
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Attacking Data Transforming Learners at Training Time

Scott Alfeld,1 Ara Vartanian,2 Lucas Newman-Johnson,1 Benjamin I.P. Rubinstein3

1Department of Computer Science, Amherst College
2Department of Computer Sciences, University of Wisconsin – Madison

3School of Computing and Information Systems, University of Melbourne
1{salfeld, lnewmanjohnson18}@amherst.edu

2aravart@cs.wisc.edu
3brubinstein@unimelb.edu.au

Abstract

While machine learning systems are known to be vulnera-
ble to data-manipulation attacks at both training and deploy-
ment time, little is known about how to adapt attacks when
the defender transforms data prior to model estimation. We
consider the setting where the defender Bob first transforms
the data then learns a model from the result; Alice, the at-
tacker, perturbs Bob’s input data prior to him transforming it.
We develop a general-purpose “plug and play” framework for
gradient-based attacks based on matrix differentials, focus-
ing on ordinary least-squares linear regression. This allows
learning algorithms and data transformations to be paired and
composed arbitrarily: attacks can be adapted through the use
of the chain rule—analogous to backpropagation on neural
network parameters—to compositional learning maps. Best-
response attacks can be computed through matrix multiplica-
tions from a library of attack matrices for transformations and
learners. Our treatment of linear regression extends state-of-
the-art attacks at training time, by permitting the attacker to
affect both features and targets optimally and simultaneously.
We explore several transformations broadly used across ma-
chine learning with a driving motivation for our work being
autogressive modeling. There, Bob transforms a univariate
time series into a matrix of observations and vector of target
values which can then be fed into standard learners. Under
this learning reduction, a perturbation from Alice to a single
value of the time series affects features of several data points
along with target values.

Introduction
While outside the traditional focus of security, attacks on
machine learning systems are inevitable: the very adaptabil-
ity that learners deliver to valuable applications and indus-
tries is also an attack surface to be exploited. A key security
goal in adversarial machine learning research is model in-
tegrity/availability (Barreno et al. 2006) or prediction cor-
rectness more broadly. There, a defender Bob wishes to
learn and then deploy a model after the adversary Alice
has perturbed train or test data. While numerous positive
results demonstrate the potential power Alice might wield
in lab settings (Rubinstein et al. 2009; Biggio et al. 2013;

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Szegedy et al. 2013), little is known about something as
prevalent to practical scenarios as feature transformation
and its effects on optimal attack strategies (Huang et al.
2011). This paper delivers a systematic treatment of opti-
mal best-response attacks against a defender employing data
pre-processing.

A common approach to computing data manipulation at-
tacks is with a so-called gradient-based attack (Biggio et al.
2013), where Alice performs gradient-descent on her loss
function to optimize her data perturbation. To compute the
gradient we employ the theory of matrix differential calculus
(MDC) (Magnus and Neudecker 1988). Manipulating dif-
ferentials is more hospitable to compact calculation, though
from a theoretical point of view the concepts of (matrix) dif-
ferentials and (matrix) derivatives are equivalent. Through
the chain rule, one can compute the gradient of Alice’s loss
for any transform-learner combination via matrix (or tensor)
multiplication. One need only compute the (matrix) deriva-
tive of the learner and the derivative of the transform, sepa-
rately. In this way, MDC yields a “plug and play” framework
for generating adversarial perturbations.

A consequence is that much prior work — which focuses
on settings where Alice directly affects the features or target
values fed into the learner — can be leveraged to compute
attacks against defenders which first transform the data. We
illustrate this phenomenon by computing the derivative of
ordinary least squares (OLS) regression for arbitrary addi-
tive perturbations and three different transforms within the
MDC framework. We further demonstrate the flexibility of
our framework by discussing the case when Bob performs
a series of transforms prior to learning. Where prior work
has often considered an attacker bound to specific types of
alterations (e.g., affecting only target values or a single data
point), we allow for an attacker to simultaneously alter both
features and target values1. It is through algebraic manipula-
tions of matrix differentials that we are able to compute the
derivative of Alice’s loss.

A driving motivation for our work is autoregressive (AR)
modeling. Here one models a value of a time series as some

1Note that this does not mean our attack is unbounded in their
capability. As discussed in more detail, we consider an attacker
with a defined budget limiting their perturbation.

3167

function of the prior d values of the same time series2. For
example, suppose Alice and Bob are negotiating Bob’s pur-
chase of Alice’s company. Bob might take the company’s
historical quarterly profits as a time series and forecast fu-
ture profits. So as to get as high a price as possible, Alice
wants Bob to learn a model which forecasts high profits. She
might “cook the books” and manipulate her company’s past
profit numbers to trick Bob into learning such a model. Note
that she may perform her manipulation in a legal way, by
e.g., channel stuffing or earnings manipulation.

For example, Alice might reschedule sales so as to shift
profits from one quarter to the following (or prior) quarter.
Or she might move her costs (e.g., by changing the tim-
ing of large purchases) to quarters showing poor perfor-
mance. Her hope is then that that later quarters show an
improvement/recovery, which Bob may see as positive mo-
mentum. Prior work (Alfeld, Zhu, and Barford 2016) has
examined deployment-time attacks against a fixed (autore-
gressive) model. By contrast, we compute a training time
attack.

There is strong real-world motivation to study attacks
against autoregressive learners due to their use in e.g., the fi-
nancial sector. In addition, such models demonstrate intrigu-
ing behavior. To learn an autoregressive model, a learner
can transform the time series into a collection of (feature,
target) pairs which are then fed into an off-the-shelf ma-
chine learning algorithm (Bontempi, Taieb, and Le Borgne
2012). This transformation from time series to features and
targets causes single values (e.g., Alice’s profits for a par-
ticular quarter) to be both features and a target value. For
example, suppose Bob models the profits of a quarter as
some function f of the previous two quarters from a se-
ries of examples of the form Qi = f(Qi−1, Qi−2). Alter-
ing Q3’s value will simultaneously affect three examples:
Q3 = f(Q2, Q1), Q4 = f(Q3, Q2), Q5 = f(Q4, Q3). This
fact that the attacker affects both features and target values
distinguishes a contribution of our work from prior works
in which the attacker affects only features (Jagielski et al.
2018) or only target values (Mei and Zhu 2015).

Forming a collection of (features, target) pairs from a time
series is only one example of a data transformation step. Of-
ten data is e.g., centered, normalized, standardized, etc. prior
to learning and if Alice performs her data manipulation at-
tack prior to this transformation, she must account for it in
selecting her attack. We argue that a realistic model of an
attacker is one where she affects data prior to the transfor-
mation (which is, after all, performed by Bob).

This paper is organized as follows. First, we mathemat-
ically define the agents Alice and Bob in terms of their
knowledge and goals. We then calculate the derivative of
Alice’s loss for OLS regression and a range of common data
transformations. To empirically investigate the connection
between Alice’s capability and her effectiveness as an at-
tacker, we perform experiments on synthetic data. We then
discuss the most closely related prior work and conclude.

2d is known as the order or degree of the autoregressive model.

Problem Setup
We denote vectors by lower case bold characters (e.g., vvv,θθθ)
and matrices by upper case bold characters (e.g.,DDD,HHH). We
denote the i-th element of a vector as the unbolded letter
with a subscript (e.g., vi). We denote individual elements
of a matrix with brackets, using colons to denote an entire
row, column (e.g., XXX[:, 1] denotes the first column of X).
We denote the n × n identity matrix as IIIn, and the Kro-
necker product by ⊗. Given a matrix AAA ∈ Rm×n we de-
note the mn × 1 vector formed by stacking AAA’s columns
as Vec(AAA). We denote the mn×mn commutator matrix as
KKK(m,n) whereKKK(m,n)Vec(AAA) = Vec(AAA>) ∀AAA ∈ Rm×n.

For matrices MMM ∈ Ra×b, and NNN ∈ Rc×d, we define the
derivative of MMM with respect to NNN using the “Good Nota-
tion” of Magnus and Neudecker (1988):

∇NNNMMM =
dVec(MMM)

dVec(NNN)>
∈ Rab×cd (1)

The i-th column of ∇NNNMMM (which is an ab × 1 vector) is(
dVec(MMM)
dVec(NNN)i

)>
. Note that this has the effect that when MMM is

a column vector and NNN is a scalar (represented as a 1 × 1
matrix), then the gradient is a row vector.

Agent Definitions
We consider two agents: Alice the attacker and Bob the de-
fender. Alice seeks to manipulate the model that Bob learns
by exercising her limited capability to perturb his input data.
Bob is oblivious to Alice and dutifully performs a transfor-
mation on his input data followed by a machine learning
algorithm to obtain a model. We model Alice as knowing
both the transformation procedure and learning algorithm
Bob uses. In what follows we define the specifics of the two
players.

Bob the Defender After receiving data (potentially per-
turbed by the attacker Alice), Bob performs a two-step pro-
cess. While typically the data that Bob receives will be in
the form of a matrix of features and a vector of target values,
this is not always the case. To remain general and have clean
notation for our later examples, we simply say there are n
scalar values as input data. Bob first performs a transforma-
tion T : Rn → R(p×d) × Rp to obtain a feature matrix XXX
and vector3 of target values yyy. We denote the matrix [yyy |XXX]
asDDD. As a second step, Bob feedsXXX and yyy into some fixed-
length-vector learning algorithm. Specifically, Bob selects a
model θθθ∗ from his hypothesis space Θ which minimizes his
loss `B on the training data:

θθθ∗ = argmin
θθθ∈Θ

`B(vvv;θθθ) (2)

For simplicity we assume a unique minimizer.

Alice the Attacker Alice can perturb the data that Bob
receives (before he performs his transformation on it). Her
goal is to pull Bob’s learned model toward her specific target
θθθtarget, captured by her loss function `A. For example, Alice

3We consider the case of univariate target values for notational
convenience. Multidimensional targets are similar.

3168

may have a target model which forecasts a particular pattern
(e.g., a sharp increase in company profits) on some specific
input (e.g., upcoming profit reports). Alice selects a vector
δδδ ∈ Rn as additive noise: Bob will observe vvv+δδδ, then learn
a model on T (vvv + δδδ). We assume a powerful attacker in
terms of knowledge, but bounded in ability. Namely, Alice
knows vvv and Bob’s T and learner mappings. However, Al-
ice is constrained to select her attack from some set C. This
yields Alice’s bi-level optimization problem:

δδδ∗ = argmin
δδδ

`A(θθθ∗) (3)

s.t. δδδ ∈ C
θθθ∗ = argmin

θθθ∈Θ
`B(vvv + δδδ;θθθ)

Alice solves this problem using the common technique
of projected gradient descent. Beginning with small random
initial δδδ(0), she iteratively updates:

δδδ(t+1) = Projδδδ

(
δδδ(t) − η

(
∇δδδ`A

(
θθθ(t)
))>)

(4)

θθθ(t+1) = argmin
θθθ∈Θ

`B

(
vvv + δδδ(t+t);θθθ

)
(5)

where η denotes her chosen step size and the function Proj
projects its argument to the nearest4 within C:

Proj(δδδ′) = argmin
δδδ
‖δδδ′ − δδδ‖2 (6)

s.t. δδδ ∈ C

The task at hand is then to compute ∇δδδ`A(θθθ). We use
KKT conditions in a similar way to Biggio, Nelson, and
Laskov (2012) and Mei and Zhu (2015). We then apply the
theory of matrix differentials to compute the gradient for Al-
ice.

Specific Instantiations Up to this point we have con-
sidered a general setting for Alice and Bob. In this pa-
per we focus on the setting where Bob performs ordinary
least-squares regression, and Alice is trying to minimize the
squared deviation from Bob’s resulting model to her target.
That is:

`B(vvv;θθθ) =
1

2
‖XXXvvvθθθ − yyyvvv‖2 (7)

`A(θθθ) =
1

2
‖θθθ − θθθtarget‖2 (8)

Similar methods to what we present should generalize to
Bob minimizing convex regularized loss and Alice employ-
ing any differentiable loss.

There are many common examples of Bob’s transforma-
tion T , such as prepending a column of 1’s to account for
a bias term, lifting the original data to a higher dimension
with polynomials, centering or normalizing the data and so
forth. As a driving example, we consider the task of au-
toregression. Namely, Bob’s original input is a univariate
time series vvv of n = |vvv| values and he aims to learn an

4While we project under the `2 norm for computational reasons,
the choice is application specific.

order-d model (using the past d values to predict the next).
Bob employs the common learning reduction of forming
a matrix of p = n − d stacked observations (Bontempi,
Taieb, and Le Borgne 2012). Given the original time series
vvv = {v1, . . . , vn} let

DDDvvv =
∑
i=1

viHHH
(i) (9)

where HHH(s) is a p × (d + 1) matrix with HHH
(s)
ij = 1 if

s = i + j − 1, 0 otherwise. It is convenient to define yyyvvv as
the first column ofDDDvvv , andXXXvvv as the remaining d columns
ofDDDvvv . This matrix and vector can then be plugged into stan-
dard (supervised) learning algorithms. We refer to this trans-
formation as the Hankel transformation, as the resultingDDDvvv
is a Hankel matrix.

We focus on the Hankel transformation as our motiva-
tion due to three observations. First, autoregressive model-
ing is commonly used in the financial sector (where many
actors are motivated to attack systems), while it has re-
ceived relatively little attention from the adversarial learning
community (notable exceptions being Alfeld, Zhu, and Bar-
ford, 2016; Alfeld, Zhu, and Barford, 2017). Second, Hankel
is an example transformation in which the attacker manipu-
lates a very different dataset from what the learner trains on.
While the learner observes features and target values totaling
p× d+ p values, the attacker only manipulates the n values
of vvv. Third, a perturbation to even a single value of vvv alters
both features and target values for the learner. As we discuss
in more detail in Related Work, this rules out all prior meth-
ods for attacking regression as unsuitable to settings where
the learner first performs a Hankel transformation. While the
Hankel transformation is our driving example, other trans-
formations fit into our framework just as easily, which we
discuss below.

Illustration of the Hankel Transformation
For clarity of exposition, we illustrate the Hankel transfor-
mation with the following toy example. Consider a time se-
ries vvv = [a,b,c,d,e,f], and suppose Bob learns a linear
(homogeneous) model of order d = 2. That is, the learner
computes θθθ = [θ1, θ2]> and (at deployment time) it com-
putes v̂i = θ1vi−1 + θ2vi−2 as its prediction. The resulting
matrices are then:

DDDvvv =

f e d
e d c
d c b
c b a

 ,XXXvvv =

e d
d c
c b
b a

 , yyyvvv =

fed
c

Note that Alice perturbing value c will affect two rows of
XXXvvv , as well as the fourth target value in yyyvvv .

Solution Methodolgy
In what follows, we compute∇δδδ`A(θθθ). Prior work has com-
puted this for OLS linear regression but without a tranform
step and only for special cases of the attacker, such as when
Alice can only affect XXX (Jagielski et al. 2018) or when she
can only affect yyy (Mei and Zhu 2015). We use the theory of
matrix differentials to compute this gradient in its general

3169

form, allowing settings where Alice affects both features
and target values simultaneously such as when the Han-
kel transformation is used. In addition, our solution yields
a “plug and play” formulation where transformations and
learning algorithms can be combined freely with one an-
other. Through use of the chain rule, the gradient of the com-
position of these functions is expressed as matrix multipli-
cation.

By the chain rule, and using the fact that θθθtarget is constant
with respect to δδδ:

∇δδδ`A (θθθ) =
(
θθθ − θθθtarget)>∇DDDθθθ︸︷︷︸

Tlearner

∇δδδDDDvvv+δδδ︸ ︷︷ ︸
Ttransform

(10)

Note that Tlearner captures how Bob learns θθθ given data,
whereas Ttransform explicitly captures the fact that Alice is
corrupting the original vvv and Bob’s learner is working with
the transformed version.

In what follows we compute Tlearner for when Bob is per-
forming ordinary least squared (OLS) regression. We then
compute Ttransform for three different transformations. Note
the flexibility that MDC affords; after computing Tlearner
and Ttransform for any (learner, transform) pair, they can be
plugged into (10).

Matrix Differential Background
The differential of a function F : Rn×q → Rm×p is the
linear term in the Taylor expansion of F . By algebraically
manipulating these mathematical objects, we can compute
derivatives (the derivative is the linear operator of this term)
of matrix-to-matrix functions. Formally, for a point CCC ∈
Rn×q , if there exists a real mp × nq matrix AAACCC such that
for all UUU :

Vec(F (CCC +UUU)) = (11)
Vec(F (CCC)) +AAACCCVec(UUU) + Vec(RCCC(UUU))

lim
UUU→000

RCCC(UUU)

‖U‖
= 0 (12)

for some function RCCC , then the (first) differential of F at CCC
is defined by:

dVec(F) = Vec(dF (CCC;UUU)) = AAACCCVec(UUU) (13)

The above definition is adapted from (Magnus and
Neudecker 1988) for notational consistency. We direct the
interested reader to that book for a thorough treatment of
matrix differentials.

Gradient of the Learner
To compute ∇DDDθθθ, we make use of the KKT conditions of
(2) and the implicit function theorem.∇θθθ`B is a function of
both θθθ andDDD and furthermore∇θθθ`B |θ=θ∗ = 000. Since∇θθθ`B
is continuously differentiable and ∇2

θθθ`B is invertible, ∇θθθ`B
defines an implicit function θθθ(DDD) whose Jacobian is given
by:

Tlearner = −
(
∇2
θθθ`B

)−1
(∇DDD∇θθθ`B) (14)

Recall that DDDvvv = [yyyvvv | XXXvvv]. Therefore Tlearner =
[∇yyyvvvθθθ | ∇XXXvvv

θθθ]. Differentiating each side of the matrix sep-
arately, we have

∇yyyvvvθθθ
> = −

(
∇2
θθθ`B

)−1
(∇yyyvvv∇θθθ`B) (15)

∇XXXvvv
θθθ> = −

(
∇2
θθθ`B

)−1
(∇XXXvvv

∇θθθ`B) (16)

To compute (15), we differentiate (7) with respect to θθθ and
then yyyvvv or θθθ respectively, yielding:

∇θθθ`B = XXXvvv
> (XXXvvvθθθ − yyyvvv) (17)

= XXXvvv
>XXXvvvθθθ −XXXvvv

>yyyvvv (18)

⇒∇2
θθθ`B = XXXvvv

>XXXvvv (19)

⇒∇yyyvvv∇θθθ`B = −XXXvvv
> (20)

The first term of the product in (16) is given in (19). To com-
pute the second term, we note that

∇XXXvvv
∇θθθ`B = ∇XXXvvv

(
XXXvvv
> (XXXvvvθθθ − yyyvvv)

)
(21)

= ∇XXXvvv

(
XXXvvv
>XXXvvvθθθ

)
−∇XXXvvv

(
XXXvvv
>yyyvvv

)
(22)

Up to this point we have only used standard rules of matrix
calculus. To compute the two summands of (22), we utilize
matrix differentials. Letting Z = θθθ> ⊗ IIId and Y = IIId ⊗
XXXvvv
>, we have

dVec
(
XXXvvv
>XXXvvvθθθ

)
(23)

= Vec
(
IIId

(
dXXXvvv

>XXXvvv

)
θθθ
)

(24)

= Z
(
KKK(d,d)

(
IIId ⊗XXXvvv

>
)

+ Y
)

dVec (XXXvvv) (25)

= Z
(
KKK(d,d) + IIId2

)(
IIId ⊗XXXvvv

>
)

dVec (XXXvvv) (26)

⇒ ∇XXXvvv

(
XXXvvv
>XXXvvvθθθ

)
= Z

(
KKK(d,d) + IIId2

)
Y (27)

Note that (25) follows from the fact that ∀AAA ∈ Ra×b, BBB ∈
Rc×d : KKK(c,a)(AAA ⊗ BBB)KKK(b,d) = (BBB ⊗ AAA) and ∀a, b ∈
Z+ : KKK(a,b) = (KKK(b,a))−1. As for the relatively simple
second summand of (22), we again manipulate the matrix
differential:

dVec
(
XXXvvv
>yyyvvv

)
(28)

=
(
yyyvvv
> ⊗ IIId

)
Vec

(
dXXXvvv

>
)

(29)

=
(
yyyvvv
> ⊗ IIId

)
KKK(p,d)dVec (XXXvvv) (30)

= KKK(1,d)
(
IIId ⊗ yyyvvv>

)
dVec (XXXvvv) (31)

⇒∇XXXvvv

(
XXXvvv
>yyyvvv

)
= KKK(1,d)

(
IIId ⊗ yyyvvv>

)
(32)

Gradient of the Transform
In what follows, we consider three different transformations:
(a) Prepending a column of 1’s so as to encode for a bias
term when learning, (b) lifting univariate data by append-
ing polynomial terms, and (c) the previously discussed Han-
kel transformation. The first two transformations are com-
mon practice in data analysis. As we will see, the Ttransform

3170

terms for each form block-diagonal matrices. This captures
the lack of interplay between perturbing features and per-
turbing target values, in contrast to what we observe for the
Hankel transformation. We then demonstrate the power of
our framework by discussing the straightforward process of
composing transformations.

Prepending a Column of 1’s Given p data points in d− 1
dimensions, it’s common to alter XXX to have an additional
column of 1’s on the left. To capture that the attacker can
add to any element of XXX and/or yyy while keeping with our
prior notation, we let vvv = Vec([yyyorig |XXXorig]). Note that d is
the new dimension (not the original) and n, the length of δδδ
is pd.

∇δδδDDDvvv+δδδ =

 IIIp 000p×p(d−1)

000p×p 000p×p(d−1)

000p(d−1)×p IIIp(d−1)

 (33)

We note that this structure is intuitive. The matrix is block
diagonal, and the band of 0’s (with thickness p) in the lower
right block captures the prepended 1’s in DDD. Namely, these
bias terms are constant independent of how δδδ changes.

Vandermonde Transformation To learn a univariate
polynomial by solving a linear system one can lift the data,
synthesizing additional features by taking powers of the
original feature value. To keep with the notation of the pre-
vious sections, we let vvv be the original collection of (univari-
ate) data points. Now, however, p = n, the number of rows
inXXXvvv . We denote the target values as yyyvvv as before. To learn
an order d − 1 polynomial, DDDvvv is then [yyyvvv |XXXvvv] where XXXvvv

is the (p× d) Vandermonde matrix:

XXXvvv[i, j] = vvvj−1
i (34)

We allow the attacker to affect vvv and/or the separate yyyvvv .
For ease of notation we denote these separately, and let
δδδ = [δδδ>yyyvvv | δδδ

>
vvv]>. This yields the following block-diagonal

matrix:

∇δδδDDDvvv+δδδ =

IIIp 000p×p

diag(XXX ′vvv[:, 1])

000pd×p
...

diag(XXX ′vvv[:, d])

 (35)

withXXX ′vvv being the “component-wise derivative”ofXXXvvv:

XXX ′vvv[i, j] =
∂XXXvvv[i, j]

∂vi
(36)

Hankel Transformation By (9) we have:

DDDvvv+δδδ =
∑
i=1

(vi + δi)HHH
(i) (37)

Therefore:

∇δδδDDDvvv+δδδ =
[
Vec

(
HHH(1)

) ∣∣∣ . . . ∣∣∣ Vec(HHH(n)
)]

(38)

We highlight the fact that, unlike with the prepending-1’s
and Vandermonde transformations, here the resulting matrix
is not block diagonal. This is what captures the phenomenon
where a perturbation to a single element of vvv affects bothXXXvvv

(in several rows) and yyyvvv .

Composing Transformations Our framework permits ar-
bitrary matching of transformations with learners. More-
over, the distinction between learner and transformation
is purely semantic. Indeed, the learning algorithm can be
thought of as a transformation from DDD to θθθ. As such, the
same decomposition performed in (10) using the chain rule
can be done if Bob performs a series of transformations
prior to learning. For example, if Bob first performs the Han-
kel transformation and then the prepend-1’s transformation,
linear regression then learns an inhomogeneous AR model.
Formally, if Bob learns a model from T2(T1(vvv)), then the
gradient Tlearner is∇AAAT2(AAA)∇vvvT1(vvv) whereAAA = T1(vvv).

Experiments
We focus our empirical experiments on the setting where
Bob learns an autoregressive model. As discussed, Bob per-
forms the Hankel transform of the time series vvv+δδδ after Al-
ice has selected her attack δδδ. As such, prior attacks against
linear regression are not applicable as they perturb either
features (Jagielski et al. 2018) or target values (Mei and Zhu
2015) exclusively.

We denote Bob’s learned model under δδδ = 000 (no attack by
Alice) as θ̂θθ. Recall that Alice is restricted to select her attack
δδδ from the set C. Note that Alice will be less (or at least no
more) successful at driving Bob’s learned model to her tar-
get θθθtarget as C shrinks. The exact correspondence between
C and Alice’s for various targets, however, is not clear. We
empirically investigate this connection through experimen-
tation.

So as to obtain interpretable results, we let C be an n-
ball with radius C. In the following experiments, we con-
sider three Attackers, each bound by a different value of
C. For each, we examine their effectiveness (Alice’s loss)
against three classes of targets. Intuitively, Alice will have
more difficulty (need a larger C to obtain a small loss) when
‖θ̂θθ− θθθtarget‖ is large. Thus we define the three classes of tar-
gets in terms of their distance from θ̂θθ.

In practice, when using linear autoregressive models it
is common to restrict one’s focus to stationary models. As
such, we focus on such models here. While the exact con-
ditions of stationarity for a model are not important here, a
stationary model yields a time series which remains in sta-
tistical equilibrium. We refer to reader to work of Box et
al. (2015) for a more in-depth treatment of stationarity.

To generate the synthetic series of daily values we gen-
erated 100 models of degree d = 7 (one week) with the
following sampling procedure: We sampled model θ̃θθ from
N (0, IIId) and tested it for stationarity. Non stationary mod-
els were rejected. We then created sequences vvv(1), . . . vvv(100),
each of length n = 100. For each vvv(i), we sample the first
d elements iid from N (0, 1). To construct the rest of the se-
quence, we iterate vvv(i)

j = θ̃
(i)
1 vvv

(i)
j−1+. . .+θ̃

(i)
7 vvv

(i)
j−7+N (0, 1).

We then, as Bob, perform the Hankel transform on each se-

ries and train to obtain θ̂θθ
(i)

for i = 1, . . . , 100.
To construct θθθtarget’s, we sample uniformly from d-shells

of radii r1, r2, r3. For each θ̂θθ
(i)

, we construct 150 target

3171

C r1 = 1.294 r2 = 1.399 r3 = 1.514
.25 0.393, 0.398 0.573, 0.578 0.722, 0.726
0.5 0.369, 0.375 0.545, 0.554 0.693, 0.702
1.0 0.333, 0.340 0.502, 0.514 0.646, 0.659
2.0 0.294, 0.299 0.446, 0.456 0.580, 0.594

Table 1: (Mean, Median) loss for attackers with constraints
‖δδδ‖ ≤ C1, C2, C3, C4 and ‖θ̂θθ − θθθtarget‖2 = r1, r2, r3.

models (50 in each shell). Note that it is unclear a priori what
values are appropriate for radii. As such, we considered the
(`2) distances between the 100 θ̂θθ’s and selected r1 as the 5-
th percentile. That is, 5% of the models are within r1 of any
particular model on average. We selected r2 and r3 in a simi-
lar fashion using the 25-th and 50-th percentiles respectively.
This yielded r1 = 1.294, r2 = 1.399, r3 = 1.514.

For each vvv(i) and its associated time series and target
models, we consider four attackers. Each is bound by an n-
ball with radius C1 = 0.25, C2, 0.5, C3 = 1.0, C4 = 2.0 re-
spectively. That is C(i) = {δδδ : ‖δδδ‖ ≤ Cj}. For each of the
three attackers, we computed attacks against each of the 150
targets for each of the 100 series, yielding a total of 45,000
attacks. Each attacker ran projected gradient descent with
step size η = .1 and terminated when the greatest (absolute)
difference between Alice’s loss on the current iteration and
any of the past 10 iterations was less than 1/1000. Experi-
ments were coded using NumPy (Oliphant 2006) and run on
the Google Compute Engine platform. Results are shown in
Table 1.

We note several observations, the first of which is the rel-
ative scale of the r’s and C’s. Surprisingly, even with a rela-
tively small change to ‖vvv‖ of up to C1 = .25, Alice is able
to shift Bob’s learned model by r1− .393 = .911 on average
when ‖θ̂θθ − θθθtarget‖ = r1. Values for the other attackers are
of similar scale. What is perhaps most surprising, though,
is the following observation seen in each of the four attack-
ers: As the distance from Bob’s original model to Alice’s
target increases from r1 to r2 to r3, Alice’s loss increases at
a much faster rate. We posit that this could be explained by
either Alice finding local minima in her search process or by
a more intrinsic property of her loss as a function of δδδ. We
conjecture that if local minima were indeed the explanation
then we would see a point where increasing C would stop
yielding improved results. We note that C1 is substantially
smaller than r1 while C4 is larger than r4, and yet we do not
see such a tapering-off in Alice’s loss. We therefore believe
that local minima are not to blame and instead there is an-
other, unknown, underlying phenomena at play. We intend
to investigate this further in future work.

Related Work
Adversarial learning (Dalvi et al. 2004; Lowd and Meek
2005) studies the use of machine learning in the presence of
intelligent adversaries. This includes data manipulation at-
tacks at training time (as we study in this work) as well as de-
ployment time attacks, defense strategies, and the construc-
tion of learning algorithms robust to attacks. We direct the

reader to the recent surveys by Biggio and Roli (2018), and
by Vorobeychik and Kantarcioglu (2018) for an overview of
the field.

Most closely related to the work presented herein is the
work of Mei and Zhu (2015) and Jagielski et al. (2018). Mei
and Zhu also use a gradient-descent algorithm to attack lin-
ear regression, and use the same KKT trick (also used by
Biggio, Nelson, and Laskov, 2012 for training time attacks
against Support Vector Machines and by Cauwenberghs and
Poggio, 2001 in a non-adversarial context) to convert Al-
ice’s bi-level optimization to a single-level program. In at-
tacking linear regression at training time, however, Mei and
Zhu restrict their attention to an attacker which can only af-
fect target values, simplifying the gradient computation. In
addition, their learner is not transforming the data prior to
learning. Jagielski et al. attack linear regression in a setting
where all target values are bounded between 0 and 1. They
consider an attacker which adds arbitrary points (adhering to
the bound on target values), which they capture by using the
attacker adding initial points and the moving them based on
the gradient of the loss.5 Their attacker is unbounded in the
sense that it may add any point (but bounded in the number
of points it can add) and as such, they have no need for the
projection step of our attacker’s algorithm. To compute the
attack, they compute the derivative of the attacker loss with
respect to a single point’s features (but not its target value,
which their attacker leaves constant) and use a coordinate-
wise gradient descent algorithm. Our work unifies and gen-
eralizes these two settings by computing the derivative of the
attacker loss with respect to arbitrary additive perturbations
to both features and target values. In addition, we require no
bounds on the target values and can handle Bob performing
a series of transformations prior to learning and after Alice’s
attack. This generality is required in attacking autoregressive
learners, and stems from our use of MDC.

Prior work has examined attacking (and defending) au-
toregressive forecasters after learning has concluded at
deployment time, whereas we focus on training-time at-
tacks. Alfeld, Zhu, and Barford (2016) perform optimal
deployment-time attacks against linear autoregressive mod-
els where an attacker aims to draw the defender’s forecast to
some target. In later work (Alfeld, Zhu, and Barford 2017),
the authors defend linear models (including autoregressive
forecasters) against such attackers with unknown targets by
taking explicit defense actions. Separate from autoregres-
sive models, others have investigated attacks on regression
models at test time. Großhans et al. (2013) positions the in-
terplay between attacker and defender as a Bayesian game
while Tong et al. (2018) consider the setting with a single
attacker and multiple learners. Our work complements prior
work in that we examine attackers which perturb data during
the learning phase, prior to when a model has been learned.

Related in spirit to ours is past work (Rubinstein et al.
2009; Xiao et al. 2015) which computes attacks against
various forms of feature selection, and investigations of
(possibly randomized) feature selection as a defense strat-

5We note that this same trick can be applied in our work, allow-
ing us to model an attacker which adds points.

3172

egy (Zhang et al. 2016; Alpcan, Rubinstein, and Leckie
2016). By contrast, ours is the first systematic approach to
optimal best-response attacks to compositions of both pre-
processing and learning. Pre-learning transformation has
been highlighted in the literature as a potential challenge for
attackers (Huang et al. 2011).

Conclusion
This paper contributes a framework based on matrix differ-
ential calculus for attacking compositions of pre-processing
transformations and learning. We consider the natural threat
model wherein the attacker Alice perturbs original data
(prior to the defender Bob transforming it) and then Bob
learns on that data.

Our use of MDC delivers two key advantages. First, the
resulting plug-and-play framework permits arbitrary com-
position of differentiable learner and transform mappings.
One can compute (matrix) derivatives of learner and trans-
form independently, and then multiply the results in order
to compute the derivative of the composition. As such, our
framework improves the applicability of known gradient-
based attacks on learners — by phrasing the known deriva-
tives in the MDC context, attacks can be extended to affect
learners which first transform the data. Second, through al-
gebraic manipulations of a matrix differential, we computed
the derivative of OLS linear regression with respect to addi-
tive changes in both features and target values. This extends
the current state-of-the-art in training-time attacks against
linear regression, which considers attackers perturbing ei-
ther exclusively features or exclusively target values.

While attackers perturbing both features and target values
are of independent interest of autoregressive forecasting, the
Hankel transformation necessitates such an attacker model.
We derive the (matrix) derivative of the Hankel transforma-
tion, as well as the transform where a learner prepends a col-
umn of 1’s to account for a bias term. These, combined with
the previously discussed plug-and-play nature of our frame-
work, yield attacks against (in)homogeneous linear autore-
gressive learners. Similarly, we derive the (matrix) derivative
of the Vandermonde transform, extending the applicability
of attacks against linear regression to polynomial regression.

This work was supported by The Gregory S. Call Un-
dergraduate Research Program at Amherst College and the
Australian Research Council (DE160100584).

References
Alfeld, S.; Zhu, X.; and Barford, P. 2016. Data Poisoning
Attacks against Autoregressive Models. In Proceedings of
the 30th Conference on Artificial Intelligence (AAAI 2016).
Alfeld, S.; Zhu, X.; and Barford, P. 2017. Explicit De-
fense Actions Against Test-Set Attacks. In Proceedings of
the 31th Conference on Artificial Intelligence (AAAI 2017),
1274–1280.
Alpcan, T.; Rubinstein, B. I. P.; and Leckie, C. 2016. Large-
scale strategic games and adversarial machine learning. In
2016 IEEE 55th Conference on Decision and Control, CDC,
4420–4426. IEEE.

Barreno, M.; Nelson, B.; Sears, R.; Joseph, A. D.; and Tygar,
J. D. 2006. Can machine learning be secure? In Proceedings
of the 2006 ACM Symposium on Information, Computer and
Communications Security, 16–25. ACM.
Biggio, B., and Roli, F. 2018. Wild patterns: Ten years after
the rise of adversarial machine learning. Pattern Recognition
84:317–331.
Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Šrndić, N.;
Laskov, P.; Giacinto, G.; and Roli, F. 2013. Evasion attacks
against machine learning at test time. In Joint European
Conference on Machine Learning and Knowledge Discovery
in Databases, 387–402. Springer.
Biggio, B.; Nelson, B.; and Laskov, P. 2012. Poisoning
attacks against support vector machines. In Langford, J., and
Pineau, J., eds., 29th International Conference on Machine
Learning (ICML), 1807–1814. Omnipress.
Bontempi, G.; Taieb, S. B.; and Le Borgne, Y.-A. 2012.
Machine learning strategies for time series forecasting. In
European Business Intelligence Summer School, 62–77.
Springer.
Box, G. E.; Jenkins, G. M.; Reinsel, G. C.; and Ljung, G. M.
2015. Time series analysis: forecasting and control. John
Wiley & Sons.
Cauwenberghs, G., and Poggio, T. 2001. Incremental and
decremental support vector machine learning. In Advances
in Neural Information Processing Systems, 409–415.
Dalvi, N.; Domingos, P.; Sanghai, S.; Verma, D.; et al. 2004.
Adversarial classification. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 99–108. ACM.
Großhans, M.; Sawade, C.; Brückner, M.; and Scheffer, T.
2013. Bayesian Games for Adversarial Regression Prob-
lems. Proceedings of the 30th International Conference on
Machine Learning 28:55–63.
Huang, L.; Joseph, A. D.; Nelson, B.; Rubinstein, B. I. P.;
and Tygar, J. D. 2011. Adversarial machine learning. In
Proceedings of the 4th ACM Workshop on Security and Ar-
tificial Intelligence, 43–58. ACM.
Jagielski, M.; Oprea, A.; Biggio, B.; Liu, C.; Nita-Rotaru,
C.; and Li, B. 2018. Manipulating machine learning: Poi-
soning attacks and countermeasures for regression learning.
In 2018 IEEE Symposium on Security and Privacy (SP), 19–
35.
Lowd, D., and Meek, C. 2005. Adversarial learning. In Pro-
ceedings of the Eleventh ACM SIGKDD international Con-
ference on Knowledge Discovery in Data Mining, 641–647.
ACM.
Magnus, J. R., and Neudecker, H. 1988. Matrix differen-
tial calculus with applications in statistics and econometrics.
Wiley Series in Probability and Mathematical Statistics.
Mei, S., and Zhu, X. 2015. Using Machine Teaching to
Identify Optimal Training-Set Attacks on Machine Learn-
ers. Twenty-Ninth AAAI Conference on Artificial Intelli-
gence 2871–2877.
Oliphant, T. E. 2006. A guide to NumPy, volume 1. Trelgol
Publishing USA.

3173

Rubinstein, B. I. P.; Nelson, B.; Huang, L.; Joseph, A. D.;
Lau, S.-h.; Rao, S.; Taft, N.; and Tygar, J. D. 2009. ANTI-
DOTE: Understanding and defending against poisoning of
anomaly detectors. In Proceedings of the 9th ACM SIG-
COMM Conference on Internet Measurement, 1–14. ACM.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Tong, L.; Yu, S.; Alfeld, S.; and Vorobeychik, Y. 2018. Ad-
versarial regression with multiple learners. Proceedings of
the 35th International Conference on Machine Learning.
Vorobeychik, Y., and Kantarcioglu, M. 2018. Adversarial
machine learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning #38.
Xiao, H.; Biggio, B.; Brown, G.; Fumera, G.; Eckert, C.; and
Roli, F. 2015. Is feature selection secure against training
data poisoning? In International Conference on Machine
Learning, 1689–1698.
Zhang, F.; Chan, P. P. K.; Biggio, B.; Yeung, D. S.; and Roli,
F. 2016. Adversarial feature selection against evasion at-
tacks. IEEE Transactions on Cybernetics 46(3):766–777.

3174

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Alfeld, S; Vartanian, A; Newman-Johnson, L; Rubinstein, BIP

Title:

Attacking Data Transforming Learners at Training Time

Date:

2019-07-23

Citation:

Alfeld, S., Vartanian, A., Newman-Johnson, L. & Rubinstein, B. I. P. (2019). Attacking Data

Transforming Learners at Training Time. Thirty-Third AAAI Conference on Artificial

Intelligence, 33, pp.3167-3174. Association for the Advancement of Artificial Intelligence.

https://doi.org/10.1609/aaai.v33i01.33013167.

Persistent Link:

http://hdl.handle.net/11343/233294

File Description:

Published version

