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Improved integrated nucleus-nucleus inelastic cross sections for light nuclides in
Geant4

Abstract

We propose a new root-mean-square radius parameterization for light nuclei A=30 suitable for use in
Geant4 calculations of nucleus-nucleus total hadronic inelastic scattering cross sections. The new
approach takes into account the proton-neutron asymmetry of the reactants, and was fit to 360 measured
total inelastic cross sections from the EXFOR database. Measured nuclear radii are better described in
the new approach than the current Geant4 implementation, particularly for unstable nuclides, and there is
better agreement with measured cross sections for both stable and unstable nuclides. The improved
parameterization should help in carbon-ion therapy applications in particular.
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Abstract

We propose a new root-mean-square radius parameterization for light nuclei A < 30 suitable for use in Geant4 calculations
of nucleus-nucleus total hadronic inelastic scattering cross sections. The new approach takes into account the proton-
neutron asymmetry of the reactants, and was fit to 360 measured total inelastic cross sections from the EXFOR, database.
Measured nuclear radii are better described in the new approach than the current Geant4 implementation, particularly
for unstable nuclides, and there is better agreement with measured cross sections for both stable and unstable nuclides.

The improved parameterization should help in carbon-ion therapy applications in particular.
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The Monte Carlo simulation toolkit Geant4 [1, 2] mod-
els particle transport in matter, and is used in a wide range
of research fields including space science, radiation protec-
tion, and medical physics. One key factor in simulations
of ion transport is the total inelastic (or reaction) cross
section. For example, in hadron therapy applications, at
energies of 400 MeV /nucleon, up to 70% of 12C beam nu-
clei may undergo some nuclear reaction before reaching
the tumour site [3]. Precise treatment planning therefore
requires reliable predictions for inelastic cross sections of
120, and any lighter (possibly unstable) secondary frag-
ments, interacting with any isotopes found in the body.

Geant4 uses a model based on the Glauber approxima-
tion [4] to calculate integrated inelastic cross sections for
nucleus-nucleus interactions (GG model) [5, 6]. The ap-
proach assumes the colliding nuclei have Gaussian shaped
density distributions, allowing analytic evaluation of the
density convolutions required. A Gribov screening correc-
tion is included [7], as well as a phenomenological Coulomb
repulsion correction, which reduces the cross section at low
energies. Nuclear radii enter as a key parameter in the
model. In the current Geant4 implementation, the radii
are parameterized in terms of the mass number A. How-
ever, it takes no account of the proton-neutron asymmetry
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of the nuclides, making it unreliable for unstable nuclei.

In this paper, we propose an improved radius model
for use with the Geant4 GG cross sections. Our primary
alm is to improve the predictive power of the model for
hadron therapy and space radiation applications, and we
therefore focus on light nuclides with A < 30. The model
includes a term dependent on the proton-neutron asym-
metry, designed to improve predictions for unstable iso-
topes. The new radius model is fit to reproduce mea-
sured inelastic cross sections from the EXFOR database
[8], and then is compared to the existing Geant4 imple-
mentation (Throughout the present work, we compare to
Geant4 version 10.5.) and experimental measurements of
radii [9, 10, 11, 12, 13]. The cross sections from the GG
model, using the new radii, are then compared to experi-
mental data [14, 15, 16, 17, 18, 19, 20] from the EXFOR
database [8].

We first briefly present the Glauber-Gribov model that
is implemented (and widely used) within Geant4. Sev-
eral publications by Grichine provide more detail on the
Geant4 implementation [21, 22, 23]. The model assumes
the two colliding nuclei have Gaussian shaped density dis-
tributions, with radius parameters I, and R;. The corre-
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sponding inelastic cross section is then given as:
S 57T(R§ + R?) w1 YA AT ] [ _ VB]
vy Br(R2+ R7) Tem |’
(1)

where = 2.0 and v = 2.4. The cross sections are phe-
nomenologically corrected for Coulomb repulsion with the
term of [1 — Vg /Tey] where Vg = Z,Z,e%/2(R, + R;) is
the approximate Coulomb barrier. Here, Z, (Z;) is the
number of protons in the projectile (target), Ti,, is the
center of mass kinetic energy, and e is the electron charge.
7 is the isospin-averaged nucleon-nucleon cross section for
the collision,

ApAiT = (ZpZ1 + NpNi)opp + (ZpNi + NpZi)onp,  (2)

where o, is the total proton-proton cross section, with the
assumption that oy, = opp, and oy, is the total proton-
neutron cross section.

In Geant4 v10.5, the radii R, and R; are parameterized
in terms of the atomic mass number A of each reactant,
with different forms for different mass ranges:

ro(1— A72/3)AY3 (10 < A < 30)
R(A) = { rgAY/3 (30 < A<50) (3)
1 A%27 (A > 50).

The values of the parameter ry have been chosen for each
range as 1.26 (10 < A < 15), 1.19 (15 < A < 20), 1.12
(20 < A < 30), 1.10 (30 < A < 50) and 1.00 (A > 50). For
light stable nuclides with A < 10, the radii are taken from
electron scattering measurements of charge radii. Specific
values are given for '73H and 3~ *He, and a single value is
used for all Lithium isotopes (2.4 fm), and all Beryllium
isotopes (2.51 fm). Other isotopes with A < 10 (°He, *He,
and ®B) default to the 30 < A < 50 parameterization
(1.1A1/3).

The primary limitation of the present approach is that
the radii are dependent only on the mass number A and
not the relative numbers of protons and neutrons. Unsta-
ble nuclides, with asymmetric numbers of protons and neu-
trons, can have dramatically different nuclear radii from
those at stability, even where A is the same. To address
this deficiency, we propose an alternative form, given by:

R(A, Z) =c; AY® 4 ¢ JAY? 4 e3A(A, Z)2. (4)

The first and second terms account for the gross mass num-
ber dependence, and match the forms from the current
Geant4d model. The third term accounts for the proton-
neutron asymmetry of the nuclides, with respect to the
valley of S-stability, and is defined as follows. We assume
that the number of neutrons N = A — Z for nuclides at
stability follows approximately:

N,(A) = 0.54 + (0.0284) — (0.0114)3. (5)

Table 1: Parameters of the new radius model.
¢y [fm]  eo [fm] ez [fm]
0.77330 1.3821 30.283

A characterises the neutron excess (or deficit) for the iso-
tope in question, and is defined as

A(A, Z) = 7]\7”(‘4/)1 - (6)

The new expression for R(A, Z) replaces those in Eq. 3 for
A < 30. The parameters ¢, _3 were fit to 360 measured in-
elastic cross sections extracted from the EXFOR database
[8]. This data set encompass a wide range of nucleus-
nucleus reactions, with the constraint that A, < 30 and
Ay < 30, with E > 10 MeV /nucleon. The fitted parame-
ters ¢1_3 can be found in Table 1. Since the light (stable)
nuclides with A < 10 exhibit strong clustering which can
influence their radii, we have retained the explicit radius
values taken from electron scattering measurements. How-
ever, we have updated the values used to include explicit
values for %7Li and Be. The other Lithium and Beryllium
isotopes use the expression for R(A, Z) above.

We emphasise that since the fit was made to inelastic
cross sections, R(A, Z) should be considered an effective
radius, i.e. that required for Gaussian density distribu-
tions to reproduce inelastic cross sections in the GG model.
For light nuclides, where the density distributions are ap-
proximately Gaussian, a direct comparison may be made
to measurements, but for heavier nuclides this may not be
the case.

We now compare results using the new radius param-
eterization to that from Geant4, both to radii measure-
ments and inelastic cross sections. Figure 1 shows the
nuclear radii models as a function of number of neutrons
for light elements, compared to experimental values. In
the current Geant4d model, a fixed radius is applied for
Li (2.4 fm) and Be (2.51 fm). Above Z=4, the Geant4
model shows good agreement with the experimental radii
in the region of stable isotopes, but typically underesti-
mates the radii for neutron-rich isotopes. In addition, the
Geant4 model has discontinuities at A = 15 and 20 where
the paramerization used changes. The alternative model
proposed here has good agreement in a whole number of
neutrons range across B to F. It should be noted that
the majority of the experimental values shown are actu-
ally derived from inelastic cross section measurements, and
so the agreement with the alternative radius model ought
to be good. However, the comparison illustrates that the
new expression encapsulates the broad trends with proton-
neutron asymmetry.

The dependence of the GG cross sections on the radius
model were studied by comparing the cross sections of sev-
eral projectile-target pairs, shown in Figure 2. For stable
nuclides, we consider 2C+'2C and '2C+27Al, as shown
in left two figures of Figure 2, where there are extensive
sets of data available. For '2C+'2C both models agree



reasonably well. For '2C+27Al, the alternative model is
considerably better, with the GG version exhibiting a sig-
nificant systematic overestimation of the data. Though
our new model is specifically focused on improving the re-
sults for unstable situations, the 27 Al results suggest that
more careful benchmarking of stable systems is urgently
required. The other reactions, *C+'2C, *0+28Si, and
16N+28Si, highlight the sparsity of experimental data for
unstable systems, but the data are generally better de-
scribed with the new radius model.

In summary, we have proposed an improved radius
model suitable for calculations of nuclear inelastic cross
sections of light nuclides with A < 30. The model shows
better agreement with the experimental measurements of
radii, particularly for unstable light isotopes when com-
pared to the current model used in Geant4. As a result,
there is improved agreement with experimental inelastic
cross sections. The disagreement between the existing
Geant4 model and the data for *2C+27Al indicate more
comprehensive benchmarking is required.

A number of further improvements may be made. The
expression used for the barrier energy Vp could be im-
proved by careful analysis of available low-energy inelastic
cross sections (see e.g., [24]) including comparisons for un-
stable nuclides where available. The parameterizations of
opp and oy, could also be improved to remove the slight
discontinuities near 300 and 500 MeV /nucleon. Though
not the focus of this paper, improvements must also be
made for heavier systems. This will require a different ap-
proach to the one taken here, since very little experimental
data is available, and the density distributions for A > 30
nuclides are non-Gaussian.
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Figure 1: Nuclear radii as a function of number of neutrons for dif-
ferent light elements. The grey bands indicate the proton (left) and
neutron (right) driplines where the nuclides are no longer bound.
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Figure 2: Integrated GG cross sections as a function of kinetic energy of the projectile. The existing GG model is shown in blue, and the
version presented here shown in red.
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