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“Out of love, Sacrifice is born, Hate is born, And we are able to know pain. ”

Pain



Transfer Learning Effects on Image Steganalysis with Pre-Trained
Deep Residual Neural Network Model

Selim ÖZCAN

Abstract

Steganalysis researches for the techniques used to reveal the embedded messages that
is hidden in a digital medium -in most cases in images. The research and development
activities in Image Steganalysis has gained more traction in recent years. Although
machine learning techniques have been used for many years Deep Learning is a new
paradigm for the Image Steganalysis domain. The success of the deep learning process
is based on the training of the model for a sufficient amount of and with a high quality,
diverse and large-scale data set. When the training process lacks dataset in terms of
quality, variety and quantity, Transfer Learning emerges as an effective solution from
Deep Learning methods. In Transfer Learning, an untrained model benefits from a pre-
viously trained model and its dataset. Base function is defined to transfer the parameters
from the trained model to the untrained model. Hence, it would increase the success of
deep learning model on Image Steganalysis. In this work, we compare the results of two
series of models that are trained both with and without Transfer Learning method. The
optimization method of the model training process is selected as experimental AdamW
optimization method. Comparison of training, testing, evaluating and F1 scoring are
based on the models trained with different steganography payload values which starts
from easy to hard to detect. We investigated for the best possible ways of increasing the
success rate and decreasing the error rate on detecting stego images and cover images
separately with this study. Results showed that transfer learning applied model is more
successful on detecting stego images on every different rated payload dataset compared
to the normal trained model.

Keywords: steganography, image steganalysis, deep learning, convolutional neural net-
works, residual learning, transfer learning



Önceden Eğitilen Derin Artıklı Sinir Ağları Modeli ile Görüntü
Steganalizinde Transfer Öğrenmenin Etkileri

Selim ÖZCAN

Öz

Steganaliz, genelde resimler olmak üzere dijital bir taşıyıcıda gizlenen gömülü mesajları
açığa çıkarmak için kullanılan teknikleri araştırır. Son yıllarda görüntü steganalizinde
araştırma ve geliştirme çalışmaları daha fazla çekicilik kazanmıştır. Görüntü steganalizi
alanında makine öğrenmesi teknikleri uzun yıllardır kullanılmasına rağmen derin öğrenme
yeni bir paradigmadır. Derin öğrenme işleminin başarısının temeli modelin yeterli mik-
tarda eğitilmesine ve yüksek kaliteli, çeşitli ve büyük orandaki veri setine bağlıdır. Eğitim
işleminde veri setinde kalite, çeşitlilik ve miktar bağlamında eksiklik olması durumunda
derin öğrenme metotlarından transfer öğrenme etkili bir çözüm olarak ortaya çıkmak-
tadır. Transfer öğrenmede eğitilmemiş bir model daha önceden eğitilmiş bir modelden ve
onun veri setinden faydalanır. Temel işlev eğitilmiş modelin parametrelerini eğitilmemiş
modele transfer etmektir. Böylelikle, görüntü steganalizi için derin öğrenme modelinin
başarısı artırılmaktadır. Bu çalışmamızda, transfer öğrenme metodu ile eğitilmiş ve eği-
tilmemiş iki model serisini karşılaştırıyoruz. Modelin eğitimi işleminde optimizasyon
metodu olarak deneysel AdamW optimizasyon metodu seçilmiştir. Eğitim, test, değer-
lendirme ve F1 skorlama karşılaştırması kolay tespit edilebilenden zor tespit edilebilen
farklı steganografi yük değerleri ile eğitilen modeller üzerinden gerçekleştirilmiştir. Bu
çalışmamızda ayrı ayrı olarak örtülü-stego görüntülerin ve örtülmemiş-cover görüntülerin
tespit edilmesinde hata oranını azaltmanın ve başarı oranını artırmanın olası en iyi yol-
larını araştırdık. Sonuçlar transfer öğrenme metodunun uygulandığı modelin her farklı
oranda yüklenmiş veri setlerindeki örtülü-stego görüntülerin tespit edilmesinde normal
eğitilmiş modele göre daha başarılı olduğunu göstermiştir.

Anahtar Sözcükler: steganografi, görüntü steganaliz, derin öğrenme, evrişimsel sinir
ağları, artık değerli öğrenme, transfer öğrenme
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Chapter 1

Introduction

1.1 Issue of Secrecy

There have always been a need for secrecy in life from past to present. People desire

to prevent unauthorized or unwanted persons from becoming aware of the existence of

a message, a happening or a fact etc. Communication between the sides needs to be

in secret. In order to maintain secrecy from revealing, many different techniques were

developed by the people for ages. Nowadays, it all happens in the digital world. People

use digital world almost for everything including communication in secret.

Cryptography is the mostly known and used technique. But, there is also another tech-

nique which was unknown and unused unlike cryptography until recent years. The name

is steganography as shown at the Figure 1.1[1] under the information hiding section.

Cryptography obscures the content of the message so it can not be understood, steganog-

raphy conceals the existence of the content of the message. Steganographic techniques

emerge from ancient history into the digital world [2]. It gains immutable notice and

growing popularity into the world of digital communication. The very objective is to

prevent the message being read by anyone and also camouflage its presence.

Steganography can be used in many different areas in life depending on the intentions of

good or bad. Governments and military could use in times of war for intelligence, busi-

nessmen collect information secretly for their new projects in the business world, money

transactions, a secret meeting etc. For example, two partners want to communicate for

1
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a meeting or share passwords, between a client and a bank for money transactions or

PIN numbers of credit cards can be given for the examples for good deeds.

On the other hand, people with evil intentions can use steganography for their inter-

ests. Basically and mostly, people use steganography for espionage. It is suitable to

use in the corporate espionage without anyone noticing. One could send out valuable

information such as trade secrets, business plans, secret chemical formula, blueprints of

a new airplane, plans for a new invention etc. Black hat hackers, malware writers, use

steganography to smuggle their malicious payloads or malwares into the protected net-

works passing through security scanners or firewalls, sends commands to malwares from

Command and Control (C&C) Servers and after that they can do any bidding they like.

Another extremely important and invaluable data are medical records of the patients.

Medical diagnosis, history of a patient, X-ray results or scan (CAT, MRI etc.) images

are accepted as medical data and must be secured with uncompromising security tools

during both storage and transmissions. Even so, data can be stolen, then can be hid-

den in a file and after that it can be transferred through email. Terrorism is the most

dangerous area that steganography could be used. Terrorists can benefit from steganog-

raphy ensuring secret communications over the internet uncaught and undetected for

their terrorists plots.

It is a very hard job to be sure that whether a carrier hides secret messages. There are

payload detection tools and methods to help investigators doing the analysis on data.

But they are expensive and probabilistic which do not a solution that uncovers the hid-

den messages. Researchers, governments, corporate businesses, military and intelligence

services etc. all try to develop a solution finding the hidden messages, but still not found

a certain way. Meanwhile, people develop new harder and smarter steganographic meth-

ods from all over the world. In the end, there is always lingers a mystery at the heart of

the steganography that is when no secret message was found, then two questions remain:

Was there really a secret message or were we unable to find a secret message?
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Figure 1.1: Security Domain

1.2 Steganography

Steganography is the art and practice of hiding information in a cover medium. Meaning

of the steganography is covert text. Steganography makes possible the covert communica-

tion. The word of steganography comes from Greek words ’stegos’ and ’graphia’. Stegos

means hidden or covered. Graphia means to write. Steganography allows embedding

secret messages inside a piece of unsuspicious information in another word carriers. In

steganography, images, audio, text files, video files, IP datagram and data transmissions

are all potential carriers. Then share it to anyone in anytime without anyone knowing

the existence of the secret message. The hidden information should not be detected by

anyone or anything in any way at any time.

While cryptography focuses on providing privacy, steganography intends providing se-

crecy. A very basic comparison of mechanism for cryptography and steganography

is shown at the Figure 1.2[3]. Cryptography provides visible secret information, but

steganography provides invisible and inaudible secret communication. Cryptography is

based on robustness of the cryptographic algorithm but steganography is based on un-

detectability with capacity. Secret messages are scrambled in cryptography in a way

that no one other than the intented receiver be able to obtain the secret message. But,

on the other hand, secret messages are hidden in steganography so that no existence or

knowledge of the secret message perceived by any one. Cryptography and steganogra-

phy often are used in conjunction with each other providing double protection for secret
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messages. First, the sender encrypts secret messages with cryptography and then hides

the encrypted secret messages in the carriers using steganographic methods. If an enemy

or adversary or opponent happens to obtain the carrier, first, the hidden message needs

to be found which is a quite hard job, then the hidden message must be decrypted.

Figure 1.2: Digital Data Security

Some common definitions used in the world of the steganography are:

• Cover Medium: Innocent looking object or medium for hiding the Secret Message

inside.

• Secret Message: Important data needed to be delivered secretly.

• Key: Can be used to randomize steganographic algorithms or encrypting Secret

Message.

• Stego Medium: Innocent looking object or medium loaded imperceptibly with

Secret Message.
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Equation 1.1 previews the process of the steganography.

f(Cover Medium+ Secret Message+Key) = Stego Medium

========= Communication Channel =========

g(Stego Medium+Key) = Cover Medium+ Secret Message

f() is the operation of Embedding Steganography Algorithm

g() is the operation of Decoding Steganalysis Algorithm

(1.1)

1.2.1 History of Steganography

Throughout the history, steganography has been used in various forms for over 2500

years. It has been used and it is still being used in many areas such as in every stages

of wars, in political and diplomatic works, espionage, prison breaks, rebellions etc. The

word of Steganography first seen in a work named Steganographia written by a German

abbot named Trithemius in 15th century. Cover page of Steganographia can be seen on

Figure 1.3[4].

The Histories written by Herodotus mentions the first examples of steganography[5].

Herodotus tells that a man named Harpagus killed a hare, hid the secret message inside

the hare. Then Harpagus sent the stego hare with someone who looked like a hunter.

Harpagus used the hare as a cover to deliver the secret message. Another example is that

around 5th century B.C. Histiaeus who was a Greek ruler of Miletus but was captive

in the city of Susa which was under control of the Persians. He sent a message to his

vassal, name Aristagoras, in the Miletus using steganography. Histiaeus used his most

trusted servant. He shaved his head and he wrote the secret message on to the scalp of

the servant. Then, once the hair regrown again, Histiaeus sent his stego servant with

the secret message to Miletus. Once the stego servant reached the Miletus, Aristagoras

shaved the head of the stego servant again and read the secret message that told him

to revolt against the Persians. Histiaeus used his servant as a cover to deliver his secret

message.

Herodotus also mentions another example about steganography in the ancient Greek still

around 5th century B.C. Demeratus an exiled Greek, sent a secret message to warn the

people of Greek. He used a wax tablet which was made from wooden backing and covered
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with wax. At that time, tablets were covered with wax to write messages. Demeratus

scraped the wax off of the tablet, carved the secret message on the underlying wood and

then covered the tablet with wax again. Stego tablet was seen blank and unused at the

probable inspection so it did not suspect anyone. When the intended receiver got the

stego tablet, secret message revealed itself after scraping the wax off of the stego tablet.

Figure 1.3: Steganographia Cover Page

As the time was passing by, new steganographic techniques were developed as well. One

interesting and popular technique was to use invisible ink to write secret messages on
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papers such as letters. Milk, urine and fruit juices such as lemon could be the very basic

materials to write invisible messages. Text which are written by using invisible ink is not

seen with eyes. Therefore, stego letters could be delivered to anyone without any suspect.

Only when stego papers heated by a heat source such as a candle, secret messages would

get visibly darkened to be read.

With the advancements in the areas of photography, lens making and film technologies, a

German invention of the microdot technology was being used in secret communications[6].

Microdots technology reduced the size of the photographs greatly to the size of a dot.

Then, reduced sized secret messages were attached onto anything possibly on a letter.

Microdots were so small like a dot on the papers that it did not draw attention. Besides

being so small, it made it possible of transmission of large amounts of data such as

photographs, documents, drawings, pictures and plans.

Null cipher was another technique used in 20th century during World War II. Null

ciphering was about hiding secret messages into innocent looking messages or text such

as a shopping list or a weather report etc. It followed a pre-arranged set of rules to

embed secret messages into writings. Examples[7] for null ciphering could be as follows:

Fishing freshwater bends and saltwater coasts rewards anyone feeling

stressed. Resourceful anglers usually find masterful leapers fun and admit

swordfish rank overwhelming any day.

Secret message revealed by taking every third letter in each word: "Send

Lawyers, Guns, and Money."

Second example was from a German spy in World War II,

Apparently neutral’s protest is thoroughly discounted and ignored. Isman

hard hit. Blockade issue affects pretext for embargo on by products, ejecting

suets and vegetable oils.

Secret message revealed by taking every second letter in each word: "Per-

shing sails from NY June 1."
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1.2.2 A Very Basic Steganographic Method: Least Significant Bit

(LSB)

There are many different ways to embed secret messages into ordinary data files. A very

basic and one of the most common technique is to hide data such as a text file in bits into

the pixels of image files. The operation is proceed by storing the bits of the message into

the less significant bytes of the cover-carrier image file. By embedding secret message

data to redundant data section of image files in some inconspicuous way, we obtain as a

result a stego image file that appears identical to the original image file. Anyone viewing

the stego image file should not be able to differentiate the encrypted-stego image file from

the original image file. But it has some noise patterns due to applying secret message.

It is the quality of steganographic algorithm that stands against revealing hidden infor-

mation as long as possible to any kind of attacks. It is much easier to detect existence

of hidden information if the irregularity on the stego image is obvious to be seen even

with the eyes. Steganography modifies image contents in order to hide information ac-

cording to algorithm and size of the information which needs to be hidden as in [8]. In

the same way, if the size of the information to be hidden is small, then content of the

cover image would be corrupted much less and this decreases detection possibility. In

the steganography algorithms, information to be hidden is named as payload.

When an analog image is to be converted to a digital format, there are usually three

different ways of representing colors:

• 24-bit color: Represented by three different layers of basic colors: Red, Green and

Blue. Each has 8 bit(256 values). Every pixel could have a color in the pool of 22̂4

colors.

• 8-bit color: Represented by only one layer of colors having 8 bit(256 values).

• 8-bit gray-scale: Represented by only one layer of shades of gray having 8 bit(256

values).Figure 1.4[9] shows an example of 8-bit gray-scale image and pixels.

In 24-bit colorful images, LSB steganography algorithm changes the LSBs of each color

of pixels. Similarly, in the 8-bit images, LSB insertion modifies the LSBs of the 8-bit

values. Most LSB algorithm based steganography software tools hide information in at

least three ways:
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Figure 1.4: Gray Scale Image

• By changing LSB of pixels randomly.

• By modifying LSB of pixels in certain areas of images.

• By incrementing or decrementing the pixel value of the last bit.

1.2.3 An Least Significant Bit (LSB) Example

If the letter ’A’ would be the secret message, then it has a value of 65(decimal) in ASCII

code, equal to binary value of 1000001. 1-bit LSB modification of pixels usually has a

50% chance to change a LSB every 8 bits. Therefore, very little noise would be added to

the original cover image.

LSB process in an 8-bit image would be as follows with 8 pixels:

10000000, 10100100, 10110101, 10110101, 11110011, 10110111, 11100111, 10110011

Then pixel values after the insertion of an ’A’:

10000001, 10100100, 10110100, 10110100, 11110010, 10110110, 11100110, 10110011

(The bold values were modified by the LSB algorithm)
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Three consecutive pixel values are needed to store an ’A’ inside a 24-bit image:

The pixel values before the insertion are:

10000000.10100100.10110101, 10110101.11110011.10110111,

11100111.10110011.00110011

Then pixel values after the insertion of an ’A’:

10000001.10100100.10110100, 10110100.11110010.10110110,

11100110.10110011.00110011

1.3 Steganalysis

Steganalysis is the art of uncovering hidden information from a stego medium. There are

different methods to be used as steganalysis tools. But, it has more promising results to

use the deep neural networks in steganalysis of images[10].

Before deep learning approach, state-of-the-art steganalyzers were based on two steps:

Rich Models[11] as feature extraction step and Ensemble Classifier as classification

step[12]. Feature extraction needs deep domain knowledge on steganography, steganaly-

sis and structure of images. Instead, deep learning models extract features automatically

with semi-supervised or unsupervised methods.

In nature of steganalysis, it is not certain whether a message is hidden or not. Researchers

tries many ways to ensure this. However, they may not conclude any result because of

two reasons; there is no hidden message to find at all or the proper solution cannot be

found.

Steganalysis works scientifically to break steganography, as the name may suggest. Peo-

ple are called steganalyst who work in this field. There are two different types of attacks:

• Detection and/or Extraction(Passive Attack):The intention of the attack is to de-

tect secret message. If secret message exists, then extract it.

• Destroy or Distortion(Active Attack):The intention of the attack is making impos-

sible to obtain the secret message by anyone.
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It is possible to apply these two tasks separately. Even if the secret message not known,

secret message can be destroyed just by applying some transformations to the stego

object depending on the steganographic method used or supposed.

The steganalysis attack methods could be in different forms according to the information

steganalyst has:

• A stego only attack: When only have the stego object. Purpose is to detect and/or

extract the embedded message.

• A chosen stego attack: When only have both the stego object and the steganogra-

phy tool or algorithm.

• A known cover attack: When only have both the stego object and the cover object.

Comparisons between the two objects could be made.

• A know stego attack: When only have steganography algorithm, stego object and

cover object.

• A known message attack: When only have both the secret message and the stego

object. Purpose is to find the algorithm of steganography.

• A chosen message attack: Generating a stego object from a message using an

algorithm. Looking for signatures to detect other stego object.

1.4 Deep Learning

Deep learning is a sub-part class of machine learning algorithms. Machine learning covers

deep learning. Features are given to machine learning manually unlike deep learning that

learns features directly from data. When the amount of data increases, deep learning

gives better performance than machine learning techniques. Deep learning finds usage

in the areas of the following: speech recognition, image classification, natural language

processing, recommendation systems etc. It is a computer software and mathematical

equations that mimics the brain by modeling the network of neurons. It is called deep

learning because it uses deep neural networks. Deep learning models are constructed by

connecting layers. Layers are named according to their position in the model. First layer

is called Input Layer. Last layer is called Output Layer and all the other internal layers
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between them are called Hidden Layers. The word deep means that the connected layers

in the model are more than two layers. Figure 1.5[13] shows a basic structure of deep

learning model.

Figure 1.5: Deep Learning Model

Layers are composed of neurons which connected to each others. Neurons process the

incoming input signal and then propagate the output signal towards to the output layers.

The strength of the signal depends on the weight, bias and activation function of the

neurons. The network could learn complex features of the data at each layer.

A neuron is a mathematical function as shown at the Figure 1.6[14]. Neuron takes one

or more inputs, multiplies inputs by values called weights then sum all of them. At the

end, a non-linear function called activation function takes the sum value and produces

the output value of the neuron. The x values are inputs and the w values are weights

that are coefficients. Symbol showed with b is Bias intercept value which help to fit data

better.

The calculation of a neuron starts with a lineer equation as shown in Equation 1.2. f

function is the activation function. An activation function is an fundamental component

of neural network architectures. It provides non-linearity to the output value of the

neuron. y is the output value of the neuron.

y = f(x1w1 + x2w2 + x3w3...+ b) (1.2)
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Figure 1.6: Neuron of Deep Learning Model

Sigmoid activation function as in Equation 1.3 results in a value between 0 and 1. It tells

how confident the model is that the processing material belongs to a class. Sigmoidal

activation function is used especially for models to predict the probability. It is good to

use for a classifiers.

f(x) =
1

1 + exp(�x) (1.3)

1.4.1 Convolutional Neural Networks

Convolutional Neural Networks(CNNs or ConvNets) are very much capable of being used

in many image related machine learning projects. CNNs achieve very impressive results

in recognition of images in the area of computer vision. Due to the structure of CNNs,

neural network models are able to classify images. CNNs contain a concrete case of Deep

Learning neural networks constructed with neurons, weights and biases.

ConvNets work just like how people recognize things. While seeing, recognition of an

object begins with the recognition the parts of the object. For example, identifying a car

starts with identifying the parts of the car such as four tires, four car doors, windows,

size and measurements etc. After a car is learned, even if two tires out of four tires

are not seen on the image, then it is still classified with a high probability as a car.

Because the other parts of the car could still be seen on the image. But previously, it

should be learned what is a tire, a door or a window of the car in the image. That is,
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firstly, features should be learned by the model to identify lines, edges, shapes or textures

similarly belonging to a car. This kind of responsibility is entrusted to ConvNets.

Computers operate on an input image as an array of pixels. Based on the size of the

image, the size of the array would result to as in Equation 1.4. CNN models follow the

flow of processing as indicated at Figure 1.7[15] which shows how do the convolutional

neural networks operate on images step by step. It consists of two steps, feature learning

and classification. Each input image passes through a series of convolution layers by

applying filters(kernels) followed by pooling operation. After that, classification starts

with flatten and fully connected layers. Softmax activation function is applied to classify

objects in the image with probability between 0 and 1. This is called forward propagation.

height ⇤ width ⇤ dimension (1.4)

• Convolution Layers extract feature informations from input images. Model does

not know where are the features in the image. So, it tries to find features by

applying a filter to the input matrix of images. Applying a filter is a mathematical

operation that sums the outputs of the two matrices multiplication.

• Pooling layers reduce the number of parameters thus subsamples or downsamples

the dimension of the image without losing important feature information.

• Fully Connected layers take input as a flattened vector. Then, FC layers use

features to classify the input images just like neural networks.

Figure 1.7: Convolutional Neural Network Model
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Neural Network Models would result more accurate predictions if they have multi-layers

architecture named as deeper neural network models. The deeper the layer of the net-

work, the more training time, more dataset to train the model required. As a side effect,

if depth of model’ layers continue to increase, the accuracy of the model might start to

degrade rapidly due to vanishing gradients. Gradients of model result with small val-

ues approaching to zero which makes the model hard to train. Error parameters of the

model would be difficult to propagate back correctly. The model starts to learn irrelevant

information on deep layers.

In backward propagation, derivatives of the output are find going backward in the model.

Backpropagation is used in the model to calculate the error rate and loss value of the

model. After a forward propagation of the model is done and a result is obtained, it is

controlled with the truth table to check if the model produced the expected result. If

not, then some parameters of the model need to be increased or decreased by the amount

of error rate and loss value. In order to calculate gradients such as error rate and loss

value, model backpropagates backward from final layer to initial layer taking derivatives.

By taking backpropagation to first layers, hence more parameters are multiplied which

made the gradients smaller. In the end with small gradients, weights and biases would

not get updated effectively in the initial layers for each training sessions. Therefore, the

overall accuracy of the network would not get effectively updated too.

Residual Networks is one solution of many others.

1.4.2 Residual Neural Networks

In the light of deeper models, Residual Networks-ResNets[16][17] have an architecture

model that is deeper than normal models but eases the training time and prevents the

vanishing gradients problem of accuracy of the model. Before ResNets, deeper neural

networks were having much more training errors. Data was disappearing going through

too many deep layers. Figure 1.8[18] shows the differs between a plain network model

and a residual block. Basically, ResNets have residual building blocks which provide

shortcuts between layers while carrying inputs of the lower layers to deeper layers of the

network. It splits deep neural networks to chunks with three layers. With an architecture

of residual blocks, the model does not lose the input from a previous layer. It enables

of passing the inputs straight through to next chunks. Residual connections prevent
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the derivatives to decrease to the smaller values by not letting them through activation

functions. Residual connections add the value x to the value at the further blocks F(x)

+ x.

Figure 1.8: Plain Network and Residual Block

1.4.3 Transfer Learning

Transfer Learning[19] allows quick development of deep learning models. Deep learning

models start with a trained background before. They may have optimized weight values

that are trained for a similar dataset. Thus, it would be easier and fast to learn on the

new datasets. With transfer learning, models have already learned the fundamentals of

the dataset, hence it does not require to learn them again on the training phase. It only

focuses on the specific requirements that are modeled to learn.

It is useful to use transfer learning when there are insufficient data for the new domain.

A pre-trained model is a saved model which trained before with optimized parameters.

Saved model could be an effective model to serve for a specific problem. For example,

a saved model which trained on recognizing birds could be re-used again to recognize

specific birds such as pigeons or eagles. Previous model trained with birds knows how

to find a bird in images. But we need a model that could find eagles in images. It

takes time and dataset to train a new model with images of eagles to teach features of

birds to the model from zero. It is useful using a saved model which trained before on

similar domain. Also, applying transfer learning results to train model with less data

but increased accuracy in a short time.

When the datasets are similar and relevant to each others, but new/target dataset is

small, then transfer learning could be applied as follows:
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• Remove the output fully connected layers of the pre-trained base model. Because

FC layers are classification layers.

• Add new FC layers to the output layers of the model according to the purpose of

the model such as classification.

• Randomize weights of the new connected FC layers.

• Train the network including FC layers with the new small dataset.

By applying this procedure, parameters and weights outside of the removed FC layers

are transferred to the new problem. Transferred weights and parameters are optimized

on features of images. Thus, transfer learning has been applied.

1.5 Contributions

The problem in the world of steganography is to find a way to uncover the secret messages.

There is not a single way to uncover all the steganographic algorithms. Every day new

methods are developed in the world of the steganography. Not only steganography is

used for good intentions by good people, but there are many people with evil intentions

who are capable of taking action with motivations of evil, unfair, unjust and wrong.

Steganography is different from cryptography. In cryptography, it is known that there

is a secret message, but in steganography, one can not be sure whether there is a secret

message or not. This study tries to be a step closer to uncover the secret messages.

In this study, we used ResNet50 model of Keras Deep Learning Framework which was

trained on ImageNet dataset. We aim at investigating for a new approach to increase the

success rate of detecting very difficult stego images and cover images separately. Thus,

we chose transfer learning method in our study.

We trained the model with dataset from easy to tell apart stego and cover images until

hard to distinguish stego and cover images. Therefore, the model has learned the smallest

changes on images between different dataset in every step. Thus, we obtained successful

detection results even on the 0.1bpp embedded stego images which have too small stego

corruption conjugate cover images.



Chapter 1. Introduction 18

1.6 Outline

First chapter includes the introductions to the domain, methodology, problem and what

the contributions are.

The remaining of the thesis was organized as follows:

Chapter 2 reports the preceding studies and discussions of how different our method-

ology was.

Chapter 3 explains the steps of the study, methodology, background information, the

details about the deep learning models.

Chapter 4 is about the experimental setups of the study, dataset, training, testing and

how the results were scored and evaluated.

Chapter 5 presents the results of the study. It shows comparisons supported with

Figures, Tables, evaluation and scoring results.

Chapter 6 indicates the conclusion from the study. Also, plans of the future studies

were included at the end.

Appendix A contains the obtained results from validation step of the training process

of the models with WOW steganography algorithm.

Appendix B gives a sample Python source code that run for training the model with

the LSB steganography algorithm.

Bibliography section of references.
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Related Work

There have been many methods in steganalysis to uncover the embedded messages. With

the help of convolutional neural networks, image steganalysis got popular in the direction

to neural networks. There has not yet found an effective solution to easily extract secret

messages from images.

In [20], as activation function Gaussian was used in CNN model and only three embedded

datasets are processed such as 0.5, 0.4 and 0.3 from database of BOSSBase. This study

did not consider working on the 0.1 embedded payload dataset. Changing activation

function may affect the success rate for a small percentage. Another study [21] is a

similar to the first one[20]. In this study[21], a preprocessing operation was applied to

the images. Then, the preprocessed images were given to a CNN model which was not

as deep as a Deep Residual Neural Network. Although the study was based on WOW

and HUGO steganography algorithms, evaluations were not performed using the lower

embedded payload values.

In [22], the CNN model was similar to the [20], but they implemented using different

filters and algorithms. Nevertheless, this study performed tests on the 0.1bpp payload

dataset which is similar to our study. Studies [23], [24] and [25] focused on using CNN in

steganalysis domain. They aim to outperform the steganography algorithms by changing

a small number of parameters.

Researchers in the [26] mostly focused on preserving and strengthening the weak stego

signal in images via different high pass filtering masks. However, their model was based

19
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on the residual neural network. Another steganography study [27] used J-UNIWARD

algorithm. But, they did not utilize a deep neural network.

Most of the studies were inspired by the [20] and [10] which focused on the convolutional

neural networks. In [28], a statistical model was used on the first layer, the study focused

on image dataset, not on the model.

Besides, the study [10] which had a similar aim with our study used the transfer learning

method to increase the success rate of model. The study differs from our study in

terms of the dataset and the design of the model. Their model was trained only with a

limited dataset which contains around 40000 images. Our dataset contains almost 160000

images. Their model had one image processing layer, five convolutional layers and three

fully connected layers, thus totaling to a nine layered network model. However, we used a

deep residual neural network in our study reaching total 177 layers including activation,

zero padding, flatten, batch normalization, input and convolution dense layers. Deeper

layers may cause vanishing gradient problem to models. It can be said that our model

may suffer from vanishing gradient problem too. Since our model is a deep residual

neural network, it has residual blocks with residual connections. Hence, we mitigated

the vanishing gradient problem for our model.

Another study [29] which mostly focused on JPEG Steganalysis and used a Dense Net-

work performed evaluations on a little large dataset than other studies.

In the [30], researchers mostly focused on the normalization layer of the CNN.

In one [31] of the base studies, researchers tested more than one CNN model by increasing

the layers of the model with the aim of finding the optimal number of layers for maximum

success rate. The study compared two neural networks, one was a CNN and the other

one was a Fully Connected Neural Network (FNN). Besides, this study pointed out

this steganalysis scenario which assumed that ’Same embedding Key’ was reused for

embedding operations of images. This model was not deep enough, and their embedded

dataset had only one payload value, which was 0.4 bits per pixel on one steganography

algorithm, S-UNIWARD.

One of the study that used a Deep Residual Neural Networks [32] is similar to [33].

They had a stage for preprocessing images before training the model like our proposed

approach. Their model had less layers than our model. Our ResNet was also pre-trained
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with ImageNet dataset. We have tested using more test images in our work. Their

dataset had only one embedded payload value of 0.4 bits per pixel as we have run tests

with more different embedded dataset.

In our study, as different to other studies, we used Transfer Learning method with a based

model Keras ResNet 50 trained model. Most of the other studies were based on the stego

images at the average difficulty. Moreover, we increased the success rate of detecting the

very hard stego images. A more general approach was used by the previous studies which

were trained the model only one kind of steganographic payload. On the contrary, we

focused on the training our model step by step with increasing difficulty on different

levels of steganographic images. Furthermore, we used a newly developed optimization

algorithm to train our model, in order to obtain a better model. Besides, we evaluated

the success of our model using Precision, Recall and F1-scoring measurements.
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Proposed Method: Steganalysis via

Transfer Learning

3.1 Background

We proposed a steganalysis method that took a previously trained model and adapted

its parameters for detecting even the very difficult stego images. We prefered the Python

programming language and Keras Deep Learning Framework to implement our proposed

method. Base model for training was based on Keras ResNet50 which had pre-trained

with ImageNet dataset before. The model was a Residual Network which consisted of

much more deep layers than normal neural networks.

Keras Framework’s pre-trained ResNet50 model has been optimized for input shape

256x256 image size for our dataset. A fully connected layer followed by a single output

layer has been added with a sigmoid activation function and glorot normal initializers for

kernel and bias values. Model has been compiled with binary cross entropy loss function.

Moreover, during the training process, learning rate has been reduced progressively to

a minimum value of ’0.00001’ if the validation loss value would not decreased for two

epochs of training repeatedly.

While training the model with dataset for many epochs, the model would have gotten

overfitted that means the model did not learn outside of the images in the training

dataset. One solution would be applying L2 regularization to reduce overfitting of the

22
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model. L2 regularization means sum of the squared weights. There are more than one

method developed for L2 regularization. One of them is applying weight decay to weights

of the model while model updates parameters while in the training section. Learning in

a model means optimization of parameters. Parameters mostly consist of weights which

are the coefficients to multiply with input values. If a model predicts far from the true

label, then parameters are need to be updated-increased or decreased- in order to find

the best values to predict correctly. Weights are updated by a parameter called learning

rate which is a standart value assigned at the start of the training session. At each

epoch, model gets closer step by step to the intended optimized weights by changing

weights with learning rate parameter. If learning rate would have assigned a big value,

then model could learn and increase accuracy but it does not reach to the best accuracy

level. Each weights are updated with a new value by the following equation in Equation

3.1. Eta is the learning rate, E is the error function which wanted to be minimized.

wi  wi � ⌘
�E

�wi
(3.1)

After weight decay of L2 regularization applied, new weights were calculated by the

following equation at Equation 3.2. The new term -⌘�wi from regularization caused

weights to decay in proportion to its size.

wi  wi � ⌘
�E

�wi
� ⌘�wi (3.2)

AdamW was used as the model’s optimizer algorithm for training the model. AdamW

optimization method was still an experimental algorithm on L2 regularization and weight

decay regularization of models. It was proposed in the AdamW that some simple modi-

fications to processes of L2 regularization and weight decay regularization for the com-

monly used Adam optimization algorithm. According to the results of the paper, it

basically proposed two adjustments: First, AdamW has improved Adam’s generalization

performance for image classification dataset. Second, it gave an optimal choice of weight

decay factor unrelated to learning rate setting.

Tests have been run on two similar steganography branches starting from 1.0bpp payload

rate to 0.1bpp payload rate for two advanced, state-of-the-art, content adaptive, spatial-

domain and highly resistant to known steganalysis techniques steganography algorithms,
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HUGO (Highly Undetectable steGO) and WOW (Wavelet Obtained Weights). They

embed bits of secret messages into cover images by detecting highly textured areas.

3.2 Transfer Learning Applied Model

On the first test branch, transfer learning method has been applied to model on different

payload rates. First step was that the model has been trained on the dataset that applied

with Least Significant Bit (LSB) steganography algorithm, the very base and easy to

detect one. The state-of-the-art steganography algorithms hide information using the

LSB technique but with more difficult to detect. As a result, we thought that model

would learn how the LSB works. Also, it would adapt to dataset more quickly and to

the base operations of steganography.

As Figure 3.1 shows, after LSB training step, the same model was transferred to 1.0bpp

steganography dataset for training.

Figure 3.1: Flow schema of transfer learning applied model
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After 1.0bpp training session, same model with newly gained weight parameters was

transferred to 0.9bpp payload rated dataset for training. Training sessions were continued

as chain learning sessions decreasing payload values to the last payload rate of 0.1bpp

dataset.

We aimed via applying transfer learning, the model would achieve more successful pre-

dictions and less error rates on the dataset hardest to detect which is 0.1bpp payload

rated. On every step from LSB and 1.0bpp dataset to 0.1bpp dataset, model would learn

better how does the steganography algorithm operate and hide messages in the cover

images. We thought that model would start gaining the ability to distinguish even the

smallest bit changes out of chain learning steps. In the end, the model would be able

to detect all the stego images applied in every different embedding payload values using

the same steganography algorithm.

3.3 Normal Trained Model

We wanted to compare the effects of that how applying transfer learning changes the

error rates of the model on the different payload rated images. In order to compare the

results of the transfer learning applied model, we trained a new another model. At the

second test model, all model training sessions have been done separately based on the

model of Keras ResNet50 with pre-trained weights as in Figure 3.2.

Base Keras ResNet50 model was optimized for our study by changing input shape ac-

cording to size of images in our dataset and by appending an output layer appropriate for

binary classification. We used the base model on all the payload rated dataset separately

without pre-training on LSB steganography algorithm.
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Figure 3.2: Non-Transfer Learning applied models
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Evaluation

4.1 Research Questions

1. How does applying Transfer Learning method to a model affect the error rate on

the very difficult dataset?

2. Is it possible to have better detection results when transfer learning have been

applied to every payload rates between 1.0bpp and 0.1bpp dataset?

3. How does applying or not applying transfer learning on LSB dataset affect the

success?

4.2 Experimental Setup

4.2.1 The Dataset

Two different datasets have been processed in our study. One dataset was used for train-

ing and the other dataset was utilized for testing, evaluating and scoring the detection

rates of the model. Training dataset came from combining BossBase_v1.01 dataset with

10000 units, 512x512 gray-scale image dataset and BossBase_v0.92 dataset with 9074

units, 512x512 gray-scale image dataset. Some images from train dataset were shown at

Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4.

27
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Figure 4.1: Train Dataset Example 1

Figure 4.2: Train Dataset Example 2
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Figure 4.3: Train Dataset Example 3

Figure 4.4: Train Dataset Example 4
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a) Cropped Image Part 1 b) Cropped Image Part 2

c) Cropped Image Part 3 d) Cropped Image Part 4

e) Un-Cropped Image

Figure 4.5: Train Cropped Example
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Figure 4.5 shows parts of a cropped image from training dataset. The number of base

image dataset for training was 76296-unit images. Training the model requireed both

cover and stego images, so total training dataset contained 152592-unit images. Valida-

tion dataset contained 3815-unit images which were 0.025% part of the total number of

the images in the training dataset.

Tests were performed on "BOWS2OrigEp3.tgz"[34] dataset with 10000 units, 512x512

grayscale image dataset. Some images from test dataset were shown at Figure 4.7, Figure

4.8 and Figure 4.9. Training dataset and test dataset were different from each other. The

models failed to learn with the current size of the images. All images, training and testing

were cropped into four with the size of 256x256.

Test dataset contained 40000 units of cropped images for cover images and for stego

images, totaling to 80000 units of test images. Test dataset was different from training

dataset. Figure 4.6 shows parts of a cropped image from test dataset.

The very base steganography algorithm Least Significant Bit (LSB) was applied to

dataset of training and testing in order to be used for transfer learning method. We

applied a preprocessing operation on all cover and stego images for the purpose to ex-

tract the very weak stego noise traces in images. We convoluted images with a High

Pass Filter of size 5x5 kernel matrix KV setting as in the Qian’s paper [20]. Convolution

with High Pass Filter suppress image content in a big scale. Thus, the weak stego signal

in image could become more strengthened to detect. The image content would be less

effective for the model discriminating steganographic modifications.
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a) Cropped Image Part 1 b) Cropped Image Part 2

c) Cropped Image Part 3 d) Cropped Image Part 4

e) Un-Cropped Image

Figure 4.6: Test Cropped Example
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Figure 4.7: Test Dataset Example 1

Figure 4.8: Test Dataset Example 2
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Figure 4.9: Test Dataset Example 3

Two steganography algorithms were used on training and testing dataset to create stego

images. Stego image dataset was created using HUGO and WOW state-of-the-art

steganography algorithms using ’Aletheia’ open source image steganalysis tools available

from GitHub[35]. It also had steganography embedding algorithms. HUGO and WOW

steganography algorithms have been used to create the 10 different payload rated im-

ages. Variety of different payload values were as follows 1.0bpp, 0.9bpp, 0.8bpp, 0.7bpp,

0.6bpp, 0.5bpp, 0.4bpp, 0.3bpp, 0.2bpp and 0.1bpp payload rate. Figure 4.10 gives an

example on payload rates. Figure 4.10-b is embedded to Figure 4.10-a with different

payload rates. Payload rate of 1.0bpp stego images in Figure 4.12 have more corruption

than payload rate of 0.1bpp stego images. Therefore, it was easier to detect 1.0bpp

stego images than 0.1bpp stego images for a trained model. As payload rates increased

in images as seen at Figure 4.11, corruption rate increased as well. The corruption in

the Figure 4.12 was so much that the secret image could be seen with eyes only. Lower

payload rates caused small changes in the images, thus secret messages were harder to

detect in them.
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a) Cover Image b) Secret Image

c) Payload Rate 0.1bpp d) Payload Rate 0.2bpp

Figure 4.10: Cover, Secret and Payload Rated Images
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a) Payload Rate 0.3bpp b) Payload Rate 0.4bpp

c) Payload Rate 0.5bpp d) Payload Rate 0.7bpp

Figure 4.11: Different Payload Rated Images
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Figure 4.12: Payload Rate 1.0bpp

4.2.2 Test Environment

Tests were run on a server which was provided by B3LAB[36]. Server had 80-core CPUs,

504GB RAM, 4 units of able to work separately GPUs of model "Tesla V100-SXM2-

16GB". Model of the CPU was "Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz". Also,

a great deal of processing power were required for embedding operations to cover im-

ages with steganography algorithms to create payload rated images. For the purpose of

embedding operations, cloud computing resources which were provided by Safir Bulut

Cloud Computing Services by B3LAB were utilized at the very best possible way. 22
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cloud platform instances were launched as virtual instances. All of them were run sepa-

rately but parallel on images. One instance had the power of 40 virtual CPUs, thus in

order to create steganographic dataset 880 vCPUs were utilized for dataset containing

152592 units of training images and 80000 units of test images.

4.2.3 Discussions

We aimed to increase the success rate and to decrease the error rate on detecting stego

images and cover images separately with this study. Our base comparison ground was

0.1bpp payload rated dataset. Because, it modified the very least number of pixels on

images which makes it harder for the model to detect the stego images. We focused on

the comparison of 0.1bpp dataset. Also, we followed the test results of other rated dataset

to compare them with each other, to trace the development of the model in detecting

stego images and cover images. Furthermore, we analyzed the results of transfer learning

effects of the model from the base pre-trained model till hard to detect dataset such as

0.1bpp rated.

Transfer learning has made the base model more accustomed to the dataset. Via transfer

learning, model have optimized weight values more and precise by processing images

again and again. Therefore, it was successfully achieved that our main objective to train

the model being able to differentiate even the slightest steganographic changes on images.

Least Significant Bit (LSB) steganography algorithm was a very base, more common and

easy to detect method. The reason was simple about why we trained the model with

LSB steganography algorithm. Because, we aimed that model would gain a fundamental

understanding about what does the steganography change on the image. We would

have evaluated the success rate of training with LSB by measuring the results of 1.0bpp

payload dataset. As shown results for HUGO algorithm, it had performed much better

to detect stego images.

As an overall outcome, we reached that the success rate was close but is in favor of the

model with transfer learning in between early training dataset of 1.0bpp and 0.5bpp.

But, after the 0.5bpp training, in between ratings of 0.5bpp and 0.1bpp, it was clearly on

a large scale in favor of the transfer learning. F-Score evaluating showed that applying
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transfer learning highly affects the success rate on separately detecting cover images and

stego images especially on 0.1bpp dataset.

4.3 Performance Evaluation

We assumed that accuracy success rate of %50 is the minimum base level which model

could not learn and ineffective to detect stego or cover images.

We analyzed our models by the results of Training, Testing, Error Rates, Evaluating

and F1-Scoring measurements. Training results have train loss and train accuracy values

which show the learning progress of the model while in training. Testing results have

validation loss and validation accuracy that indicate the testing progress of the model

while in training. Error Rates are True and False results of the model to predict images

in testing dataset as true or false predictions. If an image was a stego image and model

predicted it as a stego image, then it was a True prediction. Evaluation measures the

correct predictions of the model with loss and accuracy values. F1-Scoring has Precision,

Recall and F1-Score measurements as indicated in Formula 1 and Formula 2. Precision

is positive predictive value. An answer to question that how many selected images cover

or stego are relevant to cover or stego labels? Recall is sensitivity value. An answer to

question that how many cover images or stego images relevant items are selected?

Our study measured the prediction results using a threshold value of 0.5. Predictions

below 0.5 threshold were accepted as cover image and labeled as 0. Predictions above

threshold value were accepted as stego image and labeled as 1. If model predicted an

image as 0.6 then we took that prediction as stego image result. Thus, we calculated

precision, recall and F measure using the following formulas:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(4.1)

F = 2⇥ Precision⇥Recall

Precision+Recall
(4.2)
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According to these formulas, test results were categorized as true negative (TN), true

positive (TP), false negative (FN) and false positive (FP) based on the following defini-

tions that we used throughout the paper:

• TN: A test image is a cover image, and the model did not predict stego image.

• TP: A test image is a stego image, and the model did predict stego image.

• FN: A test image is a stego image, but the model did not predict stego image.

• FP: A test image is a cover image, but the model did predict stego image.

We created a public repository on GitHub[37] to contribute and to present our prototype

implementations and test results to the open source community.
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Results

Training of the model was that learning or determining or optimizing for all of the

parameters of the model which were weight values and bias values to the best possible

values. In learning, algorithm updated the parameters of the model aiming to minimize

the loss. Loss was a number indicating that how far the model predicted from true

labels. If the model predicted true, then the loss was zero. The goal was to find a set of

weights and biases which resulted on low loss and high on accuracy on all of the training

examples. Training loss was the error rate value on the training sessions in the training

datasets. Validation loss was the same as training loss only differed at the datasets which

were validation set of data. Validation was run after the training of the network.

Loss is a function that takes the label output and predictions of the model and computes

the error between them. Equation 5.1 show an error function called Mean Squared

Error(MSE). The squared loss for one example is the square of the difference between

the true label and the prediction of the model. MSE is the average squared loss for all

the examples. The loss value is then used to adjust weights.

MeanSquaredError(MSE) =
1

N

nX

i=1

(yi � �i)
2 (5.1)

• n is the total number of examples in the dataset.

• y is the true label value for the current example.

• � is the predict value of the model for the current example.

41
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5.1 HUGO Test Results

Analyzing the training process of models, results of training loss, training accuracy,

validation loss and validation accuracy showed that generally models were able to learn

images, functioning properly, smoothly and progressively. On transfer learning model,

training and validating operations were completed successfully as expected. Nonetheless,

at the embedding payload ratings of 0.8bpp and 0.5bpp, results showed unexpectedly a

small increase in the accuracy or a small decrease in the loss values which generally the

purpose at training operations of models. On the other hand, on non-transfer learning

model, training results had big spacings between consecutive dataset. Accuracy was

unexpectedly high at the level of embedding payload 0.8bpp. Both loss and accuracy

training results were unexpectedly low and high on 0.5bpp payload dataset.

Both compared results of models including training, testing, error rates, evaluating and

scoring had one common similarity that results generally differ in between two groups

of dataset. One was between 1.0bpp and 0.5bpp, another group was between 0.5bpp

and 0.1bpp embedded payload dataset. Generally, with transfer learning, at the first

group, learning results were properly going and at the second group, learning results had

more gaps between them. In general, with non-transfer learning, at first group, learning

results had much more gaps between dataset and for the second group, learning results

indicated that model failed to learn dataset.

By applying transfer learning method and LSB training, we obtained successful evaluat-

ing results on evaluation tests. We got low number of false predictions and high accuracy

values in 1.0bpp and 0.9bpp dataset. It showed that model got adapted highly to the

dataset and to the steganography processing. Model started predicting stego images

better which seen at precision-1.0 measurement from on all of the tables.

On all the conjugate training comparisons, the model would predict a smaller number of

error rates-false via transfer learning applied model than not applied model. Generally,

the evaluating and prediction results were smoother going and they were in acceptable

ranges.

Without transfer learning, test results between consecutive datasets were not smoothly

progressive and had much bigger gaps and changes. 0.5bpp and 0.8bpp datasets showed

unexpected successful increase in test results against the expected opinion. We expected
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as the payload embedded size gets smaller going from 1.0bpp to 0.1bpp, rate to suc-

cessfully detect stego images would decrease. We thought that this may be the result

of randomization of images in the training process of model. It was the first time that

the model trained with these images. However, at the overall results, success rate of the

model kept dropping dramatically, while embedding payload kept getting smaller, and

this made the detection of the corruption on the images even more difficult.

After embedding payload 0.5bpp value, applied transfer learning model progressively and

smoothly drop success rate as expected. But, the normal learning model did not change

test results or train results and kept giving the same success result which was around

50% on train and test results.

Tables between Table 5.1 and Table 5.13 show the overall analysis on precision, recall

and f1 score values indicate that applying transfer learning greatly improved the success

rate of the model at detecting both cover images and stego images even on the most

difficult embedded payload dataset. Explanations of the table are as follows:

• Precision 0.0 shows that how much test cover images that were predicted by the

model are correctly predicted.

• Precision 1.0 shows that how much test stego images that were predicted by the

model are correctly predicted.

– Table 5.1 and Table 5.2 show precision results of the HUGO Steganography

algorithm.

• Recall 0.0 means that how much test cover images were correctly predicted by the

model.

• Recall 1.0 means that how much test stego images were correctly predicted by the

model.

– Table 5.3 and Table 5.4 show recall results of the HUGO Steganography al-

gorithm.

• F1-Score 0.0 indicates the overall success rate of model on the predicting test cover

images.
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Table 5.1: HUGO Algorithm - Transfer Learning Model
Precision Scores

Payload Precision average/total
0.0 1.0 80000

LSB 1.00 1.00 1.00
1.0 0.96 0.84 0.90
0.9 0.94 0.78 0.86
0.8 0.93 0.78 0.85
0.7 0.94 0.71 0.83
0.6 0.93 0.69 0.81
0.5 0.92 0.66 0.79
0.4 0.88 0.62 0.75
0.3 0.82 0.59 0.71
0.2 0.74 0.59 0.66
0.1 0.66 0.56 0.61

Table 5.2: HUGO Algorithm - Non-Transfer Learning Model
Precision Scores

Payload Precision average/total
0.0 1.0 80000

1.0 0.97 0.82 0.89
0.9 0.94 0.75 0.85
0.8 0.90 0.79 0.84
0.7 0.91 0.69 0.80
0.6 0.68 0.73 0.71
0.5 0.78 0.69 0.74
0.4 0.50 0.51 0.51
0.3 0.51 0.51 0.51
0.2 0.50 0.50 0.50
0.1 0.50 0.50 0.50

Table 5.3: HUGO Algorithm - Transfer Learning Model
Recall Scores

Payload Recall average/total
0.0 1.0 80000

LSB 1.00 1.00 1.00
1.0 0.81 0.96 0.89
0.9 0.73 0.96 0.84
0.8 0.74 0.94 0.84
0.7 0.60 0.96 0.78
0.6 0.57 0.96 0.77
0.5 0.51 0.95 0.73
0.4 0.42 0.95 0.68
0.3 0.35 0.92 0.64
0.2 0.39 0.86 0.63
0.1 0.37 0.81 0.59
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Table 5.4: HUGO Algorithm - Non-Transfer Learning Model
Recall Scores

Payload Recall average/total
0.0 1.0 80000

1.0 0.79 0.97 0.88
0.9 0.68 0.96 0.82
0.8 0.75 0.91 0.83
0.7 0.58 0.94 0.76
0.6 0.77 0.64 0.70
0.5 0.64 0.82 0.73
0.4 0.74 0.27 0.51
0.3 0.60 0.41 0.51
0.2 0.96 0.04 0.50
0.1 0.90 0.11 0.50

• F1-Score 1.0 indicates the overall success rate of model on the predicting test stego

images.

– Table 5.5 and Table 5.6 show F1 Score results of the HUGO Steganography

algorithm.

Table 5.5: HUGO Algorithm - Transfer Learning Model
F1 Scores

Payload f1-score average/total
0.0 1.0 80000

LSB 1.00 1.00 1.00
1.0 0.88 0.90 0.89
0.9 0.82 0.86 0.84
0.8 0.82 0.85 0.84
0.7 0.73 0.82 0.77
0.6 0.71 0.80 0.76
0.5 0.65 0.78 0.72
0.4 0.57 0.75 0.66
0.3 0.49 0.72 0..61
0.2 0.51 0.70 0.60
0.1 0.47 0.66 0.57

Table 5.7 gathers the evaluation results for comparing the overall performance of the

model via Precision, Recall and F1-Score metrics for HUGO algorithm. It is a combina-

tion of the average columns of the previous tables. The table compares the models that

trained with and without applying Transfer Learning. The table summarizes that apply-

ing transfer learning method results better than not applying transfer learning method.

Our base ground for comparison is the 0.1bpp payload rated dataset. Precision value for

TL-model is 0.61 and 0.50 for the non-TL-model. Recall value for TL-model is 0.59 and

0.50 for the non-TL-model. F1-score value for TL-model is 0.57 and 0.41 for the non-TL
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Table 5.6: HUGO Algorithm - Non-Transfer Learning Model
F1 Scores

Payload f1-score average/total
0.0 1.0 80000

1.0 0.87 0.89 0.88
0.9 0.79 0.84 0.82
0.8 0.82 0.85 0.83
0.7 0.71 0.80 0.76
0.6 0.72 0.68 0.70
0.5 0.70 0.75 0.73
0.4 0.60 0.35 0.48
0.3 0.55 0.45 0.50
0.2 0.66 0.07 0.36
0.1 0.64 0.18 0.41

model. It is clearly shown that model with transfer learning has better performance at

detecting stego and cover images.
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5.2 WOW Test Results

Analyzing the overall test results of WOW steganography algorithm, it was similar with

HUGO results.

Transfer learning had affected the model very positively on distinction of cover and stego

images.

Model without transfer learning had close test results with applied transfer learning

model at the first three embedded payload dataset, 1.0bpp, 0.9bpp and 0.8bpp. But it

quickly and progressively decreased to base accuracy level of 50%.

Precision scores on Table 5.8 and Table 5.9 explain that how our two branch of models

truly predicted cover or stego images. Transfer Learning Model was much more successful

that Non-Transfer Learning Model at detecting cover and stego images. TL-Model had

cover precision value of 0.65 and stego precision value of 0.58 on 0.1 Payload rate. In the

mean time, Non-TL-Model had cover precision value of 0.50 and stego precision value

of 0.50. It meant that non-tl-model learn nothing from dataset and it rolled the dice on

the images. But TL-model could detect cover and stego images while it seemed that it

decreased on the overall ongoing training on the payload rates.

Table 5.8: WOW Algorithm - Transfer Learning Model
Precision Scores

Payload Precision average/total
0.0 1.0 80000

LSB 1.00 1.00 1.00
1.0 0.98 0.78 0.88
0.9 0.97 0.79 0.88
0.8 0.97 0.78 0.88
0.7 0.95 0.77 0.86
0.6 0.94 0.74 0.84
0.5 0.91 0.72 0.82
0.4 0.88 0.69 0.79
0.3 0.84 0.66 0.75
0.2 0.77 0.62 0.69
0.1 0.65 0.58 0.61

Recall scores are presented as you can see on the Table 5.10 and Table 5.11. It is

clear that as sees on the tables with 0.1bpp payload rate, TL-Model had shown more

performance on finding cover images and stego images. The Non-TL-Model had 0.96

recall score at the 0.1bpp payload on detecting cover images. It meant that model could

not understand if it was cover image or stego image. Even so model predicted it as a
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Table 5.9: WOW Algorithm - Non-Transfer Learning Model
Precision Scores

Payload Precision avg/total
0.0 1.0 80000

1.0 0.98 0.81 0.89
0.9 0.95 0.78 0.86
0.8 0.97 0.75 0.86
0.7 0.93 0.67 0.80
0.6 0.88 0.66 0.77
0.5 0.81 0.65 0.73
0.4 0.75 0.64 0.70
0.3 0.53 0.51 0.52
0.2 0.50 0.50 0.50
0.1 0.50 0.50 0.50

cover image. In other case, TL-Model had 0.44 recall score at the same point. It was

0.04 recall score for the Non-TL-Model and 0.76 recall score for the TL-Model on stego

images. This meant that TL-Model had more successful results on detecting far above

the average number of stego images in the test dataset.

Table 5.10: WOW Algorithm - Transfer Learning Model
Recall Scores

Payload Recall average/total
0.0 1.0 80000

LSB 1.00 1.00 1.00
1.0 0.72 0.98 0.85
0.9 0.74 0.98 0.86
0.8 0.73 0.97 0.85
0.7 0.71 0.97 0.84
0.6 0.66 0.96 0.81
0.5 0.63 0.94 0.79
0.4 0.60 0.92 0.76
0.3 0.53 0.90 0.71
0.2 0.47 0.86 0.66
0.1 0.44 0.76 0.60

Normal model failed at detecting stego images with a f1-score of 0.08. It was shown on

the Table 5.13 that intersected at the row of 0.1bpp payload rate and at 1.0 column of

f1-score column. On the contrary, as in Table 5.12, transfer learning model had more

success rate for detecting stego images with a f1-score 0.65.
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Table 5.11: WOW Algorithm - Non-Transfer Learning Model
Recall Scores

Payload Recall avg/total
0.0 1.0 80000

1.0 0.77 0.98 0.88
0.9 0.72 0.96 0.84
0.8 0.67 0.98 0.83
0.7 0.53 0.96 0.75
0.6 0.53 0.93 0.73
0.5 0.53 0.87 0.70
0.4 0.55 0.82 0.68
0.3 0.32 0.72 0.52
0.2 0.84 0.16 0.50
0.1 0.96 0.04 0.50

Table 5.12: WOW Algorithm - Transfer Learning Model
F1 Scores

Payload f1-score average/total
0.0 1.0 80000

LSB 1.00 1.00 1.00
1.0 0.83 0.87 0.85
0.9 0.84 0.87 0.85
0.8 0.83 0.87 0.85
0.7 0.81 0.86 0.83
0.6 0.77 0.83 0.80
0.5 0.75 0.81 0.78
0.4 0.71 0.79 0.75
0.3 0.65 0.76 0.71
0.2 0.58 0.72 0.65
0.1 0.53 0.65 0.59

Table 5.13: WOW Algorithm - Non-Transfer Learning Model
F1 Scores

Payload f1-score avg/total
0.0 1.0 80000

1.0 0.86 0.89 0.88
0.9 0.82 0.86 0.84
0.8 0.79 0.85 0.82
0.7 0.68 0.79 0.73
0.6 0.66 0.77 0.72
0.5 0.64 0.75 0.69
0.4 0.63 0.72 0.68
0.3 0.40 0.60 0.50
0.2 0.63 0.25 0.44
0.1 0.66 0.08 0.37
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The Table 5.14 is similar to Table 5.7. It gathers the evaluation results for comparing the

overall performance of the model via Precision, Recall and F1-Score metrics for WOW

algorithm. It is a combination of the average columns of the previous tables. The table

compares the models that trained with and without applying Transfer Learning. The

table summarizes that applying transfer learning method results better than not applying

transfer learning method. Our base ground for comparison is the 0.1bpp payload rated

dataset. Precision value for TL-model is 0.61 and 0.50 for the non-TL-model. Recall

value for TL-model is 0.60 and 0.50 for the non-TL-model. F1-score value for TL-model

is 0.59 and 0.37 for the non-TL model. It is clearly shown that model with transfer

learning has better performance at detecting stego and cover images. HUGO and WOW

results are very close to each other for the 0.1bpp dataset.

5.3 Result Comparisons

We compared Transfer Learning method applied model and its corresponding Non-

Applied Transfer Learning model. We evaluated the results of the every step starting

from training the model to scoring the results. In this chapter, we presented the com-

parison results of training, testing, evaluation, prediction and scoring of models. The

presented values were the last obtained after the run of the last epoch. 0.1 Payload

Rated dataset was the most difficult to detect stego images.

5.3.1 Train Comparisons

The comparisons here were the results of the training process of the models. Training

Loss showed that how far the models calculate the results from the true results on every

epoch. On Figure 5.1 and Figure 5.3, Transfer Learning applied model had mostly lower

loss values than the opposite non-applied model.

Training Accuracy indicated that how much the model calculated the true results. As

seen on Figure 5.2 and Figure 5.4, TL Model calculated more true predictions and mod-

ified parameters of model more truly.
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LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
TL Train Loss 0,00 0,12 0,23 0,18 0,27 0,29 0,26 0,34 0,43 0,58 0,64
Non-TLTrain Loss 0,10 0,22 0,30 0,52 0,67 0,58 0,82 0,82 0,81 0,82
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Figure 5.1: HUGO Models - Training Loss Comparison

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL Train Accuracy 1,00 0,94 0,89 0,91 0,86 0,84 0,86 0,81 0,76 0,65 0,59
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Figure 5.2: HUGO Models - Training Accuracy Comparison

LSB 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
TL Train Loss 0,00 0,22 0,21 0,18 0,15 0,15 0,21 0,22 0,27 0,38 0,49
Non-TL Train Loss 0,16 0,24 0,24 0,52 0,57 0,62 0,65 0,80 0,81 0,83
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Figure 5.3: WOW Models - Training Loss Comparison
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LSB 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

TL Train Accuracy 1,00 0,88 0,89 0,90 0,92 0,91 0,88 0,87 0,84 0,77 0,68

Non-TL Train Accuracy 0,92 0,87 0,87 0,78 0,74 0,71 0,68 0,52 0,50 0,50
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Figure 5.4: WOW Models - Training Accuracy Comparison

5.3.2 Train Validation Comparisons

At the end of each epoch in part of the training process, some train data were tested

on the model to evaluate the loss, the hyperparameters and other metrics. Validation

dataset was a small part of the training dataset and it was different from training dataset.

Model did not train or learn on validation dataset. Instead, it was used to estimate the

skills of the model such as loss and accuracy of the model. Figure 5.5 and Figure 5.7

showed the loss of the models on each epoch. Figure 5.6 and Figure 5.8 showed the

loss and accuracy skills of the model on the validation dataset. Validation dataset was

3815-unit images included in the training dataset which was 0.025% of total training

dataset.

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
TL Train Validation Loss 0,00 0,14 0,22 0,20 0,30 0,34 0,35 0,57 0,67 0,70 0,69
Non-TL Train Validation Loss 0,14 0,30 0,32 0,46 0,60 0,60 0,73 0,74 0,79 0,74
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Figure 5.5: HUGO Models - Train Validation Loss Comparison
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LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL Train Validation Accuracy 1,00 0,93 0,89 0,90 0,84 0,82 0,81 0,70 0,62 0,55 0,53

Non-TL Train Validation
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Figure 5.6: HUGO Models - Train Validation Accuracy Comparison
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Figure 5.7: WOW Models - Train Validation Loss Comparison

LSB 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

TL Train Validation Accuracy 1,00 0,87 0,88 0,86 0,83 0,82 0,80 0,77 0,71 0,63 0,55

Non-TL Train Validation
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Figure 5.8: WOW Models - Train Validation Accuracy Comparison
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5.3.3 Evaluation Comparisons

Evaluation step was similar to the training session only but evaluation step did not update

the weights. It returned the chosen metric values. We chose loss and accuracy results.

Evaluation worked in batch mode. A given number of input images were evaluated at

each iteration. Loss value was the metric that implies the rate of incorrect predicted

input images after an iteration. Unless the model had overfitted to the dataset, the

lower the loss value, the better a model results. Loss value was not a percentage. It

was a summation of the errors made for each example in datasets. Loss value was often

used for the model in order to find the best parameter values such as weights in neural

network. In the training process, loss value was the value to be optimized by updating

weights. Accuracy value was the metric that implies the rate of correct predicted input

images after an iteration.

Evaluation showed the performance of the model on the dataset which the model sees

for the first time. It was pretty close to the real world dataset. It showed us the overall

performance of the model. Our test dataset contains 40000 units of cropped images

for cover images and for stego images, totaling to 80000 units of test images. We used

different test dataset from train dataset. But images in the datasets are close each other.

Loss performance of the models were presented at the Figure 5.9 and Figure 5.11. Also,

the performance of how accurately the model predicted cover and stego images were

shown at Figure 5.10 and Figure 5.12.

LSB 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

TL Test Evaluation Loss 0,01 0,36 0,38 0,46 0,55 0,59 0,88 0,98 1,10 0,84 0,76

Non-TL Test Evaluation Loss 0,47 0,51 0,47 0,49 0,57 0,63 0,70 0,70 0,70 0,74
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Figure 5.9: HUGO Models - Test Evaluation Loss Comparison
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LSB 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
TL Test Evaluation Accuracy 1,00 0,89 0,84 0,84 0,78 0,77 0,73 0,68 0,64 0,63 0,59
Non-TL Test Evaluation
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Figure 5.10: HUGO Models - Test Evaluation Accuracy Comparison

The each loss and accuracy values in the figures were obtained separately from each

different payload rated dataset after one evaluation run. We expected an increase slope

at the loss values starting from 1.0bpp to 0.1bpp. Because model could easily learn

and detect 1.0bpp payload stego and cover images. Just the opposite, 0.1bpp payload

images were the hardest dataset. Thus, the model would got the greatest loss value at

0.1bpp payload rated images. At each step to the 0.1bpp dataset, the increase rate of

the number of incorrect predictions changed differently. Since loss value was the total

of errors, these differences could cause the unexpected increase rate for the loss values

at 0.4bpp and 0.3bpp payload rates of Figure 5.9 and Figure 5.11. Loss increased as

the predicted probability diverges from the actual label. Evaluation loss values were

found according to the rate of true and false predictions of payload rated datasets. It

was calculated by the chosen metrics while building the model. Loss was calculated by

binary cross entropy formula as shown in the Equation 5.2. It was generally used for

classification of images for only two classes. True or not. Stego or not stego.

CrossEntropyLoss = �
NX

i=1

yi log(ŷi) + (1� yi) log(1� ŷi) (5.2)

i is example image. N is total number of images in dataset. yi is the true label of ith

input image. ŷi is the predicted output of the model for ith image.
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LSB 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

TL Test Evaluation Loss 0,01 0,37 0,35 0,43 0,68 0,96 0,85 1,01 1,18 0,98 0,89

Non-TL Test Evaluation Loss 0,36 0,35 0,42 0,55 0,55 0,69 0,56 0,79 0,72 0,71
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Figure 5.11: WOW Models - Test Evaluation Loss Comparison

LSB 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
TL Test Evaluation Accuracy 1,00 0,85 0,86 0,85 0,84 0,81 0,79 0,76 0,71 0,66 0,60
Non-TL Test Evaluation

Accuracy 0,88 0,84 0,83 0,75 0,73 0,70 0,68 0,52 0,50 0,50
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Figure 5.12: WOW Models - Test Evaluation Accuracy Comparison

5.3.4 Prediction Comparisons

How many predictions of test images were predicted true by the model out of 80000 test

images?

How many predictions of test images were predicted false by the model out of 80000 test

images?

These comparison figures score the result predictions of the models. It predicted on test

dataset. One prediction range of the model is between 0 and 1. Model predicted a value

inside the prediction range. We accepted 0.5 is the threshold level of prediction range.

Between 0 and 0.5(not included), it was a cover image. Between 0.5(included) and 1.0,

it is a stego image. If prediction value was 0.2, we accepted it as a cover prediction



Chapter 5. Results 59

and convert the value to 0(zero). Or if model predicted a value for an image as 0.6,

we accepted the prediction value as stego image and converted it to 1. After applying

the threshold limit to the prediction values, we compared the prediction value with the

correct 0-cover or 1-stego value of the images. If prediction value and correct value

matched then it was a true prediction. But if they did not match then we counted it as

a false prediction from model.

Figure 5.13 and Figure 5.15 show the number of true predictions from HUGO and WOW

steganography algorithms. It compares transfer learning applied model and transfer

learning not applied model. Similarly, Figure 5.14 and Figure 5.16 show the comparisons

of models on the false predictions.

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
TL Trues 79789 71028 67315 67181 62568 61321 58363 54422 51112 50131 47029
Non-TL Trues 70338 65563 66643 61168 56222 58334 40535 40594 40006 40066
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Figure 5.13: HUGO Models - Error Rates True Estimation Comparison

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
TL Falses 211 8972 12685 12819 17432 18679 21637 25578 28888 29869 32971
Non-TL Falses 9662 14437 13357 18832 23778 21666 39465 39406 39994 39934
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Figure 5.14: HUGO Models - Error Rates False Estimation Comparison



Chapter 5. Results 60

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
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Figure 5.15: WOW Models - Error Rates True Estimation Comparison

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL Falses 211 11899 11487 11725 12995 15356 17197 19455 22824 26903 31916
Non-TL Falses 9811 12643 13947 20236 21665 23847 25398 38490 39974 39986
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Figure 5.16: WOW Models - Error Rates False Estimation Comparison

5.3.5 Precision Comparisons

Precision was about how precise or accurate the predictions of the model. Precision was

a good measuring tool to determine false positive rate. It showed the ratio of correct

predictions of cover or stego images to the total predictions of cover or stego images.

High precision ratio related to the low False-Positive ratio.

Figure 5.17 and Figure 5.20 presented the precision ratio of cover images out of 40000

images.

Figure 5.18 and Figure 5.21 presented the precision ratio of stego images out of 40000

images.



Chapter 5. Results 61

Figure 5.19 and Figure 5.22 presented total precision ratio both cover and stego images

out of 80000 images.

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL Precision 0.0 1,00 0,96 0,94 0,93 0,94 0,93 0,92 0,88 0,82 0,74 0,66
Non-TL Precision 0.0 0,97 0,94 0,90 0,91 0,68 0,78 0,50 0,51 0,50 0,50
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Figure 5.17: HUGO Models - Test Dataset Precision Comparison of Cover Images

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
TL Precision 1.0 1,00 0,84 0,78 0,78 0,71 0,69 0,66 0,62 0,59 0,59 0,56
Non-TL Precision 1.0 0,82 0,75 0,79 0,69 0,73 0,69 0,51 0,51 0,50 0,50
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Figure 5.18: HUGO Models - Test Dataset Precision Comparison of Stego Images

5.3.6 Recall Comparisons

Recall was sensitivity. It was the ratio of correctly predicted cover or stego images to

the all cover or stego images respectively. If it was to calculate the recall ratio for cover

images, then recall ratio answered the question that of all the cover images we have, how

many did we predict. It was the same explanation of recall for the stego images.

Figure 5.23 and Figure 5.26 presented the recall ratio of cover images out of 40000 images.

Respectively on comparison figures, after 0.7bpp dataset and 0.3bpp dataset, Non-TL

recall values for cover images have increased values over the corresponding TL Recall
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LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
TL Precision Average 1,00 0,90 0,86 0,85 0,83 0,81 0,79 0,75 0,71 0,66 0,61
Non-TL Precision Average 0,89 0,85 0,84 0,80 0,71 0,74 0,51 0,51 0,50 0,50
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Figure 5.19: HUGO Models - Test Dataset Average Precision Comparison
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TL Precision 0.0 1,00 0,98 0,97 0,97 0,95 0,94 0,91 0,88 0,84 0,77 0,65
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Figure 5.20: WOW Models - Test Dataset Precision Comparison of Cover Images

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL Precision 1.0 1,00 0,78 0,79 0,78 0,77 0,74 0,72 0,69 0,66 0,62 0,58

Non-TL Precision 1.0 0,81 0,78 0,75 0,67 0,66 0,65 0,64 0,51 0,50 0,50
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Figure 5.21: WOW Models - Test Dataset Precision Comparison of Stego Images
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LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
TL Precision Average 1,00 0,88 0,88 0,88 0,86 0,84 0,82 0,79 0,75 0,69 0,61
Non-TL Precision Average 0,89 0,86 0,86 0,80 0,77 0,73 0,70 0,52 0,50 0,50
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Figure 5.22: WOW Models - Test Dataset Average Precision Comparison

values. It seemed that the model successfully predicted almost all of the cover images

out of 40000 cover images. But, the recall comparison of stego images on Figure 5.24

clearly proved that model failed at predicting stego images totaling 40000 stego images.

When model failed on predicting the image as a stego image, then it labeled the image

as a cover image. Cover recall values kept increasing while stego recall values increase.

It proved that the model failed to learn correctly differing cover and stego images. The

overall performance of the Non-TL model could be seen on Figure 5.25.

Figure 5.24 and Figure 5.27 presented the recall ratio of stego images out of 40000 images.

Figure 5.25 and Figure 5.28 presented total recall ratio both cover and stego images out

of 80000 images.

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL Recall 0.0 1,00 0,81 0,73 0,74 0,60 0,57 0,51 0,42 0,35 0,39 0,37

Non-TL Recall 0.0 0,79 0,68 0,75 0,58 0,77 0,64 0,74 0,60 0,96 0,90
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Figure 5.23: HUGO Models - Test Dataset Recall Comparison of Cover Images
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LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL Recall 1.0 1,00 0,96 0,96 0,94 0,96 0,96 0,95 0,95 0,92 0,86 0,81

Non-TL Recall 1.0 0,97 0,96 0,91 0,94 0,64 0,82 0,27 0,41 0,04 0,11

0,00

0,20

0,40

0,60

0,80

1,00

1,20

R
e

c
a

ll
 V

a
lu

e

Payload Rate

HUGO - Test Dataset - Recall Comparison of Stego Images

Figure 5.24: HUGO Models - Test Dataset Recall Comparison of Stego Images

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL Recall Average 1,00 0,89 0,84 0,84 0,78 0,77 0,73 0,68 0,64 0,63 0,59

Non-TL Recall Average 0,88 0,82 0,83 0,76 0,70 0,73 0,51 0,51 0,50 0,50

0,00

0,20

0,40

0,60

0,80

1,00

1,20

R
e

c
a

ll
 V

a
lu

e

Payload Rate

HUGO - Test Dataset - Average Recall Comparison

Figure 5.25: HUGO Models - Test Dataset Average Recall Comparison

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL Recall 0.0 1,00 0,72 0,74 0,73 0,71 0,66 0,63 0,60 0,53 0,47 0,44
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Figure 5.26: WOW Models - Test Dataset Recall Comparison of Cover Images
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LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL Recall 1.0 1,00 0,98 0,98 0,97 0,97 0,96 0,94 0,92 0,90 0,86 0,76

Non-TL Recall 1.0 0,98 0,96 0,98 0,96 0,93 0,87 0,82 0,72 0,16 0,04
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Figure 5.27: WOW Models - Test Dataset Recall Comparison of Stego Images

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL Recall Average 1,00 0,85 0,86 0,85 0,84 0,81 0,79 0,76 0,71 0,66 0,60
Non-TL Recall Average 0,88 0,84 0,83 0,75 0,73 0,70 0,68 0,52 0,50 0,50
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Figure 5.28: WOW Models - Test Dataset Average Recall Comparison

5.3.7 F1-Score Comparisons

F1 Score was the average of Precision ratio and Recall ratio but with a weighted value.

It indicated the overall success rates of the model in detecting cover images or stego

images.

Figure 5.29 and Figure 5.32 presented the F1 Score of cover images out of 40000 images.

F1 Score was the weighted average of Precision and Recall values. Respectively, after

0.7bpp and 0.3bpp datasets, the model predicted cover images with increased values

with Non-TL models. The reason was that after those datasets, the model failed to learn

stego images and predicted most of the images as cover images. Because the datasets

kept getting harder to learn and detect. Also, due to the no applied transfer learning
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method to models, there was not any background trainings for the model. The models

started over to train and learned the dataset and cover-stego image diversity.

Figure 5.30 and Figure 5.33 presented the F1 Score of stego images out of 40000 images.

Figure 5.31 and Figure 5.34 presented total F1 Score both cover and stego images out of

80000 images.

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
TL F1 Score 0.0 1,00 0,88 0,82 0,82 0,73 0,71 0,65 0,57 0,49 0,51 0,47
Non-TL F1 Score 0.0 0,87 0,79 0,82 0,71 0,72 0,70 0,60 0,55 0,66 0,64
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Figure 5.29: HUGO Models - Test Dataset F1 Score Comparison of Cover Images

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1
TL F1 Score 1.0 1,00 0,90 0,86 0,85 0,82 0,80 0,78 0,75 0,72 0,70 0,66
Non-TL F1 Score 1.0 0,89 0,84 0,85 0,80 0,68 0,75 0,35 0,45 0,07 0,18
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Figure 5.30: HUGO Models - Test Dataset F1 Score Comparison of Stego Images

5.3.8 Related Work Comparisons

We compared previous results of studies on Table 5.15 about detection error rate for

WOW Steganography algorithm. Results of "Qian et al. [20]" were from no pre-train

the model like "Our Non-TL Model". When we compared the related results between
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LSB 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
TL F1 Score Average 1,00 0,89 0,84 0,84 0,77 0,76 0,72 0,66 0,61 0,60 0,57
Non-TL F1 Score Average 0,88 0,82 0,83 0,76 0,70 0,73 0,48 0,50 0,36 0,41
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Figure 5.31: HUGO Models - Test Dataset Average F1 Score Comparison

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL F1 Score 0.0 1,00 0,83 0,84 0,83 0,81 0,77 0,75 0,71 0,65 0,58 0,53

Non-TL F1 Score 0.0 0,86 0,82 0,79 0,68 0,66 0,64 0,63 0,40 0,63 0,66
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Figure 5.32: WOW Models - Test Dataset F1 Score Comparison of Cover Images

LSB 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

TL F1 Score 1.0 1,00 0,87 0,87 0,87 0,86 0,83 0,81 0,79 0,76 0,72 0,65

Non-TL F1 Score 1.0 0,89 0,86 0,85 0,79 0,77 0,75 0,72 0,60 0,25 0,08
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Figure 5.33: WOW Models - Test Dataset F1 Score Comparison of Stego Images
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LSB 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

TL F1 Score Average 1,00 0,85 0,85 0,85 0,83 0,80 0,78 0,75 0,71 0,65 0,59

Non-TL F1 Score Average 0,88 0,84 0,82 0,73 0,72 0,69 0,68 0,50 0,44 0,37
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Figure 5.34: WOW Models - Test Dataset Average F1 Score Comparison

0.5bpp and 0.1bpp, we saw that our model had better detection performance on 0.5bpp,

0.4bpp, 0.3bpp and 0.1bpp datasets. "Our TL-model", "Wu [33]" and "Wu et al. [32]"

shared similar architecture of deep learning model which was Deep Residual Learning

Model. The model had more layers other compared results of the models. "Our TL-

model" and "Qian et al. [10]" used similar proposed methodology about using transfer

learning method. On the comparison results, we saw that with our "Our TL-model",

we obtained lower detection error rates which indicates better performance on detecting

stego images. Results of "Wu [33]" and "Wu et al. [32]" were from only 0.4bpp dataset.

Table 5.15: Comparisons of Detection Error for WOW Algorithm

Related Work / Payload 0.5bpp 0.4bpp 0.3bpp 0.2bpp 0.1bpp
Qian et al. [20] 18.50% 20.28% 27.88% 33.30% 50.00%

Our Non-TL Model 17.00% 14.00% 20.00% 34.00% 46.00%
Qian et al. [10] 18.55% 21.95% 24.87% 30.78% 38.43%

Wu [33] 4.3%
Wu et al. [32] 4.3%
Our TL-model 15.00% 16.00% 19.00% 20.00% 16.00%
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Conclusion

In this study, we showed that transfer learning applied model is more successful than

normal trained model. It was obvious that by applying transfer learning, we obtained

more successful results on detecting stego images on every different rated payload dataset.

It was a more stabilized model and it had smoothly changed on results. It was more

precise on detecting stego images and cover images. It showed that we achieved our main

objective which was to increase the successful detection rate on dataset with embedded

payload value 0.1bpp. Because the model had been trained previously, the model was

familiar with the concept of recognizing images and properties of images. Training with

LSB for starters had some positive increases in detecting stego images.

Steganalysis was still a challenging research area. There was not a single method to

ensure that medium did not contain secret message. Hence, researchers still develop new

methods and tools for the purpose of finding a solution. There is a dilemma in the world

of the steganography which is as follows; one can not know for sure if a message is hidden

or not. When no secret message was found, it would result in two conclusions: did one

try everything or was there no message at all?

For future studies, we plan to run experiments on the other remaining steganography

algorithms such as S-UNIWARD, J-UNIWARD and HILL etc. Adjusting the hyper

parameters of the model, using various activation functions, training with more epochs

and with diverse dataset and adding more layers to the models would be the first steps

of our future work to train the model well and to increase the performance of the model.

There are many steganography algorithms to solve and to teach to the computer. We
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think that if it would be possible to train a model that learns steganography very well

and it would be able to detect not all and every kind but most of the stego images with

different steganography algorithms. The very perfect solution would be that one trained

model to be able to figure out stego images generated from old and new steganography

algorithms.
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WOW Training Validation Results

You can find here about the training process of the models. All the figures from Figure

A.1 to Figure A.11 come from the validation step of training process. Validation dataset

contain 3815-unit images, just small part of the training dataset. Figures have two

sections, section a is from the model with transfer learning method applied and section b

is from the normal model with non-applied transfer learning method. It starts from LSB

training process, Payload Rate 1.0 to Payload Rate 0.1 training results. Figures have

two series, loss and accuracy. Validation Loss is that how much the model away from

the correct predictions. It should go to zero as much as possible. Validation Accuracy is

that how much the model close to the correct predictions. Also, it should go to one as

much as possible.

Figure A.1: LSB Training Validation Loss and Accuracy Progress
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a) Transfer Learning Applied

b) Non-Transfer Learning Applied

Figure A.2: WOW Training Validation Progress - Payload Rate: 1.0



Appendix A. WOW Steganography 73

a) Transfer Learning Applied

b) Non-Transfer Learning Applied

Figure A.3: WOW Training Validation Progress - Payload Rate: 0.9
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a) Transfer Learning Applied

b) Non-Transfer Learning Applied

Figure A.4: WOW Training Validation Progress - Payload Rate: 0.8
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a) Transfer Learning Applied

b) Non-Transfer Learning Applied

Figure A.5: WOW Training Validation Progress - Payload Rate: 0.7
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a) Transfer Learning Applied

b) Non-Transfer Learning Applied

Figure A.6: WOW Training Validation Progress - Payload Rate: 0.6
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a) Transfer Learning Applied

b) Non-Transfer Learning Applied

Figure A.7: WOW Training Validation Progress - Payload Rate: 0.5



Appendix A. WOW Steganography 78

a) Transfer Learning Applied

b) Non-Transfer Learning Applied

Figure A.8: WOW Training Validation Progress - Payload Rate: 0.4
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a) Transfer Learning Applied

b) Non-Transfer Learning Applied

Figure A.9: WOW Training Validation Progress - Payload Rate: 0.3
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a) Transfer Learning Applied

b) Non-Transfer Learning Applied

Figure A.10: WOW Training Validation Progress - Payload Rate: 0.2
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a) Transfer Learning Applied

b) Non-Transfer Learning Applied

Figure A.11: WOW Training Validation Progress - Payload Rate: 0.1
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Source Codes

You can find the LSB Training Code Below. It is from IPython Jupyter Notebook

application.

#!/usr/bin/env python

# coding: utf -8

# In[1]:

import sys

sys.path.insert(0, ’/workspace/data/workspace/AdamW -and -SGDW/’)

from AdamW import AdamW

def save(model , name=’’):

def save_model(model , model_path=’model.json’):

model_json = model.to_json ()

with open(model_path , "w") as json_file:

json_file.write(model_json)

print(’Model {} saved.’.format(model_path))

def save_weights(model , weights_path=’weights.h5’):

model.save_weights(weights_path)

print(’Weights {} saved.’.format(weights_path))

save_model(model , name+’_model.json’)

save_weights(model , name+’_weights.h5’)

def load(model_name):

def load_model(path):

json_file = open(path , ’r’)

loaded_model_json = json_file.read()
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json_file.close()

print(’Model {} loaded.’.format(path))

return model_from_json(loaded_model_json)

def load_weights(model , path):

model.load_weights(path)

print(’Weights {} loaded.’.format(path))

model = load_model(path=model_name+’_model.json’)

load_weights(model , path=model_name+’_weights.h5’)

return model

# In[2]:

from PIL import Image

import numpy as np

from os import listdir

import cv2 , random

from scipy import signal

from sklearn.model_selection import train_test_split

from keras.models import load_model

from keras.preprocessing import image as kip

from keras.applications.resnet50 import preprocess_input , decode_predictions

from keras.callbacks import ModelCheckpoint , CSVLogger , ReduceLROnPlateau

from keras.models import model_from_json

# In[9]:

cover_label = 0

stego_label = 1

cover_path = "/workspace/data/workspace/dataset/cropped_dataset/

cover_cropped_256x256/"

stego_path = "/workspace/data/workspace/dataset/cropped_dataset/

stegos_cropped_lsb_algoritmasi/"

cover_path_bb092 = "/workspace/data/workspace/dataset/cropped_dataset/

cover_cropped_256x256_bb092/"

stego_path_bb092 = "/workspace/data/workspace/dataset/cropped_dataset/

stegos_cropped_lsb_algoritmasi_bb092/"

objects = listdir(cover_path)

objects_bb092 = listdir(cover_path_bb092)

paths = []

for obj in objects:
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paths.append (( cover_path + obj , cover_label))

paths.append (( stego_path + obj , stego_label))

for obj in objects_bb092:

paths.append (( cover_path_bb092 + obj , cover_label))

paths.append (( stego_path_bb092 + obj , stego_label))

random.shuffle(paths)

paths_train , paths_test = train_test_split(paths , test_size =0.025 , shuffle=True ,

random_state =31)

number_of_train_examples = len(paths_train)

number_of_test_examples = len(paths_test)

print("Number Of Examples:", len(paths))

X_train = np.zeros (( number_of_train_examples , 256, 256, 3), dtype=np.float32)

Y_train = np.zeros (( number_of_train_examples , 1), dtype=np.float32)

X_test = np.zeros(( number_of_test_examples , 256, 256, 3), dtype=np.float32)

Y_test = np.zeros(( number_of_test_examples , 1), dtype=np.float32)

# In[3]:

kernel = np.array([ [ -1, 2, -2, 2, -1],

[ 2, -6, 8, -6, 2],

[ -2, 8, -12, 8, -2],

[ 2, -6, 8, -6, 2],

[ -1, 2, -2, 2, -1] ] , dtype=np.float32) / 12

# In[4]:

def image_processer(path):

img_loaded = kip.load_img(path=path , grayscale=True)

img_convolved = signal.convolve2d(img_loaded , kernel , ’same’)

img_array = kip.img_to_array(img=img_convolved , data_format=’channels_last ’)

return img_array

# In[ ]:

for i in range(number_of_train_examples):

img_path , label = paths_train[i]

X_train[i ,...] = image_processer(img_path)
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Y_train[i ,...] = label

# In[ ]:

for i in range(number_of_test_examples):

img_path , label = paths_test[i]

X_test[i,...] = image_processer(img_path)

Y_test[i,...] = label

# In[6]:

kerasResnetModel = load("/workspace/data/workspace/Senaryo1/

kerasResnet50_makale_weight_notcompiled_adamW")

# In [13]:

batch_size = 64

epochs = 31

b, B, T = batch_size , number_of_train_examples , epochs

wd = 0.005 * (b/B/T)**0.5

kerasResnetModel.compile(loss="binary_crossentropy", optimizer=AdamW(weight_decay

=wd), metrics =[’accuracy ’])

# In[8]:

checkpoint = ModelCheckpoint(filepath="adim2_model_makale_adamW .{epoch :02d}-{

val_acc :.2f}.hdf5", monitor="val_acc", verbose=1, save_best_only=True , mode="

max")

csv_logger = CSVLogger(filename=’adim2_makale_adamW_lsb_training.log’, append=

True)

reduce_lr = ReduceLROnPlateau(monitor=’val_loss ’, factor =0.2, patience=2, min_lr

=1e-5)

# In[ ]:
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model_history_lsb = kerasResnetModel.fit(x=X_train , y=Y_train , batch_size=

batch_size , epochs=epochs , verbose=1, shuffle=True , validation_data =(X_test ,

Y_test), callbacks =[ checkpoint , csv_logger ,reduce_lr] )

# In[ ]:

model_history_lsb.history

# In [18]:

kerasResnetModel.save(filepath="

adim2_modelsave_makale_lsb_kerasresnet50_weight_211f_79789t_compiled_adamw.

hdf5")

save(kerasResnetModel , "

adim2_makale_lsb_kerasresnet50_weight_211f_79789t_compiled_adamw" )

#

#

# TESTTING OUTPUT

# In[5]:

cover_label = 0

stego_label = 1

test_cover_path = "/workspace/data/workspace/dataset/test_dataset/

test_cropped_dataset/"

test_stego_path = "/workspace/data/workspace/dataset/test_dataset/

stegos_cropped_test_lsb_algoritmasi/"

test_objects = listdir(test_cover_path)

test_paths = []

for test_obj in test_objects:

test_paths.append (( test_cover_path + test_obj , cover_label))

test_paths.append (( test_stego_path + test_obj , stego_label))

random.shuffle(test_paths)

print("Objects:" + str(len(test_objects) ) + " Total number: " + str(len(

test_paths)))

# In [14]:
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predict_result = []

test_X = np.zeros((1, 256, 256, 3), dtype=np.float32)

for test_path , test_label in test_paths:

test_X[0, ...] = image_processer(test_path)

predict_result.append ((test_label , kerasResnetModel.predict(x=test_X )))

# In [15]:

result_list = []

for result_label , result_predict in predict_result:

if(result_predict > 0.5):

result_predict_value = 1

else:

result_predict_value = 0

if(result_label == result_predict_value):

result_list.append (( result_label , result_predict , result_predict_value ,

True))

else:

result_list.append (( result_label , result_predict , result_predict_value ,

False))

# In [16]:

false_list = [i for i in result_list if i[3] == False]

true_list = [i for i in result_list if i[3] == True]

# In [17]:

print ( len(false_list) )

print (len(true_list))

# In [20]:

test_X = np.zeros((1, 256, 256, 3), dtype=np.float32)

test_X [0 ,...] = image_processer("/workspace/data/workspace/dataset/test_dataset/

stegos_cropped_test_lsb_algoritmasi /123. pgm_(0, 0, 256, 256).pgm")

kerasResnetModel.predict(x=test_X)
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# In[ ]:

result_list

#

#

# testing evaluate & predict

#

# In[6]:

kerasResnetModel = load("./

adim2_makale_lsb_kerasresnet50_weight_211f_79789t_compiled_adamw")

batch_size = 64

epochs = 31

b, B, T = batch_size , 148777 , epochs

wd = 0.005 * (b/B/T)**0.5

kerasResnetModel.compile(loss="binary_crossentropy", optimizer=AdamW(weight_decay

=wd), metrics =[’accuracy ’])

# In[7]:

test_object_size = len(test_paths)

test_X_array = np.zeros (( test_object_size , 256, 256, 3), dtype=np.float32)

test_Y_array = np.zeros (( test_object_size , 1), dtype=np.float32)

for i in range(test_object_size):

test_path , test_label = test_paths[i]

test_X_array[i, ...] = image_processer(test_path)

test_Y_array[i, ...] = test_label

# In[8]:

model_evaluate = kerasResnetModel.evaluate(x=test_X_array , y=test_Y_array ,

verbose =1)

# In[9]:
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kerasResnetModel.metrics_names

# In [10]:

model_evaluate

# In [11]:

y_pred = kerasResnetModel.predict(x=test_X_array , verbose =1)

y_pred_reshaped = np.array(list(map(lambda x: [0] if x < 0.5 else [1], y_pred)))

from sklearn.metrics import classification_report

report = classification_report(test_Y_array , y_pred_reshaped).split("\n")

report

# https :// upload.wikimedia.org/wikipedia/commons/thumb /2/26/ Precisionrecall.svg

/350px -Precisionrecall.svg.png

# In[ ]:

#

#

# GRAPHIC

#

# In [20]:

import matplotlib.pyplot as plt

# In [21]:

plt.figure(figsize =(12 ,8))

plt.plot(model_history_lsb.history[’val_loss ’], label=’validationLoss ’)
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plt.plot(model_history_lsb.history[’val_acc ’], label=’validationAcc ’)

plt.title(’Validation Plot by Epoch’)

plt.xlabel(’Epoch’)

plt.ylabel(’Validation ’)

plt.legend ()

plt.savefig(fname="plot_val.png")

#plt.show()

# In [22]:

plt.figure(figsize =(12 ,8))

plt.plot(model_history_lsb.history[’val_loss ’], label=’validationLoss ’)

#plt.plot(model_history_hugo08.history[’val_acc ’], label=’validationAcc ’)

plt.title(’Validation Plot by Epoch’)

plt.xlabel(’Epoch’)

plt.ylabel(’Validation ’)

plt.legend ()

plt.savefig(fname="plot_val_loss.png")

#plt.show()

# In [23]:

plt.figure(figsize =(12 ,8))

#plt.plot(model_history_hugo08.history[’val_loss ’], label=’validationLoss ’)

plt.plot(model_history_lsb.history[’val_acc ’], label=’validationAcc ’)

plt.title(’Validation Plot by Epoch’)

plt.xlabel(’Epoch’)

plt.ylabel(’Validation ’)

plt.legend ()

plt.savefig(fname="plot_val_acc.png")

#plt.show()
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