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Modeling the Coupling Effect of CLT Connections under Bi-axial 1 

Loading 2 

Jingjing Liu1; Frank Lam2; Ricardo O. Foschi3; and Minghao Li4 3 

Abstract 4 

This paper presents the modeling of coupling effect of tension and shear loading on Cross 5 

Laminated Timber (CLT) connections using a finite element-based algorithm called HYST. 6 

The model idealizes the connections as a “Pseudo-nail” - elastoplastic beam elements (the 7 

nail) surrounded by compression-only spring elements (steel sheath and wood embedment). 8 

A gap size factor and an unloading stiffness degradation index of the spring elements under 9 

cyclic loading were integrated into the optimized HYST algorithm to consider the coupling 10 

effect. The model was calibrated to compare with 32 configurations of CLT angle bracket 11 

and hold-down connections tests: in tension with co-existent constant shear force, and in 12 

shear with co-existent tension force. The results showed that the optimized model can fully 13 

capture the coupling effect of typical CLT connections, considering strength degradation, 14 

unloading and reloading stiffness degradation, and pinching effect. The model provided a 15 

useful tool for nail-based timber connections and a mechanism-based explanation to 16 

understand the hysteretic behaviour of CLT connections under bi-axial loading.  17 
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Introduction 20 

In the past decades, Cross Laminated Timber (CLT) has been widely used as load bearing 21 

components such as walls and floors due to its high stability and load capacity. Many 22 

experimental tests have been conducted on CLT structural performance (Dujic et al. 2005, 2006, 23 

2008; Ceccotti et al. 2006, 2008, 2013; Popovski et al. 2010, 2015; Pei et al. 2013, 2014, 2016; 24 

Ganey 2015; van de Lindt et al. 2019). Those tests revealed that the connections anchoring CLT 25 

panels with foundations and walls are the critical elements that govern the structural response. 26 

The non-linearity of the connection is the key importance to design safe CLT structures. For 27 

those connections, one typical assumption is that, hold-downs take the tension force to resist 28 

overturning moment, while angle brackets take the shear force to resist the lateral force. Under 29 

such assumptions, several CLT connections have been tested for monotonic and cyclic tests, all 30 

loaded in only one direction (Rinaldin et al. 2013; Schneider et al. 2013; Tomasi and Smith 31 

2014; Mahdavifar et al. 2018a).  32 

However, recent tests of CLT panels under cyclic loading demonstrated that both hold-downs 33 

and angle brackets undertake uplift and slip resistances (Gavric et al. 2011). Moreover, those 34 

forces are coupled on the connections, which deteriorate their mechanical properties and seismic 35 

capacity, questioning the safety and rationality of current design methods. To investigate such 36 

coupling effect, monotonic and cyclic tests of CLT connections have been conducted under 37 

co-existent shear and tension load (Liu and Lam 2016, 2018, 2019; Pozza et al. 2017). 38 

As for numerical models, two main approaches have been proposed to investigate the 39 

nonlinearity of CLT connections under different loading protocols. The first approach is to 40 

consider the CLT connection as a macro element (Folz and Filiatrault 2001; Pozza et al. 2009; 41 

Fragiacomo et al. 2011; Ceccotti et al. 2013; Rinaldin et al. 2013; Shen et al. 2013; Lowes et al. 42 
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2004; Liu and Lam 2014; Zhang et al. 2015; Pozza et al. 2017; Mahdavifar et al. 2018b). Those 43 

models have limitations and inherent uncertainties in their applicability to other protocols, and in 44 

particular, to seismic loading. It is recognized that shear wall response in cyclic loading depends 45 

on test protocols. Although those models can be fitted quite accurately to specific loops from 46 

cyclic loading, yet it is questionable whether the fitted curves would provide a good 47 

representation of CLT connections under other loading protocols. Besides, these models can be 48 

put into applications but provide little explanation in understanding the fundamental mechanism 49 

of CLT connections under complex loading. 50 

The second approach is using mechanism-based micro elements to consider CLT connections. 51 

Because the behavior of a CLT connection is mostly governed by the behavior of nail 52 

connections, the hysteretic response from a CLT connection and that from a nail connection 53 

show strong similarity in characteristics of strength/stiffness degradation and pitching effect. 54 

Hence, the connection can be modeled as if it was a single nail connection (i.e, a pseudo-nail) 55 

(Gu and Lam 2004). Using this pseudo-nail approach, Li and Lam (2009) studied the 56 

diagonal-braced timber walls, Li et al. (2009) studied the seismic reliability of diagonal-braced 57 

walls and structural-panel-sheathed walls, and Li et al. (2014) studied the seismic performance 58 

of timber-steel hybrid structures. In this approach, the nonlinear behaviour of connections and 59 

walls are predicting through nonlinear analysis conducted at the fasteners level using the HYST 60 

algorithm. As a Finite Element detailed nail model, this algorithm can capture the hysteresis 61 

behaviour of timber connections using metal fasteners, which is based on the basic elastoplastic 62 

stress-strain relationship of the connector material and a simple presentation of the nonlinear 63 

behaviour of wood embedment medium. This approach has the advantage of being based on 64 

equivalent mechanical properties of the nail fasteners, steel plates, and the surrounding wood 65 
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medium of a connection or wall, which helps understand the mechanism under complex loading 66 

through physical meanings. 67 

The original HYST algorithm was proposed and adopted to calculate the hysteretic behavior of 68 

timber connections using metal fasteners (Foschi and Yao 2000). Li et al. (2011) modified this 69 

algorithm to improve its representation of strength and stiffness degradation. Key features of the 70 

improved algorithm include automatically tracking the formation of gaps between the nail and 71 

the wood, and strength degradation and reloading stiffness degradation of the wood embedment. 72 

Later on, Lim et al. (2017) modified the algorithm and embedded a more mechanistically sound 73 

withdrawal model with consideration of the displacement compatibility between the movement 74 

of the nail and the resisting wood medium. 75 

In this paper, a gap size factor and an unloading stiffness degradation index are introduced into 76 

the HYST algorithm to fully address the hysteresis behaviour of CLT connections under bi-axial 77 

loading, which provides sufficient explanation of the coupling effect. First, it discusses the 78 

optimized model. Then the experimental tests of CLT connections under bi-axial loading are 79 

described. The paper subsequently presents modeling the hysteresis behaviour of the 32 80 

configurations using the pseudo-nail model with the optimized HYST algorithm and discusses 81 

the parameters in the models.     82 

Modeling Approach 83 

The CLT connections under bi-axial loading were simulated as pseudo-nail models using HYST 84 

algorithm to consider the coupling effect. As a micro modeling approach, the pseudo-nail model 85 

has three parts: the nail, the sheath, and the wood embedment, which can represent the group of 86 

nails, the steel plate of hold-down/angle bracket, and the CLT wood panel in CLT connections, 87 

respectively. The HYST algorithm was modified to add features to characterize the strength 88 
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degradation, unloading stiffness degradation, reloading stiffness degradation, and pinching effect 89 

of typical timber connections. Details about the model and algorithms are described as below. 90 

The original HYST algorithm can be found in Foschi et al. (2000) and the modified HYST 91 

algorithm can be found in Li et al. (2011). 92 

Pseudo-nail model 93 

The shapes of the load deformation curve of individual nail and that of connectors with fasteners 94 

have many similarities. The similarities can be explained since the structural response of CLT 95 

connections is governed by the characteristics of the nails. The effect of the deformations from 96 

all nails is imposed together to exhibit an overall load-displacement curve for CLT connections. 97 

Thus, it is possible to represent a CLT connection with mechanics-based analog as a single 98 

pseudo-nail. Fig. 1 (a) shows the nail connector model. Given a lateral force F to the covering 99 

sheath, the nail will have a displacement of Δ at the head of the nail. Meanwhile, the shank of the 100 

nail performed non-linear deformation in the surrounding wood embedment. Fig. 1 (b) and Fig. 1 101 

(c) present angle bracket connection and hold-down connection as a pseudo-nail, respectively. 102 

The steel plate of angle bracket/hold-down is considered as the equivalent sheath. All nails are 103 

grouped as one pseudo-nail and CLT panel is considered as the equivalent wood embedment.  104 

Fig. 1. (a) nail connector model; (b) pseudo-nail model of angle bracket connection; (c) 105 

pseudo-nail model of hold-down connection 106 

Optimized HYST algorithm 107 

From CLT connections under bi-axial loading experiments, it was found that due to the 108 

co-existent force in the perpendicular direction, the nails travelling in the gap encountered 109 

resistance. As shown in Fig. 2 (a), when there is only shear force applied, the nail can travel in 110 
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the gap with no resistance. But with co-existent tension force applied (Fig. 5 (b)), such tension 111 

force caused pressure on the nail shank from surrounding wood embedment. This pressure 112 

provides lateral resistance to the nail in the gap during unloading. Furthermore, higher level of 113 

co-existent force caused larger resistance during unloading.   114 

Fig. 2. Schematic section views of nails in the wood embedment: (a) nail movement under shear 115 

force with no co-existent tension load; (b) nail movement under shear force with co-existent 116 

tension load 117 

To address such coupling effect, in the optimized HYST algorithm, a gap size factor β and an 118 

unloading stiffness degradation index γ were introduced into the modified HYST algorithm. The 119 

optimized algorithm can capture all features of nail-based connections under complex loading, 120 

including the strength degradation, reloading stiffness degradation, unloading stiffness 121 

degradation, and pinching effect. Table 1 shows the descriptions of the eight parameters to define 122 

this force-displacement relationship.  123 

Table 1. Descriptions of embedment property parameters in optimized HYST algorithm 124 

In the optimized HYST algorithm, the relationship between the pressure p(w) and the 125 

deformation of sheath and wood embedment w in the embedment properties is shown in Fig. 3. It 126 

was noted that in CLT connections under bi-axial loading, the backbones of force-displacement 127 

curves also changed. This can be modeled by the change of embedment property parameters of 128 

equivalent wood embedment.  129 

Fig. 3. Embedment properties in the optimized HYST algorithm 130 

The displacement w starts at O with an initial stiffness of K0. It reaches peak value Pmax at Dmax 131 

along the first exponential curve. After that, it follows the second exponential curve with a 132 

softening trend to Z. The backbone force-displacement curve is represented in Eq. (1). 133 
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When unloading from point A, instead of following a straight line with an unloading stiffness of 136 

K0 in the original HYST algorithm and modified HYST algorithm, the unloading curve follows 137 

another straight line with an unloading stiffness of KUL until it reaches point B. Point B is inside 138 

of the gap D0, which indicates the contribution of resistance during unloading. When reloading 139 

from point B, the reloading stiffness KRL is the same as the modified HYST algorithm. It is 140 

assumed that reloading from point B follows another straight line with reduced stiffness KRL to 141 

point C. Subsequent unloading from point C will follow the original stiffness K0 until D’ is 142 

reached, resulting a new gap of magnitude D0’. A reloading degradation index α is used to 143 

consider both the strength degradation and reloading stiffness degradation. The value of α is 144 

between 0 and 1. The reloading stiffness KRL, which is related to the initial stiffness K0 and the 145 

gap size D0, is represented in Eq. (2). 146 
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K K D D
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where 0 0 1/ ( )yD Q K Q  , corresponding to a yielding deformation given by the intersection of 148 

the original slope and the asymptote.  149 

The optimized algorithm introduced a gap size factor β to indicate the position of point B. The 150 

distance LOB between point O and point B is calculated as 0OBL D . An unloading degradation 151 

index γ is used to consider the unloading stiffness degradation. The value of γ is between 0 and 152 

1. The unloading stiffness KUL, which is related to the initial stiffness K0, the gap size D0, and the 153 

stiffness and reloading degradation index α, is represented in Eq. (3). 154 
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Where 0 0 1/ ( )yD Q K Q  , corresponding to a yielding deformation given by the intersection of 156 

the original slope and the asymptote.  157 

The optimized algorithm has been compiled using the Fortran compiler in Intel Parallel Studio 158 

XE 2018. For the longest duration of protocol in the tests, which is the shear cyclic test of 159 

hold-down connections under co-existent tension force, it takes approximately 20 seconds to run 160 

on a computer with a quad-core CPU and 8 GB memory.  161 

Parameter study 162 

To understand the effect of the two introduced parameters and provide calibration methods for 163 

CLT connection modelling, a parameter study of the gap size factor β and the unloading 164 

degradation index γ on was carried out.    165 

A trail model was established for a cyclic test. Four different values of gap size factor β, namely, 166 

1, 0.8, 0.5, and 0, were input into this model while the remaining parameters were retained as 167 

initialled. The hysteresis loops are shown in Fig. 4. It was observed that, as the gap size factor 168 

decreased, first, the maximum loading capacity slightly increased. Second, the unloading path 169 

from the maximum load to 0 kN force changed significantly. Third, the slipping distance 170 

between 0 mm displacement and the displacement where the force was unloaded to 0 kN 171 

decreased. Finally, the degradation effect was weakened. 172 

Fig. 4. Hysteresis loops with different gap size factors: (a) 1.0; (b) 0.8; (c) 0.5; (d) 0 173 

Four different values of unloading degradation index γ, namely, 0, 0.2, 0.5, and 1.0, were input 174 

into the model while the remaining parameters were retained as initialled. The hysteresis loops 175 

are shown in Fig. 5. This parameter had little influence on the overall hysteresis loops. Its key 176 
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contribution was that it controlled the unloading stiffness and range of slippage. Larger values of 177 

γ increased the unloading stiffness and reduced the distance of the slipping. 178 

Fig. 5. Hysteresis loops with different unloading degradation indices: (a) 0; (b) 0.3; (c) 0.5; (d) 179 

1.0 180 

Test Description 181 

To investigate the coupling effect of shear load and tension load on CLT connections, 182 

experimental tests of angle bracket CLT connections and hold-down CLT connections under 183 

bi-axial loading were conducted. Due to space limitations and content relevance, the tests are 184 

described here concisely. The detailed setup, results, analyses, and discussions of the 185 

experiments can be found in (Liu and Lam 2016, 2018, 2019). 186 

In the tested CLT connections, for the CLT panels, 5-layer panels made of graded No. 1/2 SPF 187 

lumber with a thickness of 169 mm were used. As shown in Fig. 6 (a), on each side of the angle 188 

bracket CLT connection, AE116 angle bracket was used with 8 Φ 4 x 60 nails, connected to the 189 

steel base by three M12 bolts. Two actuators were acting on the specimen, denoted as LC1 and 190 

LC2: LC 1 provided vertical load through a steel cable connected to the connection, while LC2 191 

provided lateral load at the bottom of the connection. During each test, one load cell provided a 192 

constant load, while the other one provided a monotonic or cyclic load. The same setup was 193 

applied for hold-down connections as shown in Fig. 6 (b). On each side of the hold-down CLT 194 

connection, HTT5 hold-down was used with 12 Φ 4 x 60 nails, connected to the steel base by 195 

one M16 bolt.  196 

Fig. 6. Schematic drawing of the experiment setup: (a) angle bracket test setup; (b) hold-down 197 

test setup 198 

Fig. 7 (a) and Fig. 7 (b) present a representative test photo for angle bracket connection and 199 
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hold-down connection, respectively.    200 

Fig. 7. Representative test photos: (a) angle bracket test; (b) hold-down test 201 

Four sets of connection tests were performed under bi-axial loading: 1) Set A: monotonic and 202 

cyclic shear loading with 4 levels of constant tension loads (0 kN, 20 kN, 30 kN, and 40 kN) on 203 

angle bracket connections; 2) Set B: monotonic and cyclic tension loading with 4 levels of 204 

constant shear loads (0 kN, 20 kN, 30 kN, and 40 kN) on angle bracket connections; 3) Set C: 205 

monotonic and cyclic shear loading with 5 levels of constant tension loads (0 kN, 20 kN, 30 kN, 206 

40 kN, and 60 kN) on hold-down connections; 4) Set D: monotonic and cyclic tension loading 207 

with 3 levels of constant shear loads (0 kN, 10 kN, and 20 kN) on hold-down connections. All 208 

tests were conducted using a reverse cyclic protocol with predefined yield values which varied 209 

from configuration to configuration, depending on experimental yield values obtained from 210 

monotonic tests.  211 

For each configuration, one monotonic and three/six cyclic tests were performed. In total, 88 212 

tests were conducted: 22 tests for Set A, 22 tests for Set B, 26 tests for Set C, and 18 tests for Set 213 

D. The specimens were named under the following rules: the first two letters “AB” or “HD” 214 

denote “angle bracket connection” or “hold-down connection”; the following letter “S” or “T” 215 

denotes “constant shear load” or “constant tension load” in one direction; the following number 216 

denotes the constant load value; the letter after “T” and “S” representing the dynamic loading in 217 

the perpendicular direction; the following letter “C” or “M” denotes “cyclic loading” or 218 

“monotonic loading”; the number after “C” denotes the numbering of the specimen. For example, 219 

“HDS10TC2” represented the No. 2 hold-down specimen for cyclic tension loading with a 220 

co-existent shear load of 10 kN. 221 

The force-displacement curves and the findings of the tests are presented in the next section 222 

comparing with modeling results. 223 



11 

 

CLT Connection Modeling 224 

The CLT connections were simulated using pseudo-nail model with the optimized HYST 225 

algorithm. For each configuration, one representative specimen was modeled. In total, 32 226 

pseudo-nail models were calibrated to cover all configurations. The models are validated versus 227 

the test results and the parameters are discussed in this section. 228 

Model validation 229 

The results from HYST model and test results are presented to demonstrate the efficacy of the 230 

optimized algorithm.  231 

Fig. 8 presents the HYST model results versus test results of Set A, which are the angle bracket 232 

shear tests with a co-existent tension force. From those figures, first, it is noticed that the 233 

optimized HYST algorithm exhibited high consistence in modeling the monotonic behaviour of 234 

the connections in the four conditions. As shown from Fig. 8 (a) to Fig. 8 (d), with the 235 

introduction of co-existent tension force, the hysteresis behavior changed sharply. As the 236 

co-existent tension load increased, the shear performance of connectors was weakened, 237 

especially the strength, unloading stiffness, energy dissipation capacity and stability. The model 238 

showed satisfying adaptability in capturing those features. Comparing the curves in the red boxes 239 

in Fig. 8 (a) and Fig. 8 (b), the change of unloading was seized in this model, which is not able to 240 

achieve if using the modified HYST algorithm (Li and Lam 2015). In Fig. 8 (d), due to the 241 

instability of connections under high co-existent tension load, the modeling results had a certain 242 

difference to the test results in the last cycle as pointed by the arrows.  243 

Fig. 8. HYST model versus test results of force-displacement curves in Set A: (a) 0 kN ; (b) 20 244 

kN; (c) 30 kN; (d) 40 kN 245 
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Fig. 9 shows the comparisons of energy dissipation in cyclic tests for Set A. Good agreement can 246 

be observed, which also validated the accuracy of the optimized algorithm in modeling hysteresis 247 

behaviour.    248 

Fig. 9. HYST model versus test results of energy dissipation in Set A: (a) 0 kN ; (b) 20 kN; (c) 249 

30 kN; (d) 40 kN 250 

The HYST model results versus test results of Set B, the hold-down shear tests with a co-existent 251 

tension force, are shown in Fig. 10. The results presented similar features as those of Set A. The 252 

change of unloading, highlighted in red boxes, and weakening of pinching effect, pointed by 253 

arrows, were even more visible in those five conditions comparing with Set A. The reloading 254 

stiffness degradation was more obvious, as shown in the circles in Fig.10 (a) and Fig. 10 (c). 255 

These features were captured by the model with high accuracy. 256 

Fig. 10. HYST model versus test results of force-displacement curves in Set B: (a) 0 kN; (b) 20 257 

kN; (c) 30 kN; (d) 40 kN; (e) 60 kN 258 

The energy dissipated by the hysteresis loops using models indicated satisfying consistency with 259 

that of tests, as shown in Fig. 11. 260 

Fig. 11. HYST model versus test results of energy dissipation in Set B: (a) 0 kN; (b) 20 kN; (c) 261 

30 kN; (d) 40 kN; (e) 60 kN 262 

For Set C, as shown in Fig. 12, the co-existent shear force weakened the axial loading capacity 263 

and energy dissipation capacity at large vertical displacements. The backbones deteriorated more 264 

severely than those in Set A and Set B for cyclic tension tests with co-existent tension force. At 265 

40 kN co-existent shear force, the tension capacity dropped 25% compared to 0 kN co-existent 266 

shear force. This is simulated by changing the five parameters of equivalent wood embedment, 267 

Q0, Q1, Q2, K0, and Dmax, that influence the backbone of the pseudo-nail model. The setup of the 268 

tests, loading tension through a steel cable, limited the unloading and reloading. But the model 269 
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still performed well in capturing the hysteresis loops with the real protocol recorded from cyclic 270 

tests.  271 

Fig. 12. HYST model versus test results of energy dissipation in Set C: (a) 0 kN; (b) 20 kN; (c) 272 

30 kN; (d) 40 kN 273 

In Set D, the co-existent shear force weakened the energy dissipation capacity of hold-downs 274 

significantly at large vertical displacements, as shown in Fig. 13. The difference between model 275 

and test results in unloading is due to the relaxation of the loading cable. Otherwise, the accuracy 276 

of the model is sufficient compared to the test results. 277 

Fig. 13. HYST model versus test results of force-displacement curves in Set D: (a) 0 kN; (b) 10 278 

kN; (c) 20 kN 279 

Based on above validations, it can be concluded that pseudo-nail model with the optimized 280 

HYST algorithm is a powerful finite-element based algorithm in simulating CLT connections 281 

under bi-axial loading, and more generally, nail-based wood connections under different loading 282 

protocols. 283 

Parameter discussion 284 

The parameters used to calculate the force-displacement curves are presented and discussed as 285 

below. One feature of the optimized algorithm is that it helps explain and understand the 286 

structural mechanisms of nail-based wood connections under complex loading. 287 

In all models, the pseudo-nail had the same length (L) of 150 mm, diameter (D) of 8 mm, Elastic 288 

Modulus (E) of 200 GPa, and yielding strength (Ey) of 0.01 kN/mm2. All angle bracket and 289 

hold-down connections were considered as stiff steel plate sheath with a thickness of 5 mm, and 290 

large embedment property parameters of Q0 (100 kN/mm), Q1 (100 kN/mm2), Q2 (200), K0 (200 291 

kN/mm2), Dmax (200 mm). α, β, and γ of the sheath had little influence on the performance. 292 
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The major differences between the models were the embedment property parameters of the 293 

equivalent wood embedment. Table 2 presents those parameters for each test configuration.  294 

Table 2. Property parameters of equivalent wood embedment for each test configuration 295 

For all monotonic tests, only the first five parameters Q0, Q1, Q2, K0, and Dmax were needed in the 296 

models. For Set B and Set D, where tension cyclic tests were conducted, loading vertical force 297 

through a steel cable limited the accuracy of unloading and reloading. Thus the models also only 298 

adopted the first five parameters targeting the backbones. For the shear cyclic tests in Set A and 299 

Set D, the hysteresis behaviours of CLT connections were well captured. Subsequently, all 8 300 

parameters played their roles in depicting the characteristics of CLT connections under bi-axial 301 

loading. In each set, the parameters of pure shear or tension tests were calibrated at first. After 302 

that, the rest tests with co-existent force were adjusted based on those parameters and at a 303 

principle of modifying the least number of parameters. 304 

Since the parameters in nail shank and steel plate sheath are the same in all sets, the parameters 305 

of equivalent wood embedment are comparable. Furthermore, they provided explanation of the 306 

phenomenon in the tests in the sense of physics.  307 

Co-existent forces weakened the loading and unloading in cyclic tests, which can be observed 308 

from the decreasing trend of the values of Q0, Q1, Q2, K0, and Dmax in each set. The observation 309 

that CLT connections can hold strength after peak values longer for tension than shear was 310 

confirmed to the variations of parameter Q2, 1.1 ~ 1.3 for shear, and 1.35 ~ 2.8 for tension. The 311 

fact that angle bracket has larger shear stiffness than hold-downs was reflected in the initial 312 

stiffness parameter K0, 0.31 kN/mm2 for angle bracket and 0.04 kN/mm2 for hold-down. For 313 

hold-downs, the initial stiffness parameter K0 was 0.04 kN/mm2 for shear, and 4 kN/mm2 for 314 

tension. This verified that hold-downs are stronger in tension than shear. The fact that CLT 315 



15 

 

connections has more deformation capacities in shear of than tension was demonstrated through 316 

the parameter Dmax, 35 mm ~ 50 mm for shear, and 7 mm ~ 11 mm for tension.  317 

As for degradation parameters, the strength/reloading stiffness degradation factor α has been 318 

discussed in detail in Li et al. (2011). Larger value of α leads to severe strength degradation and 319 

reloading stiffness degradation. The unloading degradation needs two parameters to be captured. 320 

First, an exponential index γ was used to calculate the unloading stiffness value. The similar 321 

definition form as α guarantees the continuity and stability of the algorithm. Second, the 322 

algorithm needs to define an interval, in which the pseudo-nail is unloading with resistance. 323 

Thus, the gap size factor β is introduced and the interval is from βD0 to D0. Table 2 revealed that 324 

β become smaller under larger co-existent force. This is confirmed with the fact that larger 325 

co-existent force caused more resistance in the gap.  326 

Fig. 14 is a representative curve showing the embedment properties of equivalent wood 327 

embedment of HDT30SC in the modified HYST algorithm generated from the parameters in 328 

Table 2. 329 

Fig. 14. The embedment property curve for the equivalent wood embedment of HDT30S 330 

The values of the curve are mostly contributed by Q0 and Q1, and weakly influenced by K0, until 331 

Dmax is reached. K0 and Q0 control its shape. Q2 controls the shape of the right curve after Dmax. 332 

The equivalent wood embedment provided resistance inside the gap from D0 to 0.7D0. This gap 333 

size factor β and unloading stiffness index γ are the keys of capturing the coupling effect under 334 

bi-axial loading. 335 

Model limitation 336 

Despite the strong functionality of the optimized algorithm, it should be noted that under bi-axial 337 

loading, experimental results showed that for different co-existent force levels, the connections 338 
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had different backbones, unloading and reloading paths. The optimized algorithm presents an 339 

intuitive way in explaining the mechanics of bi-axial loading, and has high accuracy in modeling 340 

different configurations. But it is an empirical model that needs to be calibrated using test data. If 341 

we want to use interpolation function method to generate an implementation model for dynamic 342 

analysis, we need more incremental co-existent force level tests. Besides, in the tests and 343 

modeling, bi-axial loading was conducted in a form of constant loading in one direction, and 344 

dynamic loading in the perpendicular direction. In the real structures, CLT connections are 345 

undertaking dynamic loads in both directions. The way of addressing the coupling effect of 346 

dynamic loads in both directions needs to be further studied.  347 

Conclusions 348 

In this paper, the expansion of an existing protocol-independent nail connection algorithm was 349 

presented and applied to simulate the coupling effect of CLT connections under bi-axial loading. 350 

The optimized HYST algorithm added unloading stiffness degradation feature to the original 351 

algorithms, which extends its sufficient application to nail-based timber connections that need to 352 

consider strength degradation, unloading/reloading stiffness degradation, pinching effect, and 353 

coupling effect. Using pseudo-nail model with this optimized HYST algorithm, four sets of CLT 354 

connection tests, Set A) monotonic/cyclic shear tests of angle bracket connections with four 355 

levels of co-existent tension force, Set B) monotonic/cyclic shear tests of hold-down connections 356 

with five levels of co-existent tension force, Set C) monotonic/cyclic tension tests of angle 357 

bracket connections with four levels of co-existent shear force, and Set D) monotonic/cyclic 358 

tension tests of hold-down connections with three levels of co-existent shear force, were 359 

modeled. The simulation provided a mechanism-based way and physical explanation to 360 

understand the behaviour of CLT connections under bi-axial loading protocols.  361 
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The model results were compared with test results for all 32 configurations by hysteresis loops 362 

and energy dissipations, which indicated strong accuracy and efficiency of the pseudo-nail 363 

modeling method and the optimized HYST algorithm. The newly observed unloading stiffness 364 

degradation phenomenon in CLT connections, which is caused by co-existence force, was 365 

captured by the two introduced parameters in equivalent wood embedment properties, gap size 366 

factor β and unloading stiffness degradation index γ. Based on the simulation results, the 367 

parameters of the optimized HYST algorithm were discussed to explain the mechanisms of the 368 

structural behaviour of CLT connections. The observations in the tests were identical with the 369 

variations of model parameters. The key feature of coupling effect of bi-axial loading, that nails 370 

undertake loads in the gap in wood embedment, was explained and quantified by the gap size 371 

factor β and unloading stiffness degradation index γ. Both the gap size factor β and unloading 372 

stiffness degradation index γ have individual mechanical meanings. Gap size factor presents the 373 

interval in the gap where pseudo-nail receives resistance due to co-existent load. Unloading 374 

stiffness degradation index accounts for the stiffness degradation in this interval. The optimized 375 

model extended the application scope of HYST and strongly improved its accuracy in dynamic 376 

analysis. 377 

As for this research, the modeling of bi-axial loading effect of CLT connections with constant 378 

load in one direction and dynamic load in the perpendicular direction has reached the goals. Still, 379 

further research on dynamic bi-axial loading of CLT connections is required.  380 
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Tables: 

 

Table 1. Descriptions of embedment property parameters in optimized HYST algorithm 
Parameter Description 

K0 Initial stiffness 

Q0 Intercept of the asymptote at the maximum compressive response 

Q1 Slope of the asymptote at the maximum compressive response 

Q2 Post-peak decay factor 

Dmax Displacement at the maximum compressive response 

α Strength and reloading degradation index 

β Gap size factor 

γ Unloading degradation index 

 

 

Table 2. Property parameters of equivalent wood embedment for each test configuration 
 

Set Configuration  Q0 (kN/mm) Q1 (kN/mm2) Q2 K0 (kN/mm2) Dmax (mm) α β γ 

A 

ABT0SM 0.16 0.22 1.2 0.31 32 - - - 

ABT0SC 0.16 0.20 1.3 0.31 35 0.15 1 0.2 

ABT20SM 0.16 0.18 1.1 0.31 39 - - - 

ABT20SC 0.16 0.16 1.3 0.31 35 0.2 0.3 0.7 

ABT30SM 0.16 0.18 1.1 0.31 35 - - - 

ABT30SC 0.16 0.16 1.3 0.31 35 0.2 0.2 0.7 

ABT40SM 0.16 0.16 1.1 0.31 35 - - - 

ABT40SC 0.16 0.16 1.3 0.16 35 0.2 0.1 1 

B 

ABS0TM 4 0.5 1.35 2 11 - - - 

ABS0TC 4 0.3 1.35 2 10 - - - 

ABS20TM 4 0.5 1.35 3 11 - - - 

ABS20TC 4 0.28 1.8 2 10 - - - 

ABS30TM 4 0.5 1.35 1 9 - - - 

ABS30TC 4 0.3 2 1.5 7 - - - 

ABS40TM 4 0.5 1.35 1 7.5 - - - 

ABS40TC 4 0.2 1.2 4 8 - - - 

C 

HDT0SM 0.26 0.025 1.2 0.04 45 - - - 

HDT0SC 0.26 0.02 1.2 0.1 45 0.15 1 0 

HDT20SM 0.26 0.028 1.2 0.05 50 - - - 

HDT20SC 0.26 0.015 1.2 0.05 45 0.4 0.8 0.8 

HDT30SM 0.26 0.03 1.2 0.04 50 - - - 

HDT30SC 0.26 0.015 1.2 0.05 45 0.5 0.7 0.9 

HDT40SM 0.26 0.03 1.2 0.04 50 - - - 

HDT40SC 0.26 0.024 1.2 0.05 45 0.5 0.3 0.5 

HDT60SM 0.26 0.033 1.2 0.04 50 - - - 

HDT60SC 0.26 0.024 1.2 0.05 45 0.5 0.1 0.5 

D 

HDS0TM 7.5 0.15 2.3 5 8 - - - 

HDS0TC 8 0.15 2.3 4.5 10 - - - 

HDS10TM 7.5 0.15 1.3 4 10 - - - 

HDS10TC 8 0.12 2 4 7 - - - 

HDS20TM 7.5 0.15 1.3 4 10 - - - 

HDS20TC 7 0.1 2.8 4 10 - - - 
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Fig. 1. (a) nail connector model; (b) pseudo-nail model of angle bracket connection; (c) 

pseudo-nail model of hold-down connection
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Fig. 2. Schematic section views of nails in the wood embedment: (a) nail movement under shear 

force with no co-existent tension load; (b) nail movement under shear force with co-existent 

tension load
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Fig. 3. Embedment properties in the optimized HYST algorithm 
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Fig. 4. Hysteresis loops with different gap size factors: (a) 1.0; (b) 0.8; (c) 0.5; (d) 0 
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Fig. 5. Hysteresis loops with different unloading degradation indices: (a) 0; (b) 0.3; (c) 0.5; (d) 

1.0 
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Fig. 6. Schematic drawing of the experiment setup: (a) angle bracket test setup; (b) hold-down 

test setup 
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Fig. 7. Representative test photos: (a) angle bracket test; (b) hold-down test
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Fig. 8. HYST model versus test results of force-displacement curves in Set A: (a) 0 kN ; (b) 20 

kN; (c) 30 kN; (d) 40 kN 
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Fig. 9. HYST model versus test results of energy dissipation in Set A: (a) 0 kN ; (b) 20 kN; (c) 

30 kN; (d) 40 kN 
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Fig. 10. HYST model versus test results of force-displacement curves in Set B: (a) 0 kN; (b) 20 

kN; (c) 30 kN; (d) 40 kN; (e) 60 kN 
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Fig. 11. HYST model versus test results of energy dissipation in Set B: (a) 0 kN; (b) 20 kN; (c) 

30 kN; (d) 40 kN; (e) 60 kN 
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Fig. 12. HYST model versus test results of energy dissipation in Set C: (a) 0 kN; (b) 20 kN; (c) 

30 kN; (d) 40 kN 
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Fig. 13. HYST model versus test results of force-displacement curves in Set D: (a) 0 kN; (b) 10 

kN; (c) 20 kN 
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Fig. 14. The embedment property curve for the equivalent wood embedment of HDT30S 
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