The aim of this section is thus not that of explaining how to better perform in terms of computational
speed in PETSc, but rather that of validating the methodology presented in Section 2 by discussing
its implementation in PETSc.

4.2 Parallel communication analysis of set up phase in PETSc

The general flow of an application code using DMNetwork can be summarised in Figure 13.

Figure 13: Parallel code flow steps of DMNetwork.

It shows how two processors cooperate to create and build a network object. During the building
process it is possible to find collective and non-collective functions. The first ones have need to be
executed simultaneously by both processors while the second ones do not require any information
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exchange and can be executed separately. "Read Data" and "Add Components" steps are carried out
by rank 0 process which is usually considered as the master node (in a master-client paradigm). In
this case only the latter has access to the network input data and until the DMNetworkDistribute()
function is not called all grid information is kept by the rank 0 node. Successively (after the call)
graph elements and associated data are distributed among the nodes. Fig. 14 shows how PETSc
manages and distributes a simple seven buses network.

(a) Simple 7 buses network. PETSc enumeration

(b) Directed Acyclic Graph (DAG) for the network above

(c) Splitted network on two processors. Shared elements are moved to
higher rank processor

Figure 14: Network management in PETSc

Network components enumeration starts from edges and it continues with buses. All components
are registered in a Direct Acyclic Graph (DAG). Branches are stored in the first layer (first row in
Figure 14b) while buses in the layer below. Network decomposition is done through edges. According
to Figure 14b, branches {0, 1, 2} are assigned to rank 0 and {3, 4, 5} to rank 1, buses are allocated
accordingly to edge partition. By default shared elements (bus 9 in this case) are moved to the higher
rank processor.
The two nodes involved can be considered as two different entities at national or international level.
Within this framework the asymmetry of information is evident as one entity owns all the data
regarding topology, generation and demand profiles.
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4.3 Parallel Assembling procedure

In order to obtain a distributed input of data as well as a parallel assembling of the network some
modifications are indeed necessary. Fig. 15 illustrates the idea behind a parallel assembling procedure.
Input data are located remotely on two different workstations. Each processor takes as an input a
case data file (its own data network). In reality, bus 6 on rank 0 and bus 3 on rank 1 in Figure 15a
refer to the same bus (bus 9 in Figure 14a).

(a) Simple 7 buses network where input data are on two different nodes

(b) Directed Acyclic Graph (DAG) for the previous network: in the
default set up procedure DAGs are not connected

(c) Directed Acyclic Graph (DAG) for the previous network using a
parallel assembling procedure

(d)
Figure 15: Network management in PETSc using a parallel assembling procedure
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If the Read Data function is not a collective operation, the two networks are considered two
separate grids instead of being two portions of the same network. In other words DAG in Figure 15b
does not have any connectivity between ranks. This has to be modified in order to obtain a graph
like the one in Figure 15c.
To make this, edge layer identifiers need to be contiguous. In this sense the number of branches on
rank 0 has to be added to every branch identifier on rank 1. Thus Reading phase needs collectivity
in order to exchange information regarding the total number of branches. Rank 0 sends to rank 1
an integer corresponding to the total number of branches on master node, rank 1 changes branch
enumeration accordingly.
Bus layer identifiers change their enumeration during the layout set up step. Among other tasks, the
function DMNetworkLayoutSetUp() overwrites bus indexes in order to obtain a consecutive enumer-
ation right after for branches. The modified flow of the application code using parallel assembling
procedure is shown in Fig. 16.

Figure 16: Modified flow

The main differences that can be highlighted are the following:

1. Both nodes execute all the functions

2. The Read data phase is collective

3. The Layout set up of the network allows a parallel assembling procedure

In a wider context this application flow can be seen as two entities running a coordinated power
flow. Each entity has its own remote control centre where information regarding topology, demand
and generation profiles are stored. The two grids are connected through a certain number of inter-
connection branches thus the solution of one sub-network is dependent on the characteristics of the
neighbouring grid.

4.4 Solving Phase

After that the previous procedure has been completed, the network elements and corresponding
DAG are correctly set up among the processes involved in the computations. It is not necessary to
invoke DMNetworkDistribute() since the network is already correctly split between the processors.
Power flow equations are then solved iteratively, voltage magnitudes and phase angles are found at
each node of the network. It is important to stress that the solution obtained in this way is the same
that it will be obtained by one entity running a global power flow on the two sub-networks together.
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In order to prove the well-functioning of this concept a test case was set. Two small test cases in
MATPOWER libraries have been selected: case9.m and case5.m respectively. They have been merged
together considering that the first bus in case5.m corresponds to the ninth bus in case9.m. The
resulting network is illustrated in Figure 17. Bus 1 is the slack node, buses 2, 3, 11, 12, 13 are PV
buses while the others are PQ buses. Input data were distributed among two different processors in
the configuration shown in Figure 18.

Figure 17: case13.m

Figure 18: case13.m divided in two workstations

case9.m was assigned to master node and case5.m to client node. Reading and set up procedures
follow the steps previously described. Once the network object has been correctly set up, power flow
equations are solved by SNES library in PETSc. The Jacobian linear system is solved using GMREs
preconditioned with overlapping Additive Schwarz.
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The results in terms of voltage magnitude and phase angles are reported for both processors in Table
3. Bus ownership reflects input data locality. Once the voltage profiles are found as a solution of
the power flow problem, active and reactive power flow in each branch can be calculated. Table 4
illustrates the amount of power flows in each branches subdomain. Those data can be easily saved
remotely on each workstation depending on the network ownerships.

Table 3: Results: Voltage Magnitude and Phase Angle per node

Bus
Number

rank 0 rank 1

Voltage Magnitude Phase Angle Voltage Magnitude Phase Angle
1 1 0
2 1 -0.07103
3 1 -0.1086
4 0.9957 -0.163
5 0.9839 -0.2153
6 1.0063 -0.1582
7 0.9922 -0.2078
8 1.0047 -0.1726
9 0.9943 -0.3571 0.9943 -0.3571
10 0.9878 -0.4126
11 1 -0.4021
12 1 -0.4001
13 1 -0.3492

Table 4: Results: Active and Reactive Power in each branch

Rank
Branch From bus injection To bus injection

From To P [MW] Q [MVar] P [MW] Q [MVar]
0 1 4 280.613 30.314 -280.613 15.572
0 4 5 56.325 -4.020 -55.779 -8.504
0 5 6 -34.221 -21.496 34.700 -11.876
0 3 6 85.000 -8.736 -85.000 13.015
0 6 7 50.299 -1.139 -49.992 -17.123
0 7 8 -50.008 -17.876 50.233 4.932
0 8 2 -163.000 15.885 163.000 0.721
0 8 9 112.767 -20.817 -108.726 10.573
0 9 4 -219.214 37.259 224.288 -11.551
1 9 10 194.837 8.598 -193.755 1.515
1 9 12 137.839 -29.732 -137.228 35.186
1 9 13 -129.736 -76.696 129.881 75.046
1 10 11 -106.244 -101.515 106.481 102.055
1 11 12 -6.481 0.3175 6.483 -0.979
1 12 13 -169.254 20.953 170.119 -12.984

Note that this approach allows convergence with a tolerance of less than 10−8 on the absolute
norm26. Overlapping variables converge at the same solution on both sides (machines) with the same

26The convergence check is done also on relative norm of the residual vector
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convergence check above. Another important aspect that can be highlighted is that the solution is
found keeping a reasonable convergence time (4.39 10−2 seconds on two 8-node 32 GB RAM machine,
each node being an Intel Xeon E3-1275 3.50 Ghz running on an Ubuntu 17.10 64-bit GNU/Linux
distribution and mounting a network card of 1 Gbit/s).
From an implementation point of view, it is wort mentioning that PETSc allows to evaluate simulation
performances with profiling options. In fact PETSc routines automatically log performance data
and they can be printed using different profiling options. The option -log_view prints an overall
performance summary, including times, floating-point operations, computational rates and message
passing activity.
The bottleneck is usually the type of interconnection chosen between the workstations. In (Rinaldo
et al., 2018) some simulation tests by means of Newton-Krylov-Schwarz on a distributed system
architecture are presented. Two interconnected European high transmission voltage grids were tested
using different type of network configurations. The results showed the feasibility of performing the
distributed calculation remotely, keeping the overall simulation times quite low (only few times slower
than locally considering two grids in the order of thousands nodes sizes).
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5 Applications

This section discusses the potential application framework of distributed/delocalised approaches
to power flow equations. In particular, we focus on two cross-border frameworks: 1) the TSO-TSO
congestion management in Europe; 2) the TSO-DSO coordination at the transmission-distribution
interface. With respect to the first case we focus mainly on the Capacity Calculation Methodology
(CCM) currently in place in Europe to tackle congestion management issues. As we will see, this is
actually a complex procedure made up of many steps, during which TSOs and various stakeholders
collaborate in order to provide the market with the bounds for Capacity Allocation (CA) process.

For the second case the discussion will be more qualitative. As DSOs are currently facing a
re-organisation in terms of roles to accommodate RES penetration at distribution level and currently
do not generally carry out power flow computations yet, the methodology is presented in a ’softer’
way. However, it is worth mentioning that numerous TSO-DSO coordination schemes that require
the DSO to run power flow computations are being presented in research and pilot projects (e.g
SmartNet, Coordinet), underpinning the importance of the topic at issue.

5.1 Congestion Management at European Level

In order to harmonise and liberalise the EU’s internal energy market, measures have been adopted
since 1996 to address market access, transparency and regulation, consumer protection, supporting
interconnection, and adequate levels of supply. These measures aim to build a more competitive,
customer-centred, flexible and non-discriminatory EU electricity market with market-based supply
prices. In so doing, they strengthen and expand the rights of individual customers and energy com-
munities, address energy poverty, clarify the roles and responsibilities of market participants and
regulators and address the security of the supply of electricity, gas and oil, as well as the develop-
ment of trans-European networks for transporting electricity and gas(Gouarderes, 2019). A number
of big improvements has been already achieved in these years: looking at market integration, for
instance, we have today a single price coupling algorithm, called EUPHEMIA (EU + Pan-European
Hybrid Electricity Market Integration Algorithm) which calculates electricity prices across Europe (for
27 countries). Operated by eight NEMOs (Nominated Electricity Market Operators), the algorithm
allocates simultaneously electricity and capacity between bidding zones27, a process known as implicit
allocation or market coupling. The aim of market coupling is that of maximising economic surplus
by using efficiently all the available resources. Inter-connectors are hence fundamental to achieve this
goal being the means to connect different European bidding zones.

In theory two exclusive situations should be observed when looking at the flows at the intercon-
nection points between bidding zones: one, in which the inter-connectors are partially used (below
their maximum capacity) and the price is the same in the two neighbouring bidding zones; the other,
in which the line is congested so that there is a price differential between the two bidding zones, that
is a market splitting. In reality, what one can see is that very often there are situations in which the
inter-connector is only partially used but there is a price differential between the connected bidding
zones. Even more paradoxical than that, there were cases in the past mainly due to explicit allocation
of capacity between bidding zones in which electricity was flowing from zones of higher prices to those
of lower prices.

In (ACER and CEER, 2018), the Agency for the Cooperation of Energy Regulators (ACER) and
the Council of European Energy Regulators (CEER) argue that low level of cross-zonal transmission
capacity currently observed in their monitoring might be due to congestions not properly addressed
by the current bidding zone configuration in Europe. That is, structural congestions might be present

27Bidding zones in Europe mainly coincide with national borders, apart from some cases as Sweden and Italy which
have four and six bidding market zones, respectively.
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within bidding zones rather than on bidding zone borders. Moreover, another reason identified in the
same report is the lack of coordination between TSOs concerning the cross-zonal capacity calculation.
In order to regulate this kind of matters, four guidelines and four network codes have been adopted
at European level, below the umbrella of the Third Energy Package (TEP), currently amended by the
recently adopted Clean Energy Package (CEP). In particular, the Capacity Allocation and Congestion
Management Guideline (CACM GL) (CAC, 2015), which belongs to the group of market codes28, sets
among other things, the basis for congestion management. At the core of congestion management
there are two subsequent sub-processes: the Capacity Calculation and the Capacity Allocation. At
market level (with respect to the CA) the process has gradually evolved from explicit auctions of
capacity to the more economic efficient implicit auctions. Implicit auctions allow to integrate the
grid constraints in the electricity trading process while explicit auctions may give rise to opportunistic
behaviour of parties, that may book capacity and prevent others to its use.

In the following sections we focus on the CC step of congestion management process and we
assume a MC is in place at CA level. We start by reviewing the main methodologies used in practice:
Available Transfer Capacity (ATC) and Flow Based (FB). This will set the basis for a discussion on
how distributed approaches might be used in this context.

5.1.1 CA and CC: History and Implementations

If CA is the phase during which cross-border capacity is ’sold’ to the market and coupling of
bids among zones takes place, the CC stage requires to compute the constraining parameters to
pass to market coupling algorithm29. Going back, the first experience of MC started in 2006 in the
Central West Europe (CWE) area with the trilateral MC among France, Belgium and Netherlands,
for the DAM. As electricity flows according to physics and not following commercial transactions, an
injection/withdrawal in a bidding zone may cause flows in neighbouring regions. This is particularly
true for highly meshed networks (e.g. the CWE) that cause flows to spread all over and even get
back to their originating region. The MC mechanism allows to coordinate commercial exchanges
among different zones and by checking that these transactions are feasible in terms of compatibility
with grid constraints. As the markets are coupled, this also allows to obtain price signals that
reflect demand/supply conditions (i.e. need/excess of electricity). The improvement brought by MC
solutions increased the participation of more EU countries. In 2007 National Regulatory Authorities
(NRAs), TSOs, PXs, Market Parties Platform (MPP) and Ministers of the Penta-Lateral Energy
Forum (PLEF) signed a Memorandum of Understanding (MoU) to improve the cooperation in the
field of cross-border exchanges. The main objective was the analysis, design and implementation of
a FB MC approach within the five countries of the CWE (PLEF, 2007). As an intermediate step
towards FB, ATC MC became active starting from 2010. The ATC MC clearing procedure were made
through an optimisation algorithm called COSMOS, based on the maximisation of total surplus of
consumers and suppliers. Starting from 2013 the CWE eventually moved to an FB approach. In
2015 EUPHEMIA replaced COSMOS, which since then is currently the algorithm in place for DAM
clearing. Nowadays as mentioned the DAM is solved for all Europe. At present, some borders are
modelled through FB approach, others through ATC and some others are moving from ATC to FB.
In the following sections we review the framework and the methodology of CC and CA approaches,
agreed by all stakeholders through a long policy process and currently in place in Europe. Several
organisations took part to this complex process, so we consider important to provide an overview of
the process before going through the technical details of ATC and FB CC approaches.

28Network codes and guidelines are divided into three main families: 1) Connection, 2) System Operation and 3)
Market.

29When we mention the market, we implicitly refer to DAM only.
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5.1.2 Relevant CACM articles

Moving back to the CACM, its content can be divided into the following categories:

• Optimal definition of bidding zones;

• Calculation of capacities between bidding zones;

• Allocation of cross-zonal capacities with MC;

• Management of residual congestions with remedial actions (e.g. re-dispatch, counter-trading).

Each one includes sub-sections providing detailed procedures to follow. Member States can then
implement them only with little freedom. For major amendments, TSOs must present modifications
proposal of the CACM to NRAs and ACER for final approval.

The CACM details how the CC process must be carried out in Europe. The main steps of the
regulation includes:

• Requirements for definition of Capacity Calculation Regions (CCRs);

• Requirements for definition of a Common Grid Model (CGM);

• Generation and Load Data Provision (CGM) methodology;

• Capacity Calculation Methodology (CCM);

• Coordinated Capacity Calculation (CCC) process.

The CCRs are those EU regions where the CC process is meant to be carried out by TSOs. Fig. 19
shows the first coordinated proposal made by all TSOs on CCRs on the. Following to the decision of
ACER on the 17th November 2016, the CWE CCR and the Central East Europe (CEE) CCR have been
merged into a unique CCR, namely the CORE CCR. Some follow-ups as public consultations among
TSOs have been launched to discuss small amendments on CCRs. In general, ACER expects the
number of CCRs to decrease over time. Merging CCRs give the advantage of reducing uncertainties
of CC process due to inter-dependency (only slightly present) of some CCRs.

In simple wording, the CCRs are nothing but borders among bidding zones30. This implies that
each TSO acting on the borders must take part to the CC process. The CCC process starts by asking
each bordering TSO to prepare an Individual Grid Model (IGM), according to Article 19 of CACM,
part of the section dedicated to CGM (Articles 14-19). The IGM is an approximated model of the
each TSO’s transmission system, relevant for the purpose of CCC. IGMs are then merged to form the
CGM. Notice that Article 19 provides several requirements to the IGMs. In practice, an IGM must
include all the ingredients to allow load flow computations on it (i.e. generation and load profiles,
topology; all updated according to the best possible forecasts). Article 16 develops requirements
of the GLDP procedure and requires "TSO to jointly develop a proposal for the delivery of the
generation and load data required to establish the CGM". Articles 20-26 provides the CCM, in short
what parameters (Critical Network Elements (CNE) and Contingencies (CNEC), Generation Shift
Keys (GSKs), Power Transfer Distribution Factors (PTDFs), Reliability Margins (RMs), Remedial
Actions (RAs)) to compute and how. Articles 27-30 provide more details on the CC based on ATC
and FB approaches.

Currently, the process to collect the information from TSOs, to merge the IGMs into the CGM and
to carry out the capacity calculations is under the responsibility of the Regional Security Coordinators
(RSCs). These are companies owned or controlled by TSOs. RSC are also in charge of proposing

30Note that a bidding zone border may have more than one TSO operating its own control area (e.g. Germany).
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Figure 19: Capacity Calculation Regions firstly proposed by all TSOs according to Article 15
of 1222/2015 (CACM).

improvements to the quality of computation. As the process of cross-border capacity ends up, the
results obtained by RSC are passed back to TSOs. TSOs start a validation phase of the results with
reference to their CNEs and contingencies. The capacity validation and allocation constraints are
shared with other relevant TSOs of the CCR and with RSC. Eventually, the RSC provides the NEMOs
with validated capacities and allocation constraints for the market coupling stage.

Note that the actual CCM and CCC may differ among the CCRs as the CACM provides indications
and requirements on methodology proposal, but not strict rules on its implementation. In other
words, the CACM requires TSOs to formulate their own CCM and CCC procedure according to their
operating needs, scenarios and cost-benefit analysis. An example of proposed CCC by the Nordic
CCR is reported in Fig. 20.

Of course, each specific CCM and CCC adopted for each CCR must be formally prepared and
ratified by NRAs and ACER. As mentioned, in European Transmission Network (ETN) both ATC
and FB CC approaches are used, depending on the ’meshed’ extent of interconnections. The CACM
provides strong incentives onto using FB approach for meshed interconnections. In the next sections
ATC and FB CC procedures are presented. The discussion about ATC approach is dealt quite generally,
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Figure 20: CCC process proposal by TSOs member of the Nordic CCR (Nordic-TSOs, 2018).

with no specific CCR reference. The FB CC is discussed with reference to the CC approach used by
the CORE CCR ((CORE-TSOs, 2018)).

5.1.3 Capacity Calculation Mechanisms: ATC

The ATC procedure aims to calculate the Available Transfer Capacity between two neighbouring
regions (in either directions) that can be sold in the Day Ahead and Intraday markets without en-
dangering the security of each (CCR) system. In order to define the Available Transfer Capacity for
successive trading over market stages, RSC and TSOs must coordinate to compute three fundamental
parameters: the Total Transfer Capacity (TTC), the Transmission Reliability Margin (TRM) and the
Net Transfer Capacity (NTC). Before this, let us introduce the necessary inputs required for their
computation.

1. Critical Network Element Contingency (CNEC):
Generally, grid elements (branches, tie-lines, transformers, etc.) present physical limits that
must be respected at any time during their operation. TSOs usually associate to each of these
elements a maximum stationary allowed current (Imax) and optionally a maximum temporary
current. The physical limits to respected during operation are of three main types:

• Thermal limits
• Voltage limits
• Stability limits

A correct estimation of Imax is not a simple task to deal with. For instance, weather conditions
need to be taken into account, for instance, during summer the cables are cooled less effectively

66



than on other seasons. Starting from the definition of an Imax, it is possible to calculate a
maximum allowed power flow Fmax on a component by the following relation:

Fmax =
√

3 Imax,cont V cosφ (106)

Where V and cosφ are the reference voltage and the power factor of the tie-line, respectively.
In the past, ATC methodologies required TSOs to identify branches that could be sensitive
to cross-border exchanges, in the sense that operated in real-time could result too close to
their power flow limits (Fmax). For each CB TSOs had to assess also the impact of possible
Critical Outages (COs) of other components. The set of all CB and COs formed the so-called
CBCOs set. Following to the introduction of CACM, CBCOs have been replaced by the CNECs
- Critical Network Elements Contingencies. In practice, CNECs are very similar to CBCOs with
the only distinction being that they are more broadly defined, thus include a wider range of
contingencies and of possibly critical components.

2. Generation Shift Keys (GSKs):
The GSKs define how changes in the net position of the concerned bidding zone is mapped on
generators. For instance, let us consider a generator Gi that has associated a GSKi = 10%
and let us consider a change in the net position amounting to 100MW . This means that the
output of Gi will change of a quantity equal to 10MW (with the sign defined by the sign of
the net change of the zone). GSKs are usually associated to generating units that are market
driven and that can provide flexibility in changing electric power output.

3. Remedial Actions (RAs):
A list of RAs is prepared by each TSO and integrated in the IGM. Each RA details the expected
impact (i.e. the flow change) over each CNE under a specific contingency. This information is
passed to RSC in order to let it compute the best RA to apply whenever a certain contingency
is faced and to consider ex-ante the impact that this will have on the flow pattern. This is also
called Remedial Action Optimisation (RAO) process.

The GSKs, RAs and CNECs list together with the IGM (individual TSO topology + GLDP) are
collated in a file known as the D-2 Congestion Forecast (D2CF) that allow for congestion forecast of
the individual TSO situation. The D2CF must respect precise requirements in terms of data format
and quality. The Common Information Model (CIM) exchange sets the standard for information
exchange regarding not only D2CF, but more generally for any data exchange involving TSOs, DSOs,
NEMOs, etc. The RSC brings together all the IGMs to assemble the CGM (or base case). The base
case consist of a global congestion forecast for the CCR. The RSC starts its calculation process from
the base case with the aim to assess the maximum bilateral inter-connection capacity among two
bidding zones.

1. TTC Calculation:
The TTC value is defined as the maximum exchange program between two areas, compatible
with Operational Security Policy (OSP) applicable at each system (typically N-1 security crite-
ria) and with tie-line technical limits. This value represents the Total Capacity of the line and
hence must be never surpassed. In other words, capacity calculations must only make a portion
of such total capacity available to the market and anticipate possible emergency situations,
unscheduled flows, uncertainties on generation and load estimations, etc.

2. TRM Calculation:
In real-time cross-border power exchanges might deviate from the forecasted values mainly due
to imperfect information from market players and unexpected events (e.g. weather changes).
An example of such deviations is balancing power injected/withdrawn from the grid through
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frequency control regulation. The evaluation of TRM can be done by the TSOs according to
past experiences or using statistical methods. Usually TRM values are typically agreed and
fixed for a long time period (e.g. 1 year). In other situations this is just fixed to an active
power value (e.g. Elia reserve 250MW at each border) or as a percentage of TTC.

3. NTC Calculation:
Given the TTC and TRM the NTC on a given cross-border interconnection is calculated as:

NTC = TTC − TRM (107)

The NTC value represents the maximum amount of power that can flow through a tie line
taking into account the uncertainties in future network conditions. Two neighbouring TSOs
should calculate NTC for the same border in both directions. As usually TSOs find different
NTC values, they need to reach an agreement on which value to set. As always, the most
conservative approach is chosen for sake of security of the system: the lower value is taken as
common NTC value.

A possible flow diagram of the calculation process is depicted in Fig. 21. The methodology is
straightforward. Let consider A and B as two adjacent bidding zones. The responsible RSC uses
step-wise changes (e.g. +100MW from A to B) and monitor at each step how changes in the
forecast net position impact the power flows over critical grid elements (CNECs). In the case in
which a security violation on any CNECs is observed, the last net position is recorded as the maximum
allowable power flow - i.e. the TTCA→B . The opposite is done as well to compute TTCB→A in the
opposite direction. At this stage, the NTCs are simply obtained by subtracting the TRMs:

NTCA→B = TTCA→B − TRMA→B

NTCB→A = TTCB→A − TRMB→A (108)

As such, the NTCs are not the ATCs yet. As we are considering day-ahead time frames, remind
that prior to DAM, Forward Markets take place. This means that part of the NTC might be already
sold through previous market sessions (in forward markets). The ATCs are hence obtained as:

ATCA→B = NTCA→B − LTAsA→B
ATCB→A = NTCB→A − LTAsB→A (109)

The couple of values ATCA→B , ATCB→A represent a trading quantity that can be offered to the
market. A graphical representation of this concept is given in Fig. 22.

The ATC quantity is passed to the MC algorithm as an allocation constraint (or input). As a
general rule, we can say that this value tends to be estimated in a more conservative way as the
delivery is far in time. As the time of delivery approaches, the level of uncertainty decreases and more
capacity can be allocated. This is indeed what happens in the IDM, where usually additionally ATC
quantity is offered to the market.

5.1.4 Capacity Calculation Mechanisms: Flow Based

The FB procedure is considered more accurate to calculate the capacity transfer between bidding
zones especially for meshed grids. Rather than constraining the capacity of tie lines as for the ATC
CC approach, the FB CC approach takes directly into account the arising flows over CNEs resulting
from cross-border exchanges. The FB CC procedure starts locally for each TSO, similarly as for ATC
approach. Each TSO prepares a set of input data that later will be collected by the RSC for FB
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Figure 21: Flow-diagram for TTC and NTC calculation.

parameters computation. This includes again an IGM, containing an approximated representation of
TSOs’ grid and input data describing load and generation patterns forecast (GLDP). Other inputs are
the GSKs, some (additional) External Constraints (ExtC), the Flow Reliability Margin (FRM), LTAs
(Long-Term Acquisitions) and possible information about HVDC interconnections. Let us detail the
computation of some input parameters for the FB CC procedure.

• CNECs: The selection process follow the same rules of ATC. The difference here is that each
TSO explicitly associate to each CNE a maximum allowed flow Fmax. Different contingencies
are considered for each CNE according to the TSO security policy, to form the CNECs (CNE
with a Contingency) elements.
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Figure 22: ATC trading domain (KU-Leaven-Energy-Institute, 2015).

FRM: Similarly to TRM, TSOs define a security margin to cover for risks associated to un-
expected events and in general to forecast limitations due to D-2 time-frame of the base case
model. The procedure to compute FRM is a statistical based procedure and is based on moni-
toring differences between D-2 CGM forecast flow and real-time flow on a given CNEC. In order
to account only for non-deterministic events that the D-2 CGM forecast model is inherently
subject to, the expected D-2 CGM flow is adjusted by real-time final net position and relieved
of the remedial actions performed in real-time. A statistical evaluation process is done upon
monitored difference and a risk level is associated. In other words, the role of FRM is to en-
sure under a certain risk percentage, that the difference between the forecast flow (on a given
CNEC) and the real-time flow will be contained in a certain range.

All the computed parameters and the IGM are gathered into a file, the D2CF, individually by each
TSO. Next, all the individual D2CF files are merged by the responsible RSC for the CCC at the CCR of
interest. The result of the merging process gives the so-called base case, a snapshot of the European
grid topology, generation and load profiles two days ahead of the delivery. Prior to the merging process
the RSC thoroughly checks the quality and plausibility for the IGMs provided by TSOs. Having the
CGM and all input parameters for FB, the RSC starts the ’Coordinated Capacity Calculation’ (CCC)
process. The goal of the FB CCC is to define remaining available margins (RAMs) on each CNEC.
This in turn will define a ’feasible trading domain’, identifying which trades are feasible without
endangering the security of the grid and which are not possible. The CCC methodology carried out
by RSCs can be outlined by calculation of the following parameters:

• PTDF: Through the D-2 CGM, the RSC owns all the ingredients to perform a Load Flow
(LF) computation (i.e. grid topology, load and generation profiles). To compute the PTDFs
(Power Transfer Distribution Factors), the LF is linearised around the working point predicted
by the base case. The linearisation allows thus to define a simple relationship (based on a set
of coefficients - the PTDFs) between a change in the net position of a bidding zone part of
the CCR and the resulting flows over the CNECs. In other words, we can consider PTDFs as
sensitivities coefficients. In general, what is needed is a set of coefficients that directly relate
importing/exporting flow from zone to zone with changes of flows over CNECs. In this way
it is possible to define whether the change in the net position of a bidding zone with respect
another is feasible or not. In other words whether a commercial exchange is feasible or not. The
calculation of PTDFs is actually done through three steps. First, the RSC computes Nodal-
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to-Slack (N2S) PTDFs by varying the injection/withdrawals per each node and by registering
the change in the flow per each CNEC. Then, by using the GSKs turns the N2S PTDFs into
Zone-to-Slack (Z2S) PTDFs coefficients. This is done to scale the change of the node to
the change in the net position of the zone. Eventually, the Z2S PTDFs are used to compute
Zone-to-Zone (Z2Z) PTDFs coefficients.

• Net Position Flow FNCP : We define the FNCP as the flow of active power through a CNEC
given a certain Net Commercial Position (NCP) relative to bidding zone A. This practically
represent the expected power flow as the market clears, according to the final NCP . As
mentioned, many other factors intervene in the real-time so that this flow is only an estimation
given the output of the market. With reference to a CNEC i, the FNCP can be computed by
using the previous defined Z2S PTDFs as follows:

FNCP,i = Fref,i +
N∑
A=1

PTDFA,i(NCPA −NCPA,ref ) (110)

Where NCPA,ref is the net commercial position of bidding zone A at base case NCP .

RAMs: The RAMs define the remaining available margin per each CNEC. Available margins
will result by subtracting out of the maximum possible Fmax, all the factors that ’take up’ a
portion of the Fmax. This is done according to:

RAMs = Fmax − FRM − FAV − FNCP (111)

Where the FAV term stands for ’Final Adjustment Value’ and may be or may be not done by
each TSO at the validation stage (i.e. after the RSC send back the CGM and the computed
results to all CCR TSOs).

Once the RAMs of each CNEC are computed, the whole set of constrains can be used to build up a
trading domain similar to the ATC one Fig. 22. In a plane of net commercial positions NCPA→B-
NCPB→A, the set of equations Eq.(111) form a set of straight lines that provide the limits to the
trading domain. The situation is shown in Fig. 23, where a comparison between the FB and the ATC
trading domain is depicted.

In Fig. 23 the domain representation is limited to the exchanges among three bidding zones A,B
and C. In such trilateral case, the set of constrains are simply straight lines. Notice that a CCR that
involves a set of generic N bidding zones involve higher dimensional space of representation for the
trading domain. More precisely, the trading domain of a generic bidding zone A with respect all the
other B,C, . . . lies in a N dimensional space. Each constrain would be represented as an hyperplane
of dimension N .

From an economical and an engineering point of view, the interesting fact that can be drawn from
Fig. 23 is the wider resulting domain obtained through the FB approach with respect to the ATC. A
wider trading domain allows to increase the amount of cross-border exchanges, to obtain greater price
convergence between zones and as a consequence an higher social welfare. Generally, methodologies
that can enlarge the trading domain without decreasing the level of operational security are of great
relevance in a context where RES production may be substantially higher in some countries in short-
times, and hence offer convenient exchange opportunities.

5.1.5 Limitation of Current Practices

Some well-known limitations exist on ATC and FB CC approaches. In the ATC approach (Fig.
23) the trading domain is usually constrained by a set of horizontal and vertical lines that produce

71



Figure 23: FB and ATC trading domains (KU-Leaven-Energy-Institute, 2015).

in general a rectangular domain31. This means that if we reduce the power flow exchange between,
for instance, A and B, this do not result in a higher capacity between A and C. The ATC approach
thus assesses the capacities bilaterally, and by taking a conservative approach on potential loop flows
and transit flows (Fig. 24) which might result from neighbouring cross-border exchanges32.

In other words, the ATC approach do not use a real mathematical model to describe the flows
resulting from neighbouring zones, but rather takes conservative assessments on them based on
experience. On the other hand, the FB approach incorporates the inter-dependency of zones through
a physical model of power flows (although through a linearised approach). In this way, since any
commercial exchange among neighbouring zones is translated into a change in the flow on each
critical component (CNECs), we can get a much better modelling of the constraints. For example,
if we follow a straight line constraint in Fig. 23 we see that a change of commercial exchange
on one border (say A-B) has an impact on another border (A-C). Since FB CC can be considered
a more precise approach to model cross-border commercial exchanges, one may ask why in some
European CCRs the ATC procedure is still in place. One of the reasons is that bidding zones that are
poorly meshed with their neighbours can be modelled effectively with ATC approach (e.g Italy-Greece
CCR). In these cases ATC and FB approaches give in fact the same results, with the advantage
for ATC of being a simpler procedure which involve less parameters to compute (and indeed less
coordination). On the contrary, Central Europe is characterised by highly meshed interconnections
and flows through different bidding zones show a strong interdependency with each other. Hence,
considering the ATC approach as ’limited’ with respect to the FB makes sense only for those regions
that are sufficiently meshed. On this matter, the CACM states (in Article 20, point 7) that:"TSOs
may jointly request the competent regulatory authorities to apply the coordinated net transmission
capacity approach if the TSOs concerned are able to demonstrate that the application of the capacity
calculation methodology using the flow based approach would not yet be more efficient compared
to the net transmission capacity approach and assuming the same level of operational security in
the concerned region" which shows how the CACM strongly stimulates for implementation of FB
CCC where significant benefits can be obtained at same level of operational security. An example

31The domain is squared when the cross-border capacities are symmetric in either direction.
32Loop flows are those flows that start off and get back into its originating bidding zone. Transit flows are flows

that before reaching the destination pass through neighbouring bidding zones.
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Figure 24: Example of bilateral trade (yellow arrows) and resulting physical flows over the
grid (blue arrows). Commercial flows do not translate in physical flows, but rather create
several loop and transit flows according to Kirchhoff’s Law.

of ongoing implementation of FB in place of ATC is that one concerning the Nordic CCR, which
is expected to end in 2022 (Nordic-TSOs, 2018). After a cost-benefit Nordic TSOs have indeed
identified FB as a solution that can bring benefits to CCC process. As ATC and FB CCC shall be
differently applied depending on the topology of CCR, possible improvements to both procedures can
be foreseen. In previous sections we discussed the methodologies in a generic framework. We can
conceptually divide a CCM in three steps:

1. ATC/FB inputs preparation (IGM) at TSOs control centres;

2. RSC collects input information from TSOs through a dedicated digital platform according to
the Common Information Exchange Model and builds the CGM;

3. RSC sends back to TSOs the results of the ATC/FB computation. The TSOs validate the
results and the trading domain is passed to the market.

Currently these steps are only partially coordinated among TSOs though it is known that by increasing
coordination at various stages may yield a better estimation of ATC and FB parameters and deliver
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a more precise estimation of the available cross-border capacity. For instance, during the first step
each TSOs builds its own IGM and makes an estimation of generation and demand within its control
area. At this stage, the internal distribution of flows is obviously not known. Cross-border flows are
only estimated based on historical data. Inputs are asked to neighbouring TSOs, but the extent of
coordination is though low. This means that the actual preparation of data concerning RAs, CNECs,
GSKs, GLDP and forecast on topology state at day of delivery can be imprecise thus leading to
imprecise load flow computations performed at this initial stage.
Over the second step the RSC builds up the CGM and carries out the CCC process. A similar
discussion can be carried out for the third step, where the validation process is only left to the TSO
directly interested without involving neighbouring TSOs which are ‘indirectly’ involved.
With respect to the CCC of meshed CCRs, another source of inaccuracy is given by the linearisation
of power flow problem for the computation of the PTDFs coefficients. One may think to perform a
more accurate estimation of the PTDFs coefficients by carrying out an AC load flow computation.
As a result, the trading domain would be more accurately defined, at the cost of not having a linear
problem to solve. This actually involves a complex and broad discussion involving DAM market design
and the Price Coupling Algorithm (PCA) which is not the scope of this work.

5.1.6 Advantages of Distributed Capacity Calculation

In the previous sections we highlighted some limitation of the current approaches to compute the
available capacity trading domain. Proposing more accurate calculations for processing parameters,
either in the context of ATC or FB CC, may allow to decrease the level of uncertainty on future flows
distribution and grid conditions, hence enlarging the trading capacity domain offered to the market.
In practical terms, this means to be able to exchange more power as needed, and in turn obtaining
the benefit of a more efficient allocation of generating power. A distributed approach to compute
power flow equations at the initial stage of the CCC may allow to plan coordinately the inputs, to
foresee the impact of contingencies, to cope with solar and wind uncertainty and possible outages,
on each other assets. This could be done with the advantage of not sharing detailed information
about owned assets, e.g. the graph topology of the transmission system, generation and demand
profiles. The distributed power flow methodology can be intended as a mean to bridge the gaps due
to asymmetry of information among TSOs, without entailing them to share sensitive information. By
introducing more detailed information gives in turn the benefits of having as a result a more reliable
computation. The same reasoning can be applied as mentioned for the validation stage, after the
RSC CCC process ends up.
Another important factor concerns the time-frame. The problem of correctly calculating and allocating
cross-border capacity can be seen as a chicken-and-egg problem. At the real-time the uncertainty on
production, demand and possible contingencies is null, as production and demand profiles are well-
defined. On the other hand, the definition of a schedule for suppliers and consumers is only defined
once capacities are defined and allocated to the market. The distributed power flow methodology
presented here allows for a fully automated approach that only requires the TSOs to produce topology,
generation and load inputs for the coordinated calculation. The time required for the simulation is
close to that of local ones provided that a fast interconnection among control centres is available
(at least 1Gbit/s). With automation and fast simulation times, the approach may allow TSOs to
bring their analysis closer to the real-time, or to evaluate more scenarios at the same time. Another
remark is that by decomposing the load flow problem into sub-problems, for instance by means of the
methodology presented here, the mathematical formulation of the problem does not change. This
means that the solution that is obtained is exactly the same that would be obtained in the case a unique
entity owned all the input data for the load flow and solved it locally. As the possibility to have a unique
TSO managing the whole ETN does not seem realistic at the moment, a concrete solution to align
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TSOs positions could be that of relying on distributed/delocalised approaches. A final consideration
goes to the possibility of scaling up the methodology. As the grid becomes more active at lower voltage
levels, TSOs may require to include in their power flow computation information about underlying
distribution networks. This makes the computation more complex and more computational expensive
and may require TSOs to face new investments in dedicated computational infrastructures. The
costs of such can be shared among TSOs if they adopt a distributed approach. As the computational
burden is shared among grid operators, the computational power required locally is reduced. In the
next final section we briefly discuss possible applications of distributed approaches to the mentioned
case of TSO-DSO interface.

5.2 TSO-DSO Coordination

This section aims at giving a short overview on how new policy provisions might change the
role of TSOs and DSOs and especially their interaction. In the coming years the higher penetration
of wind and solar distributed power production, the stochastic recharging connection behaviour of
EVs, the appearance of new market actors (prosumers, energy communities), the possibility to have
storage system integration, are expected to remarkably have a direct impact on distribution grids
management and indirectly on transmission system operation. The old role of the DSO as passive
network operator moved by the ‘fit and forget’ approach, is expected to change into a new active role
more similar to that of TSOs in transmission networks management. First generation network codes
and guidelines (those under the Third Energy package) have already started to address the change,
by stimulating TSO and DSO to cooperate and to define coordination schemes on some operational
tasks. Under the CEP new Network Codes (NCs) are expected to be developed from ENTSO-e and
the new EU DSO entity in the next years. In the second part of this section possible applications
of distributed approaches in view of the emerging changes are briefly discussed. The most natural
framework of application being the transmission-distribution networks interface.

5.2.1 Operational & Policy Context in Distribution Grid Management

The entry into force of TEP in 2009 has brought important changes in the European energy sector.
The establishment of a body for TSOs cooperation (ENTSO) has started a process of standardisation
of European system operation, congestion management activities, market interactions, and many
other TSOs related tasks, through preparation and implementation of a set of technical (and legally
binding) rules (network codes (NCs) and guidelines (GLs)). The aim of Network Codes is to support
the objectives set by TEP by means of appropriate legal instruments (GLs and NCs) that require
Member States and all energy stakeholders to implement and develop a set of required actions.
These actions are aimed at enhancing competition in energy markets, operate the system in the most
secure and cost efficient way, while managing hurdles introduced by RES and ease their introduction
in the European energy framework. In this role, ENTSO-e has a clear representative role for TSOs;
as a matter of fact TSOs can be seen as market facilitators, meaning that TSO grid management
principles shall be aligned with the objective of maximising market efficiency, through least cost
interventions and always ensuring security of supply. TSOs are active system operators, which need
to continuously take actions considering the real-time conditions of the grid. In the current context of
DER and new market actors introduction, DSOs are expected to assume a role of market facilitators at
distribution level, in analogy to that of TSOs at transmission level. So far, the distribution grid over-
sizing allowed to introduce RES without too much concern and only requiring DSOs to collaborate
on specific actions. As the rise of RES continues, to meet decarbonisation objective set for the next
decades the dualism market-system operation may need to undergo another big re-settlement. DSOs
need to actively manage their networks in a way that could resemble that of TSOs: plan investments,
monitor grid flows and state variables profiles, provide non-discriminatory network access to their
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users, solve local congestions and even carry out balancing actions on their system. This requires
DSOs to invest properly to improve their ability of monitoring and control of distribution grids. In
order to accelerate this process the CEP has required to establish an EU DSO entity in charge of
developing NCs and GLs for distribution system operation, similarly to what ENTSO-e already does in
the transmission context. Coordination between the two entities is indeed a must. The new legislation
will help clarify which actions shall be taken by TSOs, which by DSOs and which needs coordination.
This is a matter of great attention as, for instance, TSOs and DSOs may have the need to access
flexibility resources (e.g. load shift, storage facilities) located at distribution level for different tasks
(e.g. TSOs for balancing purposes and DSOs for solving local congestions). Note that, in the current
context, DSOs are still preparing to the on-going change.

5.2.2 TSO-DSO Current Cooperation

Currently, TSOs ask on pro-rata basis to DSOs for aggregate estimation of load and production
at distribution level, with particular attention to RES production forecast33. This enable TSOs to
run more accurate power flow analysis and check whether the forecasted operational conditions meet
established operational security policies. This is an example of TSO and DSO cooperation currently in
place. Current shared responsibilities and interactions between TSO and DSOs are regulated through
two GLs and one NCs: the System Operation GL, Electricity Balancing GL and Emergency and
Restoration NC (CEER, 2016). The GLs and NC provide also indications on data format, media and
details to be exchanged depending on which coordinated action is planned to be performed. Insights
on future collaboration schemes between TSO and DSOs can be found in (CEER, 2016) itself. The
need of establishing TSO-DSO cooperation schemes that can be efficient and can reflect the TSO and
DSO needs to access reciprocal resources is thus crucial in the current evolution of distribution grids.
Some key projects have been launched in the last years aimed at clarify which TSO-DSO scheme can
offer higher value to the power system as a whole. SmartNet project, for instance, focuses on ancillary
service provision from distribution grid and coordination schemes between TSO and DSOs (Gerard
et al., 2016). One of the aim of such project is to assess the efficiency of different coordination
schemes under different paradigms (e.g. DSO are in charge of managing local congestions but do not
perform balancing; DSOs can carry out both balancing and congestion management activities within
their systems; etc.).

The changing role of DSOs will demand them more accurate predictions on load and generation
profiles over the distribution grid. This will enable them in turn to perform power flow analysis and
monitor the grid flows and state variables to ensure proper operational security. This is a key fact
as we assume in the following that DSOs are in possess of input data for performing power flow
computations on their system. In this view, it is interesting the ENTSO-e position for future regional
coordination at transmission-distribution level: "TSOs need to share their individual grid models with
the other TSOs and the RSCs. RSCs are responsible for merging the different grid models of the
TSOs and issue common grid models. These are then shared with the TSOs in order for them to
adapt their operational planning with this new regional information. The same process can be used
in the future for next TSO-DSO coordination."(ENTSO-E, 2017). In other words, ENTSO-e foresees
the implementation of a regional coordination service at transmission-distribution interfaces, with
DSOs preparing their own IGMs, sharing them with TSOs, etc. similarly to what seen in the previous
sections with respect to CCC process.

33Both industry and research is well active in developing methodologies that allow to obtain more accurate estima-
tions of RES production. An example of research in this context can be found in (Falabretti et al., 2018).
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5.2.3 TSO-DSO interface with distributed approach

The ’transmission-distribution interface’ can be seen as the boundary between a system operated
by a TSO and a system operated by a DSO. This usually consist in the HV-MV interface, the
’substation’, that brings down the voltage level and supply customers at medium voltage. Differences
exist at European level when talking about voltage levels. For a more in depth discussion on this
topic, please refer to (Prettico et al., 2019). This interface can be radial or meshed, depending
on its geographical location. For instance, in rural zones, the interface is usually radial whereas in
urban areas is meshed. If we imagine a RSC entity responsible for calculating cross-border capacities
at transmission-distribution interfaces, DSOs shall prepare to have in place a GLDP methodology,
an IGM and all the input parameters to perform power flow computations and estimate limits on
its CNECs. Eventually, they will pass the inputs to the RSC to perform the CCC on transmission-
distribution interface. For meshed topologies, a CCC based on an FB procedure can be imagined,
while an ATC based capacity calculation process might be done when the interconnection is radial.
As for the transmission-transmission interface, the inputs to pass and the exchange of IGM could be
better analysed concurrently among TSO and DSOs if a coordinated distributed power flow tool is
available. By using a methodology that allow delocalised simulation the sharing of input data for
power flow computation is not needed as widely mentioned throughout this report.
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6 Conclusions & Future Works

This report presented a new methodology for distributed solution of power flow equations and a
brief discussion on its potential uses in the power sector. The key-facts drawn by this work cam be
summarised as follows:

• The methodology presented here is highly scalable and robust, which makes it appealing for
future power grids, that are envisioned to be larger and more interconnected. This has been
extensively proved in the literature through the Krylov-Schwarz approaches;

• The information sharing between the two (or more) parties involved is limited and most of the
solution process can be carried out in an autonomous fashion in the computation. This gives
the advantage to grid operators to input more detailed information about their topology state,
generation and load profiles, at the benefit of obtaining more accurate load flow calculations
(and hence a ‘better’ snapshot of grid conditions);

• We can think of distributed/delocalised approaches in a large number of situations for grid
operation scopes but not only. These approaches finds an application whenever the need of
aligning power flows among different grid operators is demanded and the local input information
cannot be shared between the parties. In the current and emerging European framework, we
identified two specific areas of application: 1) the Capacity Calculation process between TSOs
at European level; 2) the calculation of power flows at the TSO-DSO interface.

• In the context of Capacity Calculation some stages are performed regionally by TSOs. A coor-
dinated distributed approach in load flow computation might allow to better coordinate some
steps of the established procedures and get more accurate estimation of ATC/FB parameters.
As a consequence of that wider capacity trading domains to offer to the market might be
obtained increasing price convergence between bidding zones without decreasing the level of
operational security requested to TSOs.

• In the context of TSO-DSO cooperation, distributed approaches to power flow equations can be
envisaged with reference to transmission-distribution interface management. If a Coordinated
Capacity Calculation mechanism is in place at distribution level as well, similar to that applied
to Capacity Calculation Regions at national level, same considerations done on TSO-TSO
coordination might be easily translated to the TSO-DSO local coordination.

Several questions and ideas have raised during the completion of this project, which might be tackled
in future works on this topic. A non-exhaustive list is reported below:

• A more accurate analysis on parallel communications of Inexact Newton methods based on
Krylov-Schwarz inner linear solvers;

• An improvement of the methodology into a full delocalised approach, so that each grid entity
can act as a peer in a peer-to-peer scenario;

• An assessment of the possibility to use Distributed/Delocalised approaches for AC Optimal
Power Flows implementations;

• A more in-depth analysis and possibly use case of TSO-TSO and TSO-DSO schemes to perform
coordinated power flow computations.
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Annexes

Annex 1. Ybus

The nodal admittance matrix Ybus can be derived in many ways. Here we report only its definition.
With reference to a grid of N buses, the Ybus is an NxN matrix having entries in position i, j defined
as:

Ybus =


N∑
j=1

yij , i = j

−yij , i 6= j

(112)

With yij the branch admittance of line connecting bus i with j. If no line connects bus i with j,
then Ybus,ij = 0.

Annex 2. GMREs

Here, we report the full Generalized Minimal Residual method algorithm under its left and right
preconditioned form ((Saad, 2003)). Notice the Arnoldi’s orthogonalization process from step 2 to
10 to build the basis for the Krylov Subspace.

Algorithm 3 Left-preconditioned GMRES for iterative solution of linear systems.
1: Compute r0 = M−1(b−Ax0), β := ||r0||2, and v1 := r0/β
2: For j = 1, ...,m Do:
3: Compute w := M−1Avj
4: For i = 1, ..., j Do:
5: hij := (wj , vi)
6: wj := wj − hijvi
7: end Do
8: Compute hj+1,j = ||wj ||2 and vj+1 = wj/hj + 1, j
9: end Do
10: Define Vm := [v1, . . . , vm], the Hessenberg matrix Ĥm = {hij}1≤i≤m+1,1≤j≤m.

11: Compute ym = argminy ||βe1 − Ĥmy||2 and xm = x0 + Vmym
12: If satisfied Stop, else set x0 := xm and GoTo 1

Annex 3. Installing the Software

In this section the procedure for installing the software will be explained. All the steps as well as
configuration options and FAQ can be found at (Balay et al., 2018b).
The first step is to download the last released version. It can be done using Git with:

git clone -b maint https://bitbucket.org/petsc/petsc petsc

New patches can be obtained anytime using

git pull

in the petsc directory.
Another option is to download the compact tarball from PETSc webpage:
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Algorithm 4 Right-preconditioned GMRES method for iterative solution of linear systems.
1: Compute r0 = (b−Ax0), β := ||r0||2, and v1 := r0/β
2: For j = 1, ...,m Do:
3: Compute w := AM−1vj
4: For i = 1, ..., j Do:
5: hij := (wj , vi)
6: wj := wj − hijvi
7: end Do
8: Compute hj+1,j = ||wj ||2 and vj+1 = wj/hj + 1, j
9: end Do
10: Define Vm := [v1, . . . , vm], the Hessenberg matrix Ĥm = {hij}1≤i≤m+1,1≤j≤m.

11: Compute ym = argminy ||βe1 − Ĥmy||2 and xm = x0 +M−1Vmym
12: If satisfied Stop, else set x0 := xm and GoTo 1

petsc-3.10.3.tar.gz

And then untar from terminal to create the PETSc folder:

tar -xzf petsc-3.10.3.tar.gz

Once that PETSc directory has been created the installation procedure can begin. If MPI and
BLAS/LAPACK are already installed it is possible to configure the software from petsc directory
with:

./configure
make all test

In case MPI and BLAS/LAPACK are not present in the machine (most of the cases) user can specify
to download and install them with the options:

./configure --download-mpich --download-fblaslapack
make all test

It is possible to specify the compilers that the user is willing to use:

./configure --with-cc=gcc --with-cxx=g++ --with-fc=gfortran --download-mpich --
download-fblaslapack

make all test

In this case PETSc will be configured with C, C++ and Fortran compilers. All the configuration
options can be found in PETSc webpage.
Once that all tests have been run successfully, PETSc is ready to be used. The subfolders are divided
according to Figure 11. Every family object folder contains a list of examples already implemented
so the user can have a better understanding of the libraries. In this way the application code can be
written starting from a draft.

Annex 4. Setting up a small cluster computing environment

The configuration of machine’s cluster have been done through GNU bash built-in commands of
UNIX systems, that means from terminals of each machine. All the commands that will follow are
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then executed in a bash shell. First of all, we create a brand new profile into each machine that we
call mpiuser. This is important to get a neat configuration as well as because executable file must
have same path. The new user can be create as follows:

sudo adduser mpiuser sudo

Where the sudo at the end gives admin privileges to the user mpiuser. Then, we make PETSc
working on each machine, specifically configured with same MPICH version for both machines. Notice
that path of installations must be the same in both machines. The procedure is the same explained
in Paragraph 6.
Before continuing is good to check that the remote connection between machines work in the proper
way. To do such a thing, we need IP numbers. The IP numbers can be found through the ifconfig
command that lists all the active connections of the machine (included the one with itself). Notice
that the command must be executed from each machine. Filtering the output of ifconfig for the
WLAN which we want to use as local network, in our case we get the two IPs, that in our case
resulted in:

10.0.0.102 (machine1)
10.0.0.101 (machine2)

The next step is host file configuration. This step is not explicitly needed but allows to get a
neater configuration. Host files allow to give a name to each machine so that the machines are
identified with their names rather than the IPs. Every time an application asks for the IP, we just put
the host name and then the DNS servers activate and get the correspond IP for the application. The
host file can be found in /etc/hosts directory of each machine. Thus we access the file as follows:

sudo vim /etc/hosts

And make for both the modification:

10.0.0.102 master
10.0.0.101 client

At this stage we check that our machines are able to ping with each other and that our configu-
ration of host file properly worked as follows:

ping master
ping client

Respectively from client machine and master machine. The next necessary condition for our MPI
cluster to work is that each machine must be able to remotely log into the other one. So we check that
remote log in from master to client and from client works properly. The bash built-in ssh command
is a command exactly for these purposes. Its use is straighforward: for instance, to log into client
machine from master:

ssh client

The command above asks for password though. This is not wanted when making up a MPI
cluster: message communications must be exchanged freely. To enable passwordless login we generate
encrypted keys. Let just type:

ssh-keygen -t rsa

To create the key. Then, let’s share the keys with all the machines that take part to the cluster,
that means, in our case only with the client machine. Hence we type:
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ssh-copy-id client

To copy the access key to client machine. At this stage, we’re able to passwordless log into client
machine. Notice that firewall must be disabled so as to be able to log remotely through ssh. Firewall
disabling is done as:

sudo ufw disable

The configuration is complete. In the next section we will how to run the pf simulation.

Annex 5. Running the Distributed Power Flow Simulations

Accomplished the configuration of the cluster computing, the code is ready to be compiled and
run. Hence, the compiling process is made as usual through:

make pf

That calls the makefile and generate an executable file called "pf". To carry out the parallel
execution onto machines of the code an hostfile must be created. This is quite simple. Create a file
named "hostfile" in the same folder of the master node by typing in the terminal:

sudo vi hostfile

And write into it the number of processes that one wants to perform on each of the machine that
take part into the distributed simulation. Namely, write into this file:

master:n1
client:n2

Where n1 and n2 are two integers representing the number of processes that are wanted to be
run onto each machine.

At this stage the last thing to do is to run from master the simulation by typing in the folder of
the executable file:

mpiexec -n <np> -f /path/to/hostfile ./power -pfdata <case.m>

Where np is the number of total processes, namely the sum of n1 and n2.
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