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Abstract

Object manipulation is the ability to rotate/translate an object held within a

grasp. Humans have exploited this ability to effectively use tools and interact

with the environment. Over the past decades, robotics research has worked to

translate object manipulation capabilities to robotic hands. Applications of object

manipulation for robotic hands include autonomous manipulation, teleoperation

in extreme environments, and prosthetics. Despite advancements made, robotic

hand research has not yet progressed to handle uncertainties found in the real

world. Many existing grasp methods to control robotic hands require a priori

information and high fidelity sensors typically restricted to laboratory settings.

The objective of this thesis is to develop robust means of object manipulation for

robotic hands.

This thesis focuses on the concept of tactile-based blind grasping to address ro-

bustness concerns in real-world applications. In tactile-based blind grasping, the

robotic hand only has access to proprioceptive (joint angle) and tactile measure-

ments. No a priori information about the object is known. This reflects real-world

applications, such as prosthetics, where disturbances in the form of uncertain ob-

ject models are part of everyday use.

In this dissertation, novel object manipulation control methods are developed for

robotic hands in tactile-based blind grasping. The first method ensures stability of

the hand-object system to a desired object pose despite uncertain object weight,

shape, center of mass, and contact locations. The second method is an extension

of the first, but also ensures the contact points do not slip during the manipulation

motion. The final control addresses all grasp conditions that must be satisfied,

including slip, to ensure the grasp does not fail during manipulation. This final

control is applicable not only to the control methods presented here, but to most

manipulation controllers developed in the literature. The proposed controllers are

presented with associated stability guarantees and validated in simulation and

hardware.
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Chapter 1

Introduction

1.1 Motivation and Scope

Human hands are highly capable appendages. They allow humans to dexterously

interact with the environment to handle tools and perform tasks for everyday

activities. It is commonly believed that the hand co-evolved with the brain [122],

such that more capable brains were required to accomplish the high degrees of

dexterity seen in the human hand. It is then fair to say that the control of a human

hand is not trivial. On average, it takes about 5-7 years for a human to develop

the fine motor skills to accurately manipulate objects. The large computational

resources required to use the hand begs the question, what is so advantageous

about the human hand? One answer is dexterous manipulation.

Dexterous manipulation involves small, precise motions of an object to achieve a

task. A simple example is the use of a tool, such as a screwdriver. To highlight the

advantage of dexterity, consider two methods a human may use the screwdriver.

In the first method, the hand is treated as a gripper; it can only open and close to

secure the screwdriver in a grasp. To use the tool, the human will need to grasp

the screwdriver and rotate the entire arm to rotate the tool. In the second method,

consider how a human hand is typically used to twist the screwdriver. The fingers

grasp the tool by the handle, and rotate the object within the grasp. Both methods

perform the same task but the latter does so with significantly less effort and energy

consumption [16]. Furthermore, the latter is more compact, requiring less space to

perform the same task, which is useful in constrained environments. Thus a major

advantage of dexterous manipulation is it allows humans to efficiently maneuver

tools for everyday tasks.

1



2 Chapter 1 Introduction

Just as with humans, dexterity is attractive in robotics for efficient manipulation

applications. The dexterity of the human hand has been a key objective of robotics

for decades. Early robotic hands were inspired for use in extreme environments

that are too hostile for humans [66]. Other robotic hands were developed as

prosthetics to replace a human hand [1]. Today, robotic hands are being developed

for industrial manufacturing purposes [49]. However a true substitute for the

human hand has yet to be developed.

The focus of this dissertation is to develop in-hand manipulation methods for

robotic hands. In-hand manipulation here refers to the ability to rotate and/or

translate an object within a grasp. Robotic manipulation has been addressed

in recent decades, however typically those methods require assumptions that the

object is perfectly known. This means that the object center of mass, weight, and

shape are all known prior to grasping the object. However this is rarely the case

in practice. A robotic prosthetic hand, for example, has no a priori information

about the objects it will grasp. It is unrealistic to assume all possible object

shapes, weights, friction, etc. can be known. Robust manipulation methods are

necessary to handle uncertainties in the object properties.

One of the motivations of robust manipulation is for “unstructured environments.”

Unstructured environments are environments that are not pre-developed for a spe-

cific purpose. An automated warehouse is an example of a structured environment.

It is an area that has been designed for the purpose of automated manufacturing.

As such, a warehouse is equipped with sensors and power sources for all machines,

and the production process from development to packaging is pre-defined. Real

world scenarios are not so “structured”. Consider again the robotic prosthetic

hand. A human would use the prosthetic to grasp a variety of objects in a single

day for various purposes. The hand does not have cameras constantly monitor-

ing all objects that are going to be grasped. The only sensors available to the

hand are those that are physically integrated into it. Characteristics such as lim-

ited sensors and models of the world are typical of unstructured environments,

and are practical problems that robotic hands must address for use in real world

applications.

To reflect the application in real-world scenarios, this work considers robust ma-

nipulation with limited sensing modalities for use in unstructured environments.

The term tactile-based blind grasping indicates a robotic hand that only has access

to sensors that are typically integrated into the hand such as proprioceptive sen-

sors (those that measure joint angles) and tactile sensors. Other sensors, such as
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cameras, are not available to provide information about the object to be grasped/

manipulated. The ability to manipulate objects with only proproceptive and tac-

tile sensors is representative of human grasping, as humans are not dependent on

vision to grasp objects.

The objective of this work is to develop robust in-hand manipulation methods

for tactile-based blind grasping. The methods developed herein apply to the real-

world scenario where the robotic hand only has access to proprioceptive and tactile

sensors with no knowledge of the object being grasped. The contributions of this

PhD thesis include:

• Development of a robust manipulation control law for tactile-based blind

grasping with appropriate stability guarantees. Controllers for set-point ma-

nipulation with constant disturbances, and reference tracking with bounded

disturbances are presented with simulation and hardware validation.

• Analysis of sampling time effects and uncertain dynamics for grasping. The

analysis herein shows how sampling time and unmodeled disturbances can

compromise the ability of a robotic hand to hold an object by means of slip

and loss of contact.

• Development of a novel, robust control that ensures no slip despite sampling

time effects and umodeled disturbances. Appropriate stability guarantees

are provided and the controller is validated in simulation and hardware.

• Development of a novel, robust constraint-satisfying control method for non-

linear systems. The approach can be applied to general nonlinear affine

control systems, and considers implementation in sampled-data systems.

• Extension of the constraint-satisfying control for tactile-based blind grasping

applications to satisfy grasp conditions. The controller ensures no slip, no

over-extension of the joints, and no excessive rolling of the contact points to

enforce assumptions that are made in the literature, but never ensured. The

controller is validated in simulation and hardware.

1.2 Thesis Structure

The structure of the remainder of this thesis is presented here, including a brief

summary of the content presented in each chapter.



4 Chapter 1 Introduction

Chapter 2 reviews the existing literature that addresses in-hand manipulation

for robotic hands. In the introductory section, the common grasp assumptions are

outlined that are typically used in related work, and a brief explanation of in-hand

manipulation is provided. The review is split into three main sections. The first

section addresses existing techniques to perform in-hand manipulation under the

condition that the grasp assumptions hold. The second section addresses methods

of ensuring the no slip grasp assumption is satisfied during in-hand manipulation.

The third section investigates techniques to ensure all grasp assumptions are valid.

Each section highlights gaps in the literature, which are defined as the research

aims of this dissertation.

Chapter 3 presents the background material for in-hand manipulation. The model

of the hand-object system is presented, which includes the dynamics/kinematics

of the hand, object, and contact. A description of the simulation environment and

hardware is provided.

The remainder of the thesis is focused on the development of in-hand manipulation

methods. Chapter 4 presents the development and stability analysis of the pro-

posed in-hand manipulation controller for tactile-based blind grasping. Chapter 5

investigates the effects of sampling time on in-hand manipulation for tactile-based

blind grasping. A discrete-time controller is presented that ensures in-hand manip-

ulation and no slip in the presence of sampling time effects. Chapter 6 addresses

the grasp constraints, and is divided into two sections. The first section presents

a general method for satisfying constraints of a nonlinear system. The second sec-

tion extends the constraints satisfaction method to robotic in-hand manipulation

for tactile-based blind grasping.

Finally, Chapter 7 presents avenues for future work, and summarizes the contents

of the thesis.
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Chapter 2

Literature Review

2.1 Overview

Grasping and manipulation are complex tasks that humans spend years learning

during infancy. These tasks are used in everyday life to interact with our environ-

ment. In order to replicate these abilities in robotic hands, the grasping process

can be broken down into a few steps. First is grasp formation. This includes

identifying the object to be grasped, and then determining the contact points on

the object. The grasp is formed as the hand is moved towards the object and

the fingers are placed at the desired contact points. Once the grasp is achieved,

the process of manipulation, that is translating and/or rotating the object can be

performed.

Due to the many different ways humans interact with the environment, different

types of manipulation have been categorized in the literature [16]. One form

of manipulation is known as non-prehensile manipulation in which the hand is

used to move an object without grasping it, such as when turning on/off a light

switch. Prehensile manipulation, on the other hand, involves grasping an object

to translate and/or rotate the object. One type of prehensile manipulation is

non-within hand manipulation where an object is grasped firmly, and the entire

hand moves with the object, such as when turning a door knob. Another type of

prehensile manipulation is within hand manipulation where the object moves with

respect to the hand, such as when dialing a radio knob.

7
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The focus of this thesis is within hand manipulation of the object. Within hand

manipulation is important for performing dexterous tasks such as writing, unlock-

ing a door with a key, dialing a radio knob, etc. The grasp that is typically used

to perform within hand manipulation is appropriately called the precision grasp

[33]. The precision grasp is defined by contact points that are restricted to the

fingertips to exploit the full dexterity of the hand. Within hand manipulation for

precision grasps can include rolling the object within the grasp without changing

contacts (i.e.in-hand manipulation), as well as adjusting the contact points dur-

ing manipulation (i.e.finger gaiting). In-hand manipulation exploits rolling effects

between the fingertips and object to move the object to a desired pose. In finger

gaiting, the fingers can break contact and form a new contact point on the object,

whilst the remaining fingers perform in-hand manipulation. Thus a proper in-

hand manipulation technique is arguably necessary to perform finger-gating. The

focus of thesis is in-hand manipulation, that is within hand manipulation using a

precision grasp without changing contacts.

In-hand manipulation using a robotic hand is a challenging task. Each robotic

finger (i.e. robotic manipulator) must be controlled in coordination. The robotic

finger consists of a fingertip, usually with a curved surface, that allows for rolling

to occur with the object surface. This rolling motion is responsible for trans-

mitting fingertip motion to object motion. Rolling is defined by a nonholonomic

constraint, which means that certain velocities (such as slip) are not permitted.

The method of controlling the object’s motion is by the appropriate application

of the contact forces by each robotic finger at the contact. These contact forces

must be determined such that the object can track a desired object reference pose.

Additionally, the contact forces must ensure that the object remains within the

grasp throughout the entire manipulation motion.

The in-hand manipulation process can be broken down into components. First,

consider the robotic fingers. These fingers are the instruments with which ma-

nipulation occurs. Robotic fingers are robotic manipulators with revolute joints

in series, and conventionally consist of motors at each joint that apply a desired

torque. An example of a robotic hand is shown in Figure 2.1.

The robotic fingers are in contact with the object at the respective contact points,

where they apply contact forces. As with most tools, it is important to address the

limitations of robotic manipulators. Robotic manipulators have singular configu-

rations in which a certain contact force direction cannot be applied. Furthermore,

most robotic manipulators have joint limits that prevent them, for example, from
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Figure 2.1: The Allegro Hand (http://wiki.wonikrobotics.com/
AllegroHandWiki/index.php/Allegro_Hand_backup)

rotating a full 360◦. Thus it is important that the joints of the robotic finger

remain in a feasible workspace to apply appropriate contact forces and execute

the manipulation task. The following assumption summarizes this idea:

Assumption 2.1. The hand does not reach a singular configuration, and the joints

remain inside the hand workspace.

Next, consider the contact. Each robotic finger exerts a contact force onto the

object surface. However it will not suffice to apply any arbitrary contact force.

To perform any manipulation motion, the object should stay within the grasp.

One issue that compromises this objective is slip. Slip is related to how the

contact forces are applied with respect to the friction between fingertip surface

and object surface. If slip is prevented, then the object can roll over the fingertip

surface to perform the manipulation motion. This is summarized in the following

assumption:

Assumption 2.2. The object does not slip within the grasp.

Next, consider the rolling motion. Fingertips are finite surfaces on which the object

rolls over during manipulation. These surfaces are where the contact forces are

transferred to the object. Thus in order for contact forces to be properly applied,

the contact must remain on the fingertip surface, which is also referred to as the

fingertip workspace. Manipulation motion naturally causes the contact point to

roll over the fingertip surface. If excessive rolling occurs, the object can roll off

the fingertip resulting in grasp failure. Thus the following assumption must hold

for in-hand manipulation to be performed:

Assumption 2.3. The contact points remain inside the fingertip workspace.

http://wiki.wonikrobotics.com/AllegroHandWiki/index.php/Allegro_Hand_backup
http://wiki.wonikrobotics.com/AllegroHandWiki/index.php/Allegro_Hand_backup


10 Chapter 2 Literature Review

Finally, consider the object. The object is assumed to be a rigid body, such that

forces applied at the contact points result in a net force about the object center

of mass. However, it may not be possible to apply any arbitrary net force on the

object, and still ensure Assumption 2.2 holds. The ability to apply any net force

on the object, while ensuring it doesn’t slip depends on where the contact points

were placed during grasp formation. A well placed grasp, known as a force-closure

grasp, ensures the existence of contact forces to apply any desired net force such

that the object does not slip. This is summarized in the following assumption:

Assumption 2.4. The grasp satisfies the force-closure condition.

Under the condition that Assumptions 2.1-2.4 hold, the object can be held in the

grasp, and manipulation is able to occur. The question then is how to move the

object to the desired reference. In other words, what are the required joint torques

on the hand to move the object to a desired pose?

An additional complication is to perform in-hand manipulation in unstructured

environments. In real-life situations, such as prosthetics, exact knowledge of the

object is unknown. Object properties such as center of mass, shape, inertia, weight,

friction, etc. are not known a priori and are different for the many different objects

grasped in everyday life. In such situations, the robotic hand only has access to

on-board sensors. Sensors that are commonly integrated in robotic hands are joint

encoders which provide proprioceptive measurements of the hand configuration.

Other intuitive grasping sensors are tactile sensors. Many different types of tactile

sensors have been developed in the literature [34, 67]. Whether capacative, piezo-

resistive, or pressure-based, existing sensors can provide contact location and/or

contact force/torque measurements. As will be discussed later, existing sensors

can also detect slip [44, 35].

The use of proprioceptive and tactile sensors are intuitive for grasping tasks. Hu-

mans are able to manipulate objects when relying primarily on proprioceptive and

tactile feedback, and don’t require vision or other sensing modalities to perform in-

hand manipulation. This motivates the definition of tactile-based blind grasping

that will be used throughout this work:

Definition 2.1. Tactile-based blind grasping is a grasping scenario in which the

robotic hand only has access to proprioceptive and tactile sensors to perform

grasping/manipulation tasks.

In tactile-based blind grasping, the robotic hand only has access to proprioceptive

and tactile sensors, which provide joint position, joint velocity, contact location,
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contact force/torque, and/or slip sensing measurements. Although tactile informa-

tion can be used to obtain valuable grasp information, there is still significant ob-

ject model uncertainty regarding the object center of mass, shape, inertia, weight,

friction, etc. Additionally, uncertainties in the hand model, including kinematic

and dynamic models of the hand, are always present in practice as the model never

truly matches the physical system. Thus in-hand manipulation for tactile-based

blind grasping is synonymous with robust in-hand manipulation that must account

for uncertainties in the hand-object model.

Research Opportunity

The objective of this work is to develop robust control methods of performing

in-hand manipulation for tactile-based blind grasping. The following review will

discuss the existing in-hand manipulation literature and outline the following prob-

lems that have yet to be addressed:

Research Aim (Section 2.2). Suppose that Assumptions 2.1-2.4 hold for a given

hand-object system. Determine a control law that ensures stability to the object

reference pose for tactile-based blind grasping.

Research Aim (Section 2.3). Suppose that Assumptions 2.1, 2.3-2.4 hold for a

given hand-object system. Determine a control law that ensures Assumption 2.2

holds, and ensures stability to a desired object pose in the presence of sampling

time effects for tactile-based blind grasping.

Research Aim (Section 2.4). Suppose that Assumption 2.4 holds for a given

hand-object system. Determine a control law that ensures Assumptions 2.1-2.3

hold for tactile-based blind grasping.

2.2 In-Hand Manipulation Control

Under the condition that Assumptions 2.1-2.4 hold such that the object remains

inside the grasp, the subsequent problem is how to control the robotic hand to

manipulate the object to a desired object pose. The following review focuses on

existing control methods for object manipulation. The main issue in the liter-

ature is that existing controllers require model parameters and/or object states

that are unavailable to the robotic hand in tactile-based blind grasping. Robotic
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hands are typically equipped with proprioceptive and/or tactile sensors, which do

not provide measurements of object pose, object velocity, inertia matrix, Cori-

olis/centrifugal matrix, weight, etc. However existing work assume such object

parameters are known, or equivalently require simplifying assumptions that do

not hold in grasping/manipulation. The resulting problem of object manipulation

that has yet to be addressed is how to ensure robustness of the hand-object system

with only knowledge available to the robotic hand for tactile-based blind grasping.

Model-based Methods

Early work in multi-fingered grasping focused on defining necessary conditions and

deriving equations of motion for robotic grasping/manipulation. Salisbury et al.

[102] developed the basic principles for grasping, specifically for static grasps. The

analysis therein investigated force-closure conditions for various contact models by

use of screw theory, and proposed a robotic hand structure to enforce such con-

ditions. Kerr et al. [69] analyzed multi-fingered grasps. That analysis consisted

of using internal forces to lie in the friction cone to prevent slip, derivations of

the rigid body relations between finger, contact, and object motion, and feasible

workspaces of the hand for grasping. Contact relations between the fingers and

object were further investigated in [20, 89, 31]. Montana [89] also developed meth-

ods to estimate unknown object surface curvatures. Bicchi [12] analyzed form and

force-closure conditions, and developed a technique to determine if a given grasp

is force-closure. Jen et al. [65] used linearization-based stability analysis to deter-

mine stability conditions for force-controlled grasping. Howard et al. [60] extended

the stability results to non-force closure grasps. Svinin et al. [114] investigated

grasp stability related to internal force distribution in the grasp. Other stability

analysis can be found in [127, 115].

Appropriate modeling and analysis of multifingered grasping allowed for manipu-

lation controllers to be developed. However, most early manipulation controllers

were heavily reliant on the hand-object model. Cole et al [31] developed a com-

puted torque control method in which the nonlinear hand-object system is feed-

back linearized and a PD controller is used to stabilize the resulting linear system.

Sarkar et at [105] developed a feedback linearization controller that not only al-

lowed for tracking of the object motion, but also those of the contact locations

on either the fingertips or object. However, those aforementioned methods re-

quired exact knowledge of the object model, which is not available in tactile-based
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blind grasping, and thus those methods are not viable solutions for the in-hand

manipulation considered here.

Motion Planning and Optimization Methods

Motion planning and optimization-based methods were developed to consider sys-

tem constraints in addition to object manipulation. Those methods typically re-

quired knowledge of the object model and/or require unrealistic assumptions of

the hand-object system with respect to tactile-based blind grasping. Cherif et

al. [27, 28] developed a 3D in-hand motion planning technique to manipulate an

object from an initial pose to a final pose, while considering slip and workspace

constraints. That work assumed the hand-object system to be quasi-static and

relied on an extensive search over all possible configurations using the known

hand-object model. The quasi-static assumption effectively neglects all dynamics

of the hand-object system to simplify the overall manipulation problem. How-

ever by neglecting the dynamics, it is not possible to provide stability guarantees

when unknown external disturbances act on the hand-object system. External

disturbances are inherent in tactile-based blind grasping, and thus the quasi-static

assumption is not applicable to the scenario considered in this thesis.

Other methods that require exact knowledge of the hand-object system and as-

sume the system to be quasi-static can be found in [53, 107, 57, 108]. Kiss et al

[73] exploit differential flatness of the hand-object system in the plane to develop

a motion planner that does not require the limiting quasi-static assumption. How-

ever that method does not extend to general 3-D, spatial manipulation. Liu et al

[79] developed a framework for in-hand manipulation, in which the dynamics of

the hand-object are pulled back into the contact space. The authors developed

a metric for avoiding singular grasps, which was implemented in an optimization

scheme to determine feasible trajectories with respect to no slip and no workspace

violations. Although that technique considers the dynamics of the system, it re-

quired exact knowledge of the hand-object model. Michalec et al. [85] proposed

an optimization-based controller that uses exact knowledge of the hand-object

model to ensure no slip and joint angles remain in joint space, during object ma-

nipulation. Horowitz et al. [58] use trajectory optimization methods to consider

grasp constraints, while developing feasible manipulation trajectories, but require

knowledge of the hand-object model. Li et al [75] develop a motion planner for

unknown objects, but is dependent on the quasi-static assumption and assumes a

method of tracking the object.
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Bio-Inspired Methods

Bio-inspired approaches have also been developed that extract human manipula-

tion motions for robotic manipulation control. Those methods focus on relating

human motion to robotic motion in an open-loop sense, and provide no robustness

guarantees for in-hand manipulation. Hand synergistic methods apply dimension-

ality reduction techniques to replicate human grasping data with a reduced number

of variables, or “synergies” [29]. Grasp analysis of synergy-controlled robotic hands

was presented in [46], and control strategies were developed for object manipula-

tion [98] and grasp compliance regulation [42]. Tele-manipulation or tele-operated

grasping involves mapping posture/motions of the human hand to a robotic hand

to perform grasping and manipulation tasks [30, 104, 48]. More information on

bio-inspired approaches can be found in [103]. Bio-inspired methods are imple-

mented as feedforward controllers, which do not provide stability guarantees in the

presence of model uncertainty and external disturbances. Thus those approaches

are not suitable for in-hand manipulation of tactile-based blind grasping.

Robust Methods for Model Uncertainties

The literature does consider robust methods of dealing with model uncertainties in

grasping/manipulation. One method of addressing model uncertainty is known as

adaptive control. In adaptive control, the model of the system is estimated online

as the controller stabilizes the system about the origin. Cheah et al [23] proposed

an adaptive PD control law to compensate for uncertain gravity, contact locations,

and hand kinematics. That approach ensures asymptotic stability to a set point

reference, and requires joint angle position, joint angle velocity, contact force,

object pose, and object velocity measurements. A trajectory tracking adaptive

control law was presented by Ueki et al [119] that guarantees asymptotic stability.

That tracking controller requires joint angle, contact force, contact location, object

pose and object velocity measurements. That controller was then extended to

consider compressible fingertips, and a robust/adaptive controller was proposed,

which guarantees uniformly ultimate bounded tracking error [120]. Although those

adaptive control methods provide robustness to model uncertainty, they require

information of the object pose and velocity that are not available in tactile-based

blind grasping.



Chapter 2 Literature Review 15

Other robust manipulation controllers were developed to handle model uncertain-

ties, but also required object pose and velocity measurements that are not pro-

vided in the tactile-based blind grasping scenario presented here. Jara et al [64]

developed a control framework based on optimal control methods for trajectory

tracking that relied on vision and tactile sensors. Caldas et al [21] proposed a

linearization-based controller that is robust to contact location uncertainties. In

that approach, the control is formulated as a linear matrix inequality that also

takes into account slip constraints, and is solved iteratively in-the-loop. In addi-

tion to the dependence on object state measurements, the analysis assumed no

external wrench acts on the system and that the contact points do not roll, which

also do not hold in tactile-based blind grasping. Fan et al [41] designed a feedback

linearization method coupled with robust linear control to handle object parameter

uncertainties. That method also required object pose measurements and assumed

the contact points do not roll.

Some robust methods did not require object state information, but neglected the

dynamics and control of the hand. Jen et al. [65] proposed a sliding mode con-

troller in which the control input is the contact force, however that control did not

consider finger nor contact dynamics/kinematics to apply the necessary contact

forces. Van Wyk [121] developed a robust manipulation controller based on RISE

(robust integral of the sign of the error) for rejecting unbounded disturbances

to achieve semi-global asymptotic trajectory tracking, while also considering slip.

However the related analysis also neglected the dynamics of the hand, and instead

assumed the contact force can be appropriately tracked. Furthermore that method

resulted in instabilities in simulation as a result of the no slip technique proposed.

Again, in tactile-based blind grasping external disturbances can act on both the

object and the hand. By neglecting the hand dynamics, those methods compro-

mise their ability to provide stability guarantees for the in-hand manipulation

solution sought here.

Passivity-based Methods

Manipulation controllers were also developed using passivity-based analysis. Pas-

sivity is a property that naturally applies to mechanical systems, in which the en-

ergy of the system dissipates without an external input. In feedback passivation,

a nonlinear system is rendered passive in which the origin becomes the equilib-

rium point to which the nonlinear system asymptotically reaches as a result of
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energy dissipation. Initial work in passivity-based analysis for object manipula-

tion was presented by Arimoto et al [6] who developed a passivity-based controller

for two fingers in the plane. That controller ensures asymptotic stability to a set

point reference. However, that controller required unrealistic assumptions that no

external force such as gravity acted on the system, the object is of rectangular

shape with spherical fingertips, and that the rolling constraint is holonomic. That

control was then extended to consider the nonholonomic relation at the contact

points by Doulgeri et al [40], and using tactile sensing to extract object pose for

parallel objects [96]. However those initial passivity controllers were restricted to

planar grasps, and did not address disturbances that also result from hand model

uncertainties.

Passivity-based methods were developed that removed dependence on the object

state, although they were still restricted to planar grasps. Arimoto et al [8] ad-

dressed the effects of gravity for flat surfaced objects in blind grasping with two

fingers. Song et al [111] developed a stabilizing controller for two fingers that

minimizes the contact angle to avoid slip. That method only required joint angle,

joint velocity, and contact location measurements, but did not consider external

wrenches, such as gravity, acting on the system. Grammatikopoulou et al [50] de-

veloped a blind grasping controller that minimizes contact angles to prevent slip.

That controller was developed for objects with locally smooth, convex surfaces,

but assumed no external forces such as gravity acted on the system. Although

those methods remove knowledge of the object state, they only apply to planar

grasping which is highly restrictive, and does not exploit the full capabilities of a

dexterous hand that can manipulate objects outside of the plane.

Passivity-based controllers for spatial manipulation have also been developed. Ari-

moto et al. [7] extended their previous control strategies to 3-D objects for grasp

stability, although that method was restricted to cuboid objects and did not ad-

dress manipulation to an object reference pose. Wimböck et al. [124] developed a

passivity-based impedance manipulation controller, referred to as the intrinsically

passive controller. The authors defined a virtual frame to remove dependancy on

the object state. The position and orientation of the frame was defined by the fin-

gertip locations. This approach is promising for tactile-based blind grasping, how-

ever that controller did not consider external forces, such as gravity, and ignored

rolling and Coriolis effects. That control was then extended to consider internal

dynamics [125], and a comparison of various types of passivity-based controllers

was presented in [123]. Tahara et al [116] extended the notion of the virtual frame
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and developed a stabilizing control law that only required joint angle and joint ve-

locity measurements. That controller, referred to as the blind grasping controller,

did consider rolling effects, but was restricted to cuboid shaped objects, and ig-

nored the effects of gravity on the object. That controller was extended to more

general polyhedral objects in [68], but still required the conservative assumption

that gravity was negligible.

Research Gap: In-hand Manipulation Control

Although the literature has progressed to develop manipulation controllers that do

not require object state information, a truly robust control method has yet to be

developed. The early control techniques required exact models of the hand-object

system, with no consideration of model uncertainties. The more robust methods,

such as adaptive control, relied on object pose and velocity measurements that

are not available in tactile-based blind grasping. Passivity-based methods were

primarily limited to planar grasps, until the notion of the virtual frame developed.

The virtual frame removed the dependency on object pose and velocity, however

the existing passivity-based controllers were not robust to model uncertainties. All

the passivity-related control methods for spatial manipulation assume an exact

model of the hand kinematics and assume the object is massless/weightless. Fur-

thermore, the intrinsically passive controllers ignored rolling and Coriolis effects,

and the blind grasping controllers were restricted to objects with flat surfaces.

In practice, objects vary in mass/inertia, shape, surface curvature, and all objects

have mass. The effects of rolling, Coriolis terms, and gravity/external disturbances

are inherent in the dynamics of object manipulation, and cannot be ignored. To

date, there exists no control method that guarantees asymptotic stability for in-

hand manipulation that addresses rolling, external disturbances, Coriolis terms,

and general uncertainties in the hand-object model for tactile-based blind grasp-

ing. This problem is stated as follows:

Research Aim 2.1. Suppose that Assumptions 2.1-2.4 hold for a given hand-

object system. Determine an in-hand manipulation control law that ensures asymp-

totic stability to the object reference pose and is robust to model uncertainties in

tactile-based blind grasping.



18 Chapter 2 Literature Review

2.3 No Slip Constraint

In this section methods of handling slip are investigated for the application of

object manipulation using robotic hands. Humans are familiar with the concept

of slip compensation during grasping. Generally, if an object is slipping, the hand

squeezes harder. This same idea is reflected in robotic hand research, and is

addressed in two steps: slip detection and slip prevention. The first step uses

available tactile sensors to determine if slip is occurring. The second step stop-

s/prevents slip from occurring by appropriately defining the contact forces along

with some knowledge of the contact model. This problem of determining the

contact forces is referred to as the grasp force optimization and/or contact force

distribution problem.

The following review addresses both slip detection and slip prevention techniques.

The brief review on slip detection will discuss sensors and algorithms used to

detect slip. This review will show that the problem of detecting slip has been

appropriately addressed in the literature, and that there exist methods to estimate

properties of the contact between the fingertip and object.

On the other hand, the slip prevention review will show that no existing solution

to the grasp force optimization problem can robustly account for slip prevention in

tactile-based blind grasping. Furthermore, all existing methods are implemented

by solving an optimization problem (or equivalent computation) in-the-loop, where

the computed contact force is implemented at each sampling period. However,

despite acknowledging the computation period required to solve the optimization

problem, no existing method addresses the inter-sampling behavior to ensure that

slip is actually prevented. The resulting problem that has yet to be addressed is

focused on the robust solution to the grasp force optimization problem for slip

prevention in tactile-based blind grasping.

2.3.1 Slip Detection

In relation to human grasping, slip is handled by detection and compensation. A

human hand can quickly detect sliding motion at the contact, and compensate by

squeezing the object harder [35]. For robotic hands, a similar approach is to use

tactile sensors to detect if slip is occurring.
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The existing methods of slip detection rely on various physical properties associ-

ated with slip. These types of sensors can be categorized by vibration, displace-

ment, and force related sensors [44]. The following brief review will discuss the

available sensors, and show that there exist a plenitude of methods for detecting

slip and other contact properties in the literature.

Slip Detection: Vibration Sensors

Amongst the early development of slip detection, the vibration-related sensor de-

sign was motivated by a human’s ability to detect slip [61, 118, 87]. Howe et

al [61] discuss human abilities to detect accelerations/vibrations that occur just

prior to slip. The authors developed a skin-like slip sensor that uses accelerometer

readings of the contact to detect slip. That sensor was improved with an addi-

tional accelerometer, and a method was proposed to use incipient slip detection to

estimate the coefficient of friction between the sensor and object [118]. Mingrino

et al [87] extended the sensor design by incorporating accelerometers to detect vi-

bration of slip and force sensors to detect normal/shear forces. That sensor design

was motivated for use in prosthetics, and a control loop was proposed for a one

degree of freedom gripper to grasp harder if slip was detected.

Slip Detection: Displacement Sensors

Displacement-based slip sensors rely on measuring the relative position between

object and fingertip to determine if slip is occurring. Motion between object and

fingertip is typically detected using vision sensors [59, 63, 83]. Hosoda et al [59]

developed an internal model of slip that used vision and tactile sensors to update

the model. Their internal model claims to remove the need for calibration of their

approach. Ikeda et al [63] exploit the Hertzian contact model to detect slip using a

camera and tactile sensor. Maldonado et al [83] developed a slip detection sensor

by integrating a miniature high speed camera with an integrated laser to detect

relative motion between the fingertip and object. Khamis et al [72] developed

a prototype tactile sensor consisting of an array of silicone pillars, which deflect

according to the contact forces between the sensor and the object, and presented

a method of measuring the friction coefficient.
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Slip Detection: Force Sensors

Force measurements have been exploited in various ways to detect slip. Melchiorri

[84] developed a sensor composed of a force/torque sensor and tactile matrix array

for slip detection. That sensor not only detects linear slip, but also rotational slip

about the contact point. That method allowed for estimation of the friction coeffi-

cient and updates the normal contact force accordingly to prevent slip. Gunji et al

[52] developed “center of pressure” sensors that consist of layered conductive film,

and are more compact for integration into robotic hands than the aforementioned

sensors. Those sensors provided contact location and total force (force magni-

tude) measurements, and slip is detected when significant drops in total force are

measured. Teshigawara et al [117] developed a slip sensor made of a pressure

conductive rubber that detects the total force. When the rubber deforms, a re-

sistive change occurs which is reflected in the measured voltage signal. That slip

detection method used high frequency force measurements to detect incipient slip.

Van Wyk [121] proposed a slip sensor with integrated barometers and a machine

learning classification scheme to detect slip.

Force measurements have further been used in conjunction with a contact model

to develop a sensor fusion method of detecting slip. Ho et al [5] implemented micro

electrical mechanical sensors (MEMS) into a fingertip design to measure total force

and three components of the moment. The authors used the force/moment mea-

surements with a model of fingertip deformation to detect incipient slip. Alcazar

et al [2] proposed a sensor fusion method to detect slip using existing capacitive

sensor arrays. DeMaria et al [37] designed an optoelectronic sensor that provides

6-axis force/torque measurements. The authors then developed a slip detection

method via sensor fusion to combine sensor measurements with a model of the

fingertip deformation, and used this method to estimate the friction coefficient

[38, 39]. Song et al [112] propose a sensor fusion-based method for force/torque

sensors to predict slip by estimating the friction coefficient during an initial haptic

surface exploration of the object. DeMaria et al [36] then applied and extended

the idea of haptic surface exploration for their previously discussed force/torque

sensor for improved slip detection.

Slip Detection: Summary

The literature review shows that there exist various different techniques to detect

slip based on measuring vibrations, displacements, or force. The variety of different
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slip detecting methods allows for multiple solutions for robotic hands to detect

slip. Francomano provides a discussion on advantageous and disadvantageous of

the available methods [44]. Furthermore, many of the existing methods not only

detect slip, but can be used to estimate the friction coefficient to update the

model of the contact [118, 72, 84, 37, 39, 112]. Thus is in the context of ensuring

no slip for dexterous multi-fingered robotic hands (Assumption 2.2), the ability

to detect slip has been thoroughly addressed in the literature. In the following

section, existing methods to prevent/stop slipping are investigated. Note a more

comprehensive review of slip detection sensors can be found in [129, 44, 35, 24].

2.3.2 Slip Prevention

Most of the slip detection schemes from the previous section were applied to simple

parallel grippers with open/close commands. Slip prevention for those grippers

is straightforward: if slip occurs, then close the hand further. Slip prevention

in dexterous multi-fingered hands is more challenging. Dexterous multi-fingered

hands not only require the magnitude of the contact force to “squeeze harder”,

but also the contact force direction in order to prevent slip, while also applying a

desired net force on the object. In this section, slip prevention techniques for multi-

fingered hands are reviewed, and the resulting discussion will show that no existing

method is robust to uncertainties in tactile-based blind grasping. Furthermore no

approach considers the effect of sampling time in guaranteeing no slip.

The concept of slip is related to friction. When a contact force is applied to an

object surface, the magnitude of the normal component, along with the friction

coefficient, define what is known as the friction cone [69]. This friction cone is the

set of possible contact forces (normal and tangential with respect to the contact

surface) that do not cause slip. Thus the problem in slip prevention is to determine

the contact forces that lie inside the friction cone, and also apply the desired net

force/torque on the object.

Grasp Force Optimization: Initial Development and Real-Time Imple-

mentation

Early work in slip prevention setup what is called the grasp force optimization

problem, which when solved, provides the optimal contact forces to prevent slip
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and apply the appropriate object wrench. Conventionally, the grasp force opti-

mization problem consists of a cost function usually related to minimizing internal

forces or actuator torques [69, 92]. The optimization is subject to equality con-

straints on the manipulating contact forces and inequality constraints regarding

the friction cone and actuator torque restrictions.

Initially, methods of solving the grasp force optimization problem were restricted

to static grasps. In [69], the friction cone was linearized and a linear program

was developed to determine the optimal internal forces to prevent slip, whilst

minimizing the internal forces. In [93], the friction cone constraint was maintained

as a quadratic constraint and an algorithm was developed to solve for the minimal

internal forces.

The emerging grasp force optimization approach was applied to “dynamic” grasps

by solving for the optimal contact forces iteratively at each sampling period

[26, 92, 18, 19]. As such, grasp force optimization techniques needed to be com-

puted quickly to be implementable, and due to the limited computing power of

the era, much of the grasp force optimization literature was focused on computa-

tional speed. That early literature assumed the hand-object model to be exactly

known. They also assumed the hand-object system to be quasi-static, in which

the dynamics of the hand-object system were ignored. Cheng et al. [26], setup

the grasp force optimization problem as a linear program to exploit the fast com-

putational methods of linear program solvers. Nahon et al. [92], defined the grasp

force optimization problem as a quadratic program using linearized friction con-

straints. The quadratic program was shown to be beneficial in practice because

it does not require an initial, constraint satisfying contact force, and the output

of the quadratic program is continuous. Buss et al [18], converted the grasp force

optimization problem to an optimization problem on a manifold (i.e. constrained

gradient flows) with exponential convergence results, which was then implemented

on hardware [19].

Other techniques were developed to solve the grasp force optimization problem by

exploiting Dikin algorithms [17], using offline/online computation methods [135,

134], solving convex optimization problems with linear matrix inequalities [54, 56],

exploiting truss models for unconstrained optimization [100], using primal barrier

algorithms [15], and using ray shooting algorithms [130, 132]. One issue with

many existing approaches was that they required an initial, constraint satisfying

contact force to initialize the proposed solver [54, 18]. This initialization problem
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was addressed in [81, 80, 131, 78]. Other techniques were developed that compute

fast albeit sub-optimal contact forces for practical consideration [82, 106, 133].

The aforementioned grasp force optimization methods assumed the hand-object

system to be quasi-static. The quasi-static assumption, is not appropriate in the

dynamic manipulation setting. Furthermore those methods required knowledge of

the grasp information, but did not consider robustness to model uncertainty for

tactile-based blind grasping. Note other techniques such as motion planning that

consider no slip were already presented in Section 2.2, but are omitted here for

brevity as those approaches required the quasi-static assumption.

Robust Grasp Force Optimization Methods

As computational power increased, the focus of grasp force optimization literature

transitioned to developing techniques that were either robust to model uncertain-

ties or considered hand-object dynamics, but not both simultaneously. Michalec

et al [86] developed, a method to solve the grasp force optimization problem, while

considering the effects of uncertain wrenches acting on the hand-object system.

That approach required knowledge of the object dynamics, which are not available

in tactile-based blind grasping. Fungtammasan et al [45], considered the effects of

contact measurement and object model uncertainties and proposed a robust grasp

force optimization technique. That controller was restricted to static grasps, and

so did not consider hand-object dynamics. Van Wyk [121] proposed a robust

manipulation controller that computes the contact forces and then heuristically

projects the forces into the friction cone. That method did not consider hand dy-

namics to apply the necessary contact forces and provided a suboptimal solution

to the grasp force optimization problem. Those methods either require informa-

tion of the object that is unavailable in tactile-based blind grasping, or did not

consider hand-object dynamics to ensure no slip during in-hand manipulation.

Other robust forms of grasp force optimization methods have been developed, but

require object measurements that are not available in tactile-based blind grasping

[21, 41]. Caldas et al [21], developed a manipulation controller that incorporated

grasp force optimization. That controller considered the hand-object dynamics

in the grasp force optimization problem, and a robust control law was proposed

to handle contact location uncertainty. In addition to its dependence on object

measurements, that method assumed no external disturbances act on the hand-

object system, and that the contact points do not roll during manipulation. Fan et
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al [41], proposed a robust manipulation controller to enforce no slip in the presence

of hand-object model uncertainties, but also assumed the contact points do not

roll, and that object pose/velocity measurements were available. The dependence

of those methods on object measurements makes them unsuitable for tactile-based

blind grasping.

Research Gap: No Slip

Grasp force optimization has evolved to determine optimal contact forces that

satisfy the no slip constraint in real-time, and handle some, but not all, hand-

object model uncertainties when considering dynamic manipulation. As with the

manipulation control literature, no existing method addresses how to ensure no

slip when no object information, including object pose/velocity measurements, is

available to the robotic hand as in tactile-based blind grasping. Furthermore, all

existing methods exploit the discrete-time nature of digital hardware. That is,

each proposed method is solved iteratively in-the-loop and implemented at each

sampling period. Thus regardless of the speed of the computational resources, all

existing methods neglect inter-sampling behavior that in addition to model uncer-

tainties compromise their ability to prevent slip. This is further exacerbated when

considering robotic hands in real-world situations where available computational

resources may not be as powerful as those in a laboratory setting. An additional

observation of the existing literature in grasp force optimization is the dependency

on tactile sensors. Each method presented requires the orientation of the friction

cone at each contact point in order to solve the grasp force optimization problem.

Contact location measurements from the tactile sensors yield the required fric-

tion cone orientations at each sampling time to implement the existing methods.

This highlights the significance of tactile sensors to ensure no slip during object

manipulation. This outlines the following problem that has yet to be addressed:

Research Aim 2.2. Suppose that Assumptions 2.1, 2.3-2.4 hold for a given hand-

object system. Determine an in-hand manipulation control law that ensures As-

sumption 2.2 (no slip) holds, ensures stability to the object reference pose, and

is robust to model uncertainties in tactile-based blind grasping. Furthermore the

control law should be robust to sampling time effects.
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2.4 Workspace Constraints

Problem 2.2 addresses the no slip assumption that is common in the manipulation

literature. However, Assumptions 2.1 and 2.3 are required in most, if not all,

in-hand manipulation controllers, yet few methods exist to actively ensure those

assumptions hold. These assumptions are re-stated as follows:

Assumption 2.1. The hand does not reach a singular configuration, and the joints

remain inside the hand workspace.

Assumption 2.3. The contact points remain inside the fingertip workspace.

The following review discusses existing methods in the literature that address

Assumptions 2.1 and 2.3. The discussion will show that there exists no method

that ensures these assumptions hold for tactile-based blind grasping.

Motion Planning Methods

One of the main methods of handling workspace constraints is by motion planning.

Motion planners typically require exact knowledge of the hand-object system or

require simplifying assumptions, such as the quasi-static assumption, that do not

apply in tactile-based blind grasping. Again, the quasi-static assumption neglects

the hand-object dynamics. Using the quasi-static assumption with knowledge of

the hand-object model, motion planners use various search algorithms to find ma-

nipulation paths that satisfy the joint and contact location workspace constraints,

and typically minimize a grasp criterion [27, 28, 53, 107, 57, 108]. Other methods

relax the dependency on object knowledge, but still assume a quasi-static nature

of the system, and require methods of tracking the object pose [75, 32].

Model-based Methods

Other techniques that satisfy workspace constraints do not require the quasi-static

assumption, but still require an exact hand-object model. Liu et al [79] developed

a framework for in-hand manipulation and defined a metric for avoiding singular

grasps. That method was implemented in an optimization scheme to determine

feasible trajectories that satisfy the workspace constraints. Michalec et al. [85]

defined an optimization-based controller that enforces joint angle constraints to re-

main inside a feasible joint space during object manipulation, but did not consider



26 Chapter 2 Literature Review

contact location constraints. Horowitz et al. [58] used a trajectory optimization

method to consider grasp constraints during manipulation. The trajectory op-

timizer iterates over unconstrained trajectories that are then projected onto the

constraint-satisfying manifold. Although those methods do not require the quasi-

static assumption, their lack of robustness to model uncertainties makes them

unsuitable for tactile-based blind grasping.

Research Gap: Workspace Constraints

Motion planners are the predominant existing technique for ensuring Assumptions

2.1 and 2.3 hold, albeit with unrealistic assumptions that render them unsuitable

for tactile-based blind grasping [27, 28, 53, 107, 57, 108, 75]. Motion planners

are typically implemented in a hierarchical control structure that requires a low-

level manipulation controller to track the desired path/trajectory. However the

existing manipulation controllers that can handle constraints are not robust to

model uncertainties for applications to tactile-based blind grasping [79, 86, 58].

Thus there exists no method of ensuring Assumptions 2.1 and 2.3 hold for tactile-

based blind grasping. This problem is concerning as all the in-hand manipulation

controllers presented in Section 2.2 are dependent on assumptions that insofar

can not be guaranteed to hold. It is straightforward to extend this statement to

include all Assumptions 2.1-2.3, which are all required for in-hand manipulation.

Furthermore, it is important to acknowledge the abundance of manipulation con-

trollers as reviewed in Section 2.2, which again, are only valid if Assumptions

2.1-2.3 hold. Thus the motivating problem here is to develop a control law that

enforces Assumptions 2.1-2.3 to support the existing controllers in the literature.

This problem is formally stated as:

Research Aim 2.3. Suppose that Assumption 2.4 holds for a given a hand-object

system. Determine a control law that guarantees Assumptions 2.1-2.3 hold, is ro-

bust to the model uncertainties in tactile-based blind grasping, and admits existing

manipulation controllers from the literature.

2.5 Summary of the Literature Review

The focus of this thesis is in developing in-hand manipulation techniques for

tactile-based blind grasping. Tactile-based blind grasping is a realistic grasping
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scenario in which the robotic hand only has access to existing proprioeptive and

tactile sensors, which can be physically integrated into the hand. A typical scenario

of tactile-based blind grasping is when grasping in an unstructured environment

where the inherent properties of the object such as shape, inertia, weight, and

friction properties are unknown.

Due to the lack of information, tactile-based blind grasping requires appropriate in-

hand manipulation methods that are robust to model uncertainties and dependent

only on proprioceptive and tactile sensor measurements. To ensure stability in the

presence of such uncertainties, the in-hand manipulation techniques should not

rely on unfound assumptions that, for example, neglect dynamics of the system

including coriolis terms or external disturbances.

In addition to tactile-based blind grasping, the review discusses the assumptions

typically required for in-hand manipulation to be performed. These are re-stated

as follows:

Assumption 2.1. The hand does not reach a singular configuration, and the joints

remain inside the hand workspace.

Assumption 2.2. The object does not slip within the grasp.

Assumption 2.3. The contact points remain inside the fingertip workspace.

Assumption 2.4. The grasp satisfies the force-closure condition.

In this review, existing methods in the literature have been presented that address

in-hand manipulation for tactile-based blind grasping in addition to ensuring As-

sumptions 2.1-2.3 hold. The research gaps in the literature have been identified

and the resulting research aims are re-stated as follows:

Research Aim 2.1. Suppose that Assumptions 2.1-2.4 hold for a given hand-

object system. Determine an in-hand manipulation control law that ensures asymp-

totic stability to the object reference pose and is robust to model uncertainties in

tactile-based blind grasping.

Research Aim 2.2. Suppose that Assumptions 2.1, 2.3-2.4 hold for a given hand-

object system. Determine an in-hand manipulation control law that ensures As-

sumption 2.2 (no slip) holds, ensures stability to the object reference pose, and

is robust to model uncertainties in tactile-based blind grasping. Furthermore the

control law should be robust to sampling time effects.
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Research Aim 2.3. Suppose that Assumption 2.4 holds for a given a hand-object

system. Determine a control law that guarantees Assumptions 2.1-2.3 hold, is ro-

bust to the model uncertainties in tactile-based blind grasping, and admits existing

manipulation controllers from the literature.

This thesis addresses these aims in the following chapters. In Chapter 4, a robust

in-hand manipulation control law is formulated to achieve Research Aim 2.1. In

Chapter 5, the robust controller is extended by incorporating a robust form of

grasp force optimization that handles model uncertainty and sampling time to

address Research Aim 2.2. Finally, in Chapter 6 a novel control technique is

formulated and applied to tactile-based blind grasping to address Research Aim

2.3.
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Background

In this chapter the background material is presented regarding the modeling of

robotic hands for grasping and manipulation. The simulation environment and

hardware platform used in this work is also presented.

Notation

Throughout this work, an indexed vector vi ∈ Rp has an associated concatenated

vector v ∈ Rpn, where the index i is specifically used to index over the n contact

points in the grasp. The index k is used to indicate the sampling instant in time

such that for a time-dependent variable v(t), vk := v(t = kTs) where Ts ∈ R>0

is the sampling time. The notation vE indicates that the vector v is written with

respect to a frame E , and if there is no explicit frame defined, v is written with

respect to the inertial frame, P . The operator (·)× denotes the skew-symmetric

matrix representation of the cross-product. SO(3) denotes the special orthogonal

group of dimension 3. The minimum and maximum eigenvalues of a positive-

definite matrix, B, are respectively denoted by λmin(B), and λmax(B). The kernel

or null-space of a matrix, B, is denoted by Ker(B). The Moore-Penrose generalized

inverse of B is denoted B†. The r × r identity matrix is denoted Ir×r. The term

ij ∈ R1,r denotes the jth row of Ir×r. The Lie derivatives of a function h(x) for

the system ẋ = f(x) + g(x)u are denoted by Lfh and Lgh, respectively. When

discussing model uncertainty, the approximation of a variable v is denoted with a

hat, v̂, and the associated error is denoted by ∆(v).

29
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3.1 Hand-Object System

In this work the robotic hand is considered to be fully-actuated such that there

is a motor at each joint that can apply a commanded torque. The robotic hand

consists of robotic fingers, which are each robotic manipulators with revolute joints

in series. Each robotic finger consists of a smooth, convex fingertip of high stiffness.

Let each robotic finger consists of mi ∈ Z joints, and let the joint angles be defined

by qi ∈ Rmi . The robotic fingers considered are involved in the grasp of an

object. Let n denote the number of robotic manipulators used in the grasp such

that m =
∑n

i=1mi is the total number of joints in the hand. Let the full hand

configuration be defined by the joint angles, q ∈ Rm, which is a concatenation of

all qi joints.

Let the inertial frame, P , be fixed on the palm of the hand. Each robotic finger

has a fingertip base frame, Fi fixed at the point pfi ∈ R3. The translational and

angular velocity of the frame Fi are denoted respectively by vfi ∈ R3 and ωfi ∈ R3.

Let the spatial Jacobian, Jsi := Jsi(q) ∈ R6×mi define the mapping q̇i 7→ (vfi , ωfi)

as defined in [91].

Each robotic manipulator contacts the object at the point pci ∈ R3, at which

the contact frame, Ci, is located. The position vector from Fi to Ci is pfci ∈ R3.

Let the object frame, O, be fixed at the object center of mass po ∈ R3. The

position vector from the object center of mass to the respective contact point is

poci ∈ R3. A visual representation of the contact geometry for the ith finger is

shown in Figures 3.1 and 3.2.

The hand Jacobian, Jh := Jh(q,pfc) ∈ R3n×m, relates the motion of the hand and

velocity of the contact points. The hand Jacobian is a block diagonal matrix of

the individual hand Jacobian matrices, Jhi(qi,pfci) ∈ R3×mi defined by:

Jhi(qi,pfci) =
[
I3×3 −(pfci)×

]
Jsi(qi) (3.1)

The contact between the object and finger results in a contact force, fci ∈ R3. The

concatenation of fci defines the full contact force fc ∈ R3n. The contact is modeled

as a point contact with friction in which the contact forces are each applied at

the points pci . Friction forces act parallel to the plane of contact. The friction

coefficient µ ∈ R defines the maximum ratio of tangential to normal forces possible

before slip occurs. The friction cone, FCi, is the set of all possible fci such that

the contact does not slip, and is defined by:
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Figure 3.1: A visual representation of the contact geometry for contact i.

Fci = {fCici ∈ R3 : fniµ ≥
√
f 2
xi

+ f 2
yi
} (3.2)

where fCici = (fxi , fyi , fni) is the contact force at i written in frame Ci with tangential

force components fxi , fyi ∈ R and normal force component fni ∈ R. The full

friction cone is the Cartesian product of all the friction cones: Fc = Fc1× ...×Fcn .

The object is modeled as a rigid body of convex shape. The contact forces that

are applied to the object define the net wrench (i.e. force/torque) that acts about

the object center of mass. The grasp map G ∈ R6×3n defines the mapping between

contact force fc and object net wrench, and is defined by [31]:

G =

[
I3×3, ..., I3×3

(pc1 − po)×, ..., (pcn − po)×

]
(3.3)

During in-hand manipulation, the dynamics of the hand is defined by [91]:

Mhq̈ + Chq̇ = −JTh fc + τe + u (3.4)

where Mh := Mh(q) ∈ Rm×m is the hand inertia matrix, Ch := Ch(q, q̇) ∈ Rm×m

is the hand Coriolis and centrifugal matrix, τe := τe(t,q, q̇) ∈ Rm is the sum of

all dissipative and non-dissipative disturbance torques acting on the joints, and

u ∈ Rm is the joint torque control input for a fully actuated hand.
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Let Rpo ∈ SO(3) denote the rotation matrix which maps from O to P . The

translational and angular velocities of the object frame are respectively denoted by

vo, ωo ∈ R3. The object pose is defined by xo ∈ R6, whose velocity is ẋo = (vo, ωo).

The dynamics of the object during in-hand manipulation is defined by [91]:

Moẍo + Coẋo = Gfc + we (3.5)

where Mo := Mo(xo) ∈ R6×6 is the object inertia matrix, Co := Co(xo, ẋo) ∈ R6×6

is the object Coriolis and centrifugal matrix, and we := we(t) ∈ R6 is an external

wrench disturbing the object.

When the contact points do not slip, the nonholonomic constraint, known as the

grasp constraint, defines the relation between hand motion and object motion.

This constraint is defined by [31]:

Jhq̇ = GT ẋo (3.6)

Under the assumptions that Jh is square and invertible, and grasp constraint (3.6)

holds, the hand-object dynamics can be derived as in [91]:

Mhoẍo + Choẋo = GJ−Th

(
u + τe

)
+ we (3.7)

with

Mho = Mo +GJ−Th MhJ
−1
h GT , (3.8)

Cho = Co +GJ−Th

(
ChJ

−1
h GT +Mh

d

dt
[J−1h GT ]

)
, (3.9)

where Mho := Mho(q,xo) ∈ R6×6 is the hand-object inertia matrix, and Cho :=

Cho(q,xo, q̇, ẋo) ∈ R6×6 is the hand-object Coriolis and centrifugal matrix.

3.2 Contact Model

Here the differential geometric modeling of rolling contacts is reviewed as presented

in [91]. Note, the subscript co will refer to the object surface of the contact, and

the subscript cf refers to the fingertip surface of the contact. The contact model

is depicted in Figure 3.2.

Each contact point is defined by the intersection of the fingertip and object sur-

faces. These surfaces are parameterized by local coordinates ξcoi = (acoi , bcoi), ξcfi =
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Figure 3.2: Contact model for contact i.

(acfi , bcfi). The relation between the local coordinates and contact position vec-

tors are defined by smooth mappings: pFifci = ccfi(ξcfi),p
O
oci

= ccoi(ξcoi). The angle

between
∂ccoi
∂acoi

and
∂ccfi
∂acfi

is ψi ∈ R.

The geometric parameters including the metric tensor, curvature tensor, and tor-

sion tensor are used to define the rolling contact kinematics. For ease of notation,

cfa, cfb respectively denote
∂ccfi
∂acfi

and
∂ccfi
∂bcfi

. Similarly let coa, cob respectively denote
∂ccoi
∂acoi

and
∂ccoi
∂bcoi

.

The Gauss frame is used to define the contact frame Ci:

Rfci =
[
ρ1 ρ2 ρ3

]
=
[

cfa
||cfa||

cfa
||cfb||

n
]

(3.10)

where Rfci ∈ SO(3) maps Ci to Fi and

n =
cfa × cfb
||cfa × cfb||

(3.11)

The fingertip metric tensor, Mcfi := Mcfi(ξcfi) ∈ R2×2, fingertip curvature tensor,

Kcfi := Kcfi(ξcfi) ∈ R2×2, and fingertip torsion tensor, Tcfi := Tcfi(ξcfi) ∈ R1×2

are defined by:

Mcfi =

[
||cfa|| 0

0 ||cfb||

]
(3.12)

Kcfi =

[
ρT1

ρT2

] [
∂n/∂acfi
||cfa||

∂n/∂bcfi
||cfb||

]
(3.13)
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Tcfi = ρT2

[
∂ρ1/∂acfi
||cfa||

∂ρ1/∂bcfi
||cfb||

]
(3.14)

Similarly, the object metric tensor, Mcoi := Mcoi(ξcoi) ∈ R2×2, object curvature

tensor, Kcoi := Kcoi(ξcfi) ∈ R2×2, and object torsion tensor, Tcoi := Tcoi(ξcfi) ∈
R1×2 are defined by:

Mcoi =

[
||coa|| 0

0 ||cob||

]
(3.15)

Kcoi =

[
ρT1

ρT2

] [
∂n/∂acoi
||coa||

∂n/∂bcoi
||cob||

]
(3.16)

Tcoi = ρT2

[
∂ρ1/∂acoi
||coa||

∂ρ1/∂bcoi
||cob||

]
(3.17)

Now the equations of motion for ξcfi and ξcoi are defined as follows:

ξ̇cfi = M−1
cfi

(Kcfi +RψiKcoiRψi)
−1

[
0 −1 0

1 0 0

]
Rcip(ωfi − ωo) (3.18)

ξ̇coi = M−1
coi
Rψi(Kcfi +RψiKcoiRψi)

−1

[
0 −1 0

1 0 0

]
Rcip(ωfi − ωo) (3.19)

where

Rψi =

[
cos(ψi) − sin(ψi)

− sin(ψi) − cos(ψi)

]
, (3.20)

and Rcip = RT
fci
RT
pfi

maps P to Ci. The contact angle dynamics is defined by:

ψ̇i = TcfiMcfi ξ̇cfi + TcoiMcoi ξ̇coi (3.21)

Note the parameterization of the contact surfaces must be chosen such that
∂ccfi
∂acfi

T ∂ccfi
∂bcfi

=

0,
∂ccoi
∂acoi

T ∂ccoi
∂bcoi

= 0, and Mcfi , Kcfi , Tcfi ,Mcoi , Kcoi , Tcoi are defined for all ξcfi on the

fingertip surface, and ξcoi on the object surface, respectively [91].
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3.3 Implementation

3.3.1 Software: Matlab

The numerical simulations were implemented in Matlab on a Mac desktop com-

puter. Two hand models were used in the simulations. Hand Model 1 is a 3-

fingered hand with 9 total revolute joints. Each finger is identical and consists of

3 joints. The hand consists of hemispherical fingertips. A picture of this model is

shown in Figure 3.3, with modeling parameters listed in Table 3.1.

Figure 3.3: Hand Model 1.

Table 3.1: Hand Model 1: Simulation Parameters

Link dimensions 0.05 m× 0.05 m× 0.3 m
Link mass 0.25 kg

Link moment of inertia diag([0.0019, 0.0001, 0.0019]) kgm2

Fingertip radius 0.06 m

A 10x, simulated version of the Allegro Hand [11] was also used in simulations. The

Allegro Hand is a fully-actuated, anthropomorphic robotic hand. The simulated

version of the Allegro Hand consists of 2 fingers and 1 thumb. Each finger contains

3 rigid links with 4 joints revolute joints. A picture of the simulated Allegro Hand

is shown in Figure 3.4. The model parameters of the Allegro Hand are listed in

Table 3.2.
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(a) (b)

Figure 3.4: Allegro Hand (simulated model).

Table 3.2: Allegro Hand (10x): Simulation Parameters

Link lengths (index, middle) 0.540 m, 0.384 m, 0.250 m
Link lengths (thumb) 0.554 m, 0.514 m, 0.40 m

Link width (all) 0.196 m
Link masses (index, middle) 0.444 kg, 0.325 kg, 0.619 kg

Link masses (thumb) 0.176 kg, 0.499 kg, 0.556 kg
Fingertip radius 0.1 m

3.3.2 Hardware

The hardware used to implement the methods developed here is the Allegro Hand

[11]. The Allegro Hand consists of 3 fingers and 1 thumb. Each finger consists of

3 rigid links with 4 joints, for a total of 16 joints. Each joint actuator can output

a maximum torque of 0.70 Nm. Refer to Table 3.3 for the mass and dimensions

of the Allegro Hand. A picture of the Allegro Hand is shown in Figure 3.5. For

more information, refer to http://wiki.wonikrobotics.com/AllegroHandWiki/

index.php/Allegro_Hand.

Table 3.3: Allegro Hand: Model Parameters

Link lengths (index, middle, ring) 0.054 m, 0.0384 m, 0.0250 m
Link lengths (thumb) 0.0554 m, 0.0514 m, 0.04 m

Link width (all) 0.0196 m
Link masses (index, middle, ring) 0.0444 kg, 0.0325 kg, 0.0619 kg

Link masses (thumb) 0.0176 kg, 0.0499 kg, 0.0556 kg
Fingertip radius 0.01 m

 http://wiki.wonikrobotics.com/AllegroHandWiki/index.php/Allegro_Hand
 http://wiki.wonikrobotics.com/AllegroHandWiki/index.php/Allegro_Hand
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Figure 3.5: Allegro Hand (http://www.simlab.co.kr/Allegro-Hand).

The hardware setup consists of 8 GB, 64 bit Dell Inspiron 5559 notebook with

Intel Core i5 processor running Windows 7. The control for the hand was pro-

grammed in C++ using Visual Studio. An NI USB-8473s High-Speed CAN was

used to interface between the Allegro Hand and the computer. The communication

frequency between the Allegro Hand and computer is fixed at 333 Hz.

Due to difficulties in acquiring tactile sensors throughout the dissertation, the

tactile measurements were emulated in the hardware results. The emulation is

described as follows. First, the surface normal direction of each contact point is

approximated. To do so, let ppti ∈ R3 be the vector from P to the center of

the Allegro Hand fingertip of contact i. The normal of each contact point is de-

noted nci = [ncix , nciy , nciz ]T ∈ R3. Let the radius of the spherical component of

the Allegro Hand fingertip be r = 0.01m. The computation of the approximate

contact normal nci is presented for flat and round object shapes used in the hard-

ware demonstrations. The computation of these contact normals are detailed in

Algorithm 3.1 and depicted in Figures 3.6 and 3.7. Once the contact normal is

approximated, the intersection of the normal vector and the fingertip is computed.

This is done by modelling the Allegro Hand fingertips as spheres and computing

the intersection of the plane defined by the contact normal and the fingertip, which

is described in Algorithm 3.2. The full algorithm for emulating the sensors is then

outlined in Algorithm 3.3.

http://www.simlab.co.kr/Allegro-Hand
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Figure 3.6: Emulation of Tactile Sensors for Flat Objects

Figure 3.7: Emulation of Tactile Sensors for Round Objects
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Algorithm 3.1 Compute Contact Normal Vectors

1: procedure Compute Contact Normals(ppti , object surface)
2: if object surface == Flat then
3: Compute vectors between fingertip centers:

pt0t1 = ppt1 − ppt0 , pt0t2 = ppt2 − ppt0

4: Compute vector normal to pt0t1 :

r⊥ = (pTt0t2pt0t1)pt0t1 − pt0t2

5: Compute contact normals:

nc0 =
r⊥
||r⊥||

, nc1 = nc0 , nc2 = −nc0

6: end if
7: if object surface == Round then
8: Compute centroid: p̄pt =

∑
i ppti , i ∈ {0, 1, 2}

9: Compute contact normals:

nc0 =
p̄pt − ppt0
||p̄pt − ppt0||

, nc1 =
p̄pt − ppt1
||p̄pt − ppt1||

, nc2 =
p̄pt − ppt2
||p̄pt − ppt2||

10: end if
11: end procedure

Algorithm 3.2 Compute Contact Point

1: procedure Compute Contact Point(nFici , r)
2: Compute spherical parameters:

θ = arctan(
nFiciy

nFicix
), a =

√
(nFiciy )2 + (nFicix )2, φ = arctan(

nFiciz
a

)

3: Compute contact location in local frame:

pFifci =
[
r cos(φ) cos(θ) r cos(φ) sin(θ) r sin(φ)

]T
4: end procedure
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Algorithm 3.3 Tactile Sensor Emulation

1: procedure Contact Location Measurement(ppti , Rpfi , object surface,
r)

2: Compute contact normal vectors:

nci = Compute Contact Normals(ppti , object surface)

3: for i = 0, 1, 2 do
4: Map contact normal to local frame: nFici = RT

pfi
nci

5: Compute contact point: pFifci = Compute Contact Point(nFici , r)
6: end for
7: end procedure



Chapter 4

Robust In-hand Manipulation

4.1 Introduction

In-hand manipulation refers to the ability to translate and/or rotate an object

within a grasp without changing contact points. In-hand manipulation, as opposed

to static grasping, requires more precise control of the robotic hand to apply

the appropriate contact forces to move the object. In addition to moving the

object, the robotic hand is responsible for ensuring the object stays within the

grasp without slipping or losing contact with the fingertips. All of this must be

accomplished despite the effects of rolling, inertial/Coriolis effects, and external

disturbances that interplay the hand and object relationship.

In addition to the complexities inherent in object manipulation, this work focuses

on in-hand manipulation for unstructured environments where the robotic hand is

deployed in the real world. As such, the manipulation only has access to variables

that can be measured or observed by the sensors on the robotic hand. Vision-based

sensors, for example, cannot provide the object center of mass, but can track the

object relative pose [47]. However most vision-based methods, in addition to those

that require object pose and velocity, require markers to be placed on the object

prior to grasping [64, 119], which makes them highly impractical in unstructured

environments, and restricts them to laboratory settings. Needless to say, humans

are able to manipulate objects using only proprioceptive and tactile sensing, and

are thus not dependent on vision for manipulation tasks. This motivates the idea

of tactile-based blind grasping that was presented in Chapter 2. In tactile-based

blind grasping, the robotic hand only has access to proprioceptive and tactile

41
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sensors [34, 67] that can be physically integrated into the robotic hand for use in

unstructured environments.

As discussed in Chapter 2, related work in in-hand manipulation typically requires

significant model information about the object, or rely on assumptions about

the hand-object system that do not hold in tactile-based blind grasping [31, 57,

105]. The robust methods, such as adaptive control, relied on object pose and

velocity measurements that are not available in tactile-based blind grasping [119,

120, 41, 21]. Passivity-based methods have removed dependency on object pose

measurements, however they neglect rolling effects and/or hand-object dynamics

that are inherent in tactile-based blind grasping [123, 116, 68].

In this Chapter, a robust in-hand manipulation controller is presented to address

Research Aim 2.1. The approach takes advantage of the “virtual frame” used in

related work [125, 116, 123] to define the manipulation task independent of object

pose measurements. The proposed control is proven to be robust to uncertainties

in tactile-based blind grasping, and stability guarantees are presented in the form

of semi-global asymptotic and semi-global exponential stability. Tuning guidelines

are proposed that take advantage of the semi-global stability properties. The pro-

posed controller can actually be implemented in a sub-case of tactile-based blind

grasping, in which only joint angle measurements are required and no tactile sen-

sors are used. An explanation of how additional sensors, including tactile sensors,

can help augment the proposed controller is presented. The manipulation con-

troller is implemented in numerical simulation and on hardware to demonstrate

the efficacy of the proposed approach. An extension to trajectory tracking appli-

cations is then presented, which ensures semi-global practical asymptotic stability

to a bounded reference. The trajectory tracking control also considers bounded

disturbances on the hand-object system. Simulation results are used to demon-

strate the advantages of a trajectory tracking control for tracking a non-steady

reference trajectory in tactile-based blind grasping.

This chapter is organized as follows. Section 4.2 presents the relevant background

for the chapter’s discussion and formally states the problem of in-hand manipula-

tion. Section 4.3 presents the proposed control law and stability analysis. Section

4.4 presents the numerical simulation and hardware results of the proposed con-

trol. Section 4.5 presents an extension of the in-hand manipulation control for

trajectory tracking and bounded disturbance compensation. Section 4.6 presents

the numerical simulations for the proposed trajectory tracking control laws.
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Notation

An indexed vector vi ∈ Rp has an associated concatenated vector v ∈ Rpn, where

the index i is specifically used to index over the n contact points in the grasp.

The notation vE indicates that the vector v is written with respect to a frame E ,

and if there is no explicit frame defined, v is written with respect to the inertial

frame, P . The operator (·)× denotes the skew-symmetric matrix representation

of the cross-product. SO(3) denotes the special orthogonal group of dimension 3.

The approximation of v is denoted v̂. The minimum and maximum eigenvalues of

a positive-definite matrix, B, are respectively denoted by λmin(B), and λmax(B).

The kernel or null-space of a matrix, B, is denoted by Ker(B). The Moore-Penrose

generalized inverse of B is denoted B†. The n×n identity matrix is denoted In×n.

4.2 Background

In this section, the relevant system model and assumptions are presented. Research

Aim 2.1, robust in-hand manipulation for tactile-based blind grasping, is formally

stated as the problem to be addressed in this chapter.

4.2.1 Hand-Object System

Consider a fully-actuated, multi-fingered hand grasping a rigid, convex object at n

contact points. Each finger consists of mi joints with smooth, convex fingertips of

high stiffness. Let the finger joint configuration be described by the joint angles,

qi ∈ Rmi . The full hand configuration is defined by the joint angle vector, q =

(q1,q2, ...,qn)T ∈ Rm, where m =
∑n

i=1mi is the total number of joints. Let

the inertial frame, P , be fixed on the palm of the hand, and a fingertip frame,

Fi, fixed at the point pfi ∈ R3. The contact frame, Ci, is located at the contact

point, pci ∈ R3. A visual representation of the contact geometry for the ith finger

is shown in Figure 4.1. Note a fixed point on the fingertip surface is defined by

pfti ∈ R3, which is fixed with respect to Fi. The inertial position of this fixed

point is pti = pfi + pfti .

The hand Jacobian, Jh := Jh(q,pfc) ∈ R3n×m defines the kinematics of the hand.

The full Jacobian, Jh is constructed by combining each Jhi(qi,pfci) ∈ R3×mi into
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Figure 4.1: A visual representation of the contact geometry for contact i.

a block diagonal matrix [31]:

Jhi(qi,pfci) =
[
I3×3 −(pfci)×

]
Jsi(qi) (4.1)

where pfci ∈ R3 is the vector from Fi to Ci, and Jsi(qi) ∈ R6×mi is the manipulator

Jacobian relating q̇i with the translational and rotational velocities about pfi (see

Figure 4.1).

Let O be a reference frame fixed at the object center of mass po ∈ R3, and

Rpo ∈ SO(3) is the rotation matrix, which maps from O to P . The angular

velocity of the object frame with respect to P is ωo ∈ R3. The object pose is

defined by xo ∈ R6, with ẋo = (ṗo, ωo). The position vector from the object center

of mass to the respective contact point is poci ∈ R3 (see Figure 4.1) .

Each fingertip exerts a contact force, fci ∈ R3, on the object at the contact point,

pci ∈ R3. Let the matrix Gi(poci) ∈ R6×3 be the map from the contact force, fci ,

to the corresponding wrench acting on the object. The transpose, Gi(poci)
T , maps

the object motion to the velocity of the ith contact point. Using a point contact

with friction model, Gi(poci)
T can be computed by [31]:

GT
i (poci) =

[
I3×3 −(poci)×

]
(4.2)

The grasp map, G := G(poc) ∈ R6×3n maps the contact force vector, fc, to the net

object wrench, and is defined by:

G(poc) = [G1, G2, ..., Gn] (4.3)
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The hand and object kinematics are related by the following nonholonomic grasp

constraint [91]:

Jhq̇ = GT ẋo (4.4)

The following assumptions are made for the hand and object, which are inline

with Assumptions 2.1-2.4:

Assumption 4.1. The hand has m = 3n joints, and never reaches a singular

configuration.

Remark 4.1. Assumption 4.1 ensures Jh is square and invertible, which is a com-

mon assumption in related work [21, 123]. This assumption is made in order to not

distract from the main contribution of the paper and can be relaxed by considering

internal motion of the dynamics [91].

Assumption 4.2. The multi-fingered grasp has n > 2 contact points, which are

non-collinear.

Remark 4.2. Assumption 4.2 ensures G is full rank [31]. Note, this requires that

a grasp is already formed for a manipulation task. The motivation behind such a

requirement is to propose a low-level control framework as part of a hierarchical

grasping architecture such as [55, 77].

Assumption 4.3. The fingertips can roll on the contact surface with the object,

but do not slip or lose contact.

Remark 4.3. Assumption 4.3 ensures (4.4) is always satisfied.

Assumption 4.4. The fingertip and object surfaces at the contact points are lo-

cally smooth such that the system dynamics are smooth.

Under Assumptions 4.1 and 4.3, the hand-object dynamics can be derived as in

[91]:

Mhoẍo + Choẋo = GJ−Th

(
u + τe

)
+ we (4.5)

with

Mho = Mo +GJ−Th MhJ
−1
h GT , (4.6)

Cho = Co +GJ−Th

(
ChJ

−1
h GT +Mh

d

dt
[J−1h GT ]

)
, (4.7)

where Mh := Mh(q) ∈ Rm×m,Mo := Mo(xo) ∈ R6×6 are respectively the hand

and object inertia matrices, Ch := Ch(q, q̇) ∈ Rm×m, Co := Co(xo, ẋo) ∈ R6×6

are the respective hand and object Coriolis matrices, τe := τe(t,q, q̇) ∈ Rm is the
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sum of all dissipative and non-dissipative disturbance torques acting on the hand,

we := we(t) ∈ R6 is an external wrench disturbing the object, and u ∈ Rm is

the joint torque control input for a fully actuated hand. The hand-object inertia

and Coriolis matrices are denoted by Mho := Mho(q,xo) ∈ R6×6 and Cho :=

Cho(q,xo, q̇, ẋo) ∈ R6×6, respectively. The following assumption is made for the

external wrenches that may act on the system:

Assumption 4.5. The disturbance terms, τe,we are bounded, continuously dif-

ferentiable, and are constant when the hand-object system is at rest such that:

(ẋo, q̇) ≡ 0 =⇒ τ̇e, ẇe = 0 (4.8)

Remark 4.4. Common disturbances that satisfy Assumption 4.5 include gravity

acting on both the hand and object, and viscous friction acting on the joints in

the form of −βq̇ for β ∈ R>0.

Remark 4.5. It is important to note that for rolling contacts, pc is a function of the

hand configuration, object configuration, and geometry of the object and fingertip

surfaces. For smooth, convex surfaces there exists a smooth local bijection between

the geometry of the fingertip/object surfaces and the hand-object configurations

such that pc, Jh and G can be expressed as functions of the hand-object state,

(q,xo) [91].

The following lemma ensures well-known properties of Mho:

Lemma 4.6. [113, 91] Under Assumptions 4.1 and 4.2, Mho is positive definite,

uniformly bounded such that there exist constants mmin,mmax ∈ R that satisfy:

0 < mmin ≤ ||M−1
ho || ≤ mmax (4.9)

4.2.2 Problem Formulation

4.2.2.1 Task Frame Definition

In the related work, the notion of the “virtual frame” [123, 116] has been used, and

has been accepted for manipulation tasks [55]. The idea of the “virtual frame” is to

define a pseudo object whose state is only dependent on the hand configuration.

That is, the center of the pseudo object, pa ∈ R3, is the centroid of the grasp

fingertips, and the orientation of the pseudo object is defined by the positions of
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the fingertips, and represented by the rotation matrix Rpa ∈ SO(3). Thus the

virtual frame is only a function of the joint angles, and is defined by:

pa(q) =
1

n

n∑
i=0

pti(qi) (4.10)

Rpa(q) = [ρx, ρy, ρz] (4.11)

where ρx = ρy × ρz, ρy =
pt1−pt2
||pt1−pt2 ||2

, ρz =
(pt3−pt1 )×(pt2−pt1 )
||(pt3−pt1 )×(pt2−pt1 )||2

.

The virtual frame is used here to define the task frame for a desired manipulation

motion without requiring knowledge of the object model. Let A be the task frame

located at the point pa with respect to P , with rotation matrix Rpa that maps

A to P . Let va ∈ R3 denote the velocity of pa, and ωa ∈ R3 denote the angular

velocity of frame A with respect to P .

For practical considerations, a local parameterization of SO(3) is used to define a

notion of orientation error by defining γa ∈ R3, such that Rpa = Rpa(γa) [31]. One

example of such a local parameterization is:

γa(q) =

 arctan(−ρz2/ρz3)√
1− ρ2z1

arctan(−ρy1/ρx1)

 (4.12)

To incorporate this local parameterization in the kinematics, let S(γa) ∈ R3×3

denote the one-to-one mapping defined by:

ωa = S(γa)γ̇a (4.13)

The matrix S(γa) is absorbed into P := diag(I3×3, S(γa)) such that:[
ṗa

ωa

]
= P ẋ (4.14)

It is inherently assumed that the orientation γa does not pass through a singular

configuration.

The task frame state is x = (pa, γa) ∈ R6. Finally, let ∂x
∂q
∈ R6×3n denote the

Jacobian of the task frame that maps q̇ to ẋ. The following assumption is used in

related work [123, 116]:

Assumption 4.6. The function x(q) is continuously differentiable, and ∂x
∂q

is full

rank.
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4.2.2.2 Control Objective

For set-point object manipulation, the state x must reach a desired reference

r ∈ R6, where ṙ, r̈ ≡ 0. Let e = x − r define the error. The objective of the

proposed control algorithm is to asymptotically reach (e, ė) = 0 in the presence of

uncertain disturbances. The control problem is defined as follows:

Problem 4.1. Given a hand-object system that satisfies Assumptions 4.1-4.6,

determine a control law that semi-globally satisfies:

lim
t→∞

(e(t), ė(t))→ 0 (4.15)

4.3 Set-Point Manipulation Controller

In this section, the proposed control and related stability analysis is presented to

address Problem 4.1. A gain tuning method is presented for the proposed control,

and extensions to additional sensing modalities and disturbance compensators is

presented to widen the applicability of the proposed method.

4.3.1 Proposed Controller

The proposed control is defined as:

u = ĴTh

(
(P T Ĝ)†um + uf

)
(4.16)

where ĴTh and Ĝ are full rank approximations of Jh and G respectively, and um ∈
Rm is the PID-based manipulation controller:

um = −Kpe−Ki

∫ t

0

e dt−Kdė (4.17)

where Kp, Ki, Kd ∈ R6×6 are the respective proportional, integral, and derivative

positive-definite gain matrices.

The approximations Ĵh and Ĝ are solely defined as functions of the joint angles q.

The approximate hand Jacobian, Ĵh, is a block diagonal matrix composed of Ĵhi
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for each i finger:

Ĵhi(qi) =
[
I3×3 −(pfti(qi))×

]
Ĵsi(qi) (4.18)

where Ĵsi refers to the approximate spatial Jacobian resulting from approximations

in the link lengths and joint positions. The approximation Ĝ is defined as:

Ĝ(q) =

[
I3×3, ..., I3×3,

(pt1 − pa)×, ..., (ptn − pa)×

]
(4.19)

The internal force control input uf ∈ R3n is used to control the internal forces

of the grasp, and prevent slip such that Assumption 4.3 holds. One common

property in related work of the internal force controller is that it is constant when

the hand-object system is static [69, 13, 18, 45]. This is formalized in the following

assumption:

Assumption 4.7. The internal force control satisfies:

ẋ ≡ 0 =⇒ u̇f = 0 (4.20)

The choice of an internal force controller is not unique. One possible solution for

uf is the internal force control law:

uf = kf (pa − pt1 ,pa − pt2 , ...,pa − ptn)T (4.21)

where kf ∈ R>0 is a scalar gain [68, 123, 10]. Note that if (4.21) is used to define

uf , then the proposed control 4.16, (4.17) is a blind grasping controller because

it only requires proprioceptive measurements of q, q̇. However, the internal force

defined by (4.21) does not guarantee Assumption 4.3 holds generally.

A systematic way of defining uf to ensure Assumption 4.3 holds is via a technique

known as grasp force optimization [13, 18, 45]. Although conventionally grasp force

optimization requires exact knowledge of the hand-object model, an extension of

the proposed control presented here addresses grasp force optimization for tactile-

based blind grasping, and ensures Assumption 4.3 holds is presented in Chapter

5.
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4.3.2 Stability Analysis

The stability analysis presented here is used to identify the disturbances that

arise from model uncertainties in tactile-based blind grasping, and then ensure

the proposed control law is robust to such disturbances. Using knowledge of the

disturbance dynamics along with structural properties of the hand-object system,

the analysis shows that the proposed control can achieve semi-global asymptotic

and semi-global exponential stability about the origin.

To start, the system dynamics are derived for the state x, by deriving the relation

between ẋ and ẋo. From Assumptions 4.1 and 4.3, q̇ is solved for from (4.4) and

substitute into ẋ = ∂x
∂q

q̇:

ẋ =
∂x

∂q
J−1h GT ẋo (4.22)

For ease of notation, let Ja = ∂x
∂q
J−1h GT . Note that from Assumptions 4.1, 4.2, and

4.6, Ja is square and invertible such that ẋo = J−1a ẋ. The following lemma shows

that when ẋ = 0, then the hand-object system is at rest:

Lemma 4.7. Consider the system state, x = (pa, γa), with pa and γa respectively

defined by (4.10), (4.12). Under Assumptions 4.1, 4.2, 4.3, and 4.6, if ẋ = 0, then

(q̇, ẋo) = 0.

Proof. From Assumption 4.3, the relation between ẋ and ẋo follows from (4.22),

and that of ẋ and q̇ follows from ẋ = ∂x
∂q

q̇. Due to the full rank conditions from

Assumptions 4.1, 4.2, and 4.6, it directly follows that ẋ = 0 =⇒ (q̇, ẋo) = 0.

To derive the dynamics for x, ẋo = J−1a ẋ is differentiated as follows:

ẍo =
d

dt
[J−1a ]ẋ + J−1a ẍ (4.23)

Note a similar relation between q̈ and ẍ is derived by differentiating q̇ = ∂x
∂q

−1
ẋ:

q̈ =
d

dt
[
∂x

∂q

−1
]ẋ +

∂x

∂q

−1
ẍ (4.24)

Substitution of (4.23) into (4.5), left multiplication by J−Ta , and trivial change of

variables from x to e results in the following system dynamics of similar form to

[123]:

Maë + Caė = J−Ta GJ−Th (u + τe) + J−Ta we (4.25)
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where

Ma = J−Ta MhoJ
−1
a (4.26)

Ca = J−Ta Mho
d

dt
[J−1a ] + J−Ta ChoJ

−1
a (4.27)

It is straightforward to see that the inertia matrix Ma is positive definite and ulti-

mately bounded due to the original properties of Mho and the full rank conditions

of Ja, Jh, and G. This is summarized in the following lemma:

Lemma 4.8. Under Assumptions 4.1, 4.2, and 4.6, Ma defined by (4.26) is posi-

tive definite, and uniformly bounded.

Next, the proposed control law (4.16) is substituted into the system dynamics

(4.25):

Maë + Caė = J−Ta GJ−Th ĴTh

(
Ĝ†P−Tum + uf

)
+ J−Ta GJ−Th τe + J−Ta we (4.28)

It is important to note that the system dynamics (4.28) are not dependent on

assumptions that neglect rolling, Coriolis terms, or external disturbances, which

are required in related work [123, 68]. Furthermore, from (4.28), it is clear that

the model uncertainties in the hand and object kinematics contribute to additional

disturbances.

To proceed, the matrices from (4.16) are multiplied out with with their approx-

imate inverses from (4.28). Note the matrix P from the control (4.16) is used

as an approximation of J−1a . The motivation behind this is that P ẋ defines the

translational and angular velocities of the task frame, which ideally should equal

the object velocity, ẋo, such that P ẋ ≈ ẋo = J−1a ẋ. This relation is only an ap-

proximation due to the effects of rolling between the object and fingertips. The

result of the product of matrices and approximate inverses is as follows:

Maë + Caė = um + J−Ta GJ−Th τe + J−Ta we +D1um +D2uf (4.29)

where D1 := D1(x,q,xo) ∈ R6×6, D2 := D2(x,q,xo) ∈ R6×3n represent the

residual matrices that arise from the approximations of Jh and G multiplying

their respective true inverses.

The previous derivation of the system dynamics, along with the proposed con-

trol, shows that object manipulation for tactile-based blind grasping resembles an

Euler-Lagrange system with disturbance terms. To address robustness to these
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disturbances, it must first be shown that the origin is an equilibrium point of the

system. This satisfies the conditions for related work [3] where singular perturba-

tion analysis is used to guarantee semi-global stability properties.

In the following derivation, the system dynamics are re-written in a similar singular

perturbation structure. Note the following derivation is in-line with the method

used in [3]. The novelty of the presentation here is in showing the properties of

the disturbances in tactile-based blind grasping, which are notably different than

those of [3].

Let ψ ∈ R6 denote the cumulative disturbance including the Coriolis and centrifu-

gal terms:

ψ = −Caė + J−Ta GJ−Th τe + J−Ta we +D1um +D2uf (4.30)

Furthermore, let η ∈ R6 denote the full system nonlinearities defined by:

η = M−1
a ψ + (M−1

a − M̂−1)um (4.31)

where M̂ ∈ R6×6 is a constant, positive definite matrix that approximates Ma and

satisfies:

||I6×6 −M−1
a M̂ || < 1 (4.32)

Remark 4.9. Lemma 4.8 guarantees the existence of such an M̂ that satisfies (4.32).

An acceptable choice is M̂ = 2
mmax

I6×6 for mmax ∈ R>0 chosen sufficiently large to

exceed the bounded norm on Ma. Note a less conservative M̂ can be defined as a

diagonal matrix whose elements are upper bounds of the diagonal elements of Ma

[3].

The system dynamics (4.29) is re-written using (4.30) and (4.31)

ë = M̂−1um + η (4.33)

To introduce the time-scale separation for the desired singularly perturbed struc-

ture, the the PID controller (4.17) is re-written as the following equivalent control

law as per Proposition 1 of [3]:

um = M̂(−η̂ −K1e−K2ė) (4.34)

η̂ =
1

ε
(w + ė) (4.35)
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ẇ = −M̂−1um −
1

ε
(w + ė), w(0) = −ė(0) (4.36)

where K1, K2 ∈ R6×6 are positive definite matrices, ε ∈ R>0 is the singular pertur-

bation parameter, and η̂ ∈ R6×1 is an estimation of η, whose update law is defined

by (4.35), (4.36).

Substitution of (4.34) into (4.33) results in:

ë = −K1e−K2ė + (η − η̂) (4.37)

In (4.37), the system dynamics are now separated into linear and nonlinear terms.

For stability, the nonlinear component (i.e. the error between η and η̂) must be

shown to converge to zero. To do so, a new state is introduced to define this

error: y = η − η̂. The dynamics of y are derived by differentiation of η̂ and

η. Differentiation of (4.35) with substitutions from (4.36) and (4.33) results in:
˙̂η = 1

ε
y. Differentiation of (4.31), whose derivation is omitted for brevity, results

in:

η̇ = −1

ε
(M−1

a M̂ − I6×6)y + φ (4.38)

φ = M−1
a

(
Ṁa(K1e +K2ė− y)− (M̂ −Ma)(K1e +K2ė +K2y) + ψ̇

)
(4.39)

Finally, the system dynamics for tactile-based blind grasping (4.25) is re-written

in the following singularly perturbed form by combining (4.37) with ẏ = 1
ε
y + η̇

and (4.38): [
ė

ë

]
=

[
06×6 I6×6

−K1 −K2

][
e

ė

]
+

[
0

y

]
(4.40a)

εẏ = −M−1
a M̂y + εφ (4.40b)

The following lemma ensures that the system origin, (e, ė,y) = 0, is an equilibrium

point:

Lemma 4.10. Consider the system defined by (4.40). Under Assumptions 4.1-

4.7, ψ̇ = 0 at the origin (e, ė,y) = 0, such that the origin is an equilibrium point

of the system.
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Proof. By Assumption 4.4, ψ̇ is well-defined and so differentiation of ψ defined by

(4.30) results in:

ψ̇ = − d

dt
[Ca]ė− Caë +

d

dt
[J−Ta GJ−Th ]τe + J−Ta GJ−Th τ̇e

+
d

dt
[J−Ta ]we + J−Ta ẇe +

d

dt
[D1]um +D1u̇m +

d

dt
[D2]uf +D2u̇f (4.41)

It is clear that the first term vanishes at the origin. The second term also disap-

pears after substitution of ë from (4.40a). From Lemma 4.7 it follows that at the

origin, q̇ = 0, and ẋo = 0. Thus from Assumptions 4.5 and 4.7, it follows that the

terms containing τ̇e, ẇ, and u̇f vanish at the origin.

For the term D1u̇m, differentiation of um defined by (4.17) and evaluation at

the origin results in u̇m(0) = −Kdë. Substitution of ë from (4.40a) results in

u̇m(0) = 0.

For the remaining terms in (4.41), it is important to note that Jh, Ja and G are

functions of x, q̇, and/or xo. The derivative of these terms can be written in the

following form for an arbitrary matrix-valued function B(x,q,xo):

d

dt
[B(x,q,xo)] =

6∑
j=1

∂B

∂xj
ẋj +

∂B

∂xoj
ẋoj +

m∑
l=1

∂B

∂ql
q̇l (4.42)

Using Lemma 4.7 with Assumptions 4.1, 4.2, and 4.6, ė = 0 =⇒ (ẋ, q̇, ẋo) = 0.

Thus all terms in (4.42) multiplied by ẋ, q̇, ẋo cancel out, and the remaining terms

in (4.41) vanish at the origin. Thus ψ̇ = 0 at the origin.

Furthermore, by inspection of φ defined by (4.39), it is clear that φ = 0 at the

origin. Thus the origin of (4.40) is an equilibrium point of the system.

From Lemma 4.10, the stability results from [3] directly follow. This is summarized

in the following theorem, which ensures semi-global asymptotic stability for object

manipulation in tactile-based blind grasping:

Theorem 4.1. Suppose Assumptions 4.1-4.7 hold for a given grasp. For any

∆ ∈ R>0 and for all ||(e(0), ė(0))||2 < ∆, there exist positive definite gains

K∗p , K
∗
i , K

∗
d ∈ R6×6 such that for all Kp > K∗p , Ki > K∗i , Kd > K∗d the system

(4.25) with the control law (4.16), (4.17) is asymptotically stable.

Proof. Lemma 4.8 directly satisfies the assumption of Lemma 1 in [3]. Lemma 4.10

satisfies Assumption 2 of [3] such that condition (a) is true, and the origin is an
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equilibrium point of the closed-loop system (4.40). Thus the proof for semi-global

asymptotic stability follows from Proposition 2 of [3].

Applying stronger conditions on the gain matrices lead to the following result:

Corollary 4.11. Under Assumptions 4.1-4.7, there exist positive definite gains

K∗∗p , K
∗∗
i , K

∗∗
d ∈ R6 such that for all Kp > K∗∗p ≥ K∗p , Ki > K∗∗i ≥ K∗i , Kd >

K∗∗d ≥ K∗d the system (4.25) with the control law (4.16), (4.17) is exponentially

stable.

Proof. With Lemmas 4.8 and 4.10, the proof for semi-global exponential stability

follows directly from Corollary 3 of [3] and Theorem 11.4 of [71].

Remark 4.12. Exponential stability provides additional robustness to the system

with respect to small perturbations that can relax the constant disturbance condi-

tion from Assumption 4.5. Such perturbations in the grasping scenario may arise

from further modeling errors associated with the point contact with friction model,

rigid contact surfaces, and bounded external disturbances of small magnitudes that

do not vanish at the origin.

Remark 4.13. Note that the proposed controller is a blind grasping control law

when using uf defined by (4.21), as done in related blind grasping research [68,

116]. However in related work, the control solution causes an induced rolling dis-

turbance, which requires additional control terms for compensation [68]. In the

proposed formulation presented here, the effect of no external information mani-

fests as a disturbance which is similarly a function of the proposed manipulation

and internal force control terms as seen in (4.29). However the proposed control

neatly compensates for these disturbances without requiring any additional con-

trol terms, and furthermore rejects unknown external disturbances which are not

accounted for in the related blind grasping work [68, 116].

Remark 4.14. Assumption 4.1 requires the hand to not be redundant to avoid any

motion of the joints in the null space of Jh. Assumption 4.1 in Theorem 4.1 can be

relaxed such that m ≥ 3n by exploiting viscous friction of the joints in the form

of τe = −βq̇ for β ∈ R>0. Viscous friction is inherent in real systems and acts to

dampen any motion of the null space such that Lemma 4.7 holds, and the same

stability results follow. Note if m > 3n, then the generalized inverse of Jh is used

in place of J−1h and the proposed control (4.16), (4.17) is unchanged. This widens

the applicability of the proposed method to redundant robotic hands.
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4.3.3 Gain Tuning

Theorem 4.1 and Corollary 4.11 ensure the existence of PID gains to guarantee

semi-global asymptotic and semi-global exponential stability, respectively, for ob-

ject manipulation. In [3], a systematic tuning method was presented for PID

control in which Kp, Ki, Kd are parameterized by a single variable, ε ∈ R>0. That

approach, which is adopted here, restricts the degrees of freedom in choosing the

gains to facilitate the design of the controller without compromising stability. Let

the Kp, Ki, Kd gains be defined by:

Kp = M̂(K1 +
1

ε
K2) (4.43a)

Ki =
1

ε
M̂K1 (4.43b)

Kd = M̂(K2 +
1

ε
I6×6) (4.43c)

The structure defined in (4.43) facilitates the choice of each gain parameter. The

gains K1 and K2 relate to the behavior of a linear system, and can be chosen

based on the desired closed loop time constant and damping coefficient [3]. The

parameter ε dictates the size of the region of attraction. Once K1, K2 are defined,

ε is solely responsible for the system’s transient response. Thus Theorem 4.1 and

Corollary 4.11 can be re-stated under the restricted tuning guidelines.

Remark 4.15. Stability with respect to the single parameter ε allows a simple,

systematic way to improve the robustness of the system. However, in practice

signal noise will provide a lower bound, εmin ∈ R>0, on ε. In the case that noise

levels are sufficiently high, the set defined by εmin < ε < ε∗ may be empty. Also,

due to emulation, small sampling frequencies may be problematic with high gain

control.

4.3.4 Extension to Additional Sensing Modalities

In much of the related work, the manipulation controllers require methods of

tracking a fixed point on the object. This is typically done by either attaching

sensors onto the object or using sophisticated cameras and vision systems [64, 120,

41]. One of the main advantages of vision is to directly measure the object pose

for a given manipulation task. The use of the virtual frame, although acceptable

in many applications, does not exactly track the object motion [123]. The reason

for this is due to rolling effects between the fingertip and object. Different relative
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curvatures between the fingertip and object will result in different object velocities

for a given fingertip velocity [91]. Vision sensors bypass this issue by directly

measuring object orientation error, and can be integrated into the proposed control

with the same stability guarantees as follows.

In the event that object pose measurements are provided by available sensors,the

proposed control can be augmented by first using the pose measurements to define

the task frame. The sensors provide x directly, where pa is a fixed point being

tracked, while γa is the orientation of the object about pa [64]. From rigid body

motion, it is straightforward to show P ẋ = ẋo, which implies that Ja = P−1. Thus

the resulting control law is the same one defined by (4.16), (4.17), albeit with a

new task frame provided by the sensors. Regarding the stability analysis, the same

stability results follow by setting Ja = P−1.

As discussed in Remark 4.13, the proposed control presented in (4.16) only utilizes

tactile sensing to define the internal force control, uf . Tactile sensors can also be

incorporated into (4.16) by using pc in place of pt in Ĝ. This improves the estimate

of the grasp map, but as shown in the following lemma, also relaxes Assumption

4.7:

Lemma 4.16. Consider Ĝ defined by (4.19) and G defined by (4.3), (4.2). Suppose

that pt ≡ pc. If uf ∈ Ker(Ĝ), then uf ∈ Ker(G).

Proof. The grasp map, G, can be re-written with respect to Ĝ by G = Ĝ + δG

where δG is:

δG =

[
0 . . . 0

(po − pa)× . . . (po − pa)×

]

The term Guf can now be simplified using uf ∈ Ker(Ĝ) as follows:

Guf = δGuf

=
k∑
i=1

[
03×3

(po − pa)×

]
ufi

=

[
0

(po − pa)×
∑k

i=1 ufi

]
= 0

The final step,
∑k

i=1 ufi = 0, is true from Ĝuf = 0.
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Lemma 4.16 allows for more general internal force controllers that may not be

constant at e = 0. This is due to the fact that since uf ∈ Ker(G), any changes in

uf do not affect the system dynamics. Note, this condition only holds under the

assumption that Ĵh ≡ Jh such that with Lemma 4.16, D2uf ≡ 0 in (4.29).

4.3.5 Existing Disturbance Compensators

In some cases knowledge of the disturbances that act on the hand-object system

may be known a priori. For example, gravity compensation is typically used to

compensate for gravity disturbances on the hand, however gravity compensation

requires a model of the hand that will inevitably not exactly match the phys-

ical system. Similarly other disturbance models may be known, but will never

truly cancel out the external disturbance. In order to incorporate these existing

compensators, the exogenous input is defined as:

ue = −τ̂e − ĴTh Ĝ†ŵe (4.44)

where τ̂e ∈ Rm and ŵe ∈ R6 are the respective approximations of τe and we.

Under the condition that ẋ = 0 =⇒ ˙̂τe, ˙̂we = 0, and based on the previous

analysis, it is clear that the superposition of u with ue satisfies the conditions

of Theorem 4.1. As such, ue can be incorporated into the proposed control to

augment the control performance with existing model knowledge. The effect of ue

is then to reduce the uncertainty that is otherwise compensated for by the integral

action of (4.17).

Insofar, the proposed control can reject disturbances that satisfy the continuously

differentiable condition as per Assumption 4.5. In practice, robotic hands may be

subject to static friction, which is a dead-zone disturbance that does not satisfy

the smoothness property of Assumption 4.5. With the integral action used in the

proposed controller, static friction can cause integrator wind-up that compromises

the stability properties of the proposed control. Thus a static friction compensa-

tion method may be required for implementation of the proposed control in robotic

hands.

There exist many compensation techniques in the literature to handle static fric-

tion [88, 9]. Model-based techniques directly cancel out the effects of static friction,

but require significant calibration effort. One non-model-based method is a dither-

based static friction compensation. In the dither method, a small sinusoidal dither
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signal is added to the control to periodically perturb the system. The augmenta-

tion of the dither static friction compensating control to the proposed control law

is:

u = ĴTh

(
(P T Ĝ)†um + ûf

)
+ d(t) (4.45)

where d(t) ∈ Rm is a vector comprised of individual dither signals dj(t) ∈ R
for j = 1, ..,m defined by dj(t) = aj sin(ft) + bj, where aj, bj, f ∈ R define the

amplitude, dc offset, and frequency of the dither signals.

Remark 4.17. The use of a dither-based static friction compensator does not satisfy

the conditions for Lemma 4.10 to show that the resulting disturbances are constant

at the origin. However, the use of periodic averaging [71] can be used to ensure

the same stability results presented previously apply to a prescribed error bound

for such dither-based compensation schemes.

4.4 Results (Set-Point Manipulation)

The proposed controller provides in-hand manipulation for tactile-based blind

grasping and is robust to model uncertainties. This section demonstrates the

application of this robust controller through numerical simulation and hardware

implementation. In the numerical simulation, the proposed control is compared to

an existing controller from the literature [116] in the presence of unknown external

disturbances. Additionally, results from Section 4.3.3 are applied to demonstrate

how the systematic gain tuning and semi-global properties presented improve the

response of the system despite the robotic hand being deprived of grasp informa-

tion. The proposed control is also implemented on hardware to demonstrate the

proposed control for tactile-based blind grasping. The hardware results demon-

strate robustness to unknown object masses, whilst also handling static friction

disturbances.

4.4.1 Simulation (Set-Point Manipulation)

In the simulations, the Allegro Hand [11] is grasping a rectangular prism as de-

picted in Figure 4.2. Note without loss of generality, a 10× scaled model of the

Allegro Hand is used in the simulation. The initial grasp is purposefully offset

from the object center of mass, to accentuate effects of an unknown center of mass

with gravity for an unknown object mass, mo ∈ R. Object masses of 0.1, 0.5, and
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1.0 kg are used. The reference, r, is decomposed into r = x(0) + ∆r, where x(0)

is the initial state defined by the initial task frame position and orientation, and

∆r ∈ R6 is the desired reference change. The reference provided for the controller

is ∆r = (0,−.1,−.2, 0, 0, 0), which relates to translating the object −.1 m in the

Y-direction, −.2m in the Z-direction, while maintaining the same X-position and

initial orientation. The simulations were performed using Matlab’s ode45 integra-

tor, with a simulation time of 15 seconds.The simulation parameters are listed in

Table 4.1. The parameters of the hand can be found in Section 3.

(a)

(b)

Figure 4.2: Simulation setup.

The proposed control is compared to a passivity-related, conventional control de-

fined in [116]. The proposed control (4.16), (4.17) is used with the internal force

control defined by (4.21), which is the same internal force control used in the

conventional control [116]. The gains, Kp, Ki, Kd were determined by (4.43), with

M̂ = 0.02∗I6×6, K1 = 1.0∗I6×6, K2 = 2.5∗I6×6 for ε = 0.0005. The resulting PID

gains were Kp = 100 ∗ I6×6, Ki = 40 ∗ I6×6, Kd = 40 ∗ I6×6. The value of kf = 10
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Table 4.1: Simulation Parameters

Object dimensions 2.0 m× 0.34 m× 0.34 m
Object moment of inertia diag([0.019, 0.343, 0.343])kgm2

Initial po (−0.263, 0.041, 0.973) m
Initial pa (0.224, 0.107, 1.01)m
Initial γa (0, 0, 0)rad

τe −.1 ∗ Im×mq̇ Nm
we (0, 0,−mo ∗ 9.81, 0, 0, 0) N

used for both controllers was empirically chosen such that the contact points do

not lose contact with the object.

The following plots show the response of the conventional and proposed controllers

for varying object masses. Note that in the plots, ej refers to the jth element of

e.

(a) Position error. (b) Orientation error.

Figure 4.3: Conventional control for mo = 0.1 kg.

(a) Position error. (b) Orientation error.

Figure 4.4: Conventional control for mo = 0.5 kg.
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(a) Position error. (b) Orientation error.

Figure 4.5: Conventional control for mo = 1.0 kg.

(a) Position error. (b) Orientation error.

Figure 4.6: Proposed control for mo = 0.1 kg.

(a) Position error. (b) Orientation error.

Figure 4.7: Proposed control for mo = 0.5 kg.
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(a) Position error. (b) Orientation error.

Figure 4.8: Proposed control for mo = 1.0 kg.

Figures 4.3-4.5 show the responses of the conventional control law from [116]. For

object masses of 0.1 and 0.5 kg, the controller reaches a steady-state offset of

increasing magnitude for increasing object mass. This is expected as that control

law neglects the effects of external disturbances, which compromises its ability to

stabilize the hand-object system about the origin. For an object mass of 1.0 kg,

this issue is exacerbated as the external disturbance causes the contact points to

leave the fingertip surface, causing grasp failure (i.e. the object is dropped). This

is indicated by the abrupt stop in simulation at t = 11.03s. These results show

that negligence of hand-object dynamics in tactile-based blind grasping not only

results in steady-state offsets from the origin, but can ultimately result in grasp

failure.

Figures 4.6-4.8 show the response of the proposed controller for the same object

masses. As expected, the proposed control law asymptotically converges to the ori-

gin despite different, unknown object masses. The plots show that smaller object

masses depict better transient performance due to smaller magnitude disturbance,

which is aligned with intuition. The plots highlight the benefit of a robust con-

troller that can handle unknown object masses in that the gains do not need to

be re-tuned despite different objects being grasped. Furthermore, with the same

choice of gains, the proposed controller prevents grasp failure that occurred from

the conventional control law.

Figure 4.9 shows how the choice of ε (i.e. Kp, Ki, Kd) affects the transient re-

sponse of the system.The figure displays the response with respect to the position

error in the Z-direction (denoted by e3), however the same behavior is seen in all

components of e which are omitted here for clarity. The plots shows that for de-

creasing values of ε (increasing Kp, Ki, Kd), the system has improved performance
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Figure 4.9: Effect of ε on transient behavior for proposed control.

with respect to smaller overshoot and settling times. This trend is consistent with

the notion from Corollary 4.11 where as ε is decreased (Kp, Ki, Kd increased),

improved stability conditions are guaranteed in the form of asymptotic then ex-

ponential stability. This is an advantage over existing controllers [116, 123, 68], in

that the proposed control can achieve arbitrary control performance in the pres-

ence of external disturbances for tactile-based blind grasping. However the control

performance will ultimately be limited by hardware restrictions.

4.4.2 Hardware Results (Set-Point Manipulation)

The purpose of the hardware results is to highlight the robustness of the proposed

control. This is achieved by applying the proposed control to objects of different

mass and shape, which are unknown to the controller. The Allegro Hand is used

to implement the proposed control. Information on the hardware can be found in

Chapter 3.

Four demonstrations were performed to highlight the robustness of the proposed

control. In each demonstration, one parameter: object mass, object shape, or ma-

nipulation command is changed. In the first demonstration, the proposed control

rotates a spherical object of mass 0.20 kg. In the second demonstration, the same

control rotates a cube object of mass 0.20 kg. In the third demonstration, the same

control rotates a spherical object of mass 0.09 kg. In the final demonstration, the

same control translates a spherical object of mass 0.20 kg. Note the same control

and gain values are fixed for all demonstrations to highlight the robustness of the

proposed method to different object masses/shapes.
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The inertial frame, P , is fixed to the palm of the hand as shown in Figure 4.10a.

Let the reference with respect to P be r = x(0) + ∆r, where x(0) is the initial

configuration of the task frame defined by (4.10), (4.11), and ∆r is the com-

manded reference change. The change in reference is parameterized by ∆r =

(0, 0, rz, 0, 0, rψ), where rz ∈ R denotes a translation in the Z-axis and rψ ∈ R
denotes a rotation about the Z-axis.

The objects used to conduct the demonstration are a 3D-printed sphere of radius

0.0375 m and a 3D-printed cube of length 0.060 m (see Figure 4.11). The sphere

has a hollow interior to adjust its mass between 0.09 kg and 0.20 kg. Both objects

have high friction coefficients to prevent slip during the manipulation motion. For

each case study, the objects are first placed in the robotic hand grasp prior to

implementing the control. Once the grasp is formed, the proposed controller is

implemented and commanded to the desired reference. The rotation reference

setpoint is rψ = 0.6 ±0.06 rad (rz = 0.0 ±0.008 m). The translation reference

setpoint is rz = 0.04 ±0.004 m (rψ = 0.0 ±0.12 rad).

(a) Top View (b) Side View

Figure 4.10: Allegro Hand setup.
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(a) Sphere and Cube (b) Hollow sphere with weights

Figure 4.11: Objects.

Table 4.2: Dither Signal Parameters (dj = aj sin(2πft)+bj , j ∈ [1,m], f = 150
Hz)

Index: Joint 1 Joint 2 Joint 3 Joint 4

aj 0.0990 0.0873 0.0936 0.0828

bj −0.0110 −0.0255 −0.0260 −0.0140

Middle: Joint 1 Joint 2 Joint 3 Joint 4

aj 0.0981 0.0639 0.0747 0.0648

bj −0.0175 −0.0045 −0.0065 −0.0040

Thumb: Joint 1 Joint 2 Joint 3 Joint 4

aj 0.1152 0.0720 0.1224 0.0648

bj −0.0250 −0.0130 −0.0180 0.0010

In the simulations, no noise (or friction) is present in order to demonstrate how

the proposed controller can account for large model uncertainties. However in

practice, noise and friction are both present, which will degrade the controller’s

performance. To account for noise limitations, the gravity and friction compen-

sations presented in Section 4.3.5 are used to to demonstrate how the proposed

controller can be implemented in a realistic scenario. The controller used in the

demonstration consists of the proposed control (4.16), (4.17), (4.21) with the ex-

ogenous disturbance compensators discussed in Section 4.3.5. First, a gravity

compensation component was augmented to the proposed control to account for

the effect of gravity on the hand. Second, a dither-based static friction compen-

sator was also augmented to the control due to the large presence of static friction
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found in the Allegro Hand. Finally, a nominal object weight compensator is aug-

mented to the control to account for real-world scenarios in which all objects have

mass. It is important to emphasize that the nominal object mass of m̂o = 0.10

kg is purposefully offset from the true object masses of 0.20 kg (for demonstra-

tions 1, 2, and 4) and 0.09 kg (for the third demonstration) to demonstrate how

the proposed control compensates for object mass uncertainty. The implemented

controller is:

u = ĴTh

(
(P T Ĝ)†um + uf

)
+ τ̂g(q) + d(t) + ĴTh (P T Ĝ)†m̂og (4.46)

where τ̂g(q) ∈ Rm is the approximate torque induced by gravity acting on the

hand, and d(t) is the dither signal added to compensate for static friction, and

g ∈ R3 is the inertial gravity vector. The parameters associated with the dither

signal, d, are listed in Table 4.2. Note the dither signal and integrator of the

control (4.46) is only applied outside of the prescribed tolerance for the setpoint

reference.

The PID gains of the proposed control are:

Kp = diag[(500, 500, 500, 0.28, 0.28, 0.28)]

Ki = diag[(50, 50, 50, 0.6, 0.6, 0.6)]

Kd = diag[(0.008, 0.008, 0.008, 0.16, 0.16, 0.16)]
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(a) Initial configuration (b) Final configuration

(c) Position error. (d) Orientation error.

(e) Control torque including dither signal
(dither is shut off at 4.56 s when tolerance
is reached).

Figure 4.12: Demonstration 1: Rotation of 0.20 kg sphere to 0.6 rad.
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(a) Initial configuration (b) Final configuration

(c) Position error. (d) Orientation error.

(e) Control torque including dither signal
(dither is shut off at 2.57 s when tolerance
is reached).

Figure 4.13: Demonstration 2: Rotation of 0.20 kg cube to 0.6 rad.
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(a) Initial configuration (b) Final configuration

(c) Position error. (d) Orientation error.

(e) Control torque including dither signal
(dither shut off at 3.74 s when tolerance is
reached).

Figure 4.14: Demonstration 3: Rotation of 0.09 kg sphere to 0.6 rad.
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(a) Initial configuration (b) Final configuration

(c) Position error. (d) Orientation error.

(e) Control torque including dither signal
(dither is shut off at 3.00 s when tolerance
is reached).

Figure 4.15: Demonstration 4: Translation of 0.20 kg sphere to 0.04 m.

Figure 4.12 shows the response of the system for the first demonstration, where

the spherical object of mass 0.20 kg is rotated. Figure 4.12d shows the orientation

error, which depicts the proposed controller rotating the object to rψ within the
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prescribed tolerance (depicted in gray). Figure 4.12c shows the position error

during this manipulation motion. The plot shows that the controller also maintains

object initial position, within tolerance, during the rotation maneuver. Figure

4.12e shows the applied control torque to achieve the manipulation command.

The plot shows the superposition of the proposed control with the dither signal

applied by all motors. Note that during the manipulation, static friction causes

minor halting behavior which is seen between t = 1s and t = 2.9s for e5. The

use of the dither signal mitigates this behavior by consistently vibrating each

joint. The results show that the proposed control is able to compensate for the

discrepancy between the nominal and actual object mass, and perform the desired

manipulation command.

Figure 4.13 shows the response of the system for the second demonstration. In

the second demonstration, the cube object is rotated with the same mass of 0.20

kg used in the first demonstration. Figure 4.13d shows that the controller is

able to rotate the cube to the desired rotation command. Figure 4.13c shows

that whilst rotating the object, the controller maintains the same initial position,

within tolerance. This shows that the same control from the first demonstration

is able to rotate an object of different shape to the desired reference.

Figure 4.14 shows the response of the system for the third demonstration, in

which a lighter spherical object (0.09 kg) is rotated to the same reference used in

the previous demonstrations. Figure 4.14d shows the orientation error converging

within the desired reference tolerances. Similarly, Figure 4.14c shows the position

error converging within the desired reference tolerances. This shows the ability of

the control to manipulate objects of different masses.

Figure 4.15 shows the final demonstration, in which the 0.20 kg spherical object is

translated. Figure 4.15c shows the position error as the robotic hand pushes the

object along the Z-direction to the reference of 0.04 m. Figure 4.15d shows that the

controller maintains the initial orientation of the object, within tolerance, during

the translation maneuver. Note in Figure 4.15e minor motor saturation occurs as

additional torque is required to act against gravity to move the object. This final

demonstration shows that the same control is capable of performing both rotation

and translation commands despite mass uncertainty and without re-tuning of the

controller gains.

The demonstrations highlight the robustness of the proposed controller in manip-

ulating objects of different mass and shape using only q, q̇ measurements. The
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results validate the stability analysis of Section 4.3 which considers uncertainties

in Mho, Cho, we, τe, G, and Jh, in addition to rolling effects.

Limitations of the proposed control result from practical implementations. The

semi-global guarantees are beneficial from the design perspective, but in practice

the robotic hand will not be able to reject external disturbances of all magnitudes

due to actuator constraints. The designer must choose appropriate hardware for

the desired task. Furthermore, effects such as sampling time and noise are ne-

glected in the proposed approach, and may contribute to performance degrada-

tion. Future work will consider actuator constraints and disturbances resulting

from sampling time and noise that arise from practical implementation.

4.5 Trajectory Tracking Control

The previous sections discussed the development of a novel set-point manipulation

control for tactile-based blind grasping. In this section, the proposed set-point

control is extended to consider trajectory tracking, while also relaxing Assumption

4.5 (i.e. constant disturbances) to consider bounded disturbances. The following

assumptions are made for the trajectory tracking control:

Assumption 4.8. The given hand has sufficient degrees of freedom such that

m = 3n, and there exists a compact set Dq ⊂ Rm such that q ∈ Dq and Dq does

not contain a singular hand configuration.

Assumption 4.9. The reference trajectory, r(t), is smooth and r, ṙ, r̈,
...
r are uni-

formly bounded.

Assumption 4.10. The disturbances, τe,we, are continuously differentiable and

bounded.

The proposed control law is defined by:

u = Ĵh
T
(

(P T Ĝ)†um + uf

)
(4.47)

um = M̂(r̈− η̂ −K1e−K2ė) (4.48)

where K1, K2 ∈ R6×6 are positive definite gain matrices, M̂ ∈ R6×6 is a constant,

positive-definite matrix, um ∈ R6 is the manipulation controller, and uf ∈ R3n



74 Chapter 4 Robust In-hand Manipulation

is the internal force controller. The term η̂ ∈ R6 is an estimate of the nonlinear

disturbances of the hand-object system, whose update law is defined by:

η̂ =
1

ε
(w + ė) (4.49)

ẇ = r̈− M̂−1um −
1

ε
(w + ė), w(0) = −ė(0) (4.50)

where ε ∈ R>0.

4.5.1 Stability Analysis

In the following analysis, the proposed control is proven to track the reference and

compensate for bounded disturbances that arise in tactile-based blind grasping.

Semi-global practical asymptotic stability of the hand-object system is achieved by

exploiting existing work in high gain observers and control of robot manipulators

[22, 70]. The derivation presented here follows similar steps to Section 4.3 except

extended to include additional dynamics related to trajectory tracking.

Equation 4.22 provides a relation between the object state velocity, ẋo, and task

state velocity ẋ by means of the mapping Ja = ∂x
∂q
J−1h GT . The following lemma

uses this relation to ensure boundedness of the hand-object states provided e is

bounded:

Lemma 4.18. Under Assumptions 4.2, 4.3, 4.6, 4.8, 4.9 and given a compact set

Γ ⊂ R12, there exists a compact set Dxo ⊂ R6 such that xo ∈ Dxo and there exists

v1, v2 ∈ R>0 such that q̇ and ẋo respectively satisfy:

||q̇|| ≤ v1, ∀(e, ė) ∈ Γ (4.51)

||ẋo|| ≤ v2, ∀(e, ė) ∈ Γ (4.52)

Proof. The existence of Dxo follows from Assumptions 4.1 and 4.3, where due to

the bounded q, and restriction of the contact to the fingertip surface, the object

pose must be bounded to within the hand workspace. By Assumptions 4.8, 4.2, and

4.6, Ja and ∂x
∂q

are invertible such that ẋo = J−1a ẋ and q̇ = ∂x
∂q

−1
ẋ. Substitution of

ẋ with ė + ṙ, and boundedness of ṙ from Assumption 4.9 completes the proof.

To derive the dynamics for x, (4.23) is substituted into (4.5), left multiplied by

J−Ta , and x = e + r is substituted for x. Note here ė 6≡ ẋ due to the changing
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reference. This results in the following system dynamics:

Maë + Caė = −Mar̈− Caṙ + J−Ta GJ−Th (u + τe) + J−Ta we (4.53)

where Ma and Ca are similarly defined as in Section 4.3, and re-stated here as:

Ma = J−Ta MhoJ
−1
a

Ca = J−Ta Mho
d

dt
[J−1a ] + J−Ta ChoJ

−1
a

Note due to the change of variables, Ma := Ma(e, r,q,xo) and Ca := Ca(e, ė, r, ṙ,

q, q̇,xo, ẋo). The same properties of Ma including positive definiteness and ulti-

mately boundedness from Lemma 4.8 hold here.

The proposed control (4.47) is then substituted into (4.53), where the approxi-

mate matrix inverses in (4.47) are multiplied out by their exact terms resulting in

residual disturbance terms. This substitution results in:

Maë +Caė = −Mar̈−Caṙ + um + J−Ta GJ−Th τe + J−Ta we +D1um +D2uf (4.54)

where D1 := D1(x,q,xo) ∈ R6×6, D2 := D2(x,q,xo) ∈ R6×3n represent the

residual matrices that arise from the approximations of Jh, G, and Ja multiplying

their respective inverses.

Let ψ ∈ R6 denote the cumulative disturbance including the Coriolis and centrifu-

gal terms:

ψ = −Ca(ė + ṙ) + J−Ta GJ−Th τe + J−Ta we +D1um +D2uf (4.55)

Furthermore, let η ∈ R6 denote the full system nonlinearities defined by:

η = M−1
a ψ + (M−1

a − M̂−1)um (4.56)

The system dynamics (4.54) is re-written using (4.55), (4.56), and (4.48)

ë = −K1e−K2ė + (η − η̂) (4.57)

Let y = η − η̂ denote the error between the nonlinear term η and the estimated

term η̂. Differentiation of (4.49) with substitutions from (4.50) and (4.57) results

in: ˙̂η = 1
ε
y. Differentiation of (4.56) is omitted for brevity, and results in :



76 Chapter 4 Robust In-hand Manipulation

η̇ = −1

ε
(M−1

a M̂ − I6×6)y + φ (4.58)

φ = M−1
a

(
Ṁa(K1e +K2ė− y)

− (M̂ −Ma)(
...
r +K2K1e−K1ė +K2K2ė +K2y) + ψ̇

)
(4.59)

Finally, the system dynamics for tactile-based blind grasping (4.53) is re-written

in the following singularly perturbed form by combining (4.57) with ẏ = 1
ε
y + η̇

and (4.58): [
ė

ë

]
= A

[
e

ė

]
+By (4.60a)

εẏ = −M−1
a M̂y + εφ (4.60b)

where A =

[
06×6 I6×6

−K1 −K2

]
and B =

[
06×6

I6×6

]
.

To address stability of the singularly perturbed system 4.60, each subsystem can

be addressed individually. Let Vr = ζTFζ be the Lyapunov function of the reduced

system (4.60a) where ζ = (e, ė), and F satisfies FA+ATF = −I6×6. Let Vbl = yTy

be the Lyapunov function for the boundary layer system (4.60b) for when (4.32)

holds.

The system dynamics (4.60) is similar in form to that of [22], except for the

disturbances in ψ that arise from tactile-based blind grasping and the dependence

of Ma on the hand and object states. The following lemma ensures boundedness

of φ:

Lemma 4.19. Under Assumptions 4.3, 4.4, 4.6-4.10, and given compact sets

Γ ⊂ R12, Dr ⊂ R24 there exists ν1, ν2 ∈ R>0 such that φ satisfies:

||φ|| ≤ ν1 + ν2||y||, ∀(e, ė) ∈ Γ,y ∈ R6, (r, ṙ, r̈,
...
r) ∈ Dr (4.61)

Proof. From Assumption 4.8 and Lemma 4.18, it follows that bounded (e, ė) im-

plies bounded states q,xo, q̇, ẋo. Thus with Assumptions 4.8, 4.4, 4.9, it follows

that Ṁa is a continuous function on a compact set. Thus from (4.59) all terms

apart from ψ̇ are either bounded or linear with respect to y. To investigate ψ̇, ψ
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is differentiated:

ψ̇ =
∂ψ

∂e
ė +

∂ψ

∂ė
ë +

∂ψ

∂r
ṙ +

∂ψ

∂ṙ
r̈ +

∂ψ

∂q
q̇ +

∂ψ

∂q̇
q̈

+
∂ψ

∂xo
ẋo +

∂ψ

∂ẋo
ẍo +

∂ψ

∂τe
τ̇e +

∂ψ

∂we

ẇe +
∂ψ

∂um
u̇m +

∂ψ

∂uf
u̇f (4.62)

From boundedness of e, ė,q,xo, q̇, ẋo and Assumptions 4.10, 4.9, and 4.7, all ∂ψ
∂·

are continuous functions over compact sets. With Assumptions 4.10, 4.9, 4.7,

it is clear that the terms in (4.62) apart from q̈, ẍo, u̇m, and ë are bounded.

Substitution of (4.24) and (4.23) in (4.62) replaces dependency of q̈ and ẍo with

ẍ = ë + r̈. Differentiation of um results in u̇m = M̂(
...
r − y

ε
−K1ė −K2ë), which

leaves only terms related to ë and y. Substitution of (4.60a) for all remaining

ë terms shows linear dependence on y with all remaining terms bounded, and

completes the proof.

The following theorem ensures semi-global practical asymptotic stability of the

proposed trajectory tracking control for tactile-based blind grasping:

Theorem 4.2. Under Assumptions 4.8, 4.3-4.4, 4.10, 4.6, 4.9, and 4.7 the system

(4.53) with control law (4.47), (4.48) is semi-globally practically asymptotically

stable with ultimate bound ν = ν1||FB||
a/ε−cν2

√
λmax(F )
λmin(F )

for a, c ∈ R where a, c ∈ (0, 1).

Proof. Assumptions 4.10, 4.9 with Lemmas 4.8 and 4.19 satisfy the conditions

from [22] such that semi-global practical stabilizability proof follows. The ultimate

bound is computed similar to [70].

The ultimate bound from Theorem 4.2 shows the trade-off between control and

performance, which aligns with intuition. Large control gains, K1, K2 and a

small ε improve the ultimate bound of the proposed control. However, larger

magnitudes of we, τe, ṙ, r̈, and
...
r (i.e. larger ν1), relate to an aggressive reference

trajectory/large disturbance with degraded performance.

4.6 Simulation Results (Trajectory Tracking Ma-

nipulation)

In this numerical simulation, the proposed control is used to track a trajectory,

while the robotic hand holds an object subject to an unknown weight, we =
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(0, 0,−5, 0, 0, 0). The reference trajectory is defined by r = (0, ry, rz, 0, 0, 0) +

x(0) where ry = 0.08 cos(2t) cos(t), rz = 0.08 cos(2t) sin(t), which defines a rose-

curve trajectory. The proposed tracking controller is compared to the set-point

manipulation control from Section 4.3. The purpose of this simulation is to first

illustrate the degradation in performance when a set-point manipulation control is

implemented to track a non-steady reference for object manipulation, and second

to demonstrate the efficacy of the proposed trajectory tracking control in tactile-

based blind grasping.

The simulation consists of Hand Model 1, a three-fingered hand with nine degrees

of freedom with two revolute joints located at each finger base and one revolute

joint connecting the two links of each finger. The links all share the same dimen-

sions and mass properties. The hand consists of hemispherical fingertips each in

contact with a rectangular prism object held by the hand. The simulations were

performed using Matlab’s ode45 integrator with a simulation time of 15 seconds,

and the internal force control (4.21) was used to define uf . The simulation param-

eters are listed in Table 4.3, and the initial grasp configuration is shown in Figure

4.16. The initial configuration of the hand is shown in Figure 4.16.

Figure 4.16: Initial grasp configuration for trajectory tracking simulation.

Figure 4.17 shows the position error with respect to time and a spatial represen-

tation of the manipulation motion. The plots show that a set-point manipulation

control is not suitable to arbitrarily track a changing reference as seen in the large

offset in position error.

Figure 4.18 shows the resulting tracking error as the proposed control tracks the

given reference trajectory for gain values of ε = 0.001, 0.0001. The plots show
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Table 4.3: Simulation Parameters

Link dimensions 0.05 m× 0.05 m× 0.3 m
Link mass 0.25 kg

Link moment of inertia diag([0.0019, 0.0001, 0.0019]) kgm2

Fingertip radius 0.06 m
Object dimensions 0.260 m× 0.660 m× 0.260 m

Object mass 0.51 kg
Object moment of inertia diag([0.0058, 0.0214, 0.0214]) kgm2

Initial po [0.200, 0.00, 0.410] m
Initial pa [−0.046, 0.00, 0.440] m

kf 10.0
K1 I6×6
K2 2.50 ∗ I6×6
M̂ 0.01 ∗ I6×6

(a) Position error trajectory in time. (b) Reference (black-dash) and object (red)
trajectories in space.

Figure 4.17: Set-point manipulation control from Section 4.3 (ε = 0.001) for
trajectory tracking results in large tracking error. In (B), the black dot indicates
the initial position of the reference trajectory, and the cyan dot indicates the
initial position of the object trajectory.

the the position error and orientation error converging to a bound about the

origin. Decreasing values of ε result in improved tracking performance as promised

from the practical asymptotic stability property. Note the initial displacement is

largely due to the unknown object weight, which is then compensated for by the

control. These plots show that the proposed control is able to track the error

whilst rejecting the unknown disturbance acting on the hand/object for arbitrary

tracking performance. The use of a feedforward r̈ provides improved performance

for trajectory tracking without requiring additional sensing modalities.
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(a) ε = 0.001 (b) ε = 0.001

(c) ε = 0.0001 (d) ε = 0.0001

(e) ε = 0.001 (f) ε = 0.0001

Figure 4.18: Tracking performance of the proposed control for ε = 0.001,
0.0001. The spatial representation of the reference (black-dash) and associated
state trajectories, pa, (red) are spacially shown in (E) and (F).
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The semi-global property of the controller ensures that, in theory, ε can be suf-

ficiently decreased to achieve a desired tracking error. In practice, the choice of

ε is dictated by noise sensitivities, which will incur a lower bound on ε. Also,

high-gain observers are subject to the peaking phenomenon if ε is too low. The

peaking phenomenon has been addressed by saturating the control to allow for

small ε values [70].

4.7 Summary

In this chapter, a robust in-hand manipulation control has been presented for

tactile-based blind grasping, and to address Research Aim 2.1. The proposed

control has been proven to compensate for model uncertainties and other distur-

bances that arise from tactile-based blind grasping. Relevant tuning guidelines

and extensions to other sensing modalities and disturbance compensators have

been presented. Numerical simulations and hardware results were presented to

demonstrate the efficacy of the proposed approach. The proposed control was

then extended to consider trajectory tracking and compensation for bounded dis-

turbances. Simulation results were also presented to demonstrate the efficacy of

the proposed control for tactile-based blind grasping.

The control presented here is dependent on the Assumptions 2.1-2.4 related to no

singular hand configurations, no slip, and no excessive rolling, which are commonly

used in related work. However, insofar there is no guarantee that such assumptions

hold. Methods to ensure these assumptions hold for tactile-based blind grasping

are presented in the following chapters.





Chapter 5

Robust In-hand Manipulation

with Slip Prevention

5.1 Introduction

Slip is a phenomenon that compromises the ability of a robotic hand to hold

an object. For certain grasps, such as the enveloping grasp where the entire

hand encompasses the object, slip is addressed by closing the hand further. This

approach is robust to slip because as the hand closes, more contact is created

between the hand and object, which increases the available friction to prevent

slipping motion.

In precision grasps, slip prevention is more complex. Precision grasps are those

in which the hand contacts the object only at the fingertips. By reducing the

amount of contact, there is more likelihood of slip occurring. The trade-off is

that precision grasps are not limited to restricting object motion, such as with the

enveloping grasp, but allow for object motion within the grasp that constitutes

in-hand manipulation.

As discussed in Chapter 2, ensuring no slip for static grasps has been addressed

when the exact hand-object model is known by means of grasp force optimization

[69, 92, 18]. The grasp force optimization technique has since been extended to

consider hand-object dynamics [86] and model uncertainties [41, 21] for in-hand

manipulation capabilities. However those existing methods exploit the discrete-

time nature of grasp force optimization. That is, they iteratively sample grasp

83
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measurements, solve the grasp force optimization for the given sample, and im-

plement the grasp force optimization solution at each sampling time. However no

approach investigates the effects of sample time on slip, nor ensure no slip in the

presence of such disturbances.

In continuing with the theme of this work, this chapter addresses slip preven-

tion for in-hand manipulation of tactile-based blind grasping. Tactile-based blind

grasping addresses a realistic scenario in which the robotic hand only has access

to proprioceptive and tactile sensors that can be integrated into the hand for use

in unstructured environments. In tactile-based blind grasping, the object model

is unknown, and object pose measurements are not available, which complicates

slip prevention. Furthermore, the issue of sampling time exacerbates this diffi-

culty when considering robotic hands in the real-world that may not have the

computational speed/resources as those in a laboratory setting.

This chapter extends the in-hand manipulation control presented in Chapter 4 to

consider slip prevention for tactile-based blind grasping. First, the control from

Chapter 4 is discretized to emulate how digital controllers are implemented in

hardware. Related analysis is presented to ensure stability of the hand-object sys-

tem despite discretization. Second, the effects of sampling time are investigated

and the discrete in-hand manipulation control is combined with a novel form of

grasp force optimization into the proposed control. The analysis guarantees that

the proposed control prevents slip despite disturbances from sampling time and

model uncertainties in tactile-based blind grasping. The proposed control is then

implemented in simulation and hardware to demonstrate the efficacy of the pro-

posed method and compare it to existing controllers.

This chapter is organized as follows. Section 5.2 presents the relevant background

for this chapter’s discussion and formally states the problem of ensuring no slip for

in-hand manipulation. Section 5.3 presents the proposed control law and related

stability analysis. Section 5.4 presents the numerical simulation and hardware

results of the two proposed controllers.

Notation

The index i is specifically used to index over the n contact points in the grasp. An

indexed vector vi ∈ Rp has an associated concatenated vector v ∈ Rpn. The index

k is used to indicate the sampling instant in time such that for a time-dependent
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variable v(t), vk := v(t = kTs) where Ts ∈ R>0 is the sampling time. The notation

vE indicates that the vector v is written with respect to a frame E , and if there is

no explicit frame defined, v is written with respect to the inertial frame, P . SO(3)

denotes the special orthogonal group of dimension 3. The operator (·)× denotes

the skew-symmetric matrix representation of the cross-product. The kernel or

null-space of a matrix, B, is denoted by Ker(B). The Moore-Penrose generalized

inverse of B is denoted B†. The n× n identity matrix is denoted In×n.

5.2 Background

In this section, the relevant system model and assumptions are presented. Research

Aim 2.2, robust in-hand manipulation that ensures no slip, is formally stated as

the problem to be addressed in this chapter.

5.2.1 Hand-Object System

Consider a fully-actuated, multi-fingered hand grasping a rigid, convex object at

n contact points. The grasp consists of one contact point per finger with smooth,

convex fingertips of high stiffness that each apply a contact force, fci ∈ R3, on the

object. Let the hand configuration be defined by the joint angles, q ∈ Rm. Let the

inertial frame, P , be fixed on the palm of the hand, and a fingertip base frame, Fi,
fixed at the point pfi ∈ R3. The contact frame, Ci, is located at the contact point,

pci ∈ R3. The position vector from Fi to Ci is pfci ∈ R3. The position vector from

Fi to an arbitrary point fixed on the fingertip is denoted pfti ∈ R3. Without loss

of generality, pfti is fixed at the center of the fingertip. The inertial position of

this fixed point is pti(q) = pfi(q) + pfti . A visual representation of the contact

geometry for the ith finger is shown in Figure 5.1.

Let O be a reference frame fixed at the object center of mass po ∈ R3, and

Rpo ∈ SO(3) is the rotation matrix, which maps from O to P . The object pose

is defined by xo ∈ R6. The position vector from the object center of mass to the

respective contact point is poci ∈ R3.

To ensure slip does not occur, each contact force must remain inside the friction

cone defined by [69]:

Fci = {fCici ∈ R3 : fniµ ≥
√
f 2
xi

+ f 2
yi
} (5.1)
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Figure 5.1: A visual representation of the contact geometry for contact i.

where fCici = (fxi , fyi , fni) is the contact force at i written in frame Ci with tangential

force components fxi , fyi ∈ R and normal force component fni ∈ R, and µ ∈ R>0

is the friction coefficient. The full friction cone is the Cartesian product of all the

friction cones: Fc = Fc1 × ...× Fcn .

The hand-object dynamics are respectively defined as [91]:

Mhq̈ + Chq̇ = −JTh fc + τe + u (5.2)

Moẍo + Coẋo = Gfc + we (5.3)

where Mh := Mh(q) ∈ Rm×m,Mo := Mo(xo) ∈ R6×6 are the respective hand and

object inertia matrices, Ch := Ch(q, q̇) ∈ Rm×m, Co := Co(xo, ẋo) ∈ R6×6 are the

respective hand and object Coriolis and centrifugal matrices, τe := τe(t,q, q̇) ∈ Rm

is the sum of all dissipative and non-dissipative disturbance torques acting on the

joints, we := we(t) ∈ R6 is an external wrench disturbing the object, and u ∈ Rm

is the joint torque control input for a fully actuated hand. The disturbance,

τe, contains the disturbance torque caused by gravity, which is denoted by g :=

g(q,ng) ∈ Rm, where ng ∈ R3 is the unit vector oriented in the direction of

gravity with respect to P . The grasp map, G := G(poc) ∈ R6×3n maps the

contact force, fc, to the net wrench acting on the object. The hand Jacobian,

Jh := Jh(q,pfc) ∈ R3n×m, relates the motion of the hand and velocity of the

contact points.

The following assumptions are made for the grasp:

Assumption 5.1. The given hand has sufficient degrees of freedom such that

m = 3n, and never reaches a singular configuration.
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Assumption 5.2. The given multi-fingered grasp has n > 2 non-collinear contact

points.

Assumption 5.3. The hand is equipped with sensors that provide measurements

of the joint angles, q, contact locations pfc, and the gravity direction vector ng.

Assumption 5.4. The intersection of Ker(G) and Fc is never empty, and fc(0) ∈
Fc.

Assumption 5.5. The fingertip and object surfaces at the contact points are lo-

cally smooth, and the contact point does not reach the edge of the fingertip surface.

Remark 5.1. Assumption 5.1 ensures Jh is square and invertible, which is a com-

mon assumption in related work [21, 68, 123], and can be relaxed by considering

internal motion of the dynamics [91]. Assumption 5.2 ensures G is always full rank

[31]. Assumption 5.4 ensures that under the given grasp, the hand is capable of

holding the object, and that the object is not slipping initially. Assumptions 5.2

and 5.4 can be satisfied by existing grasp formation planners [55].

Many existing solutions assume the disturbances τe,we to be zero, or exactly

known so as to simply be canceled out [31, 68, 21]. Here that assumption is

relaxed by allowing for unknown disturbances that are constant at the origin:

Assumption 5.6. The disturbances, τe,we, are continuously differentiable, bounded,

and satisfy: (ẋo, q̇) ≡ 0 =⇒ τ̇e, ẇe = 0.

Common disturbances that satisfy Assumption 5.6 include gravity acting on both

the hand and object, and viscous friction acting on the joints [110].

5.2.2 Task Frame Definition

Conventionally, a manipulation task is described by the translation/rotation of a

coordinate frame fixed to the object center of mass [31]. However in tactile-based

blind grasping, the object center of mass is unknown and so a task frame must be

defined with respect to the available on-board sensors. Let A be the task frame

located at the point pa ∈ R3 with respect to P . Let Rpa ∈ SO(3) be the rotation

matrix mapping from frame A to P . Let ωa ∈ R3 denote the angular velocity of

frame A with respect to P . The task frame state x ∈ R6 is defined by the position

pa and orientation of the task frame.
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The lack of object information in tactile-based blind grasping limits the definition

of A to the on-board sensors available to the hand. As in Chapter 4, the virtual

frame presented in [123, 116] is used to define this task frame for tactile-based

blind grasping. This task frame is re-defined as follows:

pa(q) =
1

n

n∑
i=0

pti(qi) (5.4)

Rpa(q) = [ρx, ρy, ρz] (5.5)

where ρx = ρy × ρz, ρy =
pt1−pt2
||pt1−pt2 ||2

, ρz =
(pt3−pt1 )×(pt2−pt1 )
||(pt3−pt1 )×(pt2−pt1 )||2

[68, 123, 25].

For practical considerations, a local parameterization of SO(3) is used to define

a notion of orientation error by defining γa ∈ R3, such that Rpa = Rpa(γa) [31].

The task state is thus x = (pa, γa). To incorporate this local parameterization

in the kinematics, let S(γa) ∈ R3×3 denote the one-to-one mapping defined by

ωa = S(γa)γ̇a. The matrix S(γa) is absorbed into P (x) = diag(I3×3, S(γa)) such

that

[
ṗa

ωa

]
= P (x)ẋ. For notation, P will be used to denote P (x). A local

parameterization of Rpa is then used to define γa, one example of which is:

γa(q) =

 arctan(−ρz2/ρz3)√
1− ρ2z1

arctan(−ρy1/ρx1)

 (5.6)

It is inherently assumed that this local parameterization is appropriately defined

such that γa does not pass through a singular configuration. Finally, let ∂x
∂q
∈ R6×3n

denote the Jacobian of the task frame that maps q̇ to ẋ. The following assumption

is used in related work [123, 116]:

Assumption 5.7. The function x(q) is continuously differentiable, and ∂x
∂q

is full

rank.

5.2.3 Control Objective

Let r ∈ R6 be the reference command that defines the desired pose of the task

frame A, and let e = x − r define the error state. This chapter focuses on set-

point manipulation such that the reference is piece-wise constant and ṙ, r̈ ≡ 0. For

object manipulation, the goal is to translate/rotate A to the reference such that

(e, ė)→ 0.
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There exists an approach in control theory, known as emulation, that formally

addresses the issue of discretization of a continuous time controller [74]. The

related stability property addressed in emulation is that of semi-global practical

asymptotic stability, in which the sampling time, Ts, is the tuning parameter:

Definition 5.2. (Semi-global practical asymptotic stability) The system (5.2),

(5.3) with state ζ = (e, ė) is semi-globally practically asymptotically stable if

there exists β ∈ KL such that for any ∆, ν ∈ R>0 there exists T ∗s ∈ R>0 such that

for all Ts ∈ (0, T ∗s ) the following holds:

||ζ(t)|| ≤ β(||ζ(0)||, t) + ν, ∀||ζ(0)|| < ∆ (5.7)

Semi-global practical asymptotic stability refers to a system in which the states

asymptotically converge to a bound about the origin. The application in robotic

manipulation is that the sampling time, Ts, is related to the region of attraction

and ultimate bound of the states. Thus as the sampling time decreases (i.e. is

“fast enough”), the system asymptotically converges to a smaller bound about the

origin (i.e. the hand manipulates the object closer to the desired reference). This

is aligned with the conventional assumption that the sampling time is sufficiently

small, but addressed in a formal manner with proper stability guarantees. The

control problem is defined as follows:

Problem 5.1. Suppose Assumptions 5.1-5.6 hold. Determine a discrete-time

control law that is semi-globally practically asymptotically stable with respect to

(e, ė) = 0, and satisfies the no slip condition:

fC(t) ∈ Fc, ∀t > 0 (5.8)

5.3 Discrete-Time Slip Prevention Control

In this section, a discrete-time manipulation controller is presented to address

Problem 5.1. This discrete-time controller is an extension of the robust in-hand

manipulation control from Chapter 4. The analysis presented here investigates the

effect of sampling time and uncertain dynamics with respect to slip. The proposed

control is then shown to compensate for sampling time and model uncertainties

to guarantee slip prevention. Semi-global practical asymptotic stability is also

guaranteed for the hand-object system with respect to a desired reference pose.
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5.3.1 Discrete Control

The proposed control law is derived by using emulation to combine the continuous

time robust control law from Chapter 4 with grasp force optimization. The robust

control law framework from Chapter 4 provides semi-global asymptotic/exponen-

tial stability about (e, ė) = 0, while compensating for uncertainties in object center

of mass, object mass, external wrenches, contact locations, and hand kinematics.

That control law is re-introduced as:

u = ĴTh

(
(P T Ĝ)†um + uf

)
+ ĝ (5.9)

um = −Kpe−Ki

∫ t

0

e dt−Kdė (5.10)

where Ĵh ∈ R3n×m is an estimate of the hand Jacobian, ĝ ∈ Rm is an estimate

of the gravity torques acting on the hand, Kp, Ki, Kd ∈ R6×6 are the respective

proportional, integral, and derivative positive-definite gain matrices, and Ĝ is an

approximation of the grasp map, independent of the object center of mass, defined

by:

Ĝ =

[
I3×3, ..., I3×3

(pc1 − pa)×, ..., (pcn − pa)×

]
(5.11)

The manipulation control term, um ∈ R6, determines the forces the hand must

apply to manipulate the object to the reference, while rejecting disturbances from

external wrenches and the uncertainties of the grasp. The internal force control

term, uf ∈ R3n, determines how the hand squeezes the object to prevent slip

during manipulation. The following assumptions are used for uf from Chapter 4

and will be relaxed in Section 5.3.2:

Assumption 5.8. The internal force control satisfies:

(ẋ, ẍ) = 0 =⇒ u̇f = 0 (5.12)

Assumption 5.9. The no slip condition (5.8) is satisfied.

It is important to note that it is not assumed that ĝ exactly cancels out the gravity

disturbance, nor is gravity the only external disturbance acting on the hand-object.



Chapter 5 Robust In-hand Manipulation with Slip Prevention 91

In following the emulation technique, a zero-order hold is applied to (5.9), (5.10)

to derive the following discrete-time controller with a sampling time of Ts:

uk = ĴThk

(
(P T

k Ĝk)
†umk + ufk

)
+ ĝk (5.13)

The Euler method is used to discretize um:

umk = −Kpek −KiTs

k∑
j=0

ej −Kdėk (5.14)

Remark 5.3. A common internal force controller used in the related literature is

based on the centroid position of the contacts:

ufk = Kf (pak − pc1k ,pak − pc2k , ...,pak − pcnk ) (5.15)

where Kf ∈ R>0 is a squeezing gain term [68]. Note that (5.15) does not guarantee

the object will not slip.

The following theorem uses existing emulation results to ensure semi-global prac-

tical asymptotic stability of the emulated controller (5.13), (5.14). Before stating

the theorem, it is important to discuss the Moore-Penrose inverse used in (5.9).

This generalized inverse is commonly used in conventional manipulation literature,

and it is well known that this inverse can be represented as a quadratic program:

u = ĴTh

(
z∗ + uf

)
+ ĝ (5.16)

z∗ = argmin
z

zTz

s.t. P T Ĝz = um

(5.17)

where z ∈ R3n is the decision variable of the quadratic program. Thus the discrete-

time control can be equivalently written as:

uk = ĴThk

(
z∗k + ufk

)
+ ĝk (5.18)
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z∗k = argmin
z

zTz

s.t. P T
k Ĝkz = umk

(5.19)

Thus the control (5.13) is dependent on solving a quadratic program at each

sampling time. The benefit of quadratic programs is that, in the continuous case,

the argument is continuously differentiable under the following conditions [90, 43]:

Property 5.1. (Linear Independence Constraint Qualification) Consider the stan-

dard quadratic program:

z∗ = argmin
z

zTQz

s.t. Az ≥ b
(5.20)

where Q is a symmetric, positive definite matrix. The quadratic program 5.20

satisfies the linear independent constraint qualification if the active constraints

have full row rank.

Property 5.2. (Strict Complimentary Slackness) Consider the standard quadratic

program 5.20. Let λ∗ ∈ Rm denote the Lagrange multiplier associated with z∗.

Strict complimentary slackness is satisfied if there does not exist any j such that

both λ∗j = 0 and Ajz
∗
j = 0. (Aj refers to the jth row of A).

Continuous differentiability of the control allows for emulation techniques to ensure

semi-global practical asymptotic stability of the system [74]. Now the following

theorem can be stated to ensure semi-global practical asymptotic stability of the

discrete-time control:

Theorem 5.4. Suppose Assumptions 5.1-5.9 hold and (5.17) satisfies Property

5.2. Then the system (5.2), (5.3) with control law (5.13), (5.14) is semi-globally

practically asymptotically stable.

Proof. The system (5.2), (5.3) under Assumption 5.9 takes the form of the hand-

object system as defined in Chapter 4. Assumptions 5.5 and 5.6 ensure the hand-

object dynamics are continuously differentiable.

From Assumptions 5.1-5.9, the conditions for semi-global asymptotic stability of

(5.2), (5.3) with control (5.9), (5.10) from Chapter 4 follow. The semi-global
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asymptotic stability of the continuous-time system satisfies the (V − w) dissipa-

tivity property of [74].

Now, the one-step weak consistency property from [74] must hold. Regarding the

um component, one-step weak consistency is guaranteed due to the use of the

Euler approximate model in (5.14).

Finally, the continuous time control u from (5.9), (5.10) must be locally Lipschitz

continuous. The control (5.9), (5.10) is equivalent to the quadratic program for-

mulation (5.16), (5.17) [95]. From Assumption 5.2, Ĝ and thus P T Ĝ is full rank

such that the active constraint set of (5.17) satisfies Property 5.1. By satisfaction

of Properties 5.2 and 5.1, it follows from Theorem 1 of [90] that the continuous-

time control u defined by (5.16), (5.17) is continuously differentiable. Thus the

local Lipschitz continuity of the continuous time control is satisfied.

The conditions of Theorem 3.1 (V-w dissipativity and one-step weak consistency)

of [74] are satisfied such that Property P1 as defined by [74] holds. Semi-global

practical asymptotic stability with respect to the sampling time T ∗s follows from

Corollary 5.1 of [74].

5.3.2 Grasp Force Optimization and Relaxation of No Slip

Assumption

The control law (5.13), (5.14) provides the desired stability guarantees, but re-

quires the no slip assumption. Assumption 5.9 is relaxed here by replacing the

generalized inverse and internal force controller from (5.13) with a grasp force

optimization that is solved in-the-loop. To ensure slip does not occur, the opti-

mization requires the direction normal to each contact point, and the assumption

that the control is given a conservative estimate of µ:

Assumption 5.10. There exists a lower bound, µ̂ ∈ R>0, on the friction coeffi-

cient, µ, with associated friction cone F̂c.

Tactile sensors are used to determine the contact normal direction by using knowl-

edge of the fingertip geometry along with the measured contact location from As-

sumption 5.3. The contact frame, Ci, is then defined by aligning one axis with the

normal direction as depicted in Figure 5.1. The associated mapping Rpci ∈ SO(3)

rotates between contact and inertial frames. The term Rpc : fCc 7→ fPc is constructed

by combining each Rpci into a block diagonal matrix.
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The proposed grasp force optimization is setup as a quadratic program with deci-

sion variables z ∈ R3n. The decision variables represent the desired contact forces

written with respect to the contact frames, Ci. The cost function of the quadratic

program is zTQkz, where Qk := Q(qk,pfck) ∈ R3n×3n is a positive-definite, sym-

metric matrix. There exist numerous options for the cost function such as to min-

imize the internal forces: Qk = I3n×3n or actuator torques: Qk = RT
pck
JhkJ

T
hk
Rpck

[92].

The constraints in the proposed optimization are used to ensure the contact forces

manipulate the object, reside in the friction cone, and do not result in torques

that saturate the motors. The manipulation constraint enforces the manipulation

control term, umk , and is defined as:

P T
k ĜkRpckz = umk (5.21)

The friction cone constraint ensures the object does not slip. In the conventional

grasp force optimization approach, the friction cone, F̂c, is linearized by using

an inscribed ls-faced polyhedral. The linearization results in a matrix Λ(µ̂′) ∈
Rls×3n, with a linearized friction coefficient, µ̂′ ∈ R>0, where µ̂′ < µ̂ ≤ µ [69].

Under Assumption 5.10, it is well known that due to the conservativeness of the

linearization, the following condition is true:

Λ(µ̂′)RT
pcfc � 0 =⇒ fCc ∈ Fc (5.22)

For a static grasp, the constraint:

Λ(µ̂′)z � 0 (5.23)

guarantees (5.8) is satisfed [69, 92].

Unfortunately, (5.23) ignores the dynamics of the hand-object system, as well as

sampling time effects, that may lead to violations of the friction condition. One

potential violation is related to the effect of rolling coupled with sampling time

and fingertip curvature. At time t = kTs, the controller outputs a torque so that

the hand applies a desired contact force on the object. During the time between

t = kTs and the next sampling time t = (k + 1)Ts, the fingertips may roll over

the object, which rotates the contact normal direction. If the sampling time or

fingertip curvature is too large compared to the system dynamics, the contact point

may roll sufficiently far such that the constraint (5.23) enforced at t = kTs causes
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the contact force to leave the friction cone between t = kT and t = (k + 1)Ts.

This phenomenon is depicted in Figure 5.2, with hemispherical fingertips as an

example.

(a) t = kTs (b) t = (k + 1)Ts

Figure 5.2: The rolling of the contact plane over the fingertips between sam-
pling times. The contact force applied at t = kTs leaves friction cone between
t = kTs and t = (k + 1)Ts.

To deal with this phenomenon, consider the maximum distance the contacts may

roll between sampling times. The term α ∈ R is used to denote the angle between

the contact point pfcik and maximum rolling distance as shown in Figure 5.3. Let

S denote the intersection of the cone defined by α and the fingertip surface. Thus

between any sampling time, the farthest the contact location may move is up to

the perimeter of S. In order to satisfy all friction cones that may be encountered

during the sampling period, the contact force must reside inside the intersection

of all the friction cones on the perimeter of S. The intersection of all the cones

forms a new friction cone defined by the effective friction coefficient, µ̃ ∈ R>0,

where µ̃ ≤ µ̂ ≤ µ.

Figure 5.3: The new effective friction cone, depicted as the gray region, is the
intersection of all the fricion cones along the perimeter of S.
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It is important to note that this issue of rolling between sampling times effectively

shrinks the friction coefficient, which is equivalent to dealing with contact uncer-

tainties in a static setting [45]. This new effective friction coefficient, µ̃, can be

derived as in [45] using α and knowledge of the fingertip geometry at the con-

tact point pfcik . For hemispherical fingertips, the computation is straightforward:

µ̃ = tan(tan−1(µ̂) − α). However the following assumption is necessary to ensure

the effective friction cone exists:

Assumption 5.11. The intersection of the friction cones about the perimeter of

S is non-empty.

This effective friction coefficient provides robustness to rolling, but does not handle

the effect of dynamics between sampling times. In the worst case scenario, the

dynamics affect the contact force in either a purely tangential or purely normal

manner. An example of this is when a force disturbance acts completely tangential

to a fingertip surface, and causes the object to slip.

To prevent slip, the new friction cone constraint is:

Λ(µ̃′)z � ε (5.24)

where ε ∈ R>0 is a tuning parameter, and µ̃′ is the linearized form of the friction

coefficient µ̃, such that µ̃′ < µ̃ ≤ µ̂ ≤ µ.

Finally, to prevent motor saturation, the commanded torque must be bounded

between the maximum and minimum actuator torque values, τmax, τmin ∈ Rm,

respectively. This actuator constraint is:

τmin < ĴThkRpckz + ĝk < τmax (5.25)

The proposed control law with grasp force optimization is formally defined by:

uk = ĴThkRpckz
∗
k + ĝk (5.26)
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z∗k = argmin
z

zTQkz

s.t. P T
k ĜkRpckz = umk

Λ(µ̃′)z � ε

τmin < ĴThkRpckz + ĝk < τmax

(5.27)

For completeness, the continuous time version of (5.26), (5.27) is stated as:

u = ĴTh Rpcz
∗ + ĝ (5.28)

z∗ = argmin
z

zTQz

s.t. P T ĜRpcz = um

Λ(µ̃′)z � ε

τmin < ĴTh Rpcz + ĝ < τmax

(5.29)

The following theorem ensures slip prevention and semi-global asymptotic stability

of the hand-object system:

Theorem 5.5. Suppose Assumptions 5.1-5.7, 5.10, and 5.11 hold, and (5.29)

satisfies Properties 5.2 and 5.1. The system (5.2), (5.3) with control law (5.26),

(5.27), (5.14) is semi-globally practically asymptotically stable, and (5.8) is satis-

fied.

Proof. First, it must be shown that slip does not occur between sampling times.

The first step involves solving for fc in (5.2):

fc = J−Th

(
−Mhq̈− Chq̇ + uk + τe

)
(5.30)

Equation (5.26) is substituted into (5.30) and pre-multiplied by Λ(µ̃′)RT
pc. Using

Assumption 5.10, (5.22) can be re-written as:

Λ(µ̃′)RT
pcJ
−T
h

(
−Mhq̈− Chq̇ + ĴThkRpckz

∗
k + τe − ĝk

)
� 0 (5.31)
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Solving for z∗k results in:

Λ(µ̃′)RT
pcJ
−T
h ĴThkRpckz

∗
k � Λ(µ̃′)RT

pcJ
−T
h

(
Mhq̈ + Chq̇− τe + ĝk

)
(5.32)

Consequently, if the proposed control satisfies (5.32), then (5.8) follows. This may

be achieved by establishing existence of a bound on the right hand side of (5.32),

and that the left-hand side vector elements satisfy this bound.

It is clear that Λ(µ̃′) and RT
pc are bounded terms. Assumption 5.1 ensures that

J−Th is bounded, and it is well known that there exists a uniform bound for Mh

and Ch [113]. From Assumptions 5.5 and 5.6, the dynamics are smooth and so

there exists a bound on q̈, q̇ between sampling times. Further, the disturbance τe

and the gravity compensation ĝk, are bounded from Assumption 5.6. Thus the

right hand side of (5.32) can be conservatively bounded by ε′ ∈ R>0:

ε′ � Λ(µ̃′)RT
pcJ
−T
h

(
Mhq̈ + Chq̇− τe + ĝk

)
(5.33)

Now, that the left-hand side of (5.32) must be shown to be always greater than ε′.

Let Bk = JThkRpck , B = JTh Rpc and Bδ = B − Bk, such that the left-hand side of

(5.32), can be written as: Λ(µ̃′)
(
I3n×3n−B−1Bδ

)
z∗k. Given any δ ∈ R>0, from the

boundedness and smoothness of Jh, Rpc and (5.25), there exists a sampling time,

T ∗1 ∈ R>0, such that for all Ts ∈ (0, T ∗1 ), ||B−1Bδ||||Λ(µ̃′)||||z∗k|| ≤ δ.

By choosing εk > δ+ ε′, and use of the triangle inequality, it is straightforward to

satisfy (5.32). Finally, by Assumption 5.11, the use of µ̃′ ensures that the contact

force remains in the friction cone between sampling times. The same analysis

applies to each subsequent time step up to some maximum N . Now by choosing

ε ≥ max{εk : k ∈ (0, N)}, it follows that fCc ∈ FC ∀t ∈ (0, NTs).

By constraint (5.21), the proposed control outputs the same manipulation control

as (5.13). Consequently, from the same analysis as Theorem 5.4 and by choosing

N sufficiently large, (e, ė) will converge to a ball about the origin for t ∈ (0, NTs).

Thus it is straightforward to show that q̈, q̇ are bounded in closed loop under the

proposed control as N →∞ and there exists ε = max{εk : k > 0} such that semi-

global practical asymptotic stability and (5.8) holds. Note that the maximum

allowable sampling time, T ∗s ∈ R>0 of the system such that semi-global practical

asymptotic stability and (5.8) holds is: T ∗s = min{T ∗1 , T ∗2 }, where T ∗2 ∈ R>0 is

the maximum allowable sampling time from the semi-global practical stability

condition from Theorem 5.4.
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Remark 5.6. Theorem 5.5 proves that the proposed control is robust to uncertain-

ties from Ĵh, ĝ, Ĝ, and assumes no knowledge of the object center of mass, object

mass, or any other external wrenches acting on the hand-object. The original

control from Chapter 4, and thus (5.13), (5.14) is also robust to contact location

uncertainty. Contact location uncertainties cause an error in the Rpck term of the

proposed control, however robustness to these uncertainties can be attained by

using a more conservative friction coefficient in (5.27) [45].

Remark 5.7. The proposed control uses only joint angle and contact location feed-

back to robustly manipulate the object. One limitation of this is that the motion

of the task frame defined by (5.4) does not exactly coincide with object motion

due to the effects of rolling. This is a common problem in related work [123, 68].

However if vision sensors are available, the proposed control and stability guaran-

tees can be readily extended to incorporate vision feedback as discussed in Section

4.3.4 of Chapter 4.

5.3.3 Effects of Conservativeness on the Proposed Control

The proof of Theorem 5.5 is dependent on the constraint (5.24). The proof uses ε

as a bound on the hand-object dynamics to prevent slip. However it is not clear

what intuitively this bound does, or what insight can be drawn from the constraint

(5.24). Figure 5.4 depicts the friction cone with respect to the constraint (5.24).

Figure 5.4: Effect of ε and µ̃′ on the friction cone.

As shown in Figure 5.4, the effective friction cone is narrower than the original

friction cone and translated up with respect to the normal force axes. The conser-

vative µ̃′ contributes to the narrow friction cone. The translation of the friction
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cone is the result of the constraint (5.24) which imposes a lower bound of ε/µ̃′ on

the normal force. This relation implies that increasing the bound on ε and/or de-

creasing µ̃′ increases the minimal normal force applied on the object. This relation

agrees with intuition in that if the magnitude of hand-object dynamics increases,

more squeezing force is required to prevent slip.

From an implementation perspective, Figure 5.4 shows the effect of conservative-

ness for the proposed approach. A more conservative control (i.e. larger ε, smaller

µ̃′) will require larger contact forces. If the controller is too conservative, the re-

quired torques may exceed the actuator constraint (5.25), and impede the ability

of the proposed approach to manipulate objects. Thus for practical consideration,

although an exact friction coefficient is not required, it is advantageous to design

the controller based on a set of anticipated objects to grasp. For example, humans

typically don’t have to manipulate ice cubes, but pencils, forks, and screwdrivers

are reasonable objects to grasp for everyday activities. Thus an a priori friction

coefficient can be determined based on the expected friction conditions of these

graspable objects. Again, a more conservative friction coefficient can still be used,

but the trade-off, as discussed previously, is that more force/actuation is required

to grasp the object.

Regarding Remark 5.6 and the insight provided by Figure 5.4, conservativeness in

ε and µ̃′ is not always advantageous. However, the sampling time analysis from

Figure 5.3 provides another useful insight for manipulation. When the designer is

developing the robotic hand for manipulation purposes, the radius of the finger-

tip is a key design parameter that should be tuned based on available hardware

resources. This is discussed as follows:

An important aspect is the relation of the fingertip radius to the contact location

error and sampling time. For clarity, consider a hemispherical fingertip of radius

ρ ∈ R>0. A radius of ρ = 0 corresponds to a pin that has infinite radius of

curvature, and a radius of ρ =∞ corresponds to a flat fingertip. For a flat fingertip,

the normal contact direction is the same for all contact points, and thus a flat

fingertip is robust to contact location error. Thus if contact measurement errors

are large, or if no contact measurements are available, the proposed control can be

implemented on flat fingertips with the same stability guarantees from Theorem

5.5 without the additional conservativenes discussed in Remark 5.6. Furthermore,

Assumption 5.11 always holds. The trade-off of flat fingertips is the reduced

fingertip workspace and limited range of objects to manipulate. For example,

flat fingertips will not be able to manipulate flat objects (ρ = ∞) because any
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manipulation motion will cause the contact points to roll onto the edge of the

fingertip, which violates Assumption 5.5. Similarly, objects with large radii may

quickly approach the fingertip edge, which limits how far the robotic hand can

manipulate the object.

In comparison to flat fingertips, pin-like fingertips require sufficiently high sam-

pling time and contact location accuracy. This follows intuition in that a small

change in contact point results in large change of contact normal direction. The

benefit of pin-like fingertips is the large amount of manipulation workspace avail-

able. Thus there exists a trade-off between robustness and performance in terms

of sampling time and sensor resolution with fingertip radius. Future work will in-

vestigate the relationship between these design parameters for a more systematic

design methodology.

5.4 Simulation and Hardware Results

In this section, the proposed controllers are implemented in numerical simulation

and hardware.

5.4.1 Numerical Simulation

The simulations compare the proposed control, (5.26), (5.27), (5.14) with the

conventional-centroid controller (5.13), (5.14),(5.15), and the conventional grasp

force optimization control (5.26), (5.27), (5.14) with ε ≡ 0, which is denoted the

conventional-gfo approach. The setup of the simulation is depicted in Figure 5.5,

in which the Allegro Hand is grasping a rectangular prism object. A step external

force is applied about the object center of mass at t = 0.0s, which are both un-

known to the controllers. The manipulation controller is commanded to maintain

the initial position and orientation such that r = x(0). The simulation parame-

ters are listed in Table 5.1, and the parameters associated with the Allegro Hand

can be found at http://www.simlab.co.kr/Allegro-Hand.htm. Without loss of

generality, a 10x scaled model of the Allegro Hand is used for the simulations.

The simulations were performed using Matlab’s ode45 integrator, with a simulation

time of 15 seconds, and sampling time of Ts = 0.003 s. The gains, Kp, Ki, Kd in Ta-

ble 5.1 were determined as in Chapter 4. The cost function of Qk = RT
pck
JhkJ

T
hk
Rpck

http://www.simlab.co.kr/Allegro-Hand.htm


102 Chapter 5 Robust In-hand Manipulation with Slip Prevention

(a) (b)

Figure 5.5: Simulation setup.

Table 5.1: Simulation Parameters

Object dimensions 2.0 m× 0.33 m× 0.33 m
Object mass 0.05 kg

Object moment of inertia diag([0.0009, 0.0171, 0.0171])× 10−3kgm2

Friction coefficient µ, µ̂, µ̃ = 0.9, µ̃′ = 0.64
Initial po (−0.263, 0.041, 0.973) m
Initial pa (0.224, 0.107, 1.012)m
Initial γa (−0.114, 0.0,−0.565)rad

τe −.001 ∗ Im×mq̇ Nm
we (0, 0,−1, 0, 0, 0) N
Kp 10.02 ∗ I6×6
Ki 4.00 ∗ I6×6
Kd 4.05 ∗ I6×6
Kf 10.0

was used to minimize the actuator torques, which by Assumption 5.1, is guaran-

teed to be positive-definite. The value of Kf was determined empirically. The

friction cone was linearized using a 4-sided pyramid such that µ̃′ =
√
2
2
µ̃ [92].

Figure 5.6 shows the position and orientation error of the system as the proposed

control compensates for the external wrench applied on the object. The plots show

the error converging to the origin, which is inline with the stability guaranteed by

the proposed control. It is important to note that the error trajectory of both

the proposed and conventional controllers are identical, as expected, due to the

constraint (5.21) enforced in (5.27).

Figure 5.7 shows the “required” friction for both the conventional controllers and



Chapter 5 Robust In-hand Manipulation with Slip Prevention 103

(a) Position error. (b) Orientation error.

Figure 5.6: Error trajectory of proposed controller.

(a) Conventional-Centroid

(b) Conventional-GFO (c) Proposed, ε = 0.3

Figure 5.7: Required friction of conventional vs proposed controllers. The
dashed line indicates the friction coefficient, µ.
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proposed control. The required friction, βi =
√
f 2
xi

+ f 2
yi
/fni , is the ratio of tan-

gential to normal forces, and represents the friction needed so that the object does

not slip. The dashed black line visually shows the true friction coefficient, µ, such

that if any required friction curve exceeds µ, the object slips. Note that the simula-

tions are not stopped if slip occurs. Figure 5.7 shows that the conventional-centroid

control exceeds the allowable friction as the disturbance acts on the system. This

is not merely due to an improper choice of Kf , but because the direction of the

centroid is outside of the friction cone for contacts 1 and 2. Thus any scaling of the

internal force control still causes slip, and so the conventional-centroid control is

unable to grasp the object at all. Figure 5.7b shows that the conventional-gfo con-

troller slips as the step disturbance acts on the system, and also between t = 0.29s

and t = 2.61s as the manipulation controller drives the error to zero. Figure 5.7c

shows that the proposed control can both manipulate the object and reject uncer-

tain disturbances, while still ensuring the friction condition is not violated. These

results motivate the analysis from Theorem 5.5 that defines a minimum bound

on ε to guarantee no slip despite the effects of dynamics and sampling time. Re-

lated work that neglect these effects may be subject to slipping in such situations

[45, 21, 41].

5.4.2 Hardware Results

In the hardware results, the Allegro Hand is used to manipulate two objects to

desired reference positions and orientations by means of the conventional-centroid

control (5.13), (5.14), (5.15), and the proposed control (5.26), (5.27), (5.14). The

two objects are a 51 gram, spherically-shaped thermos lid, and a 129 gram, flat-

surfaced glasses case. The Allegro Hand setup includes a NI USB-8473s High-

Speed CAN. The CAN uses a fixed sampling time of Ts = 0.003s. The hardware

setup is shown in Figure 5.8. Note that the Allegro Hand is equipped with force

sensors, which were not used in this demonstration. Approximate contact loca-

tion measurements were provided to both controllers via the emulation approach

described in Chapter 3.

The gains used for the proposed and conventional-centroid controllers are listed

in Table 5.2. Note the dither static friction compensation from Chapter 4 was not

used to not distract from the primary objective of this chapter, which is to prevent

slip during manipulation. Thus the error bounds vp = 0.005 m, vo = 0.07 rad, were

defined for the position and orientation errors respectively, to prevent the hunting

effect that results from integral action in the presence of static friction. The
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(a) (b)

Figure 5.8: Hardware setup.

Table 5.2: Hardware Parameters

Kp diag[(200, 200, 200, 1.15, 1.15, 1.15)]
Ki diag[(30, 30, 30, 0.4, 0.4, 0.4)]
Kd diag[(0.005, 0.005, 0.005, 0.05, 0.05, 0.05)]

Friction coefficient, µ̃ 2.5
ε 1.25
Kf 80.0

summation in (5.14) was stopped when the error satisfied: ||(e1, e2, e3)||∞ ≤ vp,

||(e4, e5, e6)||∞ ≤ vo. The controllers were given a reference command of r =

x(0) + ∆r, where ∆r = (rx, 0, 0, 0, 0, rψ), and rx, rψ ∈ R respectively denote the

desired translation along the X-axis and rotation about the Z-Axis.

The proposed and conventional-centroid controllers were implemented with step

changes of rψ and rx for rotation/Cartesian translation tasks for both objects. The

implementation of the proposed and conventional control can be can be seen in

the video segment from [109]. Figures 5.10 and 5.11 show stills of the videos to

depict the manipulation capability of both controllers. As shown in the video, the

conventional-centroid and proposed controllers can manipulate the spherically-

shaped object without slipping. This is expected because the centroid method

from (5.15) is know to be effective for spherical object shapes as demonstrated in

Chapter 4. However, the conventional-centroid approach does not guarantee no

slip in general. This is demonstrated when the conventional control causes slip and

the hand drops the flat-surfaced object when attempting the manipulation task as
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depicted in Figure 5.9. Only the proposed control was able to successfully manipu-

late both objects for both translation and rotation tasks. The results demonstrate

how the proposed control effectively uses the available on-board information to

robustly manipulate unknown objects. The conventional-centroid controller re-

quires conservative assumptions that the object does not slip. As shown in these

results, that assumption does not hold in general and limits the application of that

approach.

Figure 5.12 shows the position and orientation error resulting from the proposed

controller manipulating the flat-surfaced object to rψ = 0.1 radians. The plots in

Figure 5.12 shows the orientation error converging to the prescribed error bounds,

whilst the position error remains inside the error bounds.

(a) Initial grasp (b) Unstable grasp

(c) Loss of contact (d) Object is dropped

Figure 5.9: Conventional control resulting in slipping and instability during
manipulation. Red arrows indicate the contact forces exerted by the fingertips
towards the grasp centroid.

Note that although the videos show promising results, there are signs of small

slipping occurring using the proposed control. Although these do not result in

system instability, they highlight the lack of analysis regarding how noise affects

the robustness of the proposed control. Another limitation of the proposed control
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(a) (b)

Figure 5.10: Proposed control in-hand rotation of object by rψ = 0.25 rad.

(a) (b)

Figure 5.11: Proposed control in-hand translation of object by rx = 0.02 m.

(a) (b)

Figure 5.12: Position and orientation error from proposed control.



108 Chapter 5 Robust In-hand Manipulation with Slip Prevention

results from conservativeness discussed in Section 5.3.2. Future work will investi-

gate the effect of contact location measurement errors for a more robust solution,

and consider methods that ensure Assumption 5.4 holds.

5.5 Summary

In this chapter a robust discrete time control was proposed for object manipulation

in tactile-based blind grasping. The proposed control was shown to be robust to

grasp uncertainties, while guaranteeing that the object does not slip within the

grasp. The stability analysis guarantees semi-global practical asymptotic stability

of the closed loop system and accounts for the effects of sampling time. Simulation

and hardware results show the effectiveness of the proposed controller.

The proposed control ensures the object does not slip despite unknown external

disturbances and sampling time effects. However, the control does not ensure that

the contact points remain on the fingertip surface. That is, given an inappropriate

reference, the hand may attempt to manipulate the object past the fingertip surface

and compromise the ability to detect the contact point, or apply necessary contact

forces on the object. Additionally, there is no guarantee that a given manipulation

motion will reach a singular hand configuration, and compromise the hand’s ability

to apply the necessary contact forces. In the following chapter, a novel method

of ensuring all grasp constraints including no slip, no excessive rolling, and no

singular configurations is presented.



Chapter 6

Robust Grasp Constraint

Satisfaction for Robotic Hands: A

Control Barrier Function

Approach

6.1 Introduction

In the previous chapters, robust in-hand manipulation and slip prevention methods

were presented with regards to tactile-based blind grasping. Again, tactile-based

blind grasping refers to a realistic scenario in which only proprioceptive and tactile

sensors are available to the robotic hand, and no a priori knowledge of the object

is known. In Chapter 4, a robust control law was presented that handles the

disturbances of tactile-based blind grasping. That control required the following

grasping assumptions that were highlighted in Chapter 2:

Assumption 2.1. The hand does not reach a singular configuration, and the joints

remain inside the hand workspace.

Assumption 2.2. The object does not slip within the grasp.

Assumption 2.3. The contact points remain inside the fingertip workspace.

In Chapter 5, the robust in-hand manipulation controller from Chapter 4 was

extended to ensure Assumption 2.2 holds for tactile-based blind grasping. However

109
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that control still required Assumptions 2.1 and 2.3. As discussed in Chapter 2,

most related work in in-hand manipulation also take advantage of Assumptions 2.1-

2.3, but provide no guarantee that the assumptions hold. In-hand manipulation

tasks not only consist of moving an object to track a desired trajectory, but also

in ensuring the object remains within the grasp. Thus for successful in-hand

manipulation, it is paramount to guarantee that the object remains in the grasp

(i.e. Assumptions 2.1-2.3 hold) during the manipulation motion.

Violation of Assumptions 2.1–2.3 are hereafter referred to as joint over-extension,

slipping, and excessive rolling, respectively. Slipping is an obvious grasping con-

cern, which was addressed in Chapter 5. Joint over-extension relates to joints

exceeding feasible joint angles (e.g joint workspace, hardware capabilities, singu-

lar hand configurations), which inhibits the robotic hand from applying necessary

contact forces on the object [91]. Excessive rolling is when the contact points roll

off of the admissible fingertip surface. In-hand manipulation inherently relies on

rolling motion for object manipulation [89]. However excessive rolling motion may

cause the contact points to leave the fingertip surface. The admissible fingertip

surface can represent the sensor surface that provides grasp measurements for a

manipulation controller, or the complete surface of the fingertip. When excessive

rolling occurs, the fingertip loses contact with the object, which compromises the

ability of the robotic hand to perform object manipulation. Thus for successful

manipulation, the object must not slip, the joints must remain inside a feasible

workspace, and the contact points must remain in the fingertip workspace. These

conditions are henceforth referred to as the grasp constraints.

As discussed in Chapter 2, there is no existing method to actively and robustly en-

sure Assumptions 2.1-2.3 hold for real-time object manipulation, let alone tactile-

based blind grasping. This chapter addresses this problem of robust grasp con-

straint satisfaction.

The approach taken here is to exploit a formal technique for handling constraints,

which is known as control barrier functions. Control barrier functions can be clas-

sified as reciprocal control barrier functions and zeroing control barrier functions

[4]. The former was developed first with applications towards bipedal walking [62],

systems evolving on manifolds [126], and control of constrained robots [99]. How-

ever the latter, zeroing control barrier functions, have been shown to not only be

more practical for implementation, but also robust to model uncertainties [4, 128].

The zeroing control barrier functions are attractive for the problem presented here,

however no existing zeroing control barrier function addresses multiple constraint
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satisfaction for grasping/manipulation applications. The grasping constraints re-

garding joint angles and contact locations are workspace constraints on the posi-

tion states. As such, it is important to also consider bounds on the velocity states.

If the velocity is too large near the constraint boundary, then large control effort is

required to keep the state inside the constraint set. Large control effort may lead

to actuator saturation, which then compromises the systems ability of ensuring

constraint satisfaction. This issue is exacerbated when considering perturbations

resulting from model uncertainty. Thus it is important to consider velocity state

bounds in the zeroing control barrier function formulation, which has not yet been

addressed in existing work [4, 128]. Furthermore, existing methods are formally

proposed for continuous time systems, but implemented as sampled-data systems

without consideration of sampling time effects.

The contribution of this chapter is two-fold. First, a novel zeroing control barrier

function is presented for relative degree two systems, which is shown to be robust to

model uncertainty. The proposed approach also extends the zeroing control barrier

function technique to sampled-data systems and considers position and velocity

state bounds. Second, a novel controller is presented to address Research Aim 2.3

(i.e. grasp constraint satisfaction) by using the zeroing control barrier function

approach. The proposed control is implemented in simulation and hardware to

demonstrate the efficacy of the proposed method.

This chapter is organized as follows. Section 6.2 presents the relevant background

for this chapter’s discussion and formally states the problem of ensuring grasp

constraint satisfaction for in-hand manipulation. Section 6.3 presents the novel

zeroing control barrier function method. Section 6.4 presents the control law to

ensure grasp constraint satisfaction for tactile-based blind grasping. Section 6.5

presents the numerical simulation and hardware results of the proposed control.

Notation

Throughout this paper, an indexed vector vi ∈ Rp has an associated concatenated

vector v ∈ Rpk, where the index i is specifically used to index over the n contact

points in the grasp. The notation vE indicates that the vector v is written with

respect to a frame E , and if there is no explicit frame defined, v is written with

respect to the inertial frame, P (see Figure 6.1). The operator (·)× denotes the

skew-symmetric matrix representation of the cross-product. SO(3) denotes the

special orthogonal group of dimension 3. The r × r identity matrix is denoted
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Ir×r. The term ij ∈ R1,r denotes the jth row of Ir×r. The Lie derivatives of

a function h(x) for the system ẋ = f(x) + g(x)u are denoted by Lfh and Lgh,

respectively. When discussing model uncertainty, the approximation of a variable

v is denoted with a hat, v̂, and the associated error is denoted by ∆(v). The norm

||x||B refers to the distance to a set and defined as ||x||B := inf||z− x||s.t.z ∈ B.

The function KL(·, ·) denotes a class-KL function.

6.2 Background

In this section, the relevant system model and assumptions are presented.

6.2.1 Hand-Object System

Consider a fully-actuated, multi-fingered hand grasping a rigid, convex object at

n ∈ Z>0 contact points. Each finger consists of mi ∈ Z>0 revolute joints with

smooth, convex fingertips of high stiffness. Let the finger joint configuration be

described by the joint angles, qi ∈ Rmi . The full hand configuration is defined by

the joint angle vector, q = (q1,q2, ...,qn)T ∈ Rm, where m =
∑n

i=1mi is the total

number of joints. Let the inertial frame, P , be fixed on the palm of the hand, and

a fingertip frame, Fi, fixed at the point pfi ∈ R3. The translational and rotational

velocities of Fi with respect to P are denoted vfi , ωfi ∈ R3, respectively. The

rotation matrix from Fi to P is Rpfi := Rpfi(qi) ∈ SO(3). The contact frame, Ci,
is located at the contact point, pci ∈ R3. A visual representation of the contact

geometry for the ith finger is shown in Figure 6.1.

Figure 6.1: A visual representation of the contact geometry for contact i.
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The hand dynamics incorporating each finger, or robotic manipulator, of the grasp

is as follows [91]:

Mhq̈ + Chq̇ = −JTh fc + τe + uk (6.1)

where Mh := Mh(q) ∈ Rm×m is the inertia matrix, Ch := Ch(q, q̇) ∈ Rm×m is

the Coriolis/centrifugal matrix, Jh := Jh(q,pfc) ∈ R3n×m is the hand Jacobian,

fc ∈ R3n is the contact force, τe := τe(t) ∈ Rm is the disturbance torque acting on

the joints, and uk := u(kT ) ∈ Rm is the piece-wise constant, joint torque control

input. Note each Mh, Ch, Jh is a block diagonal matrix of the individual inertia,

Coriolis/centrifugal, and hand Jacobian matrix respectively, and each fc, τe, uk is

a vector concatenation of the individual contact forces, fci , external torques τei ,

and control inputs uki , respectively. For ease of notation, the matrix Ei ∈ Rmi×m

is used to map from the full concatenated vector form to the individual vector,

such that for example, q̇i = Eiq̇. Note the individual hand Jacobian matrix, Jhi ,

is defined by:

Jhi(qi,pfci) =
[
I3×3 −(pfci)×

]
Jsi(qi) (6.2)

where Jsi(qi) ∈ R6×mi is the spatial manipulator Jacobian that maps q̇i 7→
(vfi , ωfi) [91].

Let O be a reference frame fixed at the object center of mass po ∈ R3, and

Rpo ∈ SO(3) is the rotation matrix, which maps from O to P . The respective

inertial translation and rotational velocities of the object are vo, ωo ∈ R3. The

object state is xo ∈ R6, with ẋo = (vo, ωo). The position vector from O to the

respective contact point is poci ∈ R3.

The object dynamics are given by [91]:

Moẍo + Coẋo = Gfc + we (6.3)

where Mo := Mo(xo) ∈ R6×6 is the object inertia matrix, Co := Co(xo, ẋo) ∈ R6×6

is the object Coriolis and centrifugal matrices, G := G(poc) ∈ R6×3n is the grasp

map, and we := we(t) ∈ R6 is an external wrench disturbing the object. The

grasp map, G, maps the contact force, fc, to the net wrench acting on the object.

When grasping an object, it is important to prevent slip from occurring by ensuring

each contact force remains inside the friction cone defined by:

Fci = {fCici ∈ R3 : fniµ ≥
√
f 2
xi

+ f 2
yi
} (6.4)
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where fCici = (fxi , fyi , fni) is the contact force at i written in frame Ci with tangential

force components fxi , fyi ∈ R and normal force component fni ∈ R, and µ ∈ R>0

is the friction coefficient. The full friction cone is the Cartesian product of all the

friction cones: Fc = Fc1 × ...× Fcn .

When the contact points do not slip, the following grasp relation holds [31]:

Jhq̇ = GT ẋo (6.5)

The following assumptions are made for the grasp:

Assumption 6.1. The multi-fingered hand has m ≥ 3n joints.

Assumption 6.2. The given multi-fingered grasp is such that G is full rank and

R(G)
⋂

Int(FC) 6= ∅.

Assumption 6.3. The system dynamics (6.1), (6.3), and local fingertip/object

contact surfaces are smooth.

Remark 6.1. Assumption 6.2 ensures the grasp is force-closure, which means that

for any given object wrench, there exists a contact force that produces the given

wrench and also lies inside the friction cone [31]. This force-closure condition

describes a “good” grasp, which can be ensured by a high-level grasp planner [55].

6.2.2 Hand-Contact Kinematics

Here the differential geometric modeling of rolling contacts is reviewed as presented

in [91, 89]. Note, the subscript co will refer to the object surface of the contact, and

the subscript cf refers to the fingertip surface of the contact. At each contact point,

the contact surfaces are parameterized by local coordinates ξcoi = (acoi , bcoi), ξcfi =

(acfi , bcfi). The relation between the local coordinates and contact position vectors

are defined by smooth mappings: pFifci = ccfi(ξcfi),p
O
oci

= ccoi(ξcoi).

The geometric parameters including the metric tensor, curvature tensor, and tor-

sion tensor are used to define the rolling contact kinematics. For ease of notation,

cfa, cfb respectively denote
∂ccfi
∂acfi

and
∂ccfi
∂bcfi

. Similarly let coa, cob respectively denote
∂ccoi
∂acoi

and
∂ccoi
∂bcoi

.

The Gauss frame is used to define the contact frame Ci, which is depicted in Figure

6.2:
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Figure 6.2: A visual representation of the contact frame for contact i.

Rfci =
[
ρ1 ρ2 ρ3

]
=
[

cfa
||cfa||

cfa
||cfb||

cfa×cfb
||cfa×cfb||

]
(6.6)

where Rfci ∈ SO(3) maps Ci to Fi.

The metric tensor, Mcfi := Mcfi(ξcfi) ∈ R2×2, curvature tensor, Kcfi := Kcfi(ξcfi) ∈
R2×2, and torsion tensor, Tcfi := Tcfi(ξcfi) ∈ R2×1 are defined by:

Mcfi =

[
||cfa|| 0

0 ||cfb||

]
(6.7)

Kcfi =

[
ρT1

ρT2

] [
∂ρ3/∂acfi
||cfa||

∂ρ3/∂bcfi
||cfb||

]
(6.8)

Tcfi = ρT2

[
∂ρ1/∂acfi
||cfa||

∂ρ1/∂bcfi
||cfb||

]
(6.9)

The same geometric parameters for the object, Mcoi := Mcoi(ξcoi) ∈ R2×2, Kcoi :=

Kcoi(ξcoi) ∈ R2×2, Tcoi = Tcoi(ξcoi) ∈ R2×1, are defined by appropriate substitution

of ξcfi with ξcoi in (6.6)-(6.9):

Mcoi =

[
||coa|| 0

0 ||cob||

]
(6.10)

Kcoi =

[
ρT1

ρT2

] [
∂ρ3/∂acoi
||coa||

∂ρ3/∂bcoi
||cob||

]
(6.11)
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Tcoi = ρT2

[
∂ρ1/∂acoi
||coa||

∂ρ1/∂bcoi
||cob||

]
(6.12)

Now the equations of motion for ξcfi and ξcoi are defined as follows:

ξ̇cfi = M−1
cfi

(Kcfi +RψiKcoiRψi)
−1

[
0 −1 0

1 0 0

]
Rcip(ωfi − ωo) (6.13)

ξ̇coi = M−1
coi
Rψi(Kcfi +RψiKcoiRψi)

−1

[
0 −1 0

1 0 0

]
Rcip(ωfi − ωo) (6.14)

where

Rψi =

[
cos(ψi) − sin(ψi)

− sin(ψi) − cos(ψi)

]
, (6.15)

and Rcip = RT
fci
RT
pfi

maps P to Ci. The contact angle dynamics is defined by:

ψ̇i = TcfiMcfi ξ̇cfi + TcoiMcoi ξ̇coi (6.16)

where ψi ∈ R is the angle between
∂ccoi
∂acoi

and
∂ccfi
∂acfi

(see Figure 6.2).

It is important to note the chosen parameterizations must satisfy the following

assumption for (6.13), (6.14) to be well-defined [91]:

Assumption 6.4. The parameterizations are orthogonal such that
∂cfi
∂acfi

T ∂cfi
∂bfi

= 0,

∂coi
∂aoi

T ∂coi
∂boi

= 0, and Mcfi , Kcfi , Tcfi ,Mcoi , Kcoi , Tcoi are defined for all ξcfi on the

fingertip surface, and ξcoi on the object surface, respectively.

6.2.3 Problem Formulation

This chapter focuses on addressing Research Aim 2.3, satisfaction of grasp con-

straints. Here, the grasp constraints and associated problem formulation are ex-

plicitly defined.

Contact Force Set

No slip is ensured by guaranteeing that the contact forces remain inside the fric-

tion cone, FC. A well-known technique is to approximate the friction cone by a
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pyramid, which results in the following linear constraint condition [69]:

Λ(µ)Rcpfc > 0 (6.17)

where Λ(µ) ∈ Rlsn×3n defines a pyramid of ls ∈ Z>0 faces used to a approximate

the friction cone [69], and Rcp ∈ R3n×3n is the block diagonal matrix of all Rcip for

i ∈ [1, n]. Let the set of constraint admissible contact forces be defined as:

Cf = {fc ∈ R3n : Λ(µ)Rcpfc > 0} (6.18)

Joint Angle Set

Over-extension of the joints is prevented by constraining the joint angles within a

feasible workspace. The constraints on the joint angles are defined by the following

box constraints:

hqmaxj(q) = −ijq + qmaxj ,∀j ∈ [1,m]

hqminj(q) = ijq− qminj ,∀j ∈ [1,m]
(6.19)

where ij ∈ R1×m is the jth row of Im×m and qmaxj , qminj ∈ R≥0 define the joint angle

limits, which omit singular hand configurations. The set of constraint admissible

joint angles is defined by:

Cq = {q ∈ Rm : ∀j ∈ [1,m] : hqmaxj(q) ≥ 0, hqminj(q) ≥ 0} (6.20)

Contact Location Set

Excessive rolling occurs when the contact locations exceed the workspace of the

fingertip. Many existing tactile sensors are designed as fingertips with flat, hemi-

spherical, or other relatively simple geometric surface [67], which can be appropri-

ately modeled with geometric parameterizations [91]. The benefit of the geometric
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modeling is not only that it can be applied to these fingertip shapes, but the fin-

gertip workspace can be defined as box constraints:

h1(ξcfi) = acfi − amin

h2(ξcfi) = −acfi + amax

h3(ξcfi) = bcfi − bmin

h4(ξcfi) = −bcfi + bmax

(6.21)

where amin, amax, bmin, bmax ∈ R define the boundary of the fingertip surface. Each

hrj defines the box constraints such that if hrj ≥ 0,∀j ∈ [1, 4], then the contact

point is in the fingertip workspace. The set of allowable contact locations for each

contact is:

Cri = {ξcfi ∈ R2 : ∀j ∈ [1, 4] : hrj(ξcfi) ≥ 0} (6.22)

and the full set of feasible contact locations is:

Cr = {ξcf ∈ R2n : ∀i ∈ [1, n] : ξcfi ∈ Cri} (6.23)

Constraint-admissible States

Let H , defined by:

H = Cf × Cq × Cr (6.24)

denote the set of grasp constraint admissible states. In the set H , the hand

configuration is non-singular and, by Assumption 6.1, Jh is full rank with rank 3n.

Furthermore, the contact points do not slip in H and so the grasp relation (6.5)

holds. These properties of H are attractive, and exploited in related literature

where the states are assumed to remain in H without any guarantee of such a

claim [97].

The problem to be addressed is formally stated as:

Problem 6.1. Suppose the hand-object system satisfies Assumptions 6.1-6.4, and

consider the set of constraint-admissible states H defined by (6.24). Determine a

control law that ensures forward invariance of H .
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6.3 Zeroing Control Barrier Functions for Sampled-

Data Systems of Relative Degree Two

In this section, a novel form of zeroing control barrier functions for relative degree

two systems is presented. The zeroing control barrier functions considered here is

an extension of [4] to relative degree two and sampled-data systems.

6.3.1 Construction of Zeroing Control Barrier Functions

for Relative Degree Two Systems

Consider the following nonlinear affine control system:

ẋ = f(x) + g(x)u (6.25)

where u ∈ U ⊆ Rm is the control input, and f ,g are locally Lipschitz continuous

functions of x ∈ Rp. Let x(t,x0) ∈ Rn be the solution of (6.25), which for ease

of notation is denoted by x. The goal of constraint satisfaction is to ensure the

states x stay within a set of constraint-admissible states defined by:

C = {x ∈ Rp : h(x) ≥ 0} (6.26)

∂C = {x ∈ Rp : h(x) = 0} (6.27)

Int(C ) = {x ∈ Rp : h(x) > 0} (6.28)

where h : Rp → R is a twice-continuously differentiable function of relative degree

two.

The following definition for extended class-K function is now introduced:

Definition 6.2. [4]: A continuous function, α : (−b, a)→ (−∞,∞) for a, b ∈ R>0

is an extended class-K function if it is strictly increasing and α(0) = 0.

Constraint satisfaction is ensured by showing that on the constraint boundary,

the system states are directed into the interior or along the boundary of the con-

straint set [14]. This is equivalent to guaranteeing that ḣ(x) ≥ −α1(h(x)) for a

continuously differentiable, extended class-K function α1 [4].
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The approach taken here is to introduce a continuously differentiable function

B : Rp → R defined by:

B(x) = ḣ(x) + α1(h(x)) (6.29)

Thus constraint satisfaction regarding C is equivalent to ensuring B ≥ 0 for all

t ≥ 0. Let B denote the set where B ≥ 0:

B = {x ∈ Rp : B(x) ≥ 0} (6.30)

By ensuring forward invariance of B, it follows that B ≥ 0 to ensure that C is

forward invariant. This approach results in a new zeroing control barrier function

for relative degree two systems:

Definition 6.3. Let h : Rp → R be a twice-continuously differentiable, relative

degree two function for the controllable system (6.25), with C defined by (6.26).

Let B : Rp → R be the continuously differentiable function defined by (6.29), and

B be defined by (6.30). For a given continuously differentiable, extended class-K
function α1, if there exist sets D ⊇ C ,E ⊇ B and an extended class-K function

α2 such that for all x ∈ D
⋂

E :

sup
u∈U

[LfB(x) + LgB(x)u + α2(B(x))] ≥ 0 (6.31)

then B is zeroing control barrier function.

Given a zeroing control barrier function B, for all x ∈ D
⋂

E define the set:

Su(x) = {u ∈ U : LfB(x) + LgB(x)u + α2(B(x)) ≥ 0} (6.32)

The following theorem guarantees that the existence of a zeroing control barrier

function, as defined in Definition 6.3, ensures forward invariance of the constraint

set C :

Theorem 6.1. Consider the controllable system (6.25). Let C be defined by (6.26)

for a twice-continuously differentiable, relative degree two function h(x) : Rp → R.

Suppose there exists a continuously differentiable, extended class-K function α1 and

extended class-K function α2, such that for B defined by (6.29), and B defined

by (6.30), B is a zeroing control barrier function, and B
⋂

C is non-empty. For

all x(0) ∈ B
⋂

C , and for any locally Lipschitz control u(x) ∈ Su(x) defined by

(6.32), B
⋂

C is forward invariant.
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Proof. The first step is to show that B is forward invariant. From u ∈ Su, Ḃ(x) ≥
−α2(B(x)). Thus on the boundary of B defined by B(x) = 0, Ḃ(x) ≥ −α2(0) = 0.

According to Nagumo’s theorem [14], B is forward invariant.

Next, C is shown to be forward invariant. It follows from B ≥ 0 that for all

x ∈ ∂C , ḣ(x) ≥ −α1(0) = 0. By another application of Nagumo’s theorem [14],

it follows that C is forward invariant.

Since both B and C are forward invariant concurrently, their intersection must

be forward invariant.

Theorem 6.1 guarantees forward invariance of C , but does not consider model

perturbations. Robustness is addressed here by showing asymptotic stability of

the sets B,C :

Theorem 6.2. Consider the controllable system (6.25). Let C be defined by (6.26)

for a twice-continuously differentiable, relative degree two function h(x) : D → R
defined on the open set D ⊃ C . Suppose there exists a continuously differentiable

extended class-K function α1 and extended class-K function α2, such that for B :

E → R defined by (6.29) on the open set E ⊃ B and B defined by (6.30), B is

a zeroing control barrier function, and B
⋂

C is non-empty. For any x(0) ∈ E ,

and for any locally Lipschitz control u(x) ∈ Su(x) defined by (6.32), B is an

asymptotically stable set. Furthermore, if B is forward invariant, then for any

x(0) ∈ B
⋂

D , C is an asymptotically stable set.

Proof. First, asymptotic stability of B is considered. Let VB : Rp → R≥0 denote

the Lyapunov function defined on an open set E :

VB(x) =

0, if x ∈ B

−B(x), if x ∈ E \B
(6.33)

To show negative definiteness of V̇B, note that for x ∈ E \B, B(x) < 0. For u ∈
Su, differentiation of VB for x ∈ E \B results in V̇B = −Ḃ ≤ α2(B) = α2(−VB) <

0. Asymptotic stability of B follows from Theorem 2.8 of [76]. Smoothness of the

Lyapunov function is addressed in Proposition 4.2 of [76].

Next, asymptotic stability of C is addressed. For all x ∈ B, the same asymptotic

stability results apply to C . Consider the following Lyapunov function, VC : Rp →
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R≥0, defined on an open set D ⊃ C :

VC (x) =

0, if x ∈ C

−h(x), if x ∈ D \ C
(6.34)

From x ∈ B, it follows that B ≥ 0 holds. Thus VC (x) = 0 for x ∈ C , VC (x) > 0

for x ∈ D \ C . Differentiation of VC for x ∈ D \ C results in V̇C = −ḣ ≤ α1(h) =

α1(−VC ) < 0. Thus asymptotic stability of C follows.

Theorem 6.1 ensures forward invariance of B
⋂

C by means of the zeroing control

barrier functions. Theorem 6.2 ensures that the zeroing control barrier functions

also provide asymptotic stability to B
⋂

C . Asymptotic stability provides robust-

ness by means of local input-to-state stability [128]. In practice, Theorem 6.1

should be extended such that forward invariance of B
⋂

C is preserved in the

presence of bounded disturbances. To do so, consider the following perturbed

control affine system:

ẋ = f(x) + g(x)u + d (6.35)

where d ∈ Rp is a bounded, piecewise continuous disturbance. Local input-to-

state stability ensures that for bounded disturbances d that perturb the system,

the states will remain bounded within a set. Regarding implementation, this

means that conservative constraint sets Ĉ , B̂ should be defined to ensure forward

invariance of B
⋂

C :

ĥ(x) = h(x)− δ (6.36)

B̂(x) =
˙̂
h(x) + α1(ĥ(x))− β (6.37)

Ĉ = {x ∈ Rp : ĥ(x) ≥ 0} (6.38)

B̂ = {x ∈ Rp : B̂(x) ≥ 0} (6.39)

Ŝu(x) = {u ∈ U : Lf B̂(x) + LgB̂(x)u + α2(B̂(x)) ≥ 0} (6.40)

where δ, β ∈ R≥0 define robustness margins.

The following corollary ensures forward invariance of C in the presence of bounded

disturbances:

Theorem 6.3. Consider the controllable system (6.35). Let C and Ĉ be defined

by (6.26) and (6.38) respectively for the twice-continuously differentiable, relative

degree two functions h, ĥ : D → R, defined on the open set D ⊃ C ⊂ Ĉ , where ĥ is
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defined by (6.36). Suppose there exist a continuously differentiable extended class-

K function α1 and extended class-K function α2 such that for B, B̂ : E → R defined

respectively by (6.29), (6.37) on the open set E , with B, B̂ defined respectively by

(6.30), (6.39), B̂ is a zeroing control barrier function and B̂
⋂

Ĉ is non-empty.

For any x(0) ∈ B̂
⋂

Ĉ , and for any locally Lipschitz control u(x) ∈ Ŝu(x) defined

by (6.40), there exist µ, β, δ ∈ R≥0 such that for ||d||∞ ≤ µ, x remains in B
⋂

C

for t ≥ 0.

Proof. Theorem 6.2 ensures asymptotic stability of B̂ when d ≡ 0, for the modified

ĥ and B̂. Thus it follows from Proposition 5 of [128] that for a class-K function

γ, the set:

Bγ = {x ∈ Rp : B̂(x) ≥ −γ(||d∞||)} (6.41)

is asymptotically stable when d 6≡ 0 such that ||x||Bγ ≤ KL(||x||Bγ , t) for all

t ≥ 0. Choose β = γ(||d||∞). By (6.37) and (6.29), it follows that B = B̂ + β,

and consequently B = Bγ. Thus B is asymptotically stable such that ||x||B ≤
KL(||x||B, t). By the condition that x(0) ∈ B̂ ⊂ B, it follows that ||x||B = 0 for

all t ≥ 0, and thus x remains in B for t ≥ 0.

Forward invariance of B implies that C is asymptotically stable by Theorem 6.2

when d 6≡ 0. Thus by the same argument, it follows that there exists a δ such that

x remains C for t ≥ 0. Since x remains in B and C concurrently, x must remain

in B
⋂

C for t ≥ 0.

Theorem 6.3 exploits the conservativeness of Ĉ and B̂ to ensure the states remain

in B
⋂

C for all t ≥ 0. The asymptotic stability related to the zeroing control

barrier functions ensures that if x starts in B̂
⋂

Ĉ , then a bounded perturbation

will push x into a bounded set outside of B̂. By choosing the robustness margin

β sufficiently large, the bounded set will be contained in B to ensure forward

invariance of B. The same principle then applies to C and Ĉ . Note that in order

for this result to hold, the control u should satisfy the zeroing control barrier

function condition (6.31) for B̂, not B.

6.3.2 Multiple Zeroing Control Barrier Functions

In many applications, multiple constraints must be satisfied for successful task

execution, and thus multiple control barrier functions may be required. Theorem

6.1 is extended to incorporate multiple zeroing control barrier functions. Let
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hj(x) : Rp → R be a twice-continuously differentiable, relative-two degree function

for constraint j ∈ [1, l]. Let the set of constraint-admissible states be:

Cj = {x ∈ Rn : hj(x) ≥ 0}, j ∈ [1, l] (6.42)

∂Cj = {x ∈ Rp : hj(x) = 0}, j ∈ [1, l] (6.43)

Int(Cj) = {x ∈ Rp : hj(x) > 0}, j ∈ [1, l] (6.44)

Following the approach from Theorem 6.1, let Bj, Bj, and Suj denote the zeroing

control barrier function and associated sets defined as follows:

Bj(x) = ḣj(x) + α1(hj(x)), j ∈ [1, l] (6.45)

¯
B = {x ∈ Rp : ∀j ∈ [1, l] : Bj(x) ≥ 0}, (6.46)

Suj(x) = {u ∈ U : LfBj(x) + LgBj(x)u + α2(Bj(x)) ≥ 0}, j ∈ [1, l] (6.47)

Let
¯
C denote the full set of constraint-admissible states defined by:

¯
C =

⋂
∀j∈[1,l]

Cj (6.48)

The set of constraint-admissible control values is:

¯
Su(x) = {u ∈ Rm : ∀j ∈ [1, l] : LfBj(x) + LgBj(x)u + α2j(Bj(x)) ≥ 0} (6.49)

The following corollary ensures satisfaction of multiple constraints using zeroing

control barrier functions:

Theorem 6.4. Consider the controllable system (6.25). Let
¯
C be defined by

(6.48),(6.42) for the twice-continuously differentiable, relative degree two functions

hj(x) for j ∈ [1, l]. Suppose there exist a continuously differentiable extended class-

K function α1, and extended class-K function α2 such that for Bj defined by (6.45),

¯
B defined by (6.46), and

¯
Su(x) defined by (6.49), Bj are zeroing control barrier
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function for j ∈ [1, l] and
¯
B
⋂

¯
C ,

¯
Su are non-empty. For any x(0) ∈

¯
B
⋂

¯
C , and

for any locally Lipschitz controller u(x) ∈
¯
Su(x),

¯
B
⋂

¯
C is forward invariant.

Proof. The fact that the system is controllable and
¯
Su is non-empty implies that

there exists a u ∈
¯
Su. From (6.49),

¯
Su is the intersection of all constraint-

admissible control torques for j ∈ [1, l]. Thus any u ∈
¯
Su satisfies Suj . From

Theorem 6.1, each Bj and Cj, j ∈ [1, l] are forward invariant, and thus
¯
B
⋂

¯
C is

forward invariant.

Theorem 6.4 is a direct result of Theorem 6.1 applied to multiple constraints. In

this case the control u should satisfy the zeroing control barrier function conditions

for all constraints. The synthesis of such a control will be discussed shortly, how-

ever the following example shows the implications of the proposed barrier function

method in relation to box-type workspace constraints:

Example 6.1. One advantage of the zeroing control barrier functions presented

here over existing methods [4] is that it naturally constrains the velocity of the

relative-degree two system for desired behavior near the constraint boundary. This

is particularly advantageous for box constraints, which relate to the grasp con-

straints derived in Section 6.2.3. Consider the following system:

ẋ1 = x2 (6.50)

ẋ2 = f(x) + g(x)u (6.51)

where x = (x1, x2) ∈ R2, u ∈ R2. The system is constrained by: 1 ≤ x1 ≤ 4.

Let hmin(x) = x − 1, hmax = 4 − x. From (6.29), the resulting control barrier

functions are Bmin = x2+α1(x−1) and Bmax = −x2+α1(4−x) for a given extended

class-K function, α1. Application of the appropriate control from Theorem 6.4

ensures that Bmin ≥ 0, Bmax ≥ 0. The zeroing control barrier functions naturally

bound the velocity, x2, with respect to the extended class-K function α1:

α1(x1 − 1) ≤ x2 ≤ α1(4− x1) (6.52)

The bounds on x2 are shown in Figure 6.3 for various choices of α1.

Figure 6.3 shows that without additional structure imposed on the proposed con-

trol barrier functions, the designer has the ability to tune the velocity bounds by
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(a) α1(h) = h (b) α1(h) = 0.15h3

(c) α1(h) = 2 tan−1(h)

Figure 6.3: Induced velocity bounds for various choices of α1. Note the shaded
regions depict the constraint-admissible set for x1, x2.

appropriate choice of α1. These bounds prevent large velocities at the boundary

that would require large control effort to ensure constraint satisfaction. The gray

regions in Figure 6.3 depict the set of constraint-admissible states x.

Remark 6.4. Note that the control barrier function approach using the definition

in (6.29) is similar to that of [126]. Particularly, the same structure of B =

ḣ(x) + α1(h(x)) is used in [126] except for the reciprocal control barrier function

formulation, which from [4] bears an equivalence to the zeroing control barrier

function presented here. It is important to note that [126] requires more strict

condition on h, i.e. that it contains a quadratic expression with respect to x,

which is not required in the proposed formulation here. Furthermore, by using the

zeroing control barrier representation, robustness properties are obtained for the

proposed zeroing control barrier functions.

The control barrier functions presented here provide guarantees for constraint

satisfaction. However, it is not clear yet as to how a controller should be designed

to satisfy the control barrier function conditions. In many applications, there
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exist numerous controllers that assume constraint satisfaction. To support the

existing nominal controllers from the literature, the approach taken here is to

define a quadratic program to minimize the error between the proposed control

and nominal control. This approach is motivated by [4, 99] where the control

barrier functions are implemented as the constraints of a quadratic program:

u∗ = argmin
u∈Rm

uTu− 2unom(x)Tu

s.t. A(x)u ≥ b(x)
(6.53)

where unom(x) ∈ Rm is the nominal control and A(x) ∈ Rl×m, b ∈ Rl are defined

by:

A(x) =

 LgB1(x)

...

LgBl(x)

 (6.54)

b(x) =

 −LfB1(x)− α2(B1(x))

...

−LfBl(x)− α2(Bl(x))

 (6.55)

Quadratic programs are advantageous for implementation due to continuity of

the argument, u∗. However, care must be taken in how the quadratic program

is defined or else discontinuous jumps may occur in u∗ [90, 101]. For quadratic

programs with linear constraints, continuous differentiability of u∗ can be ensured

if (6.53) satisfies the following properties [43]:

Property 6.1. (Linear Independence Constraint Qualification) The active con-

straints of the quadratic program (6.53) have full row rank.

Property 6.2. (Strict Complimentary Slackness) Let λ∗ ∈ Rm denote the La-

grange multiplier associated with u∗. Strict complimentary slackness is satisfied if

there does not exist any j such that both λ∗j = 0 and Aju
∗
j = 0. (Aj refers to the

jth row of A).

The following theorem guarantees continuous differentiability of u∗ and forward

invariance of C by implementation of (6.53):

Theorem 6.5. Consider the controllable system (6.25). Let
¯
C be defined by

(6.48),(6.42) for the smooth, relative degree two functions hj(x) for j ∈ [1, l].
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Furthermore, let α1, α2 be smooth, extended class-K functions, and let Bj,
¯
B,

¯
Su

be defined respectively by (6.45), (6.46), (6.49). If the following conditions hold:

1. unom(x) ∈ Rm is twice-continuously differentiable

2.
¯
B
⋂

¯
C and

¯
Su are non-empty

3. x(0) ∈
¯
B
⋂

¯
C

4. The quadratic program (6.53) satisfies Properties (6.1) and (6.2).

Then the control (6.53) applied to (6.25) is continuously differentiable and
¯
B
⋂

¯
C

is forward invariant.

Proof. Smoothness of hj, α1, and α2 ensures that the functions LfBj + LgBju +

α2(Bj) for j ∈ [1, l] are twice-continuously differentiable. Thus continuous dif-

ferentiability of u∗(x) follows from Fiacco’s Theorem [43]. The local Lipschitz

continuity of u∗ is satisfied from continuous differentiability, and application of

Theorem 6.4 ensures forward invariance of B
⋂

C , which completes the proof.

The local Lipschitz continuity of u∗ is dependent on the linear independent con-

straint qualification [90]. However, in practice it may be difficult to guarantee this

property, especially when many constraints must be satisfied in (6.53). The local

Lipschitz continuity of u∗(x) is mainly required for existence and uniqueness of

the solution to (6.25). In the following section, the formulation of a sampled-data

system allows for relaxation of this local Lipschitz property, and thus of the linear

independent constraint qualification property.

6.3.3 Zeroing Control Barrier Functions for Sampled-Data

Systems

Zeroing control barrier functions are useful in physical systems to ensure con-

straints are satisfied. However the existing work has focused on barrier function

formulations for continuous time plants and controllers. Many physical systems,

including robotic hands, are implemented as sampled-data systems. That is, the

control is computed over some sampling time in which the sensors measure the

state of the system, and the constant control is applied until updated by the next
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sampling instant. In this section, the proposed zeroing control barrier functions

are extended sampled-data systems, and address inter-sampling effects.

Consider the following sampled-data system:

ẋ = f(x) + g(x)uk (6.56)

where f ,g are locally Lipschitz continuous functions with respect to x, and uk ∈
Rm is a piece-wise constant control with sampling time of T ∈ R>0. The sampled-

data system takes measurements of xk := x(kT ), which are constant in each

sampling period. Uniqueness and existence of the solution x(t,x(0)) for (6.56) is

ensured by Caratheodory’s Theorem for a time interval t ∈ [0, kN ], N ∈ Z>0 [51].

The extension of Theorem 6.1 to sampled-data systems is as follows. First, inter-

sampling behavior is addressed by incorporating a robustness margin in the zeroing

control barrier function condition:

LfB(xk) + LgB(xk)uk + α2(B(xk)) ≥ ν(T ) (6.57)

where ν(T ) is an extended class-K function, which acts to negate inter-sampling

effects. To incorporate this new condition, let the set of constraint-admissible

controls uk for sampled-data systems be defined by:

Suk(x) = {uk ∈ U : k ∈ [0, N ] : LfB(xk) + LgB(xk)uk + α2(B(xk)) ≥ ν(T )}
(6.58)

The forward invariance of C for sampled-data systems can now be stated:

Theorem 6.6. Consider the controllable system (6.56). Let C be defined by (6.26)

for a twice-continuously differentiable, relative degree two function h(x) : Rp → R.

Suppose there exists a continuously differentiable, extended class-K function α1

and locally Lipschitz continuous extended class-K function α2, such that for B

defined by (6.29), and B defined by (6.30), B
⋂

C is non-empty. Then there

exists an extended class-K function ν(T ) such that for all x(0) ∈ B
⋂

C , and

for any bounded, piece-wise constant control u(x) ∈ Su(x) defined by (6.58), x

remains in B
⋂

C for t ∈ [0, NT ).

Proof. Under the local Lipschitz continuity of f and g, Caratheodory’s Theorem

[51] ensures existence and uniqueness of the solution to (6.56) for the piece-wise

constant control uk on the interval t ∈ [0, NT ).
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Next, it is shown that the zeroing control barrier function condition for continuous

time systems (6.31) is satisfied by the sampled-data formulation. Let m be defined

by:

m =
(
LfB(x)−LfB(xk)

)
+
(
α2(B(x))− α2(B(xk))

)
+
(
LgB(x)−LgB(xk)

)
uk

(6.59)

By locally Lipschitz properties of f(x), g(x) , B(x), and α2(B(x)) it follows that:

||m|| ≤ (c1 + c2 + c3||uk||)||x− xk||, ∀t ∈ [kT, (k + 1)T ), (6.60)

where c1, c2, c3 ∈ R>0 are the respective Lipschitz constants for LfB, α2, and LgB.

By closeness of solutions between x and xk (Theorem 3.4 of [71]) and boundedness

of uk for ||uk|| ≤ c4, c4 ∈ R>0, it follows that

||m|| ≤ (c1 + c2 + c3c4)µ

c1 + c2c4
(e(c1+c2c4)(t−kT ) − 1), ∀t ∈ [kT, (k + 1)T ), (6.61)

where µ ≥ ||f(x) + g(x)uk||. Note µ is guaranteed to exist over the interval

t ∈ [kT, (k+ 1)T ) due to local Lipschitz continuity of f , g and boundedness of uk.

Let ν(T ) be defined by:

ν(T ) :=
a

b
(ebT − 1), ∀t ∈ [kT, (k + 1)T ), (6.62)

where a = (c1 + c2 + c3c4)µ and b = c1 + c2c4.

From uk ∈
¯
Suk , consider (6.57) and add LfB(x) + LgB(x)uk + α2(B(x)) to each

side. This results in:

LfB(x) + LgB(x)uk + α2(B(x)) ≥ ν(T ) +m (6.63)

From the previous derivation of ν(T ), it follows that ν(T ) ≥ m and consequently

Ḃ ≥ −α2(B(x)).

The remainder of the proof follows from the proof of Theorem 6.1 with application

of Nagumo’s theorem for t ∈ [kT, (k + 1)T ) and k ∈ [0, N ] such that B
⋂

C is

forward invariant on the interval [0, NT ).

Next, the sampled-data control version of (6.53) is formulated by considering inter-

sample behavior and piece-wise constant nature of uk. To extend Theorem 6.5 to

sampled-data systems, first let
¯
Suk denote the set of constraint admissible control
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inputs for j ∈ [1, l] constraints:

¯
Suk(x) = {uk ∈ U : k ∈ [0, N ] : j ∈ [1, l] :

LfBj(xk) + LgBj(xk)uk + α2(Bj(xk)) ≥ ν(T )} (6.64)

The sampled-data controller to ensure forward invariance of
¯
C is:

u∗k = argmin
u∈Rm

uTu− 2uTnomku

s.t. A(xk)u ≥ b(xk) + ν̂1

umin ≤ u ≤ umax

(6.65)

where unomk ∈ Rm is the sampled nominal control and ν̂ ∈ R≥0 is a tuning

parameter estimating (6.62) to negate the effects of sampling. It is important to

emphasize that (6.65) is a well-defined quadratic program with linear constraints

with respect to u. It is well known that quadratic programs with linear constraints

have a unique solution without requiring linear independence of the constraints

[95].

The proposed implementation of zeroing control barrier functions relaxes the Lips-

chitz conditions required in previous methods [4, 94, 126]. This extends the zeroing

control barrier function approach to more general systems:

Theorem 6.7. Consider the controllable system (6.56). Let
¯
C be defined by

(6.48),(6.42) for the twice-continuously differentiable relative degree two functions

hj(x) for j ∈ [1, l]. Furthermore, for continuously differentiable, extended class-

K function α1 and locally Lipschitz continuous extended class-K function α2, let

Bj,
¯
B,

¯
Suk be defined respectively by (6.45), (6.46), (6.64). If the following condi-

tions hold:

1.
¯
B
⋂

¯
C and

¯
Suk are non-empty

2. x(0) ∈
¯
B
⋂

¯
C

Then there exists a sufficiently large ν̂ such that the control (6.65) applied to (6.56)

ensures x remains in B
⋂

C for t ∈ [0, NT ).

Proof. The existence and uniqueness of u∗ is due to the linear constraints of the

quadratic program [95]. Boundedness of u∗ is ensured by the constraint: umin ≤
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u ≤ umax. From Theorem 6.6, it follows that there exists a νj(T ) such that x

remains in Bj

⋂
Cj for t ∈ [0, NT ). By choosing ν̂ ≥ max{νj(T )}, the proposed

control u∗ satisfies the condition (6.57) for all j ∈ [1, l]. Thus repeated application

of Theorem 6.6, ensures x remains in B
⋂

C for t ∈ [0, NT ).

Theorem 6.7 extends the forward invariance results of zeroing control barrier func-

tions for sampled-data systems. However, it does not ensure robustness to pertur-

bations. Consider the perturbed nonlinear sampled-data system:

ẋ = f(x) + g(x)uk + d (6.66)

Robustness to bounded perturbations d is achieved by applying emulation tech-

niques to the continuous-time control formulation of (6.65) to recover the local

input-to-state stability property [74]. It is important to note however that preser-

vation of local input-to-state stability is dependent on local Lipschitz continuity of

the continuous time u∗. The trade-off between relaxing the linear independent con-

straint qualification in the sampled-data formulation to ensure forward invariance

of
¯
C , is that robustness to perturbations is no longer guaranteed. In the event that

local Lipschitz continuity of u∗ holds, robustness via local input-to-state stability

of the sampled-data system (6.66) with (6.65) is preserved.

Similar to Theorem 6.3, robustness margins, δj, βj ∈ R≥0 are added to hj and Bj

and appropriately incorporated into A and b of (6.65):

ĥ(x)j = h(x)j − δj, j ∈ [1, l] (6.67)

B̂j =
˙̂
hj(x) + α1(ĥj(x))− βj, j ∈ [1, l] (6.68)

Ĉj = {x ∈ Rn : ĥj(x) ≥ 0}, j ∈ [1, l] (6.69)

ˆ
¯
C =

⋂
∀j∈[1,l]

Ĉj (6.70)

ˆ
¯
B = {x ∈ Rp : ∀j ∈ [1, l] : B̂j(x) ≥ 0}, (6.71)
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ˆ
¯
S uk

(x) = {uk ∈ U : k ∈ [0, N ] : ∀j ∈ [1, l] :

Lf B̂(xk) + LgB̂j(xk)uk + α2(B̂j(xk)) ≥ ν(T )} (6.72)

u∗k = argmin
u∈Rm

uTu− 2uTnomku

s.t. Â(xk)u ≥ b̂(xk) + ν̂1

umin ≤ u ≤ umax

(6.73)

where

Â(xk) =

 LgB̂1(xk)

...

LgB̂l(xk)

 (6.74)

b̂(xk) =

 −Lf B̂1(xk)− α2(B̂1(xk))

...

−Lf B̂l(xk)− α2(B̂l(xk))

 (6.75)

The local input-to-state stability property of the sampled data system then ensures

there exists δj, βj such that
¯
B
⋂

¯
C is forward invariant. To formally state this

result, let the continuous time version of (6.73) be:

u∗ = argmin
u∈Rm

uTu− 2uTnomu

s.t. Â(x)u ≥ b̂(x) + ν̂1

umin ≤ u ≤ umax

(6.76)

Forward invariance of
¯
B
⋂

¯
C for sampled-data systems in the presence of pertur-

bations is formally stated in the following theorem:

Theorem 6.8. Consider the controllable system (6.66). Let
¯
C and ˆ

¯
C be respec-

tively defined by (6.48),(6.42) and (6.70), (6.69) for the twice-continuously differ-

entiable, relative degree two functions hj and ĥj defined by (6.67) for j ∈ [1, l].

For the continuously differentiable, extended class-K function α1 and locally Lip-

schitz continuous, extended class-K function α2, let Bj, B̂j,
¯
B, ˆ

¯
B,

¯
Suk , ˆ

¯
Suk be

defined respectively by (6.45), (6.68), (6.46), (6.71),(6.64), (6.72). If the following

conditions hold:
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1. ˆ
¯
B
⋂ ˆ

¯
C and ˆ

¯
S uk

are non-empty.

2. x(0) ∈ ˆ
¯
B
⋂ ˆ

¯
C

3. u∗ from (6.76) is locally Lipschitz continuous with respect to x.

Then there exists a T ∗ ∈ R>0 such that for all T ∈ (0, T ∗), there exist ν̂, δj, βj, µ

such that for ||d||∞ ≤ µ, the control (6.73) applied to (6.66) ensures x remains in

¯
B
⋂

¯
C for t ∈ [0, NT ).

Proof. First, local input-to-state stability of B̂ is established. The control (6.76) is

a static controller with respect to [74] in that the controller does not hold memory

of previous states. Thus the discretization of (6.76) to (6.73) trivially satisfies the

one-step strong consistency property of [74]. By the formulation of (6.76), each

B̂j is a zeroing control barrier as per Definition 6.3, and thus each B̂j is locally

input-to-state stable via Proposition 5 of [128]. Thus due to the local Lipschitz

continuity of f , g and u∗ from (6.76) , practical input-to-state stability with respect

to the sampled-data control (6.73) is ensured by Corollary 5.1 from [74] such that:

||x||B̂j
≤ KL(||x(0)||B̂j

, t) + γ(||d||∞) + ν1 (6.77)

where ν1 ∈ R>0 and γ is a class-K function.

Let β = γ(||d||∞) + ν1. Forward invariance of Bj

⋂
Cj on the time interval t ∈

[0, NT ) follows from the proof of Theorem 6.3. Repeated application for j ∈ [1, l]

completes the proof.

The following procedure is used to describe how the control barrier functions are

constructed:
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Algorithm 6.1 Control Barrier Function Setup

1: procedure CBF setup(hj, α1, α2, unom)

2: for j ∈ 1, ..., l do

3: Define ĥj from (6.67)

4: Define B̂j from (6.68)

5: Compute Lf B̂j, LgB̂j

6: Choose ν̂j such that ν̂j ≥ νkj(T ) ∀k ∈ 0, ..., N (νkj from (6.62))

7: end for

8: Define ν̂ = max{ν̂j}
9: Define Â(xk) from (6.74) , b̂(xk) from (6.75).

10: Implement u∗k from (6.73).

11: end procedure

6.4 Robust Grasp Constraint Satisfaction

In the following section, input constraints on uk are derived to ensure no slip,

no over-extension, and no excessive rolling are satisfied. Satisfaction of no over-

extension and no excessive rolling constraints is addressed using the zeroing control

barrier functions from Section 6.3, while satisfaction of the no slip condition is

developed as an extension of Chapter 5. The input constraints are then combined

to define the proposed controller to address Problem 6.1.

6.4.1 Grasp Constraint Conditions

In practice, the robotic hand may have limited information about the object and/or

may only have access to embedded sensors including joint angle senors and tactile

sensors to gather information of the grasp. Here model uncertainties are taken

into account to develop a controller that ensures forward invariance of the grasp

constraint-admissible set H . For notation, an approximation is denoted by (̂·)
and the error by ∆(·). For example, the object inertia matrix is defined as Mo =

M̂o + ∆(Mo).

To develop a robust grasp constraint satisfying controller, the approach taken here

is to exploit the robustness properties of zeroing control barrier functions presented

in Theorem 6.8. To do so, first the contact force, fc, must be analyzed with respect

to model uncertainties as it defines the interaction between the hand and object.
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Differentiation of (6.5), and substitution of (6.1) and (6.3) provides an expression

for the contact forces:

fc = B−1ho

(
JhM

−1
h (−Chq̇ + uk + τe) + J̇hq̇− ĠT ẋo +GTM−1

o (Coẋo −we)
)

(6.78)

where Bho = (JhM
−1
h JTh +GTM−1

o G). Note that by Assumptions 6.1 and 6.2, B−1ho
is well defined for all states in H . Furthermore, as with previous notation, f̂c will

denote the approximate contact force, and ∆(fc) denotes the error between the

nominal and exact contact force.

From (6.78), it is clear that the contact force is affected by model uncertainties,

which must be appropriately taken into consideration. In addressing robustness,

note that complete lack of information of the system is extremely limiting, and a

hard problem to address. For practical consideration, several simplifying assump-

tions are made, which are listed as follows:

Assumption 6.5. The approximate friction coefficient satisfies: µ̂ ≤ µ(T ) ≤
µ, where µ(T ) is the conservative friction coefficient to address inter-sampling

behavior as discussed in Chapter 5.

Assumption 6.6. All approximation errors, including ∆(fc), are bounded.

Remark 6.5. From Assumption 6.5, µ̂ defines the lower bound on the allowable

contact friction. In practice, the designer should choose µ̂ for the specified task

where a small µ̂ could be chosen to grasp a larger range of objects, including

slippery objects such as ice, however more control effort will be required to do so.

Assumption 6.6 is valid as contact forces never tend to infinity in practice.

In the following sections, constraints are defined on u to ensure H is forward

invariant despite perturbations that result from model uncertainties.

Contact Force Constraint

Starting with the no slip condition, first note a property of the friction cone in

relation to µ in (6.17). The use of the more conservative friction coefficient, µ̂,

that satisfies Assumption 6.5 in (6.17) implies that (6.17) holds for the true friction

coefficient, µ. Thus µ̂ can be directly substituted for µ in (6.17) to ensure no slip.

Next, the model uncertainties are explicitly investigated to develop a robust means

of ensuring no slip. To do so, let the approximate contact force be explicitly defined
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as:

f̂c = B̂−1ho

(
ĴhM̂

−1
h (−Ĉhq̇ + uk + τ̂e) +

˙̂
Jhq̇− ˙̂

GT ˙̂xo + ĜTM̂−1
o (Ĉo ˙̂xo − ŵe)

)
(6.79)

where B̂ho = ĴhM̂
−1
h ĴTh + ĜTM̂−1

o Ĝ.

By substituting fc with f̂c + ∆(fc), where f̂c is defined as in (6.79), and µ̂ for µ in

(6.17), the following relation must hold to ensure no slip:

Λ(µ̂)RcpB̂
−1
ho ĴhM̂

−1
h uk > Λ(µ̂)Rcp

(
B̂−1ho ĴhM̂

−1
h (Ĉhq̇− τ̂e)

− ˙̂
Jhq̇ +

˙̂
GT ˙̂xo − ĜTM̂−1

o (Ĉo ˙̂xo − ŵe)
)
− Λ(µ̂)Rcp∆(fc) (6.80)

From Assumption (6.6) it follows that the term Λ(µ̂)Rcp∆(fc) is bounded. Thus

to ensure satisfaction of (6.80), and thus (6.17), a tuning parameter ε ∈ R≥0 is

chosen to be larger than the bound on Λ(µ̂)Rcp∆(fc), which is incorporated in the

following no slip constraint:

Λ(µ̂)RcpB̂
−1
ho ĴhM̂

−1
h uk ≥ Λ(µ̂)Rcp

(
B̂−1ho ĴhM̂

−1
h (Ĉhq̇− τ̂e)

− ˙̂
Jhq̇ +

˙̂
GT ˙̂xo − ĜTM̂−1

o (Ĉo ˙̂xo − ŵe)
)

+ 1ε (6.81)

The satisfaction of (6.81) by u thus ensures that the no slip condition (6.17) is

satisfied for an appropriately chosen ε. Let the set of admissible control torques for

Cf be Suf = {u ∈ Rm : (6.81) holds}. This result is summarized in the following

lemma:

Lemma 6.6. Under Assumptions 6.1-6.6, there exists a ε∗ ∈ R≥0 such that if uk

satisfies (6.81) for ε > ε∗, then Cf is forward invariant.

Remark 6.7. As discussed in Chapter 5 slip can occur if perturbations sufficiently

increase the ratio of tangential to normal forces with respect to the contact sur-

face. The use of ε in (6.81) enforces a lower bound of ε/µ̂ on the normal force.

Essentially this ensures the hand is squeezing the object hard enough to resist such

disturbances. Also, recall that in Chapter 5 the use of ε also ensures robustness

to sampling time effects. Note that the no slip constraint presented in (6.81) is

extended from that of Chapter 5 by incorporating an approximate hand-object

model to reduce the conservatism of the original constraint.
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Joint Angle Constraint

The zeroing control barrier functions from Section 6.3 are used here to guarantee

that the hand joints remain inside a desired joint space to prevent over-extension.

First, robustness margins are incorporated into the functions hq, and a conservative

Cq is defined:

ĥqmaxj(q) = −ijq + qmaxj − δqmaxj ,∀j ∈ [1,m]

ĥqminj(q) = ijq− qminj − δqminj ,∀j ∈ [1,m]
(6.82)

ˆ
¯
C q = {q ∈ Rm : ∀j ∈ [1,m] : ĥqmaxj ≥ 0, ĥqminj ≥ 0} (6.83)

where ij ∈ R1×m is the jth row of Im×m and δqmaxj , δqmaxj ∈ R≥0 are parameters

defining the robustness margins.

Similarly, the following zeroing control barrier functions are defined with robust-

ness margins to prevent over-extension:

B̂qmaxj(q, q̇) =
˙̂
hqmaxj + α1(ĥqmaxj)− βqmaxj , j ∈ [1,m]

B̂qminj(q, q̇) =
˙̂
hqminj + α1(ĥqminj)− βqminj , j ∈ [1,m]

(6.84)

where α1(h) is a continuously differentiable, extended class-K function, and βqmaxj , βqminj ∈
R≥0 define the robustness margin. Let ˆ

¯
Bq be defined by:

ˆ
¯
Bq = {(q, q̇) ∈ R2m : ∀j ∈ [1,m] : B̂qmaxj ≥ 0, B̂qminj ≥ 0} (6.85)

The zeroing control barrier functions are applied to the dynamics of q where

the control input appears, namely q̈. However (6.1) does not fully represent the

effect of u as the contact forces, fc, are also dependent on uk as shown in (6.78).

Substitution of (6.78) in (6.1) define the proper system dynamics for the constraint

set Cq:

q̈ = M−1
h (Im×m + JTh B

−1
ho JhM

−1
h )uk +M−1

h

(
− Chq̇ + τe

− JTh B−1ho
(
JhM

−1
h (−Chq̇ + τe) + J̇hq̇− ĠT ẋo

+GTM−1
o (Coẋo −we)

))
(6.86)
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Following Theorem 6.8, the following conditions must be satisfied to ensure forward

invariance of Cq:

Lf B̂qmaxj + LgB̂qmaxjuk + α2(B̂qmaxj) ≥ ν̂q,

Lf B̂qminj + LgB̂qminjuk + α2(B̂qminj) ≥ ν̂q, ∀j ∈ [1,m] (6.87)

where ν̂q ∈ R≥0 is a tuning parameter to ensure robustness to inter-sampling

effects.

To ensure (6.87) holds, it is enforced as a constraint on the control input, uk. How-

ever (6.86) requires knowledge of the uncertain object parameters/states. Instead

the nominal model of (6.86) is used in which all uncertain terms are replaced by

their respective approximations. The appropriate concatenation of all constraints

(6.87) with the nominal model results in the following constraint:

Âquk ≥ b̂q + ν̂q1 (6.88)

where Âq ∈ R2m×m and b̂q ∈ R2m are defined in the Appendix.

Let the set of admissible control torques for Ĉq be Suq = {uk ∈ Rm : k ∈ [1, N ] :

Âquk ≥ b̂q + ν̂q1}.

Contact Location Constraint

The zeroing control barrier functions are also used to ensure the contact points

remain in the fingertip workspace. Robustness margins are incorporated into hrl
and used to define the conservative Cr:

ĥr1(ξcfi) = acfi − amin − δr1
ĥr2(ξcfi) = −acfi + amax − δr2
ĥr3(ξcfi) = bcfi − bmin − δr3
ĥr4(ξcfi) = −bcfi + bmax − δr4

(6.89)

ˆ
¯
C r = {ξcf ∈ Rm : ∀l ∈ [1, 4] : ∀i ∈ [1, n] : ĥrl(ξcfi) ≥ 0} (6.90)

where δrl ∈ R≥0 define the robustness margins for l ∈ [1, 4].
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Let the robust zeroing control barrier functions to prevent excessive rolling be

defined by:

B̂rl(ξcfi , ξ̇cfi) =
˙̂
hrl(ξcfi) + α1(ĥrl)− βrl , l ∈ [1, 4] (6.91)

where βrl ∈ R≥0 defines the robustness margins for l ∈ [1, 4]. Let ˆ
¯
Br be defined

by:

ˆ
¯
Br = {(ξcf , ξ̇cf ) ∈ R4n : ∀l ∈ [1, 4] : ∀i ∈ [1, n] : B̂rl(ξcfi , ξ̇cfi) ≥ 0} (6.92)

The zeroing control barrier functions are applied to the dynamics of ξcfi where the

control input appears, namely ξ̈cfi . The derivation of ξ̈cfi is quite involved and is

broken down into the following steps. For ease of notation let Hi := H(ξcfi , ξcoi , ψi)

be defined by:

Hi = M−1
cfi

(Kcfi +RψiKcoiRψi)
−1

[
0 −1 0

1 0 0

]
(6.93)

First, JsiEiq̇ is substituted for ωfi in (6.13), which is then differentiated, resulting

in :

ξ̈cfi =
(
ḢiRcip +HiṘcip

)
(ωfi − ωo) +HiRcip

[
03×3 I3×3

] (
J̇siq̇i + JsiEiq̈− ẍo

)
(6.94)

Further substitution of (6.1) and (6.3) into (6.94) results in:

ξ̈cfi =
(
ḢiRcip +HiṘcip

)
(ωfi − ωo) +HiRcip

[
03×3 I3×3

] (
J̇siq̇i

+ JsiEiM
−1
h (−Chq̇− JTh fc + τe + uk −M−1

o (−Coẋo +Gfc + we)
)

(6.95)
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Next, the contact force (6.78) is substituted into (6.95) and the control input

terms, u, are grouped together:

ξ̈cfi = HiRcip

[
03×3 I3×3

] (
JsiEi − (JsiEiM

−1
h JTh

+M−1
o G)B−1ho Jh

)
M−1

h uk +
(
ḢiRcip +HiṘcip

)
(ωfi − ωo)

+HiRcip

[
03×3 I3×3

](
J̇siq̇i + JsiEiM

−1
h

(
− Chq̇

− JTh B−1ho
(
JhM

−1
h (−Chq̇ + τe) + J̇hq̇− ĠT ẋo

+GTM−1
o (Coẋo −we)

)
+ τe

)
−M−1

o

(
− Coẋo

+GB−1ho

(
JhM

−1
h (−Chq̇ + τe) + J̇hq̇− ĠT ẋo

+GTM−1
o (Coẋo −we)

)
+ we

))
(6.96)

Indeed, the dynamics of ξcfi are convoluted, however from (6.96) it is clear that ξ̈cfi

is a control affine system. Following the approach from Theorem 6.8, the following

condition must be satisfied to ensure forward invariance of Cr:

Lf B̂rl + LgB̂rluk + α2(B̂rl) ≥ ν̂r1, ∀l ∈ [1, 4],∀i ∈ [1, n] (6.97)

where ν̂r ∈ R≥0. To ensure (6.97) holds, it is also enforced as a constraint on

uk. The nominal version of (6.96) is used in which uncertain parameters are

replaced by their appropriate approximations. The appropriate concatenation of

all constraints (6.97) with the nominal model results in the following constraint:

Âruk ≥ b̂r + ν̂r1 (6.98)

where Âr ∈ R4n×m and b̂r ∈ R4n are defined in the Appendix.

Let the set of admissible control torques for ensuring the contacts remain inside

the fingertip workspace be Sur = {uk ∈ Rm : k ∈ [0, N ] : Âruk ≥ b̂r + ν̂r1}.

Actuator Constraints

Finally, actuators are limited to a finite actuation range in real-life applications.

To ensure the proposed controller is implementable on real systems the following
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actuator constraint is defined:

umin ≤ uk ≤ umax (6.99)

where umin,umax ∈ Rm denote the minimum and maximum allowable torque val-

ues, respectively. Let the set of bounded control torques be Suτ = {uk ∈ Rm :

k ∈ [0, N ] : umin ≤ uk ≤ umax}.

Proposed Control

Thus far, the constraints (6.81), (6.88), and (6.98) have been presented to prevent

slip, joint over-extension, and excessive rolling, respectively. In this subsection,

the control law is proposed that satisfies these constraints for a given nominal

controller.

Motivated by the notion of safety-critical control [4, 99], a novel controller is pro-

posed that admits a nominal manipulation controller, unom ∈ Rm, and outputs a

control torque that minimizes ||u−unom||2, while adhering to the grasp constraints

(6.81), (6.88), (6.98), and (6.99). The continuous-time proposed control law is:

u∗ = argmin
u

uTu− 2uTnomu

s.t. Âu ≥ b̂

umin ≤ u ≤ umax

(6.100)

where Â = [ÂTs , Â
T
q , Â

T
r ]T , b̂ = [b̂Ts , b̂

T
q , b̂

T
r ]T .

The sampled-data version of the proposed control is:

u∗k = argmin
u

uTu− 2uTnomku

s.t. Âu ≥ b̂ + ν̂h

umin ≤ u ≤ umax

(6.101)

where Â(xk) and b̂k are the respective functions Â and b̂ evaluated at the sampled

state xk, and ν̂h = [ν̂q1
T , ν̂r1

T ]T .

Let the set of grasp constraint admissible control torques be:

Su = Suf

⋂
Suq

⋂
Sur

⋂
Suτ (6.102)
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The following assumption is made to ensure that a solution to (6.100) exists:

Assumption 6.7. The set of grasp constraint admissible control torques Su is

non-empty.

The following theorem guarantees that for an exact system model, the imple-

mentation of the proposed control (6.100) ensures satisfaction of the grasp con-

straints and Lipschitz continuity and uniqueness of u∗. The subsequent corollary

shows how the proposed control uses robustness margins to ensure forward in-

variance of H despite model uncertainties. For ease of notation, let c be the

concatenation of the robustness margin terms δqminj ,δqmaxj ,δrl , βqminj ,βqmaxj ,βrl for

all j ∈ [1,m], l ∈ [1, 4].

Corollary 6.1. Suppose Assumptions 6.1-6.7 hold for the controllable system

(6.1), and the hand-object model is known. For continuously differentiable, ex-

tended class-K function α1, and extended class-K function α1, suppose that Cf ,
ˆ
¯
Bq

⋂ ˆ
¯
C q,

ˆ
¯
Br

⋂ ˆ
¯
Cr are non-empty, and fc(0) ∈ Cf , (q(0), q̇(0)) ∈ ˆ

¯
Bq

⋂ ˆ
¯
C q, ξf (0),

ξ̇f (0)) ∈ ˆ
¯
Br

⋂ ˆ
¯
C r. Then there exists ν̂h, ε such that u∗ from (6.101) with c ≡ 0

applied to (6.1) ensures (fc,q, ξcf ) remains in H for t ∈ [0, NT ).

Proof. By Assumptions 6.1-6.4, and for (fc,q, ξf ) ∈ H , the constraints (6.81),

(6.88), and (6.98) are well defined. By Lemma 6.6, fc remains in Cf for all t ∈
[0, NT ). By Assumption 6.3 and Definition 6.3, all terms in (6.81), (6.88), (6.98),

(6.99) are locally Lipschitz continuous between sampling periods. Furthermore,

by Assumption 6.7, the constraint set is feasible for all t ≥ 0. The conditions of

Theorem 6.7 are satisfied such that q remains in
¯
Cq, and ξcf remains in

¯
Cr for all

t ∈ [0, NT ), and the proof is complete.

Corollary 6.1 ensures forward invariance of H when no perturbations are present.

As discussed in Section 6.3 and addressed in deriving the constraints of (6.100),

the proposed control is also robust to model uncertainties. For a sufficiently large

c, the proposed control ensures the states remain within H . The robustness of

the proposed control is formally stated as follows:

Corollary 6.2. Suppose Assumptions 6.1-6.7 hold for the controllable system

(6.1). For continuously differentiable, extended class-K function α1, and extended

class-K function α1, suppose that Cf , ˆ
¯
Bq

⋂ ˆ
¯
C q,

ˆ
¯
Br

⋂ ˆ
¯
Cr are non-empty, and

fc(0) ∈ Cf , (q(0), q̇(0)) ∈ ˆ
¯
Bq

⋂ ˆ
¯
C q, ξf (0), ξ̇f (0)) ∈ ˆ

¯
Br

⋂ ˆ
¯
C r. Furthermore,

suppose u∗ defined by the continuous time control of (6.100) is locally Lipschitz
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continuous. Then there exists ν̂h, ε, c such that u∗ from (6.100) applied to (6.1)

ensures (fc,q, ξcf ) remains in H for t ∈ [0, NT ).

Proof. The proof follows from the same argument as Corollary 6.1 with the use of

Theorem 6.8 in place of Theorem 6.7.

Remark 6.8. The proposed grasp constraint satisfying controller is dependent on

Assumption 6.7 (i.e. non-empty control set Su). However, there is no guarantee

that the implementation of (6.101) will ensure Assumption 6.7 holds. Furthermore,

robustness of the proposed control is dependent on the local Lipschitz continuity

of u∗. To address these issues, it is important to acknowledge that lack of available

control torques implies that the grasp is compromised. Fortunately, the sampled-

data formulation allows for solutions. First, local Lipschitz continuity can be

checked by storing the previous states and control inputs and checking: ||u∗k −
u∗k−1|| ≤ a||xk − xk−1|| for a ∈ R>0. If Assumption 6.7 fails due to infeasibility of

(6.101) or the local Lipschitz check returns false, then an event can be triggered

to indicate that the grasp is compromised. In the event this occurs, the control

can be switched to the control from Chapter 5 where the reference object position

is the previous feasible object state (i.e r = xk−1). This switch will cause the

manipulation motion to halt and prevent the hand-object states from exiting the

feasible grasp constraint set.

It is important to emphasize the importance of tactile sensing in the proposed

control. First, tactile sensors that provide contact location measurements are

required to determine the orientation of the friction cone. The friction cone is

used in (6.81) to enforce the no slip condition and discussed previously in Chapter

5. Second, the contact location measurements, ξcfi, are required to determine

how close the system is to violating the fingertip workspace constraint (6.21).

These measurements are then used in the control (6.101) to ensure the no slip and

fingertip workspace constraints hold throughout the grasp/manipulation task.

6.4.2 Implementation for Tactile-based Blind Grasping

A nominal hand-object model is required to implement the proposed control, and

is dependent on the information available to the on-board controller. As with

the theme of this thesis, the proposed control is implemented for the practical

scenario of tactile-based blind grasping in which the hand only has access to tactile

sensors that provide contact location and joint angle sensors, without any a priori
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information about the object model. In tactile-based blind grasping, the object

parameters including the object mass, mo ∈ R>0, inertia matrix fixed to the object

body, Io ∈ R3×3, object center of mass, po, orientation Rpo, external disturbance

we, center of mass velocities vo, ωo, object local geometry Mcoi , Kcoi , Tcoi , contact

locations ξco, ξ̇co, and friction coefficient µ are unknown to the on-board controller.

Possible approximations that could be made when no object information is known

a priori are given as follows. For mo, choose m̂o to upper bound the set of antic-

ipated object masses to be grasped. Manipulation tasks are typically applied to

small objects with respect to the robotic hand. For example, in-hand manipula-

tion would typically not be performed to manipulate an object 20x larger/heavier

than the robotic hand. Additional conservativeness is added to the control by

choosing m̂o large. This is due to the fact that the model will anticipate a large

mass/inertia object. A heuristic choice for approximating the object inertia, Io, is

to use the inertia of a cuboid based on the approximated mass m̂o:

Îo =


1
12
m̂o(ĥ

2 + d̂2) 0 0

0 1
12
m̂o(ŵ

2 + d̂2) 0

0 0 1
12
m̂o(ŵ

2 + ĥ2)

 (6.103)

where ĥ, ŵ, d̂ ∈ R>0 are the height, width, and depth of the cube, respectively.

Next, consider the approximation of the object position and orientation. Again

due to lack of available information, one choice for the object pose is based on the

grasp centroid and virtual frame related to fingertip positions [68, 123]:

p̂o(q) =
n∑
i=1

pti(q), R̂po(q) = [ρx(q), ρy(q), ρz(q)] (6.104)

where pti ∈ R3 is the vector from P to the center of the fingertip surface for

contact i and ρx = ρy × ρz, ρy =
pt1−pt2
||pt1−pt2 ||2

, ρz =
(pt3−pt1 )×(pt2−pt1 )
||(pt3−pt1 )×(pt2−pt1 )||2

. Note the

limitations of the virtual frame mentioned in [123] do not apply here. If more than

three fingers are used in the grasp, the designer need only choose three fingers to

define the approximate object orientation. There is no need to incorporate all

fingers to define the virtual frame for this application.
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The approximate object velocity naturally extends from the choice of object pose

from (6.104), where ˙̂xo =

[
v̂o

ω̂o

]
is defined by:

v̂o =
n∑
i=1

∂pti
∂q

q̇, (ω̂o)× =
∂R̂po(q)

∂q
q̇ (6.105)

Finally, the local contact surface of the object can be modeled as a flat surface.

The benefit of modeling the object surface as flat is two-fold. First, the complexity

of the kinematics/dynamics related to ξcfi is greatly reduced. This is readily seen

from the curvature tensor, metric tensor, and torsion form for a flat surface [91]:

K̂coi = 02×2, M̂coi = I2×2, T̂coi = 01×2 (6.106)

As a result, the approximations of ξcoi and ψi and their derivatives are no longer

required.

Furthermore, modeling the object surface as flat incorporates more robustness

into the controller. Using the transformation presented in [89], the rate of the arc

traversed over the fingertip surface is written as:

ṡi = (Kcfi +RψiKcoiRψi)
−1

[
−ωy
ωx

]
(6.107)

where si ∈ R2 is the arc length traversed over the fingertip surface, and ωx, ωy ∈ R
are components of the relative angular velocity between the object and fingertip

contact frame. Note that the relation between the angular velocity and ṡi is defined

by the inverse of the relative curvature: Kcfi + RψiKcoiRψi . Thus the smaller the

relative curvature (i.e. smaller Kcoi for a fixed Kcfi) the further the contact point

travels for the same angular velocity. If Kcoi is chosen as small as possible (i.e. that

of a flat surface), then the control will anticipate the contact points to traverse the

fingertips as fast as possible. Thus by approximating the object as a flat surface,

additional conservativeness is incorporated into the proposed control with regards

to excessive rolling.

For completeness, the uncertain object parameters/states enter the system dy-

namics via M̂o, Ĉo, Ĝ,
˙̂
G as follows:
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M̂o =

[
m̂oI3×3 03×3

03×3 R̂poÎoR̂
T
po

]
(6.108)

Ĉo =

[
03×1

(ω̂o)× R̂poÎoR̂
T
po

]
(6.109)

Ĝi =

[
I3×3, ..., I3×3

(pc1 − p̂o)×, ..., (pcn − p̂o)×

]
(6.110)

˙̂
GT
i =

[
03×3, ..., 03×3

(ṗc1 − v̂o)×, ..., (ṗcn − v̂o)×

]
(6.111)

Remark 6.9. Note these are heuristic approximations that can be made to imple-

ment the proposed control. In some cases model parameters may be set to zero if

significant robustness margins are available to account for the model uncertainty.

Furthermore, the proposed control is not restricted to tactile-based blind grasping

scenario, but can incorporate other available sensing/knowledge to improve the

nominal model.

6.5 Results

The proposed control has been presented with guarantees of forward invariance

with respect to the set H . This guarantee of forward invariance ensures that

the object does not slip, the hand does not exceed joint limits, and the contact

locations do not exceed the workspace of the fingertips. Furthermore, the control

is robust to uncertainties in the hand-object model. In this section, the proposed

control is implemented in simulation and hardware to demonstrate robust grasp

constraint satisfaction.

6.5.1 Simulation Results: Constraint Satisfaction with Ex-

act Hand-Object Model

Numerical simulations are used here to demonstrate the proposed control in rela-

tion to existing manipulation controllers that assume the grasp constraints hold.

The purpose of this first demonstration is to show that despite having exact knowl-

edge of the hand-object model, a poorly chosen reference implemented with a sta-

bilizing nominal control can result in grasp failure. However, the use of the nominal
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control with the proposed constraint satisfying control (6.100) will prevent grasp

failure.

The nominal controller is the computed torque control [91, 31]:

unom = JTh (G†um + uf )− τe (6.112)

um = MhoP (r̈ +Kpe +Kdė) + Choẋo −we (6.113)

uf = kf (p̄c − pc1 , p̄c − pc2 , ..., p̄c − pcn) (6.114)

Mho = Mo +GJ−Th MhJ
−1
h GT (6.115)

Cho = Co +GJ−Th (ChJ
−1
h GT +Mh

d

dt
[J−1h GT ]) (6.116)

where the object pose xo = (po, γo) ∈ R6 is defined by the object inertial position

po ∈ R3 and Euler-angle parameterized orientation γo ∈ R3 [31]. The matrix

P := P (xo) ∈ R6×6 defines the kinematic mapping (ṗo, γ̇o) 7→ (vo, ωo) for the

object inertial velocity vo ∈ R3 and angular velocity ωo ∈ R3 [31]. The terms

Kp, Kd ∈ R6×6 are the respective proportional and derivative positive definite

control gains, r ∈ R6 is the reference command, and e = r − xo is the error.

Note uf is the internal force control used in [116, 123] where p̄c = 1
n

∑n
i=1 pci and

kf ∈ R>0 is the squeezing gain term. The gains chosen for the simulation are

Kp = 100 ∗ I6×6, Kd = 25 ∗ I6×6, kf = 50.

The reference r is decomposed into r(t) = xo(0) + ∆r(t), where xo(0) is the initial

object state, and ∆r(t) is the desired reference change. A reference change of

∆r(t) = (0, 0, 0.0125t cos(2t) + 0.1, 0, 0, 0.3 cos(2t)) is provided to twist and pull

the object about the Z-axis of the inertial frame, which is depicted in Figure 6.4

along with the initial static hand-object configuration grasping a cubic object.

The hand used in the simulation is Hand Model 1, and the simulation parameters

are listed in Table 6.1. Note the only disturbance acting on the system is gravity.

Implementation of the contact location constraints requires appropriate parame-

terizations of the fingertip surface to satisfy Assumption 6.4. The parameterization

used here is cfi = [−R cos(afi) cos(bfi), R sin(afi),−R cos(afi) sin(bfi)]
T . The asso-

ciated box constraints to define the fingertip workspace are: −π/2 < afi < π/2,

−π < bfi < 0. The sampling time margin was set to ν̂h = 0.00011, and ε was set

to ε = 0.0001.
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The joint angle limits for each finger are qmaxi = (3π/4, π/3, 3π/4), qmini =

(0,−π/3, 0), for i ∈ [1, 3]. The extended class-K functions used in the control

barrier functions of (6.100) are α1(h) = 2h, α2(h) = h3.

The simulations were performed using Matlab’s ode3 integrator. The simulation

time was 15 seconds, but simulations were stopped if the contact points exceed

the fingertip workspace.

Table 6.1: Simulation Parameters

Link dimensions 0.05 m× 0.05 m× 0.3 m
Link mass 0.25 kg

Link moment of inertia diag([0.0019, 0.0001, 0.0019]) kgm2

Fingertip radius 0.06 m
Object dimensions 0.260 m× 0.260 m× 0.260 m

Object mass 0.11 kg
Object moment of inertia diag([0.0058, 0.0214, 0.0214]) kgm2

Friction coefficient µ = 0.9
Initial po [0.00, 0.00, 0.41] m
Initial γo [0.0, 0.0, 0.0] rad

(a) Isometric view. (b) Top view.

Figure 6.4: Simulation setup with initial static hand-object configuration.

The implementation of the nominal control resulted in a failed grasp as seen in the

multiple constraint violations including slip, joint over-extension, and excessive

rolling in Figure 6.5. The gray regions denote areas outside of the constraint

admissible state space. Figures 6.5e and 6.5f show that the nominal control is

able to track the reference trajectory until failure occurs at t = 12.3 s. Figure

6.5c shows that the joint angles, q3, for each contact point exceed the prescribed

joint limits and pass through singular configurations at t = 12.28 s. By reaching a

singular configuration, the nominal control values becomes exceedingly large due
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to the matrix inverses of (6.112). Thus the singular configuration results in the

step changes seen in the hand-object states, including bcfi and q. Figure 6.5b shows

that as the nominal control rotates and translates the object to track the reference

pose, all of the contact trajectories, bfi , exceed the fingertip workspace resulting

in loss of contact. Figure 6.5d shows the required friction, βi =
√
f 2
xi

+ f 2
yi
/fni

, which is the ratio of tangential to normal forces. This is the same term used

to discuss slip in Chapter 5, and denotes the friction required at each contact to

perform the manipulation motion. If the required friction βi exceeds the friction

coefficient µ, then the contact points slip. Figure 6.5d shows that indeed the

contact points slip at the end of the simulation as the contact points leave the

fingertip workspace. Thus the use of the nominal control alone results in grasp

failure.

Figure 6.6 shows the grasp states resulting from the implementation of the nominal

control (6.112) applied using the proposed control (6.100). Figures 6.6a and 6.6b

show the contact trajectories remain inside the fingertip workspace. Figures 6.6c-

6.6e show that the joint angles also remain within the defined joint angle limits.

Figure 6.6f shows the required friction, βi, remains below the slipping region. The

combined satisfaction of all grasp constraints validates the forward invariance of

the grasp constraint admissible set H as per Corollary 6.1. Figures 6.6g and

6.6h depict the resulting tracking error as the proposed control prevents infeasible

manipulation motions. Note that the constraint satisfying control intervenes near

t = 9s to deviate from the reference position, whereas the nominal control is

able to achieve good tracking at this time (see Figure 6.5e). The reason for this

conservativeness of the proposed control is due to the use of α1, which restricts

large velocities as the state approaches the constraint boundary. This concept

was discussed previously in Example 6.1. A less conservative performance can be

attained by choosing α1 with a steeper slope near the constraint boundary (see

Figure 6.3). These results show that the proposed controller prevents grasp failure

even when the high-level planner provides an infeasible reference command for the

given nominal control.

6.5.2 Simulation results: Constraint Satisfaction for Tactile-

based Blind Grasping

The purpose of this simulation is to demonstrate constraint satisfaction via the

proposed constraint satisfying controller. These results will demonstrate that the
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(a) Failed grasp configuration (b) Contact points exceed fingertip
workspace

(c) Joint limits exceeded (d) Slip constraint violated

(e) Tracking of position reference. (f) Tracking of orientation reference.

Figure 6.5: Failed grasp for nominal manipulation control without constraint
satisfaction. The simulation is stopped when bfi exceeds the constraint bound-
ary. Note, (G) shows the Z-component of object position and (H) shows the
Z-component of the object orientation. The black dashed line corresponds to
the reference, r, and the red line corresponds to the object state xo. (Nominal
control used is that from [91]).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6: Successful grasp for constraint satisfying controller with exact
hand-object model. Note, (G) shows the Z-component of object position and
(H) shows the Z-component of the object orientation. The black dashed line
corresponds to the reference, r, and the red line corresponds to the object state
xo. (Nominal control used is that from [91]).
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proposed control (6.101) can ensure grasp constraint satisfaction despite distur-

bances that arise from model uncertainties.

The nominal manipulation control used here is the control presented from Chapter

4 which is re-defined here as:

unom = ĴTh

(
(P T Ĝ)†(−Kpe−Kisat(

∫ t

0

e dt)−Kdė) + uf

)
(6.117)

uf = kf (p̄c − pc1 , p̄c − pc2 , ..., p̄c − pcn) (6.118)

sat(x)j =

{
xj, for |xj| ≤ 3

3sign(xj), for |xj| > 3

}
(6.119)

Note the saturation function is used to anticipate integrator wind-up should the

proposed control u∗ from (6.101) diverge from unom. Although the proposed con-

troller can still ensure constraint satisfaction without use of saturation in the

nominal control, it is in general good practice to avoid wind-up from occurring.

The control gains used in the simulation are Kp = 0.26I6×6, Ki = 0.1I6×6,

Kd = 0.125I6×6, and kf = 1.0. The set-point object reference command is

r = x(0) + (0, 0, 0, 0, 0, π/2), where x ∈ R6 is the task state defined by the vir-

tual frame (refer to Chapter 4). Note the same finger parameterizations, contact

location/joint limits, and initial conditions used in Section 6.5.1 are used here.

The proposed constraint satisfying control (6.101) is implemented with the follow-

ing robustness margins: ε = 0.03, δrl = 0.1 rad, βrl = 1.0 rad/s, δqi = 0.1 rad,

βqi = 0.05 rad/s. The extended class-K functions used in this simulation were

α1(h) = 2h and α2(h) = h3. The approximate object model from Section 6.4.2 is

used in the proposed control, and these parameters are purposefully offset from

the true mass parameters. The object mass error was set to ∆(m)o = 0.1 kg,

inertia error set to ∆(I)o = 0.001I3×3 kg m2. The sampling time margin was set

to ν̂h = 0.00011.

Figure 6.7 shows the results of the nominal control as it attempts to track the

set-point reference command by twisting the object about the Z-axis. The plots

show multiple constraint violations including slip, joint over-extension, and exces-

sive rolling, which result in a failed grasp. At t = 0.928 s, the contact location bcf2

exceeded the fingertip surface and the simulation stopped. Figures 6.7g and6.7h

show the reference error for the Z component of the orientation error and final

grasp configuration. Note in Figure 6.7g, the final Z state of 1.394 rad is not actu-

ally feasible due to the singular configurations and joint limits that were exceeded
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during the manipulation motion at t = 0.461 s (see Figure 6.7e) and t = 0.498

s (see Figure 6.7d). Furthermore, the change in gradient between t = 0.4s and

t = 0.5s is most likely a result of the joints approaching and exceeding singularity.

These results demonstrate that the conventional assumption that the grasp con-

ditions hold are not valid and may result in grasp failure despite using a stable

manipulation controller.

Figures 6.8 shows the nominal control implemented with the proposed control

(6.101). The resulting plots show that the proposed control is able to ensure the

grasp states remain in H despite the model uncertainty from the tactile-based

blind grasping implementation. Figure 6.8g shows the tracking error for the Z

component of the orientation error. To prevent grasp failure, the proposed control

prevents the hand-object system from reaching the infeasible reference command.

Remark 6.10. One important note to make regarding the proposed constraint

satisfying control is that it interferes with the nominal controller to avoid grasp

failure. The proposed control is effectively a disturbance on the nominal control

input when the proposed control must intervene to satisfy the grasp constraints.

Although the proposed control ensures grasp constraint satisfaction, there is yet

no analysis of how the nominal control will behave. Thus for implementation,

it is advantageous for the nominal controller to be passive to avoid undesired

manipulation motion. Fortunately, many tactile-based blind grasping controllers

are passivity-based [97].

For completeness, the constraint satisfying control is implemented with respect to

the existing passivity-based nominal manipulation control [116], which is defined

by:

ui = usi + uxi + uri (6.120)

uri = −JToi(J
T
ρxKx∆ρ̃x + JTρyKy∆ρ̃y) (6.121)

uxi =
−fradfd
3
∑

i frad
JToi

(
Kpx(pa − rp)−Kvxṗa

)
(6.122)

usi =
−fd∑
i frad

JToi(pfi − pa)− Ciq̇i (6.123)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.7: Failed grasp for nominal tactile-based blind grasping manipulation
control without constraint satisfaction. The simulation is stopped when bfi
exceeds the constraint boundary. Note, (G) shows the Z-component of object
orientation. The black dashed line corresponds to the reference, r, and the red
line corresponds to the state x. (Nominal control used is that from Chapter 5).
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(a) (b)

(c) (d)

(e) (f)

(g) (h) Final grasp configuration.

Figure 6.8: Successful grasp for constraint satisfying controller in tactile-based
blind grasping. Note, (G) shows the Z-component of object orientation. The
black dashed line corresponds to the reference, r, and the red line corresponds
to the state x. (Nominal control used is that from Chapter 5).
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(a) (b)

(c) (d)

(e) (f)

(g) (h) Final grasp configuration.

Figure 6.9: Successful grasp for constraint satisfying controller in tactile-based
blind grasping. Note, (G) shows the Z-component of object orientation. The
black dashed line corresponds to the reference, r, and the red line corresponds
to the state x. (Nominal control used is that from [116]).
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where Joi =
[
I3×3 (pfti)×

]
Jsi is the Jacobian mapping q̇i 7→ ṗti where pfti

here is the vector from Fi to the center of the hemispherical fingertip. The

term pa is: pa =
∑

i pti , rp ∈ R3 is the position component of the reference,

Kx, Ky, Kpx, Kvx, Ci ∈ R3×3 are positive definite, diagonal gain matrices, frad ∈
R>0 is the fingertip radius, and fd ∈ R>0 is a squeezing gain term. The gains

used in the nominal control are Kx = 2.5I3×3, Ky = 2.5I3×3, Kpx = 2.5I3×3,

Kvx = 1.0I3×3, Ci = 1.0I3 × 3, fd = 1.0.

The terms ∆ρ̃x ∈ R3 and ∆ρ̃y ∈ R3 denote the respective X and Y axis rotation

error. The virtual frame is used in [116] to define the orientation by:

ρ̃y =
pt3 − pt2
||pt3 − pf2)||

(6.124)

ρ̃z =
(pt3 − pt2)× (pt1 − pt2)

||(pt3 − pt2)× (pt1 − pt2)||
(6.125)

ρ̃x =
ρ̃y × ρ̃z
||ρ̃y × ρ̃z||

(6.126)

The reference orientation components ρ̃xd ∈ R3 and ρ̃yd ∈ R3 define the virtual

frame at the desired reference orientation. The orientation error is defined by

∆ρ̃x = ρ̃x − ρ̃xd and ∆ρ̃y = ρ̃y − ρ̃yd . The Jacobians , Jρx , Jρy ∈ R3×3 map ṗti to
˙̃ρx and ˙̃ρy, respectively. Note for consistency, the Euler angle parameterization of

the virtual frame is used here to plot the orientation error.

The constraint satisfying control (6.101) is implemented with the following robust-

ness margins: ε = 0.03, δrl = 0.1 rad, βrl = 1.5 rad/s, δqi = 0.1 rad, βqi = 0.1

rad/s. The extended class-K functions used in this simulation were α1(h) = 2h

and α2(h) = h3. The approximate object model from Section 6.4.2 is used in

the proposed control with ∆(m)o = 0.1 kg, and ∆(I)o = 0.001I3×3 kg m2. The

sampling time margin was set to ν̂h = 0.00011.

Figure 6.9 shows the proposed control also ensuring grasp constraint satisfaction

when implemented on the nominal control from [116]. Note the fail case of the

nominal control (6.120) is not included as it depicts the similar results to that of

(6.117) (See Figure 6.7). The combination of the passivity-based nominal control

with the proposed constraint satisfying control results in convergence to a steady-

state hand-object pose. Figure 6.9e most prominently shows the effect of the

zeroing control barrier functions as the joints q3 of each finger approach, but do
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not violate the constraint boundary. The reason for q3 reaching the constraint

boundary is due to the fact that this nominal control does not account for gravity

disturbances. As gravity pull the object in the negative Z direction, the joints

q3 approach the constraint boundary. The zeroing control barrier functions then

oppose the effect of gravity to ensure constraint satisfaction.

It is important to note the discrepancy between the steady-state Z orientation of

0.190 rad from the nominal control (6.120) (see Figure 6.9g) and the final orienta-

tion of 0.856 rad from (6.117) (see Figure 6.8g). The two controllers reach different

steady state values due to how the constraint satisfying controller intervenes to

prevent constraint violation. This is seen as q3 quickly reaches the constraint

boundary for (6.120) and thus prevents the object state from achieving the same

tracking performance as (6.117).

6.5.3 Hardware Results

The purpose of the hardware implementation is to demonstrate the effectiveness

of the proposed control in practice. This is done by performing three demonstra-

tions. In the first demonstration, a feasible reference is provided to the proposed

control to show that when no constraint violation occurs, the proposed control

admits the original nominal control law. In the second demonstration, a compro-

mising reference is provided to the nominal control to show that when the grasp

constraints are not formally addressed, instabilities may occur in the hand-object

system that result in grasp failure. In the final demonstration, the same compro-

mising reference is provided to the proposed control to show how the proposed

method ensures constraint satisfaction.

The Allegro Hand is used to implement the controllers and is depicted in Figure

6.10. The Allegro Hand interfaces to the computer via a High-Speed CAN with

a fixed sampling time of Ts = 0.003s and has a maximum torque output for each

motor of 0.65 Nm. Tactile sensors are emulated (see Chapter 3) to provide approx-

imate contact measurements of ξcf to the proposed controller. More information

of the Allegro Hand hardware can be found in Chapter 3. Again, the implemen-

tation of the proposed control is as a tactile-based blind grasping scheme in which

only measurements of q, ξcf are available. Thus robustness in this context refers

to uncertainty in the object model and state.
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(a) Top View (b) Side View

Figure 6.10: Allegro Hand setup.

The nominal object used to implement the proposed control is a cube of side

lengths 0.04 m and mass of m̂o = 0.05 kg. The true object used in the demonstra-

tions is a sphere of radius 0.0375 m and mass of 0.09 kg. Note the difference in

mass and shape also correspond to discrepancies in the object inertia.

The nominal control gains used in the demonstrations are Kp = diag(500, 500,

500, 0.8, 0.8, 0.8), Ki = diag(50, 50, 50, 0.6, 0.6, 0.6), Kd = diag(0.008, 0.008,

0.008, 0.16, 0.16, 0.16), and kf = 60. The set-point object reference command

is r = x(0) + (0, 0, 0, 0, 0, rψ), where rψ ∈ R and the same virtual frame from

Chapter 4 is used to define x. The proposed constraint satisfying control (6.101)

is implemented with the following robustness margins: ν̂h = 0.01, ε = 0.15, δrj =

0.10 rad, βrj = 0.10 rad/s, δqj = 0.05 rad, βqj = 0.10 rad/s, j ∈ [1, l]. The

extended class-K functions used were α1(h) = 3.3h and α2(h) = 10h3. A four-

sided pyramid was used to approximate the friction cone with associated friction

coefficient of µ̂ = 1.06. The same contact parameterizations from Section 6.5.1

were used here for the hemispherical fingertips. Note, in the following figures, the

gray regions depict the area outside of the constraint admissible set.
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(a) Initial configuration (b) Final configuration

(c) Orientation tracking. (d) Nominal control torque

(e) Proposed control torque

Figure 6.11: Demonstration 1: Proposed control with feasible reference rψ =
0.3 rad.



162
Chapter 6 Robust Grasp Constraint Satisfaction for Robotic Hands: A Control

Barrier Function Approach

(a) Initial configuration (b) Unstable configuration

(c) Orientation tracking. (d) Nominal control torque

Figure 6.12: Demonstration 2: Nominal control only with compromising ref-
erence rψ = 0.7 rad.



Chapter 6 Robust Grasp Constraint Satisfaction for Robotic Hands: A Control
Barrier Function Approach 163

(a) Initial configuration (b) Final configuration

(c) Orientation tracking. (d) Contact location trajectories

(e) Nominal control torque (f) Proposed control torque

Figure 6.13: Demonstration 3: Proposed control with compromising reference
rψ = 0.7 rad.
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Figure 6.11 shows the results of the first demonstration in which the proposed

control (6.101) is implemented with the nominal control for the feasible reference,

rψ = 0.3 ± 0.06 rad. Figure 6.11c shows the ψ component of the state x reach

within the reference tolerance for a successful manipulation, and the final configu-

ration is depicted in Figure 6.11b. The proposed control torque (see Figure 6.11e

closely matches the nominal control torque (see Figure 6.11d). This demonstra-

tion illustrates how the proposed control admits the nominal controller to achieve

the desired manipulation motion with limited interference, and successful manip-

ulation. The following demonstration investigates the use of the nominal control

alone to reach a compromising reference command.

In the second demonstration, shown in Figure 6.12, the nominal control alone is

implemented for the compromising reference rψ = 0.7±0.06 rad. The plots clearly

depict the unstable behavior of the system as the nominal control attempts to reach

the reference. Figure 6.12b shows the unstable configuration of the hand that

results in loss of contact and grasp failure. Note, Figure 6.12d shows the nominal

control exceeding the actuation capabilities of the hand. This demonstration shows

that when no proposed control is implemented, the nominal control is subject

to instabilities and ultimately grasp failure for a compromising reference. The

final demonstration will investigate how the proposed control compensates for

this compromising reference.

Figure 6.13 shows the results of the final demonstration in which the proposed con-

trol (6.101) is implemented for the same compromising reference of rψ = 0.7±0.06

rad. Figure 6.13c shows the ψ component of x reaching a steady-state value out-

side of the reference tolerance, with the final configuration shown in Figure 6.13b.

The reason for this steady-state offset is that the proposed control prioritizes con-

straint satisfaction over implementation of the nominal control. Figures 6.13e and

6.13f show the deviation between nominal and proposed control torque as the pro-

posed control intervenes to ensure constraint satisfaction. Figure 6.13d shows the

trajectory of acfi , an element of ξcf , as acf1 approaches the constraint boundary

of
¯
Cr. The plots show that the proposed control prevents ξcf from exceeding the

constraint set
¯
Cr to enforce grasp constraint satisfaction in the presence of model

uncertainty and sampling time effects.

These results highlight the use of the proposed control barrier functions to ensure

grasp constraint satisfaction. However there are still limitations of this approach to

be addressed. One limitation is the trade-off between robustness and performance.

This is most drastically seen in the implementation of the constraint satisfying
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control with the nominal control from [116]. As mentioned, Figure 6.9g shows

that the Z component of the object state is only able to reach a steady-state value

of 0.190 rad while the control from Chapter 4 is able to reach 0.856 rad. It is

not yet clear how the implementation of the zeroing control barrier functions will

affect the performance of the nominal control.

One observation is that the cost ||u−unom||2 may not adequately reflect the desired

performance to the reference. For example, the control torque u typically consists

of manipulation component to move the object, and an internal force component

to dictate how to squeeze the object. Depending on how the nominal control is

defined, the cost ||u−unom||2 may favor the internal force component, which would

result in poor tracking performance. This suggests that the cost function should

be specifically tailored to each nominal control, and a new cost function may be

required to accurately reflect performance.

Other critical components to the manipulation performance are the robustness

margins. Due to model uncertainties that naturally arise in tactile-based blind

grasping, robustness margins are inevitably required to ensure constraint satisfac-

tion. Large robustness margins restrict the manipulation capabilities of the hand.

This is again highlighted by the tracking performance from Figures 6.9g and 6.8g.

In contrast, when exact hand-object models are available, the performance is sig-

nificantly improved (see Figures 6.6g and 6.6h). Should the robustness margins

be too large, the proposed control may return the trivial solution to not move the

object at all. This motivates the need to define a “good” tracking performance

metric for constraint satisfaction, and determine a relation between this metric

with the robustness margins.

Another limitation is the difficulty to tune the many parameters including robust-

ness margins βrj , βqj , extended class-K functions α1, α2, in addition to choosing

appropriate object model parameters. As mentioned previously, conservative ro-

bustness margins will limit the manipulation capabilities of the hand. However

if these margins are too large, the quadratic program (6.101) may be infeasible.

One method to address infeasibility is to restrict the allowable state velocities, as

discussed in Example 6.1, by appropriate choice of α1. Reducing the state veloci-

ties imply reduced control effort keep the states within their respective constraint

sets. However it is not yet clear how α1 should be chosen to improve feasibility,

particularly with respect to the control bounds umin,umax. Thus there is still need

for tuning guidelines to ensure feasibility and robustness of the proposed control.
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6.6 Conclusion

In this chapter, a novel grasp constraint satisfying controller was developed to

support the implementation of existing object manipulation controllers from the

literature. To prevent grasp failure, the set of safe grasping states was defined

to ensure the object does not slip, the joints do not overextend, and the contact

locations remain on the fingertip surface. The constraint satisfying control is based

on a novel form of zeroing control barrier functions presented here. The zeroing

control barrier function formulation considers robustness to model uncertainties

and extends to sampled-data systems. The proposed controller was implemented

in simulation, both for an exact hand-object model and for tactile-based blind

grasping, and in hardware to validate the efficacy of the method.

6.7 Appendix

The joint constraint-related terms Aq and bq are:

Âq =

[
Im×m

−Im×m

]
M̂−1

h (Im×m − ĴTh B̂−1ho ĴhM̂
−1
h ) (6.127)

b̂q =



b̂qmin1
...

b̂qminm

b̂qmax1
...

b̂qmaxm


(6.128)

where

b̂qminj = −ijM̂
−1
h

(
− Ĉhq̇− ĴTh B̂−1ho

(
ĴhM̂

−1
h (−Ĉhq̇ + τ̂e)

+
˙̂
Jhq̇− ˙̂

GT ˙̂xo + ĜTM̂−1
o (Ĉo ˙̂xo − ŵe)

)
+ τ̂e

)
− ∂α1

∂ĥqminj

˙̂
hqminj − α2(B̂qminj) (6.129)
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b̂qmaxj = ijM̂
−1
h

(
− Ĉhq̇− ĴTh B̂−1ho

(
ĴhM̂

−1
h (−Ĉhq̇ + τ̂e)

+
˙̂
Jhq̇− ˙̂

GT ˙̂xo + ĜTM̂−1
o (Ĉo ˙̂xo − ŵe)

)
+ τ̂e

)
− ∂α1

∂ĥqmaxj

˙̂
hqmaxj − α2(B̂qmaxj) (6.130)

The contact location constraint-related terms Ar and br are:

Âr =


Âr1

...

Ârn

 (6.131)

where

Âri =


1 0

−1 0

0 1

0 −1

 ĤiRcip

[
03×3 I3×3

] (
ĴsiEi

− (ĴsiEiM̂
−1
h ĴTh + M̂−1

o Ĝ)B̂−1ho Ĵh

)
M̂−1

h (6.132)

b̂r =


br1
...

brn

 (6.133)
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b̂ri = −


1 0

−1 0

0 1

0 −1


((

˙̂
HiRcip + ĤiṘcip

)
(ω̂fi − ω̂o)

+ ĤiRcip

[
03×3 I3×3

](
˙̂
Jsiq̇i + ĴsiEiM̂

−1
h

(
− Ĉhq̇

− ĴTh B̂−1ho
(
ĴhM̂

−1
h (−Ĉhq̇ + τ̂e) +

˙̂
Jhq̇− ˙̂

GT ˙̂xo

+ ĜTM̂−1
o (Ĉo ˙̂xo − ŵe)

)
+ τ̂e

)
− M̂−1

o

(
− Ĉo ˙̂xo

+ ĜB̂−1ho

(
ĴhM̂

−1
h (−Ĉhq̇ + τ̂e) +

˙̂
Jhq̇− ˙̂

GT ˙̂xo

+ ĜTM̂−1
o (Ĉo ˙̂xo − ŵe)

)
+ ŵe

)))

−



∂α1

∂ĥr1

˙̂
hr1 + α2(B̂r1)

∂α1

∂ĥr2

˙̂
hr2 + α2(B̂r2)

∂α1

∂ĥr3

˙̂
hr3 + α2(B̂r3)

∂α1

∂ĥr4

˙̂
hr4 + α2(B̂r4)

 (6.134)



Chapter 7

Conclusions and Future Work

7.1 Summary

The goal of this thesis was to develop in-hand manipulation capabilities for robotic

hands, while considering uncertainty in the object model. A common theme in

this work is the idea of tactile-based blind grasping in which the robotic hand only

has access to on-board sensing including tactile and proprioceptive measurements.

This is representative of how humans manipulate objects and can be applied to

real-life applications, such as prosthetic hands.

The main contributions of this thesis are summarized as follows. First, a novel

in-hand manipulation control was presented to achieve semi-global asymptotic

stability for tactile-based blind grasping. The proposed control is able to handle

disturbances that arise from uncertain grasp properties, and is not dependent on

external sensing modalities. The controller was implemented in software and hard-

ware for validation. The control was also extended to consider object reference

tracking and non-constant, bounded disturbances. The trajectory tracking con-

troller was guaranteed to achieve semi-global practical asymptotic stability, and

validated in simulation.

Second, the in-hand manipulation control presented was extended to guarantee

no slip in the presence of sampling time effects and uncertain grasp properties.

An investigation into effects of sampling time on slip was conducted. The analysis

outlined the sufficient properties needed for the proposed control to ensure no slip.

A relationship between fingertip curvature, sensor resolution, and sampling time

169
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was discussed for appropriate design of fingertips to address slip. The proposed

non-slip, robust control was validated in simulation and hardware.

Finally, a novel method of addressing constraint satisfaction was presented. Ze-

roing control barrier functions were extended to sampled-data systems with ap-

propriate conditions to ensure constraint satisfaction and robustness to model

uncertainties. The benefit of the sampled-data approach was discussed in how the

quadratic program could be defined to implement the zeroing control barrier func-

tions on a mechanical system. This approach was then applied to robotic hands

to address the grasp conditions that are typically assumed to hold in the litera-

ture, but never formally guaranteed. The grasp conditions considered were no slip,

no joint over-extension, and no excessive rolling. The proposed grasp constraint

satisfying control was validated in simulation and hardware.

7.2 Future Work

Although novel techniques and analysis were presented in this thesis, there are

future research avenues to pursue in object manipulation using robotic hands.

The focus of this work was for in-hand manipulation, in which the contact points

remain on the fingertip surface. This allows exploiting of rolling to translate/ro-

tate the object within the grasp. However, in-hand manipulation alone does not

fully exploit the potential of robotic hands. Similarly to how humans grasp, if

additional fingers are available, it is advantageous to change contact points during

manipulation. Changing contact points allows for grasp adjustment either for im-

provement, or to increase the manipulation workspace. This is commonly referred

to as “finger-gaiting.” With the robust in-hand manipulation considered in this

thesis, the next avenue of research is to incorporate finger-gaiting. This includes

determining when a grasp should be adjusted, what fingers should be used in the

new grasp, where to place the contact points, and how to switch between in-hand

manipulation controllers. Furthermore, this ability could be extended to legged

robotics, which are equivalent to the object manipulation problem considered here.

Another avenue of research lies in the relaxation of the full rank hand Jacobian,

Jh, grasp map, G, and fully-actuated hands. The proposed techniques are tailored

towards redundant, fully actuated hands. To an extent this can be justified in

that under-actuated hands inherently are less dexterous than fully-actuated ones.

However, under-actuated hands require fewer actuators and thus can be more



Chapter 7 Conclusions and Future Work 171

compact and simpler to design. Similarly, hands with low rank Jh will have simpler

designs, but again limited dexterity. The extension of the proposed methods to

low-rank Jh, underactuated hands is not straightforward. Analysis will need to be

conducted to determine how “close” the dexterity of an under-actuated hand can

be to a fully-actuated one. This will lead to interesting insights into how many

degrees of freedom/actuators are required for a given task. Similarly, a grasp can

be formed with only 2 contact points, although this prevents manipulation about

one-axis and results in a non-full rank grasp map, G. It would be interesting to

investigate how the proposed control can accommodate these non-full rank grasp

scenarios.

Another way to consider low-rank Jacobian, Jh, is to consider contact points that

are not restricted to fingertips. If a contact point is on a different link of the

robotic finger, this is equivalent to the associated manipulator Jacobian not being

full row rank. Humans are able to perform manipulation tasks on most, if not

all, sections of the fingers. In combination with finger-gaiting, this would truly

enhance grasping capabilities of robotic hands. For example, the robotic hand

would be able to transition from an envelope grasp (i.e. the hand encompasses the

object) to a precision grasp (i.e. restricted to fingertips) to perform a manipulation

task, and vice-versa without dropping the object. This would also require methods

to prevent or accommodate for collision between fingers amongst themselves, and

with the palm of the hand.

Additionally, there are implementation-related improvements that could be in-

vestigated for the proposed approach. First, several of the techniques presented

require assumptions that solutions exist. For example, the no slip control from

Chapter 5 requires an assumption that the proposed control (i.e. the quadratic

program) has a solution. Similarly, in Chapter 6, the zeroing control barrier func-

tion quadratic program formulation requires the same assumption that a solution

exists. However, there is no guarantee that a solution exists to either optimization

problem. This can be addressed in two ways. First, an investigation into the

constraints can be conducted to determine what conditions result in existence of

the solution. Equivalently, a certificate could be defined to determine if a given

grasp is “good enough” to conduct the manipulation task. However this is not

trivial, and in some instances a solution may not exist because the grasp itself

is compromised. An alternative approach is to determine what should be done if

a solution does not exist. In this case, finger-gaiting may be useful to adjust a

compromised grasp.
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Finally, the concept of passivity should be revisited. Existing control methods re-

lied on passivity-based control schemes, but did not guarantee robustness to model

uncertainties or grasp constraint satisfaction. However, passivity is an important

property for interactions between the robot and environment. Object manipula-

tion allows robotic hands to use tools in the real-world. As such, the manipulation

task is not limited to re-orienting/positioning the object within the grasp. Object

manipulation also requires interaction of the object (i.e. tool) with the environ-

ment. Passivity allows for stable, safe interactions, which is particularly important

for human-occupied environments. Future work will focus on “passivation” of the

proposed methods presented here.
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