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Preface

X-ray crystallography is the primary technique for imaging the structures, or the po-

sitions of the atoms, of molecules. Knowledge of the geometrical atomic structures

of molecules is key information in physics, chemistry, biology, geology and many other

areas of science and technology. Structures are determinants of the properties of molec-

ular systems. In the case of biology, knowledge of the structures of biological molecules

provides essential information that allows us to understand the biological functionality

of biomolecules and biomolecular systems. This knowledge is used to understand the

fundamental molecular basis of biological function and processes, disease processes, and

is also important in rational, or structure-based, drug design.

X-ray crystallography involves irradiating a crystal specimen of the molecule under

study with a beam of X-rays, and measuring the resulting pattern of diffracted X-rays.

The data consisting of measured diffraction patterns is then inverted computationally to

produce an image of the molecule. This is often referred to as computational imaging

or computational microscopy. If both the phase and amplitude of the diffracted X-

ray could be measured, then inversion of the data to produce the image would be

straightforward. However, in practice, one can measure only the amplitude, but not

the phase, of the diffracted X-rays. This results in the famous so-called “phase problem”

in crystallography. A method of determining the phases must be devised before the

structure can be calculated.

The phase problem in crystallography has been studied for over one hundred years,

and a number of clever methods have been devised for determining the phases in order

for structures to be calculated. However, the phase problem is still an active area of

research as current phasing techniques have significant limitations, and also because of

the emergence of new kinds of instrumentation, specimens, and diffraction experiments.

This thesis is concerned with the phase problem and phase retrieval algorithms

for biological (macromolecular) crystallography that have arisen, in part, through the

recent introduction of a new kind of X-ray source called an X-ray free-electron laser,

and through new kinds of specimens that can be used with these sources.

The thesis is divided into six chapters. The first chapter provides background

information on diffraction imaging, X-ray crystallography, the phase problem, phase

retrieval algorithms, and X-ray free-electron lasers and serial femtosecond crystallogra-
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ii

phy. Original material is contained in Chapters 2 through 5. Concluding remarks are

made in Chapter 6.

Chapter 2 is concerned with properties of the phase problem for 3D crystals. New

relationships are derived that more carefully formalise uniqueness for this problem, the

problem for the case of an unknown molecular support is studied in detail and the

theoretical results are supported by simulations, and the effects of crystallographic and

noncrystallographic symmetry are elucidated.

Chapters 3 and 4 form the first main part of the thesis and consider the phase

problem for 2D crystals, a new kind of specimen that has been investigated with X-ray

free-electron lasers. The two chapters are presented as two published journal papers for

which the candidate is the primary author. In Chapter 3, the fundamental uniqueness

properties of the phase problem for 2D crystals are derived, the nature of the solution

set is elucidated, and the effects of various kinds of a priori information are evaluated

by simulation. Chapter 4 follows up the results in Chapter 3, using simulations to

investigate practical aspects of ab initio phase retrieval for 2D crystals using minimal

molecular envelope information, and considering the characteristics of data available

from X-ray free-electron laser sources.

Chapter 5 forms the second main part of the thesis and develops a new kind of ab

initio phasing technique called ab initio molecular replacement phasing. This method

uses diffraction data from the same molecule crystallised in two or more crystal forms.

Uniqueness of the solution for such a dataset is evaluated, and a suitable phase re-

trieval algorithm is developed and tested by simulation using a small protein of known

structure.

Chapter 6 contains a brief summary of the outcomes of the thesis and suggestions

for future research.
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1 INTRODUCTION

1.1 DIFFRACTION IMAGING

In imaging, radiation from an object of interest is measured and processed to obtain

an image of the object. In some cases, for instance astronomy, the object is the source

of the radiation, but usually, a separate and controlled source of radiation is used to

illuminate the object. In the course of passing through the object a portion of the

radiation interacts with the matter and, while doing so, encodes information on the

object composition and structure. Typically, the encoding of the outgoing radiation

is decoded with lenses specific to that radiation type, to directly form an image of

the object. However, if lenses are not available, lensless techniques are used where

the outgoing radiation is recorded on a detector to be later decoded using numerical

computations.

In diffraction imaging, measurements of the diffraction from an object are used

to obtain a high resolution image of the object. In the past century, complementary

diffraction imaging techniques have been developed around different types of radia-

tion such as electromagnetic waves (e.g. light, microwaves, soft and hard X-rays) and

matter waves (e.g. electrons, neutrons). Short wavelength radiation allows imaging of

matter down to the atomic scale i.e. about one Ångström, with 1 Å = 10−10 m, while

the penetrating power of the radiation allows imaging of the full three-dimensional

structure.

Three-dimensional high resolution imaging enabled by diffraction imaging tech-

niques is a powerful tool that is used in many fields such as chemistry, structural

biology, and material science, to name but a few. These techniques enable life to be

imaged down to its smallest actors, help develop new advanced materials, design better

drugs with better specificity, and study electronic transfers in chemical reactions for the

development of more efficient catalysts or even bio-mimicked solar energy generation

systems [Hasnain, 2015, Blundell and Patel, 2004, Verschueren et al., 1993].

Until recently, diffraction from small non-crystalline objects was too weak to be

measured. Natural gratings, such as molecular crystals and crystalline solids, offer

an attractive solution to increase the strength and signal-to-noise ratio (SNR) of the

diffraction patterns, as shown in Section 1.2.2. This crystal requirement is one of the

largest shortcomings of conventional diffraction imaging techniques, as not all matter

1



2 CHAPTER 1. INTRODUCTION

readily crystallises. On the bright side, technological advances in radiation sources and

facilities coupled with new methods has rendered crystallisation the most difficult step

in diffraction imaging, such that if a crystal of the object can be produced, it is likely

that the structure can be determined [Chayen, 2004].

1.2 X-RAY CRYSTALLOGRAPHY

X-ray crystallography (XRC) is currently the most successful diffraction imaging tech-

nique for the determination of the structure (the position of atoms in space) of crys-

talline matter at atomic resolution. This technique spurred the development of the field

of structural biology, beginning with the determination of the first protein, the sperm

whale myoglobin, by Kendrew in 1958 [Kendrew et al., 1958, Jaskolski et al., 2014].

Currently, more than 90% of all protein structures deposited in the protein databank

(PDB) were obtained by XRC. The structure of entire viruses and complex assemblies

such as the ribosome (about a quarter of a million atoms) are known to high resolution

owing to XRC [Khatter et al., 2015, Prasad et al., 1999].

From the early experiments determining the structure of a copper sulphate crys-

tal using an X-ray tube and photographic plates lead by Friedrich and Knipping in

1912 [Friedrich et al., 1912], to the serial femtosecond X-ray crystallography (SFX)

experiments using X-ray free-electron lasers (XFELs) and megahertz CCD detectors

[Allahgholi et al., 2015, Henrich et al., 2011], the advancement of this field is both

evolutionary and revolutionary. This latter fact is better envisioned when considering

the natural advances of XRC where smaller crystals, briefer X-ray pulses and more

intense and highly coherent sources have led to the structure determination of key pro-

tein structures (of top clinical, technological or environmental significance) and higher

resolutions [Johansson et al., 2017, Fromme, 2015, Ishchenko et al., 2018]. At the fore-

front of XRC, single-particle imaging (SPI), where crystals are no longer needed [Aquila

et al., 2015, Oberthür, 2018, Spence and Doak, 2004], has been the main driver and

the object of all hopes in the field [Chapman, 2009].

1.2.1 X-ray diffraction crystallography methods

In single crystal X-ray diffraction (SXRD), the oldest and most precise method of XRC,

a crystal of the molecule under study is placed in a collimated and monochromatic X-ray

beam. The intensities and angles of the diffracted photons are recorded on a detector

forming an image called a diffraction pattern. A number of diffraction patterns are

collected by rotating the crystal about an axis, ideally perpendicular to the X-ray beam,

to obtain a three-dimensional dataset. Each diffraction pattern presents a number of

spots with varying intensities called reflections that encodes for the molecule structure.

A reconstituted diffraction pattern is shown in Fig. 1.1. Each reflection corresponds to

the constructive interference of scattered X-rays within the crystal that is equivalent to
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Figure 1.1 Reconstituted diffraction pattern showing spots (reflections) of different
intensities [Rypniewski et al., 1993].

the reflection of X-rays on a set of equally spaced crystal planes. Each spot is indexed

by three integers (the miller indices) that describe a particular set of planes.

One of the main drawbacks affecting SXRD relates to X-ray induced radiation

damage. Amongst the high energy X-ray photons that interact with the crystal, the

vast majority are photoabsorbed causing damage to the molecules and to the crystal

structure. The radiation dose that a cryo-cooled crystal can accept before half of the

diffraction intensity vanishes, compared to that of the undamaged structure, is called

the Henderson limit and is about 30 MGy at 100K (where one Gray is one joule per

kilogram) [Henderson, 1990]. As the same crystal is exposed multiple times in SXRD,

this limits the minimum size of the crystal to about a few microns [Holton and Frankel,

2010, Robin et al., 2016].

The advent of XFEL sources opened a new era in XRC and a major shift of the X-ray

imaging paradigm. XFELs produce pulses with a peak brilliance∗ a billion times higher

than the 3rd generation X-ray synchrotron radiation sources used in SXRD. With such

brillances, any crystal lased by a single XFEL pulse undergoes a Coulomb explosion,

or vaporization, in a process which starts by the emission of photoelectrons [Spence,

2017, Lomb et al., 2011]. Such destruction of the crystal is not immediate however and

noticeable damage will only be manifest after about 30 fs. As an XFEL pulse duration

∗Brilliance describes the maximum number of photons of a given energy that are emitted
per unit time, unit cross-sectional area, and unit solid angle. Brilliance is usually given in
units of photons /s/mm2/mrad2, but for comparison purposes between X-ray sources with differ-
ent spectra, the brilliance is often normalised to 0.1% of the source bandwidth i.e. in units of
photons /s/mm2/mrad2/0.1%BW.
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is in the order of femtoseconds, meaningful diffraction from an undamaged structure

can be recorded. These ideas were at the origin of a new paradigm in XRC using XFEL,

the so-called diffract-before-destruct paradigm [Chapman et al., 2011, Chapman et al.,

2014, Neutze et al., 2000].

A new XRC method, based on this paradigm, was developed: serial femtosecond

crystallography (SFX). In SFX, in stark contrast to SXRD, for each XFEL pulse a

new crystal is presented and destroyed. Up to a few million crystals can be shot in a

single SFX experiment, with plans to record diffraction patterns at the full MHz XFEL

pulse repetition rate. A number of complimentary specimen delivery approaches were

developed for this purpose, including, fixed target systems, liquid jets and gas dynamic

virtual nozzles [Weierstall et al., 2014, Hunter et al., 2014, DePonte et al., 2008, Roedig

et al., 2015]. Contrary to SXRD, the orientations of the patterns are not known as the

crystal orientation at the interaction point is random. These orientations must first be

recovered, which can be difficult if the diffraction is weak.

The intensity and position of the reflections in the diffraction pattern encodes the

strength and location of the X-ray scattering density in the crystal, namely the electron

density. Interestingly, the encoding is none other than the squared magnitude of the

Fourier transform of the electron density, as outlined in the following section. The

Fourier phases which are necessary to inverse Fourier transform the diffraction data

to obtain a map of the electron density, are lost in XRC experiments as the detector

cannot measure them. The lack of phase measurement is a common problem in lensless

imaging and other fields [Millane, 1996, Millane, 1990], and is known colloquially as the

phase problem. A number of computational techniques to recover the phases in XRC

are given in Section 1.3.2. After successful recovery of the phases and, therefore, of the

electron density, the three-dimensional structure of the molecule can be determined by

fitting a molecular model to the calculated electron density map.

1.2.2 Diffraction by a crystal

The oscillating electric field of X-ray radiation impinging on electrons in the crystal

forces them to oscillate. In turn, the oscillating motion of the electron produces dipole

radiation which is the basis of scattering. Here, only electron scattering where no

energy is imparted to the electron and the wavelength of the scattered X-ray photon is

the same as the incident photon is considered. The measured diffraction corresponds to

the superposition of all the scattered waves from the electron density in the crystal. In

order to simplify the description of the interaction of X-ray photons with the electron

density in the crystal, a number of approximations are used in this section:

1. Fraunhofer or far-field approximation: The incident X-rays and the detector plane

are essentially at infinity with respect to the crystal (optically speaking). This

approximation allows the simplification with plane waves used in Fig. 1.2.



1.2. X-RAY CRYSTALLOGRAPHY 5

2. Born approximation: The scattering of the X-rays is weak and so occurs at most

once within the crystal (multiple scattering does not occur).

A description of diffraction based on these principles is known as the kinematical

theory of diffraction and is the main description used in X-ray protein crystallography.

If the crystal is perfect, the dynamical theory of diffraction is used where multiple

scattering and other phenomenon are taken into account.

Consider diffraction from the electron density cloud of an atom with density de-

noted ρatom(r), with the origin at the center of the atom. The incident X-ray beam

is defined by the wave vector si, and we consider coherent scattering in the outgoing

direction given by the wave vector so, both of length 1/λ (Thompson scattering). The

scattered waves from all points r in the electron density cloud are superimposed in the

contribution to the outgoing scattered wave. The amplitude and phase of this scattered

wave is thus given by

f(si) =

∫
r
ρatom(r) exp(2πir · (so − si))dr. (1.1)

Assuming that the electron density cloud is spherically symmetric, the scattering from

an atom can be reduced to an atomic scattering factor, denoted f(|u|) that depends

only on the length of the vector u = so − si and |u| = 2 sin(θ)/λ, with θ the angle

shown in Fig. 1.2.

Figure 1.2 The incident wave, denoted si diffracted in the direction of so can be
viewed as being reflected against a plane, adapted from [Drenth, 2007].

The scattering from a molecule can be similarly found from the superposition of the

scattering from each of its constituent atoms. The scattering contribution from an atom

j at position rj is given as a phase change of 2πirj · u to the atomic scattering factor

fj(|u|) and summing over the n atoms gives the total scattering from the molecule as

F (u) =

n∑
j=1

fj(|u|) exp(2πirj · u). (1.2)
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Equation (1.2) can be rewritten by integration over the continuous electron density of

the molecule, denoted ρ(r), occupying the volume V , giving

F (u) =

∫
V
ρ(r) exp(2πir · u)dr, (1.3)

which corresponds to the Fourier transform.

In order to increase the diffraction to measurable levels, the molecule is crys-

tallised. Unfortunately, crystallising introduces translational periodicity which sam-

ples the diffraction and limits the information available in the diffraction pattern. To

understand why, let us first model the crystal electron density.

A crystalline object repeats a motif, called the unit cell, translationally along three

dimensions. The set of all translation vectors of the motif is known as the crystal lattice

L, and is given as the set of vectors

tmnp = ma + nb + pc, (1.4)

where m,n and p are integers and the volume encompassed by the lattice vectors a,b

and c is the unit cell. For an infinite crystal, the crystal electron density can be

described as the convolution of the lattice of L and the unit cell contents ρ(r), so that

g(r) = ρ(r)⊗
∑
m

∑
n

∑
p

δ(r− tmnp), (1.5)

where ⊗ denotes convolution. The diffraction by the crystal is the Fourier transform

of g(r). This is given by

G(u) = P (u)
∑
h

∑
k

∑
l

δ(R− t′hkl), (1.6)

where P (u) is the Fourier transform of ρ(r) and t′hkl is the set of reciprocal lattice

vectors given by

t′hkl = ha′ + kb′ + lc′, (1.7)

where a′, b′, c′ are the reciprocal unit cell vectors. The unit cell and reciprocal lattice

unit cell vectors are related by

a′ =
b× c

a · b× c
b′ =

c× a

a · b× c
c′ =

a× b

a · b× c
, (1.8)

where × denotes the vector cross product. Inspection of equation (1.6) therefore shows

that the diffraction by the crystal is equivalent to diffraction by the motif (unit cell

contents), but sampled on the reciprocal lattice.
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1.3 THE PHASE PROBLEM

Despite tremendous advances in XRC, the phase problem remains one of the limiting

factors hampering routine protein structure determination. Many phase problems faced

in XRC experiments may be classified as ill-posed NP-complete problems [Zwick et al.,

1996]. Solutions to NP-complete problems can be verified in polynomial time but no

algorithm has yet been developed to obtain the solution in under polynomial time. Ad-

ditionally, ill-posed problems have more parameters than measurements (data) and are

thus not uniquely solvable. A solution to the phase retrieval thus requires additional

independent data or a priori knowledge to render the solution to the phase problem

unique, and a way to use the additional data to either change the problem to a simpler

one, or one with reduced dimensionality with a solution landscape that can be algorith-

mically searched. Additional data in X-ray crystallography can originate either from a

priori knowledge on the solution, or from experiments.

1.3.1 Nature of the phase problem

To each reflection in the diffraction pattern corresponds a wave amplitude, measurable,

but also a wave phase that is unfortunately not measurable and therefore lost during

the experiment. The diffraction at position h on the reciprocal lattice is thus a complex

quantity Fh, in X-ray crystallography called the structure factor, given in terms of a

magnitude, |Fh| and a phase, φh, where

Fh = |Fh| exp (iφh). (1.9)

Once the phases are known, the electron density map of the unit cell can be obtained

by inverse Fourier transforming equation (1.9),

ρ(x) =
1

V

∑
h

Fh exp(i2πh · x), (1.10)

where V is the volume of the unit cell.

The inverse Fourier transform of the square of the structure amplitudes is referred

to as the Patterson function [Drenth, 2007], denoted here by P (x), i.e,

P (x) =
1

V

∑
h

|Fh|2 exp(i2πh · x). (1.11)

The Patterson function can be calculated without knowledge of the phases, and has a

number of applications in X-ray crystallography [Drenth, 2007].
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1.3.2 Phase retrieval

Solving a phase problem and recovering the phases is known as phase retrieval. A

number of complementary methods are used and are briefly described in this section.

1.3.2.1 Direct methods

Direct methods refers to a collection of techniques that use the relationships between the

structure factor amplitudes and phases to directly recover the latter from the former

[Harker and Kasper, 1948, Giacovazzo, 1999]. These relationships exist because the

electron density is not random and constraints can be defined upon it.

The constraint used to derive phase relationships in direct methods is the atomicity

of the electron density, i.e. the electron density consists of separated atomic peaks.

Other constraints such as positivity of the electron density and a random distribution

of atoms are also used to formulate probabilitic phase relationships [Woolfson, 1987].

Unfortunately, the constraints used in the direct methods do not scale well with

the structure size. For large molecules the phase probability distributions become flat

and no additional information is obtained. Furthermore, high resolution data on which

the atomicity constraint depends becomes harder to collect for large molecules due to

disorder and the constraint becomes ineffective. For these reasons, direct methods are

today very successfully used in small molecule crystallography, for molecules containing

up to about a thousand non-hydrogen atoms, and are not effective for large biological

molecules [Usón and Sheldrick, 1999].

1.3.2.2 Isomorphous replacement

Isomorphous replacement (IR) attempts to recover the phases experimentally and was

the first method used to solve the phase problem in protein crystallography [Brito and

Archer, 2013]. This is an effective approach that is used if no a priori information is

known about the structure of the molecule. The method starts with the measurement

of diffraction data from one (single isomorphous replacement - SIR) or more (multiple

isomorphous replacement - MIR) heavy atom crystal derivatives along with the native

structure crystal. Here, heavy atoms refers to high Z atoms such as Hg, U, Pb, Pt,

which present a much higher atomic scattering factor to that of the CHNOPS (carbon,

hydrogen, nitrogen, oxygen, phosphorus, sulfur) atoms that make up most of biological

molecules.

Crystal derivatives are obtained by soaking the native structure crystal in a reagent

solution containing the heavy atoms. The reagent permeates the crystal and delivers

the heavy atoms to reactive sites on the structure. As the term “isomorphous” suggests,

this technique requires that the addition of heavy atoms to the native structure does

not significantly alter the structure or the packing arrangement of molecules in the

crystal (same unit cell parameters). This can be a difficult prospect in practice.
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The locations of the heavy atoms in the structure is usually available from Patterson

methods or direct methods. Equations are derived that can be solved for the phases,

using data consisting of the sets of diffraction data and the heavy atom positions

[Drenth, 2007].

1.3.2.3 Anomalous scattering

Each atom type has specific electronic transitions at which X-ray photons of the cor-

responding energy are absorbed. The atomic scattering factor used in equation (1.2)

assumes elastic scattering and does not include the change in the diffracted X-ray

phase observed near the absorption edges of an atom. Generally, anomalous scattering

is included in the atomic scattering factor as

f = f + ∆f ′ + i∆f ′′, (1.12)

where f is the normal atomic scattering factor far from an absorption edge, and ∆f ′

and ∆f ′′ are dispersion corrections that depend on the atomic number Z and the X-ray

wavelength or photon energy, and are listed in the International Tables for Crystallog-

raphy, Volume C [Prince, 2006]. This results in changes in the diffraction patterns, the

most visible being the breakdown of Friedels law, i.e. |F (h)| 6= |F (−h)|.
For the photon energies usually used in X-ray crystallography, light atoms do not

contribute to anomalous scattering. In practice then, a crystal derivative must be used.

The most common derivative uses selenium atoms. Selenium atoms can easily be incor-

porated in the protein by replacing the amino acid methionine with selenomethionine

(SeMet) [Hendrickson et al., 1990]. Selenomethionine can be incorporated in proteins

with no effects on the protein structure, an advantage compared to the heavy atom

derivatives used in IR.

Diffraction data from SeMet derivatives and native structures can be used to de-

termine the phases in a method similar to that for MIR. This is referred to as multiple

anomalous dispersion (MAD) and has become an important and widely used method

to solve the phase problem in protein crystallography. Crystal derivatives used in MIR

can also be used, allowing MAD and MIR to be used together to solve a structure.

1.3.2.4 Molecular replacement

The Euclidean distance preserving property of the Fourier transform shows that if two

objects are similar in real space then they have similar structure factors in reciprocal

space. Accordingly, if a known structure, called the model, is known to be analogous

to that of an unknown structure, called the target, then the Fourier phases of the

model can be used along with the Fourier amplitudes of the target to determine an

approximation to the structure of the target. This constitutes, in a nutshell, the simple

idea behind molecular replacement (MR) [Rossmann, 1972].
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The success of MR phasing is dependent on the quality of the structural homology

between the model and the target. In practice, structural homology between two pro-

teins is assessed by comparing the proteins’ amino acid sequences. Sufficient structural

homology is expected for MR phasing, with at least 35% sequence identity, which gener-

ally corresponds to a Cα root-mean-square deviation (RMSD) of about 1.5 Å [Abergel,

2013]. The method proceeds by recreating the unit cell of the target crystal from the

model protein. This involves the determination of the rotation and translation of the

model within the unit cell. The orientation of the target protein can be determined by

comparing the Patterson map to that of a set of Patterson maps derived from the model

in different orientations [Drenth, 2007]. Similarly, the positions of oriented models can

be made to match that of the target using a probabilistic maximum likelihood trans-

lation function. After optimisation of the position and orientation of the model, the

diffraction from the model crystal is simulated to obtain approximate starting phases.

This step is often followed by subsequent refinement steps to obtain more accurate

phases.

The more protein structures that are known, the greater the chance of finding an

homologous structure leading to a successful determination of the target structure.

This virtuous circle and the leverage of past structural knowledge has promulgated the

MR technique as the most successful phase retrieval technique. About 70% of all the

structures deposited in protein databanks used the MR phasing technique [Berman

et al., 2000]. In fact, MR phasing of diffraction data can be near-entirely automated

and run on most laptop computers in matter of hours. That being said, molecular

replacement can be affected by model bias (where the solution resembles the model

rather than the target) and, in the adverse case for which no homologous models can

be found, is ill-suited for finding new structural folds. The reuse of incorrect model

structures can also lead to a compounding of structural errors and erroneous folds.

1.3.2.5 Ab initio phasing

Ab initio phasing is really an extension of the direct methods to large proteins. In its

purest form, ab initio phasing utilises only the information in the diffraction pattern of

the native protein and general information that can be found with minimal effort such

as the molecular weight, the protein occupied portion of the unit cell, the presence of

non-crystallographic symmetry, or the fact that the protein is made up of a chain of

amino acids residues of known sequence, that is easily obtainable. Assumptions about

the electron density can also be used such as positivity, prediction of the secondary

structure of the protein, the likely globular shape of the protein, and likely position

in the unit cell to form non-overlapping inter-cell contacts. The ab initio phasing

approach is insensitive to model bias, does not require additional beam time or crystal

derivatives, and is not limited to small proteins, and so is the holy grail of all phasing

techniques. Ab initio phasing has, however, so far been unsuccessful in general in
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protein crystallography.

Iterative projection algorithms are one of the algorithms being used in attempts

to implement ab initio phasing, and are described in the next section. Uniqueness of

the solution to the phase problem is an important aspect when considering ab initio

phasing, as the amount of additional data may not be sufficient to uniquely recover the

phases. Ab initio phasing and uniqueness are the major focus of this thesis.

1.4 ITERATIVE PROJECTION ALGORITHMS

In ab initio phasing, the a priori information and the data available can generally be

expressed as constraints. With this description, the phase problem can be formulated

as a constraint satisfaction problem, where solutions are found at the intersection of all

the constraints.

Iterative projection algorithms (IPAs) are search algorithms for constraint satis-

faction problems. They recursively apply a combination of projections to an iterate,

denoted w, according to an update rule. In most cases only two constraints are con-

sidered, and this is the case considered here.

1.4.1 Constraints and projections

Projections and constraints are conveniently described as operations in a vector space,

rather than the physical space itself. In this description, a vector w = [w1, ..., wn]T in

the n-dimensional space represents the function f(x), where each vector component wj

corresponds to the value of one sample of f(x). Each point in the n-dimensional vector

space corresponds to a different function (or electron density) f(x).

A constraint set C is a region encompassing all vectors whose corresponding func-

tion satisfies the constraint. These regions can be characterised by their convexity.

Graphically, a constraint set is convex if all points in the line segment between any two

points in the set are also in the set, as shown in Fig. 1.3. Mathematically, if and only

if w and y are any two vectors in a convex constraint set C, then

∀η ∈ [0, 1],w + η(y −w) ∈ C. (1.13)

As shown in Fig. 1.3, non-convex sets do not satisfy this condition.

As a Euclidean metric space, the distance between two points y and w is given by

the Euclidean norm

||y −w|| =

√√√√ n∑
j=1

(yj − wj)2. (1.14)

The projection of a point w onto the constraint C is defined as the closest point y ∈ C to

w. Mathematically, denoting by PC the projection onto the constraint C, the projection
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Figure 1.3 (a) A convex set C and (b) a non-convex set D.

of w onto C is defined by

PCw = argmin
y∈C

||y −w||, (1.15)

where argminw∈C f(w) = {w | w ∈ C ∧ ∀y ∈ C : f(w) ≤ f(y)}. The projection is

idempotent, i.e.

PCPCw = PCw. (1.16)

Often, relaxing a projection can help with the global search properties of IPAs. A

relaxed projection for the constraint C, denoted TCw is defined as

TCw = PCw + γC(PCw −w), (1.17)

where γC is a relaxation parameter. In the special case γC = 1 the projection is called

a reflection, denoted RCw = 2PCw −w.

1.4.2 Error reduction algorithm

The error reduction (ER) algorithm is the simplest form of IPA and consists in alterna-

tively projecting the iterate back-and-forth between two constraint sets [Fienup, 1982].

The ER update rule is given by

wi+1 = PBPAwi, (1.18)

where wi denotes the “iterate” at iteration i.

Three situations are depicted in Fig. 1.4. In the first case both constraints are

convex, the ER reduces the error (distance of the iterate to the solution) after each

iteration and is assured to converge, albeit possibly slowly, to the solution. The second

case illustrates the situation where at least one of the constraint sets is non-convex.
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(a) (b)

(c)

Figure 1.4 Behaviour of the ER algorithm for (a) two convex constraint sets, (b)
at least one constraint set is non-convex and, (c) used as a refinement algorithm when
constraint sets are “locally” convex.

In such cases the algorithm will usually stagnate at a local minimum which is not a

solution, i.e. does not satisfy all the constraints. In the last case, similar to the second

case except that the iterate is already close to a solution and the ER algorithm is used

as a refinement algorithm. In general then, the ER algorithm is not suitable for non-

convex problems, such as phase retrieval where an initial estimate of the solution is not

available.

A related algorithm, the relaxed projection (RP) algorithm replaces the ER projec-

tions with their relaxed versions giving

wi+1 = TBTAwi. (1.19)

With the relaxation parameters γA,B usually chosen such as 0 < γA,B < 1. This

algorithm can sometimes avoid stagnation and converge more rapidly, but it is not

generally effective with convex constraints.
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1.4.3 Hybrid input-output algorithm

The hybrid input-output (HIO) algorithm, developed by Fienup [Fienup, 1982] for

astronomy, is an extension to the ER algorithm that is used in those case where only

the Fourier amplitude, support and positivity constraints need to be enforced. Its

update rule is given as [Millane and Lo, 2013]

wi+1 = (PAPB + PA′(I − βPB))wi, (1.20)

where A′ is the complement set of A and β a parameter usually chosen as 0.7.

Contrary to the ER algorithm, the HIO algorithm is able to avoid stagnation even

in the case of the non-convex Fourier amplitude constraint. The HIO algorithm was the

first algorithm that effectively avoids stagnation and is still a popular IPA, although the

constrains that it accomodates are restricted [Millane and Lo, 2013]. A generalisation

of the HIO algorithm to accept for a wider range of constraints has been described by

Millane and Stroud [Millane and Stroud, 1997].

1.4.4 Difference map algorithm

The difference map algorithm (DM) was derived by Elser [Elser, 2003a, Elser, 2003c]

and is designed to overcome stagnation for non-convex problems. The update rule for

the DM algorithm is given by

wi+1 = wi + β(PATBwi − PBTAwi), (1.21)

where TA and TB are the relaxed projections of PA and PB with relaxation parameters

γA and γB, respectively. The nonzero DM parameter β is often chosen with 0.7 ≤ |β| ≤
1 and the relaxation parameters are often fixed to γA = −1/β and γB = 1/β [Elser,

2003b, Elser, 2003a]. A block diagram representation of the DM algorithm is given in

Fig. 1.5.

At convergence, wi+1 = wi, referred to as a fixed point of the algorithm, gives from

equation (1.21),

PATBwi = PBTAwi = w̃. (1.22)

Because PA and PB are the final operations in equation (1.22), w̃ satisfies both con-

straints and is the solution sought. This is in contrast to ER where the solution cannot

usually be obtained from the iterate at convergence. The DM algorithm therefore

avoids stagnation near local minima and has good search properties. Progression and

convergence of the DM can be monitored by calculating the difference between the
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Figure 1.5 Block diagram of the difference map algorithm.

projections

∆ = |PATBwi − PBTAwi|, (1.23)

and ∆ decreases to zero at a fixed point.

1.4.5 Specific constraints, projections and error metrics

In this section common constraints and their projections are described. Usually, for

each constraint an error metric can be defined by calculating the distance of the current

iterate to the corresponding constraint set. The progression and convergence of the

algorithm are monitored by calculating error metrics. Examples of error metrics are

also given.

1.4.5.1 Support constraint

The support constraint corresponds to the fact that outside a support region, denoted

S, the electron density has no crystalline order (liquid phase) and only contributes

to the background scattering in diffraction patterns. The corresponding projection



16 CHAPTER 1. INTRODUCTION

operator, PS , is defined as,

∀j = 1, . . . , n PSwj =

wj j ∈ S

0 otherwise,
(1.24)

where the electron density sample values outside the support S are set to zero while

all values inside the support are left untouched.

In simulations, the true solution denoted wtrue is known. Monitoring the distance

between the true solution to the estimated solution west, i.e. ||wtrue − west|| can be

used to detect convergence of the iterative projection algorithm. An often used error

metric is the root-mean-square (RMS) image error, defined as

e =

√∑
|west −wtrue|2∑
|wtrue|2

, (1.25)

where the sum is over all the vector components.

1.4.5.2 Fourier amplitude constraint

The Fourier amplitude constraint is the constraint imposed by the experimental Fourier

amplitude data. The Fourier amplitude projection, PM, is given as

PMwi = F−1
(√

Itrue
|F{wi}|2

F{wi}

)
(1.26)

where Itrue is the vector of measured intensities. Note that the Fourier amplitude

constraint is a non-convex constraint as it corresponds to the intersection of (2n− 2)-

dimensional hyper-cylinders in R2n.

The RMS Fourier error is given as

E =

√∑
(
√

Itrue −
√

Iest)2∑
Itrue

, (1.27)

where the summation is over all measured intensities. In most IPA implementations,

this error metric generally equals zero after application of the Fourier space projection

and thus must be calculated after the real space projection.

Uniqueness of the solution to the phase problem is important, because if it is non-

unique, false solutions will satisfy the constraints and some of the error metrics will

approach zero. In simulations, because the true solution is known, this problem is

avoided by computing e in equation (1.25), false solutions can therefore be detected.
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1.5 UNIQUENESS OF THE PHASE PROBLEM

Additional independent data, or a priori knowledge, are required to solve the crystal-

lographic phase problem. In most phasing techniques, with the notable exception of ab

initio phasing, the additional data constitute extremely powerful constraints that are

sufficient to render the solution to the problem unique. However this cannot be said

for the weak constraints generally used in ab initio phasing.

Before attempting to solve the phase problem using ab initio phasing techniques,

the uniqueness of the solution to the phase problem must first be considered. For

this purpose, Elser and Millane [Elser and Millane, 2008] introduced the constraint

ratio, denoted Ω, that is defined as the ratio of the number of independent data to the

number of unknown parameters of the phase problem. An ill-posed problem will have

more unknown parameters than independent data and thus Ω < 1. On the contrary, a

phase problem with Ω > 1 will have more independent data than unknown parameters

and a unique solution to the problem is thus likely. In practice, even with Ω > 1 but

close or equal to 1, a unique solution is not assured due to the non-linearity of the

problem.

For the case of a single non-crystalline object, such as in SPI experiments or other

imaging applications that do not involve crystals, where the Fourier intensity can be

measured continuously, the number of parameters is proportional to the volume of the

object, i.e. the number of samples in the object support S, denoted by |S|, with | · |
denoting the volume or number of samples. From the Fourier amplitude data, one can

calculate the autocorrelation of the object, denoted A(x), by inverse Fourier trans-

forming the square of the Fourier magnitudes. Since the autocorrelation is conjugate

centrosymmetric, i.e. A(x) = A∗(x), only half of this data are independent, and the

number of independent data is proportional to half the volume of the autocorrelation

of the object support, or 0.5|A|. The constraint ratio for a single non-crystalline object

is thus given as [Elser and Millane, 2008]

Ω =
|A|
2|S|

. (1.28)

The constraint ratio is bounded below as

Ω ≥ 2D−1. (1.29)

where D is the dimensionality of the problem. For objects with a convex and cen-

trosymmetric support, Ω = 2D−1.

In the 3D crystal case, where the intensity data is only available at the Bragg

positions, the constraint ratio, denoted Ωc, was determined by Millane and Lo [Millane
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and Lo, 2013] and given as

Ωc =
1

2p
, (1.30)

where p is the protein fraction of the unit cell volume. A solvent content of more than

50% is thus sufficient to obtain Ωc > 1 needed for solving the phase problem uniquely.

1.6 X-RAY SOURCES

The history of X-ray crystallography parallels the development of X-ray sources. In

fact, the various X-ray sources are often referred to as generations to emphasise the

various evolutions in the X-ray source technologies.

1.6.1 X-ray tubes and synchrotron light sources

The first generation includes the past and modern laboratory X-ray tube sources. As

a simplified description, in X-ray tubes, electrons emitted from the cathode are ac-

celerated towards the anode by an applied tube voltage, the electrons collide with the

anode and two processes, characteristic X-ray emission and the Bremsstrahlung effect,

are involved in the production of X-rays.

The Bremsstrahlung effect, from the German words Bremsen (to brake) and

Strahlung (radiation), is the radiation that occurs when the electrons are decelerated, in

this case in the anode material, converting kinetic energy into radiation. The emission

spectrum from the Bremsstrahlung effect in an X-ray tube is continuous and with an

intensity dwarfed by the characteristic X-ray emission lines of the anode material, usu-

ally copper or chromium that are used in X-ray crystallography. Characteristic X-rays

are produced when a high energy electron ejects an inner shell bound electron of the

anode material, the vacant energy level is then filled by outer shell electrons with the

production of photons with a quantized energy corresponding to that of the difference

between the energy levels specific to that of the anode material. Two energy levels are

often used in X-ray crystallography, corresponding to transitions from the L shell to

the K shell and known as K-alpha emissions. Filters, monochromators or X-ray mirrors

are often used to select specific X-ray emission lines [Drenth, 2007].

Synchrotron light sources are much brighter than X-ray tubes. Synchrotrons cir-

culate electrically charged particles at relativistic speeds in a storage ring. When the

beam changes direction due to the presence of magnets (bending magnets, wigglers or

undulators) in their paths, X-rays are produced, this is called magnetobremsstrahlung

radiation or synchrotron radiation.
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1.6.2 X-ray free electron laser sources

The latest addition, the X-ray free-electron laser (XFEL) source, at a cost of about

a billion US dollars, is often considered as the fourth generation, but because of their

extreme brilliance, ultra-short and spatially coherent pulses they are in a class of their

own, and have ushered in new kinds of X-ray diffraction experiments.

X-ray free-electron laser sources are constructed from three main sections: an elec-

tron source (electron injector), a linear accelerator and an undulator arranged linearly

in that order. A short description of these follows.

The injector produces short bunches of electrons by extracting them from a solid

cathode with a conventional laser and then shaping and compressing the electron bunch.

The quality of this step is crucial as any variations would be amplified in the next steps.

The ultra short pulses of XFELs are in part due to the very compact electron bunch

created at this step.

The electron bunches are then accelerated within a linear accelerator (linac). The

latest generation of XFELs uses a superconducting linac that can reach hundreds and

even thousands of meters in length and accelerates electrons to energies of up to 20

GeV. The energy of these electrons is tunable and so is the final wavelength of the

X-rays.

Relativistic electron bunches are collimated before entering the undulator. Undula-

tors are special arrangements of permanent magnets with alternating fields that change

the course of the electron bunches in a sinusoidal path. X-ray photons are emitted by

magnetobremsstrahlung effect when the electrons have an acceleration perpendicular

to their velocity.

1.7 SERIAL FEMTOSECOND CRYSTALLOGRAPHY

1.7.1 Sample delivery

Ideally, in SFX, for each X-ray pulse a new crystal is introduced in the focus of the XFEL

beam. Different approaches have been developed for this, including, but not limited

to: fixed targets, gas dynamic virtual nozzle (GDVN), lipidic cubic phase (LCP) and

electrospinning.

Liquid microjet injectors carry fully hydrated crystals at the XFEL beam interaction

point in a continuous liquid jet. The diameter of the jet must ideally be similar to that of

the X-ray beam diameter (1− 10 µm) for increased hit rates and minimal crystal waste

[Boutet et al., 2018]. Due to the high pulse repetition rates of new XFEL sources, flow

speeds of 10− 100 m s−1 must be reached in order to clear the debris from previous

hits and to present a new crystal in the beam focus before the next pulse occurs.

Such an injector must be reliable and not be clogged by the crystals thus, requiring

a large nozzle orifice diameter. Small jet diameters and large nozzle orifice sizes are
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made possible through the use of a gas dynamic virtual nozzle (GDVN). In a GDVN, a

large inner sample solution capillary (typically 40− 75 µm) is surrounded by an outer

capillary carrying a high pressure gas, typically helium [DePonte et al., 2008]. The

co-flowing gas accelerates the sample solution and shear and pressure forces reduce the

diameter of the inner jet by a factor of 10 to 50 [Boutet et al., 2018]. GDVN requires

extremely tight manufacturing tolerances, and state-of-the-art 3D printed nozzles with

500nm resolution are generally used to assure the proper centering of the capillaries.

Double flow focussing nozzles (DFFN) are an extension to the GDVN where a sec-

ond liquid can be used to reduce the sample flow rate [Oberthür et al., 2017]. Three

concentric capillaries are used: the outer capillary carries the focussing gas, the inner-

most capillary carries the sample in its crystallisation buffer and an accelerated focusing

liquid miscible with the buffer is pumped in the middle capillary. With control of the

flow rates of the sample and focussing liquid, the sample consumption can be minimised

without affecting the jet stability, with the added advantage that the sample can be

changed without disturbing the jet.

High viscosity injectors such as lipidic cubic phase (LCP) injectors are used when the

viscosity of the sample is too high for using GDVNs. Membrane proteins are notoriously

difficult to crystallise and produce in great quantities. The crystallisation of membrane

proteins is complicated due to their flexibility, hydrophobic surfaces and lack of stability

[Caffrey, 2015]. A popular crystallisation approach for membrane proteins uses lipids

as the crystallisation medium, membrane proteins can freely diffuse in the lipid, as

it mimics a membrane-like environment, and can therefore be concentrated and form

crystals [Landau and Rosenbusch, 1996]. The cubic phase has the consistency of thick

toothpaste and has shown to be a convenient approach to deliver membrane protein

crystals to the XFEL beam. The LCP injector consists of a hydraulic plunger pushing

LCP out a capillary with pressure of up to 10,000psi. A co-flowing gas is used to keep

the LCP stream aligned. Contrarily to GDVNs, the flow rate of LCP injector can be

optimised for exposing a fresh section of LCP stream, dramatically reducing crystal

waste [Weierstall et al., 2014].

Fixed target delivery approaches use a thin solid support membrane to carry the

crystals to the XFEL beam [Hunter et al., 2014]. Support membranes are ideally as

thin as possible to reduce background scattering and are often etched from a silicon

wafer coated with silicon nitride, creating regularly spaced silicon nitride membrane

windows where the crystals are deposited. The fixed target must be moved after each

shot to present a new window, and thus a new crystal, to the XFEL beam. This can

be done by a motorised setup moving the fixed target synchronised to the XFEL pulse

rate. Keeping crystals well hydrated on fixed targets has also shown to be a great

challenge.
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1.7.2 Hit finding

In a typical SFX experiment, hundreds of thousands, up to a few million frames, are

recorded. Many of those frames (typically above 60%) are blanks as no crystal was

present in the X-ray beam [Boutet et al., 2018]. Furthermore, frames containing too

few Bragg peaks and frames abnormally noisy are usually discarded. The first analysis

step in an SFX experiment consists of selecting the good hits from the mountain of data

generated by the X-ray detector in a step known as hit-finding. The hit finding task

seems trivial at first but is complicated by the fluctuations inherent to each XFEL pulse

and variability of the background noise. Hit finding is usually performed by software,

such as Cheetah or psocake, by first finding intensity peaks in the frame [Barty et al.,

2014]. These potential Bragg spots are then tested against several metrics such as SNR,

area of the peak, sum of the peak’s pixels values. If a frame has a certain number of

peaks (typically 15), then it is considered to be a hit [Boutet et al., 2018].

1.7.3 Indexing and integrating

The next analysis step in SFX consists of assigning the Miller indices to the Bragg

peaks known as indexing the diffraction patterns. For this, the lattice parameters and

the diffraction pattern orientations must be determined. The lattice parameters and

orientations can be geometrically determined from the peaks positions and experiment

parameters such as detector dimensions, detector panels positions and camera length.

Often, a known sample will be shot beforehand to refine the experiment and detector

geometries. Many patterns are discarded during this step as it is unlikely that a lattice

corresponds to spurious intensity peaks. Once indexed, the intensities of peaks of the

same indices are averaged, this approach is referred to as the Monte Carlo integration

method [Kirian et al., 2010].

1.8 OPEN PROBLEMS

There are, of course, many open problems in protein X-ray crystallography and the

application of XFELs.

Although phasing of the diffraction data is an advanced area, with many powerful

methods available, there is still an active interest in developing new phasing methods.

In particular, methods that requires less a priori information or use data from new

experimental techniques. Some new phasing methods are developed in this thesis, that

make use of diffraction data from two-dimensional crystals, and from multiple crystal

forms of the same molecule.
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2 ASPECTS OF THE PHASE

PROBLEM FOR 3D CRYSTALS

2.1 INTRODUCTION

The basic properties, particularly uniqueness, of the phase problem for crystalline ob-

jects were described in Section 1.5. In this chapter, aspects of some of these properties

are studied in more depth. These include the relationship to the phase problem for

a single object via the Patterson function, the problem in the presence of a volume

constraint (i.e. an envelope of unknown shape but known volume), and the effect of

crystallographic and non-crystallographic symmetry. An expression for the constraint

ratio for crystals involving the Patterson function allows the effects of different real

space constraints to be evaluated. The results assist in understanding the nature of the

macromolecular crystallographic phase problem and the potential for ab initio phasing.

2.2 UNIQUENESS FOR A CRYSTAL

Uniqueness properties of the phase problem for crystalline specimens were described

briefly in Section 1.5. The problem is considered here in more detail in terms of the

Patterson function.

Consider first a finite crystal (object) of N ×N ×N unit cells. The volume of the

object is |SN | = N3V , where SN is the support of the crystal and V is the volume of

the unit cell. Since all the unit cells are the same, the number of independent object

parameters is proportional to |SN |/N3 = V . The normalised autocorrelation of the

crystal, AN (x), can be written as

AN (x) =
1

N3

N−1∑
m=−(N−1)

(N − |m1|)(N − |m2|)(N − |m3|) A(x−mΛ) , (2.1)

where m = (m1,m2,m3), the matrix Λ = (a|b|c)T , where (a,b, c) are the unit cell

vectors, i.e. the rows of Λ are the unit cell vectors, N = (N,N,N), and A(x) is the

autocorrelation of a single unit cell. This is illustrated for 1D for N = 3 in Fig. 2.1.

The volume of the support of the autocorrelation of the crystal is |AN | = 8N3V .

23
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Figure 2.1 The weighted autocorrelations of a single unit cell (solid lines) that make
up the autocorrelation of a 1D crystal with N = 3 unit cells (dashed line) as in equa-
tion (2.1). (b) The Patterson function (dashed line) for an infinite crystal that is made
up of an infinite number of equally-weighted autocorrelations of a single unit cell (solid
lines).

However, as a result of equation (2.1), not all sample values of the autocorrelation are

independent. Inspection of Fig. 2.1 shows that, in the 1D case, the whole of A(x) can

be determined from information on the boundary of AN (x), where there is no overlap.

Similarly, in the 3D case, A(x) can be determined from the boundary region of AN (x)

where there is no overlap. The volume of this region, that contains independent data,

is 8V . Therefore, substituting into equation (1.28), the constraint ratio for the finite

crystal is ΩN = 8V/2V = 4. The result is therefore the same as for a single object,

as expected, since a finite crystal is a single object. In principle then, the whole finite

crystal could be reconstructed from a measurement of its continuous diffracted intensity.

In practice however, for all but very small crystals (small N), it would be difficult to

measure the continuous diffracted amplitude between the Bragg reflections, due to its

small values in these regions.

For a realistic crystal, N is large and we have to consider the limit N → ∞. The

autocorrelation AN (x) then extends to infinity and reduces to the Patterson function
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P (x), i.e.

lim
N→∞

AN (x) =
∞∑

m=−∞
A(x−mΛ) = P (x) , (2.2)

which is illustrated for 1D in Fig. 2.1(b). The boundary region of AN (x) is now not

accessible, and all that is available is P (x), which is periodic with a period that has

volume V . Therefore, for a crystal, the number of data is proportional to V , and the

constraint ratio, denoted Ωc, is

Ωc =
V

2V
=

1

2
. (2.3)

This is consistent with the result described in Section 1.5.

If additional real space information is available, the degrees of freedom in, or the

unique region of, the unit cell and the Patterson function will be modified, and the

constraint ratio is then given by

Ωc =
|Pu|
|Uu|

, (2.4)

where Uu and Pu denote the unique region of the unit cell and of the Patterson function,

respectively. Note that the 2 in the denominator of equation (1.28) is now absorbed

into |Pu| since Pu is always centrosymmetric. Equation (2.4) gives the constraint ratio

for a crystal, and is a function of only the shape and symmetry of the molecule and the

unit cell (since Uu can be calculated from this information, and Pu can be calculated

from Uu). The constraint ratio in equation (2.4) can be used to characterise uniqueness

of the crystallographic phase problem and the effects of different kinds of real space

information.

2.3 REAL SPACE CONSTRAINTS

In this section, the constraint ratio is evaluated for four kinds of real space constraints:

(1) a known molecular envelope, (2) an unknown molecular envelope of a known volume,

(3) crystallographic symmetry, and (4) noncrystallographic symmetry.

2.3.1 Known molecular envelope

Consider the case where the molecule does not occupy all of the unit cell, which is

essentially always the case in protein crystallography. Consider first the case where

the molecular envelope is known a priori. The shape of the envelope can sometimes be

obtained from experimental techniques such as solution scattering, electron microscopy,

or solvent contrast variation [Hao, 2006, Carter et al., 1990, Lo et al., 2009]. If the

shape of the molecular envelope is known, and assuming it can be positioned in the

unit cell, then the number of unknowns is proportional to its volume, i.e. |Uu| = pV ,

where p is the fraction of the unit cell occupied by the molecule.

Since a restricted molecular support (envelope) gives rise to a restricted autocor-
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relation support, we need to consider the possibility that the Patterson function does

not occupy the whole of the unit cell, reducing the size of its unique region to less than

V/2. Let |Pu| = qV/2, where q denotes the proportion of the unit cell that is occupied

by the Patterson function, and substitution into equation (2.4) gives

Ωc =
q

2p
. (2.5)

Since macromolecules must pack in a crystal in such a way that they make con-

tacts with molecules in adjacent unit cells, they must occupy the unit cell in a fairly

homogeneous manner. The result is that it is unlikely that the autocorrelation (of a

single molecule) will not occupy all of the unit cell. It is even more unlikely that the

Patterson function will not occupy all of the unit cell. This is illustrated in Fig. 2.2.

In almost all cases then, q = 1, and equation (2.5) reduces to

Ωc =
1

2p
=

1

2(1− s)
, (2.6)

where s is the solvent content of the crystal. The constraint ratio then increases with

increasing solvent content, as expected, and uniqueness (Ωc < 1) requires that p < 0.5,

i.e. a protein content of less than 50%, or a solvent content of greater than 50%.

It is interesting to note that since generally q = 1, the constraint ratio Ωc depends,

as shown by equation (2.6), on only the volume of the envelope, relative to that of the

unit cell, and not on its shape. This is in contrast to the single object case where Ω

depends on the shape of the object, and not its volume.

2.3.2 Unknown molecular envelope

An important caveat of the previous section is that it assumes that the molecular

envelope is known. Using Uu as the number of object variables in the constraint ratio

definition implicitly assumes that it is known, at least for reconstruction purposes,

what those variables are. This is not the case if the envelope is unknown, since it is

not known which samples are inside the envelope. However, in many cases in protein

crystallography, the protein envelope (or solvent) volume, rather than the envelope

shape, can be estimated [Weichenberger and Rupp, 2014]. Consider now the case where

the volume of the protein envelope, rather than the envelope itself, is known.

Consider a unit cell of M ×M ×M samples, with a total of Q = M3 samples, and

known protein content p, so that the protein is known to occupy P = pQ samples. The

location of these P samples is unknown, however. For a particular known envelope,

the solution (electron density) lies on a P -dimensional hyperplane in RQ (i.e. with the

other Q− P sample values fixed at zero). Furthermore, there are only a finite number

of possible envelopes, i.e. there is a finite number of ways of selecting P samples from

the Q samples. Under these conditions then, the object belongs to a P -dimensional
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Figure 2.2 (a) A molecular envelope (left) and its corresponding autocorrelation
(right) that fills the unit cell. (b) A molecular envelope (left) and one period of its
corresponding Patterson function (right) that does not fill the unit cell. The case (b)
requires a low occupancy molecule, that is unlikely to occur in practice.

subspace, or manifold, in RQ, that is the union of QCP P -dimensional hyperplanes

(where QCP denotes the number of combinations). If there are P diffraction data, then

the dimensionality of the solution space will be reduced from P to zero, i.e. to a point

set. An additional datum will likely select out the correct solution from this point set.

The number of independent data is Q/2, so uniqueness requires that Q/2 > P = pQ,

or p < 0.5, i.e. a protein content less that 50%, or a solvent content greater than 50%.

The result is therefore the same as for a known envelope, and the constraint ratio is

still given by equation (2.6). Since the real space constraint manifold is larger than a

single P -dimensional hyperplane, the size of the point set may be be larger than for the

known envelope case, but there is still a data excess of (12 − p)Q− 1 when p < 1/2. We

therefore conclude that the solution to the crystallographic phase problem with only

knowledge that the crystal protein content, or volume, is less that 50% of the unit cell,

is also unique. The increased size and complexity of the real space constraint manifold

will likely make the solution more difficult to find, however, compared to the known

envelope case.

2.3.2.1 Number of hyperplanes

It is interesting to consider the number of hyperplanes in the solution set. For each

envelope shape there are Q possible positions of the envelope (including those that wrap
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around the unit cell edges), and these should be treated as redundant since they all give

the same Fourier amplitude. Therefore, the number of envelope-position-independent

hyperplanes, denoted Nh(p,Q), is

Nh(p,Q) = Q−1 QCpQ . (2.7)

Equation (2.7) can be approximated as follows. Since Q is large, applying Stirling’s

approximation to QCpQ gives

Nh(p,Q) ≈
√

2

π

1

2
√
p(1− p)

Q−3/2
[
p−p(1− p)p−1

]Q
. (2.8)

For fixed Q, Nh(p,Q) is symmetric about p = 0.5, where it is a maximum. At p = 0.5,

equation (2.8) reduces to

Nh(0.5, Q) ≈
√

2

π
Q−3/2 2Q, (2.9)

which is shown in Fig. 2.3 for Q = 103. In terms of the overall scale of Nh(p,Q),

equation (2.9) gives an estimate of Nh(p,Q) for 0.3 < p < 0.7 that is sufficient for our

purposes.

Figure 2.3 Number of hyperplanes in the solution set for Q = 103 as a function of
the protein content p.

Protein crystal solvent contents between 70 and 30% (i.e. 0.3 < p < 0.7), represent

95% of the entries in the PDB, so the approximation equation (2.9) is appropriate.

The number of hyperplanes is large. For example, for Q = 103, equation (2.9) gives

Nh(p,Q) ≈ 10296! This number of hyperplanes emphasizes the extreme non-convexity
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of the real space constraint set.

2.3.2.2 Simulations

Uniqueness for the case of an unknown envelope was investigated numerically by sim-

ulation. The idea is that, since there are multiple solutions to the problem there will

be many such solutions, an effective reconstruction algorithm will find one of those so-

lutions rather easily, demonstrating non-uniqueness. By setting up an IPA such as the

DM algorithm with the appropriate constraints, the nature of the solution space can

be examined by running the algorithm multiple times with different initial conditions.

If multiple runs of the algorithm either converge to only the correct solution, or do not

converge, then uniqueness is strongly supported. If the problem is not unique, then the

algorithm will frequently converge rather quickly to an incorrect solution.

Since the unknown envelope constraint is rather weak and highly non-convex, the

difficulty of the reconstruction problem is increased, increasing the number of itera-

tions required for convergence, potentially to an impractically large value. This neces-

sitates simulations with small objects. On the other hand, since the interest here is

in uniqueness rather than reconstruction, nonconvergence is almost as informative as

convergence.

A 2D unit cell was used for convenience (the same behaviour is expected in 3D since

in the crystallographic case, Ωc is independent of the dimensionality). In real space,

the only constraints applied are the size of the envelope (i.e. the number of non-zero

sample values) and positivity of the electron density. In reciprocal space, the constraint

is to match the structure amplitudes of the true molecule. In addition to the usual

positivity and Fourier amplitude projections [Millane and Lo, 2013], the projection for

the envelope size is easily shown to consist of setting the Q−P smallest density values

to zero and leaving the other P values unchanged, at each iteration [Elser, 2003a].

The difference map algorithm was used with the DM parameter β = 0.8 as defined in

Section 1.4.4 as a trade-off between navigating the search space and remaining in the

attractor region.

A 29× 29 sample unit cell was used and a single square “molecule” of various sizes

was placed in the unit cell in P1 to vary the protein (or solvent) content, and thus vary

Ωc given by equation (2.6). The reconstruction algorithm was run for 106 iterations,

starting with 10 different random molecules, for each molecule size. For each run,

the solution was taken as that which gives the minimum mean-square error between

the resulting structure amplitudes and the data. With an unknown support in P1,

the structure amplitudes are insensitive to the absolute position of the support, and

convergence of the algorithm can be slowed by “drifting” of the support. Therefore,

the reconstruction was constrained to have its center of mass coincident with the center

of mass of the true molecule.

The weak and highly non-convex real space volume constraint renders the search
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for a solution difficult. The number of iterations needed is a function of the unit

cell computation grid size and the number of hyperplanes such that the computation

time becomes the main drawback in using the volume constraint. In fact the Fourier

projection, despite being implemented using the FFT algorithm remains the slowest

step. The DM algorithm, implemented in a GPU, was thus used for these simulations,

allowing for faster computation and larger problem sizes. The GPU implementation

use CUDA libraries made available by NVIDIA R© [Nickolls et al., 2008], in particular,

cuFFT was used for the fast Fourier transform and the Thrust library for parallelisable

functions.

The results of the simulations are summarized in Table 2.1. The table shows the

number of runs that converged and the number of correct reconstructions for the con-

verged runs. For the converged runs, the mean-square error in reciprocal space ap-

proached very small values. The average number of iterations required in the con-

verged cases is also shown in the table. Convergence was obtained for Ωc > 1.4 and

Ωc < 0.8 in less than 106 iterations. However, for 0.8 < Ωc < 1.4 the algorithm did

not converge within 106 iterations. This is due to the weak and highly non-convex

real space constraint, particularly for values of Ωc close to unity, as mentioned above.

Inspection of the table shows that in all cases for which Ωc > 1 (p < 0.5), the algorithm

either converged to the correct solution (which therefore automatically had the correct

envelope), or it did not converge. In no cases did it converge to an incorrect solution.

This shows strong support for uniqueness in the case Ωc > 1. For Ωc = 0.73, multiple

incorrect solutions were easily found by the algorithm. This indicates that, indeed,

non-unique solutions are likely to be found if they exist. The results show that the

structure amplitude data are able to select out the correct hyperplane corresponding

to the solution, in spite of this large number.

Table 2.1 Summary of simulation results.

Object size p Ωc Runs converged Correct solutions Average iterations
for convergence

15× 15 0.27 1.87 10/10 10/10 4× 104

16× 16 0.30 1.64 5/10 5/5 1× 105

17× 17 0.34 1.46 1/10 1/1 8× 105

24× 24 0.68 0.73 10/10 0/10 1× 104

The algorithm described above is useful for investigating uniqueness, but it is not

a practical approach in protein crystallography where the number of sample values is

much larger and many more iterations would be required. However, in practice, more

is known about protein envelopes. In particular, protein envelopes are generally quite

compact. This property substantially reduces the number of possible envelopes and the

number of hyperplanes, significantly easing the reconstruction problem. Supplementing
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the reconstruction algorithm with additional compactness constraints through the use

of, for example, smoothing and shrinking of the support [Wang, 1985, Marchesini et al.,

2003] or other schemes [Lo et al., 2009], should allow ab initio phasing without initial

envelope information for practical problems. Indeed, the recent results of [He and Su,

2015] support this conclusion.

In summary then, even in the case where the molecular envelope is not known a

priori, the macromolecular crystallographic phase problem has a unique solution if the

protein content of the crystal is less than 50%.

2.3.3 Crystallographic symmetry

Consider now the effect of crystallographic (space group) symmetry on the constraint

ratio. For non-centric crystallographic symmetry of order R, the Patterson function

has symmetry of order 2R (as illustrated in Fig. 2.4(a)). Then, |Uu| = V/R and

|Pu| = V/2R, and substitution into equation (2.4) gives

Ωc = 1/2 , (2.10)

i.e. the same as for the case without symmetry.

For centric crystallographic symmetry of order R, the Patterson function has sym-

metry of order R (as illustrated in Fig. 2.4(b)). In this case, |Pu| = V/R, and substi-

tution into equation (2.4) gives

Ωc = 1 . (2.11)

This is then the marginal case that corresponds to a countable number of phase solutions

(i.e. two choices for each reflection) and only a small amount of additional a priori

information is required to render the solution unique.

These results are consistent with the well-known fact the reduction in the number of

parameters due to the crystallographic symmetry is exactly matched by the same num-

ber of relationships between the structure amplitudes, and the overall data/parameter

ratio remains unchanged. Crystallographic symmetry does not therefore constrain the

phase problem, except in the centric case which does not occur with biomolecules.

2.3.4 Noncrystallographic symmetry

Consider now NCS of order R. NCS does not lead to increased symmetry in the

Patterson function (see the illustration in Fig. 2.4(c)), so that |Uu| = V/R and |Pu| =
V/2, and substitution into equation (2.4) gives

Ωc = R/2 . (2.12)

The redundancy of the phase problem is therefore improved by a factor R, and a unique

solution is expected in principle if R > 2. Therefore, as a result of equation (2.12),
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Figure 2.4 Examples of 2D unit cells (left) and one period of their corresponding
Patterson functions (right) for (a) noncentric pm crystallographic symmetry, (b) centric
p4 crystallographic symmetry, and (c) noncrystallographic 3-fold symmetry in plane
group P1, as described in the text. The corresponding Patterson function symmetries
are (a) p2mm, (b) p4, and (c) p2.
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NCS is a significant factor for ab initio phasing. This result coincides with early con-

siderations of the effect of NCS on constraining the phases [Crowther, 1969, Bricogne,

1974], and is related to the fact that NCS, unlike crystallographic symmetry, does not

lead to relationships between the structure factor amplitudes, and so the number of in-

dependent data is not reduced. An alternative interpretation is that R-fold NCS leads

to a denser sampling, by a factor R, relative to the Bragg sampling, of the continuous

Fourier amplitude of the contents of the unit, increasing the number of data by a factor

R [Millane, 1990, Millane, 1993].

As with the case of a known molecular envelope, the above analysis assumes that

the NCS operators are known (so that the number of electron density parameters can

be reduced by a factor R). This problem is not so difficult however, as the order of

the NCS can be determined from a self-rotation function [Tong and Rossmann, 1997],

although positioning of the NCS origin in the unit cell can present difficulties.

NCS is always accompanied by a restricted molecular envelope, and combining the

above results gives

Ωc =
R

2p
(2.13)

in the presence of both constraints. Therefore, with both constraints, solution to the

phase problem is expected to be considerably eased. For example, with 2-fold NCS

and 50% solvent content, or with 3-fold NCS and 25% solvent content, Ωc = 2 and the

problem is expected to be well-determined in practice.

2.4 SUMMARY

As described previously, the constraining power of real space information in protein

crystallography is conveniently characterised by a constraint ratio, which is useful in

that it gives guidance on the likely success of ab initio phasing. Equation (2.4), utilising

the Patterson function, is a new, rigorous, expression for the constraint ratio for a

crystal. Properties of the Patterson function allow the constraint ratio to be reduced to

the form equation (2.6) under most circumstances. The results also show that a volume

constraint is as effective of an envelope constraint, in principle, although finding the

solution is more difficult in the former case. Use of equation (2.4) allows a transparent

derivation of known results for crystallographic and non-crystallographic symmetry

Recent results indicate that, as a result of errors and missing data, a value of Ω

greater than about 1.5 might be needed for ab initio phasing in practice [Liu et al.,

2012, Millane and Lo, 2013]. Equation (2.4) allows the constraint value to be calculated

for specific kinds of real space information in order to make this assessment.

For the case of known protein content and NCS, the constraint ratio is given by

equation (2.13). Evaluation of this equation suggests that, with the use of suitable

reconstruction algorithms, ab initio phasing should be feasible with quite modest values

of these parameters. Recent results using iterative projection algorithms indicate that
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this is the case [Liu et al., 2012, He and Su, 2015, Lo et al., 2015]. NCS is a particularly

powerful constraint if incorporated into iterative projection algorithms [Millane and Lo,

2013, Lo et al., 2015].

Although an estimate of the molecular envelope is desirable if available, uniqueness

does not depend on a priori knowledge of the envelope, and envelope volume and

compactness are a powerful constraint.



3 THE PHASE PROBLEM FOR

TWO-DIMENSIONAL CRYSTALS.

I. THEORY
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Properties of the phase problem for two-dimensional crystals are examined. This

problem is relevant to protein structure determination using diffraction from

two-dimensional crystals that has been proposed using new X-ray free-electron

laser sources. The problem is shown to be better determined than for

conventional three-dimensional crystallography, but there are still a large

number of solutions in the absence of additional a priori information. Molecular

envelope information reduces the size of the solution set, and for an envelope

that deviates sufficiently from the unit cell a unique solution is possible. The

effects of various molecular surface features and incomplete data on uniqueness

and prospects for ab initio phasing are assessed. Simulations of phase retrieval

for two-dimensional crystal data are described in the second paper in this series.

1. Introduction

The phase problem is of key importance in macromolecular

crystallography. For ab initio phasing, i.e. in the absence of

additional experimental information, such as from using

isomorphous replacement or anomalous dispersion, the

question of what real-space information is required to obtain a

unique solution is of practical importance. Protein crystal-

lography generally uses three-dimensional crystals and

uniqueness properties of the phase problem in this case are

well understood (e.g. Millane & Arnal, 2015). The problem is

also well understood for isolated (i.e. non-crystalline) particles

(Bates, 1982; Millane, 1990; Miao et al., 1998) and for one-

dimensional crystals (Millane, 2017). However, some macro-

molecular systems, notably membrane proteins, prefer to form

two-dimensional crystals. These are not suitable for conven-

tional crystallography due to their small size and weak scat-

tering, but which have traditionally been used in cryo-electron

crystallography (Kühlbrandt & Wang, 1991; Grigorieff et al.,

1996; Frank, 2006), and have recently been proposed for use

with X-ray free-electron lasers (XFELs) (Frank et al., 2014). In

this paper we consider properties, particularly uniqueness

properties, of the phase problem for a two-dimensional crystal.

The results have particular significance for ab initio phasing in

two-dimensional crystallography using XFELs. In a second

paper (Arnal et al., 2018) we illustrate the implications of the

results obtained here using simulations of phase retrieval from

two-dimensional crystal data.

The high intensity, small beam focus and short X-ray pulse

duration of XFELs can potentially overcome the difficulties of

two-dimensional crystallography with synchrotron sources

(Frank et al., 2014). The high pulse intensity allows measurable

diffraction data to be obtained from small and thin two-

dimensional crystals. The small beam focus allows exposure of

single two-dimensional crystal grains, and the short pulse
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duration allows the diffraction data to be collected before

radiation damage occurs. Preliminary application of these

ideas to two-dimensional protein crystals has demonstrated

that good data in one projection can be obtained to

7 Å resolution (Frank et al., 2014; Pedrini et al., 2014).

Avoiding the necessity for cryo-freezing presents significant

advantages of this approach over cryo-electron microscopy. It

allows studies at room temperature, under physiological

conditions, and in two-dimensional crystals grown in a lipid

bilayer that mimics their native environment. The nature of

XFEL sources means that they are also eminently suitable for

time-resolved studies. It is likely that improvements in sample

preparation and instrumentation, including X-ray pulse

brightness, beam size and pulse duration, will extend the

resolution beyond the 7 Å reported in initial experiments.

In the case of two-dimensional cryo-electron crystal-

lography, diffraction amplitudes are obtained using a tilt series

and the phases may be obtained by molecular replacement if

the structure of a related molecule is available. Alternatively,

experimental phases may be obtained by Fourier transforming

images obtained in a tilt series in the electron microscope.

These phases are combined with the measured diffraction

amplitudes and then refined to produce a high-resolution

electron-density map. Hence, either a related molecule or

micrographs of sufficient quality are required to solve the

phase problem. An additional problem in electron microscopy

is that, due to a limited range of accessible specimen tilts, there

is a missing cone of diffraction data, as well as image data,

about the axis normal to the crystal plane.

A potential advantage of crystallography with two-

dimensional crystals is that the phase problem should be

alleviated to some degree, relative to that of crystallography

with three-dimensional crystals. This is because, since the

specimen is only one unit-cell thick, the Fourier amplitude can

in principle be measured effectively continuously in the

corresponding direction in reciprocal space, as opposed to

only at the reciprocal-lattice points (Bragg reflections). Since

the two-dimensional crystal is periodic in the two transverse

directions, the Fourier amplitude is sampled in the two

corresponding directions. The result is that the amplitude can

be measured along a set of one-dimensional lattice lines in

reciprocal space. This increased sampling of the Fourier

amplitude is expected to further constrain the phases

compared with the three-dimensional crystal case. Similar data

might also be obtainable from stacks of two-dimensional

crystals that exhibit lateral translational disorder between the

individual two-dimensional crystals in the stack.

A similar situation occurs with one-dimensional crystals, in

which case there is continuous sampling of the Fourier

amplitudes along lattice planes in Fourier space. This places

considerable constraints on the phases, as recently shown by

Millane (2017), and a unique solution to the ab initio problem

is expected with fairly minimal additional a priori information.

The significance of continuous measurements along lattice

lines and the effect of a finite thickness of the specimen in

constraining the electron density were recognized quite early

in electron crystallography. Stroud & Agard (1979) showed

that the one-dimensional projected density consistent with the

continuous diffraction amplitudes is restricted to a small set of

solutions. Agard & Stroud (1982) showed that, for two-

dimensional crystals, the amplitude and phase data could be

extended into the missing cone by using a constraint on the

specimen thickness. All of these approaches used a simple

density-modification type of algorithm. A more sophisticated

optimization algorithm has been applied to noisy, missing cone

amplitude and phase data (Gipson et al., 2011). However,

these methods all require reasonably good initial phase esti-

mates obtained by one of the methods described above.

It is well known that measurement of the continuous

Fourier amplitude from an isolated object renders the solution

to the phase problem unique in the absence of additional

experimental data, and effective algorithms are available for

reconstructing the object (Bates, 1984; Fienup, 1982; Elser,

2003; Marchesini, 2007). For three-dimensional crystals,

however, the solution to the phase problem is highly non-

unique, since the Fourier amplitudes are available only at the

reciprocal-lattice points (Millane, 1990; Millane & Arnal,

2015). For one-dimensional crystals, the problem is highly

constrained, although some weak additional information is

required to obtain a unique solution (Millane, 2017). The

phase problem for two-dimensional crystals therefore lies

between a highly constrained case (one-dimensional crystal)

and a highly under-constrained case (three-dimensional

crystal). Uniqueness properties in the case of two-dimensional

crystals, and the potential for ab initio phasing, are therefore

not clear, and are the subject of this paper.

Ab initio phasing for two-dimensional crystals in the context

of cryo-electron crystallography has been investigated by

Spence et al. (2003). They attempted reconstructions of lyso-

zyme at 3 Å resolution from two-dimensional crystal simu-

lated diffraction data using the hybrid input–output (HIO)

algorithm (Fienup, 1982). They found that ab initio phasing

was not successful using the diffraction data alone, but it was

successful if the diffraction data were supplemented by phases

from sufficient images to fill in the reciprocal lattice with tilts

between 0 and 15�. This represents an improvement on

conventional phasing in electron crystallography, in terms of

the experimental effort required, which generally requires an

image tilt series up to about 60� to obtain sufficient phase

information. For two-dimensional X-ray crystallography using

XFEL sources, however, images are not available to provide

initial phase estimates so that, in the absence of molecular

replacement phases, the feasibility of ab initio phasing takes

on more importance.

2. Background

Uniqueness properties of the phase problem for a single

object, a three-dimensional crystal and a one-dimensional

crystal have been well characterized, and the case of a two-

dimensional crystal is the last remaining case to be examined

for the class of crystalline objects. To put the latter case into

context, it is therefore useful to briefly summarize uniqueness

properties of the phase problem for the first three cases.
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2.1. A single object

Consider an object with scattering density f ðxÞ, where

x ¼ ðx; y; zÞ is position in real space, that occupies a region

x 2 S [i.e. f ðxÞ ¼ 0 for x =2S], which we refer to as the

envelope or the support of f ðxÞ. The measured diffracted

amplitude from the object is equal to the amplitude jFðuÞj of

the Fourier transform FðuÞ of f ðxÞ, where u ¼ ðu; v;wÞ is

position in reciprocal space, and reconstruction of f ðxÞ from

jFðuÞj constitutes the phase problem. A useful reconstruction

is obtained only if f ðxÞ is uniquely related to jFðuÞj and thus

uniqueness is of fundamental practical importance. Unique-

ness of the phase problem for a single object has been well

studied and it is known that, for an object of finite size, the

problem has a unique solution, aside from some trivial

ambiguities, in two or more dimensions, as long as the

amplitude is measured continuously, or is sufficiently sampled,

in reciprocal space (Bruck & Sodin, 1979; Bates, 1982, 1984;

Barakat & Newsam, 1984; Millane, 1990; Miao et al., 1998).

Uniqueness of the phase problem can be characterized by

considering the ratio of the number of independent amplitude

data that are available divided by the number of independent

parameters describing the object, which we refer to as the

constraint ratio, denoted � (Elser & Millane, 2008). A

constraint ratio �> 1 is a necessary condition for a unique

solution. It is not a sufficient condition, but the number of

multiple solutions is then severely restricted. If � ¼ 1 then the

problem is marginal in the sense that multiple solutions exist

but uniqueness is restored if a small amount of additional a

priori information is available. If �< 1 then the problem is

highly non-unique and a multitude of objects are consistent

with the Fourier amplitude data.

The constraint ratio for a single object can be expressed in

terms of only the shape of the support region of the object, S,

as (Elser & Millane, 2008)

� ¼ jAj
2jSj ; ð1Þ

where A is the support region of the autocorrelation of the

object (or of S) and j � j denotes the size (area or volume).

Note that, for a real-valued object, the amplitude is centro-

symmetric and so the number of independent amplitude data

is proportional to jAj=2 and the number of object parameters

is proportional to jSj. For a complex object, the number of

data is proportional to jAj and the number of object para-

meters (real and imaginary parts) is proportional to 2jSj. The

constraint ratio is given by equation (1) in both cases, and

there is no distinction between real and complex objects.

The constraint ratio is bounded by � � 2N�1 for an object

in N dimensions, and so the phase problem is better deter-

mined in higher dimensions for a single object (Elser &

Millane, 2008). The problem is therefore well determined in

two or three dimensions, where � � 2 and � � 4, respec-

tively. For a one-dimensional object with connected support,

� ¼ 1 and there is not a unique solution. The one-dimensional

phase problem is relevant to the two-dimensional crystal case

and is discussed in more detail in x3.

2.2. A three-dimensional crystal

For a three-dimensional crystal, uniqueness can again be

evaluated using the constraint ratio. For a crystal, both the

object and the autocorrelation are infinite in extent and the

autocorrelation in equation (1) is replaced by the Patterson

function. Taking into account any symmetry, the constraint

ratio, denoted �c, is then given by (Millane & Arnal, 2015)

�c ¼
jPuj
jUuj

; ð2Þ

where Uu and Pu denote the unique region of the unit cell and

of the Patterson function, respectively. Note that the 2 in the

denominator of equation (1) has been absorbed into jPuj since

the Patterson function is centrosymmetric. In general, in the

absence of additional real-space information, this gives

� ¼ 1=2 (or � ¼ 1 for centrosymmetric space groups) and the

solution is highly non-unique. If the molecular envelope

occupies a proportion p of the unit cell, then equation (2)

reduces to

�c ¼
1

2p
ð3Þ

for non-centrosymmetric space groups (Millane & Arnal,

2015). A protein content p less than 50%, or a solvent content

greater than 50%, then gives a unique solution. Interestingly,

while the constraint ratio � for a single object depends on the

shape of the object and not its volume, the constraint ratio �c

for a three-dimensional crystal depends on the volume (rela-

tive to the volume of the unit cell) of the molecule and not its

shape.

2.3. A one-dimensional crystal

Properties of the phase problem for a one-dimensional

crystal have recently been examined by Millane (2017), based

in part on his earlier work on the phase problem in three

dimensions (Millane, 1996). This gave a number of interesting

results. While the constraint ratio for a one-dimensional

crystal, denoted �1dc, satisfies �1dc � 2, in the absence of other

information, the solution is not unique, although it belongs to

a low-dimensional set. Fairly minimal additional information,

such as positivity or molecular envelope information, is

expected to reduce this set to a single solution. For a restricted

molecular envelope, the key requirement is that the envelope

cross section varies with position along the crystal axis. A

useful parameter that describes the constraining power of the

molecular envelope, denoted there by � and denoted here by

�1dc, is given by

�1dc ¼
jCj
jSj ; ð4Þ

where C denotes the support of the smallest circumscribing

cylinder (of any cross-sectional shape, that need not be simply

connected) that encloses the molecular envelope S. If �1dc > 1

then a unique solution is highly likely and the problem is more

constrained for larger �1dc. The parameter satisfies �1dc � 1

and �1dc ¼ 1 for a cylindrical envelope (of any cross section).
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The relationship between �1dc and �1dc is discussed by

Millane (2017). In summary, the phase problem for a one-

dimensional crystal is marginally constrained in general, but a

unique solution is expected with minimal a priori information.

3. The one-dimensional phase problem

As mentioned in x1, the solution to the one-dimensional (non-

crystalline) phase problem is highly non-unique. In x4 we

analyse the two-dimensional crystal phase problem using a

decomposition into one-dimensional phase problems. We

need, therefore, in that analysis, to consider the degree and

nature of the ambiguities of the one-dimensional phase

problem. These characteristics have been studied extensively

(Beinert & Plonka, 2015) and are summarized in this section.

It is convenient here to consider the discrete problem as

this allows the ambiguities to be counted in a useful way.

Consider an N-sample complex-valued signal f ½n� 2 C
N , for

n 2 0; 1; . . . ;N � 1. We consider complex f ½n� since this is

pertinent for our analysis in x4. Since we are considering a

signal f ½n� of finite extent, or compact support, the definition

of f ½n� is extended to 2N � 1 samples such that f ½n� ¼ 0

for N � n< 2N � 2. We consider that we measure the

amplitudes of the Fourier transform of f ½n� continuously in

Fourier space. It can be shown that there are 2N � 1 degrees

of freedom in the Fourier amplitude, and that a measurement

of these is equivalent to measuring the amplitudes jF½k�j of the

discrete Fourier transform (DFT) of the length 2N � 1 sample

signal (Beinert & Plonka, 2015, 2017). Note that, in the

discrete case, for complex f ½n�, f ½n� has 2N parameters but

there are 2N � 1 data, so there are one fewer data than

parameters in this case.

The general one-dimensional phase problem is subject to

the usual trivial ambiguities of an unknown shift, an unknown

constant phase factor and complex conjugate inversion in the

origin. In the case considered here, since the support of f ½n� is

restricted to n 2 ð0;N � 1Þ, no unknown shift is allowed. The

remaining trivial ambiguities are therefore an inversion,

which, given the support of f ½n�, takes the form f ½N � 1 � n�
for 0 � n � N � 1, and an unknown constant phase factor

denoted expði’Þ.
The one-dimensional phase problem, in general, has many

ambiguities aside from the trivial ambiguities described above

(Bruck & Sodin, 1979; Hayes et al., 1980; Beinert & Plonka,

2015). This can be seen by writing the DFT F½k� as a z

transform, factorizing the resulting polynomial of order N � 1

in z into N � 1 linear factors, and noting that the intensity

jF½k�j2 is a polynomial of order 2N � 2 whose zeros occur in

conjugate reciprocal pairs in the z plane. Each zero, or its

conjugate reciprocal, of jF½k�j2 corresponds to a zero of F½k�.
Therefore, exchanging a zero of F½k� with its conjugate reci-

procal gives a different f ½n� with the Fourier amplitude jF½k�j
unchanged. Since there are N � 1 zeros, there are 2N�1

possible signals f ½n� with the same Fourier amplitude jF½k�j.
Since exchanging all the zeros with their conjugate reciprocal

inverts f ½n�, the trivial inversion ambiguity described above is

included. In total, therefore, the solution set for the one-

dimensional phase problem can be described as a set of 2N�1

one-dimensional manifolds, where each manifold represents

the phase factor expði’Þ, parametrized by ’.

The number 2N�1 of one-dimensional manifolds is the

maximum number, since if any zero pair lies on the unit circle

then the zero and its conjugate reciprocal are coincident, and

do not contribute an ambiguity. Furthermore, in a practical

sense, if any zero pair is close enough to the unit circle, then

the two ambiguous signals generated are sufficiently close to

be essentially the same for practical purposes. This point is

relevant since for structured (i.e. not noise-like) signals, the

zeros tend to approach the unit circle as the corresponding

value of k increases (this is analogous to the general decrease

of the diffracted amplitude with resolution). Therefore,

there can be a number of such zeros that do not contribute

ambiguities. In summary, then, the set of solutions to the

one-dimensional phase problem corresponds to 2N1�1 one-

dimensional manifolds where N1 � N is the number of zeros

of the polynomial associated with f ½n� that are sufficiently

distant from the unit circle. In some practical cases we may

have that N1 	 N. We note that this is a very large number of

solutions. In the following, we use the term ‘solution’ to mean

‘one-dimensional manifold of solutions with unspecified phase

factor’, which should not cause confusion.

The number of solutions to the one-dimensional phase

problem can be reduced by the presence of additional a priori

information. Positivity of the signal can eliminate some of the

multiple solutions, but in general the reduction in the number

of solutions is not dramatic (Beinert, 2017). Knowledge of one

or more of the samples of f ½n� can reduce the number of

solutions dramatically (Xu et al., 1987; Beinert & Plonka,

2017). In fact, knowledge of one sample, say f ½p� ¼ C, where

p 2 ð0;N � 1Þ reduces the solution set to a single solution (or

to two solutions if p ¼ 0;N=2;N � 1). Exceptions occur with

probability zero, that are not considered here. However,

special cases occur if C ¼ 0 since then if p ¼ 0 or N � 1, the

signal is reduced to length N � 1 and the number of ambi-

guities is reduced only by a factor of 2. If C ¼ 0 and

p 2 ð1;N � 2Þ, sometimes called the case of a disconnected

support, then, almost always, there is a unique solution, or two

solutions if p ¼ N=2. Clearly, if there is more than one value of

p on the interval ð1;N � 2Þ where f ½p� ¼ 0 then there is a

unique solution and the problem is even more constrained. In

summary, then, the one-dimensional phase problem has many

solutions, except in the case of a disconnected support where a

single solution is expected, almost always. These results are

used in our analysis of the two-dimensional crystal phase

problem in x4.

Note that essentially analogous results apply to the

continuous one-dimensional phase problem for a signal f ðxÞ.
In that case, the Fourier transform FðuÞ can be extended into

the complex plane z ¼ u þ iv and factorized into linear

factors. The intensity jFðzÞj2 is characterized by pairs of zeros

that are reflected in the real axis, and a solution to the phase

problem corresponds to selection of one zero from each pair.

Since the zeros tend to approach the real axis with increasing

u, there are only a finite number N of zeros with significant
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imaginary part, and the number of solutions is again, effec-

tively, 2N�1.

4. The two-dimensional crystal phase problem

Consider now the case of a two-dimensional crystal. We

consider, for simplicity, a two-dimensional crystal with a

rectangular unit cell in space group P1 with unit-cell dimen-

sions a and b (Fig. 1). The results apply straightforwardly to

other two-dimensional crystal classes, and Millane & Arnal

(2015) show that space-group symmetry does not affect

uniqueness of the phase problem, except for the case of centric

space groups. Since the specimen is one unit-cell thick, there is

strictly no unit-cell dimension in the z direction, but we denote

by c the maximum thickness of the protein or molecular

assembly in the z direction (Fig. 1).

We denote the electron density in one unit cell of the two-

dimensional crystal as f ðx; y; zÞ. In order to represent the case

of a two-dimensional crystal, and for convenience, we consider

the discrete version, denoted f ½m; n; p�, of M 
 M 
 ð2N � 1Þ
samples, with m, n 2 ð0;M � 1Þ and p 2 ð0; 2N � 2Þ, and

f ½m; n; p� ¼ 0 for p 2 ðN; 2N � 2Þ. This allows us to make use

of the results of x3. The DFT of f ½m; n; p� is denoted F½r; s; t�.
Consider the two-dimensional Fourier transform of

f ½m; n; p� in the m and n directions, which we denote by ~ffrs½p�,
i.e.

~ffrs½p� ¼
PM�1

m¼0

PM�1

n¼0

f ½m; n; p� exp½i2�ðrm þ snÞ=M�: ð5Þ

Note that, in general, ~ffrs½p� will be complex, even if f ½m; n; p� is

real. The one-dimensional Fourier transform of ~ffrs½p� with

respect to p is F½r; s; t�. Since jF½r; s; t�j2 is measured at its

Nyquist spacing in t, for fixed ðr; sÞ we have a one-dimensional

(non-crystalline) phase problem for ~ffrs½p� whose solution is

determined within the set of ambiguities described in x3.

These one-dimensional phase problems are independent for

different ðr; sÞ since jF½r; s; t�j2 is sampled at twice its Nyquist

spacing in r and s. We denote the set of the (many) possible

solutions of these one-dimensional phase problems by ff̂frs½p�g.

The possible solutions to the two-dimensional crystal phase

problem, denoted f̂f ½m; n; p�, are then given by

f̂f ½m; n; p� ¼ PM�1

r¼0

PM�1

s¼0

f̂frs½p� exp½�i2�ðrm þ snÞ=M�: ð6Þ

Since there are many solutions f̂frs½p�, there are many solutions

f̂f ½m; n; p�. The correct solution is obtained only in the (very

unlikely) event that f̂frs½p� ¼ ~ffrs½p�, for all r and s. The solution

to the two-dimensional crystal phase problem is therefore

highly non-unique.

The number of solutions f̂f ½m; n; p� can be counted as

follows. Referring to x3, each f̂frs½p� is restricted to a set of 2N�1

one-dimensional manifolds. A consideration of the topology

of the solution set for f̂f ½m; n; p� shows that it corresponds to Q

(M2-dimensional manifolds), where

Q ¼ 2ðN�1ÞM2

: ð7Þ
Note that the number of manifolds Q is of secondary impor-

tance, relative to the manifold dimensionality, but adds to the

topological complexity of the solution manifold. The solution

manifold can be considered a single, highly complex,

M2-dimensional manifold. Referring to the discussion in x3,

the number of manifolds may be reduced to

Q ¼ 2

�P
r;s

Nrs

�
�M2

; ð8Þ
where Nrs denotes the number of zeros of the polynomial for

frs½p� that are sufficiently distant from the unit circle, although

the solution manifold dimensionality remains M2.

The above results can be extended to the continuous, finite-

resolution, case as follows. Letting the resolution of the

diffraction data be d, the number of significant zeros is

approximately Nrs ’ c=d, and M is approximately M ’ a=d,

and substitution into equation (7) gives

Q ’ 2ðc=d�1Þða=dÞ2 ’ 2V=d3

; ð9Þ
since c=d � 1, and V is the volume of the unit cell. The

number of solutions to the two-dimensional crystal phase

problem is therefore very large. For example, for a crystal with

a = 100, c = 30 Å and 3 Å resolution data, the solution set

corresponds to � 103000 (� 1000-dimensional manifolds), or a

highly complex � 1000-dimensional manifold. Keep in mind,

however, that at this point we are considering the case with no

additional a priori information.

In general, f̂f ½m; n; p� will be complex and so the solutions

given by equation (6) belong to an M2-dimensional manifold

in C
M2N . Since the electron density is real, it is useful to

consider only the real solutions. Referring to equation (6), if

the values f̂frs½p� are restricted such that f̂frs½p� = f̂f 
M�1�r;M�1�s½p�,
then f̂f ½m; n; p� is real. We assume that f̂frs½p� has been so

restricted, and then the solutions f̂f ½m; n; p� belong to an

M2-dimensional manifold, denoted E1, in R
M2N .

An example of multiple solutions is generated as follows

and shown in Fig. 2. A positive, 7 
 7 
 7 sample object

f ½m; n; p� was generated with random values uniformly

distributed on ð0; 1Þ and is shown in the left column of Fig. 2.

An object f̂f ½m; n; p� is generated from f ½m; n; p� by calculating
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Figure 1
A two-dimensional crystal with unit-cell dimensions a and b, and
maximum thickness c.
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the frs½p� and the corresponding polynomial for each ðr; sÞ,
randomly exchanging each zero of the polynomial with its

conjugate reciprocal, recomputing f̂frs½p� and assembling

f̂f ½m; n; p�. A constant phase shift was not applied to each f̂frs½p�
in this example. Such an object is shown in the second column

of Fig. 2. The Fourier amplitudes of f ½m; n; p� and f̂f ½m; n; p�
calculated by the DFT are identical, and are shown in the right

columns of Fig. 2, illustrating the non-uniqueness.

Since the solution to the generic two-dimensional crystal

phase problem is highly non-unique, an immediate question is:

are there other constraints available that might reduce the

ambiguities to a small number? Various constraints may be

available in practice, and we investigate the effect of positivity

and molecular envelope constraints in the next two subsec-

tions.

4.1. Positivity constraint

For a positive electron density, the relevant question is how

many of the large number of possible solutions to the phase

problem are positive? A positivity constraint restricts the

solution to belonging to the M2N-dimensional positive orthant

f ½m; n; p� � 0, which we denote RM2Nþ. The solution manifold,

denoted Eþ
1 , is then Eþ

1 ¼ E1 \ R
M2Nþ. Although, in general,

this reduces the number of solutions by a factor 2M2N, the

dimensionality of Eþ
1 remains at M2. Therefore, although a

positivity constraint reduces the number of solutions, it does

not reduce the dimensionality of the solution set, and so does

not significantly reduce the ambiguity of the solution to the

two-dimensional crystal phase problem.

4.2. Envelope constraint

We consider now the case where some information

(generally at low resolution) is available on the molecular

envelope. For the case of membrane proteins in particular,

atomic force microscopy has been used to define molecular

boundaries in two-dimensional crystals at resolutions of up to

5–10 Å (Frederix et al., 2009). Considering the discrete case

and taking N to be the maximum number of samples spanning

the electron density in the p direction, let U denote the region

of the discrete unit cell, i.e. U = f0 � m � M � 1,

0 � n � M � 1, 0 � p � N � 1g. Let S be the region of the

molecular envelope and � the region inside U but outside S,

so that U ¼ S [� (Fig. 3). The envelope constraint then

corresponds to the condition f ½m; n; p� ¼ 0 for ðm; n; pÞ 2 �.

In general, many of the solutions to the phase problem will not

satisfy this condition and thus the envelope constraint reduces

the number of valid solutions. In general, the larger is the

region �, the greater is the restriction on the solution set.

The envelope constrains certain samples of f ½m; n; p� to be

zero. If there are P such samples (i.e. j�j ¼ P), then f ½m; n; p�
is restricted to a manifold (in fact a hyperplane), denoted HP,

of dimension ðM2N � PÞ in R
M2N . The set (manifold) of

solutions to the phase problem that satisfy the envelope

constraint, denoted E2, is then E2 ¼ E1 \ HP, which has

dimension ðM2 � PÞ in R
M2N . Therefore, if P ¼ M2 then the

solution manifold is a point set, and if P>M2 then a unique
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Figure 3
Illustration of the molecular envelope S and the unit cell U with the
upper and lower surfaces bounding S. The region � is the region inside U
but outside S.

Figure 2
(a) A positive 7 
 7 
 7 object f ½m; n; p� with each panel representing
one value of p. (b) An object f̂f ½m; n; p� generated from f ½m; n; p� by
exchanging zeros of the z transform as described in the text. (c) The
amplitudes of the DFT F½r; s; t�of both f ½m; n; p� and f̂f ½m; n; p�. Since the
two-dimensional crystal has finite thickness in the p direction, the DFT
amplitude is shown for 14 values of t.
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solution is expected (i.e. it is unlikely, except in contrived

cases, that the subspace defined by the additional constraint

will pass through more than one of the points). While this is

not a rigorous proof of uniqueness, considering in particular

the highly complex nature of the manifold involved, it indi-

cates that for P>M2 zero samples of f ½m; n; p�, the solution to

the phase problem is likely to be highly constrained. Although

positivity on its own is a weak constraint, it is likely to be more

effective in the presence of a strong envelope constraint.

It is worth noting that the improved uniqueness of the one-

dimensional phase problem for the case of a disconnected

support as described in x3 does not appear to be helpful for the

two-dimensional crystal phase problem. There are three

reasons for this. First, application to the two-dimensional

crystal problem would require that the ~ffrs½p� have a discon-

nected support, and it is difficult to imagine a molecular

envelope that would produce this. The only obvious case

where this would occur is if there were a slab parallel to the

crystal plane and interior to the unit cell that is devoid of

electron density (or is solvent). However, this would imply

that the molecule consists of two completely disconnected

parts, which is not feasible in practice. Second, such a slab

would contain at least M2 zero samples, which is no fewer than

the number of zero samples required for the envelope

constraint case described above. Third, although this reduces

the number of manifolds, the dimensionality of the solution

manifold remains M2.

For the case of a one-dimensional crystal, the quantity �1dc

defined by equation (4) is useful for assessing the effect of a

molecular envelope on uniqueness for that problem, in the

sense that the solution is expected to be highly constrained if

�1dc > 1 (Millane, 2017). We define here an analogous quan-

tity, denoted �2dc, for the two-dimensional crystal phase

problem. The quantity exactly analogous to �1dc is j ~UUj=jSj,
where ~UU is the smallest union of slabs parallel to the crystal

plane that bounds the molecule. However, as noted above,

because the molecule or assembly must form a connected

object in practice, the set ~UU will always reduce to a single slab

that is the unit cell U . We therefore define �2dc as

�2dc ¼
jUj
jSj ; ð10Þ

and it is easily seen that �2dc � 1.

For the discrete case, as described above, uniqueness

requires that P ¼ j�j>M2. Using this requirement and

equation (10), and noting that jUj ¼ M2N and

jSj ¼ M2N � j�j, it is easily shown that the necessary

condition for uniqueness is

�2dc > 1 � 1

N

� ��1

: ð11Þ

It is therefore convenient to define the quantity �0
2dc by

�0
2dc ¼ 1 � 1

N

� � jUj
jSj ð12Þ

and the necessary condition for uniqueness is then �0
2dc > 1.

For the continuous case, following the same reasoning as

above gives

�0
2dc ¼ 1 � d

c

� � jUj
jSj ð13Þ

and, again, �0
2dc > 1 is a necessary condition for uniqueness.

Clearly �0
2dc <�2dc, and �0

2dc ! �2dc as d ! 0, i.e. at very

high resolution. The condition �0
2dc > 1 means that the mol-

ecular envelope must be sufficiently structured. Some simple

discrete examples and the corresponding value of �0
2dc are

shown in Fig. 4.

A simple interpretation of the condition �0
2dc > 1 can be

derived as follows. Let v be the fraction of the unit cell

occupied by solvent, i.e. v ¼ �=jUj, and let � ¼ d=c, i.e. the

ratio of the resolution to the thickness of the unit cell.

Substitution into equation (13) shows that �0
2dc ¼ v=�, so that

uniqueness requires that

v>�: ð14Þ
Equation (14) then gives a necessary condition for uniqueness,

i.e. the solvent content must be greater than the normalized

resolution. Although not a sufficient condition, the solution in

this case is highly constrained and uniqueness can be consid-

ered likely.

Although in theory �0
2dc > 1 is sufficient for uniqueness, in

reality a margin will be necessary in order to successfully

reconstruct the electron density from the diffraction ampli-

tudes, particularly in practical cases where there are data

missing and the data are noisy. For example, for the examples

considered by Millane & Chen (2015), in terms of the

constraint ratio, although �> 1 is theoretically needed for

uniqueness, it was found that �> 1:2 is a more realistic

requirement, even in the absence of errors in the data. For

noisy, incomplete data, �> 1:5 might be more realistic

(Millane & Lo, 2013). In a similar fashion, a margin over

�0
2dc > 1 will be required in practice, which will be influenced

by data errors and completeness.

In summary, the phase problem for a two-dimensional

crystal is underconstrained in general, but is highly

constrained in the presence of additional a priori information

if �0
2dc > 1. In contrast to the three-dimensional crystal case

where greater than 50% solvent is required for uniqueness

(Millane & Arnal, 2015), a smaller solvent content is sufficient

in the two-dimensional crystal case. The presence of other
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Figure 4
Examples of some simple discrete envelopes with corresponding values of
�0

2dc: (a) 0.98, (b) 1.03 and (c) 1.14.
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constraints such as non-crystallographic symmetry or histo-

gram information will further constrain the solution. There-

fore, while the ab initio problem for a two-dimensional crystal

does not have a unique solution in general, ab initio phasing

may be feasible in favourable circumstances with fairly modest

a priori information.

5. The constraint ratio

As described in x2, the effect of a molecular envelope

constraint on uniqueness of the phase problem for a single

object or a three-dimensional crystal can be usefully quanti-

fied by the constraint ratio. It is useful to examine the

constraint ratio for the case of a two-dimensional crystal.

The constraint ratio for a two-dimensional crystal is given in

equation (1) with A replaced by one period of the Patterson

function of the two-dimensional crystal, denoted P2dc. The

constraint ratio for the two-dimensional crystal, denoted �2dc,

is then given by

�2dc ¼
jP2dcj
2jSj : ð15Þ

For a two-dimensional crystal, P2dc takes the form of a

Patterson function in the x and y directions and an auto-

correlation in the z direction. The Patterson function is equal

to the sum of periodically repeated autocorrelations (Millane,

1990), and the calculation of P2dc is aided by writing it in the

form

P2dc ¼ ðA00 [ A01 [ A10 [ A11Þ \ ½ð0; aÞ 
 ð0; bÞ�; ð16Þ
where Amn denotes the support of the autocorrelation of one

unit cell shifted by ma and nb in the x and y directions,

respectively, and ½ð0; aÞ 
 ð0; bÞ� denotes the region of the

projected unit cell.

The constraint ratio �2dc can be bounded as follows. For a

single three-dimensional object (x2.1) we have that � � 4

which implies that jAj � 8jSj. Referring to equation (16)

shows that jP2dcj � jAj=4, and substituting into equation (15)

shows that �2dc � 1. We also have that jP2dcj � 2jUj, so that

substituting into equation (15) and using equation (10) shows

that �2dc � �2dc. In summary, then, �2dc is bounded as

1 � �2dc � �2dc: ð17Þ
Referring to equation (17), since �2dc � �2dc, an increasing

constraint ratio is helpful in terms of uniqueness, but �2dc > 1

is not a useful condition as uniqueness requires �0
2dc � 1, and

�0
2dc <�2dc, i.e. it is possible that �2dc > 1 but �0

2dc < 1. In

general, then, �0
2dc is a more useful metric than �2dc.

We note, for completeness, that the bound �2dc � �2dc is

analogous to the bound �1dc � jCcj=jSj, described by Millane

(2017) for the one-dimensional crystal case, where Cc is the

smallest, convex, centrosymmetric cylinder that circumscribes

the molecule. Note that, referring to x4.2, and the definition of

�2dc in equation (10), the unit cell U in the two-dimensional

crystal case is convex and centrosymmetric and takes the place

of Cc in the one-dimensional crystal case.

6. Examples

The theory of uniqueness for the two-dimensional crystal

phase problem described above, and the quantities �2dc, �
0
2dc

and �2dc are illustrated here for a number of simple example

envelopes.

First, if the unit cell is ‘full’, or we have no information on

the protein envelope, then �2dc ¼ �2dc ¼ 1, and multiple

solutions are expected.

Second, consider the case where the upper and lower

molecular surfaces are flat except for a ‘hole’ (or number of

holes) that passes through the crystal, as shown in Fig. 5(a).

This could correspond, for example, to pores in a membrane

protein. In this case, it is easily seen that jP2dcj ¼ 2jUj, so that

�2dc ¼ �2dc. Uniqueness then requires that the volume of the

pore satisfies equation (14), i.e. a sufficiently large pore will

force uniqueness.

Third, consider the case of an envelope with one flat surface

and an unrestricted variation on the other surface, as shown in

Fig. 5(b). Using equation (16), it can be shown that, in this case

also, jP2dcj ¼ 2jUj so that, again, �2dc ¼ �2dc. For a specific

example of this case, consider a flat molecular envelope of

uniform thickness t, with a square unit cell and a small

cuboidal feature on one surface as shown in Fig. 6(a). The

surface feature has a width that is a fraction w of the lateral

unit-cell dimension a and a height that is a fraction h of the

thickness t. In this case, then, c ¼ tð1 þ hÞ. Calculation of �2dc

gives

�2dcðh;wÞ ¼ �2dcðh;wÞ ¼ 1 þ h

1 þ hw2
; 0<w< 1; ð18Þ

which is plotted versus h and w in Fig. 6(b). The surface

feature increases �2dc and �2dc to a value greater than

unity. Inspection of the figure shows that the effect of the

feature increases as it becomes narrower (small, but nonzero

w) or taller (large h). Note that h ¼ 0 or w ¼ 0 or w ¼ 1

corresponds to no feature and �2dcð0;wÞ ¼ �2dcðh; 0Þ
¼ �2dcðh; 1Þ ¼ 1. There is however a discontinuity at w ¼ 0.
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Figure 5
(a) A unit cell with flat surfaces and a number of holes (pores). (b), (c),
(d) Examples of envelopes for which �2dc ¼ �2dc.
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The figure shows that the effect of the feature on �2dc can be

significant, although uniqueness depends on the size of the

feature and the resolution of the data.

Numerous other examples can be generated that give

�2dc ¼ �2dc. The key requirement is that the autocorrelation

of one unit cell has a flat region of maximum thickness that has

extent a 
 b. Two other such examples are shown in Fig. 5.

Consider now an analogous case to that above except that

the cuboid feature is on both sides of the slab, with each

feature having dimensions w 
 w 
 h=2, as shown in Fig. 6(c).

Using equation (16) shows that jP2dcj< 2jUj, so that in this

case �2dc <�2dc. The value of �2dc is still given by equation

(18), but analysis of this case shows that the constraint ratio is

given by

�2dc ¼
1 þ h=2 þ 2hw2

1 þ hw2
; 0<w< 1=2; ð19Þ

so that, indeed, �2dc <�2dc. The constraint ratio is plotted in

Fig. 6(d) versus h and w, and comparison with �2dc, which is

shown in Fig. 6(b), shows that it is smaller. In general, large,

narrow excursions from a flat molecular envelope are required

to reduce �2dc significantly from �2dc. This is unlikely in

general for membrane systems, so that in practice �2dc and

�2dc are not expected to be too different.

We now consider a more realistic protein envelope example,

for which we use the envelope of the membrane protein

aquaporin 1 (AQP1) (Ren et al., 2000). The molecular

envelope is essentially a thresholded, low-resolution version

of the electron density that identifies the outer boundary of

the molecule. A molecular boundary would typically be

defined at a resolution of about 10 Å. As the resolution of the

envelope is increased, it becomes more intricate and will tend

to generate more solvent regions and will thus modestly

increase �2dc. Because of the smoothing effect of auto-

correlation, jSj will tend to decrease more than jAj and �2dc
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Figure 6
(a) A unit cell with a cuboidal surface feature and (b) the corresponding
values of �2dc ¼ �2dc. (c) A unit cell with two cuboidal surface features
and (d) the corresponding values of �2dc. The corresponding values of
�2dc are the same as in (b).

Figure 7
(a) The aquaporin 1 envelope at a resolution de ¼ 10 Å, calculated as
described in the text. (b) The parameters �2dc (red) and �2dc (blue), and
�0

2dc for resolution d ¼ 3 Å (black) and d ¼ 5 Å (black dashed), versus
the envelope resolution de. (c) The parameters �2dc (red), �2dc (blue) and
�0

2dc (black) versus the resolution of the data d for an envelope resolution
de ¼ 20 Å.
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will tend to increase more than �2dc. The parameters �2dc and

�2dc therefore depend on the resolution of the envelope. Note

that, at high enough resolution, the envelope tends to define

the shape of the molecule and the phase problem is of less

significance. Furthermore, as described above, �0
2dc > 1 also

depends on the resolution of the data which will generally be

higher than the resolution of the envelope.

The following procedure was used to calculate an envelope

of AQP1 at a variable resolution. First, the electron density

was thresholded at its mean value and values below the mean

set to zero. This has the effect of removing spurious noise

peaks and small disconnected regions of the density. Second,

the resulting density was convolved with a spherically

symmetric three-dimensional Gaussian function with a full

width at half-maximum (FWHM) set to a value, denoted de,

that we refer to as the resolution of the envelope. Third, the

smoothed density was thresholded at its mean plus one stan-

dard deviation, and the grid points below the threshold value

set to zero and those above to unity. The resulting binary

function then represents the envelope at that resolution. The

envelope calculated in this way at a resolution of 10 Å is

shown in Fig. 7(a). This is a reasonable representation of the

envelope and the undulations on the surface due to the

molecular structure are evident.

The aquaporin unit cell has dimensions 100 
 100 Å and a

thickness of 55 Å. The envelope was first calculated for

resolutions 30 Å < de < 5 Å, and �2dc and �2dc calculated

numerically as a function of de. The results are shown in Fig.

7(b). Inspection of the figure shows that both parameters

increase as the resolution of the envelope increases, as

anticipated, and �2dc <�2dc. The parameter �0
2dc is also

plotted in Fig. 7(b) for resolutions of the data, d, of 5 and 3 Å.

Note that �0
2dc <�2dc and that �0

2dc is larger for higher reso-

lution. Also, �0
2dc falls below �2dc at low resolution. In this

case, �0
2dc > 1, but successful phasing would depend on the

resolution and the accuracy of the data.

To show the effect of the resolution of the data, for an

envelope of resolution de ¼ 10 Å, �0
2dc is calculated for

3 Å < d< 5 Å and shown in Fig. 7(c) as a function of d, and

compared with �2dc and �2dc. Whereas �2dc and �2dc are

constant, �0
2dc increases with increasing resolution. For a

resolution greater than 3.75 Å, �0
2dc > 1:2, which might be

sufficient for a unique reconstruction in practice, for example.

7. Incomplete data

In this section we consider briefly the expected effects of

incomplete data on uniqueness.

In cryo-electron crystallography, diffraction data can be

collected for specimen tilts � only up to a maximum value of

typically about 60�. This results in a cone of missing data in

reciprocal space, corresponding to the inaccessible tilts. An

identical situation will occur in XFEL diffraction by two-

dimensional crystals, although the maximum tilt attainable will

probably be larger because of the absence of multiple scat-

tering for X-rays. If the maximum tilt is �max, then it is easily

seen that the data completeness (i.e. the fraction of the full

data set that can be measured) is sinð�maxÞ. We assume that

�0
2dc is reduced by this factor. Let �0ðminÞ

2dc be the minimum

value of �0
2dc needed for successful reconstruction with

complete data in practice [we might take, for example,

�
0ðminÞ
2dc ¼ 1:3]. Successful ab initio phasing with a cone of

missing data then requires that

�0
2dc >

�0ðminÞ
2dc

sinð�maxÞ
: ð20Þ

For example, for �0ðminÞ
2dc ¼ 1:3 and �max = 60�, this requires that

�0
2dc > 1:5.

Spence et al. (2003) considered the case of supplementing

electron diffraction amplitude data with electron micrographs

for a small range of tilts to provide some initial phase infor-

mation. The images effectively provide phase information in

the corresponding region of reciprocal space. If image data are

available for tilts 0<�< �images, they provide additional data

(phases) that are a fraction sinð�imagesÞ of a full amplitude data

set. Therefore, with this supplemental information the value of

�0
2dc, denoted �

0ðimagesÞ
2dc , can be approximated as

�0ðimagesÞ
2dc ’ �0

2dc ½sinð�maxÞ þ sinð�imagesÞ�: ð21Þ
Spence et al. (2003) describe simulations reconstructing lyso-

zyme using data of this kind and the HIO algorithm. They

found that reconstruction was successful using a flat support

constraint (i.e. �2dc ¼ 1), a resolution of 3 Å and a unit-cell

thickness of 40 Å (which gives �0
2dc ¼ 0:92), complete

diffraction amplitude data (�max = 90�), and images for tilts up

to 15� (�images = 15�). Substituting these values into equation

(21) gives �0ðimagesÞ
2dc = 1.2, a value that is consistent with our

expectations for successful phasing, at least in the absence of

noise.

8. Summary

The phase problem for a two-dimensional crystal is better

determined than for a three-dimensional crystal, since the data

give access to the continuous Fourier amplitude along lines in

reciprocal space normal to the crystal plane. However, the

allowed solutions still belong to a very high dimensional set

and the solution is highly non-unique in general. The para-

meter �0
2dc, which depends on the shape of the molecular

envelope and the resolution, is useful for defining uniqueness

of the solution. This parameter is more useful than the usual

constraint ratio �2dc in this case. With sufficiently detailed

molecular envelope information, and sufficient resolution, a

unique solution and successful ab initio phasing may be

feasible. Other information, such as non-crystallographic

symmetry, histogram information, will further help constrain

the solution. The results may also have application to the case

of stacks of two-dimensional crystals in which there is lateral

translational disorder between adjacent crystal sheets in the

stack.

Cryo-electron crystallography of two-dimensional crystals

has been an important technique in protein structure deter-

mination, particularly of membrane proteins. The recent
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availability of XFEL sources offers the potential for X-ray

crystallography of two-dimensional crystals, and avoids the

necessity for cryo-freezing. The results therefore offer some

optimism for ab initio phasing for XFEL data from two-

dimensional crystals.

Recent work has highlighted the potential of iterative

projection algorithms that have a large radius of convergence

(Elser, 2003; Marchesini, 2007; Millane & Lo, 2013) for ab

initio phasing in conventional three-dimensional protein

crystallography with suitable constraints (Liu et al., 2012; He

& Su, 2015; Lo et al., 2015). The results presented here

therefore show that although ab initio phasing in two-

dimensional crystallography may be difficult in general, it may

be feasible in favourable circumstances. In other cases,

successful phasing may be possible using much less initial

phase information than is necessary in conventional crystal-

lography with three-dimensional crystals.

Millane (2017) discusses the nature of the solution manifold

in the case of the phase problem for one-dimensional crystals.

In that case, the constraint ratio �1dc � 2 but, despite this

large value, as a result of the specific form of the sampling of

the Fourier amplitude in that case, the solution is not unique,

but belongs to a fairly low dimensional set. Minimal additional

information however is expected to be sufficient to restore

uniqueness. In the two-dimensional crystal case considered

here, however, we have only that �2dc � 1, so that a lack of

data is problematic before the compounding effect of the

regular sampling in the transverse plane in reciprocal space is

considered. The net result is a very high dimensional solution

manifold in general in the two-dimensional crystal case.

Hence, significantly more a priori information is needed in this

case for a unique solution. This requirement is characterized

by the parameter �0
2dc.
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Phasing of diffraction data from two-dimensional crystals using only minimal

molecular envelope information is investigated by simulation. Two-dimensional

crystals are an attractive target for studying membrane proteins using X-ray

free-electron lasers, particularly for dynamic studies at room temperature.

Simulations using an iterative projection algorithm show that phasing is feasible

with fairly minimal molecular envelope information, supporting recent

uniqueness results for this problem [Arnal & Millane (2017). Acta Cryst. A73,

438–448]. The effects of noise and likely requirements for structure determina-

tion using X-ray free-electron laser sources are investigated.

1. Introduction

Successful phasing in macromolecular crystallography

requires starting phase information such as from using

isomorphous replacement or anomalous dispersion, or mol-

ecular replacement. The requirement for initial starting phases

is a result of the unavoidable Bragg sampling of the diffraction

by a three-dimensional crystal, which renders the solution to

the ab initio phase problem highly nonunique in the absence

of additional information (e.g.Millane, 1990; Millane & Arnal,

2015).

It has been known for some time however that for a two-

dimensional crystal, the lack of Bragg sampling along one axis

in reciprocal space provides additional constraints on the

phases, thus easing the phase problem (Stroud & Agard, 1979;

Agard & Stroud, 1982). Some macromolecular systems such as

membrane proteins can form two-dimensional crystals grown

in a lipid bilayer that mimics their native environment. These

small crystals, typically 0.5–2 mm across, are not suitable for

conventional crystallography with synchrotron sources, but

have been studied using cryo-electron crystallography (Kühl-

brandt et al., 1994; Grigorieff et al., 1996; Murata et al., 2000;

Ren et al., 2001; Frank, 2006). Recently, the use of X-ray free-

electron laser (XFEL) sources has been proposed as a new

approach to structure determination using two-dimensional

crystals (Frank et al., 2014). The high intensity, small beam

focus and short X-ray pulse length of XFELs can potentially

overcome the difficulties of weak scattering, small grain size

and radiation damage that are associated with two-

dimensional crystallography using synchrotron sources (Frank

et al., 2014). An advantage of XFEL studies is the possibility of

obtaining dynamic information at room temperature and

under physiological conditions. Preliminary experiments have

demonstrated that good data in one projection can be

obtained to 4 Å resolution (Frank et al., 2014; Pedrini et al.,
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2014; Casadei et al., 2018). It is likely that future extensions of

this approach will allow collection of full three-dimensional

data sets.

An alternative approach to two-dimensional crystal-

lography using XFELs has been proposed by Kewish et al.

(2010). In this approach, using a small X-ray focus, diffraction

patterns are collected and classified according to the position

of the X-ray beam relative to the crystal lattice. A recon-

struction from these patterns can then be conducted using the

method of ptychography (Rodenburg & Faulkner, 2004). The

feasibility of such an approach was demonstrated by simula-

tion.

The phase problem for two-dimensional crystals is alle-

viated to some degree, relative to that for three-dimensional

crystals. Since the specimen is only one molecule or assembly

thick, the Fourier amplitude can be measured effectively

continuously in the direction in reciprocal space normal to the

crystal surface, as opposed to only at the reciprocal-lattice

points. Because the two-dimensional crystal is periodic in the

plane parallel to the crystal surface, the Fourier amplitude is

Bragg sampled in the corresponding two directions in reci-

procal space. The Fourier amplitude is therefore measured

along reciprocal-lattice lines, or Bragg rods, in reciprocal

space. This increased sampling of the Fourier amplitude

further constrains the phases compared with the three-

dimensional crystal case. A similar situation occurs with one-

dimensional crystals, in which case there is continuous

sampling of the Fourier amplitudes on lattice planes in reci-

procal space (Millane, 2017).

In the first article in this series (Arnal & Millane, 2017),

which we refer to here as Paper I, we studied in detail the

effect of this increased sampling on the expected uniqueness

of the ab initio phase problem. We showed that although a

unique solution is not expected in general, a unique solution

may be feasible with fairly minimal a priori information. In

particular, if low-resolution information is available on the

molecular envelope, from atomic force microscopy (AFM) for

example (Frederix et al., 2009), there may be a unique solu-

tion. In this second article we demonstrate the implications of

these uniqueness results by simulation of phase retrieval for

data from two-dimensional crystals.

In cryo-electron crystallography using two-dimensional

crystals, phases are usually obtained from micrographs

(images), and in some cases may be refined using a simple

density-modification type of algorithm. A more sophisticated

reconstruction algorithm has also been investigated (Gipson et

al., 2011). Phasing algorithms used for single-particle imaging

(Bates, 1984; Fienup, 1982; Elser, 2003; Marchesini, 2007) have

been investigated by Spence et al. (2003) for ab initio phasing

for two-dimensional crystals. Using simulated reconstructions

of lysozyme from two-dimensional crystal diffraction data,

they found that ab initio phasing was not successful using the

diffraction data alone, but it was successful if the diffraction

data were supplemented by phases from sufficient images to

fill in the reciprocal lattice with tilts between 0 and 15�.
However, since images are not available to provide initial

phase estimates for two-dimensional X-ray crystallography

using XFEL sources, ab initio phasing takes on more impor-

tance in this case.

Uniqueness properties for the two-dimensional crystal

phase problem as derived in Paper I are briefly reviewed in the

next section. The phase retrieval algorithm that we used is

briefly outlined in x3 and the results of simulations are

described in x4. The effects of noise and practical aspects

related to the use of XFEL data are discussed in x5.
Concluding remarks are made in x6.

2. The two-dimensional crystal phase problem

Consider a two-dimensional crystal which, for simplicity, has a

rectangular unit cell in plane group P1 with unit-cell dimen-

sions a and b (Fig. 1). The results apply straightforwardly to

other two-dimensional crystal classes, and Millane & Arnal

(2015) show that space-group symmetry does not affect

uniqueness of the phase problem, except for the case of centric

space groups. Since the specimen is one molecular assembly

thick, there is strictly no unit-cell dimension in the direction

normal to the crystal plane, but we denote by c the maximum

thickness of the monolayer in this direction (Fig. 1). For

convenience, we refer to the cuboid of dimensions a� b� c

as the unit cell.

We denote the electron density in one unit cell of the two-

dimensional crystal as f ðxÞ ¼ f ðx; y; zÞ, where x ¼ ðx; y; zÞ
denotes position in real space, or in the discrete (sampled)

case by f ½m; n; p� with M �M � N samples (for which we

assume a square unit cell, i.e. a ¼ b). In the sampled case, the

real electron density can be considered to belong to the vector

space R
M2N, where each coordinate value represents the

electron density at one sample point (Paper I).

We show in Paper I that the solution to the two-dimensional

crystal phase problem is not unique if there is no additional

a priori information, and it belongs to a high-dimensional

manifold in R
M2N . A positivity constraint reduces the size of
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Figure 1
A two-dimensional crystal with a unit cell of dimensions a� b� c, where
c is the maximum thickness of the molecular assembly, as described in the
text.
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the solution set, but not significantly. A molecular envelope

constraint, however, can significantly reduce the size of the

solution set, and a unique solution is expected if the envelope

deviates sufficiently from the unit cell.

Three parameters are derived in Paper I that can be used to

characterize uniqueness of the phase problem. The most

important parameter, denoted �0
2dc, is given by

�0
2dc ¼ 1� d

c

� � jUj
jSj ; ð1Þ

where d is the resolution of the available diffraction data, S
and U denote the region of the molecule (envelope) and the

unit cell, respectively, and j � j denotes the size (volume)

(Fig. 2). We show in Paper I that the solution to the phase

problem for a two-dimensional crystal is highly constrained if

�0
2dc > 1 ð2Þ

and a unique solution is then likely. The problem is therefore

favoured by a small envelope region, high resolution (small d)

and a thick monolayer. In practice, in the presence of noise

and missing data, a margin will be required, i.e.

�0
2dc >�0 ðminÞ

2dc > 1; ð3Þ
where �0ðminÞ

2dc is likely to be between, say, 1.2 and 1.5 (Millane

& Lo, 2013). Some values of �0
2dc are shown in Table 1 for

realistic experimental parameters, which show that phasing is

feasible in favourable circumstances.

We also show in Paper I that the necessary condition for

uniqueness �0
2dc > 1 can be rewritten as

v>�; ð4Þ
where v ¼ 1� jSj=jUj is the fractional volume of the unit cell

(as defined above) that is outside the envelope and � ¼ d=c is
the resolution normalized to the thickness of the monolayer.

Note that v will generally be smaller than the solvent content

of the two-dimensional crystal since the latter includes solvent

that is inside the envelope. Keep in mind, however, that

equation (4) corresponds to equation (2) and an extra margin

will be required in practice [equation (3)].

In practice, there will be a missing cone of diffraction data

around the z� axis due to a maximum possible tilt of the two-

dimensional crystal relative to the incident X-ray beam. We

show in Paper I that the effect of the missing cone on�0
2dc is to

multiply it by the factor sinð�maxÞ, where �max is the maximum

tilt of the crystal to the beam. The effect of maximum tilts of

70� and 60� on �0
2dc is shown in Table 1. The effect is small for

�max = 70�, but is significant for �max = 60�.
The second and third parameters described in Paper I are

�2dc given by

�2dc ¼
jUj
jSj ; ð5Þ

which is equal to the inverse of the protein content of the

crystal, and the constraint ratio �2dc given by

�2dc ¼
jP2dcj
2jSj ; ð6Þ

where P2dc is the support of the Patterson function of the two-

dimensional crystal. The parameters�2dc,�
0
2dc and�2dc satisfy

the inequalities

�0
2dc <�2dc

1 	 �2dc 	 �2dc: ð7Þ
The solution to the phase problem for an isolated object is

unique if the constraint ratio � satisfies �> 1 (Elser &

Millane, 2008). However, we show in Paper I that, as a result of

the particular sampling of the Fourier amplitude for a two-

dimensional crystal,�2dc > 1 is not sufficient for uniqueness in

the two-dimensional crystal case, and it is possible for�2dc > 1

but �0
2dc < 1.

In summary, the phase problem for a two-dimensional

crystal is underconstrained in general, but is highly

constrained if �0
2dc > 1. In contrast to the three-dimensional

crystal case where greater than 50% solvent is required for

uniqueness (Millane & Arnal, 2015), a smaller solvent content

is sufficient in the two-dimensional crystal case. The presence

of other constraints such as non-crystallographic symmetry or

histogram information will further constrain the solution.

Therefore, while the ab initio problem for a two-dimensional

crystal does not have a unique solution in general, phasing

may be feasible in favourable circumstances with fairly modest

a priori information.

3. Phase retrieval

Most practical approaches to phase retrieval in the absence of

initial phase information are based on iterative projection

algorithms (Fienup, 1982; Elser, 2003; Marchesini, 2007;

Millane & Lo, 2013; He & Su, 2015). Other approaches are

also in use such as those of Lunin et al. (2000) and charge

flipping (Oszlányi & Süto��, 2008), although these are in general

effective only at low and high resolution, respectively. Itera-

tive projection algorithms, on the other hand, are general-

purpose global optimization procedures which are resolution

research papers
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Table 1
Values of �0

2dc for various experimental parameters.

jSj=jUj v c (Å) d (Å) �0
2dc

�0
2dc

(�max = 70�)
�0

2dc

(�max = 60�)

0.7 0.3 50 5 1.29 1.21 1.11
0.7 0.3 50 3 1.34 1.26 1.16
0.8 0.2 50 5 1.13 1.06 0.97
0.8 0.2 50 3 1.18 1.10 1.02

Figure 2
Illustration of the molecular envelope S and the unit cell U with upper
and lower surfaces that bound S.
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independent. We describe here the iterative projection algo-

rithm that we used for phase retrieval for two-dimensional

crystal data. We assume that the molecular support (envelope)

is known. As described in the previous sections, the electron

density in the unit cell is represented as a vector (or point),

denoted f, in the vector space R
M2N. The phase retrieval

problem is formulated as finding a point in this vector space

that is in the intersection of two constraint sets. One constraint

set, denoted S, contains all electron densities (points) that

satisfy the real-space constraints, which in our case are elec-

tron densities that are zero outside the molecular envelope.

The other constraint set, denoted M, contains all electron

densities whose Fourier amplitude is equal to the measured

amplitude, denoted jFðuÞj, on the reciprocal-lattice lines u. A

point in the intersection of the two sets thus satisfies both

constraints and represents a solution to the problem. An

intersection that contains a single point represents a unique

solution, although a sufficiently small region of intersection

represents a unique solution for practical purposes.

Iterative projection algorithms make use of projections

onto the constraint sets. The projection of a point f in the

vector space onto a constraint set A, denoted PAf, is the point

in the set A that is closest to f, i.e.

PAf ¼ argmin
f0

jjf 0 � fjj; ð8Þ

where argminx f ðxÞ denotes the value of x that minimizes f ðxÞ
and jj � jj denotes the Euclidean norm. Iterative projection

algorithms generate a sequence of ‘iterates’ f i that ideally

converge to a point in the intersection S \M of the two

constraint sets, thereby locating a solution that satisfies both

the real-space constraints and the Fourier amplitude data. The

sequence of iterates is generated by applying an update rule to

the iterate f i to generate the next iterate f iþ1. For constraint

sets that are nonconvex (as is the constraint set M in the case

at hand), a variety of iterative projection algorithms have been

used. Here we use the difference map algorithm (Elser, 2003)

for which the update rule is given by

f iþ1 ¼ f i þ �ðPSLMf i � PMLSf iÞ; ð9Þ
where LS and LM are the relaxed projections given by

LSf i ¼ ð1þ �SÞPSf i � �Sf i

LMf i ¼ ð1þ �MÞPMf i � �Mf i; ð10Þ
where �S and �M are relaxation parameters, and �1<�< 1 is

a parameter. Following Elser (2003), we used the values

�S ¼ �1=� and �M ¼ 1=�, and the algorithm has the single

parameter �. Note that the iterate is not itself an estimate of

the solution, but that once the algorithm has converged, or

reached a fixed point, i.e. f iþ1 ¼ f i ¼ f 0, the solution f̂f (that

satisfies both constraints) is given by (Elser, 2003; Millane &

Lo, 2013)

f̂f ¼ PSLMf
0 ¼ PMLSf

0: ð11Þ
The support projection is implemented in the usual way by

setting sample values that are outside the envelope to zero.

Similarly, the positivity projection, if it is applied, is imple-

mented by setting negative sample values to zero.

The Fourier space projection corresponds to making the

smallest change to the current iterate such that its Fourier

amplitude is equal to the measured value jFðuÞj. It is easily
shown that this corresponds to setting the Fourier amplitude

of the iterate to the measured value and leaving the phase

unchanged.

4. Simulations

Reconstruction of two-dimensional crystals was used to

investigate the uniqueness results derived in Paper I, and their

implications for phase retrieval, using simulated data. Two

kinds of crystals were used. The first are simple synthetic

objects designed to study the effect of different envelope

shapes and the parameters described in x2. The second is the

electron density of a membrane protein that forms two-

dimensional crystals. Fourier amplitude data were calculated

as for a two-dimensional crystal, i.e. Bragg sampled in two

dimensions, and oversampled by a factor 4 in the third

dimension. Noise was not added to the data since the objective

here is to investigate uniqueness properties and determination

of the solution under ideal conditions. The effects of noise are

considered in the next section. An envelope for each object

was defined as described below and an envelope constraint

applied in real space. A positivity constraint was applied in

some cases. The Fourier amplitude constraint was applied

along the reciprocal-lattice lines (Bragg rods) where data are

measured for the two-dimensional crystal. Phase retrieval was

conducted using the difference map algorithm, as described in

the previous section, with � ¼ 0:9, which was started with

random electron densities within the envelope. Since iterative

projection algorithms do not always converge, for each

example the algorithm was run a number of times starting with

different random initial electron densities. Although failure of

an iterative projection algorithm to converge in multiple runs

does not prove that a solution cannot be found, these algo-

rithms are quite effective if multiple starts are used and so the

results obtained are quite suggestive of the feasibility of

finding a solution.

Two error metrics were calculated to assess convergence of

the algorithm and the quality of reconstructions. The first

error metric, En, measures the difference between the ampli-

tude data jFðuÞj and the Fourier amplitude of the iterate

jF̂FnðuÞj, calculated based on f̂f given in equation (11), at

iteration n, and is given by

E2
n ¼

P
u½jFðuÞj � jF̂FnðuÞj�2P

u jFðuÞj2
: ð12Þ

The metric En monitors convergence to the diffraction

amplitude data, i.e. it is small if the reconstructed electron

density gives diffraction amplitudes that are close to data. The

second error metric, en, measures the accuracy of the recon-

struction, and is given by
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e2n ¼
P

x½f ðxÞ � f̂fnðxÞ�2P
x f

2ðxÞ ; ð13Þ

where f ðxÞ is the true electron density and f̂fnðxÞ is the estimate

of the solution at iteration n, calculated using equation (11).

The metric en is small if the correct solution has been found.

Multiple converged runs (small E) that give a small e suggest a

unique solution. Runs that give a small E and a large e indicate

nonunique solutions.

The first set of simulations used 8� 8� 8 sample objects,

with various defined envelopes, with the sample values

selected randomly from a uniform distribution on (0, 1). Eight

different envelopes were used, labelled 1 through 8. Envelope

1 is the full unit cell. Envelopes 2 and 3 have one flat surface

and one structured surface, and envelope 4 has two structured

surfaces. Envelopes 5 and 6 have 15% and 20%, respectively,

of the samples removed at random positions, from the unit

cell. Envelopes 7 and 8 have a pore (channel) through the

object, with cross sections of one and two samples, respec-

tively. The parameters �0
2dc, �2dc and �2dc are calculated for

each envelope and are listed in Table 2. The algorithm was run

ten times for each of these envelopes, both with and without

positivity applied. Convergence of the algorithm is defined by

En < 10�3 and the solution is taken as that where the error

metric En is a minimum. A correct solution is defined as one

for which en < 10�2.

The results are summarized in Table 2, which shows the

number of runs that converged and the number of converged

runs that gave the correct solution. Inspection of the table

shows that the algorithm converged and the correct solution

found for envelopes for which �0
2dc 
 1:06. This is consistent

with our expectations for data with no noise. Positivity did not

have a dramatic effect, but increased the proportion of

converged runs in some cases. The only cases of incorrect

(nonunique) solutions were for envelope 1, where

�0
2dc ¼ 0:87. For intermediate values of �0

2dc

ð0:99<�0
2dc < 1:03Þ non-convergence, rather than conver-

gence to an alternative solution, occurred. The reasons for this

are not clear, but it is likely that more iterations are required

to find a solution in these marginally constrained cases. Note

that larger values of �2dc ð
 1:18Þ are required for conver-

gence to a correct solution. Two examples of electron densities

and their reconstructions are shown in Fig. 3. The recon-

struction results obtained are consistent with the uniqueness

theory described in Paper I.

For the second set of simulations we used the electron

density of the membrane protein aquaporin 1 (AQP1) (Ren et

al., 2000). This crystal structure has a tetragonal unit cell of

dimensions 100� 100 Å, a thickness of 60 Å and space group

P42121. For our purposes, molecular envelopes of variable

detail (resolution), as might be obtained by AFM, were

constructed as described in Paper I. This involves convolving

the electron density with a spherically symmetric three-

dimensional Gaussian function with a full width at half-

maximum (FWHM) set to a value, denoted de, which we refer

to as the resolution of the envelope, followed by thresholding,

to define the envelope at that resolution. As the envelope

detail (resolution) increases (smaller de), the parameters �0
2dc,

�2dc and �2dc all increase.

For the simulations described here, the AQP1 electron

density was sampled on a 100� 100� 60 grid, the envelope

research papers
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Table 2
Summary of reconstruction results for the first set of examples described
in the text.

Object �0
2dc �2dc �2dc Positivity

Runs
converged

Correct
solutions

1 0.87 1.00 0.94† Y 8/10 0/8
N 9/10 0/9

2 0.99 1.13 1.06 Y 0/10
N 0/10

3 1.16 1.32 1.24 Y 10/10 10/10
N 2/10 2/2

4 1.19 1.36 1.28 Y 8/10 8/8
N 5/10 5/5

5 1.03 1.12 1.10 Y 0/10
N 0/10

6 1.06 1.22 1.14 Y 10/10 10/10
N 10/10 10/10

7 1.02 1.16 1.10 Y 0/10
N 0/10

8 1.44 1.64 1.54 Y 10/10 10/10
N 10/10 10/10

† Note that although �2dc 
 1, it can be slightly less than unity for a discrete object.

Figure 3
Example objects (left) and successful reconstructions (right) for (a)
object 3 and (b) object 6, for the first set of examples described in the text.
Contours are shown at 1� and the object has been upsampled for display
purposes.
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determined as described above, and the parameters �2dc and

�2dc calculated. The density was then subsampled onto a grid

of 20� 20� 12 samples for the purposes of phase retrieval

and calculation of �0
2dc. Ten different envelope resolutions de

were used, and for each, ten runs of the difference map were

conducted, using the same protocol as for the first set of

simulations described above with positivity applied. In this

case it was found that the convergence criteria En < 10�2 and

en < 0:20 produced a sufficiently accurate electron density.

Computational times were � 104 s for 105 iterations on an

Intel Core i7-4700MQ CPU @2.4 GHz. The computational

cost will be higher at higher resolution, but appears to be

practical, particularly if some parallelization is employed.

The results are summarized in Table 3. Inspection of the

table shows that good reconstructions are obtained for

�0
2dc 
 1:24, which corresponds to envelope resolutions

greater than 17 Å. The proportion of algorithm runs that

converge increases, and the average number of iterations

required for convergence decreases, as �0
2dc increases, as

expected. A correct solution was not obtained with no

envelope information, as expected. These results are, again,

consistent with the uniqueness theory described in Paper I,

and illustrate the feasibility of phasing for two-dimensional

crystals with only modest envelope information. Examples of

the envelope and the true and reconstructed electron densities

for de ¼ 16 Å are shown in Fig. 4.

5. Effects of noise

For successful phasing of XFEL data from two-dimensional

crystals using only minimal envelope information, there are

two practical considerations, both related to noise. The first is,

what is the minimal signal-to-noise level in the measured

diffraction amplitude data that is needed for successful

phasing? The second is, how many single-shot diffraction

patterns are needed to obtain this required signal-to-noise

ratio? Both of these questions are considered in this section.

Even in cases where a unique solution to the phase problem

is expected for noise-free data, in terms of �0
2dc >�0ðminÞ

2dc > 1,

successful phase retrieval will inevitably depend on the

precision of the diffraction amplitude data. Such is the case for

any reconstruction problem, including conventional protein

crystallography using three-dimensional crystals. In the latter

case, the accuracy of the diffraction data is frequently

measured by the resolution-dependent signal-to-noise ratio

(SNR) I=�ðIÞ, where I and �ðIÞ are the mean intensity and its

standard deviation, respectively, in a resolution shell. The

SNR decreases with increasing resolution, since I falls with

increasing resolution whereas �ðIÞ tends to remain relatively

constant. In the case of three-dimensional crystal crystal-

lography, an interpretable electron-density map can often be

obtained, assuming that good molecular replacement phases

are available, if I=�ðIÞ is greater than about 1–2 at the highest

resolution of the data (e.g. Gati et al., 2017; Dods et al., 2017).

However, for phasing from two-dimensional crystal data in the

absence of molecular replacement phase information, a larger

SNR is likely to be needed.

To determine the minimum SNR needed for phasing of two-

dimensional crystal data, reconstructions were performed for

AQP1, as described in the previous section but with noise

added to the amplitude data. For XFEL crystallography with
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Table 3
Summary of reconstruction results for AQP1 with noise-free amplitude
data.

de (Å) �0
2dc �2dc �2dc

Runs
converged

Correct
solutions

Average
number of
iterations

1 0.91 1.00 1.00 0/10
18.0 1.19 1.30 1.25 0/10
17.0 1.24 1.36 1.28 1/10 1/1 367000
16.0 1.25 1.37 1.29 4/10 4/4 367000
15.0 1.26 1.38 1.31 3/10 3/3 332000
14.0 1.27 1.39 1.32 5/10 5/5 430330
13.0 1.32 1.44 1.35 10/10 10/10 122080
12.0 1.34 1.46 1.37 10/10 10/10 13627
11.0 1.40 1.52 1.40 10/10 10/10 3485
10.0 1.42 1.55 1.43 10/10 10/10 450

Figure 4
Reconstruction of APQ1 with noise-free amplitude data and an envelope
resolution of 16 Å, as described in the text. (a) The envelope, and (b) and
(c) the true and reconstructed electron densities, respectively, contoured
at 1:5�.
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two-dimensional crystals, the individual, weak patterns will be

dominated by photon noise, but on averaging many patterns,

the noise in the merged patterns will be approximately

Gaussian. Therefore, Gaussian distributed noise was added to

the simulated intensity data, the variance of the noise being

adjusted to fix the SNR at the highest resolution to desired

values. Phase retrieval was conducted with various SNRs, with

a 20� 20� 12 sample grid and an envelope resolution of

10 Å. It was found that a good reconstructed electron-density

map could be obtained for I=�ðIÞ 
 5 at the highest resolu-

tion. An example reconstructed electron density for this case

is shown in Fig. 5. This indicates that the SNR needed for

phasing with two-dimensional crystals and only molecular

envelope information is about three to five times greater than

that needed in conventional crystallography starting with

molecular replacement phases.

Each XFEL diffraction pattern from a two-dimensional

crystal represents a spherical section through the reciprocal-

lattice lines and thus consists of sharp spots. The spots allow

the individual patterns to be oriented in reciprocal space, and

then many patterns averaged to increase the SNR. Casadei et

al. (2018) demonstrate this approach by orienting approxi-

mately 400 indexable XFEL diffraction patterns from

bacteriorhodopsin two-dimensional crystals in a single section

through reciprocal space. They subsequently average these

patterns to obtain good estimates of the diffraction amplitudes

on this section.

We now consider the number of diffraction patterns likely

to be needed for successful phasing with two-dimensional

crystal data. For a three-dimensional crystal with P unit cells,

the intensity of the Bragg reflections is proportional to P2. For

a two-dimensional crystal with P unit cells, the intensity on the

lattice lines is also proportional to P2. Therefore, data of a

quality comparable with that obtained from three-dimensional

crystals should be obtainable from two-dimensional crystals

that have a similar number of unit cells. The number of unit

cells intersected by the XFEL pulse is therefore of key

importance. Structure determination has been successful, for

example using serial femtosecond crystallography (SFX), with

as few as about 104 unit cells in the XFEL focus and an SNR of

1–3 (e.g. Boutet et al., 2012; Conrad et al., 2015). Typical

bacteriorhodopsin two-dimensional crystals, for example, of

dimensions 0:5� 0:5 mm contain � 104 unit cells, and should

therefore give intensity data of comparable quality to such

SFX experiments if the XFEL pulse intersects a full two-

dimensional crystal grain. Boosting the SNR by a factor of

about three, as described above, for phasing of two-

dimensional crystal data, indicates that about a tenfold

increase in the number of indexed patterns may be sufficient.

Structure determination by SFX typically requires 104–105

indexed patterns, indicating that phasing of two-dimensional

crystal data with only molecular envelope information may

require of the order of 105–106 indexed patterns.

The number of patterns needed for phasing of two-

dimensional crystal data can also be estimated using the

results of Casadei et al. (2018). They obtained an SNR of

about 5 at 4 Å resolution using 400 patterns, and their analysis

indicates that to obtain the same SNR at 3 Å resolution would

require about 4000 patterns. This is for a single section

through reciprocal space however, and for a unit-cell thickness

of 100 Å and fourfold oversampling along the Bragg rods,

consideration of the relative volumes in reciprocal space

shows that approximately 100 times as many patterns would

be required to obtain a full three-dimensional data set at 3 Å

resolution. This indicates a requirement of approximately

4� 105 indexed patterns in this case, similar to the estimate

obtained above. Obtaining this number of patterns would

appear to be feasible with current instrumentation, and

particularly so with likely improvements in sample scan rates.

6. Summary

XFEL sources offer the potential for X-ray crystallography of

two-dimensional crystals at room temperature and for

dynamic studies. Although the solution to the ab initio phase

problem for a two-dimensional crystal is not unique in general,

a unique solution and successful phasing are feasible with

research papers
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Figure 5
Reconstruction of AQP1 with noisy amplitude data with I=�ðIÞ ¼ 5 and
an envelope resolution of 10 Å, as described in the text. (a) The envelope,
and (b) and (c) the true and reconstructed electron densities, respectively,
contoured at 1:5�.
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rather modest molecular envelope information, less than that

required for three-dimensional crystals. While for three-

dimensional crystals a solvent content greater than 50% is

required for a unique solution, a considerably smaller solvent

content can give a unique solution in the two-dimensional

crystal case. The utility of molecular envelope information in a

specific case can be assessed using the parameter �0
2dc.

For membrane proteins, if moderately detailed molecular

surface information is available, from AFM for example, then

iterative projection algorithms appear to offer an effective

tool for phasing in the absence of molecular replacement

phase information. The results presented here show the

potential for this approach, indicating that phasing is feasible

with surface topography information at fairly modest resolu-

tion and realistic experimental parameters. This approach may

be useful for XFEL diffraction imaging of membrane proteins

using two-dimensional crystals where independent phase

information is difficult to obtain.

The results suggest that true ab initio phasing, i.e. without

molecular envelope information, may also be feasible with

two-dimensional crystal data, as long as the volume of the

envelope is known. Millane & Arnal (2015) show that, in

principle, replacing a molecular envelope constraint by a

molecular volume constraint does not alter uniqueness of the

solution, although it does make finding the solution more

difficult. Given that the solution to the two-dimensional

crystal phase problem is better determined than for the three-

dimensional crystal case, a molecular volume constraint,

together with an algorithm such as shrink-wrap (Marchesini et

al., 2003) to refine the envelope, may make ab initio phasing

feasible in the two-dimensional crystal case. Investigation in

this direction would be fruitful.
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56 CHAPTER 4. THE PHASE PROBLEM FOR 2D CRYSTALS. II. SIMULATIONS



5 AB INITIO MOLECULAR

REPLACEMENT PHASING

5.1 INTRODUCTION

In this chapter, a novel ab initio phase retrieval technique is presented that has strong

similarities to conventional molecular replacement (MR) phasing and, for this reason,

is referred to here as ab initio molecular replacement (aiMR) phasing. Recalling from

Section 1.3.2.4, in conventional MR, an homologous protein of known structure is posi-

tioned in the target unit cell and used to calculate approximate phases. If these phases

are sufficiently accurate, they can be used together with the measured structure am-

plitudes to calculate an interpretable electron density map. Unfortunately, the use of

an a priori model renders MR ill-equipped for finding new protein folds and is prone

to model bias [Evans and McCoy, 2008].

The proposed aiMR technique overcomes these issues by collecting experimental

data from multiple crystal forms of the target protein. Contrary to MR, no model

structure is used. In effect, in aiMR, the model and target are the same. It will be

shown in Section 5.3 that the diffraction data collected from different crystal forms are

mostly independent under fairly general conditions. As the different crystal forms are

built with the same building block (the same protein), the independent diffraction data

constitute a source of additional information to solve the phase problem.

In practice, crystal forms are generally encountered with two main modifications of

the unit cell – swelling/shrinking of the unit cell (which mainly changes the sampling

positions h) and space group transformations (which fundamentally changes the way

the molecular transform is sampled). The former can be caused by physical or chemical

changes during or after crystallisation, for instance changes in temperature, humidity

or pressure. The latter is generally accompanied by significant changes in unit cell pa-

rameters and occurs generally because of different chemical composition of the mother

solution or crystal. Both cases are covered by the aiMR theory presented in Section

5.4, but the outcomes may be different in practice.

Fortunately, for many proteins, different crystal forms can easily be formed using

controlled crystal hydration/dehydration. Furthermore crystallisation techniques, such

as high throughput crystallisation screening (HTCS) are a good source of different
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crystal forms due to the automatic and systematic coverage of many crystallisation

parameters.

The aiMR technique depends on the similar tertiary structures of identical primary

structures in different crystal environments. Clearly, this is more likely to be the

case than in conventional MR where the primary structures are different. In practice,

however, there will be at least small differences between the structures, and this will

affect the resolution of the reconstruction. If the proteins are similar enough for an

IPA to converge, the reconstruction would most likely correspond to an average of the

protein electron densities of the different structures. A representative study of the

structural homology that exists between two crystal forms is given in Section 5.5.2.

5.2 DIFFRACTION BY MULTIPLE CRYSTAL FORMS

Denoting by g(x) the electron density of the protein, the electron density of the unit

cell in crystal form n with n = (1, 2, . . . , N), denoted by fn(x), is given by

fn(x) =

Kn∑
k=1

g(Rnkx + tnk) =

Kn∑
k=1

gnk(x), (5.1)

where the sum is over the Kn protein copies (asymmetric units) in crystal form n. The

rotation matrices Rnk and translation vectors tnk describe the space group symmetry

operators for crystal form n, with gnk(x) the copies positioned in the unit cell. The

operators Rnk and tnk are assumed known in the aiMR technique described here. The

Fourier intensity measured at position u in reciprocal space for crystal form n, denoted

In(u), is given by

In(u) = |F [fn(x)] |2 =

∣∣∣∣∣
Kn∑
k=1

G(RTnku) exp (i2πu · tnk)

∣∣∣∣∣
2

, (5.2)

where G(u) is the Fourier transform of g(x).

Equation (5.2) relates the diffraction intensities In of the crystal forms to the elec-

tron density of the common building block g(x). Only the Bragg diffraction data,

In(h), where the h depend on the cell constants, are measured during experiments.

The data from different crystal forms are independent if either, the sampling positions

h between crystal forms are different or, the operators Rnk and tnk are different for all

crystal forms n. In either case, the equivalent sampling of reciprocal space obtained

from multiple crystal forms is denser than the sampling from a single crystal form,

providing additional information.



5.3. UNIQUENESS 59

5.3 UNIQUENESS

For ab initio phasing, an immediate question of fundamental importance is, does the

data from additional crystal forms provide sufficient information to provide a unique

solution to the phase problem? In this section, uniqueness of the aiMR phase problem

is examined using the constraint ratio.

Consider first the case where the data from the N crystal forms are all independent.

The total number of data is then the sum of the number of data from each crystal form.

Referring to Section 2.2, the number of data for crystal form n is |Pn|/2, where Pn is

the region of the Patterson function of crystal form n. The constraint ratio for N

crystal forms is then given by

ΩaiMR =

∑N
n=1 |Pn|/2
|U |

=

N∑
n=1

1

2pn
, (5.3)

where pn is the protein content of crystal form n, and the simplification to equation (2.5)

has been made. Equation (5.3) shows that the constraint ratio increases dramatically

with the number of crystal forms if all the data are independent.

It is possible that if the unit cells are very similar, then the sampling of reciprocal

space h will be similar and not all the structure amplitudes will be independent. This

is illustrated by considering two p1 square crystal forms whose cell constants differ by

a small relative proportion δ, as shown in Fig. 5.1. Denoting, loosely, by ε, the overall

proportion of the total data that are independent, then equation (5.3) is replaced by

ΩaiMR = ε
N∑
n=1

1

2pn
. (5.4)

Likely values of ε can be assessed as follows. Assuming, again loosely, that the am-

plitudes at two sample locations are independent if they are spaced by greater than

a fraction ∆ of the reciprocal lattice spacing, the quantity ε is then a function of

resolution d and is given by

ε(∆) =
N(∆, d)

N(d)
, (5.5)

where N(∆, d) is the number of independent reflections up to resolution d, and N(d)

is the total number of reflections. Simple calculations to evaluate likely values of ε are

made using the square unit cell shown in Fig. 5.1(a). With a unit cell of dimensions

unity, d can be treated as a normalised resolution with the true resolution given by ad,

where a is the actual cell constant. The quantity N(d) is known as the Gauss circle
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(a)

(b)

Figure 5.1 (a) Two p1 square crystal forms whose unit cell differ by a small fraction
δ and (b) the corresponding sampling in reciprocal space with a fraction δ = 0.05.
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Figure 5.2 Value of ε as a function of resolution d for δ = 0.05 (blue curve) and
δ = 0.10 (red curve).

problem [Hilbert and Cohn-Vossen, 1999] and given by

N(d) = 1 + 4
∞∑
i=0

(⌊
1

d2(4i+ 1)

⌋
−
⌊

1

d2(4i+ 3)

⌋)
. (5.6)

The quantity N(∆, d) is now a function of δ, denoted N(∆, d, δ), and ε(∆, δ, d) is

calculated by simulation for ∆ = 0.1 and shown as a function of δ and d in Fig. 5.2.

It can be seen that ε approaches 1 in most practical cases, even for small changes in

unit cell dimensions, as long as the normalised resolution of the data is better than

about 0.1. Even for a relatively small unit cell of dimensions 50Å, this corresponds to

a resolution greater than 5Å. In this case, > 95% of the data are independent if the

unit cell variations are no less than 5%.

5.4 IMPLEMENTATIONS OF AIMR

The phase retrieval problem for aiMR consists of synthesising the N diffraction data

sets with the real space constraints to achieve a solution. IPAs are used for this purpose.

The following subsections present two distinct IPA implementations of aiMR cor-

responding to two different perspectives. For each implementation, the real space and

reciprocal space projections are derived. In the first implementation (A), the IPA at-

tempts to reconstruct the full unit cell of each crystal form, fn(x), whereas, the second
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implementation (B), reconstructs the proteins in each crystal form, gnk(x), individually.

5.4.1 Implementation A

In implementation A, the algorithm operates on the set of the complete unit cell den-

sities fn(x).

5.4.1.1 Reciprocal space projection

The reciprocal space projection, denoted PM , makes the smallest change in the current

estimate of fn(x), such that the Fourier intensities are equal to the experimental inten-

sities In. This projection was defined in Chapter 1 (equation (1.26)) and is the usual

Fourier space projection for reconstruction of a single object and is repeated here for

convenience:

PMfn(x) = F−1
{√

In(h)

|Fn(h)|
Fn(h)

}
, (5.7)

where Fn(h) is the Fourier transform of fn(x).

5.4.1.2 Real space projection

The real space projection, denoted PS , enforces the following two constraints: (i) the

iterate fn(x) is such that the component parts gnk(x) from which it is built are identical

for each unit cell n, i.e. the gnk(R
−1
nk (x−tnk)) are identical for all n and k, and (ii) fn(x)

is restricted to the support region s(x). Both of these requirements can be satisfied, in

the least distance sense, by averaging the components, applying a support constraint

s(x), and then rebuilding the unit cells. The real space projection can then be written

in two steps as

g′(x) =
s(x)

P

N∑
n=1

Kn∑
k=1

Snkfn(x), (5.8)

PSfn(x) =

Kn∑
k=1

g′(Rnkx + tnk), (5.9)

where P =
∑

nKn is the total number of asymmetric units in all the crystals, and the

operator Snk extracts an estimate of g(x) from the kth asymmetric unit in fn(x).

If the support regions in a unit cell do not overlap, then the operation Snk can be

achieved by simply repositioning fn(x) within the corresponding support region, and

Snk is given by

Snkfn(x) = fn(R−1nk (x− tnk)). (5.10)
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If the support regions overlap, then one can in principle still develop a distance

minimising projection, but the implementation depends on the nature of all the over-

laps in the unit cell, and its effectiveness depends on the degree of overlap. Such an

implementation would be computationally intensive in practice.

5.4.1.3 Two-dimensional simulations of approach A

Simulations were conducted to illustrate implementation A of aiMR described in the

previous sections. For each simulation, a pair of different crystal forms of a 32 × 32

Lena electron density, the “protein”, were generated. The support, s(x) was defined by

the 32×32 logical mask and the Fourier intensity data In(h) calculated using the DFT.

The aiMR real and reciprocal space projections were implemented and incorporated

into the difference map algorithm.

(a)

(b)

(c)

Figure 5.3 Reconstruction results for aiMR phase retrieval using approach A. Orig-
inal pairs of crystal forms (left) and corresponding reconstructions (right). (a) Two
p1 crystal forms with different shape of the same volume, (b) a p1 crystal and a pm
crystal, and (c) a p1 crystal and a p2 crystal.

The three unit cell pairs used in simulation are shown in Fig. 5.3. The first pair

consists of two p1 unit cells with different shapes of the same volume (Fig. 5.3(a)). The

unit cells have dimensions 37×43 and 43×37 pixels. The corresponding solvent content

is 36% in both crystals. The second pair is composed of a p1 unit cell of dimensions

37 × 37 and a pm unit cell of 74 × 37 pixels (Fig. 5.3(b)). Both have 25% solvent

content. The third cell is similar to the previous case but with a p2 unit cell rather

than pm (Fig. 5.3(c)). Computation of Ωc = 1/2p for these crystals indicates no unique

solution can be expected if taken alone. However, using ε = 0.8 and equation (5.4) the
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aiMR constraint ratio is calculated as (a) ΩaiMR = 1.25, (b) ΩaiMR = 1.06 and (c)

ΩaiMR = 1.6 indicating a unique solution may be obtained using aiMR. Note that, for

the third case, the second crystal is centric so that Ωc = 1/p.

Figure 5.4 Real space (blue) and reciprocal space (red) errors e and E as a function
of iteration for the unit cell and reconstruction shown in Fig. 5.3(a).

For each simulation, the reciprocal and real space errors were computed with the

usual error metrics given in Section 1.4.5. Representative error plots are shown in

Fig. 5.4, Fig. 5.5 and Fig. 5.6 for case (a), (b) and (c) respectively. Successful recon-

structions were obtained in all cases, in accordance with the values of ΩaiMR above. The

ease of reconstruction is correlated to the values of ΩaiMR. Case (b) is the hardest with

ΩaiMR = 1.06 as can be seen in Fig. 5.5 with a lengthy search for an attractor, followed

by a slow convergence to the solution. Case (c) is the easiest with ΩaiMR = 1.6, con-

verging in less than a thousand iterations (Fig. 5.6), while case (a) with ΩaiMR = 1.25

converges in about 1500 iterations (Fig. 5.4). The average number of iterations required

for convergence decrease, as ΩaiMR increases, as expected. The smaller final error for

case (c) may be due to the problem’s centric nature which constrains the phase to

just the two values, 0 and π. These results are consistent with the uniqueness theory

described in Section 5.3.
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Figure 5.5 Real space (blue) and reciprocal space (red) errors e and E as a function
of iteration for the unit cell and reconstruction shown in Fig. 5.3(b).

Figure 5.6 Real space (blue) and reciprocal space (red) errors e and E as a function
of iteration for the unit cell and reconstruction shown in Fig. 5.3(c).
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5.4.2 Implementation B

In implementation B, the algorithm operates on the set of densities of the individual

molecules in their respective unit cell gnk(x).

5.4.2.1 Reciprocal space projection

Writing the complex number G(RTnkh) exp (i2πh · tnk) in equation (5.2) as ank + ibnk,

equation (5.2) can be written as

In(h) =

∣∣∣∣∣
Kn∑
k=1

(ank + ibnk)

∣∣∣∣∣
2

=

(
Kn∑
k=1

ank

)2

+

(
Kn∑
k=1

bnk

)2

, (5.11)

where, for convenience, the h dependence has been dropped.

The diffracted intensity for a single crystal form can thus be equivalently expressed

with the real numbers ank and bnk. Different values of ank and bnk lead to the same

intensity, and equation (5.11) describes a (2Kn−1)–dimensional surface, denoted χ, in

the 2Kn–dimensional space Υ. Following [Chen et al., 2016], the diffracted intensity is

normalised by Kn, giving

I ′n(h) = In(h)/Kn. (5.12)

The reciprocal space projection moves a point Φn = [an1, ..., anKn , bn1, ..., bnKn ] in Υ to

the closest point Φχ
n = [aχn1, ..., a

χ
nKn

, bχn1, ..., b
χ
nKn

] that lies on the surface χ. To find

Φχ
n, the problem is formulated into an optimisation problem by defining two functions

- a distance function and a constraint function:

• The constraint function ζ(Φn) ensures that Φn lies on χ and is defined as

ζ(Φn) =
1

Kn

(Kn∑
k=1

ank

)2

+

(
Kn∑
k=1

bnk

)2
− I ′n(u). (5.13)

• The distance to be minimised is the distance between an arbitrary starting point,

Φ0
n = [a0n1, ..., a

0
nKn

, b0n1, ..., b
0
nKn

] and Φn, is given by

ψ(Φn) =

Kn∑
k=1

(
(ank − a0nk)2 + (bnk − b0nk)2

)
. (5.14)

The method of Lagrange multipliers is used to solve this optimisation problem by

defining the Lagrange function

L(Φn;λ) = ψ(Φn) + λζ(Φn), (5.15)
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where λ is the Lagrange multiplier. The gradients of L(Φn, λ) are calculated as

∇L(Φn, λ) =

(
∂L
∂ank

,
∂L
∂bnk

,
∂L
∂λ

)
, (5.16)

which at a local minima gives

∂L
∂ank

= 0 = 2(aχnk − a
0
nk) +

2

Kn
λ

Kn∑
m=1

aχnm, (5.17)

∂L
∂bnk

= 0 = 2(bχnk − b
0
nk) +

2

Kn
λ

Kn∑
m=1

bχnm, (5.18)

and

∂L
∂λ

= 0 = ψ(Φχ
n). (5.19)

Summing equations (5.17) and i×(5.18) over all k gives

2

Kn∑
k=1

(aχnk − a
0
nk) +

2

Kn
λKn

Kn∑
m=1

aχnm + 2i

Kn∑
k=1

(bχnk − b
0
nk) +

2i

Kn
λKn

Kn∑
m=1

bχnm = 0,

(5.20)

and denoting z0nk = a0nk + ib0nk and zχnk = aχnk + ibχnk, we obtain

Kn∑
k=1

zχnk =
1

1 + λ

Kn∑
k=1

z0nk. (5.21)

This expression can be substituted back into equations (5.17) and (5.18) to give

zχnk = z0nk −
1

Kn

(
λ

1 + λ

) Kn∑
m=1

z0nm, (5.22)

and into equation (5.19) to give

I ′n =
1

Kn

|
∑Kn

k=1 z
0
nk|2

(1 + λ)2
. (5.23)

Solving for λ in equation (5.23) gives

λ =

√
I ′0n
I ′n
, (5.24)
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where

I ′0n =
1

Kn

∣∣∣∣∣
Kn∑
m=1

z0nm

∣∣∣∣∣
2

. (5.25)

Finally, substituting equation (5.24) into equation (5.22) gives

zχnk = z0nk +
1

Kn

(√
I ′n
I ′0n
− 1

)
Kn∑
m=1

z0nm. (5.26)

This results in the reciprocal space projection given by

PMgnk(x) = F−1
{
Gnk(h) +

1

Kn

( √
In

|F (h)|
− 1

)
F (h)

}
. (5.27)

5.4.2.2 Real space projection

The real space projection starts by merging the object estimates of gnk(x) and applying

other real space constraints such as the support constraint,

g′(x) =
s(x)

P

N∑
n=1

Kn∑
k=1

gnk(R
T
nk(x− tnk)), (5.28)

and then repositioning to give

PSgnk(x) = g′(Rnkx + tnk). (5.29)

Inspection of equation (5.28) shows the advantage of implementation B. The pro-

jection uses the isolated, positioned molecules gnk(x), which are not subject to overlap,

even if they overlap in the unit cell. The projection given by equation (5.29) can there-

fore be applied in the presence of overlap. Note that equation (5.28) is identical to

equations (5.8) and (5.10) of implementation A in the case of no overlap.

5.5 SIMULATION METHODS

Simulations illustrating the aiMR method for a protein molecule using implementation

B are presented in the next section. For convenience, specific background material to

the simulations in Section 5.6 is gathered in this section.

5.5.1 Simulated data

Simulations were conducted with two crystal forms of the Gallus gallus hen egg-white

lysozyme protein (HEWL), the second protein structure to be solved by X-ray crys-

tallography, and remaining today a popular model for protein X-ray crystallographic
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Figure 5.7 Histograms of the distribution of unit cell parameters for HEWL struc-
tures with space group P43212 and Kn = 8 in the PDB.

studies. Due to the relatively small, globular shape of this protein, structures of HEWL

in different crystal forms, including with significant space group changes, are easily

found in the PDB.

A search through the PDB returned 658 structures of HEWL solved by X-ray crys-

tallography. Amongst these HEWL structures, nine space groups were represented,

with P43212 constituting 84% of the entries. For simulation purposes, a number of

possibilities can be considered involving the minimum number of crystal forms needed

in aiMR:

• Using two or more crystal forms in the same space group.

• Using two or more crystals with different space groups.

Consider first the case with crystals forms in space group P43212. The unit cell

parameter ranges for structures with space group P43212, with 8 copies of the protein

in the unit cell, are shown in the Fig. 5.7. Most of the unit-cells dimensions are within

about 3% of the average unit-cell size. This can be explained by the limited range of

inter-protein distances available for globular shaped proteins before the crystal looses

integrity. The largest unit cell volume is 2.5 × 105Å
3

and the smallest is 2.1 × 105Å
3
,

a change of about 15%. According to equation (5.4), and assuming two crystal forms

of the median solvent content of 39%, and assuming ε = 0.8, the constraint ratio is

ΩaiMR = 1.28, a value that might not be sufficient to obtain aiMR reconstructions.

Now, consider the case of crystal forms of HEWL in different space groups. Details

of two particular structures, in space groups P212121 and P43212 are listed in Table 5.1

and shown in Fig. 5.8. The constraint ratio for these structures (for ε = 0.9) is ΩaiMR =

1.55 a value that is more likely to be sufficient for aiMR reconstruction than for the

previous case. These two structures were thus used for the simulations.
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Table 5.1 Details of the HEWL crystal forms used in the simulations.

Structure 132L [Rypniewski et al., 1993] 193L [Vaney et al., 1996]

Space group P212121 P43212

a (Å) 30.6 78.5

b (Å) 56.3 78.5

c (Å) 73.2 37.8

α, β, γ 90◦ 90◦

pn 55.9% 60.5%

Kn 4 8

Figure 5.8 Crystals of the structures 132L (right) and 193L (left) of the HEWL
protein used in simulations.

5.5.2 Structural homology

The structural homology between the two HEWL structures was characterised using the

structure comparison tools in UCSF Chimera [Pettersen et al., 2004]. A Cα superposition

of 193L to the reference structure 132L using the MatchMaker tool gave a Cα root-mean-

square deviation (RMSD) of 0.83 Å, indicating quite similar structures.

The structural differences are illustrated by the differences between the Cα of each

residue of 193L and 132L shown in Fig. 5.9. Overlaid in black is the reference structure

132L. As can be seen, the structural differences are concentrated near the edges of the

proteins, while the core structure, is preserved in the crystal forms.

5.5.3 Molecular and crystal models

Although the structures of 132L and 193L could be used directly, in initial experiments

a simplified structure was used as follows.

First, solvent molecules and ligands (sodium and cloride ions) were removed. The

resulting structures were superimposed using procrustes analysis [Kroonenberg et al.,

2003], giving the rotation matrix and translation vector between the asymmetric units

g11(x) and g21(x). By choosing the reference structure g(x) as g11(x), the rotation

matrices Rnk and translation vectors tnk are determined, i.e. R11 = I and t11 = 0.
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Figure 5.9 A Cα superposition of 193L to 132L. The color scale indicates the RMSD
in Å of each alpha carbons of 193L taking 132L (black) as the reference structure.

Table 5.2 Electron density grids sizes and spacings in Å.

Crystal form 132L 193L

Number of samples along a (sample spacing Å) 32 (0.956) 80 (0.982)

Number of samples along b (sample spacing Å) 60 (0.938) 80 (0.982)

Number of samples along c (sample spacing Å) 80 (0.915) 40 (0.944)

Finally, the RMSD was reduced to zero between the two structures by replacing the

structure of 193L by the translated and rotated version of the version of 132L. After

these steps, two crystal forms of the same version of the molecule 193L were obtained.

The electron density of both crystals was then computed from their atomic coordi-

nates. The command line tool phenix.fmodel was used to obtain the structure factors

with the high-resolution parameter set to 2 Å and using an electron scattering table. No

anisotropic scale matrix, flat bulk solvent model parameters or anisoScale was used in

this case. The mtz file output was then converted into a ccp4 map with phenix.mtz2map

with a grid resolution of 0.5 Å, to obtain a map sampled to at most 2×0.5 = 1Å spacing,

which was then sigma-scaled. The electron density map details are given in Table 5.2.
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Figure 5.10 Envelope of 193L used in the simulations with the protein stick model
of 193L fitted inside.

5.5.4 Determination of the envelope

The protein envelope (support) constitutes one of the a priori constraints used in ab

initio MR. The envelope was computed from the atomic coordinates by first creating

a logical mask of the protein atomic positions onto a grid and subsequently smoothing

the logical mask with a Gaussian. The resulting mask was then thresholded to obtain

an envelope containing no holes. The envelope obtained is determined by the standard

deviation σ of the Gaussian while the threshold was chosen to obtain an envelope

containing no holes. The envelope used in the simulation was calculated using σ = 4Å,

and is shown in Fig. 5.10. Placing this envelope in the two unit cell gives solvent

contents of about 0.24 for 193L and 0.33 for 132L. These solvent contents are smaller

than those of the structure itself, so the envelope can by considered “generous”.

5.5.5 Implementation of the real space merging

The merging step described in Section 5.4.2.2 is a crucial step in aiMR. It involves

averaging the electron density from two electron densities sampled on different grids

and thus requires potentially computationally intensive multivariate interpolation. For

successful phasing, good interpolation accuracy is required. As this is an intricate

procedure, and the bottleneck step in the aiMR, its implementation is described below.

The real space merging step can be broken down into three substeps that are shown

as diagrams in Fig. 5.11:

1. Averaging within the same crystal form.

2. Averaging between the crystal forms.
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(a)

(b)

(c)

Figure 5.11 Diagrams of the three steps involved in the real space merging. (a)
Averaging within the same crystal form. (b) Averaging between the crystal forms. (c)
Redistributing the averaged electron density to each crystal form.
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3. Redistributing the averaged electron density in each crystal form.

The first and last substeps are done on the same computational grids, interpolations

and sampling issues can be avoided by working in the crystal basis of the respective

crystal forms. Averaging within the same crystal form is shown in Fig. 5.11(a) and

reduces to averaging the pixel values from all the copies (the sample locations for each

copy are the same). Redistributing the averaged electron density in each crystal form

is the inverse procedure and is shown in Fig. 5.11(c).

The second substep must be approached differently. Because the sampling grids

are different between crystal forms, the sampling of the protein electron density is also

different. This case is shown in Fig. 5.11(b). To average the electron density between

crystal forms each pixel in the support of the protein in the first crystal form are

mapped using the rotation and translation operators to a similar location in the second

crystal form (for instance the green position in Fig. 5.11(b)). The closest pixels (red

positions) are then used to linearly interpolate the value at the matching position.

5.6 SIMULATION RESULTS

Diffraction amplitudes for the two crystal forms calculated as described in Section

5.5.3, the molecular envelope, and the rotation Rnk and translation tnk operators are

assumed known. Implementation B described in Section 5.4.2 was used. The intensity

data In(h) were obtained from the true electron densities fn(x). Noise was not added

to the intensity data as the objective here was to investigate the uniqueness and quality

of the reconstructions under ideal conditions. The difference map algorithm and error

reduction algorithms were used to iteratively apply the real space and reciprocal space

projections described in Section 5.4.2. A positivity constraint was not applied. The

difference map parameter β = 0.9 was used.

This algorithm was implemented using Matlab R© and run on an Intel R© i7-4600M

quad-core processor. A generic run with 1800 DM iterations and 200 ER iteration takes

approximately 4 hours.

Convergence was monitored by calculating the RMS difference between the ampli-

tude data for crystal form n and that of the estimated amplitude of its reconstruction

at iteration i. This error metric is defined by

Ei =

√∑
n

∑
h (
√
In(h)−

√
Iin(h))2∑

n

∑
h In(h)

, (5.30)

where In(h) is the Fourier intensity data for crystal form n and Iin(h) is the estimated

Fourier intensity of crystal form n at iteration i. A small value for E indicates a

converging algorithm.

The quality of the reconstructed electron density was monitored by calculating the

RMS difference between the correct electron density, and the estimated electron density
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of the reconstruction at iteration i, given as,

ei =

√∑
k

∑
n

∑
x (g(x)− gink(x))2∑

k

∑
n

∑
x g

2(x)
, (5.31)

where gink(x) is the electron density of the reconstruction of protein k in crystal form

n at iteration i. A small value for e indicates a good reconstruction.

The final reconstruction was chosen as the iterate where the Fourier space error Ei

is smallest. Small values for e and E indicate a successful and unique solution to the

phase retrieval problem. A small value for E and high value for e indicates either an

ambiguity or a non-unique problem. Inversion ambiguities were checked by computing

e with g(x) replaced by g(−x).

The algorithm was started with a random electron density map and the difference

map algorithm run for 250 iterations followed by 25 iterations of the error reduction

algorithm, with this pattern repeated until convergence. Convergence was defined as

when the Fourier space error E reached 8 × 10−2, a value which, it was determined,

results in an interpretable electron density map. The algorithm converged and uniquely

Figure 5.12 Reconstructions of residues 89 to 129 of the HEWL protein obtained
with aiMR.

reconstructed the electron density. The reconstruction of the first crystal form is shown

in Fig. 5.12. For this reconstruction, the final errors are e = 0.20 and E = 7.6× 10−2.
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As can be seen, the fit of the protein structure to the electron density is good and of

sufficient quality for initial chain tracing (threading of the protein molecule into the

electron density). Representative plots of the error metrics versus iteration are shown

in Fig. 5.13. The random starting point of the simulation is evidently responsible for

Figure 5.13 Real (blue) and reciprocal (red) space errors versus iteration for the
simulations described in the text.

the high starting values for E and e (in the first 10 iterations). This is followed by a

small decrease of the Fourier amplitude error while the real space stays high (the next

40 iterations). A sharp decrease in both errors is then observed, followed by a slow but

steady decrease in both errors. This behaviour is typical of the convergence of IPAs.

5.7 DISCUSSION

The aiMR technique offers new phasing possibilities in protein crystallography. The

technique’s attractiveness lies in it being immune to model bias and its ability to find

new folds. The need for knowledge of the molecular envelope s(x) and transformations

(Rnk, tnk) between the crystal forms is a limitation of the current study, but it is

likely that these restrictions can be relaxed. For example, if a low resolution electron

density was available, from solution scattering or electron microscopy, for example,

then the envelope may be able to be refined during the reconstruction using the shrink-

wrap technique [Marchesini et al., 2003]. It may be possible to estimate the required

rotation operators using Patterson techniques discussed in Section 1.3.2.4. It may then
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be possible to search for the translations. Information may also be available from a

failed MR attempt. For the case of similar unit cells, it is likely that the position and

orientation changes between unit cells are correlated with the change in the unit cell

dimensions, simplifying the search. Data from different crystal forms can sometimes

be collected in a single experimental setup, and recent work with XFELs and a fixed

target sample delivery has shown the collection of such data is possible using the natural

variation in humidity across the target chip.
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6 CONCLUSIONS AND FURTHER

RESEARCH SUGGESTIONS

The advent of X-ray free electron lasers, with their extreme brightness, ultra-short

pulses and megahertz repetition rate is offering new opportunities for the study of a

variety of new samples (2D crystals, fibers, nanocrystals, and single particles) and the

development of new techniques (SFX, SPI) in protein X-ray crystallography. The phase

problem is not exempt from this revolution, and the problem can be potentially eased

if continuous diffraction can be measured along one or more dimensions in reciprocal

space. For the case of 2D crystals, the additional intensity data falls short of rendering

the solution to the phase problem unique, so that additional real space data or knowl-

edge on the sample is still needed. A parameter, denoted by Λ′2dc, which depends on the

shape of the molecular envelope and the resolution was defined and proved more useful

than the usual constraint ratio Ω2dc for determining the uniqueness of the solution.

Ab initio phasing algorithms such as IPAs are ideal candidates to take advantage

of this source of additional information. In fact, because of the limited access to,

and running costs of XFEL sources, phase retrieval techniques that do not require

additional beam time are advantageous. The absence of model bias and ability to solve

new structural folds are also welcomed. Unfortunately, ab initio phasing algorithms do

not assure a unique solution to the phase problem. Calculation of the constraint ratio

can help to determine if the solution to a phase problem is likely to be unique, and how

constrained the problem is.

A new phasing approach, the aiMR phasing algorithm, described in Chapter 5,

has been developed. This approach has shown to be feasible in noiseless simulations

and has considerable potential. Here, again, a constraint ratio, ΩaiMR, offers the best

indicator for the possibility of ab initio phase retrieval. The approach is not affected by

bias and can find new structural folds contrary to MR. It was shown that a difference

of 5–10% between crystal forms is often sufficient for the diffraction data to be mostly

independent.

79
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6.1 FURTHER RESEARCH SUGGESTIONS

1. The volume constraint is shown in Chapter 2 to be difficult to use in practice

with 3D crystal diffraction data. This is due to the large number of hyperplanes

making up the solution manifold. Extrapolating to any realistic computation

grids size, the search for the solution in the extremely non-convex space is bound

to fail. For 2D crystals, the solution space is also extremely non-convex but the

membrane is more structured reducing somewhat this complexity.

Application of the volume constraint to the 2D crystal phase problem may thus

have different outcomes to that of the 3D crystal phase problem. Research in

this direction could lead to a useful ab initio algorithm using only the volume

information that is easily obtainable in practice.

The shrink-wrap technique could be used with the volume constraint as the pro-

tein extends from the membrane in a connected manner. Simulations of ab initio

phase retrieval with the derived shrink-wrap volume projection could be used to

investigate potential uses.

2. The change of unit cell size between crystal forms can be discrete as in a change of

space group, but can also be continuous as in the swelling of a crystal with changes

of humidity. Chapter 5 only considered a discrete and rather important change

between the crystal forms but, in practice, collecting data from two different forms

might require changing the experimental set-up and thus lead to longer collection

times.

In the case of a continuum of changes between two crystal forms, changes to

the experimental set-up may be more easily introduced through varying the hu-

midity. The small changes in unit cell dimensions might give direct access to

the diffraction intensity gradients or be used to help determine the rotations and

translations of the proteins within the crystal forms.

A first order expression for the diffraction resulting from small unit cell changes

could be derived for a few simplified cases in which only the orientation/ positions

of the proteins or the unit cell parameters change. The continuous change in the

diffraction intensities is a source of additional information that could potentially

be used to help solve or ease the phase problem.

3. The simulations of aiMR in Chapter 5 were limited due to the absence of noise

considerations. Addition of noise in the diffraction data will affect the aiMR

approach, but uncertainties over the rotation and translations of the proteins in

the crystal forms and the unknown structural changes of the proteins might be

even bigger issues. Finally the aiMR approach is dependent on the knowledge of

the molecular envelope and original positions and orientations of the proteins in
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the crystal forms.

To make the aiMR method practical for ab initio phasing, all of the above con-

siderations needs to be incorporated into the reconstruction algorithm. Testing

on experimental data will then be required.

4. In Chapters 2, 3, and 4 ab initio phasing retrieval algorithms suffered from the

highly non-convex solution space and the curse of dimensionality. Furthermore

the weakness of some of the constraints is slowing down convergence.

The simulations are computationally extensive and larger problems cannot in

practice be solved on a single laptop as is the case with molecular replacement.

The iterative projection algorithms should be implemented in tailored hardware

GPU, FPGAs or supercomputers to tackle larger problems.
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