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Abstract

Streamline geometry has been studied in case of turbulent wall flows. Complex but

coherent motions form and rapidly evolve within wall-bounded turbulent flows. Re-

search over the past two decades broadly indicates that the momentum transported

across the flow derives from the dynamics underlying these coherent motions. This

spatial organization, and its inherent connection to the dynamics, motivates the

present research.

The local streamline geometry pertaining to curvature (κ) and torsion (τ) has

apparent connection to the dynamics of the flow. The present results indicate

that these geometrical properties change significantly with wall-normal position.

One part of this research is thus to clarify the observed changes in the streamline

geometry with the known structure and scaling behaviours of the mean momen-

tum equation. Towards this aim, the curvature and torsion of the streamlines at

each point in the volume of existing boundary layers and channel DNS has been

computed. The computation of κ and τ arise from the local construction of the

Frenet-Serret coordinate frame. The present methods for estimating κ includes

components of curvature in the streamwise, wall-normal and spanwise direction.

The analysis shows that even though the mean wall-normal velocity is zero (e.g.,

for channel flow), the wall-normal curvature component shows a notable positive

peak close to the wall. This arises from the strong wallward flow followed by a

weak movement of the streamlines away from the wall. The correlation coefficient

and the conditional average of the wall-normal velocity corresponding to the wall-

normal curvature exhibit an anti-correlation between them.

The probability density function of the curvatures have been calculated at some

wall-normal locations of interest and compared with a scaling of the exponent of

−4 for both total and fluctuating field. This scaling of curvature values describes

the geometric features of the length scales that are smaller than the Kolmogorov

scale. The onset of this scaling with wall distance has a potential connection to the

three-dimensionalization of the vorticity field and the stagnation points structure



ii

in the inertial domain. In this region, the mean radius of curvature scales like

Taylor microscale. The probability density functions of the wall-normal curvature

show that high curvature regions similar to those in isotropic flow begin to appear

outside the viscous wall layer.

The standard deviation for torsion exhibits a decreasing effect with distance

from the wall. The torsion to curvature ratio reveals the intensity of out of plane

motion of the streamlines relative to their in-plane bending. The joint pdf of

curvature with velocity magnitude supports the notion that large curvature values

correspond to the region near a stagnation point. Furthermore, the joint pdf results

between curvature components reveal the orientation of the streamlines at different

wall-normal locations. Overall the curvature and torsion statistics examined thus

far point to intriguing correlations with the four layer structure associated with

known structure of the vorticity field in turbulent wall-flows.
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Chapter 1

Introduction

Turbulence is a property of fluid (liquid or gas) flows. It can be characterized
by listing some of its attributes, such as irregularity, diffusivity, large Reynolds
numbers, three-dimensional vorticity fluctuations, high dissipation, etc. (e.g. see
Tennekes & Lumley [1972]). Laminar flows become turbulent if the Reynolds
number is sufficiently high, e.g. ∼ 2000 (for pipe flow). The sources of energy
for turbulent velocity fluctuations are the shear in the mean flow, buoyancy, etc.
In the case of turbulent boundary-layer flows, the characteristic velocity of the
turbulence is typically about 1/30 of the free-stream flow speed in laboratory scale
flows. The classical model for turbulent flows is that the majority of the kinetic
energy is associated with large-scale motions while the majority of the vorticity
is associated with small-scale motions. This segregation of scales has implications
regarding the geometric features of the underlying motions. Namely, turbulent
flow with low Reynolds number has a relatively “rough” small scale structure. A
basic quality of turbulent motion influenced by this structure is the enhancement
of momentum transfer. When two turbulent flows have the same integral scale but
the different Reynolds number then a fundamental difference is the relative size of
the smallest eddies. All of these features present some of the general behaviours
of the turbulent flow of a fluid.

When there is a fluid flow with a certain velocity over a stationary surface or a
wall, then at the wall the velocity of the flow will turn to the wall velocity (zero) to
satisfy the no-slip condition. The velocity increases with distance from the wall.
and becomes the free-stream velocity after a particular distance. The distance
from the wall to this particular location is defined as the boundary layer thickness.
The flow within this region is known as a “wall-bounded flow” or “boundary layer
flow”. Wall-flow dynamics are of pervasive scientific and technological importance.
In this research, the wall-bounded flows are considered for all the analyses.

This thesis represents, an effort to better understand the flow structure by ana-
lyzing the geometric properties of the flow field, and to draw potential connections
between these geometric properties and the dynamics of the flow. Here, the geo-
metric properties are related to the curvature (κ) and torsion (τ) of the streamlines,
where a streamline is defined by the curve that is instantaneously tangent to the

1



Introduction 2

velocity of the flow. Curvature measures the deviation from a straight line i.e.
bending of the streamline and torsion is the out of plane motion i.e. twisting of
the streamline.

1.1 Motivation

In the case of wall-bounded flows, the predominant features tangential to the wall
result because the fluid particles stick to the wall. This no-slip condition affects
a velocity variation with distance from the wall. Turbulent wall-flows contain a
complex array of eddying motions that support the long-time statistical structure
of the flow. Nonlinear interactions underlie the spatial and temporal fluctuations
of these eddying motions; having effects that are notoriously difficult to predict or
control. The present research seeks to clarify properties of this spatial
fluctuating motion by analysing the flow geometry.

Turbulent wall-flows are technologically ubiquitous, as the transport of heat,
mass and momentum dictated by these flows substantially impact numerous pro-
cesses of engineering, societal, and commercial importance. Wall-flows at high
Reynolds numbers are especially important, e.g. Klewicki [2010]. Technological
applications include those in manufacturing and power generation, while the dy-
namics of turbulent wall-flows are also directly linked to the primary cost of materi-
als transport and transportation. Namely, these dynamics are responsible for much
of the fuel consumed by aircraft, ships, and industrial piping networks. The perva-
sive importance of turbulent wall-flow dynamics offers engineers opportunities to
impart large positive impact through only small percentage improvements. In this
regard, a wealth of existing evidence indicates that more advanced knowledge of
the robust features of wall-turbulence would significantly further efforts pertaining
to reliable wall-flow prediction and control (e.g. Klewicki [2010], Marusic et al.

[2010], Smits et al. [2011]). An important quality of these features is that, while
they are operative at all Reynolds numbers, they emerge with increasing clarity as
the Reynolds number becomes large. There is a broad need to elucidate the
qualities characteristic of these asymptotic dynamical features, as their
prediction and modification are key to engineering design and control
applications.

Exposing and characterizing the robust features of wall-turbulence presents a
number of challenges. Unfortunately, the most significant of these also become
increasingly acute as the Reynolds number becomes large (Klewicki [2010]). The
crux of the matter is that the dynamics are governed by the Navier-Stokes equa-
tion (NSE) as constrained by the no-slip boundary condition at the wall. The
dynamically relevant spatial and temporal interactions that arise from the nonlin-
earities of the NSE are famously complex and are further complicated by an in-
creasing range with Reynolds number, and anisotropic vorticity stretching near the
wall. Effective prediction or control of these flows requires mechanistically faithful
representations of their inherent complexities, while practical constraints demand
that these representations be contained in computationally efficient mathematical



Introduction 3

models-especially as the Reynolds number gets large and the range of relevant
scales increases. Wall-flow dynamics are, however, only accessible via observed
flow field realizations. Thus, mathematically compact constructions that guide
the analysis of these increasingly enormous data sets provide an attractive means
by which flow field realization’s can be comprehended and efficiently represented in
dynamical models. This is especially the case if the underlying framework retains
the connection to the NSE. The proposed research seeks to elucidate the
flow field realization by analyzing the flow geometries and clarify the na-
ture and origin of recently observed connections between the geometry
and dynamics of wall-turbulence.

This research includes investigating velocity field streamlines curvature and tor-
sion statistics in wall-turbulence. These streamlines properties are known to be dy-
namically significant (Wu et al. [2007]), and provide a mathematically well-defined
measure of flow structure. In comparison to particle trajectories, however, rela-
tively few studies have investigated streamline curvature and torsion directly, e.g.,
Wang [2010], Schaefer [2012] and beyond the present low Reynolds number results,
none in wall-turbulence. Relative to log layer structure, it is noted that streamline
curvature becomes very large in the vicinity of stagnation points (Schaefer [2012]).
This may have a connection to studies indicating that the spatial distribution of
stagnation points relates to the value of the leading coefficient in the log law for-
mula for the mean velocity, i.e. von Kármán’s coefficient (k), (Dallas et al. [2009]).
Conversely, within the theoretical framework presented by Klewicki et al. [2014], k
directly connects to the self-similar geometric structure of the flow. Collectively,
such observations motivate the investigation of flow field geometry us-
ing both statistical measures, and by characterizing the instantaneous
streamline properties.

1.2 Aims

In summary, this research aims to:

• clarify mechanisms underlying the apparent connections between geometry
and dynamics, and the degree to which they are reflected in the instantaneous
motions.

• analyse of the streamline geometries (curvature and torsion) in case of the
wall-bounded turbulence and discuss both viscous and the wall-blocking ef-
fects.

• conceptualize the flow structure by analyzing the instantaneous streamline
curvature and torsion properties.

• investigate the curvature and torsion statistics, and relate the mean curva-
ture statistics to the mechanisms of vorticity stretching and reorientation as
analyzed by Klewicki [2013a]
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• test for the existence of a −4 scaling (proposed by Schaefer [2012]) for the
large curvature values and compare the onset of this scaling with the Kol-
mogorov length scale

• compare the radius of curvature with the Taylor microscale in the inertial
layer and relate this to the stagnation points intermediate distance studied
by Goto & Vassilicos [2009].

• characterize stagnation points by analysing curvature values and relate to
the findings by Schaefer [2012] and Dallas et al. [2009].

Thus the proposed effort aims to elucidate the origin of recent analyses and ob-
servations that point to compelling connections between the dynamics of the flow,
and geometric properties of the turbulent motions responsible for this dynamics.
Apparent connections include those involving the structure of the solutions to the
time-averaged equations of motion, geometric properties inherent to the mean flow
structure, as well as those reflected in surprisingly rudimentary statistics. The pri-
mary focus is on the flow behaviors within the self-similar inertial region unique
to turbulent wall-flows. Here the mean velocity is well-approximated by a loga-
rithmic equation (e.g. Marusic et al. [2013]), and the mean flow equations admit
an asymptotic similarity solution (e.g. Klewicki [2013b]). While analytical and
empirical evidence point to firm connections between geometry and dynamics on
this inertial domain, the mechanistic origins of this evidence are unknown. This is
where the proposed research broadly seeks to make a contribution.

In this regard, the broad outline of this thesis is as follows: Chapter 2 presents
the relevant definitions and background work including the description of the ex-
ponent of −4 scaling and stagnation point structure; which will be extensively used
in the discussion of the last three aims. Chapter 3 provides the methodology of
computation including the preliminary plots for comparison of different calculation
methods and code validation. Chapter 4 outlines the statistical results of curva-
ture and torsion including the relations with previous findings. Finally, chapter 5
contains the general findings and summarization of the present research.

Publications and manuscripts

(i) Perven, R., Philip, J., & Klewicki, J. 2019 Statistical properties of
streamline geometry in turbulent wall-flows. Physical Review Fluids (Close
to submit.)

Conference presentations

(i) Perven, R., Philip, J., & Klewicki, J. 2017 Statistical properties of
streamline curvature and torsion in turbulent wall-flows. Presented in poster
presentation Frontiers in Turbulence KRS70 at Denver Symposium, vol. 60.
Denver, CO, USA

(ii) Perven, R., Philip, J., & Klewicki, J. 2019 Statistics of streamline
geometry in wall-bounded turbulence. Presented for oral presentation 17TH

European Turbulence Conference that held on 3-6 September 2019, Torino,
Italy



Chapter 2

Relevant literature review

This chapter includes the technical definitions with relevant literature review. The
important ingredients of this present study draw upon to compare and resemble
with (i) the leading order mean force balance in turbulent wall-flows (ii) the previ-
ously documented behaviour of streamline curvature probability density functions
in isotropic turbulent flows [Schaefer, 2012], and (iii) the characteristic length
scales and the geometric and scaling implications associated with the distributions
of stagnation points in the fluctuating velocity field [Dallas et al., 2009]. The aim
here is not to present the extensive review of related prior studies but to provide
the sufficient base for the reader to follow the analysis and discussion for this the-
sis. The broader intent of this study is to find the potential connection between
the geometry and dynamics of wall-bounded turbulent flows. In this regard, the
current chapter first includes the relevant literature on the mean dynamical struc-
ture and then the relevant literature on streamline geometry. To summarize, the
last part of this chapter covers the significant connection of the previous literature
to the present study.

2.1 Wall-bounded turbulent flows

In general, wall-bounded turbulence is a type of flow that is attached to a wall.
Some general examples of the wall-bounded flows are the boundary layer, channel,
and pipe flows. Complex motions form and rapidly evolve within the sufficiently
high speed flow of a fluid (liquid or gas) tangential to a solid surface. Such flows are
called turbulent wall-flows, and the momentum transported across them derives
from the dynamics underlying their complex motions. Accordingly, engineers and
scientists have the need to better characterize, predict, and control these dynamics.
This need is particularly acute as the primary dynamical parameter, Reynolds
number, becomes large. High Reynolds number wall-flows have greatest relevance
to long-standing challenges pertaining to energy and environmental sustainability.
Unfortunately, these flows are also the most difficult to study ([Klewicki, 2010]).
With increasing Reynolds number, wall-flows exhibit emergent qualities that reflect

5
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their essential physics at all Reynolds numbers. There is a broad need to elucidate
the qualities characteristic of the asymptotic dynamical state, as their prediction
and modification are key to engineering design and control applications.

Unlike isotropic flow with zero mean velocity, the present wall-bounded flows are
not Galilean invariant. Galilean invariance however, is not a relevant consideration
in the present flow. This is because the no-slip boundary condition breaks this
invariance [Huerre & Monkewitz, 1990].

2.2 Relevant literature

Coherent motions have long been known to populate turbulent wall-flows through a
process of continual formation, evolution, and obliteration [Klewicki, 2010, Maru-
sic et al., 2010, Robinson, 1991]. This spatio-temporal recurrence of motions is
related with identifiably recognizable spatial organization and similar evolutionary
features. An intriguing motivation for deeper investigation is associated with the
potential to use these motions, in some systematic manner, as a basis for simplified
descriptions that capture the essential elements of wall-flow dynamics e.g. [Jeong
et al., 1997, Sharma & McKeon, 2013]. Indeed, in a statistical sense, this under-
lying spatial organization leads many to strongly suspect that the long-recognized
self-similar scaling properties of turbulent wall flows connects the geometry and
dynamics of these instantaneously realized motions [Klewicki et al., 2014]. As with
many studies of turbulence, a primary gap in our present understanding pertains
to these connections between statistical behaviours of the geometric features and
the underlying instantaneous dynamics. The present study addresses aspects of
this knowledge gap by quantifying statistical properties associated with the differ-
ential geometry measures of curvature and (to a much lesser degree) torsion of the
streamline patterns in the turbulent boundary layers and the channel flows. Only
a few studies have investigated field line curvature and torsion directly and none
in wall-turbulence. This is partly associated with the work being computationally
intensive, and thus devising an efficient way to do the requisite computations is
also non-trivial. The two main emphases of this research pertain to (i) the geom-
etry of the mean dynamics, and (ii) the geometric properties of field lines. These
are now discussed further.

2.2.1 Mean dynamical structure and its geometric impli-

cations

A central distinction between the classical versus MMB based descriptions (apart
from the former having a direct basis in the RANS equations) pertains to the
onset and scaling properties of the physical space inertial sublayer that is a pri-
mary focus in many experimental and theoretical studies [Klewicki, 2010, Marusic
et al., 2010]. The classical logarithmic layer is the lower part of fourth layer in
the mean momentum balance where the viscous force (VF) is no longer leading
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order. The clearest and most important evidences of scale separation phenomena
in wall-flows are seen in the logarithmic layer. The leading balance layer structure
has unambiguous connection with the relevant mean dynamics. In the classical
description, one surmises that viscous effects become sub-dominant beginning at a
distance that is y = O(ν/uτ) from the wall (typically around y+ = yuτ/ν = 100),
where the friction velocity is defined by uτ =

√

τw/ρ, with τw denoting the mean
wall shear stress, and ν and ρ respectively denoting the kinematic viscosity and
mass density. In the MMB based description, the loss of a leading order VF is
found to occur at a wall-normal position y ∝

√

νδ/uτ or equivalently, y+ ∝
√
δ+

(here, δ+ = δuτ/ν), where δ in Table 1 denotes either the half-channel height or
the boundary layer thickness. (Herein, the boundary layer δ is determined us-
ing the composite profile formulation of Chauhan et al. [2009]). This square root
Reynolds number dependence (

√
δ+) is experimentally supported by measurements

of the terms in the MMB, and analytically via multi-scale treatment of the MMB
[Klewicki et al., 2009, Morrill-Winter et al., 2017a, Wei et al., 2005]. This first ap-
pearance of inertially dominated flows is additionally supported by measurements
of the logarithmic layer onset at high Reynolds number [Marusic et al., 2013].

Analysis of the Reynolds Averaged Navier-Stokes (RANS) equations, as sim-
plified for the canonical turbulent wall-flows reveals a layer structure associated
with the leading order balances with distance from the wall [Morrill-Winter et al.,
2017a, Wei et al., 2005]. The inner-normalized mean momentum equation for
turbulent channel flow is given by the following equation,

0 =
1

δ+
+

d2U+

dy+2
+

dT+

dy+
(2.1)

0=PG(Pressure gradient)+VF(Viscous force)+TI(Turbulent inertia)

where, T+ = −<uv>/u2
τ = −<uv>+ (superscript “+” means normalized quan-

tity) is most often referred to as the Reynolds shear stress [Wei et al., 2005]. For
the flat plate boundary layer and fully developed channel (or pipe) flows, the mean
momentum balance (MMB) equation 2.1 have these three terms. In the boundary
layer, the three terms are mean inertia, turbulent inertia (gradient of the Reynolds
shear stress), and the mean viscous force. These are respectively denoted MI, TI,
and VF. For channel flow, the TI and VF terms are also present, but the MI term is
replaced by the mean pressure gradient (PG). While in either case, all three terms
are dominant order somewhere in the flow, not all are leading order everywhere.
As described in Table 1, the layer structure (Viscous sublayer, Stress gradient
balance layer, Meso layer, Inertial layer) associated with the leading balances in
the MMB is qualitatively different from the classical viscous sublayer, buffer layer,
logarithmic and wake layer description that derives from the observed features of
the mean velocity profile [Klewicki, 2013a, Wei et al., 2005].

Table 1. Inner normalized leading order balance layer thicknesses for boundary
layer and channel flows.
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Leading
balance
(channel)

Leading
balance

(boundary
layer)

Layer
thickness
(channel)

Layer thick-
ness (bound-
ary layer)

I. |VF| ≃ |MI| |VF| ≃ |PG| 0 ≤ y+ ≤ 4 0 ≤ y+ ≤ 4

II. |VF| ≃ |TI| |VF| ≃ |TI| 4 ≤ y+ ≤
1.6

√
δ+

4 ≤ y+ ≤
2.6

√
δ+

III. |VF| ≃ |TI|
≃ |MI|

|VF| ≃ |TI| ≃
|PG|

1.6
√
δ+ ≤ y+ ≤
2.6

√
δ+

2.6
√
δ+ ≤ y+ ≤

3.6
√
δ+

IV. |TI| ≃ |MI| |TI| ≃ |PG| 2.6
√
δ+ ≤ y+ ≤
δ+

3.6
√
δ+ ≤ y+ ≤

δ+

Fig. 2.1 shows a sketch of the leading balance layer structure of wall-bounded
turbulent flows. For the channel, a balance between pressure gradient and viscous
stress gradient is predominant in layer I, while the Reynolds stress gradient and
viscous stress gradient balance in layer II. Layer III includes a balance among the
three terms (the pressure gradient, viscous stress gradient and Reynolds stress
gradient) of the momentum equation 2.1. Pressure gradient and Reynolds stress
gradient balance each other in layer IV.

Figure 2.1: Four layer structure of wall-bounded turbulent flows from Wei
et al. [2005]
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The analysis of Fife et al. [2005] and Klewicki et al. [2014] indicates that the
mean momentum balance (MMB) theory predicts that a self-similar geometric
structure underlies the layer structure of Fig. 2.1. This consists of a continuous
scaling layer hierarchy, where on each layer there is a balance exchange like across
layer III that occurs as a function of scale with increasing y+. Fig. 2.2 depicts a
discrete representation of this layer hierarchy. Here, W is the width of each layer
and β is a parameter that has a one to one correspondence with the wall-normal
distance y+. The relationship from one layer to the next is that y+2 is a distance
that is W+

1 from y+1 and so forth.

Figure 2.2: Schematic of the layer structure from Klewicki et al. [2014]

From an analysis of the structure of Fig. 2.2, Klewicki et al. [2014] show that the
momentum transporting motions are self-similarly space-filling. The time fraction
that the uv time series signal is described as a function of y+/

√
δ+ in Fig. 2.3. This

time fraction is equivalent to its space fraction. Thus this statistics depicts the
area coverage of the motions responsible for the wallward transport of momentum.

Figure 2.3: Area fraction that uv is negative for various δ+ and plotted verses
y+/

√
δ+ from [Klewicki et al., 2014]
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The present research aims to better understand the streamline geometry to bet-
ter clarify the shape and the mechanisms of the dynamically important motions.
In this regard, the streamline geometry statistics in the different layers of the
boundary layer will be discussed in the result chapter. Furthermore, the inherent
geometric self-similarity can be represented in terms of turbulent eddies that are
the key topic of the next section.

2.2.2 Attached eddy hypothesis

Townsend’s Attached Eddy Hypothesis [Townsend, 1976] also inherently leverages
connections between geometry and kinematic structure of turbulent wall-flows. In
this model, the mechanism of the wall-turbulence can be considered by representa-
tive attached eddies. The eddies are attached in the sense of this very well-known
Townsend’s attached eddy hypothesis (1976, page:153): “The velocity fields of the
main (energy containing) eddies regarded as persistent, organized flow patterns
extend to the wall and, in a sense they are attached to the wall”. Perry & Chong
[1982] proposed the hierarchy of geometrically similar eddies, that is shown in Fig.
2.4.

Figure 2.4: Symbolic representation of a discrete system of hierarchies

The maximum characteristic height of the largest eddies is proportional to the
boundary layer thickness. The size of the eddies scale with their distance from
the wall and velocity scales with friction velocity. The probability density function
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(pdf) of eddies is inversely proportional to their distance from the wall. So, ed-
dies are geometrically self-similar within the boundary layer. The attached eddy
hypothesis is founded on the notion of the distance from the wall scaling that also
comes out from the mean momentum balance theory. How these and other prop-
erties pertain to the curvature of the streamlines within the boundary layer flow
are analysed briefly in the streamline studies section.

2.2.3 Mean momentum balance results

The present research seeks to inform the nature and origin of recently observed con-
nections between this theory and the dynamics, and geometry of wall-turbulence.
A primary focus of this research is to clarify recent empirical observations that the
inertial region of wall turbulence exhibits self-similar behaviours, and that these
behaviours are reflected in geometric properties associated with dynamically rel-
evant quantities. Hence, the study is related to the flow behaviours within the
self-similar inertial region unique to turbulent wall-flows. In this regard, Wei et al.
[2005] have revealed dependency of mean structure of boundary layer, pipe and
channel flows on Reynolds number in Fig. 2.1. This work has been extended by
the theory of Fife et al. [2005]. In their work, they have clearly established the
dependency behaviour of the mean momentum balance on the Reynolds number.
Klewicki [2013b] and Klewicki et al. [2014] present some basic observations (fig-
ures 2.2 and 2.3). The first study has investigated the reason and results about
the appearance of dynamical self-similarities in turbulent wall flows, and also has
reported their behaviour with increasing Reynolds number. A part of this paper
specifically relates to the von Kármán constant (k) and its connections to the so-
lution of the mean dynamical equation. The second study discloses features of k
that relate to the geometric structure of the flow. Vassilicos et al. studied the von
Kármán constant (k) around the stagnation point and renamed as von Kármán
coefficient (Dallas et al. [2009]) (discussed later). The self-similar spatial structure
admitted by the MMB equations in that study [Klewicki et al., 2014] is of inherent
interest owing to its potential connection to the underlying geometry of the turbu-
lence. A key finding here is that the mean equations formally admit an invariant
form across a hierarchy of scaling layers. The widths of the members of this layer
hierarchy span from O(ν/uτ ) to O(δ), as do the locations of these layers. Im-
portantly, the y coordinate stretching function (required to generate the invariant
self-similar form of the MMB) becomes a linear function of distance from the wall
on the inertial sublayer (i.e., beyond layer III) [Klewicki, 2013a]. This analytical
result underpins the existence of a formally admitted similarity solution to the
mean equations that is shown to recover the classical logarithmic mean velocity
profile equation as δ+ → ∞ [Klewicki & Oberlack, 2015, Morrill-Winter et al.,
2017a]. These and related analytical properties also support the existence of, and
a number of evidence for, self-similar behaviours of the velocity field motions on
the inertial sublayer [Meneveau & Marusic, 2013, Zhou & Klewicki, 2015]. In the
present study, we similarly examine streamline curvature and torsion statistics in
this context.
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Physically, the widths of the layer hierarchy represent a characteristic scale of the
motions responsible for wallward momentum transport, and this motivated more
detailed analyses of the spatial structure of the negative Reynolds stress fluctu-
ations. These investigations [Klewicki et al., 2014, Morrill-Winter et al., 2017b]
revealed intriguing observations suggesting that the slope of the mean velocity
profile on the inertial sublayer (as quantified by the von Kármán constant) relates
to the space-filling properties of the negative Reynolds stress motions, and further
that the amplitude and scale of these motions are self-similarly related. Alterna-
tively, the inward flux of momentum can be equivalently viewed as being associated
with the outward transport of vorticity [Eyink, 2008, Klewicki et al., 2007]. In this
regard, analyses in the context of the MMB reveal that near the wall the vortic-
ity field is essentially space-filling and its dynamics are strongly coupled to the
mechanisms of vorticity stretching and reorientation, which serve to rapidly three-
dimensionalize the vorticity field. With increasing y, however, advection becomes
the primary mechanism for vorticity transport, and is characterized by the spatial
dispersion of small scale regions of intense vorticity [Morrill-Winter & Klewicki,
2013, Priyadarshana et al., 2007]. In the present study, the mean curvature statis-
tics reflect evidences of this feature of the vorticity stretching behaviour from the
high turbulence region close the wall to the outer edge of layer II. With increasing
y this behaviour is similarly shown to correlate with the decreasing density of stag-
nation points in the fluctuating velocity field (described relative to the studies of
Vassilicos et al. [Dallas et al., 2009, Goto & Vassilicos, 2009] below), as well as the
statistical properties of the fluctuating streamline curvature documented herein.

2.2.4 Streamline studies

The present research aims to elucidate the origin of recent analyses and obser-
vations that point to compelling connections between the dynamics of the flow,
and geometric properties of the turbulent motions responsible for these dynamics.
Accordingly, this investigation includes exploring velocity and vorticity streamline
curvature and torsion statistics in wall-turbulence. This involves the mathematics
of differential geometry [Millman & Parker, 1977]. Previous researchers have stud-
ied the curvature geometry of turbulent flows for both streamlines [Peters et al.,
2010, Schaefer, 2012] and particle trajectories [Braun et al., 2006, Scagliarini, 2011].
For particle trajectories, Braun et al. [2006], show that the maximum vorticity and
the curvature of the particle trajectories are linearly correlated. Our present joint
pdf on streamline curvature and torsion with velocity magnitude also reinforce this
relationship in case of wall-bounded flows. Accordingly, Scagliarini [2011] studied
the geometric properties of Lagrangian trajectories for homogeneous and isotropic
turbulence. According to this study, the instantaneous curvature statistics are
dominated by the large scales flow reversals, where the velocity magnitude as-
sumes very low values. The joint statistics of curvature and torsion in his study
highlight the coherent geometrical structure of small-scale intense vorticity in tur-
bulent flows that are dominated by helical-type trajectories. For defining the
turbulent structures at the small scales, the whole DNS flow field was decomposed
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by Peters et al. [2010] into the planar geometrical unit they called dissipation ele-
ment. According to them, the ensemble of grid cells from which the same pair of
extremal points is reached determines a spatial region which is called a dissipation
element. The spatial properties of the turbulent fields have been simply struc-
tured by streamline segment analysis by Wang [2010]. He defined a streamline
segment as the part of streamline starting from each grid point bounded by two
adjacent extremal points of the velocity magnitude. Thus, the boundary surface
of streamline segments contains all local extreme points that are the ending points
of the dissipation elements [Schaefer et al., 2012]. These local extreme points also
include stagnation points of the flow fields which are absolute minimum points of
the turbulent kinetic energy as they described. Hence, the dissipation elements
and the streamline segments are interrelated. In the present study, we have found
that the stagnation points largely correlate with the larger curvature values. Given
to this, the following discusses a particularly relevant study of Schaefer.

2.2.5 Most relevant streamline curvature literature

The most relevant work to the present study is the curvature statistics of stream-
lines in various turbulent flows studied by Schaefer Schaefer [2012]. He showed
that the convective term of the Navier-Stokes equation can be expressed by the
curvature related geometry of streamlines. In his study, he considered the curva-
ture and torsion as a field variable in case of low Reynolds number isotropic flows.
In contrast to this, the present work considers the curvature and torsion as a lo-
cal variable and compute these in wall-bounded turbulent flow cases. Schaefer’s
research demonstrated that the probability density function of curvature P (κ) fol-
lows a power-law scaling of κ−4 for the extreme curvature values, which as been
suggested to around the stagnation points. This is reinforced by the present joint
pdf of the curvature with fluctuating velocity magnitude result. Here, the expo-
nent of −4 scaling derives from the following procedure as described by Schaefer
Schaefer [2012]. The curvature is directly proportional to the product of the in-
verse of the velocity magnitude (|V |−1) and the gradient of the velocity magnitude
in the streamline direction. It is assumed that the pdfs of the two products are
independent. Further, if the three velocity components is assumed to be joint
Gaussian random variables, a scaling of the pdf of the inverse of absolute velocity
value, |V |−1 =: a, can be found for isotropic turbulence. It can be then shown that
the pdf of the turbulence kinetic energy K = uiui/2 follows a chi square (χ2) dis-
tribution with three degrees of freedom, which generates P (K) ∝ K

1/2e−K/2. This
gives, P (a) ∝ a

−4e−a−2

. Following this, the pdf of the absolute value of curvature
can be expressed κ−4. The present curvature pdfs are analysed with respect to
this exponent of −4 scaling that are discussed in the probability density function
of curvature section.

Fig. 2.5 shows the normalized pdf of the Gaussian curvatures of streamlines of
turbulent flows for four different DNS from Schaefer [2012]. Here, the probability
density function of the Gaussian curvature is normalized by its standard deviation.
The algebraic tails of the pdf scale as κ̃−4

g corresponds very large value of curvature.
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Where and why similar behaviours exist in wall turbulence is one of the important
elements of the present study. Thus, the present wall-flow research constitutes a
natural extension to his work, and thus worthy of deeper inquiry.

Figure 2.5: Normalised pdf of the Gaussian curvature of streamlines from
Schaefer [2012]

The above discussions motive the study of geometric aspects of the flow. The
narrative below provides additional details from the existing literature.

2.2.6 Stagnation point structure in turbulent wall-flows

Motivated by earlier investigations of the zero-crossing properties of velocity fluctu-
ations and their derivatives [Mazellier & Vassilicos, 2008, Sreenivasan et al., 1983],
Vassilicos and co-workers studied the properties of the zeros (stagnation points)
of the fluctuating velocity magnitude in turbulent channel flows [Dallas et al.,
2009, Goto & Vassilicos, 2009]. Stagnation points are defined as the points where
the fluctuating velocity components around the local mean flow are zero [Dallas
et al., 2009]. For the fluctuating velocity fields, Dallas et al. [Dallas et al., 2009]
found that the distance between stagnation points is proportional to the Taylor
microscale. In the region where the mean velocity profile is logarithmic (i.e., iner-
tial sublayer- inner part of layer IV in Table 1), they also showed that the number
density of the stagnation points is inversely proportional to the wall-normal dis-
tance. In the present study, we explore the onset of −4 scaling (related to extreme
curvature values near stagnation points) with the inverse of Kolmogorov scale,
and the ratio of the Taylor microscale to the radius of curvature with wall-normal
distances.
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2.3 Connection between geometry and dynamics

of wall-flows

The present research is based on the idea that there are spatial signatures related
to the shape and the mechanisms of the motions that affect the flow dynamics. Our
interest is to identify the connection of this spatial geometry to the flow dynamics.
There are good reasons that lead one to suspect that such relations exist. For
example recent research (say over the past 30 years i.e. [Klewicki et al., 2014],
[Schaefer, 2012], [Braun et al., 2006]) indicates the importance of coherent vortical
motions in turbulent flows, and that these motions are spatially organized. These
coherent regions of vorticity are generally known as “turbulent eddies”. Turbulent
eddies will generally have non-zero streamline curvature. So, from the properties of
the local curvature through the entire flow field, it is hypothesized that we can learn
more about the coherent vortical motions in wall-flows. An order of magnitude
analysis of leading terms in the mean momentum balance indicates dynamically
distinct regions within the boundary layer and an associated geometric structure.
Overall, the geometric properties of wall-bounded flows have not yet been studied
in detail. Worthy areas of exploration thus includes two broad themes; (i) The
properties of the inertial turbulent motions that underlie the self-similar geometric
structure found through analysis of the mean momentum balance, and (ii) The
geometric properties of the velocity and vorticity field lines and their correlation
to dynamical structure. The present study focuses on the latter.





Chapter 3

Calculation technique and code
validation

In this study, the streamlines are computed at each grid point of a flow field to
calculate the local curvature and torsion. The curvature and torsion equations
are derived from the Frenet-Serret apparatus. The Runge-Kutta method is used
for point-wise streamlines calculations. For validation, in the last section of this
chapter we compare the curvature and torsion values using the present calculation
method with the known results in the case of a straight line, circle, and helix.

3.1 Curvature and torsion calculation methods

This section includes the calculation technique for curvature and torsion. Curva-
ture is calculated using two methods. The first uses the central difference formula
for the equation of curvature as derived from the Frenet-Serret apparatus. The
second uses the magnitude of the vector formula for the curvature components.

3.1.1 Frenet-Serret apparatus

Pragmatically, the interrogation of field line curvature and torsion in DNS data
sets effectively involves the computational construction of the local Frenet-Serret
apparatus. The Frenet-Serret apparatus is an orthogonal coordinate system de-
fined locally along a space curve and is used herein as a basis for computing the
local geometry of the streamlines [Millman & Parker, 1977]. This tool relates the
three basic vectors of differential geometry; the tangent vector T, normal vector N
and binormal vector B; as well as two scalar quantities: curvature κ and torsion τ .
Here, T is a unit vector pointing in the direction of the velocity vector, N is a unit
vector pointing along the radius of curvature (outward) and B is the unit vector
that is orthogonal to both T and N. The scalar quantity, curvature quantifies the
bending of a curve from a straight line within a reference plane. Thus, for example,

17
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the curvature value for a straight line is zero, and that of a circle of radius r is
constant and equal to 1/r. Torsion measures the out-of-plane motion of a curve,
i.e. the twisting motion of the curve. Fig. 3.1 shows the local coordinate system
with the tangent, normal and binormal vector in case of a right-handed helix.

Figure 3.1: Frenet-Serret apparatus shown by Millman & Parker [1977]

The Frenet-Serret equations for a unit speed curve α(s), relations between
T,N,B, κ and τ and are given by,

T′ = κN, (3.1)

N′ = −κT + τB, (3.2)

B′ = −τN. (3.3)

Here, the superscript prime denotes the first derivative with respect to speed pa-
rameter, s, which is the variable that moves one along the curve as it is traced
out in space. Here, s is a length scale that is defined as the speed parameter in
accordance with the nomenclature of differential geometry.

Now, let a streamline at any fixed instant in the flow evolution be defined by
β. The curve β will be equivalent to α(s) if it is parametrized by the arc length.
Thus, β is a function of s. β̇ represents the first derivative of the curve with
respect to the speed at which one travels along the curve. If the curve is fixed in
space (as are streamlines at any instant of flow evolution) then the pseudo-time
derivative along this fixed curve refers to moving at a uniform speed along that
curve. Computationally this means that discrete calculations must use equally
spaced data points along the curve. The derivatives of β are then unambiguously
related to the shape of the curve.

Thus if we talk about the travel of a particle moving along this fixed space
curve then its pseudo time derivative (e.g. β̇) is related to the local geometric
properties of the curve. Note that this pseudo-time is not associated with the flow
evolution, but rather the trajectory along a fixed space curve. If the pseudo-time
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is normalized by arc length, then the pseudo-time derivative of a uniform speed
curve is equivalent to the derivative of the unit speed curve using the arc length.
Once again, the pseudo-time is considered for each fixed time instant in the flow
field evolution. Overall the procedure used herein is equivalent to that used by
Schaefer [2012].

Following the above prescription, the equation for the tangent of the streamline
(β) is then given by

T =
β̇

|β̇|
, (3.4)

or

β̇ = |β̇|T,

where β̇ is the pseudo-time derivative of β. The second derivative of β implies,

β̈ = |β̈|T+ |β̇|Ṫ. (3.5)

Using the re-parameterization Ṫ = |β̇|T′ and equation (3.1),

β̈ = |β̈|T+ |β̇||β̇|T′.

Or,

β̈ = |β̈|T+ |β̇||β̇|κN,

and thus,

β̈ = |β̈|T+ |β̇|2κN . (3.6)

Here, β̇ and β̈ are respectively defined as velocity and acceleration of a parti-
cle moving along the streamline β curve. The cross product of the velocity and
acceleration gives,

β̇ × β̈ = |β̇|T× (|β̈|T+ |β̇|2κ N) = |β̇|3κB, (3.7)

as T × T = 0,T ×N = B [using right-handed rule]. The magnitude of the unit
vector B is one. Thus,

κ =
|β̇ × β̈|
|β̇|3

. (3.8)

Now, for the calculation of torsion, we start with the derivative of equation 3.6,

...
β = |

...
β |T+ |β̈|Ṫ + κN (|β̇|2). + κ|β̇|2Ṅ . (3.9)

Using the re-parameterizations, Ṅ = |β̇|N′ and Ṫ = |β̇|T′,

...
β = |

...
β |T+ |β̈||β̇|T′ + κN (|β̇|2). + κ|β̇|2|β̇|N′.



Methodology 20

Using equations 3.1 and 3.2

...
β = |

...
β |T+ |β̈||β̇|κN+ κN (|β̇|2). + κ|β̇|3(−κT+ τB)

= |
...
β |T− κ2|β̇|3T+ |β̇||β̈|κN+ κN (|β̇|2). + κτ |β̇|3B,

and thus

...
β = (|

...
β | − κ2|β̇|3)T+ (|β̇||β̈|κ+ κ(|β̇|2).)N+ κτ |β̇|3B. (3.10)

Here, [β̇, β̈,
...
β ] = (β̇×β̈).(

...
β) = 〈(β̇×β̈),

...
β〉. In the middle term, by using equation

3.7 and 3.10 we get,

(β̇ × β̈).(
...
β) = [|β̇|3κB].[(|

...
β | − κ2|β̇|3)T+ (|β̇||β̈|κ+ κ(|β̇|2).)N+ κτ |β̇|3B],

and thus, (β̇ × β̈).
...
β = κ2τ |β̇|6, (using B.T = 0,B.N = 0,B.B = 1)

or, (β̇ × β̈).
...
β = τ(κ|β̇|3)2.

Or, (β̇ × β̈).(
...
β) = τ |β̇ × β̈|2 (Using equation 3.8)

yielding,

τ =
(β̇ × β̈).

...
β

|β̇ × β̈|2
, (3.11)

and finally

τ =
[β̇, β̈,

...
β ]

|β̇ × β̈|2
. (3.12)

The derivatives of β in equations 3.8 and 3.12 are computed using the following
standard central difference formulas;

Ḃ
n

j =
Bn+1

j −Bn−1
j

2△t
, (3.13)

where Ḃ
n
is the first derivative at the current (pseudo) time step, Bn is the location

on the curve at the current time step, Bn+1 is the location at the next time step,
Bn−1 is the location at the previous time step, △t is the change in the time and j
denotes i, j or k.

The second and third derivatives are,

B̈
n

j =
Bn+2

j − 2Bn +Bn−2
j

4△t2
, (3.14)

and
...
B

n

j =
Bn+3

j − 3Bn+1
j + 3Bn−1

j −Bn−3
j

8△t3
. (3.15)
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3.1.2 Vector method for calculating curvature component

From differential geometry, the curvature is also defined by,

κ =
dt

ds
, (3.16)

where dt is the differential increment of the tangent vector and ds is the differential
arc length of the curve. If the velocity components at a point on the streamline
are defined by u1, v1, and w1 then the total velocity is,

V = u1î+ v1ĵ + w1k̂, (3.17)

and the magnitude of V is

|V| = |
√

u2
1 + v21 + w2

1|. (3.18)

Thus, the unit tangent vectors are,

t̂ =
V

|V| =
u1

|V | î+
v1
|V| ĵ +

w1

|V| k̂ = tx1î+ ty1ĵ + tz1k̂. (3.19)

Similarly, the unit tangent vector components tx2, ty2, and tz2 for the next point
are computed to find dtx, dty, dtz. The differential arc length ds is calculated by
taking the distance between the first two points on the streamline. Then,

κx =
dtx
ds

,

κy =
dty
ds

,

and

κz =
dtz
ds

(3.20)

are the curvature components in the streamwise, wall-normal and spanwise direc-
tions. Therefore the magnitude of the total curvature is,

κ = |
√

κ2
x + κ2

y + κ2
z|. (3.21)

Equations 3.8 and 3.21 are shown in Appendix A to yield the same computed
curvature values.
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3.2 Runge-Kutta method for calculating stream-

line

We use a 4th order Runge-Kutta method to compute the streamline starting at each
grid point of a DNS flow volume. Here, the 3rd derivative is the highest derivative
in the curvature and torsion definitions (equation 3.8 and 3.12), which requires a
maximum seven points to execute the central difference formula in equation 3.15.
Herein, we use the Runge-Kutta method to calculate a portion of the streamline,
i.e. a streamline segment. The details procedure are shown in Appendix. The
technique for choosing the step size that defines the space between two consecutive
points on the streamline segment are discussed below.

3.2.1 The technique for choosing the step size

This section is about the computation of the step size h. The step size should
not be taken too small or too large for numerical accuracy. Here, we consider 100
random values between .000001 and 100 on a logarithmic scale. We examine the
mean, standard deviation, skewness and kurtosis of curvature for these random
values of h. The idea here is to nominally determine the largest step such that the
statistics at the surrounding points remain unchanged as shown in figure 3.2.
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Figure 3.2: Curvature statistics versus step size h (a) mean curvature, (b)
standard deviation, (c) skewness, and (d) kurtosis
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Here, these statistics are defined as;

mean: κ =
∑

κi/N ,

standard deviation: σκ =
√

∑

(κi − κ)2/N ,

skewness: κskew =
∑ (κi−κ)3/N

σ3
κ

, and

kurtosis: κkur =
∑ (κi−κ)4/N

σ4
κ

,
where N is the size of the curvature ensemble. All plots of figure 3.2 show the
statistical results remain constant up to h ≈ 10−3. After that, the profiles start
decreasing. Thus we choose the step size h = 0.001 for this research, which is 0.14
in viscous unit.

3.3 Direct numerical simulation (DNS)

A direct numerical simulation (DNS) is a complete three-dimensional and time-
dependent realization of the Navier-Stokes and continuity equations. The value of
DNS is that it is potentially a numerically accurate solution of the exact equations
of motion. This is especially useful for obtaining information about essentially
unmeasurable properties like pressure fluctuations. DNS is free from the significant
numerical and other forms of error. The primary concerns in DNS are related to
numerical accuracy specification of initial and boundary conditions and making
optimum use of available computer resources.

The present analysis employs DNS data sets. These include boundary layer
data at friction Reynolds numbers δ+ ≈ 1310 and δ+ ≈ 2000 [Sillero et al., 2013]),
and channel flow data at friction Reynolds number δ+ ≈ 934 [Del Alamo et al.,
2004]. The friction Reynolds number is defined as (also defined in Chapter 2),
δ+ = δuτ/ν = Reτ , where uτ =

√

τw/ρ, ν is the kinematic viscosity, and δ
denotes either the half-channel height or the boundary layer thickness. Here, in
the case of the boundary layer, δ+ was found to be about 1660 and 2530 using the
composite profile formulation by [Chauhan et al., 2009]. The streamwise, spanwise
and the wall-normal directions are considered to be along the x-axis, z-axis, and
y-axis respectively. For the channel flow, it is feasible to compute statistics over
the entire plane owing to its horizontally homogeneous fully developed properties.
The boundary layers, however, required the use of smaller domains to approximate
a constant friction velocity condition. For this reason, the slices of only 312 grid
points are considered in the x-direction and 2048 grid points are taken in the z-
direction at 38 wall positions for δ+ = 2530 boundary layer (and similarly 195 and
4096 grid points in x and z respectively at 36 wall-positions in case of δ+ = 1660
boundary layer). For comparison, 312 and 2048 grid points are considered in x and
z respectively at 37 wall-positions for δ+ = 934 channel DNS as well. Statistics
are computed from the average of six independent DNS fields by averaging over
the planar domains indicated above.
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3.4 Code validation

The Matlab code for the curvature and torsion calculation is tested by the known
results for straight line, circle, and helix. The curvature and torsion of a straight
line are analytically known to be zero (not shown here). For a planar circle, the
curvature is analytically equal to the inverse of the radius of the circle, and the
torsion is zero as there is no out of plane motion. We have computed the curvature
value for a straight line S(t) = (t, 0, 0) and for a circle C(t) = (rcos(t), rsin(t), 0) of
radius r = 5 using the 4th order Runge-Kutta method with the curvature definition
in equation 3.8. Here, we get the expected curvature values e.g. 0 and 0.2 for the
considered straight line and circle respectively that are shown in figure 3.3.
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Figure 3.3: Curvature values for the considered (a) straight line (b) circle

3.4.1 Analytical solution for curvature and torsion in case
of a helix

Let, a helix
β(t) = (rcos(t), rsin(t), bt) (3.22)

with radius r = 1 and pitch 2πb = 1 (that returns b = 0.1592) which is shown in
figure 3.4.
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Figure 3.4: Unit helix with radius one and pitch one

Now, we will calculate the curvature and torsion for this helix using central
difference formulas and vector method discussed in the first section of this chapter.

3.4.1.1 Finite (central) difference method

The curvature from equation 3.8 is

κ = |β̇×β̈|
|β̇|3 .

Here, using equation 3.22,

β̇ = (−rsin(t), rcos(t), b) and

β̈ = (−rcos(t),−rsin(t), 0).

Therefore, β̇ × β̈ = brsin(t)̂i− brcos(t)ĵ + r2k̂ and the magnitude

|β̇ × β̈| =
√

(b2r2sin2(t) + b2r2cos2(t) + r4) = r
√

(b2 + r2) and

|β̇| =
√

(r2sin2(t) + r2cos2(t) + b2) =
√

(b2 + r2).

Thus,

κ =
r
√

(b2 + r2)

(
√

(b2 + r2))3
=

r

(r2 + b2)
. (3.23)

The torsion from equation 3.11 is

τ =
(β̇ × β̈).

...
β

|β̇ × β̈|2
. (3.24)
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Here,
...
β = (rsin(t),−rcos(t), 0), thus,

(β̇ × β̈).
...
β = (brsin(t)̂i− brcos(t)ĵ + r2k̂).(rsin(t)̂i− rcos(t)ĵ + 0k̂)

= br2sin2(t) + br2cos2(t) + 0 = br2.

Therefore,

τ =
br2

(r
√

b2 + r2)2
=

b

(b2 + r2)
. (3.25)

3.4.1.2 Vector method

The velocity at a point on the considered helix β(t) = (rcos(t), rsin(t), bt) with
u1 = dx/dt = −rsin(t), v1 = dy/dt = rcos(t), w1 = dz/dt = b, are

|V| = |dβ/dt| =
√

(r2sin2(t) + r2cos2(t) + b2) =
√

(r2 + b2).

The arc length is s =
∫ t

0
|dβ/dt|dt =

∫ t

0

√

(r2 + b2)dt = t
√

(r2 + b2).

From this, t = s√
(r2+b2)

.

The tangent vectors are,

tx1 =
u1

|V| =
−rsin(t)√
(r2+b2)

,

ty1 =
v1
|V| =

rcos(t)√
(r2+b2)

,

tz1 =
w1

|V| =
b√

(r2+b2)
.

Therefore the components of curvature are,

κx = dtx1
ds

= d
ds
( −rsin(t)√

(r2+b2)
) = 1√

(r2+b2)

d
ds
(−rsin( s√

(r2+b2)
)) = −r

(r2+b2)
cos( s√

(r2+b2)
),

κy =
dty1
ds

= d
ds
( rcos(t)√

(r2+b2)
) = 1√

(r2+b2)

d
ds
(rcos( s√

(r2+b2)
)) = −r

(r2+b2)
sin( s√

(r2+b2)
),

κz =
dtz1
ds

= d
ds

b√
r2+b2

= 0.

Thus the curvature magnitude is,

κ = |
√

κ2
x + κ2

y + κ2
z| =

r

(r2 + b2)
. (3.26)

Thus, equations 3.23 and 3.26 yield the same curvature value. This simplification
of the considered helix for curvature and torsion using equations 3.8 and 3.12 gives,
κ = r/(r2 + b2) and τ = b/(r2 + b2). Therefore, analytically, the curvature and
torsion values for this helix are 0.975295 and 0.155223 (using r = 1, b = 0.1592).
Figure 3.5 shows the local curvature and torsion values computed using the present
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calculation method for the considered helix. These results are exactly equal to the
analytical values. Thus, all the results of this section support the validation of the
calculation technique for this research.
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Figure 3.5: (a) Local curvature of the considered helix (b) Local torsion of
the considered helix in figure 3.4





Chapter 4

Statistical properties of curvature
and torsion

This chapter includes the curvature and torsion statistics for the considered wall-
bounded flow cases. The analysis shows that the statistics of these geometrical
properties change significantly with wall-normal position. Moreover, the correla-
tion coefficient and the conditional average of the wall-normal velocity correspond-
ing to the wall-normal curvature have been computed. The probability density
function of the curvatures have been calculated at selected wall-normal locations
and compared with a scaling of−4 for both total and fluctuating field. The pdf pro-
file of the positive and negative wall-normal curvature shows a clear wall-blocking
effect. The standard deviation for torsion, and the ratio of torsion and curvature
have been shown for the analysis of the out of plane motion of streamlines. The
joint pdf of curvature with velocity magnitude quantifies curvature values near
stagnation points. Furthermore, the joint pdf of curvature components have been
calculated to interpret the orientation of the streamlines in different wall-normal
locations.

This chapter includes the results of PERVEN, R., PHILIP, J., KLEWICKI, J.
2019 Statistical properties of streamline geometry in turbulent wall-flows. Phys.
Rev. Fluid. (In Production.)

4.1 Curvature

The curvature of a streamline measures the deviation of the streamline from being
a straight line (bending). In a turbulent flow, the streamline pattern changes from
one instant to the next. Thus, the curvature components in the streamwise κx,
wall normal κy and spanwise, κz directions (equation 3.20) measured at any given
fixed point in space are fluctuating quantities. For this reason, we investigate the
statistical properties of κ and τ , e.g., the mean (κ =

∑

κi/N) and the standard
deviation (σκ =

√

∑

(κi − κ)2/N), where N is the size of the curvature ensem-
ble. In what follows, u, v and w are the fluctuating streamwise x, wall-normal y,

29
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and spanwise z velocity components and unless otherwise noted all quantities are
normalized by kinematic viscosity ν and friction velocity uτ . The total, mean and
fluctuating streamwise velocity components are defined as ũ, U and u respectively
i.e., ũ = U + u, and similarly for the wall-normal and spanwise components. The
curvatures computed from the total and fluctuating field are defined as κ̃ and κ
respectively.

Large values of curvature are associated with the small length scale features
of the turbulent flow and vice versa. As such it can be reasoned that curvature
tends to attain extreme values near a stagnation point either in a fixed frame for
a zero mean flow field or relative to a mean flow [Schaefer, 2012]. The radius of
curvature has also been shown to be comparable to the Taylor microscale in the
isotropic flow [Schaefer, 2012]. Thus, here we compare the inverse of the curvature
magnitude (radius of curvature) with the Taylor microscale in the inertial layer.
This connects to the study [Dallas et al., 2009] (described in the literature review
chapter) indicating that the distance between stagnation points is proportional to
the Taylor microscale. The Taylor microscale scales with the square root of wall
location in the inertial layer, as following.

Classical theoretical analysis of the turbulence energy equation in wall-flows
indicates that the energy production ℘ is approximately equal to the dissipation
rate in the inertial (logarithmic) layer Tennekes & Lumley [1972]. Accordingly,
the dissipation rate, ǫ ≈ ℘ = 〈uv〉∂U/∂y. On the other hand, dissipation can
be reasonably obtained from the isotropic estimate, ǫiso = 15νσ2

u/λ
2, where λ is

the Taylor microscale and σu is the standard deviation of u for the fluctuating
flow field. Assuming the usual log law for U(y) (i.e., U+ = 1/k ln(y+) + const.),
℘ = 〈uv〉∂U/∂y ≈ u3

τ/ky = ǫ = 15νσ2
u/λ

2, where k is the von Kármán constant.
From this (and noting that σu ∼ uτ), it is apparent that λ+ scales according to√
y+ in the inertial or the logarithmic layer of wall-flows.

Herein, the Taylor microscale, λ, is evaluated in two ways: based on the isotropic
approximation and using the actual viscous dissipation rate. The actual viscous
dissipation rate is ǫ = 2νsijsij, with sij = (1/2)(∂ui/∂xj + ∂uj/∂xi). Then using

the relation for the dissipation in isotropic turbulence, ǫiso = 15ν(∂u1/∂x1)2 =
15νσ2

u/λ
2 e.g. Tennekes & Lumley [1972]. Thus, the Taylor microscale for isotropic

turbulence can be defined as,

λ =
σu

√

(∂u1/∂x1)2
, (4.1)

and the Taylor microscale using the actual viscous dissipation rate is,

λǫ =

√

15ν

ǫ
σu. (4.2)

Before presenting the statistics of curvature, it is important to recognize that the
mean of the curvature magnitude and component curvatures are not derivable from
the mean streamlines. Rather, they derive from the instantaneous velocity field.
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For example, the mean wall-normal velocity V for the channel flow is identically
zero, but the mean of the curvature component associated with the wall-normal
direction is non-zero, as described and discussed later. This is because the mean
wall-normal curvature is computed from the instantaneous field, and is non-linearly
related to the mean field.

Figure 4.1 presents the mean curvature statistics for the boundary layer and
channel flows investigated. The grey dash lines in figure 4.1 indicate the position
of the momentum balance layer boundaries associated with δ+ = 1660 (Table
1). This plot clarifies the variation of the mean statistics of curvature magnitude
and curvature components with the wall-normal distance. Figure 4.1(a) shows the
profiles of the mean curvature magnitude κ̃+ versus y+. For comparison, we also
plot the inverse of the inner normalized Taylor microscales given by equations. 4.1
(denoted by the dot symbols) and 4.2 (denoted by the cross symbols). Here, κ̃+

decreases with the wall-normal distance, except in a region between y+ ≃ 15 to
y+ ≃ 50 in layer II (see figure 4.1(c)). From there κ̃+ exhibits an approximate
power-law decrease and continues this decrease into the inertial layer (layer IV).
The power law slope is about -0.5, which is the value expected if κ̃ scales like
the estimate for 1/λ indicated above. Overall, these results indicate that the
streamlines with large mean curvature values are located close to the wall.

We now compare the mean curvature magnitude with the Taylor microscales
denoted by the dot and the cross symbols in the upper curve of figure 4.1(a). It
is difficult to measure the derivatives in sij tensor (above) through experiments
wherein mostly the streamwise velocity component is measured. Hence, for prac-
tical reasons, the isotropic estimate is typically employed. This isotropic approx-
imation works well away from the near-wall region [Klewicki & Falco, 1990] and
this is also evidenced in figure 4.1(a). Here, the difference between the profiles
of 1/λ+ and 1/λ+

ǫ near the wall is clearly evident. These profiles then coincide
beginning near the outer portion of layer II. The experimental data by Vincenti
et al. [2013] denoted by the pink square symbol also merge with these 1/λ+ and
1/λ+

ǫ profiles (using the current DNS data) from the same position in layer II and
into the outer region.

The grey dotted line of figure 4.1 (a) at y+ = 262, displays the upper bound
for the classical log layer of y/δ = 0.2 in case of δ+ = 1660. The mean curvature
magnitude at this location is not proportional to 1/λ+ as it decays with a somewhat
different slope of about -0.3. This is close to, but deviates from the estimates of
equation 4.1 or equation 4.2. Thus, in the inertial region, the radius of curvature
(1/κ̃) has a power law that varies similarly to λ but with a somewhat different
magnitude. A similar result is also evidenced in figure 4.9 below.

We now investigate the wall-normal profiles of the mean curvature components
in the streamwise, wall-normal and spanwise directions as defined by equation 3.20.
Figure 4.1(b)) displays the mean streamwise curvature (κ̃+

x ) with y+. Similar to
κ̃+, κ̃+

x shows a decreasing behaviour with increasing distance from the wall and
an approximate power law decrease across layer IV. In the region between y+ ≃ 15
to y+ ≃ 50, however, the κ̃+

x profile is nearly constant as shown in figure 4.1(d).
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Figure 4.1: Mean statistics of curvature in case of the boundary layer (circle
symbols used for δ+ ≈ 2530 and arrow symbols are for δ+ ≈ 1660) and the
channel flow (diamond symbols are used for δ+ ≈ 934). Dashed lines represent
the layer boundaries associated with the mean momentum equation (Table 1)
corresponding to δ+ = 1660. Stars are some positions where the pdfs have been
calculated that shown in figure 4.7. (a) Mean of curvature magnitude with the
inverse of Taylor microscale (dotted symbol using equation 4.1 and dashdot sym-
bol using equation 4.2 ). Square symbol is the experimental data from [Vincenti
et al., 2013] for δ+ ≈ 6430. (b) Mean streamwise curvature (c) The mean of
curvature magnitude in log-linear scale (d) The mean streamwise curvature in
log-linear scale (e) Mean wall-normal curvature, The inset represents the cor-
relation of the wall-normal curvature with the wall-normal velocity. (f) Mean
spanwise curvature
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With increasing distance from the wall, it is probably safe to surmise that the
instantaneous streamlines become increasingly aligned in the x-direction, and thus
the largest κ̃+

x values are observed close to the wall.

Figures 4.1(c) and 4.1(d) respectively show κ̃+ and κ̃+
x on a log-linear scale.

These figures allow a deeper investigation of the profile structure across layer II.
The mean curvature magnitude in figure 4.1(c) shows a clear increasing behaviour
between y+ ≃ 15 to y+ ≃ 50 in layer II, i.e. from the peak in the turbulence
kinetic energy to close to the region where advection dominates vorticity transport
[Klewicki, 2013a] (see Introduction: section A). The intermediate rise of κ̃+ in
the region 15 . y+ . 50 is consistent with the lifting and roll-up of near-wall
shear layer-like motions e.g., Johansson et al. [1991], Klewicki & Hirschi [2004]. In
this region, vorticity stretching is large and this mechanism leads to a reduction
in the scale of the high vorticity motions. This provides a rational explanation
for the increase in κ̃+. Beyond y+ ≃ 50, vorticity advection leads to a spatial
dispersion of vorticity that, as a mechanism, increasingly dominates with increasing
y+ [Klewicki, 2013a]. Consistent with this, the curvature values start decreasing
for y+ > 50.

The behaviour of the mean curvature components in the x, y and z directions
in figures 4.1(d), (e) and (f) are different from the mean curvature magnitude κ̃+

in figure 4.1(c). In particular, κ̃+
x in figure 4.1(d) shows a constant plateau in the

region of the intermediate increase in figure 4.1(c). On the other hand, κ̃+
y (figure

4.1(e)) shows decreasing behavior across that region, while κ̃+
z (figure 4.1(f)) is

zero everywhere. The κ̃+
y result is considered later to investigate the origin of its

non-zero values in the region close to the wall. These component-wise comparisons
indicate that figure 4.1(c) cannot be determined as a composite of figures 4.1(d),
(e) and (f).

Figure 4.1(e) presents the mean wall-normal curvature (κ̃+
y ) with y+. The profiles

exhibit a positive peak near the outer edge of layer I and a slightly negative peak
near the outer edge of layer II, with a rapid decay in between. In layer IV, the
κ̃+
y profiles remain almost constant with a value nearly equal to zero. Here, for a

channel flow, in spite of Ṽ = 0, κ̃+
y 6= 0. This is because the mean wall-normal

curvature component for the instantaneous flow field is not directly determined by
the corresponding wall-normal velocity component. Rather, it is an indication of
the curvature of the ensemble of streamlines. This means κy does not only depend
on the fluctuating wall-normal velocity, but also on the other fluctuating velocity
components. These effects are further clarified in the pdf results in the next section,
while below we examine the relationship between the v and κy fluctuations.

To clarify the relationship between the wall-normal velocity component with
the wall normal curvature component, the inset plot of figure 4.1(e) presents the
correlation between κ̃+

y and ṽ+ versus y+. The correlation function is computed
using,

rṽ,κ̃y
=

1

N

i=N
∑

i=1

vκy = v κ̃y (4.3)
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and the correlation coefficient is given by,

Rṽ,κ̃y
=

1

N

∑i=N
i=1 vκy

σṽσκ̃
=

v κ̃y

σṽσκ̃
, (4.4)

where N is the size of the ensemble. The correlation is slightly positive close to the
wall and then negative elsewhere, with a negative peak at y+ ≈ 50. Thus, except
very near the wall, the wall-normal velocity ṽ+ and the associated curvature κ̃+

y

are anti-correlated. Physically, this means that the combinations of positive and
negative ṽ and κ̃y add up to a larger value, so that the wall-normal curvature is
negative for the positive wall-normal velocity (flow away from the wall) and positive
for the negative wall-normal velocity (wall-ward flow). This means, relative to a
quadrant decomposition involving ṽ and κ̃y, the second and fourth quadrants are
most heavily weighted.

The mean spanwise curvature (κ̃+
z ) values in figure 4.1(f) are essentially zero

for all y+ locations. Note that, these zero values of κ̃+
z are not a consequence

of the spanwise homogeneity, as then κ̃+
x in figure 4.1(b) would also be zero for

fully developed flow. Here, this zero results come from the negligible values of
the spanwise tangent vector derivative between two consecutive points of the flow
field. Qualitatively, the mean statistics of curvature magnitude and curvature
components show similar behaviour for the boundary layers and the channel DNS
employed.

4.1.1 Behaviour of the wall-normal curvature near the wall

An interesting result of the mean statistics in figure 4.1(e), is the positive peak of
κ̃+
y near the outer edge of layer I. The origin and nature of this near-wall positive

wall-normal curvature peak are explored further in figures. 4.2-4.5.

Figure 4.2(a) presents a streamline pattern with the concave upward and con-
cave downward peak denoted by the arrows. The upward (A) and downward (B)
double arrows show the inflection segments where sign changes happen between
the concave up to concave down streamline shape. Note that the sign of the wall-
normal curvature κy is determined by the direction of a vector from the curve
to its center of curvature. Here, κ̃y is positive in the concave upward segment
and negative in the concave downward segment, as denoted by the arrows on the
streamline in figure 4.2(a). This means that the concave upward peak position on
a streamline, e.g., center of curvature points away of wall, corresponds to a positive
peak value of κ̃y and the concave downward peak on the streamline, i.e. center
of curvature pointing towards the wall, corresponds to a negative peak value of
κ̃y. As shown in figure 4.2(a), the arrows show the center of curvature which is
related to the inverse of curvature (radius) at the arrow starting point. From this,
one therefore expects that at the positive peak in figure 4.1(e), streamlines of the
orientation associated with the upward arrow of figure 4.2(a) are prevalent.
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Figure 4.2: (a) Configuration that depicts positive κy near y+ = 24. The up
and down arrows denote the local radius of curvature and the sign of κy relative
to the indicated minimum wall-normal location of the streamline. The inclined
double arrows at ”A” and ”B” indicate the inflection part on this streamline.
(b) The correlation coefficient of ṽ+ and κ̃y

+ in case of the boundary layer
(circle symbols are used for δ+ ≈ 2530 and arrow symbols are for δ+ ≈ 1660)
and the channel flow (diamond symbols are used for δ+ ≈ 934). The dashed lines
represent the layer boundaries associated with the mean momentum equation
(Table 1) corresponding to δ+ = 1660. At the star position, the conditional
averages have been computed in figures. 4.3(b), 4.3(d) and 4.4(b)

To clarify the directional sign changes of κy along the streamline pattern of
figure 4.2(a), all four possible cases are shown by the arrows and double arrows.
The four cases arise from the positive and negative sign combinations of κ̃y and ṽ.
The region on the streamline adjacent to the upward arrow is a case where κ̃y is
positive but ṽ changes sign from negative to positive before and after the position
of the arrow. Similarly, near the downward arrow, κ̃y is negative but ṽ changes
sign from positive to negative before and after the arrow position. For the first
inflection region denoted by A in figure 4.2(a), ṽ is positive but κ̃y changes sign
from positive to negative. Similarly, for the second inflection region denoted by
B, ṽ is negative but κy changes sign from negative to positive. Collectively, these
cases just described, characterize the conditions for which the sign of the ṽ and κ̃y

product is determined.

Figure 4.2(b) shows the correlation coefficient of ṽ+ and κ̃+
y denoted by Rṽ+,κ̃+

y

for the considered boundary layer and channel DNS. This plot reveals negative
values except in layer I, where ṽ+ and κ̃+

y exhibit a weakly positive correlation.
This plot also reveals an anti-correlation peak of Rṽ+,κ̃+

y
at y+ ≈ 17, i.e. near the

peak in the turbulence kinetic energy. The correlation function rṽ+,κ̃+
y
shown in the

inset plot of figure 4.1(e) shows only a mild negative value at this peak negative
position for Rṽ+,κ̃+

y
. On the other hand, rṽ+,κ̃+

y
shows a peak negative value at

y+ ≈ 50. Thus, the shape of Rṽ+,κ̃+
y
, and rṽ+,κ̃+

y
are distinctly different. Since

σκ̃+
y
is approximately constant (as discussed later relative to figure 4.6(c)), this

shape difference of Rṽ+,κ̃+
y
, and rṽ+,κ̃+

y
comes from the significant variation in the
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fluctuating wall-normal velocity variance with y+. At this peak negative Rṽ+,κ̃+
y

location the conditional averages have been computed and are compared below.
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Figure 4.3: (a) Conditional average of ṽ corresponding to positive κ̃y at y+ ≈
3 for channel flow at δ+ = 934 (b) Conditional average of ṽ+ corresponding
to positive κ̃+y at y+ ≈ 17 for boundary layer flow at δ+ = 2530 (c) Average
positive κ̃+y at y+ ≈ 3 for channel flow at δ+ = 934 (d) Average positive κ̃+y at
y+ ≈ 17 for boundary layer flow at δ+ = 2530

The noted anti-correlation of the wall-normal velocity and the wall-normal cur-
vature is also examined by the conditional average of ṽ+ corresponding to κ̃+

y in
figures 4.3-4.5. Figure 4.3(a) is the average of ṽ+ conditioned on positive κ̃+

y values
in the xz-plane at y+ ≈ 3 for channel flow, i.e., at the positive peak of figure 4.1(e).
Figure 4.3(b) is the average ṽ+ conditioned on positive κ̃+

y at the negative peak of
Rṽ+,κ̃+

y
at y+ ≈ 17 for the boundary layer flow. Recall that, the statistical results

for the boundary layer and channel flow show similar behaviour. The averages of
the positive κ̃+

y values are shown in figures. 4.3(c) and 4.3(d) at y+ ≈ 3 (channel
flow) and at y+ ≈ 17 (boundary layer flow) respectively. Note that the colorbar
scaling is not the same for all figures owing to the small ranges associated with
the color contours. To better understand the location of the positive peak of κ̃+

y

(deep red region in Figs. 4.3(c) and 4.3(d)) relative to the ṽ+ field, figures. 4.3(c)
and 4.3(d) are superimposed on figures. 4.3(a) and 4.3(b), respectively and shown
in figures. 4.4(a) and 4.4(b). The positive peak region of κ̃+

y is shown by the pink
line contour. The anti-correlation property of ṽ+ and κ̃+

y nominally coincides with
the condition where the pink contour of κ̃+

y overlaps with the peak negative region
of ṽ+.
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Figure 4.4: (a) Peak positive contour of κ̃+y (figure 4.3(c)) superimposed on
the corresponding conditional ṽ+ contour (figure 4.3(a)). (b) Peak positive
contour of κ̃+y (figure 4.3(d)) superimposed on the corresponding conditional ṽ+

contour (figure 4.3(b))
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Figure 4.5: (a) Conditional average of ṽ+ corresponding to negative κ̃+y grids
at wall-normal position y+ ≈ 3 in case of boundary layer flow case at δ+ = 2530
(b) Sketch of the corresponding streamline for varying x+ along z+ = 0 as
denoted by purple dash line in (a) and in figure 4.4 (b)

Close to the wall, y+ ≈ 3 (figure 4.4(a)), the positive wall normal curvature
contours are nearly equally distributed between the positive and negative contours
of v. This is because of the nearly symmetric probability of positive and negative v
fluctuations for positive κy. To better understand this structure we draw reference
to the upward arrow in figure 4.2(a) where the positive κy values correspond both
the positive and negative v values. At y+ ≈ 17 (figure 4.4(b)), positive κ̃+

y contours
now reside more prevalently in the negative peak region of ṽ+. Thus, this case
implies that for a situation like that near the upward arrow of figure 4.2(a), the
positive κy values mostly correspond to a steep wall-ward trajectory, followed by a
shallow trajectory away from the wall. This is also consistent with the correlation
coefficient results in figure 4.2(b) where κ̃+

y and ṽ+ are anti correlated except very
near the wall.

To reinforce this anti-correlation result of figure 4.4(b)), figure 4.5 (a) shows
the complementary conditional average. That is, the average of ṽ+ conditioned
on negative κ̃+

y values at y+ ≈ 17 for the boundary layer flow case. As expected,
the green contours presenting negative peak region of κ̃+

y , reside more prevalently
in the positive ṽ+ region. Here, this case implies that for a situation like near



Statistical properties of curvature and torsion 38

the downward arrow of figure 4.2(a) the negative κy values mostly correspond to
a steep trajectory away from the wall, followed by a shallow wall-ward trajectory.
Figure 4.5 (b) shows a streamline pattern consistent with the dashed centre line of
figures. 4.4 (b) and 4.5 (a) by the streamline portions below and above the dashed
line, respectively. Thus, figure 4.5 (b) contains representative features associated
with a streamline pattern consistent with figures. 4.4 (b) and 4.5 (a). Here, the
anti-correlation case of figure 4.4 (b) (positive κ̃+

y and negative ṽ+) corresponds
to the streamline pattern below the dashed line of figure 4.5 (b), while, the anti-
correlation case of figure 4.5 (a) (negative κ̃+

y and positive ṽ+) corresponds to the

streamline pattern above the dashed line. Thus, the peak positive value of κ̃+
y

in figure 4.1(e) corresponds to the concave upward peak region on a streamline
pattern like that of the streamline pattern below the dashed line in figure 4.5 (b))
with the steep wallward v and with the centre of curvature pointing away from the
wall. Here, the concave upward shape of this streamline (associated with positive
κy) occurs in concert with a strong wallward v followed by a weaker v flow away
from the wall. Therefore, the positive peak of κ̃+

y in figure 4.1(e) is associated with
strong wallward v velocities as depicted.

4.1.2 Standard deviation relative to mean curvature

The ratio of the mean curvature to the standard deviation provides an indication
of the relative importance of the fluctuations. Figure 4.6 presents the ratio of the
mean curvature to standard deviation versus y+. The dash lines are again the
momentum balance layer boundaries for δ+ ≈ 1660 according to Table 1. Figure
4.6(a) shows the profiles of the ratio of the mean to standard deviation for the
curvature magnitude. This ratio has its lowest value near the wall, and increases
with distance from the wall. The ratio reaches a peak value near the onset of the
inertial region, i.e., near the outer edge of layer III. After that, it attains a plateau
near unity, dropping off slowly in the log layer, and then more drastically in the
outer region. Thus, the curvature variance is larger than the mean out to a position
near the outer edge of layer II. From layer III, the variance becomes slightly smaller
than the mean until the center of layer IV, after which it becomes larger than the
mean out to y+ ≃ δ. Thus, this plot reveals that the lowest curvature fluctuation
relative to the mean occurs near the onset of the inertial layer.

Figure 4.6(b) shows the ratio of the mean to the standard deviation for the
streamwise curvature component. In this case, the ratio shows an increasing trend
up to a peak near the outer edge of layer II and then decreases across the log layer.
This indicates that the minimum average fluctuation relative to the mean occurs
near the outer edge of layer II. The ratio for the wall-normal curvature, figure
4.6(c) behaves in the similar trend as κ̃+

y in figure 4.1(e). This plot also shows a
positive peak at the same wall location as the positive peak of figure 4.1(e). After
the peak value, it decreases rapidly and remains constant from the outer edge of
layer II outward. This figure reveals that the variance of κy remains approximately
constant across the flow.
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Figure 4.6: The ratio of the mean and standard deviation of the curvatures
in case of the boundary layer (circle symbols are used for δ+ ≈ 2530 and arrow
symbols are for δ+ ≈ 1660) and the channel flow (diamond symbols are used for
δ+ ≈ 934). The dashed lines represent the layer boundaries associated with the
mean momentum equation (Table 1) corresponding to δ+ = 1660. (a) Curvature
magnitude ratio (b) Streamwise curvature ratio (c)Wall-normal curvature ratio
and (d) Standard deviation of curvature in the spanwise direction

Figure 4.6(d) presents the standard deviation of κ̃+
z . Note that, the ratio for the

spanwise case has negligible value as κ̃+
z
∼= 0 everywhere (figure 4.1 f). This figure

shows a decreasing magnitude with distance from the wall similar to κ̃+ in figure
4.1(a). All the ratios in figure 4.6 show that the maximum variances relative to
the mean occur near y+ ≃ 0, and near y+ ≃ δ.

The mean and standard deviation of curvature profiles in figure 4.1 and figure
4.6 are derived from the total velocity field exhibit both decreasing and increasing
trends with wall-normal position. These statistics indicate that the streamlines
with large curvature values are generally concentrated closer to the wall. The
actual distribution of curvatures can, however, be analyzed in greater depth by
the probability density functions at locations of interest. The next section covers
the properties of curvature pdfs as derived from both the total and fluctuating
velocity fields at the positions denoted by the stars in figure 4.1.
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4.2 Probability density function of curvatures

The distribution of curvature values at a given wall-normal location contains in-
formation about the scales of motion at that location. For isotropic flow, Schaefer
[2012] found that for a range of large curvatures (small scale motions), the pdf
of κ exhibited exponential tails with a power-law slope of −4, which can be de-
rived under reasonable assumptions as mentioned in the introduction of this paper.
Physically, large values of curvature are associated with small length scales of the
turbulent flow and vice versa. When these small length scales become smaller
than the Kolmogorov length scale η, they cannot correspond to any geometrical
features of the energetic turbulence. Conceptually, the exponent of −4 is the scal-
ing associated with for these extreme curvature values. When rescaled by the −4
factor, these motions become comparable to those associated with length scales
≥ η. Streamlines approaching a stagnation point are sharply deflected. Thus, as
Schaefer describes, it is expected that the stagnation point structure causes these
extreme values of curvature. This finding is reinforced in the present joint pdf
results section.

Figure 4.7 presents the pdf of curvatures at wall-normal locations of interest.
These positions are denoted by stars in figure 4.1. Here, the pdfs results are
computed using the δ+ = 2530 boundary layer DNS. The left side plots of figure
4.7 are computed using the total velocity field, while the right side results are
calculated using the fluctuating velocity field. The solid blue line represents a
power function with an exponent of −4.

Figure 4.7(a) shows the pdfs of curvature magnitude (κ̃+) where different sym-
bols are for the pdf at different y+. Here, the exponent of −4 is only apparent close
to the wall. For fluctuating velocity fields in figure 4.7(b), however, −4 scaling is
more apparent away from the wall.

Figures 4.7(c) and 4.7(d) show the streamwise curvature pdfs. Here, P (κ̃+
x ) for

both total and fluctuating velocity fields are qualitatively similar with different
magnitudes and exhibit −4 scaling for positions away from the wall. Distinct from
this, the wall-normal curvature pdfs in figures. 4.7(e) and 4.7(f) for the total and
fluctuating streamlines are different. For the total velocity field, the P (κ̃+

y ) profiles
fall on top of each other for different wall-normal locations, and they do not follow
−4 scaling except possibly for a small region near the wall. On the other hand, in
figure 4.7(f) P (κ+

y ) varies with wall-positions and follows −4 scaling at positions
away from the wall. Here it is important to recognize that, if κy were to depend
only on v, then the calculations using the total and fluctuating cases would be the
same, since the mean V is zero (for channel flow). This is not the case, however, as
κy does not depend on only v but also on the other velocity components. To further
investigate the different behavior of the pdfs for total and fluctuating flow fields,
the velocity field contours, and their corresponding streamlines are presented and
described later relative to figure 4.12.
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Figure 4.7: Probability density function of the curvature magnitude and curva-
ture components at varying wall-normal locations; diamond, y+ = 3; up arrow,
y+ = 14, star, y+ = 40, square, y+ = 67; plus, y+ = 174. (a) Probability of the
curvature magnitude computed from the instantaneous streamlines pattern, (b)
Probability of the curvature magnitude for the fluctuating streamlines pattern,
(c) Probability of the streamwise curvature for the instantaneous streamlines
pattern, (d) Probability of the streamwise curvature for the fluctuating stream-
lines pattern, (e) Probability of the wall-normal curvature for the instantaneous
streamlines pattern, (f) Probability of the wall-normal curvature for the fluctu-
ating streamlines pattern

A number of results in figure 4.7 indicate that the first appearance of −4 scal-
ing depends on y+. To examine the onset of this behaviour, figure 4.8 presents
the pdfs multiplied by the associated curvatures raised to the 4th power at more
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wall-positions than those considered in figure 4.7. The pink stars denote the ap-
proximate onset of −4 scaling. Figure 4.8(a) shows that κ+ approximately follows
the −4 scaling over a significant κ+ range starting around y+ = 20 outward for the
fluctuating velocity field. The −4 scaling in figure 4.8(b) also starts near y+ = 20.
For the total velocity field in figure 4.8(c), however, the −4 scaling does not con-
vincingly appear anywhere. Here, the most important observation is that with
increasing y+ a greater portion of the κ+ and κ+

y pdfs adhere to −4 scaling. This
correlates with the decreasing influence of viscous effects owing to a no-slip wall,
with increasing y+. Thus, the −4 scaling is apparently related to the fraction of the
pdf associated with small scale motions. The onset of this scaling at different wall
locations may correspond to features associated with the presence of stagnation
points as described in the analysis of Schaefer [2012].
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Figure 4.8: (a) −4 scaling for fluctuating velocity field ; (b) −4 scaling for
velocity fluctuating field; (c) −4 scaling for total velocity field; at y+ = 3,
y+ = 7, y+ = 10, y+ = 14, y+ = 21, y+ = 31, y+ = 40, y+ = 67, y+ = 147,
y+ = 192, y+ = 703, y+ = 1989 starting from top. Pink stars denote the onset
of −4 scaling.

Figure 4.9(a) provides insights that connect the onset of −4 scaling with the
stagnation point studied by Vassilicos described in the literature. These studies
demonstrate that the dissipation rate depends linearly on the density of the stag-
nation points in the logarithmic layer [Goto & Vassilicos, 2009]. This plot shows
the onset of −4 scaling ko (denoted by the pink stars in figure 4.8) with the inverse
of the Kolmogorov scale. Here, η+ has been computed based on both the isotropic
approximation and the actual viscous dissipation rate. Namely, η+ is calculated
using ǫ = 15ν(∂u1/∂x1)2 and η+ǫ is calculated using ǫ = 2νsijsij . Here, the profile
characterizing the onset of −4 scaling has a significant deviation from the Kol-
mogorov scale near the wall up to near y+ ≃ 50. For y+ & 50 these profiles then
coalesce. On the inertial domain, both the onset of −4 scaling and the inverse of
Kolmogorov scale varies as 1/y+.

Figure 4.9(b) shows the ratio of the Taylor microscale to the radius of curvature
(1/κ+) at different wall-normal locations. Here, the two different symbols represent
two different definitions of λ, where dot symbols use equation 4.1 and the cross
symbols use equation 4.2. As discussed before, the isotropic formula is not a good
approximation in the near-wall region. This is reflected by the deviation of the
dot symbol up to y+ ≃ 50. The cross symbol profiles (using the total dissipation
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rate) indicate that the radius of curvature is greater than the intermediate scale
λ+ in layer I. From layer II, the radius of curvature becomes less than the Taylor
microscale. This ratio shows a peak near the peak in the turbulent kinetic energy,
i.e., near y+ ≃ 15. After that, the ratio decreases gradually outward keeping the
radius of curvature remain less than the Taylor microscale. Beyond y+ ≃ 50, in
layer III, the radius of curvature varies approximately in proportion to the Taylor
microscale. In the inertial layer, this ratio varies approximately inverse with y+.
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Figure 4.9: The grey dash lines indicate the position of the momentum bal-
ance layer boundaries associated with δ+ = 1660 (Table 1). (a) κ+ (curvature
magnitude for fluctuating streamlines) values at which −4 behaviour is first ob-
served in the κ+ pdf plot (figure 4.7(b)) versus y+; i.e. the onset of −4 denoted
by κ+o has been presented as a function of y+. Comparison is made between κ+o
and the inverse of Kolmogorov length scale (1/η+), where η+ is computed from
the total strain-rate and η+ǫ is using the isotropic assumption; (b) Ratio of λ+

(using the definitions from equations. 9 (dot symbols) and 10 (cross symbols))
and the inverse of curvature magnitude in case of the boundary layers (red sym-
bols for δ+ ≈ 2530; blue symbols for δ+ ≈ 1660) and the channel flow (black
symbols for δ+ ≈ 934).

Figure 4.10 is the repetition of the previous results to clarify the statistics for
the total and fluctuation curvature magnitude with Taylor microscale. These re-
sults show the curvature statistics using fluctuation velocity field scales as Taylor
microscale better than that of using total velocity field.

Collectively, the above results draw interesting connections among the studies of
Klewicki [2013a], Goto & Vassilicos [2009], Dallas et al. [2009], and Schaefer [2012].
As discussed in figure 4.1(c), Klewicki [2013a] showed that beyond y+ ≃ 50 the
mechanism of vorticity stretching significantly weakens and vorticity advection
leads to the spatial dispersion of vorticity -a mechanism that increasingly dom-
inates with increasing y+. In the inertial domain, figure 4.9(a) shows that κ+

o

varies proportionally to the inverse of the Kolmogorov scale, whereas the radius of
curvature varies proportionally to the Taylor microscale as shown in figure 4.9(b);
here, both results show inverse variation with y+. These results follow those of
Schaefer [2012] for isotropic flow. On the same domain, the density of stagnation
points decreases like 1/y+ ([Dallas et al., 2009]). This is consistent with the onset
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of −4 scaling (figure 4.9(a)) that also decreases with y+ within the same region.
Here, 1/κ+

o ∝ η+ and 1/κ+ ∝ λ beyond y+ ≃ 50 and the non-proportionality
before y+ ≃ 50 arises from the overall effect of the presence of wall on the curva-
ture. Rationally, these can stem from either viscous or wall-blocking effects. To
better understand the wall-blocking limit, the pdf of wall-normal curvature is now
analysed.
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Figure 4.10: Mean statistics of curvature in case of the boundary layer (circle
symbols used for δ+ ≈ 2530 and arrow symbols are for δ+ ≈ 1660) and the
channel flow (diamond symbols are used for δ+ ≈ 934). Dashed lines represent
the layer boundaries associated with the mean momentum equation (Table 1)
corresponding to δ+ = 1660. (a) Mean of curvature magnitudes using total and
fluctuating velocity fields with the inverse of Taylor microscale (dotted symbol
using equation 4.1 and dashdot symbol using equation 4.2 ). (b) Standard
deviation of curvature magnitudes using total and fluctuating velocity fields
with the inverse of Taylor microscale (dotted symbol using equation 4.1 and
dashdot symbol using equation 4.2 ).

Figures 4.11(a), 4.11(b) and 4.11(c) present rectified pdfs for the positive and
negative values of κ̃+

y at y+ = 3, y+ = 10 and y+ = 30, respectively. For isotropic
flow, the behaviour of the pdf tail is symmetric about its mean. Figures 4.11(a)
and (b) reveal that the profiles for the positive and negative values of κ̃+

y are
different near the wall. On the other hand, at y+ = 30, Fig. 4.11(c) reveals that
the positive and negative sides of κ̃+

y pdf are nearly symmetric. These results
indicate a clear wall blocking effect (also shown later in Fig. 4.17) before y+ ≈ 30.
Thus, the non-proportional results of Fig. 4.9 for y+ < 30 are not for the viscous
effect case. If so, then all the plots of Fig. 4.11 (within layer II where the viscous
effect is on leading order) showed similar behaviour. Accordingly, approximately
within 30 ≤ y+ ≤ 50, the non-proportional results of Figs. 4.9(a) and (b) occur
for the viscous effect. Again from the plots of Fig. 4.11, it is predominant that the
positive κ+

y profile follows −4 scaling nicely at y+ = 3. Thus positive κ̃+
y values

are mostly associated with the small scale motion of the flow at very close to the
wall.
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Figure 4.11: Pdf for positive and negative values of κ̃+y at (a) the positive
peak position of figure 4.1(e) i.e., at y+ = 3; (b) at y+ = 10; (c) at y+ = 30

Figure 4.12: (a) Contour for total velocity field; (b) Contour for fluctuating
velocity field; (c) Streamlines for the total velocity field; (d) Streamlines for the
fluctuating velocity field

Figure 4.12 shows the velocity field contour (planar view) with the corresponding
streamline pattern for the total (left side) and the fluctuating (right side) fields.
From figures. 4.7, 4.8 and 4.10, we observe the different behaviour of curvature for
the total, and fluctuating flow fields. Here, figure 4.12 shows the velocity fields and
the streamlines pattern for the total and the subtracted mean flow fields physically.
These plots clarifies the difference of streamlines pattern for the total velocity field
and the mean subtracted velocity field. This change of the streamline pattern
affects the total and component curvatures, that has observed already in the pdfs
profiles of figure 4.7. Here, the positive and negative direction of the streamline
twisting (figures. 4.12 (c) and (d)) i.e. torsion indicates the out of plane motion
of the streamline. The statistical properties of the out of plane motion of the
streamlines are analysed below.
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4.3 Torsion

Torsion (τ) is a measure of the twisting of the streamlines out of a reference plane
of motion. Similar to curvature, torsion is a length scale that defines the shape and
size of the potential twisting of a streamline where the inverse of torsion means the
radius of torsion. Torsion is positive or negative based on weather the streamline is
moving with or counter to the binormal vector (section II(B)). Thus, positive and
negative torsions are related to the out of plane motion rather than moving towards
or moving away from the wall. For example, the torsion is positive for right-hand
helix moving away from the wall but torsion is negative while also moving away
from the wall for left-hand helix; and vice versa. In the present study, very small
wall-normal length of the flow volume has been taken considering only two grid
points before and two after at a particular wall-location to save CPU time and
expense.

Figure 4.13(a) presents the mean torsion (τ+) at different y+ for the boundary
layers and channel DNS employed. For the wall-normal length limitation of the
flow volume, the twisting action is infinitesimal. For this reason, τ+ values are
very close to zero (slightly negative) in all y+. If we consider the right-hand helix
rule for the streamlines and employ the Frenet-Serret apparatus (section II(B)),
the negative torsion reveals the streamlines are moving opposite to the binormal
vector.

Figure 4.13(b) shows the standard deviation of torsion versus y+. This plot has
the maximum value at near-wall location and then it decreases with distance from
the wall. This indicates that streamline patterns that twist out of the xz-plane
are more prevalent in the near wall- region. Physically, this is consistent with the
rapid three-dimensionalization of the velocity field near the wall.
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Figure 4.13: Torsion statistics of curvature in case of the boundary layer
(circle symbols are used for δ+ ≈ 2530 and arrow symbols are for δ+ ≈ 1660)
and the channel flow (diamond symbols are used for δ+ ≈ 934). The dashed lines
represent the layer boundaries associated with the mean momentum equation
(Table 1) corresponding to δ+ = 1660. (a) Mean, (b) Standard deviation



Statistical properties of curvature and torsion 47

We now compare the relative strength of bending and twisting of streamlines by
examining the ratio of the curvature to the torsion across the flow. Figure 4.14(a)
shows the ratio using the total velocity field at different wall-normal locations.
The ratio has a maximum value close to the wall and then shows an approximately
power law decay across layer II. Beyond y+ ≃ 50 to the outer edge of the inertial
layer, the ratio is constant with the positive values larger than 1. Figure 4.14(b)
using the fluctuating velocity field also presents a similar decreasing behaviour up
to the centre of layer II. The ratio starts to be constant at y+ ≈ 17, i.e., near
the peak in the turbulent kinetic energy. Thus, this ratio reveals the more intense
twisting motion than bending in all wall positions. Torsion required a reference
plane to analyse the out of plane motion from that reference plane. Figure 4.14(c)
and Figure 4.14(d) present the ratio using total and fluctuation fields considering
the wall-parallel plane at different wall positions. These plots show the similar
behaviour like 4.14(a) and Figure 4.14(b) with more significantly. Thus, the out
of plane motions are much smaller scale than in plane motions.
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Figure 4.14: Ratio of τ and κ in case of the boundary layer (circle symbols
are used for δ+ ≈ 2530 and arrow symbols are for δ+ ≈ 1660) and the channel
flow (diamond symbols are used for δ+ ≈ 934). The dashed lines represent
the layer boundaries associated with the mean momentum equation (Table 1)
corresponding to δ+ = 1660 for (a) for total velocity field, (b) for fluctuating
velocity field



Statistical properties of curvature and torsion 48

To analyse this potential intense twisting structure of the streamline and the
curvature values around stagnation points, we now observe the joint statistics of
curvature and torsion using fluctuation velocity field in the following section.

4.4 Joint probability density function

This section represents the joint statistics of the streamline geometries related to
curvature and torsion. Here, we consider the fluctuating streamline pattern, with
special attention on the streamline curvature and torsion behaviour near stagnation
points (u, v, w) ∼= 0. Figure 4.15 presents the joint probability density function
of the fluctuating velocity magnitude |V| =

√
u2 + v2 + w2, and the inverse of

fluctuating curvature magnitude, i.e. the radius of curvature, at four wall-positions
in the four layers noted in table 1. Figure 4.15(a) shows the joint probability
contour of |V+| and 1/κ+ in near-wall region. Here, the peak of the radius of
curvature (1/κ+) is weighted towards the minimum value of the velocity magnitude
(|V+|) ≈ 0). This supports the notion that curvature values are maximal around
stagnation points (|V+|) ≈ 0). This becomes more prevalent with distance from
the wall as shown in figures 4.15(b)- (d) in layers II- IV respectively. This result
physically agrees with the conclusion of Schaefer [2012] that extreme curvature
values occur owing to sharply deflected streamlines in the vicinity of stagnation
points.

Figure 4.16 shows the joint statistics of curvature and torsion for fluctuating
streamlines pattern in four layers. This joint pdf is important to simplify the
visualization of the vortical structure of turbulent flow. In the near-wall region,
figure 4.16(a) shows the cone type contour that is weighted towards the negative
torsion values jointly with the mean of the fluctuating curvature magnitude. Thus,
near the wall, the mean bending region of the streamline corresponds the negative
torsion values. Figures 4.16 (b) and (c) in layer II and III show that the joint
pdfs are more likely circular type contours weighted towards the negative torsion
values. Here, the twisting of the streamlines is grater around the mean bending
region. Close to the channel centerline, figure 4.16(d) presents again a cone type
contour as similar to figure 4.16(a). Here, the weighted torsion values in all layers
are greater than the mean of the fluctuating curvature. Thus, the joint statistics
of curvature and torsion again indicates the intense twisting pattern than bending
for the vortical structures in the flow field.
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Figure 4.15: Joint pdf of the fluctuating velocity magnitude with the inverse of
curvature magnitude for fluctuating streamlines pattern in case of the Channel
flow at (a) y+ = 3, (b) y+ = 30, (c) y+ = 63 and (d) y+ = 911

Figure 4.16: Joint pdf of fluctuating curvature and fluctuating torsion in case
of the Channel flow at (a) y+ = 3, (b) y+ = 30, (c) y+ = 63 and (d) y+ = 911
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4.4.1 Joint PDF of the curvature components

The orientation of the streamlines determines the curvature components. To un-
derstand the geometric characteristics of the streamlines in each layer of Table 1,
joint pdfs of all three combinations for fluctuating κx, κy and κz were examined. In
all cases, the pdfs show distortion due to the presence of the wall within y+ = 30.
This is reflected by non-circular contours. With increasing distance, however, the
joint pdfs of κ+

x , κ
+
z and κ+

y , κ
+
z exhibit essentially circular pdfs centred about zero,

yielding the correlation coefficient of about 0.01 or less (not shown here).

On the other hand, the joint distribution of κ+
x , κ

+
y in figure 4.17(a) shows the

distorted pdfs concentrating in the second quadrant in layer I. This distortion
most likely arises due to a combination of the viscous shear effect on κ+

x and wall-
blocking effect on κ+

y as discussed earlier. Figure 4.17(b) in layer II also shows
the distorted pdf that is weighted in the first and second quadrant. In layer III,
figure 4.17(c) presents that the pdf is weighted in the first and second quadrant
with the correlation coefficient, Rκ+

x ,κ+
y

∼= −0.1. Beyond this position and up to

the centreline of the channel flow e.g. figure 4.17(d), the pdfs exhibit essentially
circular contours centred about zero with Rκ+

x ,κ+
y

∼= 0. Here, κ+
x is more distorted

than κ+
y before layer III. From layer III, the distortion owing to the shear along with

the transfer of the mean shear into fluctuating vorticity diminishes. This dropping
off the mean shear ends up the situation after y+ = 50, where the enstrophy
become turbulence as like isotropic flow. Thus, the considered wall-bounded flow
cases innovate these results before the inertial layer due to the presence of the wall.
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Figure 4.17: (a) Joint pdf of the streamwise curvature component with wall-
normal curvature component for fluctuating streamlines pattern in case of the
Channel flow at (a) y+ = 3, (b) y+ = 30, (c) y+ = 63 and (d) y+ = 911
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4.5 Chapter summary

The present chapter described the statistical properties of the streamline geome-
tries in turbulent flows. These streamline geometries relate to the local curvature
(κ) and torsion (τ) and have been analysed using the DNS of channel and boundary
layer flows. The streamlines of the flows were calculated using the 4th order Runge-
Kutta method. The Frenet-Serret formulas from differential geometry were used
to establish the equations for κ and τ . Curvature is calculated using the tangent
vectors and the arc length of the corresponding streamline curve. Torsion is calcu-
lated using central difference formulas for the derivative terms in the definitional
equation of τ . The variation of the mean statistics of curvature magnitude (κ) and
curvature components (κx, κy, κz) with wall-normal locations have been explained
previously and are not repeated in detail here. Curvature statistics show some
interesting behaviour close to the wall, and between y+ ≃ 17 (the peak location of
the turbulent kinetic energy) and y+ ≃ 50. Here, at y+ ≃ 50, vorticity advection
leads to the spatial dispersion of vorticity that increasingly dominates with increas-
ing y+ [Klewicki, 2013a]. In the classical log layer, the radius of curvature exhibits
a power law variation that varies similarly to the Taylor microscale. An interesting
result from the mean statistics is the positive peak of κy that appears close to the
wall. To understand this peak result of κy physically, the correlation coefficient of
v and κy and the conditional average of v field corresponding to positive κy were
computed. The results show an anti-correlation between v and κy except close to
the wall. All these results support that the positive κy peak is associated with a
strong negative v followed by a weaker positive v. In other words, the positive
peak near the wall is related to the strong wallward streamline. The maximum
variance of curvature corresponding to the mean occurs close to the wall and close
to the channel centreline. This is revealed using the ratio of mean curvature to its
standard deviation.

The pdfs of the curvature magnitude and the curvature components with an
exponent of −4 scaling have been shown for both total and fluctuating velocity
fields. From the pdf plot for the fluctuating curvature magnitude, it is apparent
that −4 scaling is predominant at increasing distances from the wall. The −4
scaling is relevant to describe the extreme curvature values near stagnation points
[Schaefer, 2012] (see figure 4.18). The onset of this scaling has been compared
with the inverse of the Kolmogorov length scale at different wall positions which
varies as 1/y+ in the inertial domain (logarithmic layer). This is consistent with the
linearly decreasing number density of stagnation points with y+ in the inertial layer
[Dallas et al., 2009]. The interesting results we observe include, the onset of −4
scaling varies inversely with the Kolmogorov scale and the radius of curvature varies
proportionally with the Taylor microscale in the inertial layer, where these results
follow 1/y+ in the same domain. The non-proportional results before y+ . 50
arise from the wall-blocking effect within y+ ≈ 30, and from the viscous effect
within 30 6 y+ 6 50. This assertion is reinforced by analysing the positive and
negative pdf profiles of the wall-normal curvature, and the joint pdfs of curvature
components. In addition, the contours of the total and fluctuating velocity fields
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with corresponding streamlines show the mean subtraction effect on the streamline
pattern physically.

The properties of the out of plane motion of the streamlines have been shown
by the mean and the standard deviation statistics of torsion. The ratio of torsion
to the curvature reveals that the out of plane pattern is smaller scale than the
in-plane pattern for both total and fluctuating streamline patterns. The joint pdf
results describe the streamline pattern and behaviour close to the stagnation points
as shown in figure 4.18.

Figure 4.18: Sketch of streamlines near a stagnation point

To summarize, the high curvature values are associated with the stagnation
points, where streamlines are sharply deflected as displayed in figure 4.18. In the
inertial domain, the density of the stagnation point decays linearly with y+ with
the strength decay of the vortical motion Klewicki [2013a]. In this domain, the
dominating mechanism of the vorticity intensity underlying the spatial dispersion
of the vorticity, increases with developing y+. The onset of −4 scaling of curvature
is proportional to the inverse Kolmogorov scale in the same domain, where the
radius of curvature scales similar to Taylor microscale, whereas all these follow
1/y+. These results are likely to have connection to the evolution of the vortical
motions and their spatial structure with distance from the wall.



Chapter 5

Conclusions

5.1 Summary of the main findings

In a broad sense, while the present research aims to find the potential relationship
between the geometrical and dynamical properties of the wall-bounded turbulence,
this thesis is mostly related to the statistics for the geometrical properties of wall-
bounded turbulence. The principal findings of this research can be described by
two main sections; (i) The statistical properties of the streamline geometry related
to curvature and torsion, and (ii) The connection of these statistical properties to
the previous literature. Although streamline geometry related to curvature and
torsion has been studied prior to this research, none of those studies have focused
on wall-bounded turbulent flows. Furthermore, the Reynolds number range (≈ 934
to ≈ 2000) and data density (35 wall-normal locations per profile) are unique to
the present research. The relevant literature has been discussed in chapter 2 and
the rest of the chapters are based on the aims stated in chapter 1. The key findings
are summarized here.

5.1.1 Calculation technique

The present study employs DNS data sets for boundary layers (Reynolds numbers
≈ 1310, 2000) and channel flow (Reynolds number ≈ 934) cases. Streamlines are
calculated using a 4th order Runge-Kutta method starting from each grid point.
The step size between two points on the streamline is 0.14 viscous unit according
to the present consideration. Curvature and torsion of a streamline are defined by
using the Frenet-Serret formulas from differential geometry in terms of tangent,
normal and binormal vectors. Curvature and torsion are calculated locally i.e., at
the starting point for each streamline. The Matlab codes for the present curvature
and torsion calculation have been verified by the known results in case of straight
line, circle and helix curve.

53
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5.1.2 Statistics of streamline geometry

The statistics of streamline geometry related to curvature and torsion exhibits both
decreasing and increasing trends with wall-normal positions. Curvature statistics
shows some interesting behaviour close to the wall, and in the region between
17 . y+ . 50. In the classical log layer, the radius of curvature exhibits a power-
law variation that varies similarly to the Taylor microscale. An interesting result
from the mean statistics is the positive peak of wall-normal curvature that appears
close to the wall. To understand this result physically, the conditional average of
wall-normal velocity field corresponding to positive wall-normal curvature and the
correlation coefficient between these quantities were computed. All these results
support that the near-wall positive wall-normal curvature peak is associated with
the strong wall-ward flow followed by the weak away from the wall streamline
pattern. Moreover, the maximum variance of curvature corresponding to the mean
occurs close to the wall and close to the channel centreline.

The probability density functions (pdfs) of the curvature magnitude and the
curvature components show a power-law behaviour of P (κ) ∼ κ−4 for both total
and fluctuating velocity fields for large curvature magnitudes. This scaling for
fluctuating curvature is predominant with increasing distances from the wall. The
−4 scaling is relevant to describing the extreme curvature values near stagnation
points [Schaefer, 2012] (see figure 4.18). The curvature value at the onset of this
scaling compares well with the inverse of the Kolmogorov length scale at different
wall positions which in turn varies inversely with y+ in the inertial domain (loga-
rithmic layer). This is also consistent with the linearly decreasing number density
of stagnation points with y+ in the inertial layer [Dallas et al., 2009]. Here, the
interesting results we observe thus include, the onset of −4 scaling varies inversely
with the Kolmogorov scale and the radius of curvature varies proportionally with
the Taylor microscale in the inertial layer. The non-proportional results before the
inertial layer arise partially due to the wall-blocking and the viscous effect, and
then outside the viscous wall layer the results begin to appear similar to those in
isotropic flow. This results are verified by the positive and negative wall-normal
curvature pdf profiles and the joint pdfs of curvature components.

The properties of the out of plane motion of the streamlines have been shown
by the mean and the standard deviation statistics of torsion. The ratio of torsion
to curvature suggest a strong relative tendency for streamline to move out of wall-
parallel planes.

5.1.3 Connections to the prior literature

All the background literature draws a significant connection to the present study.
The reorientation mechanism for vorticity stretching and advection studied by
Klewicki [2013a], is reflected by the present mean curvature statistics. As analysed
by Schaefer [2012], the curvature values are extreme around stagnation points and
follow an exponent of −4 scaling. According to the studies by Vassilicos and
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Figure 5.1: Sketch of streamlines around a pair of stagnation points. The
spacing between these points are ≈ λ, whereas the bounding turbulent motion
has a size of 1/κ. The region close to the stagnation points of size η is where we
expect the curvature pdf P (κ) ∼ κ−4 scaling.

co-workers [Dallas et al., 2009, Goto & Vassilicos, 2009], the number density of
the stagnation points decrease with y+ in the inertial domain where the distance
between stagnation points is proportional to the Taylor microscale. The present
study shows that the onset of −4 scaling varies proportionally with the inverse
of Kolmogorov scale following 1/y+ in the inertial domain. Whereas in the same
domain, the radius of curvature follows the Taylor microscale. These results are
likely to have a connection to the evolution of the vortical motions and their spatial
structure with distance from the wall.

5.2 Suggestions for future works

As discussed earlier, the broad aim of the research is to clarify mechanisms under-
lying the apparent connections between geometry and dynamics in case of wall-
bounded flow, and the degree to which they are reflected in the instantaneous
motions. This thesis discusses the statistical properties of streamline geometry
related to curvature and torsion while the dynamics of the wall-flow have been
analysed in the previous literature. Thus a few suggestions for possible extensions
to the current work include the following.

The advective term of the Navior-Stockes equation has a mathematically well-
defined relationship with the streamline curvatures (Schaefer [2012]). From this
relationship, the author has observed that the Reynolds stress term of the mean
momentum equation (Wei et al. [2005]) can be presented by the curvature com-
ponents along with velocity and tangent vectors. Therefore, the dynamics in the
inertial region can be mathematically connected to the properties of the curvature
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and thus related to the momentum transporting motion. Further study of these
connection would seem worthwhile.



Appendix A

Streamline calculation technique

A.1 Runge-Kutta Method for calculating stream-

line

We use a 4th order Runge-Kutta method to compute the streamline starting at
each grid point of a DNS flow volume. Here, the 3rd derivative is the highest
derivative in the curvature and torsion definitions (equation 3.8 and 3.12), which
requires the maximum seven point to use the central difference formula in equation
3.15. Therefore, we use the Runge-Kutta method to calculate a portion of the
streamline. If a streamline starts at the grid point (x0, y0, z0), then the first point
on the streamline (x1, y1, z1) is the grid point itself i.e.,

x1 = x0, y1 = y0, z1 = z0. (A.1)

Using the streamwise u, wall-normal v and spanwise w velocities, the increments
k1x, k1y, and k1z, based on the slopes at the initial point at the beginning of the
time step h (discussed in the next section) are calculated. If we use the increments
k1x, k1y, and k1z to the halfway through the time step, then k2x, k2y, and k2z
are the estimations of the slopes at the midpoint. These slopes are more accurate
than k1x, k1y, and k1z for making new approximations of the point (x1, y1, z1).
Thus the new approximation of the point (x1, y1, z1) is:

x1a = x1 + k1x.(h/2),

y1a = y1 + k1y.(h/2),

z1a = z1 + k1z.(h/2), (A.2)

and k2x, k2y, and k2z are calculated using the point (x1a, y1a, z1a). If we use
the increment k2x, k2y, and k2z to the halfway through the time step, then k3x,
k2y, and k3z are the estimations of the slopes at the midpoint. Thus, the new
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approximation of the point (x1, y1, z1) is:

x1b = x1 + k2x.(h/2),

y1b = y1 + k2y.(h/2),

z1b = z1 + k2z.(h/2), (A.3)

and k3x, k3y, and k3z are calculated using the point (x1b, y1b, z1b). Finally, we
use the increment, k3x, k3y, and k3z to all the way across the time step, and then
k4x, k4y, and k4z are the estimations of the slopes at the endpoint. Thus, the
approximation of the point (x1, y1, z1) is:

x1c = x1 + k3x.(h),

y1c = y1 + k3y.(h),

z1c = z1 + k3z.(h),

(A.4)

and k4x, k4y, and k4z are calculated using the point (x1c, y1c, z1c). Now, using
the 4th order Runge-Kutta method, the sum of these slopes gives the next point
on the streamline

x2 = x1 + (h/6).(k1x + 2.k2x + 2.k3x + k4x),

y2 = y1 + (h/6).(k1y + 2.k2y + 2.k3y + k4y),

and

z2 = z1 + (h/6).(k1z + 2.k2z + 2.k3z + k4z). (A.5)

Similarly, for calculating next point (x3, y3, z3) on the streamline, we take (x2, y2, z2)
as the initial point and follow the above procedure from equation A.1-A.5. Thus
we can calculate as many points on the streamline as required. In this case, we
compute the first seven points on the streamline as it is sufficient for the curva-
ture and torsion calculation. A schematic diagram for calculating streamline is
presented in figure A.1. In reality, the red grid points, and the blue points on the
streamline are very close to each other. The distance between two points on the
streamline i.e. the step size h = 0.001 (discussed in the next section). For this very
small distance, the central difference formula could be applied at the 4th point on
the streamline to calculate local curvature and torsion at the first point on the
streamline.

A.1.1 Preliminary results for comparison

In this section, we compare the curvature statistics computed using the calcula-
tion method for equations 3.8 and 3.21. Figure A.2 shows the mean and standard
deviation curvature at different wall positions. The profiles show exactly the same
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Figure A.1: Schematic diagram of a streamline calculation using the 4th order
Runge-Kutta method. Red circles present the grid points of a flow field, small
blue rectangles show the points on the streamline (solid blue line), and h is the
step size between two pints on the streamline.

results for these two curvature definitions. We choose the vector method (equa-
tion 3.21) for curvature calculation as it also includes the curvature components
definitions.
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Figure A.2: Comparison of two methods for curvature calculation. Black
cross symbols denote the data using equation 3.8 and that’s of green dots using
equation 3.21. (a) mean and (b) standard deviation at different wall positions
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