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Abstract

Preparing forecasts of assorted yields for forest crops is fundamental to managing forests.
Studies of growth and yield in the form of systems of prediction equations provide
managers with information on instantaneous, periodic, and whole stand growth and yield
information, which provide a first means of regulating yield from forests. The availability
of appropriate compatible stem volume and taper equations provides further quantitative
information about resources in terms of merchantable lengths, end diameters and volumes
of particular sections of the stem of the tree necessary to determine the mix of products.
This thesis describes in particular how a system for forecasting assorted yields of Douglas

fir in the South Island of New Zealand was developed.

The system comprises two models, namely DfirTree and DfirStand.

DfirTree is a compatible tree volume and taper prediction system, developed
to cater for Douglas fir trees grown throughout the South Island, in Canterbury,
Nelson and Southland. The volume - taper prediction system is based on the
principle of splines (segmented polynomials) and provides two approaches
with which to determine volumes of any part of the stem: (i) volume based

and (ii) taper based.



i

DfirStand is a simultaneous growth and yield model for simulating growth
of Douglas fir in all four regions of the South Island, namely Canterbury,
Nelson, Southland and Westland. DfirStand is developed through a state -
space approach, the variables used to describe the state of the system at any
time being mean top height, net stand basal area/ha, stocking, thinning history

and local environment.

Both components of the overall yield prediction system show how regional attributes can
be aggregated and modelled in a more realistic manner through the use of dummy variables
to explain locality adaptation(s) where applicable. Rather than having a proliferation of
models or an unwieldy quantity of adjustment factors, this system envisages a return to the
traditional general volume, taper and yield prediction systems that can be developed with
modern technology, ones which utilize the power of user - friendly computer hardware

and software to provide the requisite sensitivity for forecasting assorted yields.
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Chapter 1

Introduction

1.1 Background

Douglas fir (Pseudotsuga _menziesii [Mirbel, Franco]) ranks second to radiata pine (Pinus
radiata [D. Don]) in New Zealand as a plantation tree species from which several do-
mestically consumed wood products are currently derived. There is also a considerable
potential to secure a position in the external market with Douglas fir manufactured prod-
ucts. The species was introduced in New Zealand as a trial plantation crop in 1897
(Kirkland, 1969), but its widespread establishment did not begin until the 1920’s. The
current total establishment is 63 130 hectares, with 28 784 hectares in the South Island

and 34 346 hectares in the North Island (NEFD, 1989).

Douglas fir has good timber qualities, which are at least as good as, or even superior to
those of radiata pine (James and Bunn, 1978). This is especially the case for engineering

purposes (Hellawell, 1978). Nevertheless, the importance of radiata pine as a timber crop
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in New Zealand outweighs that of Douglas fir for two major reasons:

(1) radiata pine has a shorter technical rotation, about 30 years, while Dou-

glas fir has financial rotations of between 50 and 80 years;

(2) Douglas fir plantations were heavily infected with Phaeocryptopus

gaeumannii in the 1960’s, a needle fungal parasite, which led to a signif-
icant decline in growth of the species (Hood and Kershaw, 1973, 1975;

James and Bunn, 1978; Beekhuis, 1978).

However, it remains an important commercial timber species in New Zealand.

There are several volume and taper tables for the species currently in use in New Zealand.
The volume tables are T15 covering the whole of New Zealand, which is now superceded
by T136, T120 for Ashley forest and T228 for Longwood forest. The corresponding
compatible taper tables are F136 for all of New Zealand and F228 for Longwood forest.
All these equations are maintained by the New Zealand Ministry of Forestry. The existing
computerized growth and yield models in use for the species are DFCNIGM (Liu Xiu,
1990) and SIDFIR (Law, 1990), which cater for the Central North Island and the South

Island respectively.

There has been a tendency in many countries (including New Zealand) of prescribing
growth and yield models even for very small populations (Whyte et al., 1992). This
approach to modelling is frequently not justified. This study aims at reversing this trend
by looking at the potential for creating general models that allow for regional or sub -
population (local) adaptations. The study embraces the traditional yield model approach

by prescribing such models to as large populations as possible. The reasons behind such
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a seemingly backward move are:

(1) there are all sorts of dangers through growth and yield model prolifera-
tion;

(2) users are misapplying the existing ones or at least demanding unrealistic
sensitivity;

(3) the ability to incorporate regional and local adaptations provides a means

of forecasting production yield with increased sensitivity.

1.1.1 Objectives of the Study

This study examines the extent to which a precise general growth model can be formulated
for Douglas fir grown in the South Island of New Zealand, that caters for regional and

local adaptations. The detailed objectives of this study, therefore, are to:

(1) study the different patterns of growth of Douglas fir in the South Island of New
Zealand and where necessary to stratify the crop into different growth classes for

modelling them individually;

(2) develop a whole stand growth and yield model with respect to objective (1) above

that caters for variable thinning regimes;

(3) develop associated stem volume and compatible taper equations, volume - based
and taper - based taper equations for Douglas fir in the South Island to provide the

means for catering for log assortments.
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1.1.2 Scope of the Study

The population for the whole stand growth and yield modelling conducted here refers to
Douglas fir grown throughout the South Island of New Zealand. Sectional measurements
for developing the new stem volume and taper equations come from 25 forests in Canter-
bury, Nelson and Southland (see appendix A.1), but no data were available for Westland.
Permanent sample plot data (PSP) available for this study come from 21 forests in the
four regions of the South Island, namely Canterbury, Nelson, Southland and Westland
(see appendix A.2). The data set is such that the various models can be safely applied

only between ages 5 and 78 years, and only for the South Island of New Zealand.

1.2 Notation

Throughout this thesis standard IUFRO notation is adopted. Unless otherwise stated, the

following symbols and definitions apply.

a;, B;, vt regression coefficients;

AL: altitude above mean sea level (m);

d': top diameter inside bark (cm) at height A’ (m) from ground level,;
d: diameter at breast height outside bark (cm);

S EE: standard error of parameter estimate;

ESS: Error sum of squares (residual sum of squares);

f: form factor;

G;: net basal area per hectare at crop age T; (m?/ha);
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h: total tree height from the ground level (m);

h': height above ground somewhere along its length inm ;

h(100,;): mean top height at crop age T; (m),

K aconstant to convert d? in em? to basal area in m?;

{: distance in m from the top of the tree to top diameter d’ (cm) or A — A’}
M S E: mean squared error;

N total number of observations in a population or stocking/ha depending on
context;

N;: number of stems per hectare (stocking) at crop age 7;;

NID(0,0%): normally and independently distributed with mean 0 and constant
variance ¢2;

RN D: random normal deviate;

RM S root mean square;

S site index - mean top height at age 40 years;

T;: age of crop in years for period z;

T;: age of thinning in years;

v: total stem volume of a tree (m3);

v,,: merchantable volume (m?) of a tree stem to specified height;

V;: stand volume per hectare at crop age T; (m3/ha);

z: relative distance from the top of the tree, determined by the following

relationships;
_h=N

h

L
z —_—
h
o?: variance of a population;

s%: variance of a sample;
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Review of Literature

2.1 Modelling in general

A model may be defined as a mathematical or physical system obeying specified condi-
tions, the behaviour of which is used to understand a physical, biological or social system
and to which it is analogous in some way (Ralston and Meek, 1976). The main purpose
of having models is usually to aid in planning and decision making. The term plarnning
model refers to any decision - making aid, ranging in complexity from the toss of a coin

to sophisticated computer based models (Johnson, 1989).

Planning in forestry has evolved with the changing needs, priorities and objectives of both
public and private forest owners. For example, the classical European concept of yield
regulation evolved from the optimal rotation model (Faustmann, 1849), and arose out of
fears of inadequate future supplies of wood. Today, the issues extend beyond just timber

famines and are equally concerned with other benefits that forests can confer. Biomass
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production is a key issue in all of these.

At present the most effective research and analysis technique to represent a system, con-
cept or operation is perhaps through use of a logical mathematical model. A mathematical
model can be regarded as one or more mathematically expressed relationships among
variables which may logically be expected to be obeyed. Generally computers are now
used to analyze and study models because of large computational needs. Many basic phe-
nomena are associated with certain mathematical planning models, examples in forestry
being optimal allocation, replacement of equipment, routing of forest roads, queueing of
logging trucks on a weigh-bridge, sequencing of logging trucks at some landing, predict-
ing occurrence of forest fires, multiple objective decision analysis and many others. The
use of computer technology has made it possible in forestry to create planning models and
successfully apply them for harvest scheduling, fire fighting, tree breeding, log bucking
and resource allocation problems, to mention just a few examples.

Forest planning models can be ranked according to the hierarchical order of Figure 2.1:
tree growth models, stand growth models, forest estate models, national and regional

forest models, global and international forest sector models (Johnson, 1989).

Forest sector planning models are those models developed specifically to incorporate
the multitude of variables involved in examining an entire forest sector, and to indicate
strategic alternatives for that sector. These are classified by their scope (national and
regional, global and international) as suggested in Figure 2.1, as well as by the methodology
they employ to generate alternative strategies (i.e. dynamic simulation, mathematical

programming and econometric spatial equilibrium models).
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Figure 2.1: The Hierarchy of Forest Planning Models [Johnson, 1989}

Log Production &
Tree Growth Models Bucking Models

Single Plant |

Industrial Models

| l

Integrated
Industrial Models

{ Stand Growth Models i

Forest Estate Models

National & Regional National & Regional )
— Development Strategies
Forest Sector Modelling

A

international trade
Global & International flows & development
Forest Sector Modelling —_— p

This thesis focusses specifically on computer based models that belong to tree and stand
growth model categories, addressing the linkages with other kinds of models (in Figure

2.1) wherever applicable.

The following sub - sections describe each of these briefly, while sections 2.2 to 2.4
discuss tree volume, stem taper and stand growth and yield, the aspects most central to

the research reported here.
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2.1.1 Tree and Stand Growth models

One of the earliest forest planning needs, as discussed in the introduction to this chapter,
was for the regulation of forest yields. Predictions of future growth of tree crops are
essential for analyzing and interpreting forest supply capabilities and their sustainable
supply capacities. Models for this purpose can be grouped into those dealing with natural
forests and those dealing with plantations (Clutter et al., 1983), both of which groups are

discussed in detail in section 2.5.

2.1.2 Forest Estate Models

Forest estate models are a modern form of forest working plans, taking advantage of the ca-
pacities of computers (Allison, 1987). Estate models address production of whole forests,
while growth and yield models are restricted to modelling tree, or at most, stand growth. A
forest, however, consists of many different stands, each belonging to its characteristic crop
type (similar accessibility, silviculture, ownership, growth model representation, location,
et cetera). Extending the optimal management strategies for single stands derived from
a stand level growth model to an entire forest is therefore rarely optimal for the forest as
a whole. The need to plan for aggregates of non - uniform forest stands gave rise to the
concept of forest estate modelling. Such models incorporate inputs from relevant growth

models in some form, as well as recognizing other distinguishing stand features.

Examples of forest estate models developed in New Zealand are IFS (Interactive Forest
Simulator, Garcia, 1981), FOLPI (Forestry Oriented Linear Programming Interpreter,

Garcia, 1984a), RMS - 2020 (Resource Maturity Simulator, Allison, 1987), and REGRAM
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(McGuigan, 1992). RMS - 2020 and IFS are both simulation models, which allow the
evaluation of different management alternatives for a given forest. In both, the forest
is described in terms of crop types, while the state of the forest in a given period is
defined by the area and potential yield in each age class within each crop type. For each
period of simulation, areas may be harvested, planted or otherwise treated, using inputs
supplied from growth and yield models. The user specifies the management actions to be
followed each period and can produce a number of reports at the end of the simulation
describing the results of those actions. While simulation models such as these are capable
of finding acceptable management options, there is no guarantee that better alternatives

for increasing the utility of the forest to its owner do not exist.

Linear programming has also been successfully employed to determine forest level man-
agement strategies through an optimization process, which maximizes utility for the forest
owner under a range of constrains. Two basic formulations of this problem have been
recognized (Johnson and Scheurman, 1977), depending on whether the identity of initial
harvesting units is preserved throughout the planning horizon (Model I), or new harvesting
units are created from the area regenerated in each period (Model II). The disadvantage of
Model 11 is the loss of identity of initial harvesting units, rendering less accuracy than can
be obtained from Model 1, although its formulation significantly reduces the number of
decision variables. Both formulations are subject to inadequacy in modelling the range of
detailed silviculture options and management regimes that characterize modern plantation

forestry.

In New Zealand, the major forest level optimization model is FOLPI. FOLPI and IFS are

fully compatible, and same input data files can be used for FOLPI and IFS to generate
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identical reports. FOLPI, IFS and REGRAM use other than Model I or MODEL II

formulations.

2.1.3 Log Production and Bucking Models

Forecasting growth and yield by itself does not provide information about the likely
availability of the assortment of products, that is needed to plan their industrial use. The
output of growth models can be used as inputs to models that predict the stand outturn,
providing long term predictions of the quality, and volume by log sizes. PROD (Goulding
and Shirley, 1979) is one such model. PROD predicts a (diameter at breast height) dbh
distribution and stock table volumes of a mix of log products given the site index, age,
top height, basal area/ha and stocking for each stand according to a simple set of user
defined cutting patterns. The output, estimates of volume, may subsequently form part of
the input to forest estate modelling indicated in previous section. PROD is an integral part
of the silvicultural stand model SILMOD (Whiteside and Sutton, 1983), now replaced
by STANDMOD (Whiteside et al., 1987), used widely in New Zealand for evaluating
different silvicultural regimes for radiata pine. LOGRAD (see Whiteside et al., 1987)
is a further refinement developed by the Conversion Planning Team at FRI - Rotorua,
which transforms the log sizes from PROD into predictions of log grade outturn based on

expected defects, taper, and sweep.

Optimal bucking models have also been developed explicitly for optimizing the cross -
cutting or bucking decision process modelled in PROD. MARVL (A Method for Assessing
Recoverable Volumes by Log Types) by Deadman and Goulding (1979) is one such

model. MARVL is mainly used for analyzing pre - harvest inventory information. AVIS
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(Assessment of Value by Individual Stems) by Threadgill and Twaddle (1985) is an
audit/training system developed for cdmparing actual with optimal cutting patterns and
determining the resulting loss in value for individual stems. Eng et al., (1986) used a
combination of linear and dynamic programming to extend bucking strategies that were
optimal for a year’s harvest throughout the entire forest of Caribbean pine in Fiji so as to

meet market demands.

2.1.4 Single Plant Industrial Models

Numerous single plant models involve simulations of the production process in question.
Models used in New Zealand include GEMS (A General Energy and Material Simulator
for Pulp and Paper Industry) by Edwards et al. (1987), PLYMILL (A Pulp Wood Mill
Simulation) by Ward (1987), and a suite of simulation programs incorporating a linear

program for saw pattern selection by van Wyk and Eng (1987).

2.1.5 Integrated Industrial Models

The vertical integration of several production facilities in a multi - product forest industry
comple)f{ creates many economies of scale and eliminates several transport and processing
costs. Such integration, however, requires enhanced planning, with a company having
many possible sources of raw material, for example. The primary class of integrated
industrial models in use today are log allocation models. The technique used in determin-
ing optimal management strategies in this class of models is mainly linear programming,

sometimes in combination with dynamic programming. The use of log allocation in
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New Zealand was first reported by van Wyk (1983), who developed the programme
ROBUST, (a single period process selection model) LP model at FRI. Developments
made by McGuigan (1984) produced a model LOGRAM essentially a modification of
ROBUST capable of allowing for multiple manufacturing sites and forest allocations. It
has remained a single period process selection model, however, until the development of
REGRAM (McGuigan, 1992). Further research into development of optimal log bucking
and allocation that includes multiple period consideration is currently under investigation

(Ogweno, 1992).

2.1.6 National and Regional Forest Models

In their basic form these models are simply aggregations of the integrated industrial models
within a nation or large region. TAMM (Timber Assessment Market Model) by Adams
and Hynes (1980) is the best known model in this category: it is used by US Forest Service

to assist in the analysis of long term trends in resource use and status.

2.1.7 Global and International Models

These models focus on the prediction of long term development of production, consump-
tion and trade in forest products at international and global level. One such model is
GTM: (Global Trade Model) by Dykstra and Kallio (1986). GTM is a spatial market
equilibrium economic model employing non-linear programming. GTM was developed
by the forestry section of IIASA (International Institute of Applied Systems Analysis).

GTM is an economic multi-period, multi-region model that considers each forest industry
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separately. But, due to its broad global emphasis, GTM does not cater for alternative
forest management options. It incorporates four classes of growing stock, namely large
and small, coniferous and non-coniferous, which are upgraded by simple growth functions

between periods.

Nevertheless, all these models in 2.1.1 to 2.1.7 depend, as shown in their hierarchical
arrangement in Figure 2.1, on having reliable tree volume, stem taper and stand growth

models, which provide the focus for the research reported here in this thesis.

2.2 Tree Yolume Equations

2.2.1 Past Work in Tree Volume Modelling

Models to predict whole stem and merchantable volume up to (i) a given height or (ii)
diameter limit or (iii) diameter to a given height, are required for forest related raw
material analysis and are vital components of growth and yield simulators. Compatible
stem volume and taper equations form a useful class of models to predict these quantities
(Demaerschalk, 1972; Goulding and Murray, 1976; Van Deusen et al., 1982; Byrne and

Reed, 1986; McClure and Czaplewski 1986). Tree volume equations can be classified as

follows.

2.2.1.1 One Dimensional Tree Volume Equations

These utilize only diameter at breast height to predict total stem volume. Local volume

tables and tariff tables fall into this category, the term local being used because such tables
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are very restricted in their applicability because of height and stem taper interactions
which are embedded in the table. Tariff tables provide sets of local volume tables for
particular stands from a large data set, (Jolly, 1951; Hummel, 1955; Hummel et al., 1962;
Turnbull and Hoyer, 1965); Gray, 1966; Carron, 1971. They have been used in Central
Europe in the interests of consistency of estimation and were calibrated regularly against
actual outturn. They were later used in Australia in the early 1950’s, and subsequently in
North America. They are well suited to growth modelling that incorporates a stand table

projection capability.

2.2.1.2 Two Dimensional Tree Volume Equations

These utilize diameter at breast height and total or merchantable height in predicting total
stem or merchantable volume. Examples falling into this category are the combined vari-
able tree volume equation (Spurr, 1952), and various other formulations by Schumacher
and Hall (1933), Gevorkiantz and Olsen (1955), Bennett et al. (1959), Romancier (1961),
Honer (1965), Newham (1967), Brackett (1973), et cetera. Provided that there is reliable
characterization of the average height of each dbhob class, these too are amenable to the

stand table projection approach.

2.2.1.3 Multi - Dimensional Tree Volume Equations

Multi - dimensional tree volume equations are an extension of two dimensional ones: in
addition to diameter at breast height and total or merchantable height, they use form and
sometimes site index as independent variables (Bruce, 1926; Mesavage and Girard, 1946;

Anon, 1948). Volume equations that utilize form as one of the independent variables are
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termed form - class volume tables, but they have become obsolete when it was realized that
establishing diameter form - class relationships was rather elusive and that the variation
of form between species and sites was considerable (Honer,1965). Multi - dimensional
tree volume equations are not amenable to stand table projection unless their dimensions

other than dbh and height are averaged, which then largely negates their adoption.

Perhaps the most important tree volume equation that appears in the literature is the

combined variable equation (Spurr, 1952; Burkhart, 1977),
V= ,31 -+ ﬂzdzh (21)

where v is the tree volume either inside or outside bark, d is diameter at breast height
(usually outside bark) and A is tree height. Comprehensive comparisons of volume
equations have been made by Spurr (1952), Golding and Hall (1961) and Burkhart (1977).
They all concluded that the combined variable equation was the best for their data and could
not be improved by the addition of another variable. Other researchers have, however,
found alternative tree volume equations which are superior for a particular species and
locality (e.g. Newham, 1967; Brackett, 1973; Candy, 1989). Equation forms that can
serve as mathematical models for construction of volume tables or as the basis to develop
other models have been discussed in Husch et al. (1972), Loetsch and Haller (1973),

Clutter et al. (1983), et cetera.

Until the early 1960’s or so, volume equations were constructed independently of taper
equations, and so it was not possible to have a unified system of predicting both total tree
and merchantable volume. Until quite recently, the prediction of merchantable volumes to
varying merchantability limits was usually accomplished by fitting a separate regression

equation for each merchantability limit involved. Thus, for a single tree population,
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different formulae would be involved for predicting merchantable volumes to 10, and 15
cm top diameters inside bark. These have now been replaced by volume ratio equations
which utilize the merchantability limit as an independent variable (Burkhart, 1977; Matney

and Sullivan, 1982a; and many others).

2.2.2 Principles Underlying Construction of Tree Volume equations

Volume tables were first constructed mostly by graphical methods or, at best, with the
harmonized curve method (e.g Chapman and Meyer, 1949). Alignment charts were later
used as a means of graphically portraying and solving an equation or formula. In addition
they were also used in constructing numerical volume tables (Bruce and Schumacher,

1950; Husch, 1963).

The contemporary principles underlying the construction of volume tables have utilized
the same tree variables since the early years of the 19th century, namely dbh, total or
merchantable height and tree form (Husch et al., 1972). Sometimes additional factors
such as mean annual diameter increment d/T" , (Candy, 1989), and site index have been
included. The use of graphical methods and alignments charts have now been replaced
by regression equations, now made easier with computer technology. The elegance and
objectivity of modern statistical computations for fitting equations give them a large
advantage over the other two methods, although many times the results are not necessarily

significantly better (Cunia, 1964).

The development of science and statistics and the advent of electronic computers have now
made such graphical applications obsolete, however, and nowadays regressions are fitted

to sample tree data to produce formulae that explicitly define the relationship between the
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predicted tree volume and predictor variables used. Solutions of such formulae could still,

of course, be presented in tabular or graphical forms.

2.2.3 Problems Associated With Modelling Tree Volume Equations

Even with the use of modern computers and regression analysis, construction of tree
volume equations needs to be done with due consideration of the following major problems

which prevail:

(i) normality of distribution of tree volume (Meyer, 1953),
(ii) homogeneity of variance of tree volume (Cunia, 1964),
(iii) tree sampling process (Cunia, 1964),

(iv) selection of variables and number to be used (Spurr, 1952).

These factors are discussed more fully in the subsections below.

2.2.3.1 Normality of Distribution of Tree Volume

Tree volume for a given dbh is not normally distributed, but is highly skewed. The dbh
distribution of a population or sample of trees could theoretically be normal, but tree
volume for a given dbh class will vary because of the differences in height. Consequently,
this affects the variance of tree volume for a given dbh. In fitting regressions equations
it is common to estimate the parameters for the overall data and not by dbh or height
classes. While this has no great effect on estimation of regression coefficients, it will

affect the standard error of the equation and hence the probability level of the significance
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tests and confidence limits (Meyer, 1953; Cunia, 1964). This problem is usually avoided
by effectively screening the data, according to d®h classes: a tree volume that deviates
much from the rest constitutes an outlier, which needs to be carefully scrutinized and may

have to be removed from the data, as discussed in section 3.3.3.

2.2.3.2 Homogeneity of Variance

Variance of tree volume is usually a function of the quantity d?k. Deviations from the true
"regression function”, induced through the volume of large trees in the sample having
disproportionate effects on the estimation of the least - squares coefficients, need to be
compensated for. One of the earliest methods used to correct for this lack of homogeneity
was the use of logarithmic volume equations (Bruce and Schumacher, 1950; Spurr, 1952;
Meyer, 1953). An important drawback of this approach is that, by taking logarithms, the
estimation about the arithmetic mean is automatically replaced by the geometric mean.
Because the first is always larger than the second, the estimated coefficients are biased,
and so this approach is not to be recommended. An unbiased and better way of correcting
for non - homogeneity of variance is to estimate the regression coefficients by use of
weighted least - squares. Schumacher and Chapman (1954) were the first foresters known
to use this regression technique, (others who followed later include Gedney and Johnson,
1959; Buckman, 1961; Furnival, 1961, Cunia, 1962). One disadvantage of the method of
weighted least - squares regression is that there is no formal general treatment on what
are the best sets of weight to be used in any one particular case. Numerous researchers
have discussed guidelines on appropriate weights (Cunia, 1962, 1964; Moser and Beers
1969; Draper and Smith, 1981; Clutter et al., 1983). Generalisations are probably illusory.

The use of weighted least - squares regression does not solve all problems of valid and
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efficient calculations of tree volume equations. It too has problems associated with it.
Thus, the weight finally chosen is a subjective decision, while the weight itself is simply

an approximation.

2.2.3.3 Tree Sampling Process

An efficient tree volume equation should provide unbiased estimates for each diameter -
height class. It is important that the sample data consist of adequate replication of all
possible diameter - height classes throughout the range in that locality. Some authors
like Gordon (1985) suggest that the selection of sample trees in each diameter - height
class should be proportional to the frequency of occurrence of that class, the aim should
be rather to have a reliable average volume for each diameter - height class that could
be represented. Usually this means an approximately equal number of trees should be

selected from each such class.

2.2.3.4 Selection of Variables and Their Combinations

Selection of variables to enter the equation and how they may be combined in a tree volume
function to accurately predict volume have provided a major problem for researchers for a
long time (Spurr, 1952). It is not always a straight - forward analysis to derive appropriate
direct relationships between tree volume and predictor variables such as d and A .
Empirical evidence has shown that frequently these variables have to be combined in a
variety of different ways to provide reliable equations in different circumstances. There
is no standard procedure: one has simply to examine all the likely combinations of

variables and their interactions. Today, statistical knowledge, regression techniques and
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computer technology have allowed researchers to alleviate the computational tedium that
this computational process involves. Stepwise regression, for instance, can be used to
select variables or combinations of variables that are to enter an equation, but how the
variables are to interact with each other remains a skill of the modeller. In this study, for
example, locality effect was implicitly defined in the tree volume equation through the
use of dummy and other predicting variables while an all - paths sequential routine for

including variables was adopted.

2.3 Taper Equations

2.3.1 Past Work in Taper Modelling

This sub - section reviews the general structure of taper equations and also classifies
the most important taper equations that have appeared in the literature. Taper equations
express the expected stem diameter, either inside or outside bark, as a function of height
above ground level, total tree height, diameter at breast height and sometimes total tree
volume (Demaerschalk, 1972). Taper equations reported in the literature can be divided

into three major groups:

(i) single equations that describe taper
(i1) segmented taper equations

(iii) variable exponent taper equations

These are discussed serially in more detail below.
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2.3.1.1 Single Equations

The most common approach used to describe diameter changes from ground to top
involves a single function of many forms (Hojer, 1903; Behre, 1923; 1927, 1935; Matte,
1949; Osumi, 1959; Kozak and Smith, 1966; Bruce et al., 1968; Kozak et al., 1969,
Demaerschalk, 1971, 1972, 1973b; Bennett and Swindel, 1972; Munro and Demaerschalk,
1974; Clutter, 1980; Goulding and Murray, 1976; Gordon, 1983; Amidon, 1984; Bigin,
1984; Newberry and Burk, 1985; and others). The major weakness of all these models
is the significant bias in estimating diameters close to ground as well as at some other
parts of the tree. A trade - off between accuracy and precision has to be made for any one
equation. The advantages of this approach are that they are easy to fit and usually easy to

integrate for calculation of merchantable volume.

2.3.1.2 Segmented Taper Equations

In this approach more than one curve is used to represent all the various parts of the
stem, and neighbouring ones are joined in such a way that their first derivatives are equal
at the point of intersection (Heijbel, 1928; Ormerod, 1973; Max and Burkhart, 1976;
Demaerschalk and Kozak, 1977; Cao et al., 1980; Martin, 1981; Byrne and Reed, 1986;
McClure and Czaplewski, 1986; Candy, 1989; Whyte et al., 1992). Its advantage is that
the diameters are predicted with less bias at most parts of the stem than by single functions.
The disadvantages are that the parameter estimates are usually very difficult to derive and
the formulae for calculating volume and merchantable height are cumbersome, sometimes

non - existent.
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2.3.1.3 Variable Exponent Taper Equations

This approach uses a single continuous function as described in (i) above, but with a
changing exponent from the ground to compensate for the changing form of the stem
(Hayward, 1987; Kozak, 1988). This kind of equations remain the least popular in
forestry literature because of their complexity. Their level of precision is comparable to

the segmented equation approach.

2.3.2 Integrating Volume and Taper Estimating Systems

Early taper equations developed before Demaerschalk (1971), had one common attribute:
they were developed independently of the corresponding tree volume function. A theory
was later developed early in the 1970’°s which greatly improved the understanding of rela-
tionships that exists between tree volume and taper functions (Demaerschalk, 1971, 1972,
1973b; Munro and Demaerschalk, 1974). In this theory, when taper and volume equa-
tions are treated as one and the same, they are deemed to be compatible (Demaerschalk,
1971, 1972). The accepted definition of compatible equations is : those taper functions
which, when integrated over total tree height, give the same total volume as that given
by a volume equation. There are two basically different techniques which can be used
to obtain compatible systems of taper and volume: one involves fitting a taper equation
on taper data and deriving from it a volume prediction system through integration; the
other is more or less the opposite, in that a volume equation is fitted to the volume data
from which a compatible taper equation is derived. The first is a taper - based system
and the second is volume - based system (Demaerschalk, 1973a). The theory further

proposed that a compatible taper equation should be a polynomial of general form shown
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in equation 2.2. (Munro and Demaerschalk, 1974).

dlZ —

zP (2.2)

where;

d' =top diameter to be predicted;
. v =total tree volume;

z =relative length from the top of the tree to top diameter d;

h—h
h

_t_
z—-h—

K =constant to convert square centimetres to square metres;

p =free parameter.

In this formulation, the polynomial is limited to the order p , and in most cases was not
sufficient to describe the stem taper without bias. It was noted by Goulding and Murray
(1976), that the polynomials of this kind described in equation 2.2 were not flexible enough
to account for the butt swell, which is quite noticeable in large older trees. Goulding and
Murray (1976) extended the theory of Munro and Demaerschalk (1974), therefore, to

allow the polynomial taper function to acquire variable orders as shown in equation 2.3.

v

d? = o (2) (2.3)
where f(z) is a polynomial in z . The coefficients of the polynomial are algebraically
restricted so that consistent volume estimates are derived, just as if a volume equation
was being employed. Such polynomials are usually fitted by conditioned linear or non
linear least - squares regression. The methods used and restrictions on the parameters are

discussed in chapter 4 of this thesis.
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2.3.3 Summary

Tree volume equations are used in forest inventory to calculate total volume of the tree
inside bark, summation of which adds up to total tree volume per hectare. Merchantable
volume/ha to required utilization standards can be obtained by incorporating a compatible
taper equation (Clutter et al., 1983). Taper equations are useful adjuncts to inventory
because they provide (i) predictions of inside bark diameters at any point on the stem; (ii)
estimates of total stem volume; (iii) estimates of merchantable volume and merchantable
height to any top diameter and from any stump height; and (iv) estimates of individual
log volumes. Tree volume and taper equations are an integral part of any detailed yield

forecasting undertaking.

Because of the properties mentioned above, taper functions are essential components of

forest harvesting and bucking models. For example,

(i) they provide estimates of the mix of products, such as saw logs and
pulp logs, as described in Eng et al. (1986), without the need to collect

additional data, even when utilization standards change;

(ii) they are used in many optimal bucking models such as in Pnevmaticos
and Mann (1972); (iii) they are an integral part of many inventory
models, such as MARVL (Deadman and Goulding, 1979), and planning

models such as PROD (Goulding and Shirley, 1979);

(iv) taper functions can also be used in analytical estimates of tree weight and
biomass (Clutter et al., 1983) and for determining the centre of gravity

and mass of inertia of trees, an important aspect of full tree harvesting
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systems (Fridley and Tufts, 1989).

2.4 Forest Growth and Yield Modelling

Modelling the growth and yield of forests over time is a means of adequately characterizing
or describing some or all of the many processes that make up the system collectively known
as a forest. Avery and Burkhart (1983) described it concisely as a means of forecasting
stand dynamics. The purpose of growth and yield models, despite their complexity of

structure, can be explained simply as;

given a set of stand or tree conditions, such as basal area and stems per hectare,
which refer to one point in time (7}) and to certain locality, by how much
will these have changed at a future time (75) given specified stand or tree

treatments (thinning, fertilization, et cetera).

Such a quantitative capability has been the forest manager’s crucial need so that sound

decisions can be taken on how wood supply from particular forests should be managed.

2.4.1 Need for Mathematical Models in Growth and Yield studies

Fitting mathematical models to forest growth and yield data is a widely accepted method
of summarizing resource production information about individual trees, stands and forests.
A mathematical growth model is a mathematical function, or system of functions, used to
relate actual growth rates to measured tree, stand, and site variables. The advantages of

fitting mathematical models to growth are set out below.
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(i) An appropriate curve (equation) may conveniently summarize the information pro-
vided by the observations of a given data set. Thus, a large number of observations,
collected over time on individual trees, stands and forests can be represented by

only a few parameters.

(i) Comparisons performed between growth data sets or at various ages of a single data
set is more efficient if performed on the summary of parameter estimates of the
fitted models (Hoel, 1964). This is particularly efficient when the growth functions

can be integrated with respect to time as set out in Clutter (1963).

(iii) Problems of missing or unequally spaced data are alleviated by statistical readjust-

ment or interpolation for missing observations.

(iv) Growth velocities and accelerations are easily estimated from fitted models by

differentiation (Clutter, 1963; Berkey, 1982a).

2.4.2 Past Work in Forest Growth and Yield Modelling

The following sub - sections review the major concepts and historical development of

growth and yield modelling from the early 19th century until today.

2.4.2.1 Normal Yield Tables — Use of Graphs and Tables

Forest growth and yield models formed the earliest forest planning models. They were
derived empirically and represented in the form of graphs and tables. German foresters
established the ‘normal yield table’ approach, as explained in Bickford et al. (1957);

Fries (1967); Clutter et al. (1983); Avery and Burkhart (1983); to predict yield of even
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aged stands. The methods then adopted had the following limitations as pointed out by

Ware et al. (1988).

(i) The modelling assumed fully stocked stands, and thus the variables used were

constrained and not allowed to enter the model independently.

(ii) The graphical procedures required adjustments to be made when the tables were
used for non - normal stands, which often produced major errors because of the

inadequacy of the assumptions in the adjustment process.

(iii) A strong argument still persists today over the applicability of the concept of nor-
mality: some forest researchers have argued that this ideal condition is subjective
and does not represent a rational management goal, because a non - fully stocked
stand with proper silvicultural treatment could produce higher returns than a fully -
stocked untended stand (Curtis, 1972). This substantiates point number (i) above
that maintaining one variable (stocking) at its maximum will not always give the

maximum yield and may well not be a relevant management objective anyway.

2.4.2.2 Variable Density Yield Tables

MacKinney et al., (1937) were among the first to propose a variable density growth and
yield model for non - normal loblolly pine stands grown in North and South Carolina,
USA. More important is that the modelling was performed objectively through the use
of a statistical approach. One drawback of the early statistical analyses of growth was
that they were performed using polynomial models (for example, MacKinney et al., 1937;

Wishart, 1938), a consequence of polynomial growth curves being easy to fit and interpret
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(Merrel, 1931). However, they fall short of ideal objectives because more often than not,
high order polynomials are needed to provide empirical fits to many natural phenomena

and no proper biological meaning can be attached to the parameters associated with them.

Empirical variable density yield tables were developed in North America as a means of
refining the definition of normal forests to cope with existing natural forests there. The
concept of average rather than normal values applied (e.g. Schumacher, 1939; Bennett
et al., 1959; Avery and Burkhart, 1983 et cetera). However, adjustments still had to be

made when tables were applied to stands that were not at the average level.

The proposed yield model by MacKinney et al., (1937) was a logarithmic polynomial

model of the form shown in equation 2.4,

(e -Y)
Y

Where « is the maximum theoretical yield (asymptote), Y is yield, T is stand age, S is site
index, SDI is Reineke’s (1933) stand density and C is composition index. Schumacher
(1939) proposed a log - reciprocal of time yield equation, which was later used by
MacKinney and Chaiken (1939) as a refinement of their previous equation, this equation
was

P

In(Y) = Bo + T+ B2S + Bslog(SDI) + p.C (2.5)

In both equations, 2.4, and 2.5 the stand density is part of the equation and a variable that
is allowed to vary freely. This was indeed a major development in forest growth and yield
research, because, apart from the use of regression techniques, the equations have the
following desirable properties: first, the dependent variable yield (Y) is predicted from a
specific combination of independent variables over a wide range; secondly, the logarithm

of the yield is proportional to the reciprocal of age; and thirdly, the functions exhibit
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asymptotic growth. All these properties are essential components of modern growth
and yield models (Clutter et al., 1983). Many researchers have used similar methods
of constructing growth and yield equations since that first one in 1939 (for example,
Schumacher and Coile, 1960; Brender, 1960; Avery and Burkhart, 1983; Bailey and Ware,
1983; Murphy and Farrar, 1988). Subsequent research and technological development
have made growth and yield models more sophisticated through the incorporation of often

complex mathematical equations and their implementation on fast computers.

2.4.2.3 Compatible Growth and Yield Models

Buckman (1962) and Clutter (1963) laid the foundation for the need for compatibility
between growth and yield. Both demonstrated that, when cumulative growth is plotted
over time, the yield curve which results can be derived mathematically by integration of
the growth function: that is, the first derivative of the yield function results in a growth
function (Clutter, 1963; Clutter et al., 1983). Compatibility between growth and yield
is a major premise for the building of modern growth and yield models, in that the total
area under the growth curve must equate yield. Biological theory, supported by much
empirical evidence indicates that yield curves have a sigmoidal shape, as demonstrated in
the Schumacher yield equation (using IUFRO conventional notation as outlined in section

1.2).

G = eleth) (2.6)

The first derivative of this equation will provide a corresponding growth function.

dG _ _ﬁe(w%)

=T (2.7)
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2.4.2.4 Simultaneous Growth and Yield Model

Sullivan and Clutter (1972) further extended the concept of compatibility and developed a
simultaneous growth and yield model, by simultaneously estimating yield and cumulative
growth as a function of initial age. When future age (75) equals current age (73), the
equation is reduced to the conventional yield model. Thus, it is simultaneously a yield
equation for the current condition and a projection model for the future. They used
Clutter’s (1963) volume yield equation 2.8 and basal area yield equation 2.9. Using

IUFRO conventional symbols, their equations can be represented as

In(V) = a0 + oS + 91-31 + a3 In(G) (2.8)
In(G) = o+ BuS + % (2.9)

and thus, from 2.9
B2 = T(In(G) — (Bo + 15)) (2.10)

Differentiating 2.9 with respect to 7', and substituting /3, as in 2.10 gives 2.11

din(@)  (In(G) — (Bo + B15))
) - (2.11)

The above equation is in differential form and can be integrated, rearranged and presented

in a projection form shown in 2.12

1n(Ga) = (7)10(Ga) + (B + B5)(1 — () (2.12)

This equation represents a sigmoid curve, has an inflection point and an upper asymptote.
It is mathematically compatible, numerically consistent and path invariant (Clutter, 1963).
Future volumes can be predicted by substituting equation 2.12 in equation 2.8 for (55, that
is

Ty Ty

In(V) = ao + a1 S + % () (G + (a +asS)(1 = (7)) (213)
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Where,

Q4 = (X3,B() (214)

Oy = a3ﬂ1 (215)

There are several other functional forms of growth models that can be formulated as
compatible/simultaneous, and have been used successfully in yield studies: they include
Chapman - Richards, Gompertz, Levakovich, Hossfeld, Weibull, monomolecular and
others. There is no one functional form that is superior to another, but the way they
behave when fitted depends on the nature of the data (Woollons et al., 1990).

Numerous researchers have then adopted the compatible/simultaneous growth and yield
methodology with different functions (Clutter, 1963; Brender and Clutter, 1970; Pienaar
and Turnbull, 1973; Pienaar, 1979; Farrar, 1979; Clutter and Jones, 1980; Bailey and
Ware, 1983; Pienaar and Shiver, 1984; Pienaar et al., 1985; Murphy and Farrar, 1988 et

cetera).

24.2.,5 Computer Technology in Growth and Yield Modelling

Without the use of computers growth and yield prediction can be difficult, or even impos-
sible sometimes to effect. Nevertheless, evaluation of the role of computers as a necessary
tool for growth and yield prediction has seldom been comprehensively carried out, perhaps
because it is assumed to be well known by researchers. The paragraphs below attempt
to categorize the most common uses of computers as they pertain to growth and yield

modelling.
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(1) Development of Models

With a large data set and without computers, regression equations can be difficult to fit
and interpret. Computers revolutionized growth and yield modelling and made possible
the fitting of multiple linear and non linear regression equations easily. One of the
disadvantages pointed out by MacKinney et al. (1937), was that the process involves a
rather laborious procedure as well as a knowledge of correlation analysis. Today, special
statistical packages (software) and high speed computers (hardware) have been developed
to perform regression analyses (linear and non linear), which have made possible an array
of modelling alternatives, some very complicated and others which were infeasible with
the past technology: for example it is possible to use individual trees as a basic unit of
growth and yield modelling and to adopt alternative modelling approaches.

Other uses include evaluation of different models, verification, calibration of models to

suit local conditions, validation and forest growth monitoring.

(2) Routine use of the Models

Routine use of growth and yield models is generally effected through use of computers.
Forest managers use growth and yield models interfaced with harvest models, bucking
models, economic models, et cetera, to simulate forest productivity and economic outturn,
and so that sensitivity analysis of a set of management alternatives can be conducted

reliably. This vital capability cannot easily be achieved without the use of computers.
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2.4.3 Site Index — Overview and Historical Perspective

This section explores some of the major concepts of site index. Problems of applying site

index as a measure of site quality are also highlighted.

Site quality can be evaluated indirectly or directly, as explained in the following para-

graphs.

2.4.3.1 Indirect Estimation of Site Quality

Evaluation of site quality can be done indirectly through use of vegetative site types (Zon,
1913; Cajander, 1926; Ure, 1950; Hodkings, 1961; Daubenmire, 1961; Daubenmire and

Daubenmire, 1968). The application of this approach has the following disadvantages.

(i) The deep soil horizons, for example, may have little influence on the
under - storey vegetation but still much influence on the tree growing
medium. Under - storey is also influenced by such factors as wildlife,

fire and site preparation.

(i) The evaluation cannot be quantified without reference to another species

growing in the area, and hence it is difficult to quantify.

Inter - species relationships have also been used in evaluation of site index, For example
Coile (1948) used this method to calculate site index of loblolly pine and short leaf pine.
Olson and Della - Bianca (1959) used such an approach for mixed stands.

Another approach is the use of topographic features (such as elevation), and soil char-

acteristics (physical and nutrient properties). Theoretically tree growth is controlled by



Chapter 2. Review of Literature 35

environmental factors such as soil nutrients, soil moisture, aspect, elevation and tem-
perature. Data pertaining to these values can be identified and regression or correlation
analysis conducted with respect to tree growth (Coile, 1952; Myers and Van Deusen,
1960; McGee, 1961; Lewis and Harding, 1963; Carmean, 1970; Steinbrenner, 1975;
Alban, 1976; Clutter et al., 1983). The application of this method, although it more
often provides a good inference is limited because it involves massive data collection, is

laborious, very costly and sometimes impossible.

2.4.3.2 Direct Evaluation of Site Quality

The direct estimation of site quality falls under two major categories, namely (1) historical
yield records, and (2) site Index. Historical yield records can be used as a method for
directly evaluating site index in terms of a measure of production in physical quantity, like
volume/ha (Bates, 1918). The disadvantage of this method is that physical quantities such
as stand volume are influenced by other factors like rainfall, rotation, insects, disease,
genetics, management and the fact that most forests lack such historical data. For stands
in which factors that influence volume production can be strictly controlled, stand volume
is the best indicator of quality (Lewis et al., 1976; Clutter et al., 1983). This method is not
very practical, however, because the cost of controlling those factors would be enormously

high.

Site index (the mean top height at an index age) is by far the most common measure of
productivity (Spurr and Barnes, 1980). Site index is popular because it is relatively easy
to measure and dominant height is fairly independent of stand density, except at extremes

such as thinning from above (Spurr, 1952). Also there is a strong historical precedent for
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its use, in that volume production potential is positively related to height growth (Roth,
1916). Thus mean top height could be a good indicator of site quality. The approach
involves fitting a family of curves of mean top height development at a specified age (base
age). (See examples: Zahner, 1962; Coile and Schumacher, 1964; King, 1966; Brickell,
1968; Lundgren and Dolid, 1970; Beck, 1971; Carmean, 1972; Graney and Burkhart,
1973; Bailey and Clutter, 1974; Trousdell et al., 1974; Burkhart and Tennent, 1977,
Newberry and Pienaar, 1978; Clutter and Jones, 1980; Boardes et al., 1984; Harrison et

al., 1986; Bailey et al., 1989).

Site index as a measure of productivity has been subject to numerous problems (Monserud,
1984a, 1985a, 1987; Wykoff and Monserud, 1987), especially in irregular stands and with
mixed species composition or uneven distribution of ages. Although careful site/species
tree selection can overcome some of these problems (Monserud, 1984b, 1985b), the
solution to others has remained a mystery. A direct and similar example is provided in this
study, an examination of site productivity showed that elevation and locality were jointly
the best predictors of the productivity of a site, rather than site index. Other researchers
too have been able to predict site productivity by using equations that do not include site

index (for example: Stage, 1973; Wykoff et al., 1982).

Data for estimation of site index estimation can be derived in two ways,

(i) by analysis of repeated measurements from permanent sample plots (PSP);

(ii) through stem analysis (Bruce, 1926).

The most widely applied technique in plantations is the use of psp data, because of its

simplicity and in most cases such data are readily available. In natural forests, however,
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stem analysis may be the only practical technique.

There are three methods by which site index curves (equations) can be generated (Clutter

et al., 1983). These are:

(a) guide curve
(b) difference equation

(c) parameter predictions

In most situations one method is usually clearly superior to the others, or else a combination
of methods could be applied to good effect. The Douglas fir data analyzed here were from
permanent sample plots (PSP’s) measured and remeasured several times. Analysis showed
that the difference equation and Schumacher form gave the best overall predictions. Site
index equations are classified into three types: anamorphic, polymorphic - disjoint and

polymorphic - non disjoint (Clutter et al., 1983; Boardes et al., 1984).

This study has explored environmental factors associated with site quality variation in
Douglas fir grown in the South Island of New Zealand. It was noted that site index, the
mean top height at age 40 years, was not the best predictor of the site productivity. Site
index equations developed in this study and their relationship to site quality are described

in detail in chapter 4.
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2.5 Modelling Philosophy

There are at least three ways one can review modelling philosophy: one is to examine
modelling objectives or what the modelling is characterizing (Munro, 1974); the second
is to focus on the condition of the forest that is being modelled (Bruce and Wensel, 1987);

and the third is to look at the mode of action of the model (Garcia, 1988).

Past attempts by researchers to distinguish particular modelling objectives rather than a
particular modelling philosophy contributed to a confused nomenclature of forest growth
and yield models (Munro, 1974). Models of this sort have appeared in the literature in
many forms. Although empirical growth models differ widely, common basic elements
appear in most of them. Estimates are made of the changes over time of tree diameter,
height, form, volume, or all of these variables, and also changes in stocking (Bruce and
Wensel 1987). The following sub - sections discuss and elaborate the nomenclature which

frequently have appeared in the modelling philosophy.

2.5.1 Classification According to Objectives of the Model

Munro (1974) developed a classification in which growth and yield models are classified

according to their general objectives or according to what they model.

(1) individual tree growth models

(i) individual tree - distance dependent models,

(i1) individual tree - distance independent models.

(2) Whole stand growth models.
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(3) Diameter distribution models.

The paragraphs below look at this classification and the advantages and disadvantages of

each approach.

2.5.1.1 Individual Tree Growth Models

(i) Individual Tree - Distance Dependent Models

The main concept behind this kind of model is based on the postulate that the amount of
competition to which a tree is subjected is proportional to the amount the competition circle
of a subject tree is overlapped by competition circles of neighbouring trees. Competition
circles are defined as some function of the size of a tree. The actual amount of competition
has been expressed by different researchers in units of area, circumference, or angles. The
first such model to appear in the literature was that of Newham (1964), other examples
include Lee (1967), Mitchell,(1969), Lin (1970), Arney (1972) et cetera. Individual tree -
distance dependent models use individual tree values as inputs, which are then aggregated
to provide estimates of stand growth and yield. They are capable of producing very
detailed information about the structure of a stand. For example, potentially powerful
uses result from those which incorporate crown dimensional increments (e.g.Mitchell,
19691; Arney, 1972), as they include studies of tree to tree competition, pruning impact,
insect defoliation, top die back, bole form change and mistletoe infections. Clearly,
they offer a potential to examine the effects of various cultural programmes and their

interactions, such as thinning, spacing and fertilization in a very detailed way.
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The major disadvantage of all distance dependent modelling is the difficulty of calculating
a meaningful biological measure of competition and the high use of computer resources.
Spatial information (coordinates), elevation, aspect, stem charts of the tree, for example,
must be obtained in the field and supplied as model inputs. Such information is expensive
to acquire and is not available for any but the most intensively monitored permanent
sample plot (PSP) system. Most models of this type provide artificial generation of
tree spatial distribution. When this is done, strong arguments can be made to suggest
that the model is functioning as a distance - independent one. Nevertheless, with the
development of modern aerial photographs and mapping equipment the cost of acquiring
the needed information can be significantly reduced. Today, these models, are not of
great utility because advances in individual tree distance - independent models show
that much of the information can now be obtained without inter - tree distance data,
specifically through knowledge about spacing, thinning and fertilization. The effects of
these cultural operations can be mostly evaluated more efficiently for operational purposes

with distance - independent models.

(ii) Individual Tree - Distance Independent Models

The basic difference between this and the previous kind of model is the absence of a
measure of distance between trees. In individual tree - distance independent modelling,
trees are growing with respect to several tree characteristics, individually or in groupings of
similar diameters, according to some mathematical functions. These models have ranged
from simple regression as in Lemmon and Schumacher (1962) to extremely complicated
stochastic models such as the one proposed by Dress (1970). The most referenced and

used model in this category is PROGNOSIS developed by Stage (1973): this model
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offers great potential, particularly through its designed ability to function as a feedback
mechanism for localization of more general models. The major advantage of individual
tree, distance - independent models is the elimination of the necessity for stem charts,
which results in fast computing and permits testing of many alternative hypotheses of
management. Models with this property are essential in the development of management
decision making tools such as RAM (Navon, 1971). The disadvantage of individual tree,
distance - independent models is their inability to predict the growth of a specific single
tree with any reliability; consequently they cannot be used to forecast the crown shape,

crown development, and bole shape changes or defoliation in individual trees.

2.5.1.2 Whole Stand Growth Models

Whole stand models are also referred to as whole stand, distance - independent models.
Stand models have a common objective, namely to produce at some point or points in
simulated time, summary tables which indicate the state of forest stands on a per unit area
basis. That is, they use stand variables as inputs and produce stand outputs, such as age,

basal area per hectare and stems per hectare.

Whole stand models are the most widely represented kind of growth model in forestry
modelling. For many years, forest scientists have investigated stand growth by regression
functions to express stand growth under prescribed management. Computer capability
has enabled the development of complex models utilizing complicated mathematical func-
tions which permit the solution of yield functions based on virtually unlimited parameters.

Examples of such Douglas fir models are Myers (1971) model which is used operationally
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by the United States Forest Service, Hoyer’s (1972) model which simulates forest man-
agement practices in Washington (USA), and SIDFIR (Law, 1990) which simulates the

growth of the species in the South Island of New Zealand,

All are designed with the specific objective of producing managed stand yield tables.

Most forest enterprises depend on whole stand models to provide necessary stand infor-
mation for economic analyses. The main advantages of whole stand modelling are its
ability to utilize conventional inventory information, fast computation time and simplicity
of operation. The disadvantage is that specific individual tree or tree class information is

totally lacking.

2.5.1.3 Diameter Distribution Growth Models

Diameter distribution models occupy an intermediate position between the whole stand
and individual tree models in terms of state description detail, computational cost, and
information requirements (Garcia, 1988). Diameter distribution models should be con-
strained to operate as whole stand models, but with the additional ability of inputting stand
level information (variables) to produce not only stand level statistics but also diameter
distributions of trees to aid in forecasting size class information. The use of mathematical
equations by foresters to predict diameter distributions goes back as early as 1898, when
de Liocourt (in Meyer and Stevenson, 1943) constructed a diameter distribution model
for all - aged stands using geometric progression (Meyer and Stevenson, 1943). In 1943,
Meyer and Stevenson successfully constructed a diameter distribution model following
de Liocourt’s theory but through use of the exponential distribution. Since that time much

attention has been given to diameter distribution modelling because it provides a detailed
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structure of the stand in terms of size classes, an important requirement for financial
analysis.

Probability density functions have been the key to the generation of diameter distribu-
tions. Examples include Gram - Charlier series (Meyer 1930), Pearl - Reed growth
curve (Osborne and Schumacher 1935), Johnson’s S, distribution (Hafley and Schreuder,
1977), Gamma distribution (Nelson, 1964), Beta distribution (Clutter and Bennett, 1965),
Weibull distribution (Bailey, 1972), and others. The most used distribution today is the
Weibull function, because it offers the following desirable properties with respect to forest

stand categorization:

(i) relative ease of mathematical manipulation (Bailey and Dell, 1973),
(i) it has a closed form (Bailey and Dell, 1973; Clutter and Belcher, 1978),

(iii) flexibility of the model (Johnson and Kotz, 1970).

The early diameter distributions were derived by regressing the probability density func-
tions directly to the stand variables such as site index, stems per hectare and age, in the
so called parameter prediction technique. This produced inconsistent estimates of stand
values between the diameter distribution model and the whole stand model (Clutter and
Belcher 1978). Diameter distribution models are useful only when they are compatible
with the whole stand model, because consistent estimates of various stand yield variables
need to be derived. Compatibility has been achieved by employing a parameter recov-
ery method, with which method the parameters of the probability function are estimated
implicitly from stand estimates (Cao and Burkhart, 1984; Knoebel et al., 1986; Boardes
et al.,1987). In growth and yield studies today, whole stand models are in the majority

because their level of aggregation has been reasonably easy to work with. By pooling all
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stems together, a lot of variation due to genetics, site, climate, and the like are absorbed,

making the fitting of functions easier.

A potential difficulty with tree size distributions arises from the spatial correlation of tree
sizes: over very short distances there is usqally a negative correlation due to competition:
over longer distances, microsite similarity causes a positive correlatioﬁ, decreasing with
time (Garcia, 1988). This implies that tree size distribution must vary with area of
land considered. In particular, the variance must vary with plot size, and distributions
derived from sample plots are unlikely to apply to the whole stand. This aspect has
been ignored by growth modellers although its importance has long been recognized in
forest sampling (Garcia, 1988). Experience has shown that for estimating stand variables
only minimal gains in precision are attained by these models and that they may not be
justified considering the higher costs involved. Diameter distribution modelling is thus a
compromise, one that has proved very effective (e.g. Clutter and Allison, 1974; Alder,

1979; Bailey et al., 1981).

2.5.2 Condition of the Stand Being Modelled

Bruce and Wensel (1987) recognized the relevance of Munro’s classification just described,
but they also put emphasis on the applicability of different models according to forest
condition being modelled and on the purpose of the model. Stands with a uniform
progression of frequencies in size classes throughout their range can be characterized in
more ways than stands without them. For example, a single tree - distance dependent
model with some modifications can be used in uniform and non-uniform stands, but not

particular models for both situations. In even-aged stands, density and hence competition



Chapter 2. Review of Literature 45

can be evaluated on a stand basis in terms of the state variables, namely basal area
per hectare, volume per hectare and stocking. Uneven aged stands require a detailed
description of individual trees and are seldom successfully simulated by simple models
developed for regular stands. To model most stands that are irregular, the growth of each
tree must be estimated individually, because no single measure of stand density can be
used to represent the competition affecting individual trees. The best solution is to use an
individual tree distance - dependent growth model where the size, vigour, and proximity
of neighbouring trees are evaluated. This technique can also be used for regular stands,
but it is not always necessary because they are expensive, while whole stand models are

a cheaper alternative with an acceptable degree of accuracy in certain circumstances.

2.5.3 Mode of action of Growth Models

Garcia (1988) put emphasis on the function of the models themselves. Essentially,
the evolution over time of any system can be modelled by specifying: (i) an adequate
description of the system at any point in time; (ii) the rate of change of state as a function
of current state and of current value of any external control variables (Garcia, 1988). The
state is the stand/tree (N/ha, G/ha, h190,) and the external factors are time, climate, altitude,
aspect, soil, cultural treatment et cetera. Growth models can be quantified as static or

dynamic, depending on how they function.

(1) Static Growth Models (Alder, 1980)

Static growth models attempt to model the development over time of quantities of interest

(volumes, mean diameter). This approach to modelling falls short of a capability to
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predict the rates of change: nevertheless, they can produce good results for unthinned
stands or stands subject to a limited range of standardized treatments for which long -
term experimental data are available. Examples of these are the Forestry Commission
Management Tables (Johnson and Bradley, 1963) and South Australian Yield Tables

(Lewis et al., 1976).

(2) Dynamic Growth Models

The modern approach to modelling relies on the capabilities of dynamic models. Unlike
static models, dynamic models forecast growth over a wider range of external factors (such
as initial spacing, various thinning and pruning intensities, and fertilization). Instead of
modelling directly the course of values over time, these models predict rates of change
under various conditions. The trajectories over time are then obtained by adding or
integrating these rates. Thus, the Munro (1974) classification refers to dynamic growth

models.

2.53.1 Summary

Prospective uses influence the choice of growth models. If for example, only an estimate
of total volume is required at a given time, then little attention need to be paid to the
irregularity of the stand. If a prediction of change of inventory by size class material is
needed, then a diameter distribution model of some form will be adequate. Nevertheless,
if some estimate of change of quality is required, each tree may have to be treated
individually in the computer model, irrespective of the stand regularity. Comparisons
of alternative treatments, especially those not previously applied and observed, may be

inaccurately predicted, no matter how it was developed (Bruce and Wensel, 1987).
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2.6 Modelling Approaches

The major drawback of least - squares methods is that the nature of forestry data in terms
of repeated measurements have correlated errors. The application of generalized least -
squares (Ferguson and Leech, 1978; Davis and West, 1981) on permanent sample plot data
was an effort to remove the bias of estimating standard error of parameters, which occurs
when ordinary least - squares techniques are applied. Generalized least - squares changed
the parameters very little, however, and the technique has not been of much significance

in forest growth and yield modelling.

Analysis of growth and yield can proceed using various modelling alternatives: stand -
level only, diameter distribution, disténce - dependent tree - level or distance - independent
tree - level (Munro, 1974; Bruce and Wensel, 1987). The methodology used by many
researchers is to develop regression equations by single variables (Clutter, 1963; Sullivan
and Clutter, 1972; Smalley and Bailey, 1974; ). Garcia (1979, 1984b, 1987) has improved
growth and yield modelling through introducing stochastic differential equations. The
stochastic differential equation models have different mathematical properties and have
been attracting considerable interest throughout the world (Ware et al., 1988). In this
approach, the state variables such as basal area per hectare, stems per hectare, and others
are simultaneously projected over time. Models of this kind have proved to be satisfactory
to use in practice (Garcia, 1984b; Dunningham and Lawrence, 1987). Nevertheless,
stochastic differential equations like any other equations need to be subject to biological
and statistical tests when fitted to data. Moreover, simultaneous estimation of parameters
of different equations can be very restrictive. This approach has not, therefore, been

adopted here. The approach used in this thesis is to model each stand variable singly,
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because this allows a wide range of equation forms to be evaluated for each individual

variable that needs to be predicted.

2.7 Growth and Yield Models for Douglas fir

Growth and yield models for uneven - aged stands of Douglas fir have been developed
in North America (Curtis et al., 1981; Newham and Smith, 1964; Bruce et al., 1977; and
others). The Weyerhauser company in USA grows Douglas fir in plantations and has
re-measured data that can be adequately modelled. The methodologies adopted in North
America are also applicable in New Zealand, but judging from graphs of crop production
these models would not be applicable to New Zealand conditions because of disparity of

climatic and other growth factors.

The first Douglas fir growth and yield model in New Zealand was DFIR, developed by
Mountfort (1978), specifically for Kaingaroa forest. NFIR was devised in 1979 to cater
for production of that species in Nelson. Calibration of DFIR gave rise to DFPP, RODF,
and SDFIR (Law, 1990). The first complete Douglas fir models in New Zealand were
DFCNIGM 1 and DFCNIGM 2, of which are both whole stand models created in 1989 (Liu
Xiu, 1990). DFCNIGM 3 is a diameter distribution model compatible with DFCNIGM
2, which was created in 1990 (Liu Xiu, 1990). DFCNIGM1 and DFCNIGM2 endeavour
to identify the presence of intra - regional or temporal differences among subsets of data

and to make due allowance for such effects, such as disease infection.

SIDFIR (Law, 1990), was an attempt to develop a whole stand growth and yield model

for all Douglas fir grown in the South Island of New Zealand. SIDFIR does not account,



Chapter 2. Review of Literature 49

however, for existing regional variability. DfirStand described in chapter 4 of this thesis is
a whole stand model for Douglas fir grown throughout the South Island of New Zealand,

the model incorporates both the existing local and regional adaptations.

2.8 Localising Growth and Yield Models

There has been a tendency in some countries to develop and use growth and yield mod-
els that are specific to increasingly restricted sub - populations. In New Zealand, for‘
example, there are currently about 16 models in use for one species, radiata pine alone,
when 20 years ago there were 2 (Whyte et al., 1992). Statistically one may argue that
stratification of a large population into smaller components will result in more homo-
geneous sub - populations, but this is not always justified unless analysis of covariance
or some other appropriate technique can confirm that all the parameter estimates of a
growth forecasting equations are unequal across sub-populations. General forest growth
projection systems are often developed for large geographic regions (e.g. PROGNOSIS,
Stage, 1973; STEMS, Smith, 1981; SIDFIR, Law, 1990, et cetera). Developed in this
overall way, however, these models will not necessarily provide adequate sensitivity of
estimation for sub-regions ( e.g. counties, forest districts and wood supply centres) for

the following reasons.
(1) Existing Variations

Regional growth models usually do not fully account for sub-regional site quality, stocking
variability, genotypic variability, local climatic fluctuations, growth variations over time,

to cite just some examples. These unexplained factors may well average out for whole
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region estimates, but for sub-regional estimates they may not, resulting in estimates that

are biased.
(2) Operational fall-down (Bruce, 1977).

These occur when a projection system has been derived from data acquired from permanent
or temporary sample plots that are located in uniform stands that are undamaged, and are
of very high quality. When this system is used to project stands that are not maintained
under the same optimal conditions, predicted growth is commonly found to be higher than

observed growth.
(3) Silvicultural Practice

For many regions and species, models have not been developed for different cultural
regimes (fertilization, genetic improvement, site preparation, thinning, et cetera). Under
such circumstances, a means for at least partially accounting for treatment response must
be developed. Parameter estimates of a regional model estimated in accordance with a
given range of silvicultural practice, may not necessarily give unbiased predictions if used
in a sub-region that can be characterized with different parameters, arising from different
regimes. Various techniques have been used for localising regional models or regional

estimates to suit local conditions. These are described in the next sub-sections.

2.8.1 Stratification

Stratification involves modelling each different stratum individually. To justify this an

hypothesis that all parameters of each stratum are different from those of other strata must
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be conducted.

2.8.2 Simple Means Ratio

This technique is probably the simplest: if P, and P, are taken to represent a regional
prediction and the mean of regional prediction respectively, while P, and P, are corre-
sponding sub-regional predictions and means, then the adjusted regional prediction to suit
sub region can be given by

' P,

P,:Psxpr

where, P,' is the adjusted regional mean. Smith (1981) successfully used this technique

to localise estimates of individual tree annual diameter growth provided by the regional

growth projection system STEMS. Provided that the ratio estimator % is determined

accurately, this method can achieve good results in the short run.

2.8.3 Regression Revision to Adjust the Parameters

Regression revision has been employed to adjust some of the parameters of the regional
model. For example, PROGNOSIS, Stage (1981) used this technique in localising the
intercept of the model, while other parameters were kept constant. The disadvantage
of this method is that, there has been no formal procedure for the technique and the

parameters to be localised depend on the assumptions of the modellers themselves.
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2.8.4 Bayesian Methods

Bayesian methods are based on the probability principle that, a posterior probability
distribution function (pdf) can be derived from a prior pdf. Bayes’ theorem is of the
following form,

_ J("1|Bo) f(Bo)

f(BolYr) = M) (2.16)

where

f(Bo) is the prior probability function of a random parameter 3, that has been
obtained from fitting the growth function over an entire region;

f(Y1]Bo) is a conditional probability density function of observations taken
from the sub region given the parameter fo;

f (Y1) is the probability density function of Y3, which need not to be explicitly
. considered;

f(Bo|Y1) is the posterior distribution of parameter 3, given Y; which contains

information from the entire region f{f), as well as a sub region f(Y1|5o).

If the error component of the posterior information has mean 0, constant variance o,
and normally and independently distributed, then a posterior parameter estimate can be

obtained that maximizes f(S|Y1).

Bayesian techniques have been used successfully in localising growth and yield models.
Berkey (1982b) and Green etal. (1992) have shown that if parameter estimates of the global
model are similar to those of the sub region model in some respect, then considerable gains
in, say, root mean square (RMS) may be realized by using empirical Bayesian regression

over the use of the ordinary least-squares regression. Berkey (1982b) has reported a
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reduction in (RMS) of about 50% in parameter estimation in fitting the Jenss (Jenss and
Bayley, 1937) growth model to a sample of children. Green et al. (1992) have reported a
reduction of more than 50% in RMS in simultaneous parameter estimation for Honduran
pine yield models for sub-populations with different soil types. The use of Bayesian
technique to adjust the parameter estimates through time is known as a sequential Bayesian
procedure; the technique remains the same, except it is done through time. Gertner (1984)
used this method to localise a diameter increment model taken from STEMS (Shifley and
Fairweather, 1983). He demonstrated that the parameter estimates of a growth model

change with crop development, and that they reach an asymptote as the crop matures.

2.8.5 Use of Dummy Variables

Dummy variables have also been employed to localise growth and yield models. This
mostly involves formulating an ANCOVA problem in which dummy variables are in-
corporated in regression equations. The general approach has been demonstrated by, for
example, Gujarat (1970). Monserud (1984b) used dummy variables to estimate specific
parameters in site index equations of inland Douglas fir according to habitat types, while
Ferguson (1979) used dummy variables to localise a basal area increment equation for
five forests of radiata pine in the Australian Capital Territory (ACT). Because of their use-
fulness, the next paragraphs explain how dummy variables can be employed in localising

growth and yield.

Given a set of 3 populations (regions) and one covariate, one can formulate an ANCOVA

problem as set out in the following equations.
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(1) Minimal model

Yij = bo (2.17)
(2) Simple linear regression
Yij=Bo+BsXi; + € (2.18)
(3) Regression slope varied by region
Yij = Bo+ b1+ Badz + B3 Xij + € (2.19)

(4) Maximal model

In maximal model all parameters are varied by region.

Yij = Bo+ b1+ BoJa + BsXij + Ba1 Xij + Bs 2 Xij + € (2.20)

The coefficients are interpreted as follows:

Bo, intercept for population 1;

B1, differential intercept for population 2;

B2, differential intercept for population 3;

B3, slope of Y with respect to X for population 1;

B4, differential slope of Y with respect to X for population 2;
Bs, differential slope of Y with respect to X for population 3;
J1, Jo, are dummy variables;

€4, NID(O,O’2)

Equations 2.17, 2.18, 2.19 and 2.20 are nested, so that, an hypothesis test can be performed

on slopes 4 and f3s. If 34 and f35 are statistically different from one another, (Ho: £4=03s),
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then 2.20 is the appropriate model. If Ho is accepted, however, then equation 2.19 is
preferred. The usual assumptions about the error term ¢;; hold here, namely that NID(0,
c?). Initially, the two dummy variables are assigned to any two populations, while one
remains as the default. Provided that all possible combinations are tested there is no chance
of missing out the best combination. If for instance, the dummy variables J; and J, are
allocated to populations 2 and 3 respectively, while population one enters the model freely,
and 2.19 is the best equation then 2.19 will have a common slope fs, but with varying
intercepts, fo for population 1, fy + 3, for population 2, and Sy + B2 for population
3. Since it is assumed that the error term is normally and independently distributed
with mean 0 and constant variance o2, this formulation allows straight-forward tests of
hypothesis associated with the confidence limits of parameter estimates through use of
statistical packages like SAS, which have the capability of sorting data to their respective
sub-populations. Although the above example applies to linear regression, the same
principles are applicable to non-linear models. The use of dummy variables thus provides
potential capabilities for testing the justification of having different models for different
sub-populations. Ferguson (1979) used generalized linear least-squares regression with
4 dummy variables to localise basal area increment model for five forests, mainly to

represent different rainfall patterns.

2.8.6 Summary

If adequate information is available and if the accuracy needed by the user demands it, any
of the above methods for localising growth and yield can lead to satisfactory results, subject

to evaluation and validation of the adjusted models. However, the applicability of Bayesian
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techniques relies on obtaining prior information, requires high statistical knowledge, and
sometimes special algorithms for solving the parameters. These methods are therefore
costly, although capable of providing very accurate estimates (Berkey, 1982b; Green et
al.,, 1992). The gain in precision may accrue, however, only when the assumptions of
Bayes’ theory are met; that is, there needs to be similarity between the prior and posterior

information, otherwise they may lead to costly unjustified results.

This study aims specifically to incorporate locality adaptation by including dummy vari-
ables among the predictor variables. The approach adopted here, to pool all the data, then
assign dummy or other predictor variables to respective regions to account for locality
variation, is preferred over the other two approaches because it should provide a better
basic uhderstanding of variation that is necessary for testing the stratification and Bayesian

methods. The latter two could well be evaluated in studies following this.
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Data and Data Analysis

3.1 Tree Volume and Taper Data

3.1.1 Sources of Data

The data used in tree volume and taper modelling were sampled from 16 forests in the
Canterbury region, 10 in Southland and one in Nelson (these are summarized in appendix
A.1). The data were retrieved mainly from Forest Research Institute archives. Procedures
for taking sectional measurements and making data entries are explained in detail by
Gordon, (1985). Initial examination of the data showed that the Nelson region was
represented by 32 trees only. This number was insufficient to represent Nelson, where
38% of the area of Douglas fir planted in the South Island is located. Thus, an additional

50 trees were measured in Golden Downs to strengthen the data base.
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3.1.1.1 Selection of Additional 50 Trees

The following procedure was followed in the sample selection of the extra 50 trees, just
mentioned. Sample trees were obtained systematically throughout the dbhob range, the
allocation across the dbhob range being in roughly equal numbers by size class. Sample
trees included all merchantable sizes, emanating from crops aged 40, 35, and 13 years.
Samples from the tails of the observed diameter distribution were deliberately included
because of their importance in estimating the coefficients effectively. Individual trees
were selected from several stands throughout the forest according to the criteria set out

below:

(i) reasonably straight stem with less than a 10 degree lean;
(i) no leader die back , nor broken top, nor stem forking;

(iii) unblemished dbhob, unaffected by forking, fluting, abnormal taper, concavity, cal-

lous growth or scar tissue;

(iv) crown class normal for the tree size, very suppressed or grossly emergent trees being

excluded from consideration.

This procedure aimed to supply a sample from which a volume function representative of

the main tree population growing in the locality could be obtained.
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3.1.2 Nature of Tree Volume and Taper Data

Sectional measurements were taken along tree stems in the manner prescribed by the
Forest Research Institute (Ellis, 1979 ). The average number of sectional measurements
per tree was 10, which constitutes an adequate set of repeated measurements for taper

definition purposes.

3.1.3 Quantity and Quality of Sectional Measurement Data

Tables 3.1, 3.2 and 3.3 below show the frequency of diameter - height classes of
trees separately for each region, Canterbury, Nelson and Southland respectively: Table
3.4 summarizes the whole data set used for tree volume and taper modelling. Table 3.4
shows that the initial data set consisted of 641 trees and about 7000 measurements, while
Tables 3.1, 3.2 and 3.3 are distributions of diameter and height - classes represented
in the samples from the three regions. The range of dbh - height classes of these data
appears to be adequate, and their quality is good for the purpose of modelling volume and
taper. To construct a new volume table the minimum recommended sample size is 100
trees (Gordon, 1985), though the sample may have to be increased if the variation in tree
form is high, until the resulting equation has an acceptable reliability in terms of both the
accuracy and precision required by the user. For a volume function that has validity for a
greater area, several hundred or even thousand may be required according to Loetsch and
Haller (1973), but this claim needs to be challenged on the basis of research reported later

here.
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Table 3.1: Dbh—Height Classes for Trees From Canterbury Region

Dbh class Height Classes (5 m)
(5 cm) 5 10 15 20 25 30 35 40 45
Number of trees Total
5 10 10
10 5 13 17 1 36
15 10 51 13 74
20 1 34 72 107
25 8 60 1 69
30 4 12 1 17
35 3 4 1 8
40 1 1 4 6
45 1 8 9
50 1 5 1 8
55 1 7 2 2 11
60 4 1 2 8
65 3 2 6
70 2 1 4
75 1 1 2
80 3 3
85 1 3 5
90 1 1
Total 15 24 117 163 6 32 11 12 384
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Table 3.2: Dbh—Height Classes for Trees From Nelson Region

Dbh class Height Classes (5 m)

(5cm) 5 10 15 20 25 30 35 40
Number of trees Total

5

10

15 1 3 4

20 7 2 4 1 14

25 5 1 5 6 17

30 1 1 7 8 17

35 31 4 1 9

40 1 3 3 6 13

45 1 1 1 3

50 2 2

55 1 2 3

60

65

70

75

80

85

90

Total -1 16 8 20 23 11 3 82
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Table 3.3: Dbh—Height Classes for Trees From Southland Region

Dbh class Height Classes (5 m)
(5cm) 5 10 15 20 25 30 35 40
Number of trees Total
5 20 20
10 12 1 1 14
15 5 1 5 1 12
20 6 5 13 3 27
25 4 5 14 23
30 3 7 11 4 25
35 5 8 5 18
40 2 8 1 11
45 1 1 4 1 7
50 1 4 5
55 1 1
60 2 2
65 1 1
70 2 2
75 1 1 1 3
80 1 1
85 1 1
90 1 1
95 1 1
Total 32 12 15 38 50 20 5 3| 175

62



Chapter 3. Data and Data Analysis 63

Table 3.4: Summary of Number of Trees and Sectional Measurements

Region | Number Number of

of Trees | Sectional measurements

Canterbury | 384 4241
Nelson 82 984
Southland 175 1771
Total 641 6996

An efficient procedure used to evaluate the efficacy of a volume equation is to measure
the bias by diameter classes (Honer, 1965) and this technique is used later to justify the
challenge to that European research assertion. The data cover all sites which grow sub-
stantial amounts of Douglas fir in the South Island of New Zealand (except for Westland),
and represent a considerable range of dbh, height and age classes as well as different
silvicultural histories. The spread of tree volume and stem data could have been even

better, however, if they had also had disease information on Phaeocryptopus gaeumannii

(Gilmour, 1966; Hood and Kershaw, 1973, 1975), fewer measurement errors, freedom
from correlated errors and a full description of silvicultural practices applied to individual
sample trees (e.g pruned vs unpruned stems). Measurement errors were considered as a
possible source of variation while other factors were catered for as local adaptations, as

will be explained later.
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3.1.4 Sources of Variation

The main sources of variation in modelling at the tree level appeared to arise from:

(i) measurement errors
(ii) sampling errors
(iii) correlated errors

(iv) locality variations

Each of the above four factors was carefully considered and methods to eliminate or

reduce their effects are reported in the next subsections.

3.1.4.1 Measurement Errors

Possible measurement errors were first identified by graphically plotting the data and
observing outliers from the raw graphs. Any anomalous data were identified and then
either corrected whenever the true values were available, or else they were removed from
subsequent analysis, obviously in error but without objective evidence to correct them.
Likely errors were also determined through fitting preliminary equations to the data and
isolating those observations that had residual values of more than 3.5 RN D (units of
standard deviation) for detailed scrutiny. These tree measurements were again checked
against the original data and corrections made, wherever feasible and if absolutely clear -
cut. If no changes could be made, the measurements were retained despite their large

deviations from average trends.
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3.1.4.2 Sampling Errors

The ideal sampling approach for volume and taper function construction should provide
representative estimates of each of the coefficients in any adopted equation form, and have
as low standard errors of prediction as the sample size and population variability would
allow. The aim should be, therefore, to obtain adequate representation in the sample of
each dbhob and average volume within each class. The sampling process adopted in
collecting the data fell a little short of such an ideal, as it relied largely on the one used
by FRI. Each distinct stand in which sample trees were recorded was treated initially as
a separate stratum. At the data processing and analysis stage, one or more strata were
amalgamated to form groups. This approach allowed data to be grouped on the basis of
observed differences rather than pre - allocating stands into strata. The construction of
the volume equation was then done using these groupings, leading to volume equations
T15, T120, and T228. One large aggregation which consisted of data from all over
New Zealand was also formed, namely T136. Inadvertently, the Nelson region was
not adequately represented and thus, an additional 50 trees were sampled as previously

mentioned, with the specific aim of plugging the gaps in the Nelson region data.

In this study, the data were grouped according to their region of origin, but the formula
used for the computation of the standard deviation of the tree volume equation was that of
a simple random design. Tree locality effects were taken into account through use of two
regional dummy variables, which acted as filters for the data according to their region of
origin in the parameter estimation process. The formula used in computing the root mean

square (RM S), which is the standard deviation of the residuals was

RMS = \ﬂ%%%?_—%z) (3.1)
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where N is the number of observations and k is the number of parameters in the equation.

3.1.4.3 Correlated Errors

Tree sectional measurement data consist of a series of repeated measurements 6n the
same stem. When used to derive functions representing stem taper, they are obviously
not altogether independent but correlated to some extent. The usual method of ensuring
that such correlated errors are minimized is the method of randomization (Fisher, 1947),
but this is virtually impossible to adopt with data used for analysis of stem taper data.
Although such data are usually processed as if they were independent, this must be
done with caution because the standard error estimates of the parameters may be biased
and conventional statistical hypothesis testing becomes invalid. The errors arising from
estimating least - squares regression coefficients from such data have a component of error
ascribable to the degree of their correlation. Standard hypotheses tests on the parameter
estimates are inadequate for testing the goodness of fit for equations developed from such
data. Thus, in this study plots of residuals and the univariate procedure, as described
in SAS (SAS Institute Inc., 1988), were used to ascertain those parameter estimates that

appeared to be statistically worthwhile.

3.1.4.4 Locality Variations

Data for this study come from a wide range of localities as explained in section 3.1.1
Previous modelling of tree volume and taper equations for Douglas fir in New Zealand
considered locality as a source of variation to be accounted for, but generally grouped the

data according to only the year of sampling, a traditional approach that leads to national
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volume tables (FRI-Ministry of Forestry, New Zealand, 1992). The approach previously
adopted was either to put an average through all available data irrespective of locality,
silvicultural history or provenance, or to separate the data to form individual equations for
combinations of locality and silvicultural history, but there is room for improvement in
both these approaches. Stratification in all sorts of forestry applications is an effective tool
widely used to derive various estimates for populations with distinctly grouped different
characteristics (see Freese, 1962). Modelling each stratum individually has often been
regarded as appropriate in obtaining unbiased estimates of parameters for regression
relationships (Loetsch and Haller, 1973; Steel and Torrie, 1980). The approach taken here
followed their recommendations, but in contrast to the previous approaches, it used all
available data, and recognized possible sources of variation by means of explanatory or

dummy variables.

3.2 Data for Stand Level Modelling

3.2.1 Sources of data

Data for stand level modelling were obtained from permanent sample plots maintained by
FR.I, Rotorua. These data originated from 4 forests in Canterbury, 3 forests in Nelson,
9 forests in Southland, and relatively fewer data from 5 forests in Westland. The data
for the permanent sample plots were totally separate from and, hence, independent of the
sectional measurement. Differences in climate among the four regions were not directly
considered, but the impact of environmental variables, reflected in indices such as site

class, altitude above sea level, distance from the sea, were evident from a comparison of
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the mean and extreme values of age, mean top height, basal area per hectare and volume
production per hectare of the raw data and so revealed trends worth investigating. Table
3.5 summarizes this information. Figures in parenthesis in column 1 of Table 3.5 refer to
the number of observations. Appendix A.2 shows in full the list of the forests by region

from which the data were sampled.

3.2.2 Quantity and Quality of Stand Level Modelling data

Basic and derived variables were derived from 355 permanent sample plots. Table
3.6 shows the distribution of plots by regions. Routine validation of the basic variables
hioo, G, N and V, was done for each plot through plotting the data over time and iden-
tifying abnormal growth patterns. Preliminary statistical analyses were also conducted to
ascertain the reliability of the data, including use of the procedures PROC MEANS, PROC
COMPARE, PROC PLOT, PROC FREQ and PROC UNIVARIATE in SAS package (SAS
Institute INC., 1988). Where possible, errors were corrected and the corresponding mea-
surement included, but in some cases suspicious measurements were deleted from the data

base, including the following.

(i) Negative C.A.L for any one variable . Such data were isolated from

analysis, but other data in the plot without abnormalities were accepted.

(i) Unnaturally high mortality which resulted in a decrease of basal area

with time, (probably caused by wind, drought or disease).

(iii) Coding fault where the true values could not be ascertained.
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(iv) Fertilized plots were discarded from this analysis because there were
insufficient of them to quantify the effect of different fertilization treat-

ments.

(v) Plots with fewer than three measurement were also discarded, because
they will have only one set of repeated measurements. One or two

measurements alone are not adequate for studying growth and yield.

Table 3.5: Summary of Mean and Extreme Values Extracted From Psp Data

| Region | Variable | Mean | Minimum | Maximum |

T (years) 32.8 9.0 61.0

hioo (m) 22.9 29 39.3

Canterbury | Altitude (m) | 326.1 150.0 790.0
241) G (m*Mha) | 46.3 043 116.2
V (mPfha) | 414.8 14 1505.4

T (years) 27.5 7.0 58.0

hioo (m) 22.9 5.6 47.8

Nelson Altitude (m) | 438.1 183.0 625.0
929) G (m¥*ha) | 42.2 1.18 1094
V (m?/ha) | 413.7 184 1723.6

T (years) 33.6 7.0 78.0

Southland | Altitude (m) | 251.1 50.0 625.0
(449) G (m%*ha) | 51.3 1.1 141.7
V (m?Mha) | 482.5 04 1774.9

T (years) 26.9 5.0 59.1

hiop (M) 18.8 1.9 37.5

Westland Altitude (m) | 229.0 0.0 330.0
(225) G (m?ha) | 299 0.01 123.8
V (m3/ma) | 235.9 0.05 1458.5
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Table 3.6: Distribution of Permanent Sample Plots

Region | Number of Permanent | Number of measurements
Sample Plots (Number of Growth Periods)
Canterbury 63 241
Nelson 135 929
Southland 112 449
Westland 45 225
Total 355 1844
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The screening of the data resulted in 17 plots being disqualified from analysis. The

remaining 338 plots consisted of around 1600 measurements for each variable. This

quantity of data can be considered more than adequate for modelling growth and yield.

3.2.3 Structure of Stand Level Modelling Data

Permanent sample plot data consist of repeated measurements of several variables taken

at different times. The term ‘repeated measurements’ means that NV experimental subjects

are observed on each of k successive occasions that possibly correspond to different exper-

imental conditions, the 74, subject yielding y;; on the j;, occasion. In developing suitable

equations by regression methods from such data researchers often treat the measurements

as independent, and then use the formulae for independent measurements to determine the

standard errors of the parameter estimates. But because these measurements are corre-

lated, residual sums of squares are underestimated and so too are the standard errors of the
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parameter estimates. Nevertheless, the analysis provides an adequate basis for predicting
pre - assumed relationships between the independent and dependent variables (Jensen,

1982), while analysis of residual patterns can help ascertain the goodness of fit.

3.2.4 Sources of Variation in Stand Level Modelling

The main sources of variation considered in the analysis were:

(i) altitude
(ii) locality and factor interactions
(iii) thinning history

(iv) correlated errors

The approach taken was to incorporate factors into equations that reflect these sources of
variation for all the available data and to analyze the effects of each of these over time,
rather than have separate equations for each behavioural factor. The methods used in

incorporating these factors are reported in the next subsections.

3.24.1 Altitude

Altitude is important in determining site quality, as it relates to other factors such as soil
fertility, temperature and drainage. All these factors are likely to contribute to the growth
of trees at a given site , but altitude may reflect all of them in combination to some extent.
Woollons and Hayward (1985), for example used altitude as an independent variable in

their site index equation for radiata pine in the Central North Island of New Zealand. The
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range of altitude sampled in the data here was from O to 790 m above sea level, which
has been consistently found here to have a great influence on mean top height growth and,
hence, site index. It was also possible in this study to show that basal area production was
related to altitude above sea level. Details of the equations used and results obtained are

explained in chapter 4.

Regional distribution of the measurements according to initial stocking, and altitude of
the crops are represented in a two way table (altitude classes vs initial stocking), Table

3.7.

3.24.2 Locality and Factor Interactions

Local adaptations expressed as locality growth factors have for a long time been considered
synonymous to site quality in even aged stands. When the factors which constitute site
quality (soil type, soil moisture, soil nutrients elevation, temperature, aspect, distance
from sea, and many others) are added up, they amount to a large number even before any
interactions are considered. In this study it was shown that locality could be adequately
represented by dummy variables rather than equating it to numerous individual factors of
site quality. Site index (mean top height at age 40 years), moreover, was significantly less
effective than these dummy variables in explaining differences in basal area production
trends, although it was found useful for predicting mortality. Locality and site quality are

therefore not necessarily interchangeable.
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Table 3.7: Initial Stocking vs Altitude Classes

Region Initial Altitude Classes
Stocking | < 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800
Number of Measurements Total
1736 80 80
Canterbury | 2268 6 6
2315 3 8 11
3086 36 | 69 | 21 | 18 144
1680 12 12
Nelson 1736 21 | 127 | 81 | 48 277
2315 25 3 28
3086 7 26 | 194 | 37 | 323 | 25 612
1543 2 2
1667 3 3
1736 47 15 | 54 116
2222 2 2
2315 21 6 8
Southland 2500 5 6 3 14
2778 5 5 7
3086 61 60 | 74 [ 24 | 7 2 228
3630 2 2
3704 3 7 10
4630 3 13 16
6944 5 7 7 19
2314 24 24
Westland 2500 3 3
3086 38 1139 | 21 198
 Total | 135 [171]370]527 226 [374 | 41 | | 1844 |
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3.24.3 Thinning History

Thinning is the most important silvicultural tool used by foresters for moulding the
development of even aged crops. Until 1983 it was usual to have separate basal area
equations for thinned and unthinned crops (Brender, 1960; Buckman, 1962; Schumacher
and Coile, 1960; Pienaar and Turnbull, 1973; Pienaar, 1979; Clutter and Jones, 1980).
Bailey and Ware (1983) were the first foresters to have a single equation for thinned and
unthinned stands through use of thinning indices. Pienaar and Shiver (1984) later used an
index of suppression to develop basal area models for combined unthinned and thinned
slash pine stands. They concluded, however, that any basal area projection equation
not allowing for growth response in thinned stands relative to unthinned stands might
underestimate the yield of thinned stands.

Using data from thinned slash pine plantations, Pienaar et al., (1985) developed a basal
area projection equation that incorporated the index of suppression instead of a thinning
intensity variable (or thinning index). Murphy and Farrar, (1988) evolved a general
technique for introducing thinning variables into basal area projection equations. In their
study they concluded that the efficacy of adding a thinning term depends upon the accuracy

requirements of the user.

The approach taken in this study is similar to that of Murphy and Farrar (1988), but with
some modifications. Data from 171 thinned plots (742 measurements) were available for
analysis, the main thinning regimes being shown in Table 3.8. The intervals between
thinnings are set out in Table 3.9. Equations and definitions of thinning indices and how

they were imposed in the basal area projection equation are described in chapter 4.
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Table 3.8: Main Thinning Regimes Analyzed

Region None | 1st | 2nd | 3rd | 4th | 5th | 6th | Total
Number of Measurements
Canterbury | 135 | 19 | 21 | 11 | 24 31 | 241
Nelson 564 | 23154 | 6 | 33| 41 929
Southland | 280 | 67 | 36 | 32 | 34 449
Westland 170 | 25 | 30 225
Total 1149 | 342 | 141 | 49 | 91 | 41 | 31 | 1844

Table 3.9: Thinning Intervals

Region Interval between thinnings
[ 2nd ] 3rdJ 4th |5th|6th
mean | 6.1 | 6.2 | 90 | 4050
Canterbury | min | 3.0 | 32 | 80 | 3.1}5.0
max | 130 11.0 | 10.1 { 9.0 | 5.0
mean | 3.6 | 50 | 64 | 6.0
Nelson min | 42 | 68 | 50 | 5.0
max | 108 | 7.8 | 7.0 | 6.0
mean | 98 | 7.6 | 8.1
Southland | min | 3.0 | 1.0 | 1.1
max | 299 | 11.2 | 12.0
mean | 5.5
Westland | min | 6.1
max | 3.3
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3.2.4.4 Correlated Errors

As already mentioned Psp data obtained from repeated measurements on an individual
plot (in this case), contain correlated errors. In practice, these correlations are frequently
ignored and parameter estimates of coefficients assumed to be unbiased, while accepting
that the standard error of the mean, ( RMS/\/EN) or \ﬂMSE/N) ), where RMS is
the root mean square, and M SFE is the mean square error, is lower than it would be
for wholly uncorrelated data (Sullivan and Clutter, 1972). In growth and yield data,
least - squares regression is considered to be adequate for parameter estimation, provided
that the equations used logically represent the relationships intended between dependent
and independent variables and for each parameter estimate the confidence intervals do
not include zero. This thesis did not concern itself deeply with correlated errors, but
qualification tests initially described in section 3.1.4.3 and later in more detail in section
3.4 were carried out on parameter estimates and residuals to ensure that the correlated

errors did not result into equations with biased parameter estimates,
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3.3 General Methodology

The methodology presented in this section applies to all three types of modelling: to tree

volume, stem taper and stand level growth and yield modelling.

3.3.1 Formation of Data Sets
3.3.1.1 Tree Volume and Taper Data

Values for the following 10 variables formed the basic data set for the various analyses

carried out with SAS on the VAX computer at the University of Canterbury.

RE — (Region): region of origin of data item.

FO — (Forest): forest or place of identification of data origin.

TREE — (Tree number): an identification number assigned to the tree within
the region and forest.

DBHOB : diameter at breast height over-bark in cm for the tree.

SH: cumulative sectional height in m from the base of the stem to the top of
the section.

SEDI: small end diameter inside bark in mm of section of the tree.

LEDI: large end diameter in mm of the section of the tree.

TH : total tree height in m.

V : tree total stem volume m? inside bark, computed from the addition of all
sectional volumes. The volume of the first 0.15 m section from the ground

was calculated as if it were a cylinder, while the volumes of sections above
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were calculated using the conic integral formula (Whyte, 1970).

One additional variable was derived from the existing variables, z, defined as the height

in the tree relative to its total height.

7= (T—HT;[ﬂ (3.2)

Using standard IUFRO notation equation 3.2 will be represented as in equation 3.3

(3.3)

where h is total tree height and h’ is the distance from the ground to top diameter d’:
(h-h’) can also be represented as (1), where 1is the distance from the tip of the stem to top

diameter d’. The tree data master file named TVTP.DAT is fully presented in appendix C.

3.3.1.2 Stand Level modelling Data

Values for 21 principal variables were extracted from PSP data held in ER.I. archives and
were similarly filed on the VAX computer. Because 21 variables amounted to too many
for the 80 column system of data processing, the data were punched into three different
data sets but under the same file name DFIRS.DAT. These data sets were named DATA

A, DATA B, and DATA C, and comprised the following variables:

RE: region of origin of a data item.
FO: forest of origin of data item.
CP: compartment from which data were collected.

P: plot within compartment.
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SP:

sub-plot, where special treatments were applied (for example fertiliza-

tion).

AL: altitude of plot in metres above sea level.

T]I

Tzi

age in years at the beginning of a growth period.

age in years at the end of a growth period.

HT;: mean top height in metres at age 7.

HT;: mean top height in metres at age 1.

G12
Ggi
Gb:

net basal area of the stand (m?%/ha) at age T}.
net basal area of the stand (m?/ha) at age 7.

net basal area of the stand (m?2/ha) before thinning.

: net basal area of the stand (m?/ha) after thinning.

: number of stems/ha at age 7.

: number of stems/ha at age T5.

: number of stems/ha before thinning.

: number of stems/ha after thinning.

: net volume of the stand inside bark (m3/ha) at age T}.
: net volume of the stand inside bark (m?®/ha )at age T.

: age of thinning in years.

Four additional variables were algebraically derived from the above original data base.

These were:

S: site index in metres at age 40 (if values were available for mean top height

at age 40, the mean top heights were recorded as site indices, else the mean top

heights were derived by extrapolation using the mean top height projection
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equation),

d;: quadratic mean diameter outside bark (cm) of trees removed in thinning.
dp: quadratic mean diameter of the stand (cm) just before thinning;

X : thinning index.

X, =1-2 (3.4)

The definition of thinning term variable and the way it was derived are explained later
in chapter 4. The stand level master file data named DFIRS.DAT is fully presented in

diskette in appendix C.

3.3.2 Data Format

The two master files TVITP.DAT and DFIRS.DAT were input in FORTRAN format.
However, when fitting regression equations to data sets, it is often necessary to change
the order, file name and data format to create smaller data sets which are subsets of the
master file. This was required to enable the data to be read by analytical packages such as
SAS in order to make the processing of the data easier and faster, and use less computer
resources. The FORTRAN format of data input was selected because it was compatible
with both the operating system, VMS, and the analytical package, SAS, that were used to

perform various operations.

Because regression equations were fitted to single variables, separate files for each equa-
tion were created from the master files. New variables not in the files were created
algebraically using SAS programmes and commands. Variables which could not be

derived algebraically from the existing variables were input manually on the keyboard.
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The following files can be found in diskette form in appendix C. The definitions of

variables applied here are those given in section 3.3.1

VT.SAS

Data and SAS programme used to develop tree volume equation,

with variables RE, FO, TREE, DBHOB, TH, v .

TPPD.SAS

SAS data and programme to create permanent SAS data used to
develop taper equations with variables RE, FO, TREE, DBHOB,
S, SH, SED], LEDI, TH, v.

A permanent SAS data file (as described in SAS institute Inc.,1988.
Cary, NC., USA) was created for this analysis because this file was

too large to be analyzed by conventional procedures.

TPP.SAS

SAS programme used to develop tree taper equation.

HT.SAS

SAS data and programme used to develop mean top height equa-

tion, with variables RE, FO, CP, P, HT1, HT2, T1, T2, S.

G.SAS

SAS data and programme used to develop net basal area projection

equation with variables RE, FO, CP, P, G1, G2, T1, T2, T}, S, X;.
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THIN.SAS

SAS data and programme used to develop an equation for predict-
ing net basal area/ha after thinning: with variables RE, FO, CP, P,

T1, T2, GB, GA, HT1, HT2, NB, NA.
V.SAS

SAS data and programme used to develop stand volume production
equation, with variables, RE, FO, CP,P, V1, V2, T1, T2, HT1,HT2,

Gl1, G2.
M.SAS

SAS data and programme for derivation of stem survival/ha func-

tion with variables RE, FO, CP, P, N1, N2, T1 , T2, S.

3.3.3 Checking Reliability of Data

Analysis of residuals was used to determine the reliability of data. Appropriate equations
were first fitted to the data, then all observations having RN D (random normal deviate)
more than 3.5 were regarded as outliers. More often than not the causes of outliers
were blatantly obvious measurement or punching errors, but situations did occur where
the obvious causes were unknown, and such measurements were merely categorized as
suspicious. It was not possible to check measurement reliability, because the data were
collected along time ago, as long as 80 years ago, for some used in this study. Nevertheless,

the importance of having reliable measurements and rigorous data checks during initial
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processing of information for growth and yield studies was recognized to as great an extent

as possible.

3.4 Methods Used for Data Analysis

The two main standard analytical procedures used in this study are linear and non linear
ordinary and weighted least - squares regression. Analysis of variance and univariate

procedures were used to ascertain the goodness of fit of equations.

These analyses were conducted through use of procedures PROC NLIN, PROC REG,
PROC GLM, PROC UNIVARIATE, and PROC MEANS of the SAS package (SAS
institute Inc., 1988). Regression equations can be fitted variable sets of any sort, but in

this study it was ensured that:

(i) the dependent and independent variables conform to biologically and mathemati-

cally sound relationships;
(i1) the functions used are of appropriate form to represent the intended relationship;

(iii) parameter estimates are free of apparent bias.

Various linear and non linear ordinary, and weighted least - squares were fitted to tree
volume data, stem taper data and growth and yield data. As pointed out in sections 3.1.4.3
and 3.2.4.4, both tree taper and growth and yield data are associated with correlated
errors, which means that conventional statistical analysis cannot be carried out without

qualification of the results.
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The following subsections explain the main analyses that were carried out in refining the

statistical results and in ascertaining the goodness of fit of the equations.

3.4.1 Confidence Intervals

Terms involving parameter estimates were retained only if the parameter estimates were
apparently significant at the 5% significance level, meaning that there was less than a 5%
nominal chance that the confidence interval could contain zero (i.e., the lower and upper
confidence limits are of the same sign). These nominal probabilities do not, of course,
reflect true probabilities due to the aforementioned biased estimation of residual variance.

They are used, therefore, only indicatively.

3.4.2 Graphical Residual Patterns

Residual charts were used to provide ocular estimates of their normality of errors. If the
residuals are normally distributed the residual pattern about the zero reference line shows
independent distribution; a bar chart of residuals portrays the shape of the normal curve
over the interval of the data set. This visual description is often inadequate on its own,

however, because the shape of the chart depends on the scales and class widths used.

3.4.3 Univariate Procedure

The UNIVARIATE procedure was used, therefore, to complement the ocular check of fit
through reference to confidence intervals and residual charts. Several statistics were used

as indicators in the UNIVARIATE procedure to complete the test of goodness of fit. These
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were:
o Mean of Residuals

The mean should either be zero or at least very close to zero if the equation is to produce a
good fit, under the assumption that the residuals are normally distributed with mean zero

and standard deviation o, often represented as NID(0, o?)
e Absolute Mean of Residuals

The absolute mean of residuals is a measure of the average error prediction of the equation.

This should also be very close to zero.
o Skewness Coefficient

The skewness of the normal distribution is zero. It is a measure of symmetry, in that it
provides inference on the tendency of deviations to be larger in one direction than the
other. If the skewness of the equation very much deviated from zero, the fitting was re -
assessed. Negative values indicate a distribution with a long tail to the left and positive
values indicate a long tail to the right. The unbiased skewness coefficient of the samples

is calculated by

N ﬁl(wi - 33')3

K=l == &

(3.5)

where S K is the skewness coefficient, N is the number of observations and s is the standard

deviation of the sample.
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¢ Kurtosis

The early understanding of kurtosis was a relative measure of flatness or peaking of the
distribution. The larger the value of kurtosis, the more peaked the distribution (Hafley and
Schreuder, 1977). More recently, kurtosis has been defined as the heaviness of the tails of
a population (SAS Institute Inc., 1988). The heaviness of the tails affects the behaviour of
many statistics. Population kurtosis must lie between -2 and positive infinity. However,
large values of kurtosis suggest that statistical methods based on normality assumption
may be inappropriate. In this study equations with high kurtosis were re-assessed. In
most cases, outliers contributed to the high kurtosis, and the corresponding basic data
were revised or removed from the data base as described in section 3.3.3. The unbiased

sample kurtosis coefficient is calculated as in equation 3.6.

N(N + 1) ][ ,(\—]_—1(371' — 5)4 ]
(N =1)(N =2)(N =3)"(s* = 3(N - 1)(N - 1)/(N = 2)(N - 3))

(3.6)
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¢ Extreme Values of the Distribution

This is a measure of maximum and minimum residuals of the variable being modelled.
These values must not diverge unreasonably from the rest of the data. Their absolute
values should not differ very much. If, for example the maximum residual value was 20
m?/ha and the minimum was -2 m?/ha, then it means that there is at least one excessive

outlier on the positive side. The data and equation being modelled should be re-examined.

The above tests were conducted and interpreted jointly, not just on their own. In general
an equation will provide a good fit if all the regression parameter estimates of the 95%
confidence interval have the same sign, the residual patterns show no or little biased trend,
the residuals bar chart show a normal distribution, the average mean of residuals is close
to 0, and the absolute mean and extreme values of residuals do not deviate unreasonably

from the rest of the data.



Chapter 4

Developing and Fitting the Models

This chapter describes the methodology and development used to derive the equations
which form a (i) compatible tree volume and taper prediction system and (ii) whole stand
growth and yield model, for Douglas fir grown in the South Island of New Zealand. The
approach emphasized in both systems of equations is the need to devise them for as large an
overall population as possible, while still allowing for local or regional adaptations through
inclusion of dummy and continuous predictor variables such as altitude. Furthermore,
in contrast to Garcia (1984b) who developed a method of fitting all three state variables,
mean top height (h100), basal area per hectare (G) and stocking (N) simultaneously, the
approach adopted here is to fit single equations. The approach here allows the modeller
to choose a different functional form for each variable hyq9, G and N, if needed. This
approach also allows greater flexibility to incorporate thinning effects in the model rather

than having separate equations for thinned and unthinned stands.

88
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4.1 Development of DfirTree

DfirTree is a compatible tree volume - taper estimation system for Douglas fir [Pseudotsuga
menziesii (Mirbel, Franco)] trees from throughout the South Island of New Zealand. A
precise tree volume equation which uses pooled data from the three main South Island
regions, namely Canterbury, Nelson and Southland was developed. This equation still has
the capacity, however, to differentiate attributes due to locality, made possible through

incorporating dummy variables among predictors and other sources of variation.

A segmented taper equation compatible to the tree volume equation with two join points
- was later developed. This taper equation was assessed and compared to existing and other
equations and found to conform well with the tree volume equation without the need for

additional dummy variables.

4.1.1 Background Information

Douglas fir, [Pseudotsuga menziesii (Mirbel, Franco)], grows in a wide range of localities
in the above named main regions of the South Island. There is some Douglas fir growing
in Westland, another region, but this sub - population was not included in the analysis

because of its relatively minor representation.

The age class distribution of Douglas fir in the South Island as at 01-04-1989 is summarized

in Table 4.1.
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Table 4.1: Distribution of Douglas fir by Area and Age Class in the S.Island of N.Z.

Area (ha) planted in Douglas fir
Age class | Canterbury | Nelson | Southland | Westland | total
0—5 1723 1584 2812 0 6119
6—10 1171 2535 3564 130 7404
11 — 15 921 2162 513 24 3620
16 —20 577 1505 578 111 2771
21 —25 841 1142 793 229 3005
26 — 30 602 825 689 31 2147
31—35 401 572 433 24 1430
36 —40 206 225 261 11 703
41— 50 254 90 89 6 439
51 —60 79 430 318 1 828
61 — 80 156 0 155 7 318
Total 6931 11074 10205 574 28784
| Source: N.EF.D. 01-04-1989: |

In New Zealand, four volume functions for D.fir have been constructed, namely

(i) T15 — (1958): for all of New Zealand.
(i) T120 — (1977): for Ashley forest in Canterbury.
(iii) T136 — (1977): for all of New Zealand.

(iv) T228 — (1988): for Longwood forest in Southland.

These four volume functions are still in use, and are in the logarithmic form shown in

equation 4.1 (see volume tables, Ministry of Forestry, New Zealand, 1992).

2

h — 1.4]

In(v) = a + fln(d) + v1n] (4.1)
where v is total stem volume inside bark, d is diameter at breast height over bark, A is

total tree height, and «, B and + are linear least - squares coefficients. Equation 4.1 can
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also be written in non - linear form as equation 4.2

v = ad’| I (4.2)

but has not been computed in this later form.

Today, there has been neither a published review nor sensitivity analysis of these equations.
Since construction of the first national volume table for Douglas fir in 1958, the tendency
has been either to devise equations for smaller populations or to ignore regional variations
and apply a single overall equation. This pattern has also been exhibited in growth
and yield modelling. There is an alternative, more sensitive approach, however, that
could be adopted, namely to provide additional predictor variables which allow users
to disaggregate general trends to reflect local variation with due sensitivity. This is the

approach adopted here.

4.1.2 Data Base for Development of Tree Volume Equations

The data used in this study are the same ones used by FR.I. and the New Zealand Forest
Service todevelop Tables T15, T120, T136 and T228, plus some others that were measured
in Golden Downs forest as part of this study in December 1990. The FR.I. data were

collected between 1948 and 1988.

Before beginning the statistical analyses, the tree profile of each stem was displayed on
the screen to ascertain the quality of individual measurements. Suspicious measurements
were identified, marked and corrected, but those cases which could not be corrected based
on objective evidence, were later discarded. Sectional measurements of stems on 641

stems altogether from Nelson, Canterbury and Southland were selected for analysis, but
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44 of these were later discarded from the analysis of stem volume because of obvious
measurement errors and deformations that could not be rectified. The data base by regions

is shown in Table 4.2.

Table 4.2: Regional Data for Development of Tree Volume Equations

| Region | Varable | Mean | minimum | maximum |
No. of Trees 359
d (cm) 22.10 4.00 82.00
Canterbury h (m) 17.80 3.00 42,70
d?h(m3) 1.52 0.0048 24.80
v (m?) 043 0.0030 6.48
No. Trees 75
d (cm) 29.20 14.0 56.0
Nelson h (m) 24.80 10.40 - 399
d?h (m?) 2.56 2.16 11.69
v (m?) 0.73 0.087 3.05
No. Trees 153
d (cm) 24.70 3.00 65.00
Southland h (m) 18.40 3.00 37.80
d*h (m®) 1.89 0.003 15.97
v (m?) 0.54 0.002 4.39
Total Number
of Trees 597

4.1.3 Calculation of Sectional Volumes

Two methods of measuring were applied in generating the individual tree volume data:
in the first method, the stems were measured at 0.15 m, 0.75 m, 1.40 m, 3.0 m, followed
by 1.50 m intervals to the tree total height. In the second method, stems were measured
at 0.15 m, 0.70 m, 1.40 m, 3.0 m, followed by 3.0 m intervals to tree total height. At
each measuring point the diameter outside bark by tape and two bark thicknesses by bark

gauge were recorded. Inside bark diameters were determined by subtracting twice the
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average bark thickness from the corresponding outside diameters. The volume v; of the
first segment of each tree stem (0.15 m) was calculated as though it were a cylinder with

sectional volume equation shown in equation 4.3

T 2
v; = 40000d, x 0.15 (4.3)

The volumes of each of remaining (N-1) segments of the tree were calculated by applying

conoid equation 4.4 (Whyte, 1970).

. s
~ 120000

(d + di, + dadis) x 1; (4.4)

vy

Where;
d;; large end diameter of section (cm)

d;s=small end diameter of section (cm)

Individual under bark total stem volumes, v were calculated through summing the indi-

vidual sectional volumes as in equation 4.5.

N
v = Z;vi (4.5)

4.1.4 Analysis of Stem Volume Equations

Various linear and non - linear tree volume equations with the general form v=f{dbh,

height, form factor), were fitted to the data. They included:
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(i) Schumacher tree volume equation (Schumacher and Hall, 1933)

v = ad’h” (4.6)

(i) combined variable equation (Spurr, 1952)

v =a+ Bd?h (4.7)

(iii) Meyer’s polynomial equation (Meyer, 1953)

v =Po+ f1d + Bod® + Padh + Byd’h (4.8)

(iv) Honer’s transformed variable equation (Honer,1965)

v = 4.9
o+ % (1.9)

(v) constant form factor equation (Gevorkiantz and Olssen, 1955)
v = Bd*h (4.10)

(vi) non - linear form of N.Z. Forest Service equation (Ministry of Forestry New Zealand,

1992)
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hZ

v=od (g7

) (4.11)

Equations 4.6, 4.9 and 4.11 were fitted using non linear least - squares method, while
equations 4.10, 4.8 and 4.7 were fitted using ordinary linear least - squares method. For
each equation the resulting residuals (observed - predicted volumes) were plotted against
their predicted values. The graphs revealed that the observations had heterogeneous
variance, suggesting that it was appropriate to use weighted least - squares regression.
To determine an appropriate weight, the independent variable d?h was subdivided into
ordered classes of equal numbers of observations, then the standard deviation of each
class was calculated and plotted against the independent variable, dh. The standard
deviations of d2h classes were found to be proportional to the corresponding mean values
of d*h classes. This suggested that the reciprocal of dh would be an appropriate weight.
Standard procedures for coping with heterogeneous valfiance were followed, as set out, for
example, in Clutter et al., (1983); Furnival, (1961); Draper and Smith, (1981). Regression

analyses were subsequently performed using the weight shown in expression 4.12.

w=— (4.12)

4.1.5 Ciriteria for Selection of Stem Volume Equations

The criteria used in selecting the best equation were as listed below.

(1) Residual sum of squares (ESS)

Because all equations (4.6 — 4.11) have the same dependent variable v, it was possible

to compare the values of residual sum of squares of each equation directly.
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(i) The Root Mean Square (RMS)

The root mean square (standard deviations) of the equations and the 95 % confidence
intervals for all coefficients estimates were determined. The usual index ([) for selection
of tree volume equations with different independent variables can be defined as the RMS
(o), divided by the first derivative of the independent variable of the volume equation,

F'(v) (Furnival, 1961). This expression is portrayed in equation 4.13.

g

~ F(v)

I (4.13)

Because the dependent variable in all the volume equations analyzed in the study was v,
the index was simply calculated as in equation 4.14.

I=o (4.14)

The smaller the index (/), the more appropriate the equation is.

(iii) Residual Plots and Charts

Plots of residuals against predicted values and frequency charts of residuals were used
to ascertain that the residuals for any given equation were normally and independently
distributed with mean 0 and standard deviation o. This analysis went a stage further by
allocating the residuals to their associated individual regions, so that the residual patterns

for each region could be individually examined.
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(iv) Bias

The mean overall bias (B) was calculated according to equation 4.15. Biases were further

analysed by individual diameter classes as explained in, for example, Honer (1965), and

Hayward (1987).
SN (vi — vi)

B N

(4.15)

Where v; is the observed stem volume, o; is the predicted stem volume and N is the

number of observations in the class.

This analysis of bias confirmed that it is better to correct for non - homogeneity of variance
in linear or non linear equations through the method of weighted least - squares regression
(Draper and Smith, 1981; Schumacher and Chapman, 1954; Gedney and Johnson, 1959;

Furnival, 1961; Buckman, 1961; et cetera), than by logarithmic transformation.

4.1.5.1 Test and Choice of Stem Volume Equation

Residual plots of equations 4.7, 4.10 and 4.11 showed obvious bias. Their fit can be viewed
in appendix C in files COMBV.LIS CONSTV.LIS and NZV.LIS respectively. Equation
4.8 fitted the data well, but the parameters Sy, 1, and 3, were not significant at the 5%

significant level (see the file MEYV.LIS in appendix C).

These four equations were removed from subsequent analyses. Equation 4.9 fitted the
data quite well but the standard errors of the parameter estimates were unusually high,
and so this equation too was not analysed further (see file HONV.LIS in appendix C).
Equation 4.6 fitted the data by far best and was selected (See files SCHUMV.LIS) in

appendix C). Table 4.3 summarizes the statistical results for equations 4.6 to 4.11 ran
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through the same data (N = 597). Further analysis was conducted to find whether or not

Table 4.3: Summary Statistics for Stem Volume Equations 4.6 - 4.11

| Equation | Parameter |  Estimate SEE ESS MSE

«a 0.000090561 | 0.00000260622 0.00000015427

4.6 Jé, 2.114685122 | 0.01075675351 | 0.000009055656
v 0.514830939 | 0.00344657163

47 a 0.004071 0.00049394 0.00000715604 0.00000012027
Ji} 0.000028354 0.00000011
Do 0.002104 0.00151585
By -0.000762 0.00039955

4.8 Ji2 0.000069874 0.000001837 0.0000458306 | 0.00000007741649
B3 0.011782 0.00154125
B4 0.000023200 0.00000056

4.9 o 266.19201 14.83665045 0.00005177815 0.00000008702
I} 27857.08622 | 393.83302031

4.10 o 0.0000285861 | 0.0000001312 | 0.00007973043 0.00000013378
« 0.000112794 0.000000

4.11 I} 1.323657982 0.000000 0.00378210770 0.00000636718
vy 0.966724850 0.00G000

regional variation existed which could be incorporated in equation 4.6. The analysis was

repeated, therefore, with some modification to allow for two dummy variables for Nelson

and Southland, while Canterbury remained the default. The maximal model 4.16 was

fitted and parameter estimates were examined as discussed in sections 2.8.5 and 3.3.3.

Where;

v = (al + g Zy + a3Z2)d(ﬁ1+Zlﬂ2+Zzﬁ3)h(’Yl+’YzZl+’Yszz)

ay, g, and «ag replace « in equation 4.6

By, (2 and P replace 3

71, Y2 and -3 replace «y

(4.16)
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d, v and h, are as in equation 4.6.

99

Zy and Z, are dummy variables set to 1 for Nelson and Southland respectively,

otherwise 0.

Equation 4.16 was written in SAS code, such that Z; assumes a value of 1 if the region

is Nelson, else it assumes a value of 0: similarly, Z, assumes a value of 1 if region is

Southland, else it assumes a value of 0. Results of the regression analysis showed that,

the values of the parameters as, as, y2 and 3 were not significantly different from 0. The

equation was therefore modified further and re - run without including these variables.

The final equation is as shown in equation 4.17.

v = adPrtP2Z1+B322) Y

The statistics of equation 4.17 are set out in Table 4.4.

(4.17)

Table 4.4: Parameter Estimates and Standard Errors for Modified Schumacher’s Stem Volume Equation

Parameter Estimate Standard . Weighted sum | Number of MSE
Error of squares (ESS) trees
o 0.000052457 | 0.000000008550
B 1.910540041 | 0.00007111878
Bo 0.000238690 | 0.00045112873 | 0.00004590150 597 0.00000007754
Bs 0.000743909 | 0.00000129919
" 0.912310849 | 0.00000395799
4.1.6 Goodness of Fit of Modified Schumacher’s Volume Equation

Equation 4.17 decreased the error sums of squares (ESS) by about 51%, compared to

equation 4.6. The parameter estimates (¢, f1, B2, 3 and ) were all significant at least
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at the 5% level. There was also an improvement in the regional pattern of residuals and
on the overall bias. Inclusion of the dummy variables reduced the mean overall bias
(B) from -3.9% to 0.25%. The accuracies of equations 4.6 and equation 4.17 were also
analysed by individual diameter classes. Percentage mean biases for each diameter class

were calculated as in equation 4.18.

E =100/N x i(@v;”)) (4.18)

Where;

v; = actual volume and v is the predicted volume.
E = percentage diameter class mean bias

N =number of observations in the diameter class.

The results of these tests are summarized in Table 4.5.
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Table 4.5: Percentage Bias by dbh Classes for Equations 4.6 and 4.17

Dbh class N Mean Class % Mean Bias
cm Volume (M?) | Equation4.6 | Equation4.17
5.0 33 0.000627 - -21.0 - 164
10.0 51 0.04101 -12.2 24
15.0 92 0.1159 2.1 0.17

20.0 150 0.2249 41 24
25.0 109 0.3877 -0.59 0.03
30.0 59 0.5812 -1.25 1.2
35.0 32 0.8000 -5.6 -3.5
40.0 28 1.2589 2.0 0.24
45.0 15 1.5744 0.52 0.80
500 | 7 2.1002 2.7 1.3
55.0 7 2.5079 1.9 1.1
60.0 7 3.2462 -0.09 2.8
65.0 2 4.6488 9.0 2.9
>65.0 5 5.3600 -0.65 0.00

| Overall Bias | 597 | 05005 | -39 | 0.25 |

The final tests were standardized through PROC UNIVARIATE, looking at the skewness
coefficient, normality (Kolomogorov D statistic) and kurtosis, as well as the mean of
residuals. These values are presented in diskette form in the file SHUMVD.LIS in
appendix C. These values all showed an acceptable level of conformance with a normal
spread of residuals. The fit to the data was enhanced considerably through use of dummy
variables in equation 4.17 to characterize locality variations. Figure 4.1 shows the residual
pattern when plotted against predicted values. Figure 4.2 shows the residual patterns when
plotted against dbhob and Figure 4.3 shows the frequency distribution of residuals. These
figures all show no serious bias. Possible biases in the equations were also evaluated by
size classes, as explained, for example, in Honer (1965). This method requires that the
volume errors should be able to be predicted adequately so that they are independent of

tree size and lie within an average of not more than 4+ 10% about the size class mean
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in at least 95% of the classes having more than 5 observations. The percentage volume
errors in equation 4.17 showed a bias of 16% in the 5.0 cm diameter class, but this is not
considered to be a serious bias as the mean volume of this class is so small, 0.00627 m?>.

All other classes showed bias of less than £ 10.0%.
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Figure 4.1: Plot of Residuals vs Predicted Values [m "™ 3]
Equation 4.17

PEED

RE + + + 0y + + 4+ NN * 4 ¥




0.17

104
Figure 4.2: Plot of Residuals [m 3] vs DBHOB [cm)]
Equation 4.17
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Figure 4.3: Frequency Distribution of Residuals [m 3] classes
Equation 417
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4.2 Compatible Taper Equations

This section explains the use of enhancements of the previous section in developing a
compatible stem taper equation. Compatible taper equations are those when integrated
with respect to total tree height will yield the same volume as though it were the tree

volume equation.

Two methods for constructing compatible taper equations compatible with the volume

equation were employed. These methods are described in the following sub - sections.

4.2.1 Volume Based System

In a volume based system, the volume of the stem inside bark is taken to be that estimated
from the tree volume equation. The taper equation can then be derived through its

subsequent differentiation, the resulting equations being called volume - based.

4.2.2 Taper Based System

In a taper based system, an equation to describe taper of the stem is first determined and
its volume then derived by subsequent integration of the stem profile predicted from the
taper equation. The resulting equations are called taper - based. The definitions in 4.2.1
and 4.2.2 above are fully described and discussed in Demaerschalk (1972); Byrne and
Reed (1986) and many others.

"In this study, the volumes of stems for the volume based system were determined by the

tree volume equation 4.17. For the taper based system, an expression of top diameter d'
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(taper function) was integrated to get an expression for the tree volume equation.

4.2.2.1 Development of Volume Based and Taper Based Systems

The original taper equations for Douglas fir that are compatible to their volume functions

are still maintained and are kept in the library by the Ministry of Forestry. These are:

F136 — for volume function T136, for all of New Zealand,
F228 — for volume function T228, for Longwood forest in Southland.

None — for volume function T15 nor T120.

These equations are full polynomials and have the form shown in 4.19 (see taper tables,
FRI-Ministry of Forestry, New Zealand, 1992).

1 d?Kh

f

= 1z + foz® + ... 4 Br" (4.19)

Where;

d'=top diameter inside bark (cm) at &’
f=form factor;
K=constant to convert cm? to m? (0.00007854).

h'=distance from the base of the tree to top diameter d’;
= (h—1).

h=total tree height (m).
v=predicted total stem volume by using equation 4.17;
z=relative tree height from the tip: (h — ') /h.

B, Pa,... B are least - squares coefficients to be estimated from the data.
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FRI researchers have fitted the full polyn;)mial up to n=9, but this form of polynomial
ends up with some terms not significant which are removed from the equation (Gordon,
1983). Katz and Dunningham (1981) modified the taper equation for radiata pine grown
under direct saw log regimes so that they have the value of n up to 31 in attempting to
explain for butt swell. In this study the following three taper equations were selected, then

fitted and compared.

(a) Full polynomial as shown in equation 4.19.

(b) Caoet al., (1980) segmented polynomial taper equation 4.20

d?Kh
—22=(32° —22) + Ba(z — an)? 1 + B3(z — @), (4.20)

This equation was modified to equation 4.21 so that the independent variable is consistent

with equations 4.19 and 4.23 and can then provide a better comparison of their fits.

d?Kh
v

= B1(32% — 22) + 22 + Bo(z — a1 )* 11 + B3(2 — a2)? Iy (4.21)

Equation 4.21 can also be re-parameterized as 4.22

d?Kh

=301+ (2 — B1)z + Ba(z — 1)* [y + Ba(z — )L, (4.22)

Where;

ay, and o, are the join points.
]i:I for z Z o
I=0forz< o

i=1,2.
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(c) Proposed taper equation

The proposed segmented polynomial taper equation 4.23 was formulated and tested. This
equation fulfills the properties for segmented taper equations (Max and Burkhart, 1976;
Cao et al., 1980; McClure and Czaplewski, 1986; Valenti and Cao, 1986; Byrne and
Reed, 1986). The methods and conditions used to construct segmented polynomials with
defined join points as described for example in Fuller (1969); Hudson (1966); Gallant and
Fuller (1973), were adopted in developing the chosen form presented in equation 4.23.

d?Kh

= B12% + oz + Ba(z — 1)Ly + Bu(z — a3)’ I (4.23)

Variables and their definitions are as in equation 4.20. The equation has two join points as
does equation 4.20 but has 6 parameters to be estimated while equation 4.20 has 5. If the
first two terms of equation 4.22 are equated to the first two terms of 4.23 as shown below

(* indicates re-parameterization).
Bi32* + (2 — 2B1)z = Bizt Bz

By virtue of the above re-parameterization the following equality holds
Ar=3p1 and B3=(2 — 26)
and so equation 4.20 is mathematically identical to 4.23, but will not give same results as

far as modelling is concerned.

Equations 4.19 and 4.20 are the most frequently adopted and are studied widely in the
literature. Because of their definition, compatible taper equations require at least an
algebraic restriction, so that consistent volume estimates can be obtained by integrating
the taper equation as though it were a volume function. Compatibility can be enforced

algebraically in a number of ways: by recovering parameter values of the tree volume
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model using estimated parameters from the fit of the taper model (Byrne and Reed, 1986),
or by estimating any free parameters of the taper model given estimated parameters of
a particular form of tree volume model (Demaerschalk, 1973; Van Deusen et al., 1982).
These two methods are earlier forms. The third method adopts the method of constraining
the parameters of, and incorporating estimated tree volume in the taper model. This
approach is now widely used (e.g. Goulding and Murray, 1976; McClure and Czaplewski,

1986). The integration and restriction for the proposed equation are demonstrated below.

d?Kh

= ﬂ122 + ﬂgz + 183(2 — 01)211 + ,34(2 — a2)212

Merchantable volume, v,, can be obtained from

om = K /0 " e | (4.24)
where,
d? = %h_[ﬂlzz + Baz + B3(z — 1)1 + Ba(z — ) I
and
dl = h.dz
The integration can then be written as
om = K /0 ’ (Bt + Bz + Bz — ) L+ Bulz — aa) I)hds (4:25)
or after re - arrangement, as 4.26
Vyp = v[%l— + % + %(z — )L+ %3(2 — a3)?l) (4.26)

Merchantable volume is the same as total volume when the integration is done with respect
to z between the limits 0 and 1, and by this condition, /;=/,=1. Hence the compatibility

restriction is

B B B Dy = (4.27)
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In equation 4.27 restriction

is independent of restriction

%(1 — o)’ = %‘-(1 — ag)®
Restriction 4.27 consists of 4 terms while that of McClure and Czaplewski (1986) has 3
terms. Restriction 4.27 has provided greater flexibility in imposing a second restriction
on the parameters of the main restriction as will be shown in subsection 4.2.3.

4.2.3 Data Used for Developing Stem Taper Equations

Table 4.6: Statistics for Regional Sectional Measurements

| Region |  Variable | Mean | minimum | maximum |
No. of trees 394
No. of
Canterbury measurements 4351
Dbh (cm) 28.3 3.8 88.1
h (m) 20.7 3.0 46.0
v (m®) 0.732 | 0.0030 7.71
No. of trees 82
No. of sectional
measurements 984
Nelson Dbh (cm) 30.6 13.7 56.4
h (m) 25.6 104 39.9
v (m?) 0.859 0.087 3.526
No. of trees 164
No. of sectional
Southland measurements 1661
Dbh (cm) 28.0 2.7 93.9
h (m) 19.3 3.0 38.1
v (m?) 0.845 | 0.0015 7.513
Total no. of trees 641
Total no. measurements 6996
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Table 4.6 shows the number of sectional measurements and their basic statistics by region.
The data shown in Table 4.6 are the same ones used to develop the stem volume equations
described in sub - section 4.2.2.1. Sectional measurements were generated from a simple
FORTRAN programme (FFSECT - N.Z. Forest Service) which rearranged the data so
that the first measurement from the ground level forms the large end diameter for the first
section, the second measurement forms the small end diameter of the section and is also
the large end diameter of the next section of the tree, and so on. The procedure is repeated

up to the tip of the tree where inside bark diameter is conditioned to 0.0 cm .

4.2.4 Fitting of the Selected Equations

4.2.4.1 Volume Based System

This section deals with the statistical analyses of the selected taper equations considered
in subsection 4.2.2.1. Equations 4.19, 4.20 and 4.23 were fitted to the same data. The
parameters of these equations were restricted as explained in section 4.2.2.1, in order
that they can be made compatible. The resulting residuals of the equations were plotted

against the predicted values and independent variable z.

(1) Full Polynomial Taper Equation, 4.19

Equation 4.19 was fitted to polynomial of order 6, no other terms being significant at the

5% significance level, as shown below.

d?Kh

= B62® 4 Bs2® + Puz + B3 + Bo2® + Bz (4.28)
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Equation 4.28 was restricted as per equation 4.29, so that, compatible volume estimates

can be accrued.

5627 + ,65z6 + ﬁ425 + ﬂ324 + ,3223 + ﬂ122

=1
7 6 5 4 3 2

(4.29)

The statistics of equation 4.28 are presented in Table 4.7. Figures 4.4 and 4.5 show

the residuals plotted against predicted values and z. Figure 4.6 shows the frequency

distribution of the residuals.

Table 4.7. Parameter Estimates and Standard Errors for Full Polynomial Equation

Parameter | Estimate SEE ESS N MSE
B 2.374066 | 0.17358559
B -17.673319 | 1.35057106
Jo 71.887964 | 3.63627716 | 234.37864 | 6996 | 0.033353
I -99.520206 | 4.05327869
Bs 45.816741 | 1.59731925
Bs 0.085348 | 0.01768282

(2) Segmented Taper Equation, 4.21

Table 4.8 presents the parameter estimates and standard errors for this equation. Although

Table 4.8: Parameter Estimates and Standard Errors for equation 4.21

Parameter Estimate SEE ESS N MSE
oy 0.6593284 0.042489478
oy 0.9406695 0.001927715
o 0.5338036 0.006759376 | 211.121241 | 6996 | 0.030199
[ -1.2130741 | 0.636468331
e 229.6476472 | 14.641612424

the equation fitted the data well, the coefficient 3, was not significant at the 5% level (see

file CAO.LIS in appendix C), and so the equation was not considered for further analysis.
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(3) Proposed Taper Equation

The parameter estimates and standard errors for the proposed equation 4.23 are summa-
rized in Table 4.9. Figures 4.7 and 4.8 show the plot of residuals plotted against predicted

values and z respectively. Figure 4.9 shows the frequency distribution of residuals. The

Table 4.9: Parameter Estimates and Standard Errors for the Proposed Taper equation

Parameter Estimate SEE ESS N MSE
ay 0.6421100 0.036556224
Qs 0.9430644 0.001799592
5 1.6094235 0.020019514 | 211.062341 | 6996 | 0.030195
i 0.9270510 0.013346343
B3 -0.9963733 0.361105088
B4 247.46764463 | 15.598570311

goodness of fit of the equations was assessed on the summary statistics of the equations
and their residual patterns (Tables 4.7 to 4.9 and Figures 4.4 to 4.9). Residual plots for
equation 4.28 showed irregular trends at most parts of the stem: plots of residuals for
equation 4.23 are clearly superior to equation 4.28. Equation 4.23 was identified as
superior because it had 10% less ESS than equation 4.28. However, it showed some
irregular trends in the middle of the stem. To improve its fit, the technique proposed by
Candy (1989), to include the variable d, the (dbhob) at the two join points was imposed,
to determine whether or not the fit could be improved. Equation 4.23 was thus modified

to equation 4.30.

d?Kh

= p12% + Boz + dBs(z — 1)’ L1 + dBu(z — a3)* I (4.30)

The restriction for equation 4.30 was reinstated through restrictions 4.31 and 4.32 on the

parameters without endangering consistency in the error sum of squares.

(% + %3) =1 (4.31)
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and

1

g[dﬂg(l — a1)3 + dﬂ4(1 _ a2)3] =90 (432)
The main restriction 4.27 remains unchanged, but could be modified to 4.33

Pr B2 Bs s, P 3 _
[?+-'2“+d—3‘(1“01) +d?(1_a2) J=1 (4.33)

It was realized in this study that to ensure compatibility is achieved, all three restrictions,
4.31, 4.32 and 4.33 above must be obeyed. Although it may appear that equation 4.33
embeds both equations 4.31 and 4.32, it alone is not sufficient to enforce compatibility,

although can be used as a final verification.
o Assessment of Goodness of Fit of Taper Equations

The residual pattern for equation 4.30 for most part of the stem was better than without
d. The mean residual value for equation 4.30 was lower than in equation 4.23 which
does not include d (see files TPPD.LIS and TPP.LIS respectively in appendix C). The
residual plots and frequency distribution chart for the equations are shown in Figures 4.10
to 4.12. Parameter estimates and standard errors for equation 4.30 are shown on Table
4.10. Assessment of bias in predicting top diameter d’ by z classes for equations 4.23
and 4.30 was conducted so as to quantify the effect of including d in 4.30. Table 4.11

summarizes this information,

Table 4.11 shows that equation 4.23 and 4.30 have more or less the same precision in
predicting upper stem diameter inside bark. Equation 4.30 predicts diameter better for z
less or equal to 0.3, and when z is greater or equal to 0.8. This implies that it accounts better
for the butt swell which is common in mature Douglas fir trees, however, when z is between

0.3 and 0.8 equation 4.23 performs better. Equation 4.30 is therefore recommended, the



Chapter 4. Developing and Fitting the Models

Table 4.10: Parameter Estimates and Standard Errors of the adopted Taper Equation

Parameter Estimate SEE ESS N MSE
ay 0.686291182 | 0.03401590725
Qg 0.937009056 | 0.00241022981
B 1.677377987 | 0.01737692381 | 237.692642 | 6996 | 0.034005
B2 0.881748009 | 0.01158461587
B3 -0.040497946 | 0.01530960428
By 5.002404744 | 0.32911529480
Table 4.11: Comparison of Bias between equations 4.23 and 4.30
z class N | Mean volume Bias incm
m3 Equation4.23 | Equation4.30
0.1 983 0.9673 -0.72 -0.67
0.2 449 1.1360 -1.42 -1.29
0.3 498 1.0195 -0.38 -0.27
04 468 1.1100 0.30 0.38
0.5 514 0.9774 0.55 0.60
0.6 452 1.0356 049 0.51
0.7 539 0.9844 0.31 0.28
0.8 533 1.0358 -0.01 -0.08
0.9 1294 0.6264 0.04 -0.007
1.0 1266 1.2072 0.13 0.004
| overall bias [ 6996 | 09834 | 007 | 009 |

116
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trade off in loss of precision in the middle section is minimal and is compensated by

precision in predicting diameters near the butt, the section more commercially utilized.
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Figure 4.4: Plot of Predicted Values vs Residuals
Full Polynomial Taper Equation

e
n

+.9
At

"""‘IT'I]UI1||1lvlllllr.ﬁvvlllxrllYTVl]ltxllnl‘r‘rl'lvlll
0.8 -0.& -0.4 ~0.2 0.0 D2 0.4 0.6 0.8 1.0 1.2

Residual

RE ++ + ¢y v ® * NN R A



119
Figure 4.5: Plot of z vs Residuals
Full Polynomial Taper Equation
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Figure 4.6: Frequency Distribution of Residuals
Full Polynomial Taper Equation
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Figure 4.7: Plot of Predicted values vs Residuals
Proposed Taper Equation
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Figure 4.8: Plot of z vs Residuals
Proposed Taper Equation
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Figure 4.9: Frequency Distribution of Residuals
Proposed Taper Equation
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Figure 4.10: Plot of Predicted Values vs Residuals
Adopted Taper Equation
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Figure 4.11: Plot of z vs Residuals
Adopted Taper Equation
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Figure 4.12: Frequency Distribution of Residuals
Adopted Taper Equation
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4.24.2 Taper Based System

The procedure was repeated, but unlike the volume based system, taper is regarded to be
the primary concern, and volume is obtained by integration of the taper equation. The
same methodology and equations were retained as for the volume based procedure, but
the stem volume v, was substituted as in equation 4.34. The approach is similar to that of

Byrne and Reed (1986) but they used Cao et al. (1980) segmented taper equation 4.20.
v=Kfd’h (4.34)

After this substitution and rearrangement, equation 4.30 becomes equation 4.35 below.

d/2
E = f[ﬂ122 + ﬂgz + dﬂ;g(z - 01)211 + dﬂ,;(z - a2)212] (435)
d' is top diameter (cm), d is dbhob (cm) and f is the form factor, which is simultaneously

determined through regression with other parameters of the equation. The integration

computed from equation 4.35 is
1
v = / K fd[B12* + Poz + dBs(z — c1)* L + dBa(z — an)*Ly)h.dz (4.36)
0

The results of this integration yields 4.37

v = de%[% + % + d—’;—3

(l — 01)311 + d%(l — 052)311] (437)

Traditionally, the total volume of a tree can be obtained by expression 4.38

v=Kfdh (4.38)

Compatibility requires that the total volume of the tree should equal the merchantable
volume when integration is performed for z between the limits O and 1. Thus, as for

equation 4.30 the compatibility restriction is enforced by equations 4.31, 4.32 and 4.33,
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and v, equals v for K fd?h . Because stem taper depends much on locality, the form
factor parameter (f) was estimated for each individual region. Thus, the form factors fi,
f2 and f3 for Canterbury, Nelson and Southland regions respectively, are analogous to
regional dummy variables in the volume function.

It was noted, however, that by imposing restrictions 4.31 and 4.32 and 4.33 in equation
4.35 the coefficient 3, was not significantly different from 0. It was possible to derive
the parameter estimates of this equation by imposing restriction 4.33 alone, but the

compatibility was only satisfied approximately. Table 4.12 summarizes the parameter

Table 4.12: Parameter Estimates and Standard Errors of Taper Based Taper Equation

| Parameter | Estimate | StandardError | ESS | N | MSE |
a; 0.348706716 | 0.01928597805
«y 0.929131830 | 0.00244793852
b1 1.900372163 | 0.03171623308
B 0.727374098 | 0.02109987072 | 42.6656282 | 6996 | 0.0061064
B3 -0.035492183 | 0.00345130818
B4 3.480118250 | 0.29840727686
f 0.428699044 | 0.00161329875
fa 0.414923399 | 0.00222663674
I3 0.439686110 | 0.00197526882

estimates for the approximate compatible taper based taper equation 4.35, also shown in
the file TPPELIS in appendix C. Figures 4.13 to 4.15 show the plot of residuals against
predicted values, plot of residuals against z and a bar chart of the frequency distribution

of residuals respectively.

4.2.4.3 Summary - Taper Equations

The volume based system of taper equations was developed successfully (equation 4.30)

and is the one recommended for Douglas fir in the South Island. The inclusion of d in the
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equation has provided two major advantages: (1) the parameter estimates have smaller
confidence intervals than a similar equation without d ; and (2) the residuals near the butt
end are more restricted about the zero line (see Tables 4.9, 4.10 and 4.11, and Figures
4.7 and 4.10). The form of quation 4.30 is also compatible with any volume function
regardless of the species. Its applicability, therefore, depends largely on the availability

of a volume function and on the evaluation of precision.

The taper based system should only be applied at this time as an approximation when a
volume table is unavailable. Tests with this equation showed that a compatibility of 98%
can be achieved. This methodology, however, demonstrates a potentially useful analytical

procedure, which could be adopted in other sets of data and species.
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Figure 4.13: Plot of Predicted Values vs Residuals
Taper Based Taper Equation
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Figure 4.14: Plot of z vs Residuals
Taper Based Taper Equation

131

TTYTTY YT

-0.3

T T T T e T T T
B . A " -
.2 -0.1 0.0 0.1 0.2

RESID

RE +++ay +4++muw ++toap

0.5

T T



132
Figure 4.15: Frequency Distribution of Residuals
Taper Based Taper Equation
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4.3 Whole Stand Growth and Yield Model [DfirStand]

DfirStand is a whole stand simultaneous growth and yield model applicable to four regions
of the South Island in which Douglas fir is grown, namely Canterbury, Nelson, Southland
and Westland. Unlike static models (Alder, 1980) DfirStand is a state - space dynamic
growth and yield model (Garcia, 1988), capable of predicting rates of change under vari-
ous conditions. The trajectories over time are then obtained by adding or integrating these
rates.

A number of site variables such as altitude, latitude, distance from the sea, annual rainfall

and soil type were considered as possible variables to explain regional growth variation.

4.3.1 Development of DfirStand

Polymorphic and anamorphic forms of Gompertz (Nokoe, 1978); Schumacher (Clutter
et al., 1983), Hossfeld (Woollons et al., 1990), Levakovich, Weibull, monomolecular,
Morgan - Mercer - Flodin, Umemura (Umemura, 1984) and Chapman - Richards (Pienaar
and Turnbull, 1973) functions were all fitted to the data in developing individual equations.
Comparison of equations was based on ESS and RMS values, parameter estimates and
their asymptotic standard errors, PROC UNIVARIATE statistics and plots of residuals for

the equations by region as set out in chapter 3 section 3.3.3.

In developing DfirStand, two hypotheses were postulated.



Chapter 4. Developing and Fitting the Models 134

(i) For a large area with large population(s), there exist local biological
and environmenta: adaptations which influence the growth of the crop
in diverse ways. Local adaptations can be characterized through use of
dummy and other predictor variables. Dummy variables are variables
which can assume a value of O or 1. When the dummy variable assumes
the value of 1 the coefficients which go with it are active, otherwise they

are inactive.

(ii) local adaptations referred to in (i) combine with other management
induced effects such as thinning and fertilization, which provide a range
of influences on crop yield. Local adaptations are specific while the

other effects are more general in nature.

These hypotheses were tested to ascertain the potential to develop a single growth and yield
model which could be aggregated and disaggregated into individual regions or localities

through dummy and other predictor variables reflecting these two kinds of influence.

4.3.2 Equations Employed in Stand Level Modelling

This subsection explains the form of equations used to develop DfirStand. The components
of DfirStand are: (1) mean top height equation; (2) site index equation; (3) net basal area/ha
equation; (4) equation to predict net basal area/ha after thinning (5) stand volume/ha
production equation ahd (6) stem survival/ha equation. These are explained in the next

subsections.
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4.3.2.1 Mean Top Height Equation

Table 4.13 presents the data that were used to develop a general mean top height equation.

The data are separated into individual regions. The variables used in this equation are age

Table 4.13: Data Used to Develop Mean Top Height and Site Index Equations

| Region | N | \Varable [ mean | minimum | maximum |

Age (T) 32.9 9.0 571

Canterbury 211 | Top height (m) | 22.9 2.9 393
Altitude (m) | 327.6 150.0 790.0

Age (T) 274 8.0 58.0

Nelson 838 | Topheight (m) | 22.9 5.6 47.8
Altitude (m) | 439.2 183.0 625.0

Age (T) 33.9 7.0 78.0

Southland 347 | Top height(m) | 24.3 4.3 46.2
Altitude 234.9 0.0 330.0

Age (T) 25.6 5.0 59.1

Westland 189 | Top height (m) { 184 19 37.5
Altitude (m) | 234.0 0.0 330

Total number
of observations | 1585

of the crop (T), mean top height (h190), and altitude (AL). The mean top height equation

found to fit best was a form of an anamorphic Schumacher shown in 4.39,

(e+BXAL)(Zy - 27)
h(100,2) = h(100,1)€ T (4.39)

A single equation for all localities was found to be precise and with no regional bias in
residual patterns, compared with fitting equations by individual regions or large forest
aggregations on their own. Altitude controlled not only the level of asymptote, but also

appeared to characterize differences in site quality very well from one locality to another.
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Goodness of Fit of the Mean Top Height Equation

Parameter estimates for equation 4.39 are summarized in Table 4.14. All the parameter

Table 4.14: Parameter Estimates and Standard Errors of Mean Top Height Equation

Parameter Estimate Standard ESS N | mean Square

error Error (MSE)

a 9.333951561 | 0.13347007407
B -0.001624622 | 0.00038075887 | 521.5633 | 1585 0.3297

v 0.316495110 { 0.01445706630

estimates were significant at least at thé 5% level. Figure 4.16 shows the plot of residuals
against predicted values. Figure 4.17 shows the plot of residuals against age (7}), Figure
4.18 shows the plot of residuals against altitude and Figure 4.19 shows the chart of
frequency distribution of the residuals. The precision achieved in this overall equation is
better than in any other equation known to exist for this whole population or subset of
it, as is also explained elsewhere in Whyte et al. (1992) (see appendix B). The residuals
about the predicted values never exceeded +1.50 m. Inclusion of latitude, distance from
the sea and rainfall was also tested, but none of the variables appeared to contribute any
real predictive improvement and so were discarded. Apparently, the height/age curves are
wholly anamorphic with respect to altitude and so it is possible to be reasonably confident
of predicting mean top height of Douglas fir at any age (or its site index) anywhere in the
South Island, given the crop’s starting height is above age 5 and altitude within range 0 to

790 m above sea level.
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4.3.2.2 Site Index Equation

Site index equations were derived from the mean top height equation by setting 75 equal
to 40 years (see equation 4.40), which is used here as the base age for Douglas fir in New

Zealand (Burkhart and Tennent, 1977; Mountfort, 1978).
S = h(lggyl)e(a_*-ﬂXAL)((Til)7—(41_0)7) (440)

The site index curves developed in this study are anamorphic with respect to altitude, they
are displayed for the Nelson region at an average altitude of 438 m above sea level in

Figure 4.20.
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Figure 4.16: Plot of Residuals vs Predicted Values[m]
Mean Top Height Equation
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Figure 4.17: Plot of Residuals [m] vs Time [T1 years]

Mean Top Height Equation
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Figure 4.18: Plot of Residuals [m] vs Altitude [m a.s.l]
Mean Top Height Equation
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Figure 4.19: Frequency Distribution of Residuals [m classes]
Mean Top Height Equation
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Figure 4.20: Site Index Curves
Douglas fir Nelson Region
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4.3.2.3 Net Basal Area Projection Equation

Data Used in Developing of Net Basal Area Equation

The data used in developing a net basal area/ha equation are summarized in Table 4.15

(figures in parenthesis in column 1 are numbers of measurements). The variables used

Table 4.15; Basal Area/ha Data for Canterbury, Nelson, Southland and Westland

Region Variable Mean | Minimum | Maximum
Age(yrs) 34.3 11.8 61.0
Canterbury G/ha 44.1 44 116.2
(189)
Site index (m) | 28.1 227 35.8
Altitude (m) 322 150 470
Thinning index | 0.3372 | 0.07350 | 1.491900
Age(yrs) 279 7.0 58.0
Nelson G/ha 419 1.2 1094
(841)
Site index (m) | 33.5 22.7 419
Altitude (m) 439 183 625
Thinning index | 0.2577 | 0.03000 2.3751
Age(yrs) 33.7 7.0 75.0
Southland G/ha 50.8 1.1 112.8
(345)
Site index (m) 29.3 18.3 37.6
Altitude (m) 253 50 625
Thinning index | 0.2349 | 0.03390 0.6441
Age(yrs) 26.8 5.0 59.1
Westland G/ha 29.0 0.0 123.8
(209)
Site index (m) | 30.0 10.5 38.1
Altitude (m) 234 0 330
Thinning index | 07520 | 0.09900 3.0000

in this equation are net basal area/ha ((), age of crop (7"), thinning index (X}), altitude
(AL) and site index (S). In addition three dummy variables K, K>, and K3 were included

to distinguish locality.
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The thinning index, X, is in this equation defined as

Xo=1-% (4.41)
dp

where d;, is the quadratic mean diameter of the stand just before thinning and d;
is the quadratic mean diameter of trees removed in thinning. Several sigmoidal
curves(Schumacher, Chapman-Richards, Gompertz, Hossfeld, Weibull and Morgan-
Mercer) were fitted to basal area data, the goodness of fit of each equation was analyzed.
A polymorphic form of the Schumacher, equation 4.42 originally used by Clutter and
Jones (1980) fitted the data most and was selected to form a base model for subsequent

analysis.

T8 T
Gy = G\ 20=(ED)) (4.42)

Equation 4.42 fitted the data well, and so, site index was later included as a variable to

test whether the fit could be further improved. Equation 4.43 was thus fitted to the data.

714 Ty B,
Gy = G§T2) 6(01+ﬁ25)(1"‘(7~12“)ﬂ) (4.43)

The impact of site index in the basal area equation was unexpected: not only was it not
significant (at 5% level), but the parameter (3, was negative suggesting that higher site
indices had lower net basal area production. This is contrary to what researchers have
established for a long time in the context of site index and growth.

A statistical analysis was conducted and it was possible to show that there were interacting
effects between altitude and site index particularly in Canterbury data; higher elevations
in Canterbury have a higher rainfall and better soils suitable for Douglas fir. It was

therefore concluded that altitude could be a more efficient and expressive factor, which
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could substitute readily for site index. The variable site index (S) was then omitted and
altitude above sea level was substituted as in equation 4.44,

T1\A T
Gy = GgTz) e(0+ﬁ2AL)(1—(—T‘;—)ﬁ1) (4.44)

Locality adaptation was incorporated in the equation through use of three dummy variables
K, K,, and K3, with adaptation coefficients fs, 34 and Fs respectively. A series of nested
equations (refer to section 2.8.5) was fitted, allowing the asymptote parameter « to vary
for each region, while 5, and the altitude coefficient, 5, were assumed to be fixed. A
simple SAS program was used to input the dummy variables, such that they assume a
value of 1 for the intended region, else a value of 0 is assumed. Out of these nested
equations, equation 4.45 fitted the data best. Thus, the dummy variables K, K5, and K3
assume the value of 1 for Nelson, Southland, and Westland regions respectively, otherwise

they assume a value of 0, while Canterbury is the default.

Gy = Gg%)ﬁl e(a+ﬁ2AL+K1ﬁ3+K2ﬂ4+K355)(1—(%)pl) (445)

Altitude and dummy variables are being used here for determining the level of asymptote
for each region in equation 4.45. The use of local altitude appeals more in terms of

localisation rather than if average altitude was used.
Quantification of Amount and Kind of Thinning

Thinning was incorporated in equation 4.45 in such a way that the equation could be used
for predictions in both thinned and unthinned stands. The thinning index used in this study
is similar to that of Murphy and Farrar (1988) but with some modification, the difference

being how the age of thinning T; is referenced in the equation so that at the same time all
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biological and logical properties of the equation are retained. Murphy and Farrar (1988),
defined their thinning term as
(7 — %)

X ) (4:46)

Where X, the thinning index, is defined as

X,=1-% (4.47)
dy

and

d; = quadratic mean diameter of trees removed in thinning.
dp = quadratic mean diameter of the stand just before thinning.
T, =Thinning age (Ti<=1})

T3 and T are respective ages (years) in a thinning interval.

In their data, thinning was done at equal intervals of 5 years, while the interval of thinning
in this study ranged from 3 to 30 years. In this study the thinning term adopted and found
to be helpful in predicting the effects of variable thinning intensities and variable thinning

intervals was

X = =) (4.48)

The inclusion of the thinning term 4.48 in the equation has two important properties,

namely,

(1) as T, approaches oo then the thinning term in equation 4.48 approaches
0, so that the ability of stands to respond to thinning diminishes with

age,
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(2) because le — Til is always negative, and g was also negative (see Table
4.15), the thinning term is a decreasing function of 75, but it diminishes

at a slower rate than that of Murphy and Farrar (1988) by the factor of

L
T3

Because the age of thinning in equation 4.48 is a constant, the overall equation 4.49 retains
all the other basic properties, namely, compatibility between growth and yield (Clutter,
1963), path invariance, and consistency, although it is not readily apparent at first glance
and without some rearrangement of the last term (thinning term) in the adopted equation

4.49.

g
G, = Gga%)”l ((aHBaK1+B3 Kot B4 Kot B AL) (1~ (T1)P1 )+ Bo X5 = )% ) (4.49)

Goodness of Fit of Net Basal Area/ha Projection Equation
Table 4.16 below sets out the parameter estimates and standard errors for equation 4.49
The goodness of fit was evaluated through plots of residuals against predicted values as

shown in Figure 4.21, Figure 4.22 shows the plot of residuals against time (7}), Figure 4.23

shows the plot of residuals against altitude, and Figure 4.24 shows the chart of residuals.
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Table 4.16: Parameter Estimates and Standard Errors of Basal Area Equation, 4.48

Parameter Estimate SEE ESS N MSE

o' 5.096954651 | 0.02899877466
B 1.064813569 | 0.01533259541
B2 0.053376341 | 0.01976034060
Bs 0.276381537 | 0.02089265203 | 2674.0500 | 1592 | 1.6871
Ba 0.312440622 | 0.03543866689
Bs -0.000244357 | 0.00005286663

e -1.834181689 | 0.83833778987

There were no apparent regional biases in basal area projection with the overall equation
4.49, whereas there were with the average one as in 4.44. When an average Schumacher
fit was made to the data (equation 4.42), the residuals extended £ 10 m?/ha about zero,
whereas equation 4.49 with its additional explanatory and locality variables was able to
contain them all within & 4.0 m?/ha, while 95% of the residuals were contained within +
3.0 m?/ha. Parameter estimates in Table 4.16 can be interpreted as follows: «, 31, 3s, and
Be are common coefficients contributing to the asymptote of each region, S5 is negative
indicating that basal area growth declines with increasing altitude. The thinning term
coefficient B is also negative, but because 1/7, — 1/T; in equation 4.48 is negative, it
implies that basal area growth responds positively with thinning. In addition S, contributes
to the asymptote if region is Nelson, /35 contributes to the asymptote if region is Southland

and 3, contributes to the asymptote when region is Westland.
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Successive Improvement of Net Basal Area Equation

Table 4.17 summarizes the successive improvement of the basal area/ha equation through

incorporating different variables and coefficients. The levels of improvement over an

Table 4.17: Successive Improvement of Net Basal Area/ha Equation

| Input Variables | ESS | % ReductioninESS | MSE |
o 3765.3352 - 2.3666
a, By 3709.3588 1.5 2.3329
a9 ﬂlv
2y, Ly 23 2719.4125 26.6 1.7136
«, /81,
21y Ly L3y AL 2682.3634 14 1.6913
a, IHI’
Zy, 49, Z3, AL, X, | 2674.0500 0.31 1.6871

that managers should be relatively content to work with.

average fit and the precision attained per se in equation 4.49 provides a level of sensitivity
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Figure 4.21: Plot of Residuals vs PredictedValues [m " 2]
Net Basal area/ha equation
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Figure 4.22: Plot of Residuals [m”2] vs Time[T1 years]
Net Basal area/ha equation
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Figure 4.23: Plot of Residuals [m~2] vs Altitude[m a.s.l]

Net Basal area/ha equation
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