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Abstract 

Preparing forecasts of assorted yields for forest crops is fundamental to managing forests. 

Studies of growth and yield in the form of systems of prediction equations provide 

managers with information on instantaneous, periodic, and whole stand growth and yield 

information, which provide a first means of regulating yield from forests. The availability 

of appropriate compatible stern volume and taper equations provides further quantitative 

information about resources in terms of merchantable lengths, end diameters and volumes 

of particular sections of the stern of the tree necessary to determine the mix of products. 

This thesis describes in particular how a system for forecasting assorted yields of Douglas 

fir in the South Island of New Zealand was developed. 

The system comprises two models, namely DfirTree and DfirStand. 

DfirTree is a compatible tree volume and taper prediction system, developed 

to cater for Douglas fir trees grown throughout the South Island, in Canterbury, 

Nelson and Southland. The volume - taper prediction system is based on the 

principle of splines (segmented polynomials) and provides two approaches 

with which to determine volumes of any part of the stern: (i) volume based 

and (ii) taper based. 
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DfirStand is a simultaneous growth and yield model for simulating growth 

of Douglas fir in all four regions of the South Island, namely Canterbury, 

Nelson, Southland and Westland. DfirStand is developed through a state -

space approach, the variables used to describe the state of the system at any 

time being mean top height, net stand basal area/ha, stocking, thinning history 

and local environment. 

11 

Both components of the overall yield prediction system show how regional attributes can 

be aggregated and modelled in a more realistic manner through the use of dummy variables 

to explain locality adaptation(s) where applicable. Rather than having a proliferation of 

models or an unwieldy quantity of adjustment factors, this system envisages a return to the 

traditional general volume, taper and yield prediction systems that can be developed with 

modern technology, ones which utilize the power of user - friendly computer hardware 

and software to provide the requisite sensitivity for forecasting assorted yields. 
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Chapter 1 

Introduction 

1.1 Background 

Douglas fir (Pseudotsuga menziesii [Mirbel, Franco]) ranks second to radiata pine (Pinus 

radiata [D. Don]) in New Zealand as a plantation tree species from which several do­

mestically consumed wood products are currently derived. There is also a considerable 

potential to secure a position in the external market with Douglas fir manufactured prod­

ucts. The species was introduced in New Zealand as a trial plantation crop in 1897 

(Kirkland, 1969), but its widespread establishment did not begin until the 1920's. The 

current total establishment is 63 130 hectares, with 28 784 hectares in the South Island 

and 34 346 hectares in the North Island (NEFD, 1989). 

Douglas fir has good timber qualities, which are at least as good as, or even superior to 

those of radiata pine (James and Bunn, 1978). This is especially the case for engineering 

purposes (Hellawell, 1978). Nevertheless, the importance of radiata pine as a timber crop 

1 



Chapter 1. Introduction 

in New 2.ealand outweighs that of Douglas fir for two major reasons: 

(1) radiata pine has a shorter technical rotation, about 30 years, while Dou­

glas fir has financial rotations of between 50 and 80 years; 

(2) Douglas fir plantations were heavily infected with Phaeocryptopus 

gaeumannii in the 1960's, a needle fungal parasite, which led to a signif­

icant decline in growth of the species (Hood and Kershaw, 1973, 1975; 

James and Bunn, 1978; Beekhuis, 1978). 

However, it remains an important commercial timber species in New 2.ealand. 

2 

There are several volume and taper tables for the species currently in use in New 2.ealand. 

The volume tables are T15 covering the whole of New 2.ealand, which is now superceded 

by T136, T120 for Ashley forest and T228 for Longwood forest. The corresponding 

compatible taper tables are F136 for all of New 2.ealand and F228 for Longwood forest. 

All these equations are maintained by the New 2.ealand Ministry of Forestry. The existing 

computerized growth and yield models in use for the species are DFCNIGM (Liu Xiu, 

1990) and SIDFIR (Law, 1990), which cater for the Central North Island and the South 

Island respectively. 

There has been a tendency in many countries (including New 2.ealand) of prescribing 

growth and yield models even for very small populations (Whyte fil_ al., 1992). This 

approach to modelling is frequently not justified. This study aims at reversing this trend 

by looking at the potential for creating general models that allow for regional or sub -

population (local) adaptations. The study embraces the traditional yield model approach 

by prescribing such models to as large populations as possible. The reasons behind such 
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a seemingly backward move are: 

(1) there are all sorts of dangers through growth and yield model prolifera­

tion; 

(2) users are misapplying the existing ones or at least demanding unrealistic 

sensitivity; 

(3) the ability to incorporate regional and local adaptations provides a means 

of forecasting production yield with increased sensitivity. 

1.1.1 Objectives of the Study 

3 

This study examines the extent to which a precise general growth model can be formulated 

for Douglas fir grown in the South Island of New Zealand, that caters for regional and 

local adaptations. The detailed objectives of this study, therefore, are to: 

(1) study the different patterns of growth of Douglas fir in the South Island of New 

Zealand and where necessary to stratify the crop into different growth classes for 

modelling them individually; 

(2) develop a whole stand growth and yield model with respect to objective (1) above 

that caters for variable thinning regimes; 

(3) develop associated stem volume and compatible taper equations, volume - based 

and taper - based taper equations for Douglas fir in the South Island to provide the 

means for catering for log assortments. 
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1.1.2 Scope of the Study 

The population for the whole stand growth and yield modelling conducted here refers to 

Douglas fir grown throughout the South Island of New Zealand. Sectional measurements 

for developing the new stem volume and taper equations come from 25 forests in Canter­

bury, Nelson and Southland (see appendix A.l), but no data were available for Westland. 

Permanent sample plot data (PSP) available for this study come from 21 forests in the 

four regions of the South Island, namely Canterbury, Nelson, Southland and Westland 

(see appendix A.2). The data set is such that the various models can be safely applied 

only between ages 5 and 78 years, and only for the South Island of New Zealand. 

1.2 Notation 

Throughout this thesis standard IUFRO notation is adopted. Unless otherwise stated, the 

following symbols and definitions apply. 

o:i, /Ji, ,i: regression coefficients; 

AL: altitude above mean sea level (m); 

d': top diameter inside bark (cm) at height h' (m) from ground level; 

d: diameter at breast height outside bark (cm); 

SEE: standard error of parameter estimate; 

ESS: Error sum of squares (residual sum of squares); 

f: form factor; 

Gi: net basal area per hectare at crop age Ti (m2 /ha); 
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h: total tree height from the ground level (m); 

h': height above ground somewhere along its length in m; 

h(ioo,i): mean top height at crop age Ti (m); 

K: a constant to convert d2 in cm2 to basal area in m 2; 

£: distance in m from the top of the tree to top diameter d' (cm) or h - h'; 

MSE: mean squared error; 

N: total number of observations in a population or stocking/ha depending on 

context; 

Ni: number of stems per hectare (stocking) at crop age Ti; 

NID(O,o-2): normally and independently distributed with mean O and constant 

variance a-2; 

RN D: random normal deviate; 

RMS: root mean square; 

S: site index - mean top height at age 40 years; 

Ti: age of crop in years for period i; 

Tt: age of thinning in years; 

v: total stem volume of a tree (m3); 

vm: merchantable volume (m3) of a tree stem to specified height; 

¼: stand volume per hectare at crop age Ti (m3 /ha); 

z: relative distance from the top of the tree, determined by the following 

relationships; 

o-2 : variance of a population; 

s 2: variance of a sample; 

z= 
h- h' 

h 

R, 

h 

5 



Chapter 2 

Review of Literature 

2.1 Modelling in general 

A model may be defined as a mathematical or physical system obeying specified condi­

tions, the behaviour of which is used to understand a physical, biological or social system 

and to which it is analogous in some way (Ralston and Meek, 1976). The main purpose 

of having models is usually to aid in planning and decision making. The term planning 

model refers to any decision - making aid, ranging in complexity from the toss of a coin 

to sophisticated computer based models (Johnson, 1989). 

Planning in forestry has evolved with the changing needs, priorities and objectives of both 

public and private forest owners. For example, the classical European concept of yield 

regulation evolved from the optimal rotation model (Faustmann, 1849), and arose out of 

fears of inadequate future supplies of wood. Today, the issues extend beyond just timber 

famines and are equally concerned with other benefits that forests can confer. Biomass 

6 



Chapter 2. Review of Literature 7 

production is a key issue in all of these. 

At present the most effective research and analysis technique to represent a system, con­

cept or operation is perhaps through use of a logical mathematical model. A mathematical 

model can be regarded as one or more mathematically expressed relationships among 

variables which may logically be expected to be obeyed. Generally computers are now 

used to analyze and study models because oflarge computational needs. Many basic phe­

nomena are associated with certain mathematical planning models, examples in forestry 

being optimal allocation, replacement of equipment, routing of forest roads, queueing of 

logging trucks on a weigh-bridge, sequencing of logging trucks at some landing, predict­

ing occurrence of forest fires, multiple objective decision analysis and many others. The 

use of computer technology has made it possible in forestry to create planning models and 

successfully apply them for harvest scheduling, fire fighting, tree breeding, log bucking 

and resource allocation problems, to mention just a few examples. 

Forest planning models can be ranked according to the hierarchical order of Figure 2.1: 

tree growth models, stand growth models, forest estate models, national and regional 

forest models, global and international forest sector models (Johnson, 1989). 

Forest sector planning models are those models developed specifically to incorporate 

the multitude of variables involved in examining an entire forest sector, and to indicate 

strategic alternatives for that sector. These are classified by their scope (national and 

regional, global and international) as suggested in Figure 2.1, as well as by the methodology 

they employ to generate alternative strategies (i.e. dynamic simulation, mathematical 

programming and econometric spatial equilibrium models). 
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Figure 2.1: The Hierarchy of Forest Planning Models [Johnson, 1989) 

( Tree Growth Models 

l 
Stand Growth Models 

l 

) ------­
I 

Forest Estate Models I 

Log Production & 
Bucking Models 

l 
Single Plant 

Industrial Models 

l 
Integrated 

Industrial Models 

---------- ---------------
National & Regional 

Forest Sector Modelling 

Global & international 
Forest Sector Modelling 

National & Regional 
Development Strategies 

International trade 
flows & development 

This thesis focusses specifically on computer based models that belong to tree and stand 

growth model categories, addressing the linkages with other kinds of models (in Figure 

2.1) wherever applicable. 

The following sub - sections describe each of these briefly, while sections 2.2 to 2.4 

discuss tree volume, stem taper and stand growth and yield, the aspects most central to 

the research reported here. 
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2.1.1 Tree and Stand Growth models 

One of the earliest forest planning needs, as discussed in the introduction to this chapter, 

was for the regulation of forest yields. Predictions of future growth of tree crops are 

essential for analyzing and interpreting forest supply capabilities and their sustainable 

supply capacities. Models for this purpose can be grouped into those dealing with natural 

forests and those dealing with plantations (Clutter et al., 1983), both of which groups are 

discussed in detail in section 2.5. 

2.1.2 Forest Estate Models 

Forest estate models are a modern form of forest working plans, taking advantage of the ca­

pacities of computers (Allison, 1987). Estate models address production of whole forests, 

while growth and yield models are restricted to modelling tree, or at most, stand growth. A 

forest, however, consists of many different stands, each belonging to its characteristic crop 

type (similar accessibility, silviculture, ownership, growth model representation, location, 

etcetera). Extending the optimal management strategies for single stands derived from 

a stand level growth model to an entire forest is therefore rarely optimal for the forest as 

a whole. The need to plan for aggregates of non - uniform forest stands gave rise to the 

concept of forest estate modelling. Such models incorporate inputs from relevant growth 

models in some form, as well as recognizing other distinguishing stand features. 

Examples of forest estate models developed in New Zealand are IFS (Interactive Forest 

Simulator, Garcia, 1981), FOLPI (Forestry Oriented Linear Programming Interpreter, 

Garcia, 1984a), RMS -2020 (Resource Maturity Simulator, Allison, 1987), andREGRAM 
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(McGuigan, 1992). RMS - 2020 and IFS are both simulation models, which allow the 

evaluation of different management alternatives for a given forest. In both, the forest 

is described in terms of crop types, while the state of the forest in a given period is 

defined by the area and potential yield in each age class within each crop type. For each 

period of simulation, areas may be harvested, planted or otherwise treated, using inputs 

supplied from growth and yield models. The user specifies the management actions to be 

followed each period and can produce a number of reports at the end of the simulation 

describing the results of those actions. While simulation models such as these are capable 

of finding acceptable management options, there is no guarantee that better alternatives 

for increasing the utility of the forest to its owner do not exist. 

Linear programming has also been successfully employed to determine forest level man­

agement strategies through an optimization process, which maximizes utility for the forest 

owner under a range of constrains. Two basic formulations of this problem have been 

recognized (Johnson and Scheurman, 1977), depending on whether the identity of initial 

harvesting units is preserved throughout the planning horizon (Model I), or new harvesting 

units are created from the area regenerated in each period (Model II). The disadvantage of 

Model II is the loss of identity of initial harvesting units, rendering less accuracy than can 

be obtained from Model I, although its formulation significantly reduces the number of 

decision variables. Both formulations are subject to inadequacy in modelling the range of 

detailed silviculture options and management regimes that characterize modern plantation 

forestry. 

In New Zealand, the major forest level optimization model is FOLPI. FOLPI and IFS are 

fully compatible, and same input data files can be used for FOLPI and IFS to generate 



Chapter 2. Review of Literature 11 

identical reports. FOLPI, IFS and REGRAM use other than Model I or MODEL II 

formulations. 

2.1.3 Log Production and Bucking Models 

Forecasting growth and yield by itself does not provide information about the likely 

availability of the assortment of products, that is needed to plan their industrial use. The 

output of growth models can be used as inputs to models that predict the stand outturn, 

providing long term predictions of the quality, and volume by log sizes. PROD (Goulding 

and Shirley, 1979) is one such model. PROD predicts a (diameter at breast height) dbh 

distribution and stock table volumes of a mix of log products given the site index, age, 

top height, basal area/ha and stocking for each stand according to a simple set of user 

defined cutting patterns. The output, estimates of volume, may subsequently form part of 

the input to forest estate modelling indicated in previous section. PROD is an integral part 

of the silvicultural stand model SILMOD (Whiteside and Sutton, 1983), now replaced 

by STANDMOD (Whiteside et al., 1987), used widely in New Zealand for evaluating 

different silvicultural regimes for radiata pine. LOGRAD (see Whiteside et al., 1987) 

is a further refinement developed by the Conversion Planning Team at FRI - Rotorua, 

which transforms the log sizes from PROD into predictions of log grade outturn based on 

expected defects, taper, and sweep. 

Optimal bucking models have also been developed explicitly for optimizing the cross -

cutting or bucking decision process modelled in PROD. MARVL (A Method for Assessing 

Recoverable Volumes by Log Types) by Deadman and Goulding (1979) is one such 

model. MARVL is mainly used for analyzing pre - harvest inventory information. AVIS 
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(Assessment of Value by Individual Stems) by Threadgill and Twaddle (1985) is an 
. 

audit/training system developed for comparing actual with optimal cutting patterns and 

determining the resulting loss in value for individual stems. Eng et al., (1986) used a 

combination of linear and dynamic programming to extend bucking strategies that were 

optimal for a year's harvest throughout the entire forest of Caribbean pine in Fiji so as to 

meet market demands. 

2.1.4 Single Plant Industrial Models 

Numerous single plant models involve simulations of the production process in question. 

Models used in New Zealand include GEMS (A General Energy and Material Simulator 

for Pulp and Paper Industry) by Edwards et al. (1987), PLYMILL (A Pulp Wood Mill 

Simulation) by Ward (1987), and a suite of simulation programs incorporating a linear 

program for saw pattern selection by van Wyk and Eng (1987). 

2.1.5 Integrated Industrial Models 

The vertical integration of several production facilities in a multi - product forest industry 

complex creates many economies of scale and eliminates several transport and processing 

costs. Such integration, however, requires enhanced planning, with a company having 

many possible sources of raw material, for example. The primary class of integrated 

industrial models in use today are log allocation models. The technique used in determin­

ing optimal management strategies in this class of models is mainly linear programming, 

sometimes in combination with dynamic programming. The use of log allocation in 
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New Zealand was first reported by van Wyk (1983), who developed the programme 

ROBUST, (a single period process selection model) LP model at FRI. Developments 

made by McGuigan (1984) produced a model LOGRAM essentially a modification of 

ROBUST capable of allowing for multiple manufacturing sites and forest allocations. It 

has remained a single period process selection model, however, until the development of 

REGRAM (McGuigan, 1992). Further research into development of optimal log bucking 

and allocation that includes multiple period consideration is currently under investigation 

(Ogweno, 1992). 

2.1.6 National and Regional Forest Models 

In their basic form these models are simply aggregations of the integrated industrial models 

within a nation or large region. TAMM (Timber Assessment Market Model) by Adams 

and Hynes (1980) is the best known model in this category: it is used by US Forest Service 

to assist in the analysis of long term trends in resource use and status. 

2.1. 7 Global and International Models 

These models focus on the prediction of long term development of production, consump­

tion and trade in forest products at international and global level. One such model is 

GTM· (Global Trade Model) by Dykstra and Kallio (1986). GTM is a spatial market 

equilibrium economic model employing non-linear programming. GTM was developed 

by the forestry section of IIASA (International Institute of Applied Systems Analysis). 

GTM is an economic multi-period, multi-region model that considers each forest industry 
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separately. But, due to its broad global emphasis, GTM does not cater for alternative 

forest management options. It incorporates four classes of growing stock, namely large 

and small, coniferous and non-coniferous, which are upgraded by simple growth functions 

between periods. 

Nevertheless, all these models in 2.1.1 to 2.1.7 depend, as shown in their hierarchical 

arrangement in Figure 2.1, on having reliable tree volume, stem taper and stand growth 

models, which provide the focus for the research reported here in this thesis. 

2.2 Tree Volume Equations 

2.2.1 Past Work in Tree Volume Modelling 

Models to predict whole stem and merchantable volume up to (i) a given height or (ii) 

diameter limit or (iii) diameter to a given height, are required for forest related raw 

material analysis and are vital components of growth and yield simulators. Compatible 

stem volume and taper equations form a useful class of models to predict these quantities 

(Demaerschalk, 1972; Goulding and Murray, 1976; Van Deusen et al., 1982; Byrne and 

Reed, 1986; McClure and Czaplewski 1986). Tree volume equations can be classified as 

follows. 

2.2.1.1 One Dimensional Tree Volume Equations 

These utilize only diameter at breast height to predict total stem volume. Local volume 

tables and tariff tables fall into this category, the term local being used because such tables 
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are very restricted in their applicability because of height and stem taper interactions 

which are embedded in the table. Tariff tables provide sets of local volume tables for 

particular stands from a large data set, (Jolly, 1951; Hummel, 1955; Hummel et al., 1962; 

Turnbull and Hoyer, 1965); Gray, 1966; Carron, 1971. They have been used in Central 

Europe in the interests of consistency of estimation and were calibrated regularly against 

actual outturn. They were later used in Australia in the early 1950's, and subsequently in 

North America. They are well suited to growth modelling that incorporates a stand table 

projection capability. 

2.2.1.2 Two Dimensional Tree Volume Equations 

These utilize diameter at breast height and total or merchantable height in predicting total 

stem or merchantable volume. Examples falling into this category are the combined vari­

able tree volume equation (Spurr, 1952), and various other formulations by Schumacher 

and Hall (1933), Gevorkiantz and Olsen (1955), Bennett et al. (1959), Romancier (1961), 

Honer (1965), Newham (1967), Brackett (1973), etcetera. Provided that there is reliable 

characterization of the average height of each dbhob class, these too are amenable to the 

stand table projection approach. 

2.2.1.3 Multi - Dimensional Tree Volume Equations 

Multi - dimensional tree volume equations are an extension of two dimensional ones: in 

addition to diameter at breast height and total or merchantable height, they use form and 

sometimes site index as independent variables (Bruce, 1926; Mesavage and Girard, 1946; 

Anon, 1948). Volume equations that utilize form as one of the independent variables are 
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termed form - class volume tables, but they have become obsolete when it was realized that 

establishing diameter form - class relationships was rather elusive and that the variation 

of form between species and sites was considerable (Honer,1965). Multi - dimensional 

tree volume equations are not amenable to stand table projection unless their dimensions 

other than dbh and height are averaged, which then largely negates their adoption. 

Perhaps the most important tree volume equation that appears in the literature is the 

combined variable equation (Spurr, 1952; Burkhart, 1977), 

(2.1) 

where v is the tree volume either inside or outside bark, d is diameter at breast height 

(usually outside bark) and h is tree height. Comprehensive comparisons of volume 

equations have been made by Spurr (1952), Golding and Hall (1961) and Burkhart (1977). 

They all concluded that the combined variable equation was the best for their data and could 

not be improved by the addition of another variable. Other researchers have, however, 

found alternative tree volume equations which are superior for a particular species and 

locality (e.g. Newham, 1967; Brackett, 1973; Candy, 1989). Equation forms that can 

serve as mathematical models for construction of volume tables or as the basis to develop 

other models have been discussed in Husch et al. (1972), Loetsch and Haller (1973), 

Clutter et al. (1983), etcetera. 

Until the early 1960's or so, volume equations were constructed independently of taper 

equations, and so it was not possible to have a unified system of predicting both total tree 

and merchantable volume. Until quite recently, the prediction of merchantable volumes to 

varying merchantability limits was usually accomplished by fitting a separate regression 

equation for each merchantability limit involved. Thus, for a single tree population, 
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different formulae would be involved for predicting merchantable volumes to 10, and 15 

cm top diameters inside bark. These have now been replaced by volume ratio equations 

which utilize the merchantability limit as an independent variable (Burkhart, 1977; Matney 

and Sullivan, 1982a; and many others). 

2.2.2 Principles Underlying Construction of Tree Volume equations 

Volume tables were first constructed mostly by graphical methods or, at best, with the 

harmonized curve method (e.g Chapman and Meyer, 1949). Alignment charts were later 

used as a means of graphically portraying and solving an equation or formula. In addition 

they were also used in constructing numerical volume tables (Bruce and Schumacher, 

1950; Husch, 1963). 

The contemporary principles underlying the construction of volume tables have utilized 

the same tree variables since the early years of the 19th century, namely dbh, total or 

merchantable height and tree form (Husch et al., 1972). Sometimes additional factors 

such as mean annual diameter increment d/T, (Candy, 1989), and site index have been 

included. The use of graphical methods and alignments charts have now been replaced 

by regression equations, now made easier with computer technology. The elegance and 

objectivity of modern statistical computations for fitting equations give them a large 

advantage over the other two methods, although many times the results are not necessarily 

significantly better (Cunia, 1964). 

The development of science and statistics and the advent of electronic computers have now 

made such graphical applications obsolete, however, and nowadays regressions are fitted 

to sample tree data to produce formulae that explicitly define the relationship between the 
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predicted tree volume and predictor variables used. Solutions of such formulae could still, 

of course, be presented in tabular or graphical forms. 

2.2.3 Problems Associated With Modelling Tree Volume Equations 

Even with the use of modern computers and regression analysis, construction of tree 

volume equations needs to be done with due consideration of the following major problems 

which prevail: 

(i) normality of distribution of tree volume (Meyer, 1953), 

(ii) homogeneity of variance of tree volume (Cunia, 1964), 

(iii) tree sampling process (Cunia, 1964), 

(iv) selection of variables and number to be used (Spurr, 1952). 

These factors are discussed more fully in the subsections below. 

2.2.3.1 Normality of Distribution of Tree Volume 

Tree volume for a given dbh is not normally distributed, but is highly skewed. The dbh 

distribution of a population or sample of trees could theoretically be normal, but tree 

volume for a given dbh class will vary because of the differences in height. Consequently, 

this affects the variance of tree volume for a given dbh. In fitting regressions equations 

it is common to estimate the parameters for the overall data and not by dbh or height 

classes. While this has no great effect on estimation of regression coefficients, it will 

affect the standard error of the equation and hence the probability level of the significance 
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tests and confidence limits (Meyer, 1953; Cunia, 1964). This problem is usually avoided 

by effectively screening the data, according to d2 h classes: a tree volume that deviates 

much from the rest constitutes an outlier, which needs to be carefully scrutinized and may 

have to be removed from the data, as discussed in section 3.3.3. 

2.2.3.2 Homogeneity of Variance 

Variance of tree volume is usually a function of the quantity d2 h. Deviations from the true 

"regression function", induced through the volume of large trees in the sample having 

disproportionate effects on the estimation of the least - squares coefficients, need to be 

compensated for. One of the earliest methods used to correct for this lack of homogeneity 

was the use of logarithmic volume equations (Bruce and Schumacher, 1950; Spurr, 1952; 

Meyer, 1953). An important drawback of this approach is that, by taking logarithms, the 

estimation about the arithmetic mean is automatically replaced by the geometric mean. 

Because the first is always larger than the second, the estimated coefficients are biased, 

and so this approach is not to be recommended. An unbiased and better way of correcting 

for non - homogeneity of variance is to estimate the regression coefficients by use of 

weighted least- squares. Schumacher and Chapman (1954) were the first foresters known 

to use this regression technique, ( others who followed later include Gedney and Johnson, 

1959; Buckman, 1961; Furnival, 1961, Cunia, 1962). One disadvantage of the method of 

weighted least - squares regression is that there is no formal general treatment on what 

are the best sets of weight to be used in any one particular case. Numerous researchers 

have discussed guidelines on appropriate weights (Cunia, 1962, 1964; Moser and Beers 

1969; Draper and Smith, 1981; Clutter et al., 1983). Generalisations are probably illusory. 

The use of weighted least - squares regression does not solve all problems of valid and 
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efficient calculations of tree volume equations. It too has problems associated with it. 

Thus, the weight finally chosen is a subjective decision, while the weight itself is simply 

an approximation. 

2.2.3.3 Tree Sampling Process 

An efficient tree volume equation should provide unbiased estimates for each diameter -

height class. It is important that the sample data consist of adequate replication of all 

possible diameter - height classes throughout the range in that locality. Some authors 

like Gordon (1985) suggest that the selection of sample trees in each diameter - height 

class should be proportional to the frequency of occurrence of that class, the aim should 

be rather to have a reliable average volume for each diameter - height class that could 

be represented. Usually this means an approximately equal number of trees should be 

selected from each such class. 

2.2.3.4 Selection of Variables and Their Combinations 

Selection of variables to enter the equation and how they may be combined in a tree volume 

function to accurately predict volume have provided a major problem for researchers for a 

long time (Spurr, 1952). It is not always a straight - forward analysis to derive appropriate 

direct relationships between tree volume and predictor variables such as d and h . 

Empirical evidence has shown that frequently these variables have to be combined in a 

variety of different ways to provide reliable equations in different circumstances. There 

is no standard procedure: one has simply to examine all the likely combinations of 

variables and their interactions. Today, statistical knowledge, regression techniques and 
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computer technology have allowed researchers to alleviate the computational tedium that 

this computational process involves. Stepwise regression, for instance, can be used to 

select variables or combinations of variables that are to enter an equation, but how the 

variables are to interact with each other remains a skill of the modeller. In this study, for 

example, locality effect was implicitly defined in the tree volume equation through the 

use of dummy and other predicting variables while an all - paths sequential routine for 

including variables was adopted. 

2.3 Taper Equations 

2.3.1 Past Work in Taper Modelling 

This sub - section reviews the general structure of taper equations and also classifies 

the most important taper equations that have appeared in the literature. Taper equations 

express the expected stern diameter, either inside or outside bark, as a function of height 

above ground level, total tree height, diameter at breast height and sometimes total tree 

volume (Dernaerschalk, 1972). Taper equations reported in the literature can be divided 

into three major groups: 

(i) single equations that describe taper 

(ii) segmented taper equations 

(iii) variable exponent taper equations 

These are discussed serially in more detail below. 



Chapter 2. Review of Literature 22 

2.3.1.1 Single Equations 

The most common approach used to describe diameter changes from ground to top 

involves a single function of many forms (Hojer, 1903; Behre, 1923; 1927, 1935; Matte, 

1949; Osumi, 1959; Kozak and Smith, 1966; Bruce et al., 1968; Kozak et al., 1969; 

Demaerschalk, 1971, 1972, 1973b; Bennett and Swindel, 1972; Munro and Demaerschalk, 

1974; Clutter, 1980; Goulding and Murray, 1976; Gordon, 1983; Amidon, 1984; Bigin, 

1984; Newberry and Burk, 1985; and others). The major weakness of all these models 

is the significant bias in estimating diameters close to ground as well as at some other 

parts of the tree. A trade - off between accuracy and precision has to be made for any one 

equation. The advantages of this approach are that they are easy to fit and usually easy to 

integrate for calculation of merchantable volume. 

2.3.1.2 Segmented Taper Equations 

In this approach more than one curve is used to represent all the various parts of the 

stem, and neighbouring ones are joined in such a way that their first derivatives are equal 

at the point of intersection (Heijbel, 1928; Ormerod, 1973; Max and Burkhart, 1976; 

Demaerschalk and Kozak, 1977; Cao et al., 1980; Martin, 1981; Byrne and Reed, 1986; 

McClure and Czaplewski, 1986; Candy, 1989; Whyte et al., 1992). Its advantage is that 

the diameters are predicted with less bias at most parts of the stem than by single functions. 

The disadvantages are that the parameter estimates are usually very difficult to derive and 

the formulae for calculating volume and merchantable height are cumbersome, sometimes 

non - existent. 
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2.3.1.3 Variable Exponent Taper Equations 

This approach uses a single continuous function as described in (i) above, but with a 

changing exponent from the ground to compensate for the changing form of the stern 

(Hayward, 1987; Kozak, 1988). This kind of equations remain the least popular in 

forestry literature because of their complexity. Their level of precision is comparable to 

the segmented equation approach. 

2.3.2 Integrating Volume and Taper Estimating Systems 

Early taper equations developed before Dernaerschalk: (1971), had one common attribute: 

they were developed independently of the corresponding tree volume function. A theory 

was later developed early in the 1970's which greatly improved the understanding of rela­

tionships that exists between tree volume and taper functions (Dernaerschalk:, 1971, 1972, 

1973b; Munro and Dernaerschalk:, 1974). In this theory, when taper and volume equa­

tions are treated as one and the same, they are deemed to be compatible (Dernaerschalk, 

1971, 1972). The accepted definition of compatible equations is : those taper functions 

which, when integrated over total tree height, give the same total volume as that given 
' 

by a volume equation. There are two basically different techniques which can be used 

to obtain compatible systems of taper and volume: one involves fitting a taper equation 

on taper data and deriving from it a volume prediction system through integration; the 

other is more or less the opposite, in that a volume equation is fitted to the volume data 

from which a compatible taper equation is derived. The first is a taper - based system 

and the second is volume - based system (Dernaerschalk, 1973a). The theory further 

proposed that a compatible taper equation should be a polynomial of general form shown 
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in equation 2.2. (Munro and Demaerschalk, 1974). 

d/2 _ (p + l) V P 

- I( hz 

where; 

d' =top diameter to be predicted; 

v =total tree volume; 

z =relative length from the top of the tree to top diameter d; 

C h - h' 
z------ h- h 

I< =constant to convert square centimetres to square metres; 

p =free parameter. 
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(2.2) 

In this formulation, the polynomial is limited to the order p , and in most cases was not 

sufficient to describe the stem taper without bias. It was noted by Goulding and Murray 

( 197 6), that the polynomials of this kind described in equation 2.2 were not flexible enough 

to account for the butt swell, which is quite noticeable in large older trees. Goulding and 

Murray (1976) extended the theory of Munro and Demaerschalk (1974), therefore, to 

allow the polynomial taper function to acquire variable orders as shown in equation 2.3. 

d'2 = ~ f(z) 
kh 

(2.3) 

where f(z) is a polynomial in z . The coefficients of the polynomial are algebraically 

restricted so that consistent volume estimates are derived, just as if a volume equation 

was being employed. Such polynomials are usually fitted by conditioned linear or non 

linear least - squares regression. The methods used and restrictions on the parameters are 

discussed in chapter 4 of this thesis. 
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2.3.3 Summary 

Tree volume equations are used in forest inventory to calculate total volume of the tree 

inside bark, summation of which adds up to total tree volume per hectare. Merchantable 

volume/ha to required utilization standards can be obtained by incorporating a compatible 

taper equation (Clutter et al., 1983). Taper equations are useful adjuncts to inventory 

because they provide (i) predictions of inside bark diameters at any point on the stem; (ii) 

estimates of total stem volume; (iii) estimates of merchantable volume and merchantable 

height to any top diameter and from any stump height; and (iv) estimates of individual 

log volumes. Tree volume and taper equations are an integral part of any detailed yield 

forecasting undertaking. 

Because of the properties mentioned above, taper functions are essential components of 

forest harvesting and bucking models. For example, 

(i) they provide estimates of the mix of products, such as saw logs and 

pulp logs, as described in Eng et al. (1986), without the need to collect 

additional data, even when utilization standards change; 

(ii) they are used in many optimal bucking models such as in Pnevmaticos 

and Mann (1972); (iii) they are an integral part of many inventory 

models, such as MARVL (Deadman and Goulding, 1979), and planning 

models such as PROD (Goulding and Shirley, 1979); 

(iv) taper functions can also be used in analytical estimates of tree weight and 

biomass (Clutter et al., 1983) and for determining the centre of gravity 

and mass of inertia of trees, an important aspect of full tree harvesting 
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systems (Fridley and Tufts, 1989). 

2.4 Forest Growth and Yield Modelling 

Modelling the growth and yield of forests over time is a means of adequate I y characterizing 

or describing some or all of the many processes that make up the system collectively known 

as a forest. Avery and Burkhart (1983) described it concisely as a means of forecasting 

stand dynamics. The purpose of growth and yield models, despite their complexity of 

structure, can be explained simply as; 

given a set of stand or tree conditions, such as basal area and stems per hectare, 

which refer to one point in time (T1) and to certain locality, by how much 

will these have changed at a future time (T2) given specified stand or tree 

treatments (thinning, fertilization, etcetera). 

Such a quantitative capability has been the forest manager's crucial need so that sound 

decisions can be taken on how wood supply from particular forests should be managed. 

2.4.1 Need for Mathematical Models in Growth and Yield studies 

Fitting mathematical models to forest growth and yield data is a widely accepted method 

of summarizing resource production information about individual trees, stands and forests. 

A mathematical growth model is a mathematical function, or system of functions, used to 

relate actual growth rates to measured tree, stand, and site variables. The advantages of 

fitting mathematical models to growth are set out below. 
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(i) An appropriate curve (equation) may conveniently summarize the information pro­

vided by the observations of a given data set. Thus, a large number of observations, 

collected over time on individual trees, stands and forests can be represented by 

only a few parameters. 

(ii) Comparisons performed between growth data sets or at various ages of a single data 

set is more efficient if performed on the summary of parameter estimates of the 

fitted models (Hoel, 1964). This is particularly efficient when the growth functions 

can be integrated with respect to time as set out in Clutter (1963). 

(iii) Problems of missing or unequally spaced data are alleviated by statistical readjust­

ment or interpolation for missing observations. 

(iv) Growth velocities and accelerations are easily estimated from fitted models by 

differentiation (Clutter, 1963; Berkey, 1982a). 

2.4.2 Past Work in Forest Growth and Yield Modelling 

The following sub - sections review the major concepts and historical development of 

growth and yield modelling from the early 19th century until today. 

2.4.2.1 Normal Yield Tables - Use of Graphs and Tables 

Forest growth and yield models formed the earliest forest planning models. They were 

derived empirically and represented in the form of graphs and tables. German foresters 

established the 'normal yield table' approach, as explained in Bickford et al. (1957); 

Fries (1967); Clutter et al. (1983); Avery and Burkhart (1983); to predict yield of even 
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aged stands. The methods then adopted had the following limitations as pointed out by 

Ware et al. (1988). 

(i) The modelling assumed fully stocked stands, and thus the variables used were 

constrained and not allowed to enter the model independently. 

(ii) The graphical procedures required adjustments to be made when the tables were 

used for non - normal stands, which often produced major errors because of the 

inadequacy of the assumptions in the adjustment process. 

(iii) A strong argument still persists today over the applicability of the concept of nor­

mality: some forest researchers have argued that this ideal condition is subjective 

and does not represent a rational management goal, because a non - fully stocked 

stand with proper silvicultural treatment could produce higher returns than a fully -

stocked untended stand (Curtis, 1972). This substantiates point number (i) above 

that maintaining one variable (stocking) at its maximum will not always give the 

maximum yield and may well not be a relevant management objective anyway. 

2.4.2.2 Variable Density Yield Tables 

MacKinney et al., (1937) were among the first to propose a variable density growth and 

yield model for non - normal loblolly pine stands grown in North and South Carolina, 

USA. More important is that the modelling was performed objectively through the use 

of a statistical approach. One drawback of the early statistical analyses of growth was 

that they were performed using polynomial models (for example, MacKinney et al., 1937; 

Wishart, 1938), a consequence of polynomial growth curves being easy to fit and interpret 
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(Merrel, 1931). However, they fall short of ideal objectives because more often than not, 

high order polynomials are needed to provide empirical fits to many natural phenomena 

and no proper biological meaning can be attached to the parameters associated with them. 

Empirical variable density yield tables were developed in North America as a means of 

refining the definition of normal forests to cope with existing natural forests there. The 

concept of average rather than normal values applied (e.g. Schumacher, 1939; Bennett 

et al., 1959; Avery and Burkhart, 1983 etcetera). However, adjustments still had to be 

made when tables were applied to stands that were not at the average level. 

The proposed yield model by MacKinney et al., (1937) was a logarithmic polynomial 

model of the form shown in equation 2.4, 

(2.4) 

Where a is the maximum theoretical yield (asymptote), Y is yield, T is stand age, Sis site 

index, SDI is Reineke's (1933) stand density and C is composition index. Schumacher 

(1939) proposed a log - reciprocal of time yield equation, which was later used by 

MacKinney and Chaiken (1939) as a refinement of their previous equation, this equation 

was 

(2.5) 

In both equations, 2.4, and 2.5 the stand density is part of the equation and a variable that 

is allowed to vary freely. This was indeed a major development in forest growth and yield 

research, because, apart from the use of regression techniques, the equations have the 

following desirable properties: first, the dependent variable yield (Y) is predicted from a 

specific combination of independent variables over a wide range; secondly, the logarithm 

of the yield is proportional to the reciprocal of age; and thirdly, the functions exhibit 
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asymptotic growth. All these properties are essential components of modern growth 

and yield models (Clutter et al., 1983). Many researchers have used similar methods 

of constructing growth and yield equations since that first one in 1939 (for example, 

Schumacher and Coile, 1960; Brender, 1960; Avery and Burkhart, 1983; Bailey and Ware, 

1983; Murphy and Farrar, 1988). Subsequent research and technological development 

have made growth and yield models more sophisticated through the incorporation of often 

complex mathematical equations and their implementation on fast computers. 

2.4.2.3 Compatible Growth and Yield Models 

Buckman (1962) and Clutter (1963) laid the foundation for the need for compatibility 

between growth and yield. Both demonstrated that, when cumulative growth is plotted 

over time, the yield curve which results can be derived mathematically by integration of 

the growth function: that is, the first derivative of the yield function results in a growth 

function (Clutter, 1963; Clutter et al., 1983). Compatibility between growth and yield 

is a major premise for the building of modern growth and yield models, in that the total 

area under the growth curve must equate yield. Biological theory, supported by much 

empirical evidence indicates that yield curves have a sigmoidal shape, as demonstrated in 

the Schumacher yield equation ( using IUFRO conventional notation as outlined in section 

1.2). 

The first derivative of this equation will provide a corresponding growth function. 

dG = _l_e(o:+f) 
dt T 2 

(2.6) 

(2.7) 
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2.4.2.4 Simultaneous Growth and Yield Model 

Sullivan and Clutter (1972) further extended the concept of compatibility and developed a 

simultaneous growth and yield model, by simultaneously estimating yield and cumulative 

growth as a function of initial age. When future age (T2) equals current age (T1), the 

equation is reduced to the conventional yield model. Thus, it is simultaneously a yield 

equation for the current condition and a projection model for the future. They used 

Clutter's (1963) volume yield equation 2.8 and basal area yield equation 2.9. Using 

IUFRO conventional symbols, their equations can be represented as 

0'.2 
ln(V) = ao + a1S + T + a3 ln( G) 

ln(G) = /3o + f31S + ~ 

and thus, from 2.9 

/32 = T(ln(G) - (f3o + f31S)) 

Differentiating 2.9 with respect to T, and substituting /32 as in 2.10 gives 2.11 

dln(G) 
dT 

(ln( G) - (f3o + f31S)) 
T 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

The above equation is in differential form and can be integrated, rearranged and presented 

in a projection form shown in 2.12 

(2.12) 

This equation represents a sigmoid curve, has an inflection point and an upper asymptote. 

It is mathematically compatible, numerically consistent and path invariant (Clutter, 1963). 

Future volumes can be predicted by substituting equation 2.12 in equation 2.8 for G2 , that 

is 

(2.13) 
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Where, 

32 

(2.14) 

(2.15) 

There are several other functional forms of growth models that can be formulated as 

compatible/simultaneous, and have been used successfully in yield studies: they include 

Chapman - Richards, Gompertz, Levakovich, Hossfeld, Weibull, monomolecular and 

others. There is no one functional form that is superior to another, but the way they 

behave when fitted depends on the nature of the data (Woollons et al., 1990). 

Numerous researchers have then adopted the compatible/simultaneous growth and yield 

methodology with different functions (Clutter, 1963; Brender and Clutter, 1970; Pienaar 

and Turnbull, 1973; Pienaar, 1979; Farrar, 1979; Clutter and Jones, 1980; Bailey and 

Ware, 1983; Pienaar and Shiver, 1984; Pienaar et al., 1985; Murphy and Farrar, 1988 et 

cetera). 

2.4.2.5 Computer Technology in Growth and Yield Modelling 

Without the use of computers growth and yield prediction can be difficult, or even impos­

sible sometimes to effect. Nevertheless, evaluation of the role of computers as a necessary 

tool for growth and yield prediction has seldom been comprehensively carried out, perhaps 

because it is assumed to be well known by researchers. The paragraphs below attempt 

to categorize the most common uses of computers as they pertain to growth and yield 

modelling. 



Chapter 2. Review of Literature 33 

(1) Development of Models 

With a large data set and without computers, regression equations can be difficult to fit 

and interpret. Computers revolutionized growth and yield modelling and made possible 

the fitting of multiple linear and non linear regression equations easily. One of the 

disadvantages pointed out by MacKinney et al. (1937), was that the process involves a 

rather laborious procedure as well as a knowledge of correlation analysis. Today, special 

statistical packages (software) and high speed computers (hardware) have been developed 

to perform regression analyses (linear and non linear), which have made possible an array 

of modelling alternatives, some very complicated and others which were infeasible with 

the past technology: for example it is possible to use individual trees as a basic unit of 

growth and yield modelling and to adopt alternative modelling approaches. 

Other uses include evaluation of different models, verification, calibration of models to 

suit local conditions, validation and forest growth monitoring. 

(2) Routine use of the Models 

Routine use of growth and yield models is generally effected through use of computers. 

Forest managers use growth and yield models interfaced with harvest models, bucking 

models, economic models, etcetera, to simulate forest productivity and economic outturn, 

and so that sensitivity analysis of a set of management alternatives can be conducted 

reliably. This vital capability cannot easily be achieved without the use of computers. 
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2.4.3 Site Index - Overview and Historical Perspective 

This section explores some of the major concepts of site index. Problems of applying site 

index as a measure of site quality are also highlighted. 

Site quality can be evaluated indirectly or directly, as explained in the following para­

graphs. 

2.4.3.l Indirect Estimation of Site Quality 

Evaluation of site quality can be done indirectly through use of vegetative site types (Zon, 

1913; Cajander, 1926; Ure, 1950; Hod.kings, 1961; Daubenmire, 1961; Daubenmire and 

Daubenmire, 1968). The application of this approach has the following disadvantages. 

(i) The deep soil horizons, for example, may have little influence on the 

under - storey vegetation but still much influence on the tree growing 

medium. Under - storey is also influenced by such factors as wildlife, 

fire and site preparation. 

(ii) The evaluation cannot be quantified without reference to another species 

growing in the area, and hence it is difficult to quantify. 

Inter - species relationships have also been used in evaluation of site index, For example 

Coile (1948) used this method to calculate site index of loblolly pine and short leaf pine. 

Olson and Della - Bianca (1959) used such an approach for mixed stands. 

Another approach is the use of topographic features (such as elevation), and soil char­

acteristics (physical and nutrient properties). Theoretically tree growth is controlled by 
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environmental factors such as soil nutrients, soil moisture, aspect, elevation and tem­

perature. Data pertaining to these values can be identified and regression or correlation 

analysis conducted with respect to tree growth (Coile, 1952; Myers and Van Deusen, 

1960; McGee, 1961; Lewis and Harding, 1963; Carmean, 1970; Steinbrenner, 1975; 

Alban, 1976; Clutter et al., 1983). The application of this method, although it more 

often provides a good inference is limited because it involves massive data collection, is 

laborious, very costly and sometimes impossible. 

2.4.3.2 Direct Evaluation of Site Quality 

The direct estimation of site quality falls under two major categories, namely (1) historical 

yield records, and (2) site Index. Historical yield records can be used as a method for 

directly evaluating site index in terms of a measure of production in physical quantity, like 

volume/ha (Bates, 1918). The disadvantage of this method is that physical quantities such 

as stand volume are influenced by other factors like rainfall, rotation, insects, disease, 

genetics, management and the fact that most forests lack such historical data. For stands 

in which factors that influence volume production can be strictly controlled, stand volume 

is the best indicator of quality (Lewis et al., 1976; Clutter et al., 1983). This method is not 

very practical, however, because the cost of controlling those factors would be enormously 

high. 

Site index (the mean top height at an index age) is by far the most common measure of 

productivity (Spurr and Barnes, 1980). Site index is popular because it is relatively easy 

to measure and dominant height is fairly independent of stand density, except at extremes 

such as thinning from above (Spurr, 1952). Also there is a strong historical precedent for 
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its use, in that volume production potential is positively related to height growth (Roth, 

1916). Thus mean top height could be a good indicator of site quality. The approach 

involves fitting a family of curves of mean top height development at a specified age (base 

age). (See examples: Zahner, 1962; Coile and Schumacher, 1964; King, 1966; Brickell, 

1968; Lundgren and Dolid, 1970; Beck, 1971; Carmean, 1972; Graney and Burkhart, 

1973; Bailey and Clutter, 1974; Trousdell et al., 1974; Burkhart and Tennent, 1977; 

Newberry and Pienaar, 1978; Clutter and Jones, 1980; Boardes et al., 1984; Harrison et 

al., 1986; Bailey et al., 1989). 

Site index as a measure of productivity has been subject to numerous problems (Monserud, 

1984a, 1985a, 1987; Wykoff and Monserud, 1987), especially in irregular stands and with 

mixed species composition or uneven distribution of ages. Although careful site/species 

tree selection can overcome some of these problems (Monserud, 1984b, 1985b), the 

solution to others has remained a mystery. A direct and similar example is provided in this 

study, an examination of site productivity showed that elevation and locality were jointly 

the best predictors of the productivity of a site, rather than site index. Other researchers 

too have been able to predict site productivity by using equations that do not include site 

index (for example: Stage, 1973; Wykoff et al., 1982). 

Data for estimation of site index estimation can be derived in two ways, 

(i) by analysis of repeated measurements from permanent sample plots (PSP); 

(ii) through stem analysis (Bruce, 1926). 

The most widely applied technique in plantations is the use of psp data, because of its 

simplicity and in most cases such data are readily available. In natural forests, however, 
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stem analysis may be the only practical technique. 

There are three methods by which site index curves (equations) can be generated (Clutter 

et al., 1983). These are: 

(a) guide curve 

(b) difference equation 

( c) parameter predictions 

In most situations one method is usually clearly superior to the others, or else a combination 

of methods could be applied to good effect. The Douglas fir data analyzed here were from 

permanent sample plots (PSP's) measured and remeasured several times. Analysis showed 

that the difference equation and Schumacher form gave the best overall predictions. Site 

index equations are classified into three types: anamorphic, polymorphic - disjoint and 

polymorphic - non disjoint (Clutter et al., 1983; Boardes et al., 1984). 

This study has explored environmental factors associated with site quality variation in 

Douglas fir grown in the South Island of New 2-ealand. It was noted that site index, the 

mean top height at age 40 years, was not the best predictor of the site productivity. Site 

index equations developed in this study and their relationship to site quality are described 

in detail in chapter 4. 
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2.5 Modelling Philosophy 

There are at least three ways one can review modelling philosophy: one is to examine 

modelling objectives or what the modelling is characterizing (Munro, 1974); the second 

is to focus on the condition of the forest that is being modelled (Bruce and Wensel, 1987); 

and the third is to look at the mode of action of the model (Garcia, 1988). 

Past attempts by researchers to distinguish particular modelling objectives rather than a 

particular modelling philosophy contributed to a confused nomenclature of forest growth 

and yield models (Munro, 1974). Models of this sort have appeared in the literature in 

many forms. Although empirical growth models differ widely, common basic elements 

appear in most of them. Estimates are made of the changes over time of tree diameter, 

height, form, volume, or all of these variables, and also changes in stocking (Bruce and 

Wensel 1987). The following sub - sections discuss and elaborate the nomenclature which 

frequently have appeared in the modelling philosophy. 

2.5.1 Classification According to Objectives of the Model 

Munro (1974) developed a classification in which growth and yield models are classified 

according to their general objectives or according to what they model. 

(1) individual tree growth models 

(i) individual tree - distance dependent models, 

(ii) individual tree - distance independent models. 

(2) Whole stand growth models. 
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(3) Diameter distribution models. 

The paragraphs below look at this classification and the advantages and disadvantages of 

each approach. 

2.5.1.1 Individual Tree Growth Models 

(i) Individual Tree - Distance Dependent Models 

The main concept behind this kind of model is based on the postulate that the amount of 

competition to which a tree is subjected is proportional to the amount the competition circle 

of a subject tree is overlapped by competition circles of neighbouring trees. Competition 

circles are defined as some function of the size of a tree. The actual amount of competition 

has been expressed by different researchers in units of area, circumference, or angles. The 

first such model to appear in the literature was that of Newham (1964), other examples 

include Lee (1967), Mitchell,(1969), Lin (1970), Amey (1972) etcetera. Individual tree -

distance dependent models use individual tree values as inputs, which are then aggregated 

to provide estimates of stand growth and yield. They are capable of producing very 

detailed information about the structure of a stand. For example, potentially powerful 

uses result from those which incorporate crown dimensional increments (e.g.Mitchell, 

19691; Arney, 1972), as they include studies of tree to tree competition, pruning impact, 

insect defoliation, top die back, bole form change and mistletoe infections. Clearly, 

they off er a potential to examine the effects of various cultural programmes and their 

interactions, such as thinning, spacing and fertilization in a very detailed way. 
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The major disadvantage of all distance dependent modelling is the difficulty of calculating 

a meaningful biological measure of competition and the high use of computer resources. 

Spatial information (coordinates), elevation, aspect, stem charts of the tree, for example, 

must be obtained in the field and supplied as model inputs. Such information is expensive 

to acquire and is not available for any but the most intensively monitored permanent 

sample plot (PSP) system. Most models of this type provide artificial generation of 

tree spatial distribution. When this is done, strong arguments can be made to suggest 

that the model is functioning as a distance - independent one. Nevertheless, with the 

development of modem aerial photographs and mapping equipment the cost of acquiring 

the needed information can be significantly reduced. Today, these models, are not of 

great utility because advances in individual tree distance - independent models show 

that much of the information can now be obtained without inter - tree distance data, 

specifically through knowledge about spacing, thinning and fertilization. The effects of 

these cultural operations can be mostly evaluated more efficiently for operational purposes 

with distance - independent models. 

(ii) Individual Tree - Distance Independent Models 

The basic difference between this and the previous kind of model is the absence of a 

measure of distance between trees. In individual tree - distance independent modelling, 

trees are growing with respect to several tree characteristics, individually or in groupings of 

similar diameters, according to some mathematical functions. These models have ranged 

from simple regression as in Lemmon and Schumacher (1962) to extremely complicated 

stochastic models such as the one proposed by Dress (1970). The most referenced and 

used model in this category is PROGNOSIS developed by Stage (1973): this model 
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offers great potential, particularly through its designed ability to function as a feedback 

mechanism for localization of more general models. The major advantage of individual 

tree, distance - independent models is the elimination of the necessity for stem charts, 

which results in fast computing and permits testing of many alternative hypotheses of 

management. Models with this property are essential in the development of management 

decision making tools such as RAM (Navon, 1971). The disadvantage of individual tree, 

distance - independent models is their inability to predict the growth of a specific single 

tree with any reliability; consequently they cannot be used to forecast the crown shape, 

crown development, and bole shape changes or defoliation in individual trees. 

2.5.1.2 Whole Stand Growth Models 

Whole stand models are also referred to as whole stand, distance - independent models. 

Stand models have a common objective, namely to produce at some point or points in 

simulated time, summary tables which indicate the state of forest stands on a per unit area 

basis. That is, they use stand variables as inputs and produce stand outputs, such as age, 

basal area per hectare and stems per hectare. 

Whole stand models are the most widely represented kind of growth model in forestry 

modelling. For many years, forest scientists have investigated stand growth by regression 

functions to express stand growth under prescribed management. Computer capability 

has enabled the development of complex models utilizing complicated mathematical func­

tions which permit the solution of yield functions based on virtually unlimited parameters. 

Examples of such Douglas fir models are Myers (1971) model which is used operationally 
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by the United States Forest Service, Hoyer's (1972) model which simulates forest man­

agement practices in Washington (USA), and SIDFIR (Law, 1990) which simulates the 

growth of the species in the South Island of New .2.ealand, 

All are designed with the specific objective of producing managed stand yield tables. 

Most forest enterprises depend on whole stand models to provide necessary stand infor­

mation for economic analyses. The main advantages of whole stand modelling are its 

ability to utilize conventional inventory information, fast computation time and simplicity 

of operation. The disadvantage is that specific individual tree or tree class information is 

totally lacking. 

2.5.1.3 Diameter Distribution Growth Models 

Diameter distribution models occupy an intermediate position between the whole stand 

and individual tree models in terms of state description detail, computational cost, and 

information requirements (Garcia, 1988). Diameter distribution models should be con­

strained to operate as whole stand models, but with the additional ability of inputting stand 

level information (variables) to produce not only stand level statistics but also diameter 

distributions of trees to aid in forecasting size class information. The use of mathematical 

equations by foresters to predict diameter distributions goes back as early as 1898, when 

de Liocourt (in Meyer and Stevenson, 1943) constructed a diameter distribution model 

for all - aged stands using geometric progression (Meyer and Stevenson, 1943). In 1943, 

Meyer and Stevenson successfully constructed a diameter distribution model following 

de Liocourt's theory but through use of the exponential distribution. Since that time much 

attention has been given to diameter distribution modelling because it provides a detailed 
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structure of the stand in terms of size classes, an important requirement for financial 

analysis. 

Probability density functions have been the key to the generation of diameter distribu­

tions. Examples include Gram - Charlier series (Meyer 1930), Pearl - Reed growth 

curve (Osborne and Schumacher 1935), Johnson's Sb distribution (Hafley and Schreuder, 

1977), Gamma distribution (Nelson, 1964), Beta distribution (Clutter and Bennett, 1965), 

Weibull distribution (Bailey, 1972), and others. The most used distribution today is the 

Weibull function, because it offers the following desirable properties with respect to forest 

stand categorization: 

(i) relative ease of mathematical manipulation (Bailey and Dell, 1973), 

(ii) it has a closed form (Bailey and Dell, 1973; Clutter and Belcher, 1978), 

(iii) flexibility of the model (Johnson and Kotz, 1970). 

The early diameter distributions were derived by regressing the probability density func­

tions directly to the stand variables such as site index, stems per hectare and age, in the 

so called parameter prediction technique. This produced inconsistent estimates of stand 

values between the diameter distribution model and the whole stand model (Clutter and 

Belcher 1978). Diameter distribution models are useful only when they are compatible 

with the whole stand model, because consistent estimates of various stand yield variables 

need to be derived. Compatibility has been achieved by employing a parameter recov­

ery method, with which method the parameters of the probability function are estimated 

implicitly from stand estimates (Cao and Burkhart, 1984; Knoebel et al., 1986; Boardes 

et al.,1987). In growth and yield studies today, whole stand models are in the majority 

because their level of aggregation has been reasonably easy to work with. By pooling all 
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stems together, a lot of variation due to genetics, site, climate, and the like are absorbed, 

making the fitting of functions easier. 

A potential difficulty with tree size distributions arises from the spatial correlation of tree 

sizes: over very short distances there is usually a negative correlation due to competition: 

over longer distances, microsite similarity causes a positive correlation, decreasing with 

time (Garcia, 1988). This implies that tree size distribution must vary with area of 

land considered. In particular, the variance must vary with plot size, and distributions 

derived from sample plots are unlikely to apply to the whole stand. This aspect has 

been ignored by growth modellers although its importance has long been recognized in 

forest sampling (Garcia, 1988). Experience has shown that for estimating stand variables 

only minimal gains in precision are attained by these models and that they may not be 

justified considering the higher costs involved. Diameter distribution modelling is thus a 

compromise, one that has proved very effective (e.g. Clutter and Allison, 1974; Alder, 

1979; Bailey et al., 1981). 

2.5.2 Condition of the Stand Being Modelled 

Bruce and Wensel (1987) recognized the relevance of Munro's classification just described, 

but they also put emphasis on the applicability of different models according to forest 

condition being modelled and on the purpose of the model. Stands with a uniform 

progression of frequencies in size classes throughout their range can be characterized in 

more ways than stands without them. For example, a single tree - distance dependent 

model with some modifications can be used in uniform and non-uniform stands, but not 

particular models for both situations. In even-aged stands, density and hence competition 
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can be evaluated on a stand basis in terms of the state variables, namely basal area 

per hectare, volume per hectare and stocking. Uneven aged stands require a detailed 

description of individual trees and are seldom successfully simulated by simple models 

developed for regular stands. To model most stands that are irregular, the growth of each 

tree must be estimated individually, because no single measure of stand density can be 

used to represent the competition affecting individual trees. The best solution is to use an 

individual tree distance - dependent growth model where the size, vigour, and proximity 

of neighbouring trees are evaluated. This technique can also be used for regular stands, 

but it is not always necessary because they are expensive, while whole stand models are 

a cheaper alternative with an acceptable degree of accuracy in certain circumstances. 

2.5.3 Mode of action of Growth Models 

Garcia (1988) put emphasis on the function of the models themselves. Essentially, 

the evolution over time of any system can be modelled by specifying: (i) an adequate 

description of the system at any point in time; (ii) the rate of change of state as a function 

of current state and of current value of any external control variables (Garcia, 1988). The 

state is the stand/tree (Nlha, G!ha, h100,) and the external factors are time, climate, altitude, 

aspect, soil, cultural treatment et cetera. Growth models can be quantified as static or 

dynamic, depending on how they function. 

(1) Static Growth Models (Alder, 1980) 

Static growth models attempt to model the development over time of quantities of interest 

(volumes, mean diameter). This approach to modelling falls short of a capability to 
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predict the rates of change: nevertheless, they can produce good results for unthinned 

stands or stands subject to a limited range of standardized treatments for which long -

term experimental data are available. Examples of these are the Forestry Commission 

Management Tables (Johnson and Bradley, 1963) and South Australian Yield Tables 

(Lewis et al., 1976). 

(2) Dynamic Growth Models 

The modern approach to modelling relies on the capabilities of dynamic models. Unlike 

static models, dynamic models forecast growth over a wider range of external factors (such 

as initial spacing, various thinning and pruning intensities, and fertilization). Instead of 

modelling directly the course of values over time, these models predict rates of change 

under various conditions. The trajectories over time are then obtained by adding or 

integrating these rates. Thus, the Munro (1974) classification refers to dynamic growth 

models. 

2.5.3.1 Summary 

Prospective uses influence the choice of growth models. If for example, only an estimate 

of total volume is required at a given time, then little attention need to be paid to the 

irregularity of the stand. If a prediction of change of inventory by size class material is 

needed, then a diameter distribution model of some form will be adequate. Nevertheless, 

if some estimate of change of quality is required, each tree may have to be treated 

individually in the computer model, irrespective of the stand regularity. Comparisons 

of alternative treatments, especially those not previously applied and observed, may be 

inaccurately predicted, no matter how it was developed (Bruce and Wensel, 1987). 
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2.6 Modelling Approaches 

The major drawback of least - squares methods is that the nature of forestry data in terms 

of repeated measurements have correlated errors. The application of generalized least -

squares (Ferguson and Leech, 1978; Davis and West, 1981) on permanent sample plot data 

was an effort to remove the bias of estimating standard error of parameters, which occurs 

when ordinary least - squares techniques are applied. Generalized least - squares changed 

the parameters very little, however, and the technique has not been of much significance 

in forest growth and yield modelling. 

Analysis of growth and yield can proceed using various modelling alternatives: stand -

level only, diameter distribution, distance - dependent tree - level or distance - independent 

tree - level (Munro, 1974; Bruce and Wensel, 1987). The methodology used by many 

researchers is to develop regression equations by single variables (Clutter, 1963; Sullivan 

and Clutter, 1972; Smalley and Bailey, 1974; ). Garcia (1979, 1984b, 1987) has improved 

growth and yield modelling through introducing stochastic differential equations. The 

stochastic differential equation models have different mathematical properties and have 

been attracting considerable interest throughout the world (Ware et al., 1988). In this 

approach, the state variables such as basal area per hectare, stems per hectare, and others 

are simultaneously projected over time. Models of this kind have proved to be satisfactory 

to use in practice (Garcia, 1984b; Dunningham and Lawrence, 1987). Nevertheless, 

stochastic differential equations like any other equations need to be subject to biological 

and statistical tests when fitted to data. Moreover, simultaneous estimation of parameters 

of different equations can be very restrictive. This approach has not, therefore, been 

adopted here. The approach used in this thesis is to model each stand variable singly, 
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because this allows a wide range of equation forms to be evaluated for each individual 

variable that needs to be predicted. 

2. 7 Growth and Yield Models for Douglas fir 

Growth and yield models for uneven - aged stands of Douglas fir have been developed 

in North America (Curtis et al., 1981; Newham and Smith, 1964; Bruce et al., 1977; and 

others). The Weyerhauser company in USA grows Douglas fir in plantations and has 

re-measured data that can be adequately modelled. The methodologies adopted in North 

America are also applicable in New 2:ealand, but judging from graphs of crop production 

these models would not be applicable to New 2:ealand conditions because of disparity of 

climatic and other growth factors. 

The first Douglas fir growth and yield model in New 2:ealand was DFIR, developed by 

Mountfort (1978), specifically for Kaingaroa forest. NFIR was devised in 1979 to cater 

for production of that species in Nelson. Calibration of DFIR gave rise to DFPP, ROOF, 

and SDFIR (Law, 1990). The first complete Douglas fir models in New 2:ealand were 

DFCNIGM 1 and DFCNIGM 2, of which are both whole stand models created in 1989 (Liu 

Xiu, 1990). DFCNIGM 3 is a diameter distribution model compatible with DFCNIGM 

2, which was created in 1990 (Liu Xiu, 1990). DFCNIGMl and DFCNIGM2 endeavour 

to identify the presence of intra - regional or temporal differences among subsets of data 

and to make due allowance for such effects, such as disease infection. 

SIDFIR (Law, 1990), was an attempt to develop a whole stand growth and yield model 

for all Douglas fir grown in the South Island of New 2:ealand. SID FIR does not account, 
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however, for existing regional variability. DfirStand described in chapter 4 of this thesis is 

a whole stand model for Douglas fir grown throughout the South Island of New Zealand, 

the model incorporates both the existing local and regional adaptations. 

2.8 Localising Growth and Yield Models 

There has been a tendency in some countries to develop and use growth and yield mod­

els that are specific to increasingly restricted sub - populations. In New Zealand, for 

example, there are currently about 16 models in use for one species, radiata pine alone, 

when 20 years ago there were 2 (Whyte et al., 1992). Statistically one may argue that 

stratification of a large population into smaller components will result in more homo­

geneous sub - populations, but this is not always justified unless analysis of covariance 

or some other appropriate technique can confirm that all the parameter estimates of a 

growth forecasting equations are unequal across sub-populations. General forest growth 

projection systems are often developed for large geographic regions (e.g. PROGNOSIS, 

Stage, 1973; STEMS, Smith, 1981; SIDFIR, Law, 1990, etcetera). Developed in this 

overall way, however, these models will not necessarily provide adequate sensitivity of 

estimation for sub-regions ( e.g. counties, forest districts and wood supply centres) for 

the following reasons. 

( 1) Existing Variations 

Regional growth models usually do not fully account for sub-regional site quality, stocking 

variability, genotypic variability, local climatic fluctuations, growth variations over time, 

to cite just some examples. These unexplained factors may well average out for whole 
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region estimates, but for sub-regional estimates they may not, resulting in estimates that 

are biased. 

(2) Operational fall-down (Bruce, 1977). 

These occur when a projection system has been derived from data acquired from permanent 

or temporary sample plots that are located in uniform stands that are undamaged, and are 

of very high quality. When this system is used to project stands that are not maintained 

under the same optimal conditions, predicted growth is commonly found to be higher than 

observed growth. 

(3) Silvicultural Practice 

For many regions and species, models have not been developed for different cultural 

regimes (fertilization, genetic improvement, site preparation, thinning, etcetera). Under 

such circumstances, a means for at least partially accounting for treatment response must 

be developed. Parameter estimates of a regional model estimated in accordance with a 

given range of silvicultural practice, may not necessarily give unbiased predictions if used 

in a sub-region that can be characterized with different parameters, arising from different 

regimes. Various techniques have been used for localising regional models or regional 

estimates to suit local conditions. These are described in the next sub-sections. 

2.8.1 Stratification 

Stratification involves modelling each different stratum individually. To justify this an 

hypothesis that all parameters of each stratum are different from those of other strata must 
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be conducted. 

2.8.2 Simple Means Ratio 

This technique is probably the simplest: if Pr and Pr are taken to represent a regional 

prediction and the mean of regional prediction respectively, while Ps and A are corre­

sponding sub-regional predictions and means, then the adjusted regional prediction to suit 

sub region can be given by 

P , Fs 
r = Ps X P­

r 

where, P; is the adjusted regional mean. Smith (1981) successfully used this technique 

to localise estimates of individual tree annual diameter growth provided by the regional 

growth projection system STEMS. Provided that the ratio estimator ;; is determined 

accurately, this method can achieve good results in the short run. 

2.8.3 Regression Revision to Adjust the Parameters 

Regression revision has been employed to adjust some of the parameters of the regional 

model. For example, PROGNOSIS, Stage (1981) used this technique in localising the 

intercept of the model, while other parameters were kept constant. The disadvantage 

of this method is that, there has been no formal procedure for the technique and the 

parameters to be localised depend on the assumptions of the modellers themselves. 
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2.8.4 Bayesian Methods 

Bayesian methods are based on the probability principle that, a posterior probability 

distribution function (pdf) can be derived from a prior pelf. Bayes' theorem is of the 

following form, 

where 

f( R ly;) = f(Yilf3o)f(f3o) 
{JO 1 f(Yi) 

f ((30 ) is the prior probability function of a random parameter (30 that has been 

obtained from fitting the growth function over an entire region; 

f(Yi lf3o) is a conditional probability density function of observations taken 

from the sub region given the parameter (30; 

f (Yi) is the probability density function of Yi, which need not to be explicitly 

considered; 

f ((30 I Yi) is the posterior distribution of parameter (30 given Yi which contains 

information from the entire region !((30 ), as well as a sub region f(Yi lf30 ). 

(2.16) 

If the error component of the posterior information has mean 0, constant variance a-, 

and normally and independently distributed, then a posterior parameter estimate can be 

obtained that maximizes f (f3o I Yi). 

Bayesian techniques have been used successfully in localising growth and yield models. 

Berkey ( 1982b) and Green etal. ( 1992) have shown that if parameter estimates of the global 

model are similar to those of the sub region model in some respect, then considerable gains 

in, say, root mean square (RMS) may be realized by using empirical Bayesian regression 

over the use of the ordinary least-squares regression. Berkey (1982b) has reported a 
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reduction in (RMS) of about 50% in parameter estimation in fitting the Jenss (Jenss and 

Bayley, 1937) growth model to a sample of children. Green et al. (1992) have reported a 

reduction of more than 50% in RMS in simultaneous parameter estimation for Honduran 

pine yield models for sub-populations with different soil types. The use of Bayesian 

technique to adjust the parameter estimates through time is known as a sequential Bayesian 

procedure; the technique remains the same, except it is done through time. Gertner (1984) 

used this method to localise a diameter increment model taken from STEMS (Shifley and 

Fairweather, 1983). He demonstrated that the parameter estimates of a growth model 

change with crop development, and that they reach an asymptote as the crop matures. 

2.8.5 Use of Dummy Variables 

Dummy variables have also been employed to localise growth and yield models. This 

mostly involves formulating an ANCOVA problem in which dummy variables are in­

corporated in regression equations. The general approach has been demonstrated by, for 

example, Gujarat (1970). Monserud (1984b) used dummy variables to estimate specific 

parameters in site index equations of inland Douglas fir according to habitat types, while 

Ferguson (1979) used dummy variables to localise a basal area increment equation for 

five forests of radiata pine in the Australian Capital Territory (ACT). Because of their use­

fulness, the next paragraphs explain how dummy variables can be employed in localising 

growth and yield. 

Given a set of 3 populations (regions) and one covariate, one can formulate an AN COVA 

problem as set out in the following equations. 
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( 1) Minimal model 

Yii = f3o 

(2) Simple linear regression 

(3) Regression slope varied by region 

( 4) Maximal model 

In maximal model all parameters are varied by region. 

The coefficients are interpreted as follows: 

/30 , intercept for population 1; 

/31 , differential intercept for population 2; 

/32 , differential intercept for population 3; 

/33, slope of Y with respect to X for population 1; 

/34, differential slope of Y with respect to X for population 2; 

/35, differential slope of Y with respect to X for population 3; 

J1, J2, are dummy variables; 

f.ij, NID(O,o-2). 
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(2.17) 

(2.18) 

(2.19) 

Equations 2.17, 2.18, 2.19 and 2.20 are nested, so that, an hypothesis test can be performed 

on slopes /34 and /35. If /34 and /35 are statistically different from one another, (Ho: /34=/35), 
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then 2.20 is the appropriate model. If Ho is accepted, however, then equation 2.19 is 

preferred. The usual assumptions about the error term Eij hold here, namely that NID(O, 

o-2). Initially, the two dummy variables are assigned to any two populations, while one 

remains as the default. Provided that all possible combinations are tested there is no chance 

of missing out the best combination. If for instance, the dummy variables J1 and J2 are 

allocated to populations 2 and 3 respectively, while population one enters the model freely, 

and 2.19 is the best equation then 2.19 will have a common slope /33, but with varying 

intercepts, /Jo for population 1, /Jo + /31 for population 2, and /30 + /32 for population 

3. Si~ce it is assumed that the error term is normally and independently distributed 

with mean O and constant variance a 2, this formulation allows straight-forward tests of 

hypothesis associated with the confidence limits of parameter estimates through use of 

statistical packages like SAS, which have the capability of sorting data to their respective 

sub-populations. Although the above example applies to linear regression, the same 

principles are applicable to non-linear models. The use of dummy variables thus provides 

potential capabilities for testing the justification of having different models for different 

sub-populations. Ferguson (1979) used generalized linear least-squares regression with 

4 dummy variables to localise basal area increment model for five forests, mainly to 

represent different rainfall patterns. 

2.8.6 Summary 

If adequate information is available and if the accuracy needed by the user demands it, any 

of the above methods for localising growth and yield can lead to satisfactory results, subject 

to evaluation and validation of the adjusted models. However, the applicability of Bayesian 
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techniques relies on obtaining prior information, requires high statistical knowledge, and 

sometimes special algorithms for solving the parameters. These methods are therefore 

costly, although capable of providing very accurate estimates (Berkey, 1982b; Green et 

al., 1992). The gain in precision may accrue, however, only when the assumptions of 

Bayes' theory are met; that is, there needs to be similarity between the prior and posterior 

information, otherwise they may lead to costly unjustified results. 

This study aims specifically to incorporate locality adaptation by including dummy vari­

ables among the predictor variables. The approach adopted here, to pool all the data, then 

assign dummy or other predictor variables to respective regions to account for locality 

variation, is preferred over the other two approaches because it should provide a better 

basic understanding of variation that is necessary for testing the stratification and Bayesian 

methods. The latter two could well be evaluated in studies following this. 

) 
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Data and Data Analysis 

3.1 Tree Volume and Taper Data 

3.1.1 Sources of Data 

The data used in tree volume and taper modelling were sampled from 16 forests in the 

Canterbury region, 10 in Southland and one in Nelson (these are summarized in appendix 

A. 1 ). The data were retrieved mainly from Forest Research Institute archives. Procedures 

for taking sectional measurements and making data entries are explained in detail by 

Gordon, (1985). Initial examination of the data showed that the Nelson region was 

represented by 32 trees only. This number was insufficient to represent Nelson, where 

38% of the area of Douglas fir planted in the South Island is located. Thus, an additional 

50 trees were measured in Golden Downs to strengthen the data base. 
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3.1.1.1 Selection of Additional 50 Trees 

The following procedure was followed in the sample selection of the extra 50 trees, just 

mentioned. Sample trees were obtained systematically throughout the dbhob range, the 

allocation across the dbhob range being in roughly equal numbers by size class. Sample 

trees included all merchantable sizes, emanating from crops aged 40, 35, and 13 years. 

Samples from the tails of the observed diameter distribution were deliberately included 

because of their importance in estimating the coefficients effectively. Individual trees 

were selected from several stands throughout the forest according to the criteria set out 

below: 

(i) reasonably straight stem with less than a 10 degree lean; 

(ii) no leader die back , nor broken top, nor stem forking; 

(iii) unblemished dbhob, unaffected by forking, fluting, abnormal taper, concavity, cal­

lous growth or scar tissue; 

(iv) crown class normal for the tree size, very suppressed or grossly emergent trees being 

excluded from consideration. 

This procedure aimed to supply a sample from which a volume function representative of 

the main tree population growing in the locality could be obtained. 
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3.1.2 Nature of Tree Volume and Taper Data 

Sectional measurements were taken along tree stems in the manner prescribed by the 

Forest Research Institute (Ellis, 1979 ). The average number of sectional measurements 

per tree was 10, which constitutes an adequate set of repeated measurements for taper 

definition purposes. 

3.1.3 Quantity and Quality of Sectional Measurement Data 

Tables 3.1, 3.2 and 3.3 below show the frequency of diameter - height classes of 

trees separately for each region, Canterbury, Nelson and Southland respectively: Table 

3.4 summarizes the whole data set used for tree volume and taper modelling. Table 3.4 

shows that the initial data set consisted of 641 trees and about 7000 measurements, while 

Tables 3.1, 3.2 and 3.3 are distributions of diameter and height - classes represented 

in the samples from the three regions. The range of dbh - height classes of these data 

appears to be adequate, and their quality is good for the purpose of modelling volume and 

taper. To construct a new volume table the minimum recommended sample size is 100 

trees (Gordon, 1985), though the sample may have to be increased if the variation in tree 

form is high, until the resulting equation has an acceptable reliability in terms of both the 

accuracy and precision required by the user. For a volume function that has validity for a 

greater area, several hundred or even thousand may be required according to Loetsch and 

Haller (1973), but this claim needs to be challenged on the basis of research reported later 

here. 
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Table 3.1: Dbh-Height Classes for Trees From Canterbury Region 

Dbh class Height Classes (5 m) 

(5 cm) 5 10 15 20 25 30 35 40 45 

Number of trees Total 

5 10 10 

10 5 13 17 1 36 

15 10 51 13 74 

20 1 34 72 107 

25 8 60 1 69 

30 4 12 1 17 

35 3 4 1 8 

40 1 1 4 6 

45 1 8 9 

50 1 5 1 8 

55 1 7 2 2 11 

60 4 1 2 1 8 

65 3 2 1 6 

70 2 1 1 4 

75 1 1 2 

80 3 3 

85 1 3 1 5 

90 1 1 

Total 15 24 117 163 6 32 11 12 4 384 
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Table 3.2: Dbh-Height Classes for Trees From Nelson Region 

Dbh class Height Classes (5 m) 

(5 cm) 5 10 15 20 25 30 35 40 

Number of trees Total 

5 

10 

15 1 3 4 

20 7 2 4 1 14 

25 5 1 5 6 17 

30 1 1 7 8 17 

35 3 1 4 1 9 

40 1 3 3 6 13 

45 1 1 1 3 

50 2 2 

55 1 2 3 

60 

65 

70 

75 

80 

85 

90 

Total - 1 16 8 20 23 11 3 82 
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Table 3.3: Dbh-Height Classes for Trees From Southland Region 

Dbh class Height Classes (5 m) 

(5 cm) 5 10 15 20 25 30 35 40 

Number of trees Total 

5 20 20 

10 12 1 1 14 

15 5 1 5 1 12 

20 6 5 13 3 27 

25 4 5 14 23 

30 3 7 11 4 25 

35 5 8 5 18 

40 2 8 1 11 

45 1 1 4 1 7 

50 1 4 5 

55 1 1 

60 2 2 

65 1 1 

70 2 2 

75 1 1 1 3 

80 1 1 

85 1 1 

90 1 1 

95 1 1 

Total 32 12 15 38 50 20 5 3 175 
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Table 3.4: Summary of Number of Trees and Sectional Measurements 

Region Number Number of 

of Trees Sectional measurements 

Canterbury 384 4241 

Nelson 82 984 

Southland 175 1771 

Total 641 6996 

An efficient procedure used to evaluate the efficacy of a volume equation is to measure 

the bias by diameter classes (Honer, 1965) and this technique is used later to justify the 

challenge to that European research assertion. The data cover all sites which grow sub­

stantial amounts of Douglas fir in the South Island of New Zealand (except for Westland), 

and represent a considerable range of dbh, height and age classes as well as different 

silvicultural histories. The spread of tree volume and stern data could have been even 

better, however, if they had also had disease information on Phaeocryptopus gaeurnannii 

(Gilmour, 1966; Hood and Kershaw, 1973, 1975), fewer measurement errors, freedom 

from correlated errors and a full description of silvicultural practices applied to individual 

sample trees (e.g pruned vs unpruned stems). Measurement errors were considered as a 

possible source of variation while other factors were catered for as local adaptations, as 

will be explained later. 
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3.1.4 Sources of Variation 

The main sources of variation in modelling at the tree level appeared to arise from: 

(i) measurement errors 

(ii) sampling errors 

(iii) correlated errors 

(iv) locality variations 
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Each of the above four factors was carefully considered and methods to eliminate or 

reduce their effects are reported in the next subsections. 

3.1.4.1 Measurement Errors 

Possible measurement errors were first identified by graphically plotting the data and 

observing outliers from the raw graphs. Any anomalous data were identified and then 

either corrected whenever the true values were available, or else they were removed from 

subsequent analysis, obviously in error but without objective evidence to correct them. 

Likely errors were also determined through fitting preliminary equations to the data and 

isolating those observations that had residual values of more than 3.5 RN D (units of 

standard deviation) for detailed scrutiny. These tree measurements were again checked 

against the original data and corrections made, wherever feasible and if absolutely clear -

cut. If no changes could be made, the measurements were retained despite their large 

deviations from average trends. 
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3.1.4.2 Sampling Errors 

The ideal sampling approach for volume and taper function construction should provide 

representative estimates of each of the coefficients in any adopted equation form, and have 

as low standard errors of prediction as the sample size and population variability would 

allow. The aim should be, therefore, to obtain adequate representation in the sample of 

each dbhob and average volume within each class. The sampling process adopted in 

collecting the data fell .a little short of such an ideal, as it relied largely on the one used 

by FRI. Each distinct stand in which sample trees were recorded was treated initially as 

a separate stratum. At the data processing and analysis stage, one or more strata were 

amalgamated to form groups. This approach allowed data to be grouped on the basis of 

observed differences rather than pre - allocating stands into strata. The construction of 

the volume equation was then done using these groupings, leading to volume equations 

T15, T120, and T228. One large aggregation which consisted of data from all over 

New 2.ealand was also formed, namely T136. Inadvertently, the Nelson region was 

not adequately represented and thus, an additional 50 trees were sampled as previously 

mentioned, with the specific aim of plugging the gaps in the Nelson region data. 

In this study, the data were grouped according to their region of origin, but the formula 

used for the computation of the standard deviation of the tree volume equation was that of 

a simple random design. Tree locality effects were taken into account through use of two 

regional dummy variables, which acted as filters for the data according to their region of 

origin in the parameter estimation process. The formula used in computing the root mean 

square (RM S), which is the standard deviation of the residuals was 

._.,.N( 2 -2) 
RMS = V(L,1 Yi - y ) 

(N-k-1) 
(3.1) 
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where N is the number of observations and k is the number of parameters in the equation. 

3.1.4.3 Correlated Errors 

Tree sectional measurement data consist of a series of repeated measurements on the 

same stem. When used to derive functions representing stem taper, they are obviously 

not altogether independent but correlated to some extent. The usual method of ensuring 

that such correlated errors are minimized is the method of randomization (Fisher, 1947), 

but this is virtually impossible to adopt with data used for analysis of stem taper data. 

Although such data are usually processed as if they were independent, this must be 

done with caution because the standard error estimates of the parameters may be biased 

and conventional statistical hypothesis testing becomes invalid. The errors arising from 

estimating least - squares regression coefficients from such data have a component of error 

ascribable to the degree of their correlation. Standard hypotheses tests on the parameter 

estimates are inadequate for testing the goodness of fit for equations developed from such 

data. Thus, in this study plots of residuals and the univariate procedure, as described 

in SAS (SAS Institute Inc., 1988), were used to ascertain those parameter estimates that 

appeared to be statistically worthwhile. 

3.1.4.4 Locality Variations 

Data for this study come from a wide range of localities as explained in section 3.1.1 

Previous modelling of tree volume and taper equations for Douglas fir in New Zealand 

considered locality as a source of variation to be accounted for, but generally grouped the 

data according to only the year of sampling, a traditional approach that leads to national 
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volume tables (FRI-Ministry of Forestry, New Zealand, 1992). The approach previously 

adopted was either to put an average through all available data irrespective of locality, 

silvicultural history or provenance, or to separate the data to form indi victual equations for 

combinations of locality and silvicultural history, but there is room for improvement in 

both these approaches. Stratification in all sorts of forestry applications is an effective tool 

widely used to derive various estimates for populations with distinctly grouped different 

characteristics (see Freese, 1962). Modelling each stratum individually has often been 

regarded as appropriate in obtaining unbiased estimates of parameters for regression 

relationships (Loetsch and Haller, 1973; Steel and Torrie, 1980). The approach taken here 

followed their recommendations, but in contrast to the previous approaches, it used all 

available data, and recognized possible sources of variation by means of explanatory or 

dummy variables. 

3.2 Data for Stand Level Modelling 

3.2.1 Sources of data 

Data for stand level modelling were obtained from permanent sample plots maintained by 

ER.I, Rotorua. These data originated from 4 forests in Canterbury, 3 forests in Nelson, 

9 forests in Southland, and relatively fewer data from 5 forests in Westland. The data 

for the permanent sample plots were totally separate from and, hence, independent of the 

sectional measurement. Differences in climate among the four regions were not directly 

considered, but the impact of environmental variables, reflected in indices such as site 

class, altitude above sea level, distance from the sea, were evident from a comparison of 
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the mean and extreme values of age, mean top height, basal area per hectare and volume 

production per hectare of the raw data and so revealed trends worth investigating. Table 

3.5 summarizes this information. Figures in parenthesis in column 1 of Table 3.5 refer to 

the number of observations. Appendix A.2 shows in full the list of the forests by region 

from which the data were sampled. 

3.2.2 Quantity and Quality of Stand Level Modelling data 

Basic and derived variables were derived from 355 permanent sample plots. Table 

3.6 shows the distribution of plots by regions. Routine validation of the basic variables 

h100, G, N and V, was done for each plot through plotting the data over time and iden­

tifying abnormal growth patterns. Preliminary statistical analyses were also conducted to 

ascertain the reliability of the data, including use of the procedures PROC MEANS, PROC 

COMPARE, PROC PLOT, PROC FREQ and PROC UNIVARIATE in SAS package (SAS 

Institute INC., 1988). Where possible, errors were corrected and the corresponding mea­

surement included, but in some cases suspicious measurements were deleted from the data 

base, including the following. 

(i) Negative C.A.I. for any one variable . Such data were isolated from 

analysis, but other data in the plot without abnormalities were accepted. 

(ii) Unnaturally high mortality which resulted in a decrease of basal area 

with time, (probably caused by wind, drought or disease). 

(iii) Coding fault where the true values could not be ascertained. 
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(iv) Fertilized plots were discarded from this analysis because there were 

insufficient of them to quantify the effect of different fertilization treat-

ments. 

(v) Plots with fewer than three measurement were also discarded, because 

they will have only one set of repeated measurements. One or two 

measurements alone are not adequate for studying growth and yield. 

Table 3.5: Summary of Mean and Extreme Values Extracted From Psp Data 
I Region I Variable I Mean I Minimum I Maximum I 

T (years) 32.8 9.0 61.0 
h100 (m) 22.9 2.9 39.3 

Canterbury Altitude (m) 326.1 150.0 790.0 
(241) G (m2/ha) 46.3 0.43 116.2 

V (m3/ha) 414.8 1.4 1505.4 

T (years) 27.5 7.0 58.0 
h100 (m) 22.9 5.6 47.8 

Nelson Altitude (m) 438.1 183.0 625.0 
(929) G (m2/ha) 42.2 1.18 109.4 

V (m3/ha) 413.7 18.4 1723.6 

T (years) 33.6 7.0 78.0 
h100 (m) 24.1 4.1 47.4 

Southland Altitude (m) 251.1 50.0 625.0 
(449) G (m2/ha) 51.3 1.1 141.7 

V (m3/ha) 482.5 0.4 1774.9 
T (years) 26.9 5.0 59.1 
h100 (m) 18.8 1.9 37.5 

Westland Altitude (m) 229.0 0.0 330.0 
(225) G (m2/ha) 29.9 0.01 123.8 

V (m3/ha) 235.9 0.05 1458.5 
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Table 3.6: Distribution of Permanent Sample Plots 

Region Number of Permanent Number of measurements 

Sample Plots (Number of Growth Periods) 

Canterbury 63 241 

Nelson 135 929 

Southland 112 449 

Westland 45 225 

Total 355 1844 

The screening of the data resulted in 17 plots being disqualified from analysis. The 

remaining 338 plots consisted of around 1600 measurements for each variable. This 

quantity of data can be considered more than adequate for modelling growth and yield. 

3.2.3 Structure of Stand Level Modelling Data 

Permanent sample plot data consist of repeated measurements of several variables taken 

at different times. The term 'repeated measurements' means that N experimental subjects 

are observed on each of k successive occasions that possibly correspond to different exper­

imental conditions, the ith subject yielding Yii on the Jth occasion. In developing suitable 

equations by regression methods from such data researchers often treat the measurements 

as independent, and then use the formulae for independent measurements to determine the 

standard errors of the parameter estimates. But because these measurements are corre­

lated, residual sums of squares are underestimated and so too are the standard errors of the 
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parameter estimates. Nevertheless, the analysis provides an adequate basis for predicting 

pre - assumed relationships between the independent and dependent variables (Jensen, 

1982), while analysis of residual patterns can help ascertain the goodness of fit. 

3.2.4 Sources of Variation in Stand Level Modelling 

The main sources of variation considered in the analysis were: 

(i) altitude 

(ii) locality and factor interactions 

(iii) thinning history 

(iv) correlated errors 

The approach taken was to incorporate factors into equations that reflect these sources of 

variation for all the available data and to analyze the effects of each of these over time, 

rather than have separate equations for each behavioural factor. The methods used in 

incorporating these factors are reported in the next subsections. 

3.2.4.1 Altitude 

Altitude is important in determining site quality, as it relates to other factors such as soil 

fertility, temperature and drainage. All these factors are likely to contribute to the growth 

of trees at a given site , but altitude may reflect all of them in combination to some extent. 

Woollons and Hayward (1985), for example used altitude as an independent variable in 

their site index equation forradiata pine in the Central North Island of New Zealand. The 
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range of altitude sampled in the data here was from 0 to 790 m above sea level, which 

has been consistently found here to have a great influence on mean top height growth and, 

hence, site index. It was also possible in this study to show that basal area production was 

related to altitude above sea level. Details of the equations used and results obtained are 

explained in chapter 4. 

Regional distribution of the measurements according to initial stocking, and altitude of 

the crops are represented in a two way table (altitude classes vs initial stocking), Table 

3.7. 

3.2.4.2 Locality and Factor Interactions 

Local adaptations expressed as locality growth factors have for a long time been considered 

synonymous to site quality in even aged stands. When the factors which constitute site 

quality (soil type, soil moisture, soil nutrients elevation, temperature, aspect, distance 

from sea, and many others) are added up, they amount to a large number even before any 

interactions are considered. In this study it was shown that locality could be adequately 

represented by dummy variables rather than equating it to numerous individual factors of 

site quality. Site index (mean top height at age 40 years), moreover, was significantly less 

effective than these dummy variables in explaining differences in basal area production 

trends, although it was found useful for predicting mortality. Locality and site quality are 

therefore not necessarily interchangeable. 
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Table 3.7: Initial Stocking vs Altitude Classes 

Region Initial Altitude Oasses 
Stocking ~ 100 200 300 400 500 600 700 800 

Number of Measurements Total 

1736 80 80 
Canterbury 2268 6 6 

2315 3 8 11 
3086 36 69 21 18 144 
1680 12 12 

Nelson 1736 21 127 81 48 277 
2315 25 3 28 
3086 7 26 194 37 323 25 612 
1543 2 2 
1667 3 3 
1736 47 15 54 116 
2222 2 2 
2315 21 6 8 

Southland 2500 5 6 3 14 
2778 5 5 7 
3086 61 60 74 24 7 2 228 
3630 2 2 
3704 3 7 10 
4630 3 13 16 
6944 5 7 7 19 
2314 24 24 

Westland 2500 3 3 
3086 38 139 21 198 

I Total 135 1 111 1 310 1 521 1 226 1 374 1 41 11s44 1 
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3.2.4.3 Thinning History 

Thinning is the most important silvicultural tool used by foresters for moulding the 

development of even aged crops. Until 1983 it was usual to have separate basal area 

equations for thinned and unthinned crops (Brender, 1960; Buckman, 1962; Schumacher 

and Coile, 1960; Pienaar and Turnbull, 1973; Pienaar, 1979; Clutter and Jones, 1980). 

Bailey and Ware (1983) were the first foresters to have a single equation for thinned and 

unthinned stands through use of thinning indices. Pienaar and Shiver (1984) later used an 

index of suppression to develop basal area models for combined unthinned and thinned 

slash pine stands. They concluded, however, that any basal area projection equation 

not allowing for growth response in thinned stands relative to unthinned stands might 

underestimate the yield of thinned stands. 

Using data from thinned slash pine plantations, Pienaar et al., (1985) developed a basal 

area projection equation that incorporated the index of suppression instead of a thinning 

intensity variable (or thinning index). Murphy and Farrar, (1988) evolved a general 

technique for introducing thinning variables into basal area projection equations. In their 

study they concluded that the efficacy of adding a thinning term depends upon the accuracy 

requirements of the user. 

The approach taken in this study is similar to that of Murphy and Farrar (1988), but with 

some modifications. Data from 171 thinned plots (742 measurements) were available for 

analysis, the main thinning regimes being shown in Table 3.8. The intervals between 

thinnings are set out in Table 3.9. Equations and definitions of thinning indices and how 

they were imposed in the basal area projection equation are described in chapter 4. 



Chapter 3. Data and Data Analysis 75 

Table 3.8: Main Thinning Regimes Analyzed 

Region None 1st 2nd 3rd 4th 5th 6th Total 

Number of Measurements 

Canterbury 135 19 21 11 24 31 241 

Nelson 564 231 54 6 33 41 929 

Southland 280 67 36 32 34 449 

Westland 170 25 30 225 

I Total I 11491342 I 141 1 49 1 91 I 41 1 31 11844 l 

Table 3.9: Thinning Intervals 

Region Interval between thinnings 
2nd 3rd 4th 5th 6th 

mean 6.1 6.2 9.0 4.0 5.0 
Canterbury min 3.0 3.2 8.0 3.1 5.0 

max 13.0 11.0 10.1 9.0 5.0 

mean 3.6 5.0 6.4 6.0 
Nelson min 4.2 6.8 5.0 5.0 

max 10.8 7.8 7.0 6.0 

mean 9.8 7.6 8.1 
Southland min 3.0 1.0 1.1 

max 29.9 11.2 12.0 
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3.2.4.4 Correlated Errors 

As already mentioned Psp data obtained from repeated measurements on an individual 

plot (in this case), contain correlated errors. In practice, these correlations are frequently 

ignored and parameter estimates of coefficients assumed to be unbiased, while accepting 

that the standard error of the mean, ( RM S / {( N) or I( MS E / N) ), where R1vf S is 

the root mean square, and MS E is the mean square error, is lower than it would be 

for wholly uncorrelated data (Sullivan and Clutter, 1972). In growth and yield data, 

least - squares regression is considered to be adequate for parameter estimation, provided 

that the equations used logically represent the relationships intended between dependent 

and independent variables and for each parameter estimate the confidence intervals do 

not include zero. This thesis did not concern itself deeply with correlated errors, but 

qualification tests initially described in section 3.1.4.3 and later in more detail in section 

3.4 were carried out on parameter estimates and residuals to ensure that the correlated 

errors did not result into equations with biased parameter estimates. 
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3.3 General Methodology 

The methodology presented in this section applies to all three types of modelling: to tree 

volume, stem taper and stand level growth and yield modelling. 

3.3.1 Formation of Data Sets 

3.3.1.1 Tree Volume and Taper Data 

Values for the following 10 variables formed the basic data set for the various analyses 

carried out with SAS on the VAX computer at the University of Canterbury. 

RE - (Region): region of origin of data item. 

FO- (Forest): forest or place of identification of data origin. 

TREE - (Tree number): an identification number assigned to the tree within 

the region and forest. 

DBHOB : diameter at breast height over-bark in cm for the tree. 

SH: cumulative sectional height in m from the base of the stem to the top of 

the section. 

SEDI: small end diameter inside bark in mm of section of the tree. 

LEDi: large end diameter in mm of the section of the tree. 

TII : total tree height in m. 

V: tree total stem volume m3 inside bark, computed from the addition of all 

sectional volumes. The volume of the first 0.15 m section from the ground 

was calculated as if it were a cylinder, while the volumes of sections above 
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were calculated using the conic integral formula (Whyte, 1970). 

One additional variable was derived from the existing variables, z, defined as the height 

in the tree relative to its total height. 

(TH - SH) 
z= TH (3.2) 

Using standard IUFRO notation equation 3.2 will be represented as in equation 3.3 

(h - h') 
z=---

h 
(3.3) 

where his total tree height and h' is the distance from the ground to top diameter d': 

(h-h ') can also be represented as (1), where 1 is the distance from the tip of the stem to top 

diameter d'. The tree data master file named TVTP.DAT is fully presented in appendix C. 

3.3.1.2 Stand Level modelling Data 

Values for 21 principal variables were extracted from PSP data held in F.R.I. archives and 

were similarly filed on the VAX computer. Because 21 variables amounted to too many 

for the 80 column system of data processing, the data were punched into three different 

data sets but under the same file name DFIRS.DAT. These data sets were named DATA 

A, DATA B, and DATA C, and comprised the following variables: 

RE: region of origin of a data item. 

FO: forest of origin of data item. 

CP: compartment from which data were collected. 

P: plot within compartment. 
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SP: sub-plot, where special treatments were applied (for example fertiliza­

tion). 

AL: altitude of plot in metres above sea level. 

T1 : age in years at the beginning of a growth period. 

T2 : age in years at the end of a growth period. 

HT1: mean top height in metres at age T1. 

HT2: mean top height in metres at age T2. 

G1 : net basal area of the stand ( m 2 /ha) at age T1• 

G2: net basal area of the stand (m2/ha) at age T2. 

Gb: net basal area of the stand (m2/ha) before thinning. 

Ga: net basal area of the stand (m2/ha) after thinning. 

N1 : number of stems/ha at age T1• 

N2 : number of stems/ha at age T2• 

Nb: number of stems/ha before thinning. 

Na: number of stems/ha after thinning. 

½: net volume of the stand inside bark (m3/ha) at age T1• 

½: net volume of the stand inside bark (m3/ha )at age T2• 

Tt: age of thinning in years. 
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Four additional variables were algebraically derived from the above original data base. 

These were: 

S: site index in metres at age 40 (if values were available for mean top height 

at age 40, the mean top heights were recorded as site indices, else the mean top 

heights were derived by extrapolation using the mean top height projection 
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equation). 

dt: quadratic mean diameter outside bark (cm) of trees removed in thinning. 

db: quadratic mean diameter of the stand (cm) just before thinning; 

Xt : thinning index. 

(3.4) 
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The definition of thinning term variable and the way it was derived are explained later 

in chapter 4. The stand level master file data named DFIRS.DAT is fully presented in 

diskette in appendix C. 

3.3.2 Data Format 

The two master files TVTP.DAT and DFIRS.DAT were input in FORTRAN format. 

However, when fitting regression equations to data sets, it is often necessary to change 

the order, file name and data format to create smaller data sets which are subsets of the 

master file. This was required to enable the data to be read by analytical packages such as 

SAS in order to make the processing of the data easier and faster, and use less computer 

resources. The FORTRAN format of data input was selected because it was compatible 

with both the operating system, VMS, and the analytical package, SAS, that were used to 

perform various operations. 

Because regression equations were fitted to single variables, separate files for each equa­

tion were created from the master files. New variables not in the files were created 

algebraically using SAS programmes and commands. Variables which could not be 

derived algebraically from the existing variables were input manually on the keyboard. 
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The following files can be found in diskette form in appendix C. The definitions of 

variables applied here are those given in section 3.3.1 

VT.SAS 

Data and SAS programme used to develop tree volume equation, 

with variables RE, FO, TREE, DBHOB, TH, v . 

TPPD.SAS 

SAS data and programme to create permanent SAS data used to 

develop taper equations with variables RE, FO, TREE, DBHOB, 

S, SH, SEDI, LEDI, TH, v. 

A permanent SAS datafile (as described in SAS institute Inc.,1988. 

Cary, NC., USA) was created for this analysis because this file was 

too large to be analyzed by conventional procedures. 

TPP.SAS 

SAS programme used to develop tree taper equation. 

RT.SAS 

SAS data and programme used to develop mean top height equa­

tion, with variables RE, FO, CP, P, HTl, HT2, Tl, T2, S. 

G.SAS 

SAS data and programme used to develop net basal area projection 

equation with variables RE, FO, CP, P, Gl, G2, Tl, T2, Tt, S, Xt, 
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THIN.SAS 

SAS data and programme used to develop an equation for predict­

ing net basal area/ha after thinning: with variables RE, FO, CP, P, 

Tl, T2, GB, GA, HTl, HT2, NB, NA. 

V.SAS 

SAS data and programme used to develop stand volume production 

equation, with variables, RE, FO, CP, P, Vl, V2, Tl, T2, HTl, HT2, 

Gl, 02. 

M.SAS 

SAS data and programme for derivation of stem survival/ha func­

tion with variables RE, FO, CP, P, Nl, N2, Tl ,T2, S. 

3.3.3 Checking Reliability of Data 

82 

Analysis of residuals was used to determine the reliability of data. Appropriate equations 

were first fitted to the data, then all observations having RN D (random normal deviate) 

more than 3.5 were regarded as outliers. More often than not the causes of outliers 

were blatantly obvious measurement or punching errors, but situations did occur where 

the obvious causes were unknown, and such measurements were merely categorized as 

suspicious. It was not possible to check measurement reliability, because the data were 

collected a long time ago, as long as 80 years ago, for some used in this study. Nevertheless, 

the importance of having reliable measurements and rigorous data checks during initial 
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processing of information for growth and yield studies was recognized to as great an extent 

as possible. 

3.4 Methods Used for Data Analysis 

The two main standard analytical procedures used in this study are linear and non linear 

ordinary and weighted least - squares regression. Analysis of variance and univariate 

procedures were used to ascertain the goodness of fit of equations. 

These analyses were conducted through use of procedures PROC NLIN, PROC REG, 

PROC GLM, PROC UNIVARIATE, and PROC MEANS of the SAS package (SAS 

institute Inc., 1988). Regression equations can be fitted variable sets of any sort, but in 

this study it was ensured that: 

(i) the dependent and independent variables conform to biologically and mathemati­

cally sound relationships; 

(ii) the functions used are of appropriate form to represent the intended relationship; 

(iii) parameter estimates are free of apparent bias. 

Various linear and non linear ordinary, and weighted least - squares were fitted to tree 

volume data, stem taper data and growth and yield data. As pointed out in sections 3.1.4.3 

and 3.2.4.4, both tree taper and growth and yield data are associated with correlated 

errors, which means that conventional statistical analysis cannot be carried out without 

qualification of the results. 
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The following subsections explain the main analyses that were carried out in refining the 

statistical results and in ascertaining the goodness of fit of the equations. 

3.4.1 Confidence Intervals 

Terms involving parameter estimates were retained only if the parameter estimates were 

apparently significant at the 5% significance level, meaning that there was less than a 5% 

nominal chance that the confidence interval could contain zero (i.e., the lower and upper 

confidence limits are of the same sign). These nominal probabilities do not, of course, 

reflect true probabilities due to the aforementioned biased estimation of residual variance. 

They are used, therefore, only indicatively. 

3.4.2 Graphical Residual Patterns 

Residual charts were used to provide ocular estimates of their normality of errors. If the 

residuals are normally distributed the residual pattern about the zero reference line shows 

independent distribution; a bar chart of residuals portrays the shape of the normal curve 

over the interval of the data set. This visual description is often inadequate on its own, 

however, because the shape of the chart depends on the scales and class widths used. 

3.4.3 Univariate Procedure 

The UNIVARIATE procedure was used, therefore, to complement the ocular check of fit 

through reference to confidence intervals and residual charts. Several statistics were used 

as indicators in the UNIVARIATE procedure to complete the test of goodness of fit. These 
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were: 

• Mean of Residuals 

The mean should either be zero or at least very close to zero if the equation is to produce a 

good fit, under the assumption that the residuals are normally distributed with mean zero 

and standard deviation a-, often represented as NID(O, a-2) 

• Absolute Mean of Residuals 

The absolute mean of residuals is a measure of the average error prediction of the equation. 

This should also be very close to zero. 

• Skewness Coefficient 

The skewness of the normal distribution is zero. It is a measure of symmetry, in that it 

provides inference on the tendency of deviations to be larger in one direction than the 

other. If the skewness of the equation very much deviated from zero, the fitting was re -

assessed. Negative values indicate a distribution with a long tail to the left and positive 

values indicate a long tail to the right. The unbiased skewness coefficient of the samples 

is calculated by 

(3.5) 

where S ]( is the skewness coefficient, N is the number of observations and sis the standard 

deviation of the sample. 
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• Kurtosis 

The early understanding of kurtosis was a relative measure of flatness or peaking of the 

distribution. The larger the value of kurtosis, the more peaked the distribution (Hafley and 

Schreuder, 1977). More recently, kurtosis has been defined as the heaviness of the tails of 

a population (SAS Institute Inc., 1988). The heaviness of the tails affects the behaviour of 

many statistics. Population kurtosis must lie between -2 and positive infinity. However, 

large values of kurtosis suggest that statistical methods based on normality assumption 

may be inappropriate. In this study equations with high kurtosis were re-assessed. In 

most cases, outliers contributed to the high kurtosis, and the corresponding basic data 

were revised or removed from the data base as described in section 3.3.3. The unbiased 

sample kurtosis coefficient is calculated as in equation 3.6. 

K _ [ N(N + 1) ][ I:~1 (xi - x)4 l (3 ) 
- (N - l)(N - 2)(N - 3) (s4 - 3(N - l)(N - 1)/(N - 2)(N - 3)) ·6 
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• Extreme Values of the Distribution 

This is a measure of maximum and minimum residuals of the variable being modelled. 

These values must not diverge unreasonably from the rest of the data. Their absolute 

values should not differ very much. If, for example the maximum residual value was 20 

m 2/ha and the minimum was -2 m 2/ha, then it means that there is at least one excessive 

outlier on the positive side. The data and equation being modelled should be re-examined. 

The above tests were conducted and interpreted jointly, not just on their own. In general 

an equation will provide a good fit if all the regression parameter estimates of the 95% 

confidence interval have the same sign, the residual patterns show no or little biased trend, 

the residuals bar chart show a normal distribution, the average mean of residuals is close 

to 0, and the absolute mean and extreme values of residuals do not deviate unreasonably 

from the rest of the data. 



Chapter 4 

Developing and Fitting the Models 

This chapter describes the methodology and development used to derive the equations 

which form a (i) compatible tree volume and taper prediction system and (ii) whole stand 

growth and yield model, for Douglas fir grown in the South Island of New Zealand. The 

approach emphasized in both systems of equations is the need to devise them for as large an 

overall population as possible, while still allowing for local or regional adaptations through 

inclusion of dummy and continuous predictor variables such as altitude. Furthermore, 

in contrast to Garcia (1984b) who developed a method of fitting all three state variables, 

mean top height (h 100), basal area per hectare (G) and stocking (N) simultaneously, the 

approach adopted here is to fit single equations. The approach here allows the modeller 

to choose a different functional form for each variable h100 , G and N, if needed. This 

approach also allows greater flexibility to incorporate thinning effects in the model rather 

than having separate equations for thinned and unthinned stands. 

88 
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4.1 Development of DfirTree 

DfirTree is a compatible tree volume - taper estimation system for Douglas fir [Pseudotsuga 

menziesii (Mirbel, Franco)] trees from throughout the South Island of New Zealand. A 

precise tree volume equation which uses pooled data from the three main South Island 

regions, namely Canterbury, Nelson and Southland was developed. This equation still has 

the capacity, however, to differentiate attributes due to locality, made possible through 

incorporating dummy variables among predictors and other sources of variation. 

A segmented taper equation compatible to the tree volume equation with two join points 

was later developed. This taper equation was assessed and compared to existing and other 

equations and found to conform well with the tree volume equation without the need for 

additional dummy variables. 

4.1.1 Background Information 

Douglas fir, [Pseudotsuga menziesii (Mirbel, Franco)], grows in a wide range of localities 

in the above named main regions of the South Island. There is some Douglas fir growing 

in Westland, another region, but this sub - population was not included in the analysis 

because of its relatively minor representation. 

The age class distribution of Douglas fir in the South Island as at O 1-04-1989 is summarized 

in Table 4.1. 
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Table 4.1: Distribution of Douglas fir by Area and Age Class in the S.Island ofN.Z. 

Area (ha) planted in Douglas fir 
Age class Canterbury Nelson Southland Westland total 

0-5 1723 1584 2812 0 6119 
6-10 1171 2535 3564 130 7404 
11-15 921 2162 513 24 3620 
16-20 577 1505 578 111 2771 
21-25 841 1142 793 229 3005 
26-30 602 825 689 31 2147 
31-35 401 572 433 24 1430 
36-40 206 225 261 11 703 
41-50 254 90 89 6 439 
51-60 79 430 318 1 828 
61-80 156 0 155 7 318 

Total 6931 11074 10205 574 28784 

Source: N.E.F.D. 01-04-1989: 

In New '.Zealand, four volume functions for D.fir have been constructed, namely 

(i) T15 - (1958): for all of New '.Zealand. 

(ii) T120 - ( 1977): for Ashley forest in Canterbury. 

(iii) T136- (1977): for all of New '.Zealand. 

(iv) T228 - (1988): for Longwood forest in Southland. 

These four volume functions are still in use, and are in the logarithmic form shown in 

equation 4.1 (see volume tables, Ministry of Forestry, New '.Zealand, 1992). 

h2 
ln( v) = a + ,B ln( d) + 1 ln( h ] 

-1.4 
(4.1) 

where v is total stem volume inside bark, d is diameter at breast height over bark, h is 

total tree height, and a, ,B and I are linear least - squares coefficients. Equation 4.1 can 
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also be written in non - linear form as equation 4.2 

h2 
v=aaf'[--P 

h -1.4 

but has not been computed in this later form. 
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( 4.2) 

Today, there has been neither a published review nor sensitivity analysis of these equations. 

Since construction of the first national volume table for Douglas fir in 1958, the tendency 

has been either to devise equations for smaller populations or to ignore regional variations 

and apply a single overall equation. This pattern has also been exhibited in growth 

and yield modelling. There is an alternative, more sensitive approach, however, that 

could be adopted, namely to provide additional predictor variables which allow users 

to disaggregate general trends to reflect local variation with due sensitivity. This is the 

approach adopted here. 

4.1.2 Data Base for Development of Tree Volume Equations 

The data used in this study are the same ones used by F.R.I. and the New Zealand Forest 

Service to develop Tables T15, T120, Tl 36 and T228, plus some others that were measured 

in Golden Downs forest as part of this study in December 1990. The F.R.I. data were 

collected between 1948 and 1988. 

Before beginning the statistical analyses, the tree profile of each stem was displayed on 

the screen to ascertain the quality of individual measurements. Suspicious measurements 

were identified, marked and corrected, but those cases which could not be corrected based 

on objective evidence, were later discarded. Sectional measurements of stems on 641 

stems altogether from Nelson, Canterbury and Southland were selected for analysis, but 
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44 of these were later discarded from the analysis of stem volume because of obvious 

measurement errors and deformations that could not be rectified. The data base by regions 

is shown in Table 4.2. 

Table 4.2: Regional Data for Development of Tree Volume Equations 

Region I Variable I Mean I minimum I maximum I 

Canterbury 

Nelson 

Southland 

I Total Number I 
of Trees 

No. ofTrees 
d(cm) 
h(m) 

d2h(m3) 

V (m3) 

No. Trees 
d(cm) 
h(m) 

d2h (m3) 

V (m3) 

No. Trees 
d(cm) 
h(m) 

d2h (m3) 

V (m3) 

22.10 
17.80 
1.52 
0.43 

29.20 
24.80 
2.56 
0.73 

24.70 
18.40 
1.89 
0.54 

597 

4.1.3 Calculation of Sectional Volumes 

359 
4.00 82.00 
3.00 42.70 

0.0048 24.80 
0.0030 6.48 

75 
14.0 56.0 

10.40 39.9 
2.16 11.69 

0.087 3.05 

153 
3.00 65.00 
3.00 37.80 

0.003 15.97 
0.002 4.39 

Two methods of measuring were applied in generating the individual tree volume data: 

in the first method, the stems were measured at 0.15 m, 0.75 m, 1.40 m, 3.0 m, followed 

by 1.50 m intervals to the tree total height. In the second method, stems were measured 

at 0.15 m, 0.70 m, 1.40 m, 3.0 m, followed by 3.0 m intervals to tree total height. At 

each measuring point the diameter outside bark by tape and two bark thicknesses by bark 

gauge were recorded. Inside bark diameters were determined by subtracting twice the 
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average bark thickness from the corresponding outside diameters. The volume Vi of the 

first segment of each tree stem (0.15 m) was calculated as though it were a cylinder with 

sectional volume equation shown in equation 4.3 

(4.3) 

The volumes of each ofremaining (N-1) segments of the tree were calculated by applying 

conoid equation 4.4 (Whyte, 1970). 

Where; 

di/ large end diameter of section (cm) 

dis=small end diameter of section (cm) 

(4.4) 

Individual under bark total stem volumes, v were calculated through summing the indi­

vidual sectional volumes as in equation 4.5. 

N 

V = I:vi (4.5) 
i=l 

4.1.4 Analysis of Stem Volume Equations 

Various linear and non - linear tree volume equations with the general form v=f( dbh, 

height,formfactor), were fitted to the data. They included: 
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(i) Schumacher tree volume equation (Schumacher and Hall, 1933) 

v = ad13 h'Y (4.6) 

(ii) combined variable equation (Spurr, 1952) 

(4.7) 

(iii) Meyer's polynomial equation (Meyer, 1953) 

(4.8) 

(iv) Honer's transformed variable equation (Honer,1965) 

( 4.9) 

(v) constant form factor equation (Gevorkiantz and Olssen, 1955) 

(4.10) 

( vi) non - linear form of N .Z. Forest Service equation (Ministry of Forestry New Zealand, 

1992) 
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h2 
V =ad13(--r 

h-1.4 

95 

(4.11) 

Equations 4.6, 4.9 and 4.11 were fitted using non linear least - squares method, while 

equations 4.10, 4.8 and 4.7 were fitted using ordinary linear least - squares method. For 

each equation the resulting residuals ( observed - predicted volumes) were plotted against 

their predicted values. The graphs revealed that the observations had heterogeneous 

variance, suggesting that it was appropriate to use weighted least - squares regression. 

To determine an appropriate weight, the independent variable d2 h was subdivided into 

ordered classes of equal numbers of observations, then the standard deviation of each 

class was calculated and plotted against the independent variable, d2 h. The standard 

deviations of d2 h classes were found to be proportional to the corresponding mean values 

of d2 h classes. This suggested that the reciprocal of d2 h would be an appropriate weight. 

Standard procedures for coping with heterogeneous variance were followed, as set out, for 

example, in Clutter et al., (1983); Furnival, (1961); Draper and Smith, (1981). Regression 

analyses were subsequently performed using the weight shown in expression 4.12. 

( 4.12) 

4.1.5 Criteria for Selection of Stem Volume Equations 

The criteria used in selecting the best equation were as listed below. 

(i) Residual sum of squares (ESS) 

Because all equations (4.6-4.11) have the same dependent variable v, it was possible 

to compare the values of residual sum of squares of each equation directly. 
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(ii) The Root Mean Square (RMS) 

The root mean square (standard deviations) of the equations and the 95 % confidence 

intervals for all coefficients estimates were determined. The usual index (I) for selection 

of tree volume equations with different independent variables can be defined as the RMS 

(a), divided by the first derivative of the independent variable of the volume equation, 

F'( v) (Furnival, 1961). This expression is portrayed in equation 4.13. 

l= _a_ 
F'(v) 

( 4.13) 

Because the dependent variable in all the volume equations analyzed in the study was v, 

the index was simply calculated as in equation 4.14. 

l=a ( 4.14) 

The smaller the index (I), the more appropriate the equation is. 

(iii) Residual Plots and Charts 

Plots of residuals against predicted values and frequency charts of residuals were used 

to ascertain that the residuals for any given equation were normally and independently 

distributed with mean O and standard deviation O". This analysis went a stage further by 

allocating the residuals to their associated individual regions, so that the residual patterns 

for each region could be individually examined. 
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(iv) Bias 

The mean overall bias (B) was calculated according to equation 4.15. Biases were further 

analysed by individual diameter classes as explained in, for example, Honer (1965), and 

Hayward (1987). 
"N( . A,) B = L..,1 vi - vi 

N 
( 4.15) 

Where Vi is the observed stem volume, Vi is the predicted stem volume and N is the 

number of observations in the class. 

This analysis of bias confirmed that it is better to correct for non - homogeneity of variance 

in linear or non linear equations through the method of weighted least - squares regression 

(Draper and Smith, 1981; Schumacher and Chapman, 1954; Gedney and Johnson, 1959; 

Furnival, 1961; Buckman, 1961; etcetera), than by logarithmic transformation. 

4.1.5.1 Test and Choice of Stem Volume Equation 

Residual plots of equations 4. 7, 4.10 and 4.11 showed obvious bias. Their fit can be viewed 

in appendix C in files COMBV.LIS CONSTV.LIS and NZV.LIS respectively. Equation 

4.8 fitted the data well, but the parameters {30 , /31, and /32 were not significant at the 5% 

significant level (see the file MEYV.LIS in appendix C). 

These four equations were removed from subsequent analyses. Equation 4.9 fitted the 

data quite well but the standard errors of the parameter estimates were unusually high, 

and so this equation too was not analysed further (see file HONV.LIS in appendix C). 

Equation 4.6 fitted the data by far best and was selected (See files SCHUMV.LIS) in 

appendix C). Table 4.3 summarizes the statistical results for equations 4.6 to 4.11 ran 
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through the same data (N = 597). Further analysis was conducted to find whether or not 

Table 4.3: Summary Statistics for Stem Volume Equations 4.6 - 4.11 

I Equation I Parameter I Estimate SEE ESS MSE 

a 0.000090561 0.00000260622 0.00000015427 
4.6 (3 2.114685122 0.01075675351 0.000009055656 , 0.514830939 0.00344657163 

4.7 a 0.004071 0.00049394 0.00000715 604 0.00000012027 
(3 0.000028354 0.00000011 

f3o 0.002104 0.00151585 

f31 -0.000762 0.00039955 
4.8 f32 0.000069874 0.000001837 0.0000458306 0.00000007741649 

{33 0.011782 0.00154125 
{34 0.000023200 0.00000056 

4.9 a 266.19201 14.83665045 0.00005177815 0.00000008702 
(3 27857.08622 393.83302031 

4.10 a 0.0000285861 0.0000001312 0.0000797304 3 0.00000013378 

a 0.000112794 0.000000 
4.11 (3 1.323657982 0.000000 0.00378210770 0.00000636718 , 0.966724850 0.000000 

regional variation existed which could be incorporated in equation 4.6. The analysis was 

repeated, therefore, with some modification to allow for two dummy variables for Nelson 

and Southland, while Canterbury remained the default. The maximal model 4.16 was 

fitted and parameter estimates were examined as discussed in sections 2.8.5 and 3.3.3. 

Where; 

a 1 , a 2 , and a 3 replace a in equation 4.6 

/31, /32 and /33 replace /3 

11, ,2 and 13 replace , 
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d, v and h, are as in equation 4.6. 

Z1 and Z2 are dummy variables set to 1 for Nelson and Southland respectively, 

otherwise 0. 

Equation 4.16 was written in SAS code, such that Z1 assumes a value of 1 if the region 

is Nelson, else it assumes a value of 0: similarly, Z2 assumes a value of 1 if region is 

Southland, else it assumes a value of 0. Results of the regression analysis showed that, 

the values of the parameters a 2 , a 3 , 1 2 and 1 3 were not significantly different from 0. The 

equation was therefore modified further and re - run without including these variables. 

The final equation is as shown in equation 4.17. 

( 4.17) 

The statistics of equation 4.17 are set out in Table 4.4. 

Table 4.4: Parameter Estimates and Standard Errors for Modified Schumacher's Stem Volume Equation 

Parameter Estimate Standard Weighted sum Number of MSE 
Error of squares (ESS) trees 

O'. 0.000052457 0.000000008550 

f31 1.910540041 0.00007111878 
f32 0.000238690 0.00045112873 0.00004590150 597 0.00000007754 
{33 0.000743909 0.00000129919 

'Y 0.912310849 0.00000395799 

4.1.6 Goodness of Fit of Modified Schumacher's Volume Equation 

Equation 4.17 decreased the error sums of squares (ESS) by about 51 %, compared to 

equation 4.6. The parameter estimates (a, (31 , (32 , (33 and , ) were all significant at least 
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at the 5% level. There was also an improvement in the regional pattern of residuals and 

on the overall bias. Inclusion of the dummy variables reduced the mean overall bias 

(B) from -3.9% to 0.25%. The accuracies of equations 4.6 and equation 4.17 were also 

analysed by individual diameter classes. Percentage mean biases for each diameter class 

were calculated as in equation 4.18. 

Where; 

Vi = actual volume and v is the predicted volume. 

E = percentage diameter class mean bias 

N = number of observations in the diameter class. 

The results of these tests are summarized in Table 4.5. 

( 4.18) 
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Table 4.5: Percentage Bias by dbh Classes for Equations 4.6 and 4.17 

Dbhclass N Mean Class % Mean Bias 
cm Volume(M3) Equation4.6 Equation 4 .17 

5.0 33 0.000627 · -21.0 · 16.4 
10.0 51 0.04101 -12.2 2.4 
15.0 92 0.1159 -2.1 0.17 
20.0 150 0.2249 -4.1 -2.4 
25.0 109 0.3877 -0.59 0.03 
30.0 59 0.5812 -1.25 1.2 
35.0 32 0.8000 -5.6 -3.5 
40.0 28 1.2589 2.0 0.24 
45.0 15 1.5744 0.52 0.80 
50.0 7 2.1002 2.7 1.3 
55.0 7 2.5079 1.9 1.1 
60.0 7 3.2462 -0.09 -2.8 
65.0 2 4.6488 9.0 2.9 

>65.0 5 5.3600 -0.65 0.00 

I Overall Bias I 597 I 0.5005 -3.9 0.25 

The final tests were standardized through PROC UNIVARIATE, looking at the skewness 

coefficient, normality (Kolomogorov D statistic) and kurtosis, as well as the mean of 

residuals. These values are presented in diskette form in the file SHUMVD.LIS in 

appendix C. These values all showed an acceptable level of conformance with a normal 

spread of residuals. The fit to the data was enhanced considerably through use of dummy 

variables in equation 4.17 to characterize locality variations. Figure 4.1 shows the residual 

pattern when plotted against predicted values. Figure 4.2 shows the residual patterns when 

plotted against dbhob and Figure 4.3 shows the frequency distribution of residuals. These 

figures all show no serious bias. Possible biases in the equations were also evaluated by 

size classes, as explained, for example, in Honer (1965). This method requires that the 

volume errors should be able to be predicted adequately so that they are independent of 

tree size and lie within an average of not more than ± 10% about the size class mean 
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in at least 95% of the classes having more than 5 observations. The percentage volume 

errors in equation 4.17 showed a bias of 16% in the 5.0 cm diameter class, but this is not 

considered to be a serious bias as the mean volume of this class is so small, 0.00627 m3 • 

All other classes showed bias of less than ± 10.0%. 
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Figure 4.3: Frequency Distribution of Residuals [m "'3] classes 
Equation 4.17 
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4.2 Compatible Taper Equations 

This section explains the use of enhancements of the previous section in developing a 

compatible stem taper equation. Compatible taper equations are those when integrated 

with respect to total tree height will yield the same volume as though it were the tree 

volume equation. 

Two methods for constructing compatible taper equations compatible with the volume 

equation were employed. These methods are described in the following sub - sections. 

4.2.1 Volume Based System 

In a volume based system, the volume of the stem inside bark is taken to be that estimated 

from the tree volume equation. The taper equation can then be derived through its 

subsequent differentiation, the resulting equations being called volume - based. 

4.2.2 Taper Based System 

In a taper based system, an equation to describe taper of the stem is first determined and 

its volume then derived by subsequent integration of the stern profile predicted from the 

taper equation. The resulting equations are called taper - based. The definitions in 4.2.1 

and 4.2.2 above are fully described and discussed in Dernaerschalk (1972); Byrne and 

Reed (1986) and many others. 

· In this study, the volumes of sterns for the volume based system were determined by the 

tree volume equation 4.17. For the taper based system, an expression of top diameter d' 
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(taper function) was integrated to get an expression for the tree volume equation. 

4.2.2.1 Development of Volume Based and Taper Based Systems 

The original taper equations for Douglas fir that are compatible to their volume functions 

are still maintained and are kept in the library by the Ministry of Forestry. These are: 

F136-for volume function T136, for all of New 2.ealand, 

F228 - for volume function T228, for Longwood forest in Southland. 

None - for volume function T15 nor T120. 

These equations are full polynomials and have the form shown in 4.19 (see taper tables, 

FRI-Ministry of Forestry, New 2.ealand, 1992). 

1 d'2 I<h f = -v- = /31z + f32z 2 + ... + f3nzn 

Where; 

d'=top diameter inside bark (cm) at h'. 

f =form factor; 

I<=constant to convert cm2 to m 2 (0.00007854). 

h'=distance from the base of the tree to top diameter d'; 

C = (h - h'). 

h=total tree height (m). 

v=predicted total stem volume by using equation 4.17; 

z=relative tree height from the tip: (h - h')/ h. 

/31, /32,, .. /3n are least - squares coefficients to be estimated from the data. 

(4.19) 
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FRI researchers have fitted the full polynomial up to n=9, but this form of polynomial 

ends up with some terms not significant which are removed from the equation (Gordon, 

1983). Katz and Dunningham (1981) modified the taper equation for radiata pine grown 

under direct saw log regimes so that they have the value of n up to 31 in attempting to 

explain for butt swell. In this study the following three taper equations were selected, then 

fitted and compared. 

(a) Full polynomial as shown in equation 4.19. 

(b) Cao et al., (1980) segmented polynomial taper equation 4.20 

( 4.20) 

This equation was modified to equation 4.21 so that the independent variable is consistent 

with equations 4.19 and 4.23 and can then provide a better comparison of their fits. 

( 4.21) 

Equation 4.21 can also be re-parameterized as 4.22 

(4.22) 

Where; 

0:1, and 0:2 are the join points. 

i=l,2. 
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( c) Proposed taper equation 

The proposed segmented polynomial taper equation 4.23 was formulated and tested. This 

equation fulfills the properties for segmented taper equations (Max and Burkhart, 1976; 

Cao et al., 1980; McClure and Czaplewski, 1986; Valenti and Cao, 1986; Byrne and 

Reed, 1986). The methods and conditions used to construct segmented polynomials with 

defined join points as described for example in Fuller ( 1969); Hudson ( 1966); Gallant and 

Fuller (1973), were adopted in developing the chosen form presented in equation 4.23. 

( 4.23) 

Variables and their definitions are as in equation 4.20. The equation has two join points as 

does equation 4.20 but has 6 parameters to be estimated while equation 4.20 has 5. If the 

first two terms of equation 4.22 are equated to the first two terms of 4.23 as shown below 

(* indicates re-parameterization). 

By virtue of the above re-parameterization the following equality holds 

and so equation 4.20 is mathematically identical to 4.23, but will not give same results as 

far as modelling is concerned. 

Equations 4.19 and 4.20 are the most frequently adopted and are studied widely in the 

literature. Because of their definition, compatible taper equations require at least an 

algebraic restriction, so that consistent volume estimates can be obtained by integrating 

the taper equation as though it were a volume function. Compatibility can be enforced 

algebraically in a number of ways: by recovering parameter values of the tree volume 
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model using estimated parameters from the fit of the taper model (Byrne and Reed, 1986), 

or by estimating any free parameters of the taper model given estimated parameters of 

a particular form of tree volume model (Demaerschalk, 1973; Van Deusen et al., 1982). 

These two methods are earlier forms. The third method adopts the method of constraining 

the parameters of, and incorporating estimated tree volume in the taper model. This 

approach is now widely used (e.g. Goulding and Murray, 1976; McClure and Czaplewski, 

1986). The integration and restriction for the proposed equation are demonstrated below. 

d'2 I<h 2 2 2 -- = f31z + f32z + (33(z - ai) 11 + {34(z - a2) 12 
V 

Merchantable volume, Vm can be obtained from 

where, 

and 

dC = h.dz 

The integration can then be written as 

or after re - arrangement, as 4.26 

( 4.24) 

( 4.25) 

( 4.26) 

Merchantable volume is the same as total volume when the integration is done with respect 

to z between the limits O and ,1, and by this condition, 11=12=1. Hence the compatibility 

restriction is 

(4.27) 
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In equation 4.27 restriction 

is independent of restriction 

Restriction 4.27 consists of 4 terms while that of McClure and Czaplewski (1986) has 3 

terms. Restriction 4.27 has provided greater flexibility in imposing a second restriction 

on the parameters of the main restriction as will be shown in subsection 4.2.3. 

4.2.3 Data Used for Developing Stem Taper Equations 

Table 4.6: Statistics for Regional Sectional Measurements 

Region I Variable I Mean I minimum I maximum I 
No. oftrees 394 

No. of 
Canterbury measurements 4351 

Dbh (cm) 28.3 3.8 88.1 
h(m) 20.7 3.0 46.0 

V (m3) 0.732 0.0030 7.71 

No. of trees 82 
No. of sectional 
measurements 984 

Nelson Dbh (cm) 30.6 13.7 56.4 
h(m) 25.6 10.4 39.9 

V (m3) 0.859 0.087 3.526 

No. of trees 164 
No. of sectional 

Southland measurements 1661 
Dbh (cm) 28.0 2.7 93.9 

h(m) 19.3 3.0 38.1 
V (m3) 0.845 0.0015 7.513 

Total no. of trees 641 
Total no. measurements 6996 
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Table 4.6 shows the number of sectional measurements and their basic statistics by region. 

The data shown in Table 4.6 are the same ones used to develop the stem volume equations 

described in sub - section 4.2.2.1. Sectional measurements were generated from a simple 

FORTRAN programme (FF SECT - N .Z. Forest Service) which rearranged the data so 

that the first measurement from the ground level forms the large end diameter for the first 

section, the second measurement forms the small end diameter of the section and is also 

the large end diameter of the next section of the tree, and so on. The procedure is repeated 

up to the tip of the tree where inside bark diameter is conditioned to 0.0 cm . 

4.2.4 Fitting of the Selected Equations 

4.2.4.1 Volume Based System 

This section deals with the statistical analyses of the selected taper equations considered 

in subsection 4.2.2.1. Equations 4.19, 4.20 and 4.23 were fitted to the same data. The 

parameters of these equations were restricted as explained in section 4.2.2.1, in order 

that they can be made compatible. The resulting residuals of the equations were plotted 

against the predicted values and independent variable z. 

(1) Full Polynomial Taper Equation, 4.19 

Equation 4.19 was fitted to polynomial of order 6, no other terms being significant at the 

5% significance level, as shown below. 

( 4.28) 
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Equation 4.28 was restricted as per equation 4.29, so that, compatible volume estimates 

can be accrued. 

(4.29) 

The statistics of equation 4.28 are presented in Table 4.7. Figures 4.4 and 4.5 show 

the residuals plotted against predicted values and z. Figure 4.6 shows the frequency 

distribution of the residuals. 

Table 4.7: Parameter Estimates and Standard Errors for Full Polynomial Equation 
Parameter Estimate SEE ESS N MSE 

/31 2.374066 0.17358559 
/32 -17.673319 1.35057106 
/33 71.887964 3.63627716 234.37864 6996 0.033353 

/34 -99.520206 4.05327869 
/35 45.816741 1.59731925 
/36 0.085348 0.01768282 

(2) Segmented Taper Equation, 4.21 

Table 4.8 presents the parameter estimates and standard errors for this equation. Although 

Table 4.8: Parameter Estimates and Standard Errors for equation 4.21 
Parameter Estimate SEE ESS N MSE 

a1 0.6593284 0.042489478 
a2 0.9406695 0.001927715 
/31 0.5338036 0.006759376 211.121241 6996 0.030199 
/32 -1.2130741 0.636468331 
/33 229.6476472 14.641612424 

the equation fitted the data well, the coefficient (32 was not significant at the 5% level (see 

file CAO.LIS in appendix C), and so the equation was not considered for further analysis. 
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(3) Proposed Taper Equation 

The parameter estimates and standard errors for the proposed equation 4.23 are summa­

rized in Table 4.9. Figures 4.7 and 4.8 show the plot of residuals plotted against predicted 

values and z respectively. Figure 4.9 shows the frequency distribution of residuals. The 

Table 4.9: Parameter Estimates and Standard Errors for the Proposed Taper equation 
Parameter Estimate SEE ESS N MSE 

0'.1 0.6421100 0.036556224 
0'.2 0.9430644 0.001799592 

/31 1.6094235 0.020019514 211.062341 6996 0.030195 

/32 0.9270510 0.013346343 

/33 -0.9963733 0.361105088 

/34 247.46764463 15 .598570311 

goodness of fit of the equations was assessed on the summary statistics of the equations 

and their residual patterns (Tables 4.7 to 4.9 and Figures 4.4 to 4.9). Residual plots for 

equation 4.28 showed irregular trends at most parts of the stem: plots of residuals for 

equation 4.23 are clearly superior to equation 4.28. Equation 4.23 was identified as 

superior because it had 10% less ESS than equation 4.28. However, it showed some 

irregular trends in the middle of the stem. To improve its fit, the technique proposed by 

Candy (1989), to include the variable d, the (dbhob) at the two join points was imposed, 

to determine whether or not the fit could be improved. Equation 4.23 was thus modified 

to equation 4.30. 

d'2 I<h 2 2 2 -- = /31z + /32z + d/33(z - a1) 11 + d/34(z - a2) 12 
V 

(4.30) 

The restriction for equation 4.30 was reinstated through restrictions 4.31 and 4.32 on the 

parameters without endangering consistency in the error sum of squares. 

( 4.31) 
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and 

(4.32) 

The main restriction 4.27 remains unchanged, but could be modified to 4.33 

(4.33) 

It was realized in this study that to ensure compatibility is achieved, all three restrictions, 

4.31, 4.32 and 4.33 above must be obeyed. Although it may appear that equation 4.33 

embeds both equations 4.31 and 4.32, it alone is not sufficient to enforce compatibility, 

although can be used as a final verification. 

• Assessment of Goodness of Fit of Taper Equations 

The residual pattern for equation 4.30 for most part of the stem was better than without 

d. The mean residual value for equation 4.30 was lower than in equation 4.23 which 

does not include d (see files TPPD.LIS and TPP.LIS respectively in appendix C). The 

residual plots and frequency distribution chart for the equations are shown in Figures 4.10 

to 4.12. Parameter estimates and standard errors for equation 4.30 are shown on Table 

4.10. Assessment of bias in predicting top diameter d' by z classes for equations 4.23 

and 4.30 was conducted so as to quantify the effect of including din 4.30. Table 4.11 

summarizes this information. 

Table 4.11 shows that equation 4.23 and 4.30 have more or less the same precision in 

predicting upper stem diameter inside bark. Equation 4.30 predicts diameter better for z 

less or equal to 0.3, and when z is greater or equal to 0.8. This implies that it accounts better 

for the butt swell which is common in mature Douglas fir trees, however, when z is between 

0.3 and 0.8 equation 4.23 performs better. Equation 4.30 is therefore recommended, the 
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Table 4.10: Parameter Estimates and Standard Errors of the adopted Taper Equation 

Parameter Estimate SEE ESS N MSE 

a1 0.686291182 0.03401590725 

0'.2 0.937009056 0.00241022981 

fli 1.677377987 0.01737692381 237.692642 6996 0.034005 

f32 0.881748009 0.01158461587 

(33 -0.040497946 0.01530960428 

{34 5.0024047 44 0.32911529480 

Table 4.11: Comparison of Bias between equations 4.23 and 4.30 

z class N Mean volume Bias incm 
m3 Equation 4.23 Equation 4.30 

0.1 983 0.9673 -0.72 -0.67 
0.2 449 1.1360 -1.42 -1.29 
0.3 498 1.0195 -0.38 -0.27 
0.4 468 1.1100 0.30 0.38 
0.5 514 0.9774 0.55 0.60 
0.6 452 1.0356 0.49 0.51 
0.7 539 0.9844 0.31 0.28 
0.8 533 1.0358 -0.01 -0.08 
0.9 1294 0.6264 0.04 -0.007 
1.0 1266 1.2072 0.13 0.004 

I overall bias I 6996 I 0.9834 0.07 -0.09 
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trade off in loss of precision in the middle section is minimal and is compensated by 

precision in predicting diameters near the butt, the section more commercially utilized. 
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Full Polynomial Taper Equation 

+ 

+ 

+ 

+ 
:} + + + + 
'Hlf++ + +"i_j. 

1:li_/ j. • • + 

+ *++ + 
+ • * + 

+ + 

+ 
+ + 

+ 

+ 
+ 

iJ-

++ 

+ 
+ 

+ 
t.t 

+ 

RE + + + CY 

R sidual 

++ + MN + + + SD 

119 



Figure 4.6: Frequency Distribution of Residuals 
Full Polynomial Taper Equation 
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Proposed Taper Equation 
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Figure 4.9: Frequency Distribution of Residuals 
Proposed Taper Equation 
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Adopted Taper Equation 
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Figure 4.12: Frequency Distribution of Residuals 
Adopted laper Equation 
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4.2.4.2 Taper Based System 

The procedure was repeated, but unlike the volume based system, taper is regarded to be 

the primary concern, and volume is obtained by integration of the taper equation. The 

same methodology and equations were retained as for the volume based procedure, but 

the stem volume v, was substituted as in equation 4.34. The approach is similar to that of 

Byrne and Reed (1986) but they used Cao et al. (1980) segmented taper equation 4.20. 

( 4.34) 

After this substitution and rearrangement, equation 4.30 becomes equation 4.35 below. 

d' is top diameter (cm), dis dbhob (cm) and f is the form factor, which is simultaneously 

determined through regression with other parameters of the equation. The integration 

computed from equation 4.35 is 

The results of this integration yields 4.37 

( 4.37) 

Traditionally, the total volume of a tree can be obtained by expression 4.38 

( 4.38) 

Compatibility requires that the total volume of the tree should equal the merchantable 

volume when integration is performed for z between the limits 0 and 1. Thus, as for 

equation 4.30 the compatibility restriction is enforced by equations 4.31, 4.32 and 4.33, 
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and vm equals v for I< f d2 h . Because stem taper depends much on locality, the form 

factor parameter (f) was estimated for each individual region. Thus, the form factors f 1, 

Ji and h for Canterbury, Nelson and Southland regions respectively, are analogous to 

regional dummy variables in the volume function. 

It was noted, however, that by imposing restrictions 4.31 and 4.32 and 4.33 in equation 

4.35 the coefficient /32 was not significantly different from 0. It was possible to derive 

the parameter estimates of this equation by imposing restriction 4.33 alone, but the 

compatibility was only satisfied approximately. Table 4.12 summarizes the parameter 

Table 4.12: Parameter Estimates and Standard Errors of Taper Based Taper Equation 

I Parameter I Estimate I Standard Error I ESS I N I MSE 

0'.1 0.348706716 0.01928597805 
0'.2 0.929131830 0.00244793852 

/31 1.900372163 0.03171623308 

/32 0.727374098 0.02109987072 42.6656282 6996 0.0061064 

/33 -0.035492183 0.00345130818 

/34 3.480118250 0.29840727686 

/1 0.428699044 0.00161329875 

12 0.414923399 0.00222663674 
fa 0.439686110 0.00197526882 

estimates for the approximate compatible taper based taper equation 4.35, also shown in 

the file 1PPF.LIS in appendix C. Figures 4.13 to 4.15 show the plot of residuals against 

predicted values, plot of residuals against z and a bar chart of the frequency distribution 

of residuals respectively. 

4.2.4.3 Summary - Taper Equations 

The volume based system of taper equations was developed successfully (equation 4.30) 

and is the one recommended for Douglas fir in the South Island. The inclusion of d in the 
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equation has provided two major advantages: (1) the parameter estimates have smaller 

confidence intervals than a similar equation without d ; and (2) the residuals near the butt 

end are more restricted about the zero line (see Tables 4.9, 4.10 and 4.11, and Figures 

4.7 and 4.10). The form of quation 4.30 is also compatible with any volume function 

regardless of the species. Its applicability, therefore, depends largely on the availability 

of a volume function and on the evaluation of precision. 

The taper based system should only be applied at this time as an approximation when a 

volume table is unavailable. Tests with this equation showed that a compatibility of 98% 

can be achieved. This methodology, however, demonstrates a potentially useful analytical 

procedure, which could be adopted in other sets of data and species. 
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4.3 Whole Stand Growth and Yield Model [DfirStand] 

DfirStand is a whole stand simultaneous growth and yield model applicable to four regions 

of the South Island in which Douglas fir is grown, namely Canterbury, Nelson, Southland 

and Westland. Unlike static models (Alder, 1980) DfirStand is a state - space dynamic 

growth and yield model (Garcia, 1988), capable of predicting rates of change under vari­

ous conditions. The trajectories over time are then obtained by adding or integrating these 

rates. 

A number of site variables such as altitude, latitude, distance from the sea, annual rainfall 

and soil type were considered as possible variables to explain regional growth variation. 

4.3.1 Development of DfirStand 

Polymorphic and anamorphic forms of Gompertz (Nokoe, 1978); Schumacher (Clutter 

et al., 1983), Hossfeld (Woollons et al., 1990), Levakovich, Weibull, monomolecular, 

Morgan- Mercer-Flodin, Umemura (Umemura, 1984) and Chapman- Richards (Pienaar 

and Turnbull, 1973) functions were all fitted to the data in developing individual equations. 

Comparison of equations was based on ESS and RMS values, parameter estimates and 

their asymptotic standard errors, PROC UNIVARIATE statistics and plots of residuals for 

the equations by region as set out in chapter 3 section 3.3.3. 

In developing DfirStand, two hypotheses were postulated. 
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(i) For a large area with large population(s), there exist local biological 

and environmental adaptations which influence the growth of the crop 

in diverse ways. Local adaptations can be characterized through use of 

dummy and other predictor variables. Dummy variables are variables 

which can assume a value of O or 1. When the dummy variable assumes 

the value of 1 the coefficients which go with it are active, otherwise they 

are inactive. 

(ii) local adaptations referred to in (i) combine with other management 

induced effects such as thinning and fertilization, which provide a range 

of influences on crop yield. Local adaptations are specific while the 

other effects are more general in nature. 

134 

These hypotheses were tested to ascertain the potential to develop a single growth and yield 

model which could be aggregated and disaggregated into individual regions or localities 

through dummy and other predictor variables reflecting these two kinds of influence. 

4.3.2 Equations Employed in Stand Level Modelling 

This subsection explains the form of equations used to develop DfirStand. The components 

of DfirStand are: ( 1) mean top height equation; (2) site index equation; (3) net basal area/ha 

equation; (4) equation to predict net basal area/ha after thinning (5) stand volume/ha 

production equation and (6) stem survival/ha equation. These are explained in the next 

subsections. 
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4.3.2.1 Mean Top Height Equation 

Table 4.13 presents the data that were used to develop a general mean top height equation. 

The data are separated into individual regions. The variables used in this equation are age 

Table 4.13: Data Used to Develop Mean Top Height and Site Index Equations 
Region I N I Variable I mean I minimum 1 maximum I 

Age(T) 32.9 9.0 57.1 
Canterbury 211 Top height (m) 22.9 2.9 39.3 

Altitude (m) 327.6 150.0 790.0 

Age(T) 27.4 8.0 58.0 
Nelson 838 Top height (m) 22.9 5.6 47.8 

Altitude (m) 439.2 183.0 625.0 

Age(T) 33.9 7.0 78.0 
Southland 347 Top height(m) 24.3 4.3 46.2 

Altitude 234.9 0.0 330.0 

Age(T) 25.6 5.0 59.1 
Westland 189 Top height (m) 18.4 1.9 37.5 

Altitude (m) 234.0 0.0 330 

I Total number I I 
~f observations 158~ 

of the crop (T), mean top height (h100), and altitude (AL). The mean top height equation 

found to fit best was a form of an anamorphic Schumacher shown in 4.39. 

(cx+.BxAL)(#,-#,) 
h(100,2) = h(loo,1)e 1 2 ( 4.39) 

A single equation for all localities was found to be precise and with no regional bias in 

residual patterns, compared with fitting equations by individual regions or large forest 

aggregations on their own. Altitude controlled not only the level of asymptote, but also 

appeared to characterize differences in site quality very well from one locality to another. 
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Goodness of Fit of the Mean Top Height Equation 

Parameter estimates for equation 4.39 are summarized in Table 4.14. All the parameter 

Table 4.14: Parameter Estimates and Standard Errors of Mean Top Height Equation 

Parameter Estimate Standard ESS N mean Square 

error Error (MSE) 

a 9.333951561 0.13347007407 

(3 -0.001624622 0.00038075887 521.5633 1585 0.3297 

, 0.316495110 0.01445706630 

estimates were significant at least at the 5% level. Figure 4.16 shows the plot of residuals 

against predicted values. Figure 4.17 shows the plot of residuals against age (Ti), Figure 

4.18 shows the plot of residuals against altitude and Figure 4.19 shows the chart of 

frequency distribution of the residuals. The precision achieved in this overall equation is 

better than in any other equation known to exist for this whole population or subset of 

it, as is also explained elsewhere in Whyte et al. (1992) (see appendix B).The residuals 

about the predicted values never exceeded ±1.50 m. Inclusion of latitude, distance from 

the sea and rainfall was also tested, but none of the variables appeared to contribute any 

real predictive improvement and so were discarded. Apparently, the height/age curves are 

wholly anamorphic with respect to altitude and so it is possible to be reasonably confident 

of predicting mean top height of Douglas fir at any age ( or its site index) anywhere in the 

South Island, given the crop's starting height is above age 5 and altitude within range Oto 

790 m above sea level. 
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4.3.2.2 Site Index Equation 

Site index equations "'.ere derived from the mean top height equation by setting T2 equal 

to 40 years (see equation 4.40), which is used here as the base age for Douglas fir in New 

2.ealand (Burkhart and Tennent, 1977; Mountfort, 1978). 

S h (a+,BxAL)((...L)'Y-(.l..)'Y) = (100,l)e Ti 40 ( 4.40) 

The site index curves developed in this study are anamorphic with respect to altitude, they 

are displayed for the Nelson region at an average altitude of 438 m above sea level in 

Figure 4.20. 
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Figure 4.16: Plot of Residuals vs Predicted Values[m] 
Mean Top Height Equation 
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Figure 4.17: Plot of Residuals [m] vs Time [T1 years] 
Mean Top Height Equation 
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Figure 4.18: Plot of Residuals [m] vs Altitude [m a.s.l] 
Mean Top Height Equation 
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Figure 4.19: Frequency Distribution of Residuals [m classes] 
Mean Top Height Equation 
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4.3.2.3 Net Basal Area Projection Equation 

Data Used in Developing of Net Basal Area Equation 

The data used in developing a net basal area/ha equation are summarized in Table 4.15 

(figures in parenthesis in column 1 are numbers of measurements). The variables used 

Table 4.15: Basal Area/ha Data for Canterbury, Nelson, Southland and Westland 

Region Variable Mean Minimum Maximum 
Age(yrs) 34.3 11.8 61.0 

Canterbury G/ha 44.1 4.4 116.2 
(189) 

Site index (m) 28.1 22.7 35.8 
Altitude (m) 322 150 470 

Thinning index 0.3372 0.07350 1.491900 

Age(yrs) 27.9 7.0 58.0 
Nelson G/ha 41.9 1.2 109.4 
(841) 

Site index (m) 33.5 22.7 41.9 
Altitude (m) 439 183 625 

Thinning index 0.2577 0.03000 2.3751 

Age(yrs) 33.7 7.0 75.0 
Southland G/ha 50.8 1.1 112.8 

(345) 
Site index (m) 29.3 18.3 37.6 
Altitude (m) 253 50 625 

Thinning index 0.2349 0.03390 0.6441 

Age(yrs) 26.8 5.0 59.1 
Westland G/ha 29.0 0.0 123.8 

(209) 
Site index (m) 30.0 10.5 38.1 
Altitude (m) 234 0 330 

Thinning index 07520 0.09900 3.0000 

in this equation are net basal area/ha ( G), age of crop (T), thinning index (Xt), altitude 

(AL) and site index (S). In addition three dummy variables K1 , K2, and K3 were included 

to distinguish locality. 
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The thinning index, Xt, is in this equation defined as 

( 4.41) 

where db is the quadratic mean diameter of the stand just before thinning and dt 

is the quadratic mean diameter of trees removed in thinning. Several sigmoidal 

curves(Schumacher, Chapman-Richards, Gompertz, Hossfeld, Weibull and Morgan­

Mercer) were fitted to basal area data, the goodness of fit of each equation was analyzed. 

A polymorphic form of the Schumacher, equation 4.42 originally used by Clutter and 

Jones (1980) fitted the data most and was selected to form a base model for subsequent 

analysis. 

( 4.42) 

Equation 4.42 fitted the data well, and so, site index was later included as a variable to 

test whether the fit could be further improved. Equation 4.43 was thus fitted to the data. 

( 4.43) 

The impact of site index in the basal area equation was unexpected: not only was it not 

significant (at 5% level), but the parameter /32 was negative suggesting that higher site 

indices had lower net basal area production. This is contrary to what researchers have 

established for a long time in the context of site index and growth. 

A statistical analysis was conducted and it was possible to show that there were interacting 

effects between altitude and site index particularly in Canterbury data; higher elevations 

in Canterbury have a higher rainfall and better soils suitable for Douglas fir. It was 

therefore concluded that altitude could be a more efficient and expressive factor, which 
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could substitute readily for site index. The variable site index (S) was then omitted and 

altitude above sea level was substituted as in equation 4.44. 

(4.44) 

Locality adaptation was incorporated in the equation through use of three dummy variables 

K1, K 2 , and K 3 , with adaptation coefficients ()3 , ()4 and (Js respectively. A series of nested 

equations (refer to section 2.8.5) was fitted, allowing the asymptote parameter a to vary 

for each region, while ()1 and the altitude coefficient, ()2 were assumed to be fixed. A 

simple SAS program was used to input the dummy variables, such that they assume a 

value of 1 for the intended region, else a value of O is assumed. Out of these nested 

equations, equation 4.45 fitted the data best. Thus, the dummy variables K 1 , K 2 , and J<3 

assume the value of 1 for Nelson, Southland, and Westland regions respectively, otherwise 

they assume a value of 0, while Canterbury is the default. 

( 4.45) 

Altitude and dummy variables are being used here for determining the level of asymptote 

for each region in equation 4.45. The use of local altitude appeals more in terms of 

localisation rather than if average altitude was used. 

Quantification of Amount and Kind of Thinning 

Thinning was incorporated in equation 4.45 in such a way that the equation could be used 

for predictions in both thinned and unthinned stands. The thinning index used in this study 

is similar to that of Murphy and Farrar (1988) but with some modification, the difference 

being how the age of thinning Tt is referenced in the equation so that at the same time all 
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biological and logical properties of the equation are retained. Murphy and Farrar (1988), 

defined their thinning term as 

( 4.46) 

Where Xt, the thinning index, is defined as 

( 4.4 7) 

and 

dt = quadratic mean diameter of trees removed in thinning. 

db = quadratic mean diameter of the stand just before thinning. 

T1 and T2 are respective ages (years) in a thinning interval. 

In their data, thinning was done at equal intervals of 5 years, while the interval of thinning 

in this study ranged from 3 to 30 years. In this study the thinning term adopted and found 

to be helpful in predicting the effects of variable thinning intensities and variable thinning 

intervals was 

( 4.48) 

The inclusion of the thinning term 4.48 in the equation has two important properties, 

namely, 

(1) as T2 approaches oo then the thinning term in equation 4.48 approaches 

0, so that the ability of stands to respond to thinning diminishes with 

age, 



Chapter 4. Developing and Fitting the Models 

(2) because A - ,A is always negative, and /36 was also negative (see Table 

4.15), the thinning term is a decreasing function of T2 , but it diminishes 

at a slower rate than that of Murphy and Farrar (1988) by the factor of 

1 
T:J' 

147 

Because the age of thinning in equation 4.48 is a constant, the overall equation 4.49 retains 

all the other basic properties, namely, compatibility between growth and yield (Clutter, 

1963), path invariance, and consistency, although it is not readily apparent at first glance 

and without some rearrangement of the last term (thinning term) in the adopted equation 

4.49. 

( 4.49) 

Goodness of Fit of Net Basal Area/ha Projection Equation 

Table 4.16 below sets out the parameter estimates and standard errors for equation 4.49 

The goodness of fit was evaluated through plots of residuals against predicted values as 

shown in Figure 4.21, Figure 4.22 shows the plot of residuals against time (T1), Figure 4.23 

shows the plot of residuals against altitude, and Figure 4.24 shows the chart of residuals. 
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Table 4.16: Parameter Estimates and Standard Errors of Basal Area Equation, 4.48 

Parameter Estimate SEE ESS N MSE 

a 5.096954651 0.02899877 466 

/31 1.064813569 0.01533259541 

/32 0.053376341 0.01976034060 

/33 0.276381537 0.02089265203 2674.0500 1592 1.6871 

{34 0.312440622 0.03543866689 

{35 -0.000244357 0.00005286663 

/36 -1.834181689 0.83833778987 

There were no apparent regional biases in basal area projection with the overall equation 

4.49, whereas there were with the average one as in 4.44. When an average Schumacher 

fit was made to the data (equation 4.42), the residuals extended± 10 m2/ha about zero, 

whereas equation 4.49 with its additional explanatory and locality variables was able to 

contain them all within± 4.0 m 2/ha, while 95% of the residuals were contained within± 

3.0 m 2/ha. Parameter estimates in Table 4.16 can be interpreted as follows: a, {31, {35, and 

{36 are common coefficients contributing to the asymptote of each region, {35 is negative 

indicating that basal area growth declines with increasing altitude. The thinning term 

coefficient /36 is also negative, but because l/T2 - l/T1 in equation 4.48 is negative, it 

implies that basal area growth responds positively with thinning. In addition {32 contributes 

to the asymptote if region is Nelson, {33 contributes to the asymptote if region is Southland 

and {34 contributes to the asymptote when region is Westland. 
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Successive Improvement of Net Basal Area Equation 

Table 4.17 summarizes the successive improvement of the basal area/ha equation through 

incorporating different variables and coefficients. The levels of improvement over an 

Table 4.17: Successive Improvement of Net Basal Area/ha Equation 

Input Variables 1 ESS l % Reduction in ESS I MSE 

a 3765.3352 - 2.3666 

a, /31 3709.3588 1.5 2.3329 

a, /31, 
Z1, Z2, Za 2719.4125 26.6 1.7136 

a, /31, 
Z1, Z2, Z3 , AL 2682.3634 1.4 1.6913 

a, /31, 
Z 1, Z2, Za, AL, Xt 2674.0500 0.31 1.6871 

average fit and the precision attained per se in equation 4.49 provides a level of sensitivity 

that managers should be relatively content to work with. 
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Figure 4.21: Plot of Residuals vs PredictedValues [m "'2] 
Net Basal area/ha equation 
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Figure 4.22: Plot of Residuals [m "' 2] vs Time[f1 years] 
Net Basal area/ha equation 
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Figure 4.23: Plot of Residuals [m "' 2] vs Altitude[m a.s.l] 
Net Basal area/ha equation 
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Figure 4.24: Frequency Distribution of Residuals [m .,,., 2 classes] 
Net Basal area/ha equation 
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4.3.2.4 Prediction of Net Basal Area/ha After Thinning 

Prediction of net basal area/ha and stocking after thinning is not always easy unless these 

values are specified directly. Nevertheless, if they are not specified an equation to predict 

basal area after thinning or to estimate the number of trees to be thinned to achieve a given 

level of basal area needs to be provided. The thinning data for this equation are those 

summarized in Table 3.9, Altogether 172 measurements were available for this analysis. 

Equations 4.50 (Matney and Sullivan 1982b) and 4.51 (Garcia, 1984b) were fitted to the 

thinning data and compared. 

(4.50) 

( 4.51) 

where Gb , Ga and are net basal area/ha before and after thinning, Nb , Nb are stocking 

before and after thinning, h100 is mean top height and (3, s are non linear least - squares 

coefficients. Equation 4.50 fitted the data better and was adopted. Parameter estimates for 

this equation are summarized in Table 4.18, Figures 4.25 and 4.26 represent the residual 

plots against predicted values and residual bar chart respectively. In order to make precise 

projections it is recommended that users should not re-arrange the equation and predict 

basal/ha before thinning from stocking because: 

( 1) due to small number of observations ( 172), the residual bar chart of this 

equation is slightly biased indicating that the parameter estimates are 

relatively poor and more bias might be introduced; 
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(2) basaVha after thinning estimated from stocking is an average value, while 

thinnings with different intensities, time and interval between thinning 

could induce much variation; 

(3) stand volume production is more closely related to basal area/ha than to 

stocking. 

Table 4.18: Parameter Estimates for Basal Area/ha After Thinning 

I Parameter I Estimate SEE I ESS I N I MSE 

/3o 1.285979977 0.08614742159 

/31 0.925156873 0.01576363838 

/32 1.104682651 0.09263427419 917.27792 172 5.45999 

/33 0.732974116 0.03283246952 
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Figure 4.25: Plot of Residuals vs Predicted Values[m "'2 l 

Basal area/ha After thinning Equation 
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Figure 4.26: Frequency Distribution of Residuals[m A 2 classes] 
Basal area/ha After thinning Equation 
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4.3.2.5 Stand Volume Equation 

The plot volumes were recalculated using the tree volume equation explained in section 

4.1.4 The data were then used to develop a new stand volume equation. The statistics of 

the basic data used for developing the stand volume production equation are summarized 

in Table 4.19. The combined variable of form in equation 4.52 fitted the data best. 

Table 4.19: Regional Data for Development of Stand Volume Equation 

Region I Variable I N I Mean I minimum I maximum I 
G 49.3 6.5 108.2 

Canterbury 160 h100 (m) 24.7 9.3 39.3 

V 445.8 24.5 1278.8 

G 43.1 3.2 109.4 

Nelson 762 h100 (m) 23.7 8.6 46.6 

V 399.6 11.7 1451.2 

G 53.7 7.6 109.5 

Southland 293 h100 (m) 26.3 6.9 46.2 

V 445.8 24.5 1278.8 

Total Number 

of Measurements 1215 

V = aG13 h1oo (4.52) 
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The equation was weighted by a weight w shown in equation 4.53 to counteract hetero­

geneity of variance of volume per hectare with respect to net basal area per hectare. 

1 
w=---

G2h100 
(4.53) 

Parameter estimates and standard errors of equation 4.52 are set out in Table 4.20. 

Table 4.20: Parameter Estimates and Standard Errors of Stand Volume Equation 

I Parameter I Estimate SEE ESS I N I MSE 

Q 0.5665215579 0.00455205065 

/3 0.9776534563 0.00192235190 3.5835043 1215 0.0029567 

'Y 0.8790153619 0.00295599158 

Table 4.21: Regional biases in Predicting Volume/ha 

Region I N I Residual I 
Mean I minimum I maximum 

Canterbury 160 -2.0 -35.9 25.8 
Nelson 762 -0.35 -45.5 47.9 

Southland 293 3.0 -37.9 47.4 

I Overall bias I 1215 I 0.25 -45.5 47.9 

Goodness of Fit of The Stand Volume Equation 

The variables used in developing the stand volume equations (basal area/ha, and mean top 

height) provide an indirect indication of the inherent regional variability. This advantage 

is considerable in fitting the stand volume equation, because the residual patterns (see 

Figures 4.27 and 4.28) showed no biases for either the overall data or individual regions. 

Table 4.21 sets out the mean, minimum and maximum residual values for individual 

regions. These values show no serious bias for any region. 
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Figure 4.27: Plot of Residuals vs Predicted Values[m" 3] 
Stand Volume/ha Equation 
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Figure 4.28: Frequency Distribution of Residuals [m A 3 classes] 
Stand Volume/ha Equation 
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4.3.2.6 Stem Survival/ha Equation 

Screening of Mortality Data 

Mortality data used in this analysis were carefully screened to ensure that only those inter­

vals in which actual mortality occurred were included. Frequently, there is no mortality 

from one interval to the next and such individual data provide misleading estimates of the 

model. Moreover, excessive mortality due to windstorms were also discarded and so only 

measurements which reflected regular mortality were used to develop the stem survival/ha 

equation. These data are summarized in Table 4.22. A modified Gompertz function of the 

form presented in equation 4.54 was found to fit stocking survival best, with site index 

featuring as an explanatory environmental variable. 

(4.54) 

Table 4.22: Data Used for Developing Stem Survival/ha Equation 

Region N AGE(T) Stems/ha 
mean min max mean min max 

Canterbury 51 33.4 15.0 61.0 1141 74 2426 
Nelson 217 28.2 8.0 53.5 1323 128 3517 

Southland 96 30.5 7.7 63.0 1239 130 2822 
Westland 63 28.0 5.0 59.1 991 222 3901 

Total I 427 I 



Chapter 4. Developing and Fitting the Models 163 

Goodness of Fit of the Stem Survival/ha Equation 

Parameter estimates for stem survival/ha equation are set out in Table 4.23. Plots of 

residuals against predicted values, age of crop and site index, (Figures 4.29, 4.30 and 

4.31 ), and the frequency distribution of residuals in Figure 4.32 of the mortality equation 

show no apparent bias, but asymptotic values were clearly related to site index: crops on 

higher site indices tended to suffer more mortality than those on lower ones. As always, 

the mortality function was the weakest link in the whole set of functions, but residuals for 

equation 4.54 did not exceed ± 100 stems/ha, while, without the site index term they were 

within ± 200 stems/ha. In this case the inclusion of site index was enough to sharpen the 

fit for all South Island sites considerably. 

Table 4.23: Parameter Estimates and Standard Errors of Stem Survival/ha equation 

I Parameter I Estimate I SEE I ESS I N I MSE I 
a 7.504278342 0.33296588527 

f31 -0.000148262 0.00001936157 504509.01 427 1189.88 

f32 -0.069398588 0.00081560793 

Table 4.24: Regional Biases in Predicting Stems/ha 

Region I N I Residual I 
Mean j minimum I maximum 

Canterbury 51 -6.9 -90.0 59.0 
Nelson 217 4.4 -89.0 93.0 

Southland 96 -1.6 -92.0 99 
Westland 63 -9.6 -78.0 53.0 

I Overall bias I 427 I -0.34 I -92.0 99.0 

Table 4.24 sets out the regional biases in predicting stem survival/ha. Due to a small 
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number of observations in Canterbury, Southland, and Westland, these regions show a 

slight imbalance of residuals, but well balanced in the overall equation. 
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Figure 4.29: Plot of Residuals vs PredictedValues [N/ha] 
Stem Survival/ha Equation 
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Figure 4.30: Plot of Residuals vs Time[T1 years] 
Stem Survival/ha Equation 
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Figure 4.31: Plot of Residuals [N/ha] vs Sitelndex [m] 
Stem Survival/ha Equation 
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Figure 4.32: Frequency Distribution of Residuals [N/ha classes] 
Stem Survival/ha Equation 
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Chapter 5 

Verification and Validation 

5.1 Verification of Equations Employed 

The stem volume and taper equations and each of the stand level growth and yield model 

equations were verified in terms of their theoretical soundness and estimated reliability 

of prediction. This was accomplished through examination and analysis of (1) residual 

patterns, (2) frequency distribution of residuals and (3) asymptotic standard errors of 

coefficients. It was not possible to examine the success of applying them in everyday 

practice, as, unlike DFCNIGM and SIDFIR which have been routinely applied, there 

has not been any routine implementation for DfirTree and DfirStand. Nevertheless, 

by comparing outputs for DfirTree and DfirStand, with DFCNIGM and SIDFIR, some 

indications of their reliability in practice can be gauged. 

169 
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( 1) Residual Patterns 

The resulting residuals of each equation were graphically plotted against predicted values 

and other variables included in the equation and some that were not: for example, the 

residuals for the mean top height and basal area projection equations were plotted against 

predicted values and the independent variables, age and altitude, to ascertain whether or 

not the trends over age and altitude were normally distributed about zero. Other variables 

not included in the equation such as distance from the sea were also employed and tests 

were made separately for each locality. The visual assessments about the goodness of fit 

of equations were reinforced with analysis and interpretation of univariate statistics about 

the distributions of residuals. 

(2) Frequency Distribution of Residuals 

Frequency distributions of residuals in the form of bar charts were also used to assess the 

degree of normality of their distribution. 

Analyses of residuals in terms of both their patterns and frequency distributions were 

performed overall and also at disaggregated regional levels to find out whether or not 

there was conformance to normality in their distribution. The results of these tests showed 

no serious bias in any region. This ocular method of assessment can be misleading, 

however, because of the effect of choice of size class and so other statistics were used to 

ascertain the goodness of fit more objectively as set out below. 
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• Asymptotic Standard Errors of Parameter Estimates 

Asymptotic standard errors of parameter estimates expressed as confidence limits are, of 

course, biased, as explained in chapter 3 section 3.3.3. But they do provide a measure of 

acceptability, provided that the existence of bias is recognized. 

• The Standard Deviation of Residuals 

The standard deviation of residuals provides a measure of dispersion of residuals about 

their mean. Random normal deviate (RN D) computed through use of equation 5.1 was 

used to measure the degree of dispersion of each observation. 

RND = [ABS(RESID)/RMS] (5.1) 

where RMS is the root mean square of residuals, and ABS(RESID) is an absolute 

value of the residual for any one observation. All observations with RN D of more than 

3.5 were regarded as outliers and were subjected to further scrutiny. 

• Extreme Values of Residuals 

For each equation the extreme values of residuals (minimum and maximum) were assessed 

to check that their absolute values were in balance and that they were within practical 

limits for the variable. For example, an extreme residual value of 5 m for mean top height 

is too high and signals the presence of at least an outlier on the positive side: on the other 

hand a maximum of 1.5 m and a minimum of -5.0 m indicate an imbalance of residuals, 

with possible outliers on the negative side. 
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• Mean and Mean Absolute Residual 

The mean of the residuals should equal zero, but in reality, estimated mean residuals of 

an equation are rarely exactly zero. They should, however, be close to it. The value of 

the mean absolute residual is more important than its sign, being a measure of average of 

the departure from the true values, but both assist in interpreting residual trends. 

• PROC UNIVARIATE Statistical Tests 

Finally, PROC UNIVARIATE statistical tests were used to ascertain the normality of 

distribution of residuals. For each equation, values for kurtosis, skewness, Kolomogorov -

D statistic and the normal probability plot were carefully assessed to find out whether or not 

they were within practical limits for the normal distribution as set out for example in SAS 

Institute Inc., (1988). The skewness of the normal distribution is Oby definition, while the 

value of kurtosis is supposed to lie between -2 and +oo. For any one equation where the 

value of skewness was not close to 0, then the equation was re-assessed. Similarly, high 

values of kurtosis (5 .0 and above) signals the presence of major outliers. Any one equation 

which had such a value of kurtosis was subjected to further rigorous examination. Table 

5.1 below sets out the summary statistics of each equation in DfirTree, DfirStand, SIDFIR 

and DFCNIGM, Table 5.2 compares the statistical tests for the existing tree volume and 

taper equations with those of DfirTree. 
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Table 5.1: Statistical Comparisons for DfirTree, DfirStand, SIDFIR and DFCNIGM 

Model Equation Residual Parameters 
N Average Absolute RMS Min Max 

Mean Mean 

Dfir'free Stem volume ( m3 ) 597 0.000035 0.027 0.000278 -0.17 0.20 
Stem taper (cm) 6996 0.009 0.1268 0.18 -1.000 0.997 

Top height (m) 1585 0.000676 0.4529 0.573 -1.4975 1.4838 
DfirStand Basal area (m2/ha) 1592 0.04135 0.9792 1.299 -3.9822 3.7566 

Stand volume (m3 / ha) 1215 0.1215 8.9799 0.054 -45.5 47.9 
Mortality (N /ha) 427 -0.32206 25.0 34.5 -95 99 

Top height (m) 1415 0.04 - 0.695 -
SIDFIR Basal Area (m2 /ha) 1415 -0.09 - 2.63 -

Stand volume (m3 /ha) 1415 -4.17 - 85.9 -
Mortality (N / ha) 1415 -1.14 - 57.4 -

Top height ( m) 1949 0.00874 0.42 - -1.9 2.1 
DFCNIGM Basal area (m2 / ha) 1746 0.02563 0.53 - -2.37 2.5 

Stand volume (m3 / ha) 1649 -0.01136 6.74 - -43.01 41.50 
Mortality (N / ha) 790 -2.76359 16.0 - -117 

The values for DfirStand presented in Table 5.1 were compared with similar values 

for DFCNIGM and SIDFIR and were found to be of the same order as DFCNIGM and a 

considerable improvement over SID FIR. These values can be interpreted for each variable 

as follows. 

(1) Stem Volume Equation 

The average mean residual for the stem volume equation of 0.000035 m3 and the mean 

absolute residual of 0.027 m3 imply that there is a slight over-prediction with mean 

departure of 0.027 m3 from the true values. The maximum expected error in the equation 

is 0.17 m 3 and the minimum error is -0.20 m3 • The new stem volume function has a value 

of 0.06% for the coefficient of variation compared to 8.9% in Tl 36, which means that the 

new equation has a higher level of precision than volume Table T136. 

121 
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Table 5.2: Comparison of Stem Volume and Taper Tables - D.fir New Zealand 

Table Locality Standard error 
(Equation) of the mean 

Stem DfirTree South Island 0.06% 
Volume Tl20 Ashley Forest 6.7% 

Equations T136 AllofN.Z 8.9% 
T228 Longwood 7.9% 

Stem DfirTree AllN.Z 0.0cm 
Taper F136 AllN.Z 0.0cm 

Equations F228 Longwood 0.12 cm 

Source: FRI, Ministry of Forestry N.Z. (1992) 

(2) Stem Taper Equation 

With an average mean error of 0.009 cm and a mean absolute residual of 0.1268 cm the 

stem taper equation has a good fit, though with a slight over-prediction compared with the 

true values. The maximum error expected in the equation is 0.99 cm which is very well 

balanced with the minimum of -1.0 cm and the RMS of 0.18 cm. 

(3) Mean Top Height Equation 

The mean average residual, mean absolute residual and residual mean square error values 

for mean top height are 0.00067 6 m, 0.45 m and 0.329 m 2 respectively, indicating that the 

equation slightly over-predicts tree heights with an average deviation of 0.45 m. These 

values are similar to, but all slightly better than those for DFCNIGM and SIDFIR. The 

maximum error, moreover, expected from using this equation is 1.48 m, the minimum is 

-1.49 m while the maximum error in DFCNIGM is 2.1 m and minimum error is -1.9 m. 
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The RMS of this equation is 0.573 m while the corresponding value for SIDFIR is 0.695 

m. 

(4) Net Basal Area/ha Equation 

The net basal area/ha equation has a mean average residual of 0.041 m2 /ha, implying a 

slight over-prediction, with an absolute mean departure of 0.97 m 2 / ha from true values. 

The RMS value of this equation is 1.299 m 2 / ha compared with 2.63 m 2 / ha for SID FIR. 

The equation has an expected maximum error of 3. 75 m 2 / ha and a minimum error of 

-3.98 m 2 /ha, again well balanced, 

(5) Stand Volume Equation 

The residuals of the stand volume equation have a maximum value at 47 .9 m 3 / ha and a 

minimum value of -45.5 m3 / ha, corresponding values for DFCNIGM being 41.5 m3 / ha 

and -43.0 m3 / ha, respectively. The mean residual for DfirStand is 0.1215 m3 / ha with an 

average departure of 8.9 m3 / ha from the true values; corresponding values for DFCNIGM 

are -0.1126 m 3 /ha, and 6.7 m 3/ha respectively. That is, the level of precision of the 

stand volume equation for DfirStand is about the same as that DFCNIGM. The RMS for 

DfirStand is 0.054 m3 / ha, which is much superior to that of SIDFIR, 85.9 m 3 / ha. 
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(6) Stem survival/ha Equation 

DfirStand shows an average mean of -0.32206 stems/ha in predicting stem survival/ha, 

indicative of a slight over-prediction, while the average deviation from the true values 

is 25 stems/ha. The corresponding values for DFCNIGM are -2.76 and 16, respectively, 

while SIDFIR has a mean stocking residual of -1.14 stems/ha. Thus, DFCNIGM predicts 

slightly more stems/ha than SIDFIR and DfirStand and DfirStand predicts slightly fewer 

stems/ha than SID FIR. DfirStand is slightly better than SID FIR and DFCNIGM, therefore. 

The maximum and minimum residuals for DfirStand are 99 and -95 stems/ha, DFCNIGM 

has a correspondingly wider range of extreme values with a maximum and minimum 

of 121 and -117 sterns/ha. The RMS value for DfirStand is 34.5 stems/ha and 57.4 for 

SIDFIR. 

The overall statistical comparison between DfirTree and the existing stern volume and 

taper equations shows that DfirTree to be slightly more precise. Similarly, DfirStand 

shows an overall improvement in the statistics over SIDFIR for all equations, particularly 

in stand basal area/ha and stand volume/ha equations; this is attributed to the inclusion of 

dummy variables in both DfirTree and DfirStand. 
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5.2 Validation 

Validation of models is usually best done by an independent data set. Such data sets are, 

however, not usually available in most situations, as is the case here for Douglas fir in the 

South Island, because modellers are reluctant to siphon off basic measurements for just 

such a purpose. The overall data set here was large, but, according to the objectives of 

the study, the modelling was analysed in separate regions from which the data originated. 

Because of unequal distribution of these data, it was not possible to set aside a validation 

data set for each region without undermining the objectives of the study. Canterbury was 

represented by 13% of the stand modelling data and 60% of sectional measurement data. 

Nelson was represented by 50% of the stand modelling data, while it was represented 

by only 14% of sectional measurement data. Southland was represented by 24% of 

stand modelling data and 25% of sectional measurement data. Westland was represented 

by 12% of stand modelling data, while it was not included in the stem volume and 

taper analysis because of insufficient representation. Therefore, setting aside a validation 

data set from within the whole data set, would have resulted in too small numbers of 

sectional measurements for Nelson and Southland, and too few data for stand modelling 

for Westland and Southland. The whole data set was, therefore, used for developing and 

fitting the models, as well as their evaluation. As more permanent plot measurement data 

accumulate, an independent data set for validation can be set aside and validation tests 

can be conducted more objectively. 
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5.2.1 Validation of DfirTree 

5.2.1.1 Stem Volume Equation 

Stem volume prediction was validated in terms of percentage error prediction by diameter 

classes for individual regions. The volume equation used for validation is T136 (FRI, 

Ministry of Forestry N.Z., 1992) which was developed to cater for all Douglas fir grown 

in New Zealand. The new equation and that of T136 were run through the same data, 

and then their errors in stem volume prediction by diameter classes were compared. The 

formula used to predict this percentage error is equation 4.18 as defined in chapter 4 

section 4.1.4. Table 5.3, shows the percentage volume prediction errors by dbh classes 

for Canterbury, Nelson and Southland. Table 5.3 shows that the overall biases for the 

new stem volume equations for Canterbury, Nelson and Southland are 0.24%, -0.26% 

and 0.51 % compared with -5.7%, -6.1 % and -8.7% in volume Table T136. However, the 

Canterbury and Southland ones under-predicts volume of trees in the very smallest, 5 cm 

dbh class, while T136 over-predicts. The general trend for both Table T136 and the new 

equations is over-prediction, but, bias tests by dbh classes show better results for DfirTree 

in comparison to Table Tl36. 



Chapter 5. Verification and Validation 179 

Table 5 3· Bias in Stem Volume Prediction .. 
Region dbhOass Mean height (m) N % Volume bias 

(cm) DfirTree Tl36 

5 4.2 4 12.0 -18.3 
10 4.9 9 13.8 -6.7 
15 11.5 38 3.4 -4.9 
20 15.5 75 0.8 -5.6 
25 17.9 109 -2.4 -7.8 

Canterbury 30 19.4 69 0.4 -3.8 
35 19.2 17 -1.2 -4.1 
40 19.2 8 -5.0 -6.2 
45 27.6 5 0.78 -3.4 
50 28.9 7 -2.5 -1.5 

>50 34.1 16 -0.09 -3.5 
No. oftrees 359 
Mean bias 0.24 -5.7 

15 13.9 4 -3.7 -8.9 
20 19.8 14 4.2 -1.4 
25 23.3 17 -0.18 -6.4 

Nelson 30 26.2 17 -1.1 -7.5 
35 25.1 7 -2.4 -6.7 
40 30.3 16 -1.3 -6.9 

>40 36.2 4 -2.1 -8.8 
No. oftrees 75 
Mean bias -0.26 -6.1 

5.0 3.0 11 17.2 -28.9 
10.0 3.8 9 20.2 -7.5 
15.0 6.4 13 -0.45 -13.3 
20.0 15.4 13 -2.1 -8.4 

Southland 25.0 17.8 27 -6.1 -11.3 
30.0 21.8 23 -1.3 -6.4 
35.0 23.1 25 -1.2 -5.6 
40.0 25.1 17 -3.1 -7.4 
45.0 25.0 11 1.7 -1.2 
50.0 23.3 6 0.92 -0.1 

>50.0 30.9 9 0.04 -2.9 
No. of trees 163 
Mean bias 0.51 -8.7 



Chapter 5. Verifi.cation and Validation 180 

5.2.1.2 Stem Taper Equation 

The prediction of taper was validated for independent regions by z classes, where z is 

defined as the relative height from the top of the tree (see section 3.3, equation 3.2). Table 

5.4 summarizes this error prediction for individual regions. The precision of the new 

equation was compared to Taper Table F136 (FRI, Ministry of Forestry N.Z, 1992) which 

is compatible with volume Table Tl36. The two models were run through the data, then 

their biases of diameter prediction were compared. The formula used to calculate the bias 

in taper prediction is equation 5 .2. 

N 

E = ~(d' - d')/N (5.2) 
1 

where E is mean bias of prediction in cm, d' is the observed diameter, d' is the predicted 

diameter and N is number of observations in the class. Table 5.4 shows that only those 

parts of the tree where z is less than 0.20 (i.e., near the top of the tree) is the taper 

prediction for Table F136 more precise than the new taper equation. For most parts of 

the tree, where z is greater than 0.20 and in the commercially realizable part of the stem, 

the new equation performs with much less bias than Table F136. An important feature is 

that, as z approaches 1.0 the precision of the new equation increases, while that of Table 

F136 declines. The overall performance of the new equation for each region shows an 

improvement of precision over Table Fl 36. 
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Table 5.4: Validation of Stem Taper Prediction 

Region z Mean Volume N Bias (cm) 
Oass (ma) DfirTree F136 

0.10 0.9424 594 -0.67 - 0.07 
0.20 1.0992 266 -1.0 -0.14 
0.30 1.0020 292 -0.08 -0.42 
0.40 1.1099 270 0.45 -0.89 

Canterbury 0.50 0.9938 305 0.69 -0.97 
0.60 1.0430 249 0.53 -0.79 
0.70 1.0011 317 -0.32 -0.11 
0.80 0.9389 345 -0.16 0.21 
0.90 0.5600 820 -0.13 0.33 
1.00 1.1785 783 -0.08 -0.34 

N total 4241 
Mean bias -0.08 -0.34 

0.10 1.0042 125 -0.24 0.35 
0.20 1.0342 67 -0.99 -0.09 
0.30 0.9564 77 0.20 -0.24 
0.40 0.9844 76 0.53 -1.0 

Nelson 0.50 0.9367 79 0.70 -1.2 
0.60 0.8995 78 0.68 -0.87 
0.70 0.9372 74 0.23 -0.41 
0.80 1.0780 79 -0.10 0.12 
0.90 0.6876 150 -0.15 -0.47 
1.00 1.0074 179 -0.42 -1.0 

N total 984 
Mean bias -0.02 -0.50 

0.10 1.0061 264 -0.87 -0.22 
0.20 1.2793 116 -2.0 -0.97 
0.30 1.0967 129 -0.97 -1.4 
0.40 1.2136 122 0.13 -1.4 

Southland 0.50 0.9638 130 0.29 -1.4 
0.60 1.1058 125 0.35 -1.1 
0.70 0.9724 148 0.22 -0.13 
0.80 1.3103 109 0.19 0.68 
0.90 0.7652 324 0.09 -0.11 
1.00 1.3999 304 0.49 -0.46 

N total 1771 
Mean bias -0.15 -0.38 
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5.2.2 Validation of DfirStand 

Growth and yield predictions by three different regimes have been compared by Law 

(1990) for SIDFIR and DFCNIGM. These regimes are: 

(1) initial stocking 1600/ha, unthinned; 

(2) initial stocking 1600/ha, thinned at 10 m to 400 stems/ha; 

(3) initial stocking 1600/ha, thinned at 10 m to 600 stems/ha, thinned at 20 m to 250 

stems/ha. 

Table 5.5: Comparison Between SIDFIR DFCNIGM and DfirStand 

I Regime I model I Top height I Stocking I basal area I Mean dbh I Volume I 
SIDFIR 33.3 1023 93.5 34.1 1117 

DFCNIGM 32.5 1176 75.1 28.5 868 
1 DfirStand (CY) 33.1 1005 78.2 31.5 876 

DfirStand (NN) 33.0 1005 80.0 31.8 895 
DfirStand (SD) 33.2 1005 100.9 35.8 1124 
DfirStand (WD) 33.2 1005 104.6 36.4 1664 

SIDFIR 33.3 354 72.0 50.9 859 
DFCNIGM 32.5 379 70.2 48.6 816 

2 DfirStand (CY) 33.1 350 65.0 48.6 731 
DfirStand (NN) 33.0 350 66.2 49.1 744 
DfirStand (SD) 33.2 350 80.1 54.0 897 
DfirStand (WD) 33.2 350 82.5 54.8 923 

SIDFIR 33.3 243 55.2 53.9 659 
DFCNIGM 32.5 242 56.4 54.5 656 

3 DfirStand (CY) 33.1 245 55.3 53.6 624 
DfirStand (NN) 33.0 245 56.0 54.0 632 
DfirStand (SD) 33.2 245 63.5 57.5 714 
DfirStand (WD) 33.2 245 64.7 58.0 728 
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The simulations were done at site index 30.0 m grown from age 0 to 45 years. Because 

DfirStand depends on altitude for its prediction, the mean elevation for each region was 

used (Canterbury 326 m, Nelson 438 m, Southland 251 m, Westland 229 m). Table 

5.5 sets out the outputs of SIDFIR, DFCNIGM and DfirStand for the chosen regimes. 

The symbols CY , NN, SD , and WD refer to Canterbury, Nelson, Southland and 

Westland respectively. It can be deduced from Table 5.5 that, DfirStand predicts virtually 

the same mean top height at age 45 years as DFCNIGM, and SIDFIR for site index 30 m. 

The predicted basal areas/ha for SIDFIR and DFCNIGM are average values, DfirStand 

separates estimates for predicted basal area/ha for each region through use of dummy 

variables for locality and through altitude. Thus, at age 45 years Westland has the highest 

production of basal area/ha, followed by Southland, then Nelson and Canterbury the least. 

Stand volume/ha production and mean stand diameter of the stand follow a similar pattern. 

The predicted stem survival/ha for DFCNIGM for unthinned regime 1 is higher than for 

SID FIR and DfirStand, but is very similar for all models for regimes 2 and 3. Given initial 

condition of the stand, DfirStand will predict approximately equal values of mean top 

height and stem survival/ha as for SIDFIR and DFCNIGM. Essentially, the three models 

differ in basal area/ha production brought about by dummy variables, similarly, values 

derived from it such as volume/ha and mean dbhob follow the same pattern. 
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5.2.3 Desirable Properties of the Employed Equations 

5.2.3.1 Stem Volume Equation 

The stern volume equation implicitly has inputs for region through dummy variables Z1 

and Z2 , dbh (d), and height (h), and outputs stern volume by region. 

Biologically, this is appealing because usually trees growing at different sites or regions 

may need to be classified by their own stern volume equations. The use of dummy variables 

eliminates this need and it ensures that biases due to locality on parameter estimates are 

minimized, even if the regional differences in stern volume outputs by the same inputs are 

small. 

5.2.3.2 Stem Taper Equation 

The biological aspects of stern form were not considered in this thesis, but, even without 

such consideration, it has been possible to define adequately the stern taper in a mathe­

matical equation. The segmented taper function which was used here divides the stern 

into three segments, then assigns an appropriate function which describes the stern form 

in that section. 
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5.2.3.3 Mean Top Height Equation 

The mean top height equation incorporates altitude (AL) in metres above sea level. 

It was found that the mean top height for a given age decreased with altitude above sea 

level, a biologically realistic trend. As T2 approaches infinity, h(ioo,2) approaches the 

upper asymptote, (/31 +f32AL), when T1 equals T2, then h(ioo,i) equals h(ioo,2) ( consistency 

property), and the projection from T1 to T3 yields the same result as the projection from 

T1 to T2 followed by projection from T2 to T3 , (path invariance property). This equation 

predicts the same mean top height as the ones for SIDFIR and DFCNIGM, but is slightly 

more precise, as altitude represents variations due to locality better. 

5.2.3.4 Net Basal Area/ha Equation 

Unlike SIDFIR and DFCNIGM, DfirStand predicts different values of G / ha for each 

region. Consequently, it also predicts different values for V / ha and quadratic mean stand 

diameter for a given set of inputs. 

When site index was included in this equation instead of altitude, the trend was a decline of 

net basal area/ha with increase in site index, a biologically unreasonable pattern. Altitude 

was found to explain the variability in site quality better, there being a decrease in the 

level of the asymptote [(a+ f32AL + I<1f33 + I<2f34 + J<3,8s)l with increasing altitude. 
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This is more realistic and so altitude was the variable retained. The asymptote also 

varied from one region to another, the variations being induced through regional dummy 

variable coefficients. Other desirable properties include, consistency; thus, G2=G1 when 

T1 = T2 and path invariance, that is, the projection from T1 to T3 gives the same result 

as the projection from T1 to T2 followed by the projection from T2 to T3 • 

5.2.3.5 Stand Volume/ha Equation 

V = aGf3hJ00 

There was no need to disaggregate the stand volume/ha equation regionally. Differences 

from region to region are induced through separate effects in the stand net basal area/ha 

equation, the stem volume equation, and impact of altitude in height. The stand volume 

equation transforms the state variables, basal area/ha and mean top height, into volume/ha 

at specified crop ages. 

5.2.3.6 Stem Survival/ha Equation 

DfirStand predicts basically the same stocking over-time as do SIDFIR and DFCNIGM. 

Although site index proved not significant in predicting net basal area/ha, its inclusion did 

improve the prediction of stocking. 
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The equation has a lower asymptote (a.+(32S) which is controlled by the value of site 

index (S). The coefficients indicate that, the higher the site index the lower the level of 

the asymptote. The equation is consistent, in that N1 = N2 when T1 = T2 , and it is path 

invariant, that is the projection from T1 to T3 is the same as the projection from T1 to 

T2 followed by the projection from T2 to T3 • 

Table 5.6: Summary Output - DfirStand 

Region Age Top Height Basal area/ha Stocking Volume/ha 
years m m 2 /ha stems/ha m 3 /ha 

20 15.2 20.0 1000 113 
25 19.2 31.2 952 216 
30 23.0 41.8 890 340 
35 26.6 51.4 843 475 

Canterbury 40 30.0 59.9 785 616 
Mean altitude 45 33.2 67.9 727 765 

326m. 50 36.2 74.5 671 908 
55 39.0 80.3 619 1049 
60 41.7 85.5 570 1187 

20 15.5 20.0 1000 113 
25 19.5 31.5 952 219 
30 23.2 42.5 890 346 
35 26.7 52.5 843 486 

Nelson 40 30.0 61.5 785 632 
Mean altitude 45 33.1 69.5 727 781 

438m. 50 36.0 76.4 671 930 
55 38.7 82.6 619 1078 
60 41.3 88.2 570 1223 

20 15.1 20.0 1000 113 
25 19.2 33.1 952 230 
30 23.0 46.1 890 374 
35 26.6 58.2 843 537 

Southland 40 30.0 69.2 785 709 
Mean altitude 45 33.2 79.1 727 888 

229m. 50 36.3 87.9 671 1066 
55 39.2 95.8 619 1246 
60 41.7 102.9 570 1422 
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Table 5.6 summarizes simulation results of DfirStand with initial starting conditions: 

site index of 30 rn, basal area of 20 m2 / ha, 1000 trees/ha, all at age 20 and a mean 

regional altitude. Figures 5.1 and 5.2 are graphical representations of net basal area/ha 

and volume/ha development in Canterbury Nelson and Southland. 

5.2.4 Limitations to Applicability of the Models 

(1) Stem Volume and Taper Model 

The dbh range in the data set used for modelling stern volume and taper was between 

5 and 95 cm. The equations should be applied to trees of dbh outside this range only 

with extreme caution. Trees smaller than 12 cm in dbh are also not predicted precisely 

in relative terms. The equations reflect their applicability to Canterbury, Nelson and 

Southland separately. 

(2) Stand Model 

The stand model data ranged in age from 5 to 78 years, with firm confirmation of trends 

older than 60 years. Separation of growth trends in the Canterbury, Nelson and Southland 

regions is very distinct. 
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Chapter 6 

Discussion 

This study has produced (1) a tree stem volume and taper model and (2) a stand growth and 

yield model for Douglas fir grown throughout the South Island of New Zealand. DfirTree 

is a tree based model representing one equation for predicting stem volumes for trees 

grown in Canterbury, Nelson and Southland regions separately, but in one equation, and 

another which is a volume based compatible taper equation. DfirStand is a whole stand 

growth and yield model consisting of equations for predicting mean top height or site 

index, net basal area/ha, volume/ha, and stem survival/ha for trees grown in Canterbury, 

Nelson, Southland and Westland regions separately. All equations show a precision that 

is at the same level as, or better than similar existing models. Comparison of predictions 

indicated also that they can be put into use by managers to produce as reliable or better 

yield forecasts than those that have previously existed. 

191 
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6.1 Computational Methods - Non Linear Regression 

In fitting non linear regression equations using the SAS package (SAS Institute Inc. 1988), 

four iterative methods (algorithms) were available for computing the parameter estimates. 

These methods are 

(1) Gauss - Newton (Hartley, 1961). 

(2) Marquardt (Marquardt, 1963). 

(3) Gradient (Bard, 1970). 

(4) DUD (Ralston and Jennrich, (1971) 

Since non linear least - squares estimation is an iterative procedure, it is necessary to pro­

vide the regression functional form, declare parameter names and their initial approximate 

values, and possibly specify the derivatives of the model with respect to the parameters. 

Methods 1, 2 and 3 require the user to supply the partial derivatives while method four 

determines the derivatives during iterations by default. There is no one method superior 

to the other, but, the success in fitting an equation depends on (i) providing satisfactory 

initial values of parameter estimates, (ii) program statements to direct the computation 

(e.g. restrictions, grid search techniques, bounds, etcetera), (iii) nature of the equation 

being modelled and (iv) the skill and experience of the researcher in the field of modelling. 

In many instances, the initial estimates were obtained by grid search techniques, where 

several starting values were imposed and SAS evaluates their error sum of squares and be­

gins iterations with those values that conferred the minimum error sum of squares. Finally, 

if this technique was not practical an intelligent guess of starting values was executed. 
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There was no one algorithm that was superior to the other, experience with this modelling 

has shown that the efficiency of convergence depended largely upon the adequacy of the 

starting values. Nevertheless, parameter estimates did not differ significantly through 

using either algorithm, but, the ones in "DUD" were found to converge better than in 

the other methods. Therefore, all equations adopted in this thesis were standardized in 

"DUD", as this offered not only the minimum error sum of squares compared to other 

methods, but also consistency in parameter estimates for both the stem volume and taper 

and the stand growth equations. 

6.2 New Features of the Study 

Equations employed by DfirTree and DfirStand have shown an acceptable level of pre­

cision, but, unlike other regional models they do not give overall average estimates. In 

contrast to the approach adopted previously in SIDFIR (Law, 1990), which predicts over­

all average values for the whole of South Island of New 2.ealand, DfirTree and DfirStand 

endeavour to provide flexibility for aggregation and disaggregation by employing dummy 

and local site variables, along with other predictor variables to improve the sensitivity of 

estimation. The subsections below summarizes some of the major new features which 

have arisen from this study. 
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6.2.1 Stem Volume Equation 

6.2.1.1 Use of Dummy Variables 

The stem volume equation employs Schumacher's tree volume model, but the practicality 

of disaggregating regional adjustments through use of dummy variables on the inputs to 

provide distinct stem volume estimates by region is amply demonstrated. Comparison 

with a similar volume table, namely T136 which is the one currently being used has shown 

that DfirTree can provide more precise volume estimates. The overall regional biases by 

diameter classes for DfirTree were lower than those of Table Tl 36 (refer to chapter 5 

section 5.2.1.1 Table 5.4). 

6.2.1.2 Use of Weighted Non linear-least Squares Regression 

Existing volume tables in New Zealand are either logarithmic or arithmetic. This study 

has provided an alternative modelling approach by producing similar equations through 

weighted non linear-least squares regression. The improvement in stem volume biases in 

absolute terms over Table T136 were 96% in Canterbury and Nelson and 94% in Southland. 

The improvements can be attributed to: ( 1) the practicality of including dummy variables, 

even though they do not confer much change in the outputs of stem volumes regionally, 

but balance the residuals in the equation instead; (2) weighted non linear least - squares 

regression, which also corrected the heterogeneity of the variance in stem volume shown 

to be a major form of improvement. 
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6.2.2 Stem Taper Equation 

6.2.2.1 Use of Polynomial Segmented Taper Equation 

(a) Volume - based compatible taper equation 

The use of a segmented volume - based taper function achieved an overall higher precision 

of diameter inside bark estimation than the existing taper Table T136. Bias tests between 

Table F136 and the new equation showed that, the new equation over-predicted inside 

bark diameters for the 20% top portion of the tree stem. The predictions for this part of 

the tree were poorer than those of T136. But, DfirTree predicted inside bark diameters 

for the bottom 80% of the stem with higher precision than Table F136 did. This is of 

great advantage since the bottom portion of the stem is the most utilized and commercially 

valuable part of the tree. The segmented taper function showed an advantage in describing 

the tree shape by allowing changes in basic form to an appropriate equation, yet allowing 

for a continuous and smooth transition across the join points. The overall improvement 

in regional biases in absolute terms were 76% in Canterbury, 96% in Nelson and 60% in 

Southland. 

(b) Taper - Based Taper Equation 

As outlined earlier, it was not possible to impose all compatibility restrictions on the 

parameters of this equation as in the counterpart volume-based system. An exactly 

compatible model could not be obtained without at least one of the parameter estimates not 

being significantly different from zero. Partial restriction of the parameters (as explained 

in chapter 4 section 4.2.3) resulted in approximately 98% compatibility. This equation 
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could in future be tried in another set of data or species to see if full compatibility could 

be achieved. 

6.2.2.2 Utility of New Taper Function 

The stem taper equations for Douglas fir in New Zealand have utilized a full polynomial 

approach as shown in equation 6.1. 

(6.1) 

The equations (F136, F226 and F228) have produced good results, but over-prediction 

of diameters in the top 20% of large trees has also been reported (Goulding and Murray, 

1976). These equations can be integrated then rearranged as shown in 6.5 to predict 

sectional volume (vsm) along the stem at two given height limits. Merchantable volume 

for section 1, vm1 , can be obtained by substituting the value of z in the equation as 

( h - h' / h) or (l / h ), as defined earlier, even without the need for top diameters ( d') as 

demonstrated here below. Volume for section 1, (vm1), is predicted by 

(6.2) 

and for section 2, ( Vm2), as 

(6.3) 

Thus, the volume between the two sections above, ( vm1 and vm2), is obtained subtracting 

6.2 from 6.3, assuming that z2 is larger than z1• 

Vsm = Vm2 - Vml (6.4) 
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which can be evaluated as equation 6.5. 

_ [/31( 2 2) /32( 3 3) f3n ( (n+l) (n+l))] V sm - V - Z2 - Z1 + -3 Z2 - Z1 + ... + ( ) Z2 - Z1 
3 n+l 

(6.5) 

Due to the nature of equation 6.1, it is not possible to solve and predict sectional volumes 

at two given top diameter limits d~ , and d;. 

DfirTree adapts a quadratic segmented polynomial taper equation 6.6 (all variables and 

coefficients as defined before). 

(6.6) 

This equation can also be integrated and rearranged to obtain an expression for sectional 

volume between two height limits in a similar method as in full polynomial taper equations. 

Volume for section 1, (vm1), is predicted by 

and volume for section 2, ( vm2), as 

(6.8) 

Thus, the volume of the section between z1 and z2, Vsm, is obtained by applying equation 

6.4, which evaluates to 6.9 

Vsm = v[(~1)(z~- z{) + (~2)(z~- zi) + (d:3)((z2 - a1)3I1 

-(z1 - a1)3I1) + (d:4)((z2 - a2)3I2 - (z1 - a2)3I2)] (6.9) 

DfirTree also produces an added capability, being able to derive and solve for an expression 

for computing sectional volume at two given diameter limits more easily than has been 
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possible previously. McClure and Czaplewsk (1986) have applied the same technique but 

theirs involved 5 parameters while here it is demonstrated for six parameters. Given two 

top diameters, d~ and d; , z1 and z2 can be solved by applying the general solution for 

quadratic equations as illustrated below. 

(-B ± v(B2 - 4AC)) 
z = ---~-----

2A 
(6.10) 

Only the non negative values are considered in the solution of the above equation 

(0 <= z <= 1.0), and the coefficients can be equated such that 

B = /32 - 2d( a1/33l1 + a2/34J2) 

d'2 I<h 
C = d(a~/33]1 + a~/34l2) - --

v 

(6.11) 

(6.12) 

(6.13) 

After the solution for z has been found, the procedure for solving for sectional volume be­

tween two given top diameters is the same as that shown in equation 6.9. The methodology 

is applicable to both taper based and volume based taper functions. 

Determination of sectional volume between two diameter limits is often necessary in allo­

cating wood by assortments, rather than having merchantability limits according to height 

classes, DfirTree provides a flexibility which is more appealing because the assortments 

can be set according to top diameter limits; for example, peeler logs, saw logs and pulp 

wood, are more meaningful if top diameters are also specified. This capability is not 

feasible in higher orders polynomial taper equations of the form shown in 6.1 because of 

the high powers that need to be solved. 
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6.2.3 Net Basal Area Projection Equation 

6.2.3.1 Use of Dummy Variables 

Before development of DfirStand, the tendency was to develop models for small popula­

tions or at least models that give average yield values for basal area/ha and volume/ha, 

for an entire region. DfirStand provides an alternative approach, by using the pooled data 

while at the same time providing the capability of estimating yields for specific regions 

and even for a locality. The approach adopted has used dummy variables to predict 

the asymptote of basal area/ha for regions (K1 , I<2 and K3 for Nelson, Southland and 

Westland respectively), while altitude contributed to levelling the asymptotes for different 

localities within regions. The advantages that accrue by using this approach are set out 

below. 

(1) Greater local sensitivity is provided. 

(2) The methodology could well be extended to cater for further stratification 

and more refined crop typing. 

(3) A better understanding of the underlying nature of growth projection 

and yield forecasts is obtained. 

This approach has recognised that there are existing differences in basal area/ha production 

in Canterbury, Nelson, Southland and Westland regions. 
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6.2.3.2 Substitution of Altitude for Site Index 

This study has shown that site index as a variable is not a good indicator of basal area 

production for Douglas fir grown in South Island. It has been shown in this study that, 

altitude can substitute for site index, and that increasing altitude above sea level in metres 

has a negative effect on basal area/ha production, which is biologically sensible. Site 

index, however, did not contribute positively but suggested that higher site indices have 

a lower basal area/ha as asymptote, not an easily reconcilable result. On the other hand, 

stem survival/ha, could not be related readily to altitude directly, but a higher site index 

provided a statistically significant lower level of asymptote. 

6.2.3.3 Reference to Thinning Age 

The basal area projection equation includes age of thinning as a component of the thinning 

index; thus, basal area/ha development depends on the kind of thinning and the time elapsed 

since the last thinning. Because the equation is also path invariant, it provides managers 

with a tool to simulate yield according to different thinning regimes and ages of thinning 

more realistically. 

6.3 Possible Refinements to DfirTree and DfirStand 

6.3.1 DfirTree 

(1) Further improvement in the stem volume equation may be needed for small dbh 

classes ( <15 cm), if predictions for these small size classes are considered important. 
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(2) Not enough information about the silvicultural history of trees sampled for stem 

volume and taper analysis (e.g pruning, disease and thinning) was available for 

analysis. Such information could be vital in reviewing and refining the stem volume 

and taper equations through, for example, inclusion of additional variables such as 

age, thinning history and other such variables. 

(3) Due to the small number of sectional measurements in Nelson, the stem taper and 

volume equations for that region may need to be revised further as more sectional 

measurements become available. 

6.3.2 DfirStand 

(1) The differences in basal area/ha and yield in Canterbury, Nelson Southland and 

Westland need to be further evaluated in terms of diseases, soil factors, frost burns 

and other climatic factors, data which again was lacking for the analysis. 

(2) As site index proved to be of less relevance in yield prediction in all regions, it 

would appear that alternatives such as altitude and similar site variables should be 

further investigated. The potential is apparent from this study and, continuance 

could confer a greater understanding of how basal area growth is influenced. 

(3) Further data from Westland are needed, especially to revise the net basal area/ha 

equation, if forecasts for that region are to be as reliable as elsewhere in the South 

Island. 

(4) The success of applying a thinning index was small, probably because it is less 

precisely determined than the other predictor variables. Numerous researchers have 
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found the same, with whatever index they have defined. In future more research is 

needed in this area. 

6.4 Recommendations 

6.4.1 Applicability of Equations 

The stem volume and taper equations apply to Douglas fir grown in Canterbury, Nelson and 

Southland (see appendix A.1 ), but other regional breakdowns could also be examined. The 

stand volume/ha equations apply to Canterbury, Nelson and Southland but they too could 

be further disaggregated. The age range of 5 to 78 years is very wide, but could be further 

be strengthened for Westland. Users wishing to employ the models to make production 

forecasts for Douglas fir plantations should collect local site and crop production data to 

allow further independent verification. 



Chapter 7 

Summary and Conclusions 

This study has shown that it is possible to derive precise tree volume equations, stem 

taper equations and stand growth functions for Pseudotsuga menziesii (Mirbel, Franco) 

that are representative of crops located throughout the South Island of New Zealand. The 

equations are not overall averages, but ones which can be disaggregated through using 

dummy and other variables to reflect locality variation. Using standard IUFRO notation 

and the definitions adopted earlier, the best fitting equations selected were as summarized 

in the following sub - sections. 

203 
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7.1 Stem Volume and Taper Equations (DfirTree) 

7.1.1 Stem Volume Equation 

A modified Schumacher tree volume equation fitted the tree volume data best. 

(7.1) 

The stern volume equation contained two dummy variables, one for Nelson anµ another 

one for Southland while Canterbury was represented by default. Heterogeneity of the 

variance of stern volume was counteracted by a weight, w, shown in equation 7.2. 

1 
w = d2h (7.2) 

The equation has a high precision , while the minimum and maximum residuals range 

from -0.17 and 0.20 m3 respectively. The weighting reduced the total sum of squares by 

about 45%, after which a further 5% reduction in ESS was realized through the inclusion 

of dummy variables, but, a greater benefit was a better balance in the distribution of 

residuals by region when compared to a similar equation without dummy variables. 

7.1.2 Stem Taper Equations 

Stern taper was found to be best described with a segmented polynomial of order 2 with 

two join points. 

(7.3) 
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This algebraically compatible (volume based) segmented taper equation combined well 

with the Schumacher's tree volume equation 7.1. No further locality representation in 

addition to the tree volume characterization was needed. The equation has a standard 

deviation of Qf ±0.18 cm for the predicted diameter inside bark. The maximum and 

minimum biases in predicting mean diameter inside bark for all the data are 0.99 and 

-1.0 cm respectively. Compared to the segmented taper equation devised by Cao et 

al. (1980) which consists of five parameters, the equation form used here consisting 

of six parameters, provided a greater flexibility to constrain the parameters to obtain 

compatible volume estimates. This equation also incorporated at the join points, diameter 

at breast height over bark, d (as was adopted by Candy, 1989) which improved the fit 

by controlling predictions of the butt swell. The necessity for an order three polynomial 

segmented model, even for small trees with little or no butt swell for which a two segment 

model without butt swell might be considered adequate, was clearly apparent when d was 

excluded as a variable. 

The full polynomial taper equation suggested by Goulding and Murray (1976), has some­

times led to inclusion of high powers of a predicting variable (e.g. polynomials of order 

31 in Katz andDunnigham, 1981 and order 41 in Gordon, 1983) in attempting to describe 

the butt swell, but these high powers have no biological relevance and seem unnecessary 

with the present solution. The adoption of such high order polynomial taper equations also 

fails to allow the user to derive merchantable height at a specified inside bark diameter, 

and hence merchantable volume between two specified inside bark diameters, without un­

due complexity. This disadvantage is also overcome through the adoption of the simpler 

quadratic formulation in the segmented equation proposed here. 
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Although there was slightly more bias in diameter near the tip of the tree as a consequence 

of forcing compatibility than without such restriction, the trade off was a substantial gain 

in precision in diameter in the more commercially valuable two lower segments of the 

stem. Stand variables such as site index and management effects such as thinning, pruning 

etcetera could not be evaluated, because of a lack of adequate information. Their indirect 

effects, however, could well be represented reasonably through the inclusion of d. This 

volume based system of volume and compatible taper equations is shown to generate 

consistent volume estimates for specified merchantability limits. 

This study has also recommended a methodology for analysis and derivation of compatible 

taper - based systems for estimating stem volume and taper, based on a similar approach, 

but, instead of having v estimated from a volume equation, it is substituted by a constant 

form factor equation, as shown in equation 7.4. 

(7.4) 

The compatible taper based taper equation is of the form set out in equation 7.5. 

(7.5) 

where f is the form factor estimated simultaneously with other parameters and individ­

ually for each region. This equation is empirically appealing because it models both the 

stem volume and taper at the same time. Moreover, inclusion of separate values of f , 

namely f 1 , h and h , can reflect regional stem taper characteristics, which eventually 

affect the stem volume, and are thus analogous to the regional dummy variables used in 

the volume based system. This equation system could not be made exactly compatible as 

was the case for the volume based one, but the consequences of this inability are small. 
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Nevertheless, the same methodology can be used to derive the parameter estimates for 

other sets of data and species. 

7 .2 DfirStand 

7.2.1 Mean Top Height Equation 

A general mean top height of Schumacher's projection equation 7.6 was found to fit the 

data best for the entire of South Island without the need for local dummy variables. 

(o+{JxAL)(},-;,) 
h(100,2) = h(100,1)e 1 2 (7.6) 

Altitude (AL), however, was found to be a variable that set the overall asymptotic value 

for the equation and which adequately represented differences of site quality from one 

locality to another. For every 100 m rise in altitude, the asymptote was lowered by about 

2%, which gave rise to an anamorphic series of site index curves that were altitude based. 

Site index, the mean top height at age 40 years, can be derived from setting T2=40 years in 

equation 7 .6. The level of precision achieved by this equation is the best so far available 

for Douglas fir grown in New Z'.ealand, with the RMS value of 0.573 and the standard 

error of the mean being ±2.6%. The extreme values of residuals were -1.49 and 1.48 m 

for the minimum and maximum respectively. 

7.2.2 Net Basal Area/ha Equation 

Equations that include site index have been used extensively in net basal area/ha and 

volume prediction equations (Schumacher, 1939; Clutter, 1963; Pienaar and Shiver, 1985; 
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Bailey and Ware, 1983; Clutter and Jones, 1980; Murphy and Farrar, 1988, et cetera). 

These equations have most often been in the form of a modified Schumacher equation 

such as the one found best in this study and set out in 7.7 below except that in this study 

altitude was a better predictor than site index, 

(Il._) T 
G _ G T2 (o+/3S){l-(/ )) 

2 - 1 e 2 (7.7) 

where a represent the asymptote, f3 is a coefficient and S is site index. Equations such as 

this have either been general averages for, or specific to a prescribed population. In this 

study a deeper analysis was conducted to explore the existence of local variations through 

including also dummy variables for the population of Douglas fir in the South Island of 

New Zealand. The form of equation finally found to be most appropriate in this study was 

7.8 below, 

(7.8) 

where Xt is the thinning index, defined in this study as the ratio of quadratic mean 

diameter of trees removed in thinning to quadratic mean diameter of the stand before 

thinning. There was a 26.7% improvement in the error sum of squares by including 

the dummy variables. The equation has higher precision than existing ones; minimum 

and maximum residuals being -3.98 and 3.75 m 2 /ha respectively. The stand net basal 

area/ha equation accounted for most of the local variations that existed, while the regional 

dummy variables and altitude in the equation determined the asymptote separately for 

each locality, thus providing what is referred to here as local adaptation. The variable site 

index, which has been traditionally adopted in assisting to predict growth and yield, did 

not contribute effectively to asymptotic growth because of its relatively weak interaction 

with altitude, leaving altitude alone to be a dominant predicting factor. The thinning index 
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(Xt defined above) was imposed in the basal area/ha equation, so that it was possible to 

simulate the response of growth with respect to the kind of thinning and the time elapsed 

since last thinning. Despite the addition of all these adaptations, the equation preserved 

the basic growth modelling requirements for consistency and path invariance. 

7.2.3 Stand Volume Equation 

Stand volume relationships were derived from sample plot measurements of basal area/ha 

and mean top height together with revised tree volume equations. The combined variable 

equation 7 .9 was found to conform best with the data. 

V = aGf3 h(ioo) (7.9) 

Heterogeneity in variance of stand volume was counteracted with a weight, w, shown in 

equation 7 .10. 

1 
w=---

G2h(100) 
(7.10) 

The minimum and maximum residual in predicting stand volume/ha were -45.5 and 47 .9 

m3 / ha respectively. High precision for predicting volume/ha was achieved. 

7 .2.4 Stem Survival/ha Equation 

A modified Gompertz function shown below in 7 .11 fitted the mortality data best. 

(7.11) 

There were no significant differences in mortality trends among regions, but the values 

of asymptotes were clearly related to site indices. Trees on stands with higher site 
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indices tended to suffer more mortality, which is biologically consistent with other laws 

of growth, namely that trees grow faster on sites of higher site quality until they compete 

for supportive resources. The reliability of predicting regular mortality is within ±2.8% 

of the standard error of the predicted mean stocking. The maximum residual in predicting 

mortality is 99 stems/ha, the minimum being -95 stems/ha. 

Forecasting growth and yield over a large area through use of general sets of equations 

that can be disaggregated is intuitively appealing. It makes good use of all the data 

and avoids the endless and unrealistic demands for very specialized models, leading to 

proliferation of models, sometimes for even very small populations. The use of dummy 

variables where appropriate was examined in terms of their biological significance, and 

as a potential methodology for characterizing locality adaptations, if other forms of pre­

dictor variables were insufficiently sensitive. This approach was found to be eminently 

satisfactory, especially because of (1) overall minimization of the error sum of squares, 

though there may not be large differences between regional outputs, and (2) a balanced 

distribution of residuals. Sensitivity analysis of behaviour in relation to local factors, 

individually and their interactions, was also helpful in explaining biological variability. 

The applicability of this generalized approach to growth modelling with the ability to 

disaggregate, demonstrated that traditional yield table concepts can be enhanced further 

today through use of modern technological capabilities which allow the acquisition, stor­

age, processing and communication of information in a much more elegant form than has 

been possible in the past. 
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Appendix A 

Data Summary 

A.1 Sectional Measurement Data by Forests 

Forest Number of Trees sampled 

NELSON REGION 

Golden Downs 82 
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Forest Number of trees Sampled 

CANTERBURY REGION 

Ashley 264 

Albury Park 12 

Darfield 11 

Hamner 39 

Holme Station 9 

Homebush 9 

Kaiwara Station 2 

Methven 1 

Mayfield 4 

Peel 7 

Pusey Station 4 

Raincliff 7 

S.P.B Centennial block 9 

Winscale 6 

Total 384 
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Forest Number of Trees Sampled 

SOUTHLAND REGION 

Berwick 11 

Conical Hill 21 

Dunedin City Council 7 

Dusky 4 

Herbert 3 

Naseby 11 

Longwood 59 

Pebby Hills 10 

Dusky 5 

Tapanui 20 

Total 175 

A.2 Schedule of Permanent Sample Plots 

Forest Number of Permanent Sample Plots 

CANTERBURY 

Ashley 33 

Geraldine 7 

Hamner 20 

Omihi 3 

Total 65 
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Forest Number of Permanent Sample Plots 

NELSON 

Golden Downs 127 

Wairau 1 

Rai Valley 7 

Total 135 

Forest Number of Permanent Sample Plots 

SOUTHLAND 

Berwick 15 

Beaumont 1 

Herbert 12 

Hokonui 9 

Naseby 4 

Longwood 28 

Pomohaka 28 

Ranklebum 9 

Silverpeaks 6 

Total 112 



Appendix A. Data Summary 246 

Forest Number of Permanent Sample Plots 

WESTLAND 

Granville 2 

Hochstetter 13 

Mawhera 12 

Mahinapua 4 

Victoria SFP 14 

Total 45 
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Reprint of Whyte, A.G.D., M.J. Temu, and R.C. Woollons. (1992). Improving yield 

forecasting reliability through aggregated modelling. In G.B. Wood and B.J. Turner 

(ed's). Proceedings IUFRO, Integrating Information over Space and Time. Australian 

National University Canberra. Jan 13 - 17, 1992: 81-88. 
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IMPROVING YIELD FORECASTING RELIABILITY THROUGH 

AGGREGATED MODELLING 

A.G.D.Whyte, M.J.Temu & R.C.Woollons, 
School of Forestry, University of Canterbury, 

Christchurch, New Zealand 

SUMMARY 

There has been a tendency in some countries to develop and use growth and yield models that 
are specific to increasingly restricted sub-populations. In New Zealand, there are currently 
about 16 models in use for one _spec::je~,_raqiata p_ine_c!lone, when 20 years ago there were two. 
One way to reduce possible unnecessary proliferation is to fit average curves or functions for 
large populations. This approach, however, may not satisfy the level of sensitivity that is 
considered vital for the intensive plantation management which now exists in New Zealand. 
Another possibility is to provide additional predictor variables which allow users to 
disaggregate general trends so that production forecasts can be tailored to local variations. An 
analysis is presented here to demonstrate the potential of this strategy to reduce the number of 
growth and yield models while still providing adequate local sensitivity. The main advantages 
are: 
(1) a larger data base is available than would eventuate if functions were developed locally or 

even regionally; 

(2) there is better consistency in growth predictions across regions and over time; and 

(3) new plantation areas with no existing growth functions have a better potential to be 
appropriately accommodated. 

Permanent sample plot data pertaining to Douglas fir throughout the whole of the South Island 
of New Zealand have been analysed by way of example to demonstrate the feasibility of 
accounting for local variations in stand height, basal area per hectare, stocking and in tree 
volume and taper functions. 

INTRODUCTION 

This paper sets out to argue the case for a return to the original object of yield forecasting, 
namely to characterise general cumulative growth trends broadly and to cater for later 
disaggregation and adaptation to local conditions if necessary. To some extent this approach 
was forced on early researchers, particularly when only graphical solutions were available, 
because of the limitations of their tools. Today, with an ever increasing computer and 
statistical capability, it is relatively easy to devise a set of growth functions and prepare a 
computer model for individual sub-populations as the need arises. 

In New Zealand today there are 16 existing growth models for radiata pine alone reflecting 
differences mainly in locality. This number does, admittedly, include three pairs of models for 
the same locality (one out of each pair catering for fertilised stands and the other for unfertilised 
stands), but it does not include separation of crops into genetically improved planting stock or 
not, a feature of several other models requiring different functions and completely separate 
paths through the computer programs, so that in effect they too are different models. We 
know, moreover, of at least two other radiata pine growth models that are currently under 
construction in New Zealand, and there could well be others. 
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There are two basic concerns that must be addressed in this regard: 

(1) is such proliferation warranted statistically and biologically? 
(2) even if separation were warranted, is it advisable? 

The answer to the first of these questions is probably no, if prior studies are anything to judge 
from. Until the late 1960's, for example, production forecasting for radiata pine throughout 
New Zealand was conducted with tables derived by Lewis (1954) for unthinned stands and by 
Beekhuis (1966) for thinned stands. The only part of the prediction system that differed from 
locality to locality was for the thinned stands model, in which regional height on age and stand 
volume functions could be substituted for the national average ones. Curiously, predictions of 
gross and net basal area per hectare growth from the unthinned model have been found to be 
almost exactly the same as from the thinned one between any two times of thinning (School of 
Forestry, University of Canterbury, unpublished student exercises). Garcia (1990), moreover, 
inferred from an analysis of a very large database that choice of stocking regime was likely to 
be more important than locality in influencing final yield. Furthermore, there has been 
widespread adoption of a Central North Island model (KGM3) to represent growth of radiata 
pine from the far North to the deep South of New Zealand in preference to local regional 
equations, because the former has been found to mirror the actual yields of certain stocking 
regimes better than the latter. · 

The second question is, in our opinion, probably the more crucial one, because it raises all sorts 
of impracticalities and imponderables. For example, should a production forecaster change 
growth models from time to time, as apparently more reliable ones materialise? Should that 
forecaster calibrate the full range of all mcxiel options against actual realisations? How can one 
be sure that what appears to be best locally based on prior monitoring, will remain so in the . 
future? If a change is made in the growth model, should all or just some previous forecasts be 
completely revised to maintain consistency over time? 

There is, however, another slant to the problem. Plantation managers are seeking to make 
decisions with increasing sensitivity in regard to the cropping regimes to adopt. The growth 
models they resort to could well provide them with illusory accuracy and sometimes misleading 
predictive capability. The whole estimating process is further confused by the confounding 
use of tree or stand volume functions that have historically become part and parcel of the 
computation of plot volumes that subsequently became basic data inputs used to derive growth 
model predictions of volume per hectare. Again, one needs to examine carefully whether or 
not all previously determined plot volumes should be revised when apparently better fitting 
basic volume functions materialise from time to time. 

A more satisfactory solution is to develop crop growth functions and also stem taper and 
volume functions which use predictor variables that help characterise not only past but which 
could also represent likely future variability. If that objective can be achieved, the problem of 
choice of model to reflect variation in space and time consistently would largely be overcome. 
The following case study indicates the potential there might be to aspire to achieve such a goal. 

DOUGLAS FIR CASE STUDY 

Investigations have been carried out with a large data-base of Douglas fir permanent sample plot 
measurements from all parts of the South Island of New Zealand for a post-graduate research 
study by the second-named author. Altogether, 368 permanent sample plots of between 0.02 
and 0.04 ha and 2137 sets of measurements were used in the analysis. A number of site 
variables such as altitude, latitude, distance from the sea, annual rainfall, soil type, and so on 
were also considered as possible variables to explain regional growth variation. As altitude 
and locality were later found to be the most promising predictors, a breakdown of plots by 
region, altitude and age is shown in Table 1. 
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Table 1 Plot frequency by locality, altitude and age 

Region Altitude Age Range No. of Total No. of 
(m - asl) (years) Plots Measurements 

Nelson 0- 200 12 - 29 3 10 
201 - 400 15 - 54 63 472 
401 - 600 8 - 58 70 570 
601 - 800 25 - 36 3 27 

-----------------------------------------------------------------
Canterbury 0- 200 

201 - 400 
401 - 600 
601 - 800 

28 - 47 
13 - 61 
26-40 

1 - 12 

10 
43 

6 
4 

47 
224 

24 
12 

- - - - - - - - - - - - - - - - - - - - - - ~ - - --- - ..; - - - - - - - - :.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Southland 

Westland 

Total 

0-200 
201 - 400 
401 - 600 

0- 200 
201 - 400 

22- 65 
17 - 78 
13 - 64 

12 - 59 
15 - 54 

59 
43 
13 

18 
27 

368 

261 
200 

12 

86 
183 

2137 

The data also cover a wide range of growing conditions, with annual rainfalls ranging rrom 500 
to 5600 mm, mean annual temperatures from 10°C to 13°C, low to very high soil fertility, all of 
which factors individually and in various combinations could lead to greatly differing•Jevels of 
crop productivity. Analysis of crop production data were conducted with a full knowledge of 
these sorts of environmental variable for all plots. 

This region was also chosen because another Douglas fir growth model had just been 
constructed for it, which differs from the one reported here in that it consists of production 
functions that represent averages throughout the whole of the South Island. While we have 
full knowledge of its predictive capability and can compare results from it with our own, it is 
not possible to quote these comparisons directly here, because it is expressly forbidden to do so 
by the Research Modelling Cooperative that commissioned that other study. We can only infer 
broadly and indirectly, therefore, what such comparisons might reveal. 

Stand Height Growth 

Polymorphic and anamorphic forms of the Schumacher, Chapman-Richards, Gompertz, 
Hossfeld, Levakovic and Weibull functions were fitted to the data. The mean top height 
equation found to fit best was a form of the Schumacher equation (see Schumacher, 1939), 

(1) 

where h100, i represents mean top height at age Ti and ~1, ~2 and ~3 are coefficients 
estimated by non-linear least-squares and altitude is height above sea level in m. 

Site index, the mean top height of Douglas fir at age 40 years, is derived by setting T2 = 40 in 
equation (1 ). 



Comparison of equations was based mainly on various statistical tests of the model residuals by 
region. A single equation for all localities was found to be more precise and with no regional 
bias in the residual patterns, compared with fitting equations by individual regions or large 
forest aggregations on their own. Altitude controlled not only the level of the asymptote but 
also appeared to characterise rufferences in site quality very well from one locality to another. 

Indeed, the precision achieved in this overall equation is better than in any other existing 
equation known to exist for this whole population or subset of it. The residuals about the 
predicted values never exceed 1.50 m. Latitude, distance from the sea and rainfall variables 
were also tested, but did not appear to contribute to any real predictive ability and so were 
ruscarded. Apparently, the height/age curves are wholly anamorphic with respect to altitude 
and so it is possible to be reasonably confident of predicting mean top height of Douglas fir at 
any age (or its site index, if such a measure has any utility) anywhere in the South Island, given 
the crop's starting height above age 10 and altitude within the range 50 to 750 m above sea 
level. 

Net Basal Area per Hectare Projection 

Several environmental, crop regime and dummy variables were examined within the framework 
of various functional forms of basal area projection equation. Again a modified Schumacher 
proved best and the inclusion of altitude improved the fit considerably. The addition of a 
thinning index and dummy regional variables also had a major impact on predictability. The 
final form found most appropriate was: 

where Gi = net basal area/ha at age Ti 
T t = age of thinning 
K1, K2, K3 represent dummy variables for the Nelson, Southland and Westland 

regions respectively, else Canterbury 

~i are coefficients estimated by non-linear least-squares 
Xt, thinning index, 

= (l _ quadratic mean dbhob of trees removed in thinning ) 
quadratic mean dbhob of all trees just before thinning . 

(2) 

When an average Schumacher fit was made to the data (i.e. without the three dummy variables 
and Xt) the residuals extended ±14 m2/ha about zero, whereas equation (2) above with its 
adrutional explanatory and locality variables was able to contain them all within ± 2.9 m2/ha 
and 99 per cent of them within± 2.2 m2/ha. As can be seen from Table 2, precision for the 
individual regional equations was no better or even poorer than for the overall equation with 
dummy variables for region. There were also no apparent regional biases in basal area 
projection with the overall equation, whereas there were with the average one. The coefficients 
in the inruvidual regional equations were less precise than the corresponding overall ones, and 
some were not statistically significant. The levels of improvement over an average fit and the 
absolute precision attained per se in the overall equation provide a level of sensitivity that 
managers should be relatively content to work with. 
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Table 2 Regional and Overall Basal Area Growth Equation Statistics 

Region 

~o 

Canterbury 0.976 
Nelson 1.084 
Southland 1.076 
Westland 1.088 

Average 1 1. 05 8 

Overa112 1.059 

1 no dummy variables 

~1 

5.222 
5.254 
5.562 
5.619 

5.576 

5.272 

2 with locality dummy variables 

~2 

Coefficients 

~3 

0.064 0.285 

0.000 25 
-0.000 29 
-0.000 32 
-0.000 90 

~6 

0.201 
0.116 
0.193 
0.148 

-0.000 78 0.168 

0.312 -0.000 30 0.169 

RMS 

1.550 
1.191 
1.931 
1.076 

1.633 

1.398 

A common justification for the proliferation of models is that localities represent different 
growing conditions that lead to different site indices and different basal area growth trajectories. 
Several earlier research studies, therefore, have used site index as an independent variable with 
which to predict future basal area: e.g. Schumacher (1939), Clutter (1963), Bailey & Ware 
(1983), Murphy & Farrar (1988). Some of these also found that the Schumacher functional 
form proved best, generally 

(3) 

Our study has shown that altitude was a much more discerning predictor variable than site index 
and completely subsumed any impact that site index might have on predictions. Equation (2), 
even without the Xt variable, was clearly superior to (3). For any similar stocking regime, the 
basal area growth trends for single regions were reasonably parallel. If they had not been, then 
there might have been some justification for modelling regions separately, but that was not the 
case for this population; hence, it seemed better to model basal area growth overall. 

The necessity for dummy variables to reflect different basal area growth trajectories for each of 
the four main regions suggests that there is an opportunity to find better environmental variables 
to explain them: the use of dummy variables meanwhile is an acceptable expedient. The 
standard errors for their coefficients were of the order of± 3.5 per cent, precise enough to be 
categorical about confirming locality adaptations for stand basal area trends. 

The addition of the thinning index, Xr, had a major impact on predicting future basal area per 
hectare, thus confirming the observations by Garcfa (1990) already mentioned. For intensively 
managed plantations in New Zealand, there is usually inventory information about basal area 
and stocking per hectare before thinning to allow Xt to be derived easily and routinely. While 
stocking density regimes for radiata pine in New Zealand are often specified only in terms of 
numbers of stems/ha, they are usually done in terms of basal area/ha for Douglas fir. The 
addition of the last term in equation (2), incidentally, did not contravene the important 
properties of consistency and path invariance that such growth models should possess, 
although it is not readily apparent at first glance and without some rearrangement of the last 
term. 

~ ,: _, 
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Mortality 

A modified Gompertz function was found to fit stocking survival best, with site index featuri 
as an explanatory environmental variable. · 

N2 = N1 exp(~1(T/ - T/)) + (~o + ~2 site index)(l - exp (~1(Ti2 -T/))) 

where Ni= no. of live stems/ha at age Ti 

l3i are non-linear regression coefficients 

No significant differences in mortality patterns were evident among regions, but the asymptc 
values were clearly related to site index: crops on higher site indices tended to suffer mr 
mortality than on lower ones. As always, the mortality function was the weakest link in ; 
whole set of functions, but residuals for equation ( 4) ranged between ± 30 stems/ha, wh: 
without the site index term, it was only within 200 stems/ha in 95 per cent of plots but went 
high as 400/ha at the very extreme. In this case, the addition of site index was enough 
sharpen the fit for all South Island sites considerably. Restricting the fits to individual regic 
resulted again in considerable loss of precision (see Temu, 1992), largely because of a smal 
range of site index in each sub-set of the data. 

Stem Volume and Taper 

A preliminary analysis of volume/ha was compromised by there having been a single taper < 
volume equation used in the sample plot data-processing system for calculating plot volun 
throughout the whole South Island. Casual observations and inferences that can be dra 
from considering equations (1) and (2) would suggest that this assumption was inappropri~ 
Sectional measurements used to derive the present tree volume and taper equations w. 
supplemented with additional measurements, then analysed further for regional variati 
There were about 600 trees altogether and 7000 measurements of diameter and height in 
analysis. Volume was found to be best predicted from 

where v = volume inside bark 
d = diameter at breast height outside bark 
h = total height 

~i are non-linear least-squares regression coefficients 
K1 and K2 represent dummy variables for Nelson and Southland respectively, else 

Canterbury or Westland 

The taper equation found best was a segmented polynomial function with 2 join poir 
compatible with (5) above, 

where Z = (h - h' )/h 
h' = height at an intermediate point in the stem 
d' = diameterinside bark at h' 
Ii= 1 if Z ~ ai, or else= 0, for i=l,2 
a1 and a2 are join points 

~i are linear least-squares regression coefficients 

The regional differences in the volume equation were sufficient, because of the volume 
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taper compatibility constraints, to represent regional differences in taper· thus locality dumm 
variables also in the taper equation were found to be redundant. ' ' y 

Residuals for the volume equation lay within ±0.20 m3 while all predicted upper stem 
diameter~ were with~n ± ~O mm of the actual values an<;l ~ithin ± 7 mm for 99 per cent of the 
obser_vauons. ~gam, this level of accuracy and prec:s10n _was not achieved from regional 
equat10ns on the1r own nor from the aggregate populat10n without any allowance for locality 
(see Temu, 1992). 

It has not yet been possible at time of writing to assess the benefits of using the revised volume 
and taper system for predicting plot volumes and the consequences of incorporating these 
revised estimates on the stand volume function that would be subsequently incorporated in the 
growth model. Preliminary indications are that they will be considerable. 

CONCLUSIONS 

This case study has shown that more reliable forecasting of growth and yield for large 
populations, using pooled data and environmental or dummy variables to provide locality 
adaptations that provide realistic disaggregations, is entirely feasible. It makes good use of all 
relevant data and avoids the limited perspective and inadequate coverage that is a feature of 
modelling restricted sub-populations. There is still a need for further research to find 
biologically sensible variables rather than locality dummy variables, though the precision of the 
latter is surprisingly good. The approach demonstrated and recommended here should lead to 
better consistency in yield forecasting over space and time than a strategy based on proliferation 
of available models. While the case study was for Douglas fir in the South Island of New 
Zealand, evidence is also now emerging which indicates that there is at least as good, if not 
better potential with this recommended approach to model the growth of radiata pine 
successfully. 
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Appendix C 

Diskette - Data Files 

The attached diskette consist of original data files, SAS files used to develop the equations 

and their outputs. The names of these files and variables are as described in chapters 3 

and 4, and elsewhere in this thesis. 

The files are compressed into an executable file called TEMU.EXE. To decompress the 

files create a working directory and then type TEMU at prompt, the files will be copied 

into that directory. 
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AppendixD 

Diskette - Yield Simulation model 

The yield simulation model consists of two files namely, DFIRTREE.EXE and 

DFIRSTAN.EXE. 

DFIRTREE.EXE is a simulation model for the volume based compatible taper estimation 

system for Canterbury, Nelson and Southland regions (DfirTree), to begin simulation exit 

to DOS and type DFIRTREE. 

DFIRSTAN.EXE is a simulation model for the whole stand growth and yield model 

for Douglas fir in Canterbury, Nelson, Southland and Westland (DfirStand), to begin 

simulation exit to DOS and type DFIRSTAN. 
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