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Abstract  

Sodium-ion batteries (SIBs) hold great promise as power sources because of their low cost and 

decent electrochemical behavior. Nevertheless, the poor rate performance and long-term cycling 

capability of anode materials in SIBs still impede their practical applications in smart grids and 

electric vehicles. Herein, we design a delicate method to embed WS2 nanosheets into lotus 

rhizome-like heteroatom-doped carbon nanofibers with abundant hierarchical tubes inside, 

forming WS2@sulfur and nitrogen-doped carbon nanofibers (WS2@S/N-C). The WS2@S/N-C 

nanofibers exhibit a large discharge capacity of 381 mA h g-1 at 100 mAg-1, excellent rate capacity 

of 108 mA h g-1 at 30 A g-1, and a superior capacity of 175 mA h g-1 at 5 Ag-1 after 1000 cycles. 

The excellent performance of WS2@S/N-C is ascribed to the synergistic effects of WS2 

nanosheets, contributing to larger interlayer spacing, and the stable lotus rhizome-like S/N-C 

nanofiber frameworks to alleviate the mechanical stress. Moreover, the WS2@S/N-C electrode 

shows an obvious pseudocapacitance property at 1 mV s-1 with a capacitive contribution of 86.5%. 

In addition, the density functional theory calculations further indicate that WS2@S/N-C electrode 

is very favorable for Na storage. This novel synthetic strategy is a promising method for 

synthesizing other electrode materials for rechargeable batteries in the future. 

 

Keywords: Tungsten disulfide; carbon; doping; anode; sodium-ion batteries 



   
 

1. Introduction 

Sodium-ion batteries (SIBs) have promisingly replaced for lithium-ion batteries (LIBs) as power 

sources for smart grids and low-speed electric vehicles, owing to the low cost and abundance of 

sodium (Na) resources and their high safety due to the high potential of Na (-2.714 V).1-3 

Nevertheless, the radius of Na-ions (1.06 Å) is larger than that of lithium (Li) ions (0.76 Å), 

leading to sluggish diffusion kinetics for Na+, making it difficult to find appropriate anode 

materials with larger interlayer spacing and good reversible Na+ storage for SIBs.4, 5 So far, a large 

number of a node materials have been explored for SIBs, including carbonaceous materials,6-8 

alloying reaction metals and alloys (Sn, Sb, Bi, and their alloys),9-12 metal oxides13-15 and 

chalcognides,16-18 and others. Among them, carbonaceous materials usually exhibit excellent 

cycling performance, although they possess relatively low capacity.19-21 The alloyed metal 

materials always show high theoretical capacity, but the large volume change problem during the 

alloying/de-alloying process leads to poor rate capability.22 In addition, the large volume 

expansion for Na+ storage due to the formation of Na2O and Na2S (or Na2Se)23-26 will shorten the 

cycling life of these anode compounds. Therefore, it is essential to find effective strategies to 

obtain excellent anode materials with well-balanced performance in terms of high capacity, 

excellent rate capability, and long-term cycling stability. 

two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have obtained great 

interest as anode materials for SIBs due to their unique layered structure.27, 28 As one example of 

typical TMDCs, tungsten disulfide (WS2) exhibits larger layer spacing with weak van der Waals 

interaction and higher electrical conductivity than the traditional MoS2.29 Benefiting from its 

structural characteristics and conductive nature, the WS2 anode material exhibits high rate 

capability for SIBs,30-33 although the long-term cycling performance of WS2 as anode for SIBs is 

not satisfactory for practical application. 34 Actually, this is a common issue for metal sulfides as 

electrode materials for LIBs and SIBs because the cycling life is strongly influenced by certain 

factors,34-36 i.e., the large volume changes during electrochemical processes, the Li+/Na+ diffusion 

kinetics, and the obvious dissolution of the polysulfide intermediates. Thus, it is desirable to look 

for effective means to solve the problem of WS2 as anode material, endowing it with stable 

long-term cycling and high rate capability. 

Carbon scaffolds have been employed to effectively host metal sulfides as electrode 



   
 

materials,37-39 i.e., one-dimensional (1D) carbon nanofibers, graphene, or mesoporous carbon. 

Among them, the carbon nanofibers have been demonstrated to be a good substrate for hosting 

metal sulfides as anode materials.40-44 First, their highly conductive nature, along with the large 

longitudinal aspect ratio of carbon nanofibers could facilitate electron transfer among the metal 

sulfide particles and improve the Na+ diffusion kinetics at the same time, resulting in high rate 

capability for electrodes. Second, carbon nanofibers can alleviate the mechanical stress during the 

electrochemical process and prevent the pulverization of the embedded metal sulfide materials, 

which can yield electrodes that have stable long cycling performance. Last but not least, 

heteroatom doping is favorable to improve the capacity of carbon nanofibers as electrodes, which 

can be easily prepared by electrospinning. Based on the above analysis, it would be a promising 

method to achieve enhanced sodium storage performance with large capacity, excellent rate 

capability, and cycling stability by embedding WS2 nanosheets in heteroatom doped carbon 

nanofibers. 

Herein, we have designed a novel method to prepare lotus rhizome-like WS2@S/N-co-doped 

carbon nanofibers (denoted as WS2@S/N-C) to realize the above targets. The synthetic procedures 

are shown in Scheme 1. The WO3 nanosheets are first synthesized via the hydrothermal method, 

and then embedded into polymer nanofibers via electrospinning. Subsequently, WS2@S/N-C 

nanofibers are obtained through carbonizing the WO3/poly-acrylonitrile/polymethyl methacrylate 

(PAN/PMMA) nanofibers with sulfur, with the process including preheating at 230 oC and further 

annealing at 600 oC. The designed WS2@S/N-C nano-architecture offers various advantages: i) the 

embedding of WS2 nanosheets in carbon nanofibers could enhance the overall electrode 

conductivity, offering high accessible capacity; ii) the formation of lotus rhizome-like carbon 

nanofibers could facilitate electron transfer and prevent the pulverization of the electrode structure, 

resulting in a stable long-term cycling life span. The WS2@S/N-C electrode presents a high rate 

capacity of 108 mA h g-1 at 30 A g-1, a good reversible capacity of 321 mA h g-1 at 100 mA g-1 (vs. 

25 mA h g-1 for WS2) after 100 cycles, and a stable capacity of 175 mA h g-1 at 5 A g-1 after 1000 

cycles. In addition, both the kinetics calculations and the theoretical analysis demonstrate that 

S/N-C nanofibers could improve the rate capability of WS2 materials. 

https://www.baidu.com/link?url=HRE5OELsnkAUICqIBTPr3fOTkkislTViPANvldGlgjRCC3JA5JJ_3PPx--BAxskK49UPOILWWLxRwMNDqq4_xLdscS6fL69BBvEF-rBLMrMH2BvA7HvtD80zztn1pWKX&wd=&eqid=ad1b3e8c00006b53000000055cb22591


   
 

 

 

Scheme 1. Schematic illustration of the synthetic route to prepare the porous WS2@S/N-C 

nanofibers. 

 

2 Experimental section 

2.1 Synthesis of WO3 nanosheets 

WO3 nanosheets were synthesized according to the literature with minor modification.45 Typically, 

1.0 g Na2WO4·2H2O was first dissolved in 40 mL water, and then 3.0 mL HBF4 solution (40% by 

weight) was dropped into the solution. After that, the mixture was maintained under hydrothermal 

conditions at 100 oC for 10 h. Finally, the resulting product was collected with distilled water and 

absolute ethanol to obtain the pure WO3. 

2.2 Synthesis of WS2@S/N-C nanofibers 

The WS2@S/N-C nanofibers were produced through the electrospinning method. In a typical 

synthesis, 0.24 g PMMA and 0.36 g PAN were firstly dissolved in 5 mL dimethylformamide 

(DMF) solution under vigorous stirring at 60 °C for 4 h. Then, 0.3g as-synthesized WO3 were 

added in the above solution to obtain a stable suspension for the electrospinning with an applied 

voltage of 13 kV and a feeding rate of 0.3 mL h−1. Moreover, the distance between the stainless 

steel needle and the collector was set to be 15 cm. To stabilize the structure, the obtained fiber-like 

membrane was annealed at 230 °C for 2 h in air. The pretreated nanofibers were further carbonized 

with sulfur powder (mass ratio of 1:4) in flowing Ar. The nanofibers and sulfur were carbonized at 

600 °C for 2 h to transform the WO3 into WS2 in carbon nanofibers. 



   
 

For comparison, 0.3 g WO3 and 1.2 g sulfur power were further carbonized by the same method to 

transform the WO3 into WS2. In addition, S/N-C nanofibers were synthesized according to the 

similar procedure without WO3 precursor. 

2.3 Material characterizations 

The morphologies and structure of the as-synthesized samples were measured by field emission 

scanning electron microscopy (FE-SEM, Helios Nanolab G3UC) equipped with Energy 

Dispersive Spectrometer (EDS) and field emission transmission electron microscopy (TEM, FEI 

Titan G2 60–300). The crystal structure and phase composition were confirmed by X-ray powder 

diffraction (XRD, Rigaku D/Max-2500). Raman spectroscopy (DXR microscope, Thermo Fischer 

DXR) was carried out with 532 nm laser as excitation resource. Fourier transform infrared spectra 

were also collected (FT-IR, Nicolet-460). Thermogravimetric analysis (TGA, SDTQ600) was used 

to confirm the content of WS2 in the composite. The chemical states of the samples were 

investigated by X-ray photoelectron spectroscopy (XPS, Escalab 250Xi). Nitrogen adsorption and 

desorption isotherms (BET, Tristar 3020) was used to determine the Brunauer-Emmett-Teller 

(BET) surface area. 

2.4 Electrochemical measurements 

All the electrochemical tests were carried out using 2025 coin-type half cells. The working 

electrodes were prepared by mixing the active material powder, acetylene black, and 

carboxymethyl cellulose (CMC) in a weight ratio of 8:1:1 to form a slurry, which was then spread 

onto Cu foil,  subsequently dried in a vacuum oven at 60°C for 12 h, and then cut into 12 

mm-diameter discs. The mass loading amount of the active material was about 0.7-0.8 mg cm-2. 

Half cells were made up using Na metal as the counter electrode and glass fiber as the separator 

were assembled in an Ar-filled glove box. The electrolyte was 1 M NaClO4 dissolved in a mixture 

of ethylene carbonate (EC) and diethyl carbonate (DEC) (1: 1 by volume ratio) with 5 wt% 

fluoroethylene carbonate (FEC). The galvanostatic charge/discharge tests were performed on a 

battery test system (Land CT2001A), and the cyclic voltammetry (CV) was carried out on an 

electrochemical workstation (CHI660E), both in the voltage range of 0.01–3 V. All the 

electrochemical tests were conducted at room temperature. 

2.5 Calculation details 

To investigate the reasons for the enhanced sodium storage performance, density functional theory 



   
 

(DFT) calculations were used to investigate the adsorption behavior of Na on the pristine WS2 and 

WS2 with N/S-doped graphene (WS2/NS@graphene) by using the Vienna Ab-initio Simulation 

Package (VASP).46, 47 The exchange-correlation functional,were determined by the generalized 

gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) form.48 The frozen-core 

projector-augmented wave (PAW) method49, 50 was used for interactions between the core 

electrons and the valence electrons. The convergence criterion was set at 10−5 eV, and atomic 

positions were allowed to move until the forces acting on each atoms were less than 0.02 eV/Ǻ for 

the total energy calculations, with a high energy cut-off of 520 eV. The Brillouin zone was 

integrated with 3 × 3 × 1 Monkhorst-Pack k-point grids for geometry optimization. Moreover, The 

vacuum space of 20 Å was used in the z-direction could avoid any interaction between the 

adjacent repeating layers. 

The adsorption energy (𝐸𝑎𝑑) of at Na atom sites in WS2 and WS2 with N, S doped graphene 

(WS2/NSG) was calculated as follows: 

𝐸𝑎𝑑 =  𝐸WS2−Na,WS2/NSG−Na − 𝐸WS2,WS2/NSG − 𝐸𝑁𝑎 

Where 𝐸WS2−Na,WS2/NSG−Na is the total energy for one Na atom in WS2 and WS2/NSG; 

𝐸WS2,WS2/NSG is the total energy for WS2 and WS2/NSG without the adsorption of Na; 𝐸𝑁𝑎is for 

one Na atom in the same slab. 

Herein, both the interaction between WS2 or WS2/NSG and a Na ion indicates massive 

charge transfer, which can be visualized by three-dimensional charge difference mapping, and the 

definition is as follow: 

∆𝜌 = 𝜌WS2−Na,WS2/NSG−Na − 𝜌WS2,WS2/NSG − 𝜌𝑁𝑎 

Where 𝜌WS2−Na,WS2/NSG−Nais the charge density of the composite or WS2 with one Na atom 

adsorbed; 𝜌WS2,WS2/NSGis the charge density of the composite or WS2 without Na; 𝜌𝑁𝑎is the 

charge density of one Na atom in the same slab, respectively. 

 

3 Results and discussion 



   
 

 

Figure 1 (a) Low–resolution SEM image of WO3 nanosheets; (b) low–resolution and (c) 

high–resolution SEM images, (d) low–resolution TEM image, (e) electron diffraction pattern, (f) 

high–resolution TEM image, and (g) element mapping of WS2@ S/N-C. 

 

The structure and morphology of the samples were investigated by SEM and TEM, The SEM 

image in Figure 1a exhibits the as-synthesized WO3 nanosheets with about 40 nm in size, which 

could be electrospun into PAN/PMMA, and further changed into WS2@S/N-C nanofibers through 

a carbonization and sulfidation process. In Figure 1b, WS2@S/N-C nanofibers exhibit a length of 

several tens micrometers and a diameter of 400 nm. The WS2@S/N-C nanofibers in Figure 1c are 

observed to be porous like lotus rhizomes due to the decomposition of PMMA during the 

carbonization process. The embedding could prevent the aggregation of WS2 nanosheets (Figure 

S1a and b in the Supporting Information) during the sulfidation process. In Figure 1d, there are 

some dark parts in the single nanofiber owing to the presence of WS2 nanosheets embedded in the 

carbon nanofibers. The selected area electron diffraction (SAED) pattern of WS2 nanosheets in the 

WS2@S/N-C nanofibers is shown in Figure 1e. The diffraction rings from inside to outside are 

attributed to the (002), (100), (103), and (110) planes, respectively. The high-resolution TEM 



   
 

(HRTEM) image of the vertically grown WS2 nanosheets in Figure 1f displays a 0.62 nm 

interlayer spacing, which can be attributed to the (002) planes of hexagonal WS2, consistent with 

the XRD results for WS2@S/N-C. This value is in accord with the theoretical interlayer spacing 

along the c-axis direction. The pure WS2 shows similar results in Figure S1c and d. The energy 

dispersive X-ray (EDX) element mapping images indicate that the W, S, C, and N elements are not 

uniformly distributed throughout the WS2@S/N-C nanofiber (Figure 1g), which is due to the 

distribution of the isolated nanosheets. 

 

   

Figure 2 (a) XRD patterns of WO3, WS2, and WS2@S/N-C; (b) Raman spectra, (c) FT-IR spectra, 

and (d) TGA curves of WS2 and WS2@S/N-C. 

The components and crystalline phases of the materials were characterized by the XRD. Figure 2a 

compares the XRD patterns of the WO3, WS2, and WS2@S/N-C samples. The diffraction peaks of 

the pristine WO3 can be well assigned to a monoclinic phase, and the phase transition from 

monoclinic WO3 to hexagonal WS2 accompanies the carbonization of WO3 with sulfur to develop 

WS2. Strong peaks located at 14.3, 32.76, 39.5, 58.4, and 66.5° can be indexed to the (002), (100), 

(103), (110), and (114) planes of the hexagonal structure of WS2 (JCPDS no. 08-0237), 

respectively. Moreover, the obviously weaker intensity of WS2@S/N-C compared to the WS2 



   
 

implies that the sample was successfully wrapped by carbon nanofibers, which may have 

restricted the volume changes, preventing the pulverization of the electrode structure over a 

long-term cycling lifespan. Further structural information on the WS2@S/N-C and WS2 was 

acquired by Raman spectroscopy and FTIR analysis. The peaks of the WS2 and WS2@S/N-C 

samples in the Raman spectra (Figure 2b) are located at 351 and 416 cm−1, and can be ascribed to 

the Raman active E2g and A1g vibration modes for WS2. 33 Compared to the WS2, there is weaker 

intensity for WS2@S/N-C due to the wrapping with carbon nanofibers. The peaks around 1350 

and 1560 cm-1 are attributed to the disorder-induced D band and the graphitic G band for the 

WS2@S/N-C sample, respectively. In addition, the intensity ratio of the D-band to G-band (1.3, 

ID:IG) implies that more defects exist in WS2@S/N-C, which is associated with the N, 

S-co-doping.51 In the FTIR spectrum of WS2@S/N-C (Figure 2c), three new bands at 618, 802, 

and 1280cm-1 can be respectively attributed to C–S stretching, ring breathing (main-chain 

hexahydric-ring), and C=N symmetric stretching modes.52, 53 The observation of C−S bonds 

confirmed that the S was bonded with S/N-C, which can afford a superior reversible capacity.54  

The content of WS2 in the WS2@S/N-C sample from room temperature to 800 °C in air was 

confirmed by TGA analysis (Figure 2d). A weight loss of 14.5% was observed for pure WS2 due 

to the oxidation of WS2 into WO3. The weight loss (57.5%) for the WS2@S/N-C sample is 

associated with the combination of oxidation of WS2 and combustion of S/N-C. The content of 

WS2 in the WS2@S/N-C sample was calculated to be 45.4 wt%. Moreover, Based on the nitrogen 

adsorption and desorption isotherms, the Brunauer-Emmett-Teller (BET) surface areas of WS2 and 

WS2@S/N-C samples were found to be 17.74 and 23.4 m2 g-1, as shown in Figure S2. 

Furthermore, S/N-C nanofibers were also characterized by XRD, SEM, TEM, HRTEM, as shown 

in Figure S3a-d. XRD pattern in Figure S3a indicates S/N-C sample is typical carbon material, 

without other impurities. The sample in SEM and TEM images (Figure S3b and c) shows porous 

nanofibers with a length of several tens of micrometers. The amorphous nature of S/N-C sample is 

confirmed by HR-TEM image in Figure S3d. In addition, the content of sulfur doping in the 

carbon of WS2@S/N-C and S/N-C samples is confirmed to be ~4.8% and ~6% by EDS (Figure 

S4), respectively. 

 



   
 

  

Figure 3 High-resolution XPS spectra of WS2@S/N-C: (a) W; (b) S; (c) N; (d) C. 

 

The chemical status of the WS2@S/N-C and WS2 samples was characterized by XPS (Figure 

S5a). Compared to the spectrum of pure WS2, the spectrum of WS2@S/N-C reveals extra 

distinctive C and N peaks, which demonstrate successful doping in accordance with its FTIR 

spectrum. For WS2@S/N-C, there are three strong peaks from W centered at 32.3, 34.54, and 

37.43 eV, as shown in Figure 3a, which exhibit a shift to lower energy than for pure WS2, the 

peaks of which are located at 33.1, 35.3, and 38.7 eV (Figure S5b), which might be associated 

with the interaction between WS2 and C, N. There are two major peaks from S centered at 162.7 

and 163.9 eV in pure WS2 (Figure S5c), slightly shifted to lower energy than for the S peaks 

(163.7 and 164.9 eV) of WS2@S/N-C (Figure 3b). Moreover, two shoulder peaks at 161.9 and 

168.0 eV in Figure 3b are associated with S=C and S-O bonds in carbon nanofibers, indicating 

that S was successfully incorporated into the carbon matrix. Furthermore, there are three peaks at 

398.2, 399.9, and 401.8 eV in the N 1s spectrum of WS2@S/N-C (Figure 3c) indicate the 

existence of pyridinic, pyrrolic, and graphitic nitrogen in WS2@S/N-C, respectively.55 The 

pyrrolic and pyridinic nitrogen can give rise to surface defects in carbon structures that can offer 

channels to facilitate Na+ diffusion.5 In Figure 3d, the C 1s spectrum can be fitted into three peaks 



   
 

for carbon atoms, including for C-C bonds (284.6 eV), C-S/C-N bonds (286.2 eV), and C=O 

bonds (288.1 eV). In consequence, it is clear that the nitrogen and sulfur dual-doping allows the 

Na+ ions and electrons to achieve high transfer rates for good performance.56  

 

 

 

Figure 4 CV curves of (a) WS2@S/N-C, (b) WS2 and (c) S/N-C electrodes in the voltage range of 

0.01-3 V at a scan rate of 0.1 mV s-1; Charge–discharge profiles of (d) WS2@S/N-C, (e) pure WS2 

and (f) S/N-C electrodes at a current density of 0.1 Ag-1.  

The electrochemical properties of the WS2@S/N-C, WS2 and S/N-C electrodes were 

characterized by CV and galvanostatic charge–discharge cycling. Figure 4a-c display the CV 

profiles of the WS2@S/N-C nanofibers, pure WS2 and S/N-C nanofibers for the initial 3 cycles at 

a scan rate of 0.1 m Vs-1, respectively. For the WS2@S/N-C electrode, the reduction peak centered 

at 0.5 V in the first cycle is attributed to the conversion reaction (WS2 + 4Na+ + 4e- → W + 

2Na2S) and the formation of an irreversible solid electrolyte interphase (SEI) film. In the 

following cycles, the reduction peak at ~0.5 V disappears while new reduction peaks appear in the 

potential range from 1.2 to 1.5 V, indicating the presence of reversible conversion mechanism 

(4Na+ + WS2 + 4e- → W + 2Na2S). In the anodic scans, three peaks located at 1.8, 2.2, and 2.5 V 

are corresponded to the oxidation of W to WS2 during the desodiation process.33 Compared with 

the WS2@S/N-C electrode, similar reduction and oxidation peaks were also observed for pure 

WS2, although their variation was different from that of the WS2@S/N-C electrode. For the S/N-C 



   
 

electrode, a reduction peak centered at ~0.5 V in the first cycle is associated with the formation of 

an irreversible solid electrolyte interphase (SEI) film. The reduction and oxidation peaks of the 

WS2@S/N-C and S/N-C electrodes show a much more stable profile and tend to overlap each 

other in the following two cycles, indicating faster Na+ ion insertion/extraction kinetics and higher 

reversibility of the electrode reactions for WS2@S/N-C and S/N-C electrodes. This confirmed the 

S/N-C nanofibers could stabilize the WS2 during the electrochemical process. The 

charge/discharge curves of the WS2@S/N-C nanofibers, pure WS2 and S/N-C nanofibers in 

Figure 4d-f were collected at 0.1 Ag-1. The WS2@S/N-C nanofibers delivered a discharge and 

charge capacity of 566 and 381 mA h g-1 while pure WS2 (416 and 352 mA h g-1) and S/N-C 

nanofibers (465.8 and 356.9 mA h g-1), respectively. Moreover, the coincidence of subsequent 

discharge/charge curves for pure WS2@S/N-C, indicating a reversible and stable electrochemical 

performance.  

   

Figure 5 Rate capability of the (a) WS2@S/N-C, (b) WS2 and (c) S/N-C electrodes at various 

current densities; Cycling performance of the (d) WS2@S/N-C, (e) WS2 and (f) S/N-C electrodes 



   
 

at a current density of 0.1 A g-1; (g) Long-term cycling performance and Coulombic efficiency of 

WS2@S/N-C electrode at a current density of 5 A g-1. 

Figure 5a shows the capacity of the WS2@S/N-C electrode at various current densities from 0.1 

to 30 A g-1. The electrode delivers a reversible capacity of 371, 291, 275, 246, 230, 204, 192, 167, 

145, and 125 mA h g-1 at current density of 0.1, 0.5, 1, 3, 5, 8, 10, 15, 20, and 25 A g-1, 

respectively. Even at a very high current density of 30 A g-1, it still delivers capacity of 108 mA h 

g-1 and when the current density returns to 0.1A g-1, it keeps a reversible capacity of 360 mA h g-1. 

The pure WS2 electrode and S/N-C electrodes (Figure 5b and c), however, exhibits much poorer 

rate performance. The reversible capacity for the pure WS2 electrode rapidly declines to 237 mA h 

g-1 when the current density returns to 0.1 A g -1. The S/N-C electrode could keep a reversible 

capacity of 322.2 mA h g-1, which is obviously lower than that of WS2@S/N-C electrode. The 

excellent rate performance of WS2@S/N-C can be attributed to its structure. The lotus 

rhizome-like carbon nanofibers could offer short paths to facilitate electron transfer, prevent 

pulverization of the electrode structure, and offer convenient Na+ transport. Electrochemical 

impedance spectroscopy (EIS) was also carried out to study the reaction kinetics of WS2@S/N-C 

and pure WS2 electrode cycling after for 1 cycles at 0.1 A g-1. In Figure S6, the WS2@S/N-C 

electrode exhibits a much lower charge transfer resistance (Rct, 298 Ω) than the pure WS2 

electrode (2129 Ω), based on the equivalent circuit simulation, which implies facile charge 

transfer at the electrode/electrolyte interface. Moreover, the discharge capacity of WS2@S/N-C 

reached 319 mAh∙g-1 at 0.1 A g-1 after 100 cycles (Figure 5d), showing good cycling stability. In 

comparison, the pure WS2 only possessed 43 mA h∙g-1after 100 cycles (Figure 5e). The S/N-C can 

sustain 315 mA h g-1 after 100 cycles with good stability (Figure 5f). This demonstrates that 

S/N-C nanofibers facilitated the stability of WS2. To further explain the difference in cycling 

stability between the two kinds of electrodes, the morphologies of cycled WS2@S/N-C and pure 

WS2 were characterized by SEM, as shown in Figure S7. Obviously, compared with fresh 

WS2@S/N-C electrode, the surface of this electrode cycled after 100 cycles became less smooth 

due to the formation of solid electrolyte interphase (SEI). Although some small particles emerged, 

the rod-like morphology was partially maintained. On the contrary, the morphology of the WS2 

electrode cycled after 100 cycles changed significantly. No nanosheets could be observed. Based 

on above results, it was revealed that the different structural stabilities led to the different cycling 



   
 

stabilities. Moreover, the WS2@S/N-C even exhibited a capacity of 174 mA h∙g-1 at a current of 5 

A g-1 over 1000 cycles, with capacity retention of 89%, demonstrating excellent ultra-long cycling 

stability (Figure 5g). 

 

 

 

Figure 6 (a) CV curves of WS2@S/N-C electrodes at different scan rates; (b) log i vs. log v plots 

of WS2@S/N-C electrodes; (c) Ratio of diffusion and capacitive contributions to the capacity at 

various scan rates for WS2@S/N-C electrodes; (d) Capacitive charge storage contribution (pink 

region) for WS2@S/N-C electrode at 1.0 mV s−1. 

 

To further evaluate the electrochemical performance of WS2@S/N-C anode, CV 

measurements at a series of scan rates from 0.1 mV s-1 to 1 mV s-1 were carried out. As displayed 

in Figure 6a, with the scan rates increasing, all the CV curves retained similar shapes with only a 

small deviation of the redox peaks, suggesting high rate capability and small potential polarization. 

As is well known, the electrochemical capacity is contributed by two mechanisms, the faradaic 

charge transfer process (ion diffusion) and the non-faradaic contribution (pseudocapacitance).57 

The relationship between peak current and scan rate can indicate the contribution of each part, as 

follows:58  



   
 

i = avb (1) 

and  

log i = b log v + log a (2) 

where i represents the peak current, v is the scan rate, and a and b are adjustment parameters, 

respectively. The b value reveals the different types of charge storage. The values of 0.5 and 1 

represent the faradaic charge transfer process and the non-faradaic contribution, respectively. In 

Figure 6b, the b values of WS2@S/N-C anode were calculated to be 0.73 ± 0.015 for the anodic 

peaks and 0.86 ± 0.006 for the cathodic peaks, suggesting that the sodium storage reaction of 

WS2@S/N-C anode was determined by both pseudocapacitive behavior and ion diffusion control. 

The percent contributions of the two parts at a serious of scan rates can be calculated from the 

following equation: 

i = k1v + k2v
1/2 (3) 

where k1v represents the pseudocapacitive part and k2v
1/2 represents the ion diffusion part. As can 

be seen from Figure 6c, the pseudocapacitive contribution increased from 69% to 86.5% as the 

scan rate increased from 0.1 mV s-1 to 1 mV s-1. The detailed pseudocapacitive fraction at 1 mV s-1 

is also illustrated in Figure 6d. These results mean that the pseudocapacitive contribution plays 

the major role in the overall capacity of the WS2@S/N-C anode. This might be ascribed to the 

effect of S/N-C since there are more redox reactions in the surface of S/N-C.5  



   
 

 

Figure 7 Adsorption sites for of I, II and III Na on (a) pure WS2 and (b) the WS2 in WS2@S/N-C; 

Differences of charge density (charge accumulation: green, charge depletion: blue) with an 

isosurface level of 0.001 e/Å3 for Na on (c) pure WS2 and (d) the WS2 in WS2@S/N-C in the most 

stable adsorption configuration. 

To obtain theoretical support for the results, we studied the Na+ adsorption behavior on both 

pristine WS2 surface and WS2@S/N-C surface by DFT calculations. According to the previous 

theoretical calculations, the S/N co-doped graphene model can be as the S/N co-doped carbon 

nanofiber to analyze the adsorption behavior for the Li+, Na+ and K+.5, 59-63 Thus, we designed the 

heterostructure of WS2 and S/N co-doped graphene to investigate the synergistic effects for Na 

adsorption. As shown in Figure 7a and b, both the pristine WS2 and WS2@S/N-C have three 

adsorption sites of S-top (Ⅰ), hollow (Ⅱ) and W-top (Ⅲ), respectively. And the adsorption 

energies of Na atom adsorption on pristine WS2 and WS2@S/N-C were calculated and illustrated 

in Tables S1 and S2. For the S-top site, the adsorption energy of the Na in WS2@S/N-C was 

-0.897 eV that was lower than that in pristine WS2 (-0.494 eV). After the Na adsorption on the 

hollow site of pristine WS2 and WS2@S/N-C, the adsorption energies are of -0.744 eV and -1.168 

eV, respectively. Clearly, the W-top site on WS2@S/N-C has the smaller adsorption energy of 

-1.208 eV than that of pristine WS2 (-0.759 eV). The smaller adsorption energies of Na adsorption 

on WS2@S/N-C than that of pristine WS2, indicating that WS2@S/N-C is helpful for Na storage. 



   
 

Moreover, we calculated the three-dimensional charge density difference to understand the 

mechanism of charge transfer on W-top site of pristine WS2 or WS2@S/N-C with a Na atom. As 

shown in Figure 7c, the charge accumulation is found on the W atoms, and the charge depletion 

appears on the Na ion at the same time. The results demonstrate that the charge has accumulated 

much more massively on the WS2@S/N-C (Figure 7d) than on the pristine WS2 (Figure 7c), 

which can be verified by the Bader charges. According to Bader charge analysis, 0.79 e of the Na 

atom is transferred onto the WS2@S/N-C (Table S2), while only 0.76 e of the Na atom for the 

pristine WS2 (Table S1). This shows that S/N-C could trap more Na atoms due to increasing the 

adsorption energy of the Na atom. 

 

4. Conclusion 

In conclusion, we have successfully realized the incorporation of WS2 nanosheets into carbon 

nanofibers via an electrospinning/sulfidation process. Compared to pure WS2, the WS2@S/N-C 

nanofibers exhibit a higher rate capacity of 108 mA h g-1 at 30 A g-1 and a stable capacity of 174 

mA h g-1 at 5 A g-1 after 1000 cycles. The theoretical studies demonstrate that S/N-C nanofibers 

effectively facilitate the storage of Na on WS2. Moreover, analysis of the sodium storage 

mechanism has demonstrated that the capacitive contribution plays the dominant role in the whole 

capacity contribution owing to the S/N-heteroatom doping and the existence of the mesoporous 

defect-rich structure in the S/N-C matrix. 
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Supporting information 

 

Figure S1 (a) low–resolution SEM image and (b) TEM image of pure WS2; (c) electron 

diffraction pattern, and (d) high–resolution TEM image of pure WS2. 



 

 

Figure S2 Nitrogen adsorption and desorption isotherms of WS2@S/N-C nanofibers and pure 

WS2. 



 

 

Figure S3 Characterizations of S/N-C nanofibers: (a) XRD pattern; (b) SEM image; (c) TEM 

image and (d) HR-TEM image. 



 

 

Figure S4 EDS spectrum of (a) WS2@S/N-C nanofibers and (b) S/N-C nanofibers. 



  

Figure S5 (a) XPS full survey spectra of WS2@S/N-C nanofibers and pure WS2; (b and c) 

High-resolution XPS spectra of W and S elements for pure WS2. 



  

Figure S6 EIS spectra for WS2@S/N-C and pure WS2 after cycling for 1 cycle at 0.1 A g−1. The 

inset is the equivalent circuit.  

 



 

 

Figure S7 Low–resolution SEM images of WS2@S/N-C electrode: (a) fresh electrode and (b) 

cycled electrode after 100 cycles; low–resolution SEM images of WS2 electrode: (c) fresh 

electrode and (d) cycled electrode after 100 cycles. 

 

 

  



Table S1. The adsorption behavior of Na on pristine WS2. 

Adsorption sites 

WS2 
Ⅰ(S-top) Ⅱ(Hollow) Ⅲ (W-top) 

Ead (eV) -0.494 -0.744 -0.759 

QNa (|e|) 0.56 0.74 0.76 

 

 

Table S2. The adsorption behavior of Na on WS2@S/N-C. 

Adsorption sites 

WS2@S/N-C 
Ⅰ(S-top) Ⅱ(Hollow) Ⅲ (W-top) 

Ead (eV) -0.897 -1.168 -1.208 

QNa (|e|) 0.65 0.79 0.79 
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