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THE PHYSIOLOGICAL RESPONSES AND EXPRESSION PATTERNS OF 

HEAT INDUCED GENES TO ELEVATED TEMPERATURE OF MARINE 

Chlorella FROM DIFFERENT LATITUDES 

ABSTRACT 

The increased frequency of heat waves due to climate change threatens all organism. 

Microalgae form the basis of aquatic food webs, and high temperatures significantly 

impact their adaptation and survival. Algae respond to environmental changes by 

modulating their photosynthetic rates and biochemical composition, which is in turn 

regulated by their gene expression. In this study, the effects of elevated temperature on 

marine Chlorella originating from different latitudes were examined. Strains from the 

Antarctic, temperate zone, and the tropics were grown at various temperatures, ranging 

from 4 to 38, 18 to 38, and 28 to 40 °C, respectively. A pulse-amplitude modulated 

(PAM) fluorometer was used to assess their photosynthetic responses. In addition, the 

biochemical compositions, including lipid, protein, carbohydrate and fatty acids were 

profiled to evaluate changes induced by temperature treatments. Increasing the 

temperature from 35 to 38 °C for both Antarctic and temperate strains and from 38 to 40 

°C for the tropical strain resulted in severe inhibition of photosynthesis, which in turn 

suppressed growth. The temperature causing severe stress for each strain was selected 

for stress and recovery treatments. At different time points, the expressions of the 

photosynthetic and fatty acid biosynthesis key genes were analysed during stress and 

recovery. All the strains demonstrated the ability to recover from different stress levels, 

however, the tropical strain recovered most rapidly, while the Antarctic strain reported 

the slowest recovery. The results confirmed that the thermal threshold for the analysed 

Chlorella strains temperature falls between 38 and 40 °C. The response of studied 

strains differed from one another. Chlorella-Ant and Chlorella-Trop exhibited 

photosynthetic genes during stress, revealing their remarkable capability for maintaining 
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photosystem II’s main component (psbC). In Chlorella-Temp, photosynthetic genes 

were suppressed, while during recovery, it was up-regulated. 

Keywords: microalgae, stress, elevated temperature, photosynthesis, gene expression 
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TINDAK BALAS FISIOLOGI DAN CORAK EKSPRESI GEN TERINDUKSI 

HABA PAROA SUHU TINGGI BAGI RUMPAI LAUT Chlorella DARIPADA 

LATITUD YANG BERBEZA 

ABSTRAK 

Peningkatan kekerapan gelombang panas akibat perubahan iklim menimbulkan 

ancaman kepada kebanyakan organisma. Mikroalga adalah  keperluan kepada rantaian 

makanan akuatik, dan suhu tinggi mempunyai kesan yang besar terhadap penyesuaian 

dan kelangsungan hidup mereka. Alga bertindak balas kepada perubahan alam sekitar 

dengan mengubah kadar fotosintesis dan komposisi biokimia, yang dikawal oleh 

ekspresi gen mereka. Dalam kajian ini, kesan suhu tinggi pada rumpai laut Chlorella 

daripada latitud yang berbeza telah  kaji Strain dari Zon Antartika, zon suhu sederhana, 

dan tropika  dibiak pada pelbagai suhu, antara 4 hingga 38, 18 hingga 38, dan 28 hingga 

40 ° C. Sebuah fluorometer termodulasi amplitud (PAM) telah digunakan untuk menilai 

tindak balas fotosintesis. manakala, komposisi biokimia termasuk lipid, protein, 

karbohidrat dan asid lemak diprofilkan bagi menilai perubahan yang disebabkan oleh 

rawatan suhu. Peningkatan suhu dari 35 hingga 38 ° C untuk kedua-dua strain Antartika 

dan suhu sederhana dan dari 38 hingga 40 ° C untuk strain tropika mengakibatkan 

perencatan teruk fotosintesis dan membantutkan pertumbuhan. Suhu yang menyebabkan 

tekanan ekstrem bagi setiap strain telah dipilih untuk melakukan rawatan tekanan dan 

pemulihan. Padatitik yang berbeza, titik-titik expresi gen utama biosintesis fotosintesis 

dan asid lemak dianalisis semasa tekanan dan pemulihan. Semua strain menunjukkan 

keupayaan untuk pulih dari tahap tekanan yang berbeza, bagaimanapun, tekanan tropika 

dapat pulih dengan lebih cepat manakala strain Antartika mempunyai pemulihan yang 

paling perlahan. Hasilnya menggariskan bahawa nilai haba untuk suhu strain Chlorella 

dianalisis antara 38 dan 40 ° C. Respon strain yang dikaji adalah berbeza bagi satu sama 

lain. Chlorella-Ant dan Chlorella-Trop menunjukkan ekspresi gen fotosintesis semasa 
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tekanan dan ia menunjukkan keupayaan mengekalkan komponen utama fotosistem 

dalam Chlorella-Temp gen fotosintetik ditekan semasa demulihan ia adalah diatur nalk. 

Katakunci: Mikroalga, stres, suhu tinggi, fotosintesis, ungkapan gen 
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1 

  CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Global warming has received considerable attention in science, environment, and 

international economics and politics (Zhao and Su, 2014). It has been shown that 

climate changes are affecting the base of the food web and these effects are transmitted 

up through the food chain (Montes-Hugo et al., 2009). On a global scale, species 

respond to thermal stress with phenologlical changes and distributional range shifts that 

often involve local extinction (Jueterbock et al., 2014). Algae in the ocean and 

freshwater ecosystems are responsible for a high ratio of net global primary productivity 

(Beardall and Raven, 2004). Although algae can grow in a wide range of temperature 

(5–35 °C) (Rashid et al., 2014), and are able to easily tolerate temperatures of up to 15 

°C lower than their optimal temperature, exceeding the optimum temperature by only 2 

– 4 °C may result in total culture loss (Mata et al., 2010). Temperature is considered as 

a key factor for algae growth and it highly impacts their cellular chemical composition, 

the uptake of nutrients, carbon dioxide fixation, and the growth rates (Renaud et al., 

2002).  

Basically, microalgae use several strategies to survive under abiotic stress condition; 

for example, adjusting the saturation level of fatty acids in the membrane to regulate 

membrane fluidity, reducing protein synthesis to avoid misfolded proteins, 

accumulating compatible solute to maintain cell osmosity, producing enzymes to 

scavenge reactive oxygen species and adjusting the photosynthesis rate. Under optimal 

conditions of growth, algae synthesize fatty acids principally for esterification into 

glycerol-based membrane lipids, which constitute about 5–20% of their dry cell weight 

(DCW) (Hu et al., 2008). Fluctuations in temperature affect the fluidity of cytoplasmic 

and thylakoid membranes. In one hand, cold causes a reduction in the membrane 

fluidity (membrane rigidification), which can be compensated by desaturation of 
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membrane lipids by fatty acid desaturases (FADs). On the other hand, heat causes the 

fluidization of the membranes. This is compensated by the synthesis of the membrane-

stabilizing proteins and by the replacement of unsaturated fatty acids (UFAs) in 

membrane lipids by the de novo synthesized saturated FAs (Los et al., 2013). In polar 

microalgae, increases in unsaturated bonds promote a looser packing of lipids and 

decreased the solidification temperature (Lyon and Mock, 2014). 

Under harsh conditions, there is an increase of cell maintenance costs due to the 

higher energy demand to maintain homoeostasis (Calow, 1991). Hence, carbohydrate 

metabolism is affected by abiotic stress resulting in a decrease of carbon storage and an 

increase in levels of dissolved sugars (Arbona et al., 2013). González and Ballesteros 

(2012) reviewed the effects of several environmental factors on the carbohydrate 

content of algae. Cultivation parameters such as limiting nutrients or starvation, 

inorganic carbon supply, sodium chloride concentration, irradiance and temperature can 

all affect the activity of enzymes associated with carbohydrate accumulation in algae 

(Vinocur and Altman, 2005). Interestingly, different algae have shown different patterns 

in carbohydrate homoeostasis when exposed to temperature changes; for example, in 

Spirulina maxima, elevated temperature significantly increased the carbohydrate 

content (Oliveira et al., 1999), while in six Caulerpa spp. isolated from the Gulf of 

Mexico, the total carbohydrate content increased during cold seasons (Rathore et al., 

2009). In contrast, in a study on tropical microalgae from Australia, no consistent 

pattern was observed in carbohydrate content in response to temperature treatments 

(Renaud et al., 2002). 

Elevated temperature causes disruption of weak interactions in protein structure, thus 

affecting the stability of protein conformational by altering the stability of the unfolded 

as well as of the native forms of protein (Daniel et al., 1996). Accumulation of unfolded 

proteins under heat stress (HS) would unleash a signalling cascade triggering the 
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production of compatible solutes and molecular chaperones that cooperatively act to re-

establish protein homeostasis. Heat shock proteins (HSPs) are the well-known 

molecular chaperones that comprise a group of highly conserved proteins that can be 

induced upon subjecting organisms to high-temperature stress (Liu et al., 2014). Among 

HSP families, the HSP70 and HSP90 are two most studied under different 

environmental stress conditions. It has been proposed that HSP70 gene to be considered 

a good candidate for bio-monitoring assays because the HSP70 gene is a sensitive 

biomarker for different classes of environmental stresses in green algae (Chankova et 

al., 2013). Also, HSP90s are one of the most abundant proteins, accounting for 1–2% of 

all cell proteins under non-stressed conditions (Rosic et al., 2011) and proposed as a 

potential biomarker in algae (Liu et al., 2014). In contrast, there are other proteins up-

regulated during abiotic stress and trigger protein degradation pathway, ubiquitin is a 

well-studied protein consisting 76-residues protein found in most phyla, marks proteins 

for rapid degradation. Increased ubiquitin levels indicate higher levels of protein 

degradation, and thus increased protein turnover. Ubiquitin is induced by diverse types 

of stresses in the reflection of the need for more extensive protein turnover in stressed 

cells. Moreover, ubiquitination plays a main regulatory role in most eukaryotic cellular 

processes such as receptor endocytosis, intracellular signalling, cell-cycle control, 

transcription, DNA repair, gene silencing, and stress response (Shahsavarani et al., 

2012). Expression of ubiquitin in the response to heat stress in algae was reported also 

(Vayda and Yuan, 1994; Kampen et al., 1995). 

Environmental changes generally cause an imbalance between energy supply and 

consumption in photosynthetic alga that leads to an alteration of the photosynthetic 

apparatus and consequently photosynthetic temperature acclimation (Ras et al., 2013). 

Among various machinery of photosynthesis, the photosystem II complex (PSII) is 

particularly sensitive to heat, and even a short period of exposure to high temperatures 
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irreversibly inactivates the oxygen-evolving complex of PSII (Allakhverdiev et al., 

2007). Three photosynthetic related genes including psbC, psaB and rbcL are vastly 

studied to monitor photosynthetic respond in microalgae. For example, psbC encodes 

the chlorophyll–protein complex CP43, that is one of the interior transducers of 

excitation energy from the light-harvesting pigment proteins to the photochemical 

reaction centre II (Qian et al., 2008). It involved in splitting, acting as an oxygen-

evolving enzyme of photosynthesis as well (Qian et al., 2009). PsaB encodes for the 

photosystem I (PSI) protein, which binds approximately 100 Chlorophyll a and 30 b-

carotene molecules. As the photochemical reaction centre, this protein coordinates most 

of the electron transfer cofactors and acts as an inner antenna (Qian et al., 2009). 

Photosynthetic carbon fixation considered as a possible site of temperature sensitivity 

(Lilley et al., 2010). Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco) 

catalyses the first step of the Calvin–Benson–Basham cycle, the pathway responsible 

for the vast majority of carbon fixation by phytoplankton (Knopf and Shapira, 2005).  

Understanding the biological principles and regulatory networks on which algae live 

on can explain their survival, reproduction, and distribution. In addition, knowledge on 

their responses toward stress is valuable if algae are to be used to meet the increasing 

need for feed, food, and biomass (Moreno-Risueno et al., 2010). The genus Chlorella 

(Chlorophyta, Trebouxiophyceae) is one of the most studied microalgae in the world 

and commercially cultivated by more than 70 companies globally (Spolaore et al., 

2006). Annually, the biomass production of Chlorella transcends 2,000 tons (Pulz and 

Gross, 2004), and most of the biomasses are used for dietary supplements and 

nutraceuticals, with a minute fraction destined to the cosmetic market and aquaculture  

(Spolaore et al., 2006). Chlorella grows in brackish, fresh and also in marine water. 

Numerous species have been isolated from the temperate, tropical and Polar regions 

(Guccione et al., 2014). Chlorella is rich in protein with a balanced amino acid 
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composition (Becker, 2007), and comprises a good content of vitamins, minerals, 

pigments (Jin and Hu, 2013) and short-chain polyunsaturated fatty acids, including oleic 

and linoleic acids (Petkov and Garcia, 2007).  

 

1.2 Problem statement  

Microalgae as the primary producers in the aquatic ecosystems are in general, 

adversely affected by global warming. The heat stress has been reported to inhibit 

growth and photosynthesis, and modify the biochemical composition of algae. Their 

various ecological niches may provide different responses to varying degree of 

temperature increase. 

 

1.3 Research Question  

1. Does elevated temperature affect the growth, photosynthetic performance and 

biochemical composition of Chlorella sp. from the Antarctic, temperate and 

tropical regions? 

2. What is the expression pattern of the selected genes in Chlorella sp. from the 

Antarctic, temperate and tropical regions in response to heat stress? 

 

1.4 Hypothesis 

H0a = There are no significant differences in growth among marine Chlorella strains 

from different latitudes in response to elevated temperature.  

H1a = There are significant differences in growth, among marine Chlorella strains 

from different latitudes in response to elevated temperature. 

Univ
ers

ity
 of

 M
ala

ya



 

6 

H0b = There are no significant differences in photosynthesis among marine Chlorella 

strains from different latitudes in response to elevated temperature.  

H1b = There are significant differences in photosynthesis among marine Chlorella 

strains from different latitudes in response to elevated temperature. 

H0c = There are no significant differences in biochemical composition among marine 

Chlorella strains from different latitudes in response to elevated temperature.  

H1c = There are significant differences in biochemical composition among marine 

Chlorella strains from different latitudes in response to elevated temperature. 

H0d = There are no significant differences in selected genes on their expression 

among marine Chlorella strains from different latitudes in response to elevated 

temperature. 

H1d = There are significant differences in selected genes on their expression among 

marine Chlorella strains from different latitudes in response to elevated temperature. 

 

1.5 Objectives 

The following are the objectives of the proposed study:  

1. To investigate the effects of elevated temperature on growth, photosynthetic 

performance and biochemical composition of marine Chlorella sp. from the 

Antarctic, temperate and tropical regions. 

 

2. To determine the expression patterns of selected genes in Chlorella sp. from 

the Antarctic, temperate and tropical regions in response to heat stress. 
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2 CHAPTER 2: LITERATURE REVIEW 

2.1 Climate Change and Global Warming  

Climate change is a global concern and is primarily caused by natural and human 

activities. In the past century, human activities caused the emission of greenhouse gases 

(GHG), such as carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and 

halocarbons (a group of gases containing fluorine, chlorine, and bromine). These gases 

act as a heat trap and subsequently increase the atmospheric temperature. CO2 is largely 

responsible for this increase of temperature in the past few decades (Forster et al., 

2007). The burning of fossil fuels is the main source of CO2 in the atmosphere (Raj, 

2016). According to the Intergovernmental Panel on Climate Change (IPCC), a global 

warming trend of 0.85 °C was documented from 1880 – 2012, with the average increase 

of 4–5 °C expected by the end of the 21st century (IPCC, 2013). In addition to 

increasing the mean annual temperatures, the period, incidence, and severity of periods 

with extraordinarily high temperatures are all also increasing (Easterling et al., 2000; 

Tripathi et al., 2016). 

Global warming is one of the most deleterious factors affecting aquatic ecosystems, 

which sequentially leads to significant shifts in aquatic biogeochemical cycles, 

dynamics, biodiversity, and aquatic food web structure (Harley et al., 2006; Wrona et 

al., 2006). Temperatures increase caused by global climate change affect species’ 

phenology and distributions (Parmesan, 2006). The impacts of global warming on 

species interactions are more challenging to elucidate, as warming might alter the 

outcome of competition and change the flow of energy via food webs (West and Post, 

2016). In aquatic ecosystems, algae as primary producers play a vital role in carbon 

sequestration and forming the basis of both freshwater and marine food chains (Sayre, 

2010; Tsai et al., 2015). Their roles and distribution are influenced by the shift in 

environmental factors due to global warming (Beardall and Raven, 2004; Bopp et al, 
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2005; Paul, 2008; Olsenz, 2011). Acute changes in temperature, irradiance, salinity, or 

pH will influence their cellular integrity and biomolecules, thereby disrupting cellular 

homoeostasis (Jauzein and Erdner, 2013; Van et al., 2015). Environmental stress could 

lead to severe damage and initiate responses that result in either acclimation or 

programmed cell death, depending on the sensitivity of the algae (Zuppini et al., 2007; 

Sulmon et al., 2015). The effect of elevated temperature on algae can be investigated by 

focusing on several algae cell elements, such as lipids and membrane, proteins, 

carbohydrates, and photosynthetic components (Juneja et al., 2013; Minhas et al., 

2016). 

 

2.1.1 Global Warming and Antarctic  

The Antarctic is Earth's southernmost continent. It contains the South Pole and is 

situated in the Antarctic region of the Southern Hemisphere, almost entirely south of the 

Antarctic Circle, surrounded by the Southern Ocean. It is the 5th largest continent, at 

14,000,000 km2. It is known that climate change in the polar regions could affect the 

mass balance of the polar ice sheets, and the resulting changes in sea-level would have 

global implications (King, 1991). 

Since the 1950s, the surface temperatures have increased in the Antarctic. The 

highest ever temperature of 17.5 °C was reported in March 2015 by Esperanza Base 

(Argentina), at the northern tip of the Antarctic Peninsula (Howard, 2015). Model 

simulations on the Thwaites Glaciers Basin, West Antarctica by Joughin et al., (2014) 

reported the breaking up of a glacier that was previously assumed to be stable for at 

least a few millennia. Rignot et al. (2014) analyzed observational data from 1992 – 

2011 from Earth Remote Sensing (ERS-1/2) satellite radar interferometry. The data 

confirmed that the glaciers have withdrawn from their original locations. The Pine 

Island Glacier shrunk to 31 km at its core, with the highest withdrawal reported 
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occurred during 2005–2009. Thwaites Glacier withdrew 14 km to its core and 1–9 km 

on its side. Haynes Glacier withdrew 10 km on its sides. Smith/Kohler Glacier 

withdrew 35 km across its ice plain (Rignot et al., 2014). Based on the aforementioned 

reports, this area of Antarctica is undergoing marine ice instability, which will increase 

the sea level in a few decades. Greenbaum et al. (2015) anticipated a minimum of 3.5 m 

sea level increase and identified ocean water infiltration underneath the glaciers. The 

instabilities from ice-ocean interaction in East Antarctica could have substantial global 

impacts. 

Climate change in the Antarctic can adversely affect habitats at macro and micro 

levels. For example, Lynch and LaRue (2014) reported the first global survey of the 

Adélie Penguin, which was done using high resolution (~0.6m) satellite imageries and 

field counts. They showed that the decrease of Adélie Penguin on the Antarctic 

Peninsula is offset by increases in East Antarctica. Another research reported that the 

reduction of Adélie Penguin population is linked to the increase of sea ice in the Ross 

Sea region, possibly due to the elimination of Antarctic toothfish, which competes for 

the same prey as the penguins (Lyver et al., 2014). Cimino et al. (2016) anticipated that 

a third of Adélie Penguin colonies in Antarctica could vanish by 2060 due to the effect 

of climate change on its food supply. Individual penguin might respond to global 

warming with an enhanced metabolic rate, but as long as the metabolic necessities do 

not surpass ingestion rates, krill productivity can be boosted with temperature increase 

in Antarctica (Constable et al., 2014). However, this response is expected to be negative 

around South Georgia with increasing water temperatures. Further temperature 

increases could result in, metabolic costs, which could go beyond its physiological limit 

(Wiedenmann et al., 2009; Hill et al., 2013). A reduction in winter sea-ice coverage in 

the Antarctic Peninsula and Scotia Sea could result in a decreased number of krill 

(Trivelpiece et al., 2011). Future Ocean warming may lead to a shift in krill habitat (Hill 
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et al., 2013). Furthermore, the decline of the food supply of krill and the rapidly 

changing climate in the Southern Ocean are threatening fur seals (Hill et al., 2013). 

Crabeater, leopard, and Ross seals, all of which inhabit the pack ice surrounding the 

Antarctic Treaty zone, are mostly influenced by sea ice decrease (Turner et al., 2014). 

Constable et al. (2014) reviewed the impact of climate change on autecology of marine 

biota of Antarctic regions, such as zooplankton, microbes, Antarctic krill, salps, fish, 

cephalopods, seabirds, marine mammals, and benthos. The impacts of climate change 

may be associated with ecological adaptivity and tolerance potentials of the taxa, but it 

is more important that we examine how well species respond evolutionarily to the 

constant and rapid changes in ecosystems (Turner et al., 2014). There were several 

studies predicting the effect of elevated temperatures on Antarctic algae which shown 

their ability to tolerate temperature above their ambient, however, their biochemical 

composition (nutritional content) were significantly affected (Hosono et al., 1994; Teoh 

et al., 2004; Chen et al., 2012;.Wong et al., 2015; Cao et al., 2016). 

 

2.1.2 Global Warming and Temperate 

Shanley et al. (2015) discussed the consequences of climate change in the northern 

coastal temperate rainforest of North America, focusing on the terrestrial ecological and 

hydro-ecological systems. These changes are expected to result in a cascade of 

ecosystem-level effects together with amplified rate of flooding and rain and snow, an 

higher snowline and reduced snowpack, changes in the timing and extent of stream 

flow, freshwater thermal regimes and riverine nutrient exports, and reduction in alpine 

habitats (Shanley et al., 2015). 

Peters et al. (2013) studied the long-term impacts of two possible future climate and 

atmospheric CO2 scenarios on ecosystem function in jungles throughout the Great Lakes 

region of North America by ecosystem model PnET-CN. The result proposed that the 
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productivity of Great Lake jungles will shift from being temperature-limited to water-

limited by the end of the century. Campioli et al. (2011) reviewed the current status of 

production and biogeochemistry and their respective exposure and sensitivity to climate 

change in Belgium. The climate, environment, and forest conditions of Belgium are 

typical of the temperate oceanic region (Lindner et al., 2010; Campioli et al., 2011). In 

the long run, nutrient deficiencies at deprived sites may reduce forest production. Also, 

sensitive species, such as Norway spruce and beech, could experience limited growth 

due to drought. Drought conditions are anticipated to increase in the future, but 

opposing effects are more likely upon a rather limited number of tree species (Campioli 

et al., 2011). The relationship between climate changes and disease risks from some 

pathogens is fast gaining attention. Hakalahti et al. (2006) pointed out that temperature 

significantly controls the transmission and reproduction of parasites in northern 

latitudes. A study on climate warming that changed the life history dynamics of the 

directly transmitted crustacean ectoparasite Argulus coregoni and complex life cycle 

trematode Diplostomum spathaceum could be risky to fish farming via amplified 

infection pressure (Hakalahti et al., 2006). 

Galicia and Gomez-Mendoz (2010) stated that the influence of variations in 

temperature and precipitation modelled under climate change scenarios will decrease 

the current ranges of geographic distribution of almost all species of oaks and pines. 

The most influenced species would be Pinus rudis, P. chihuahuana, P. culminicola, 

P.oocarpa, Quercus acutifolia, Q. crispipilis and Q. peduncularis under both 

conservative and severe climate change scenarios (Galicia and Gomez-Mendoz, 2010). 

The temperate region of Australia, also is known as a global centre for marine 

biodiversity and its waters have undergone a higher degree of warming than the global 

ocean. Projected rises in temperature are expected to cause further range shifts of algae 

and associated species and local extinctions for species that have their northern borders 
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with the southern coastline (Wernberg et al., 2011). In a study of two temperate benthic 

diatoms species, (Amphora cf. coffeaeformis and Cocconeis cf.sublittoralis) exposed to 

temperatures ranging from 5 °C to 50 °C after a short-term exposure to a range of UV 

irradiances, significant differences were observed in their growth and photosynthetic 

performance and sign of photoinhibition observed suggesting high possibility of growth 

and photosynthesis inhibition due to warmer environment (Salah et al., 2011). 

 

2.1.3 Global Warming and Tropics 

The climate is also changing in the tropics (IPCC, 2013). Tropical jungles are the 

functional lung of the earth, and minor changes in the tropics can have an abundant 

impact on the entire planet’s ecosystem. The tropics will experience the impacts of 

global warming earlier than the poles. Many regions of the subtropical and tropical 

continents, such as southern Amazonia, Australia, and southwestern and central United 

States have frequently experienced extreme droughts over the past few decades, 

accompanied by a growing wetness over the equatorial regions (Fu, 2015). The tropics 

have warmed to a mean ratio of 0.26 °C/decade (Malhi and Wright, 2004). A slight 

alteration in the environment in the tropics will be quickly felt. Due to the model’s 

uncertainty, Corlett (2012) anticipated that the tropics are getting warmer by at least 2–3 

°C by 2100, 4–6 °C, or even 7 °C. 

Salazar et al. (2007) studied the impacts of anticipated climate change on the biome 

distribution in South America. Their results in the worst-case scenario suggested an 

increased coverage of savanna areas by the cost of tropical jungle areas. The climate 

variability, drought incidence, and seasonality of soil moisture, along with other aspects 

that may interact synergistically like fire, are critical factors for determining forest-

savanna boundaries and vegetations’ vulnerability in the Amazon (Hutyra et al., 2005). 

In Central America, factors such as El Niño are projected to increase under future 
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climate scenarios (Karmalkar et al., 2011). Similar to the Amazon, Central America risk 

huge losses of jungle biomass under increased drying and warming scenarios in the 21st 

century (Lyra et al., 2016; Lyra et al., 2017). 

Based on the analysis of nearly 50 years of temperature data sets in Malaysia, Wai et 

al. (2005) reported a substantial increase in the average yearly temperature, ranging 

from 0.99 – 3.44 °C/century. They also examined the average yearly temperature 

regression lines (for all the analysed stations), which confirmed that the global warming 

trend has increased in the past 30 years. This study agreed with IPCC’s report. A similar 

study conducted by Tangang et al. (2007) reported notable warming trends of 2.7 – 4.0 

°C/century for the past 42 years, from 1961 to 2002. Climate change may result in 

increased frequency and intensity of extreme weather events, such as droughts, storms, 

and floods in Malaysia (Rahman, 2009). Fourteen Global Climate Models (GCM’s) 

stated a prediction, which illustrates that Malaysia could experience temperature 

increases from 0.7 °C to 2.6 °C (Rahman, 2009). The potential impacts of climate 

change in the Malaysian environment would consist of reduced crop yields, sea level 

increase, higher risk of diseases among forest species and biodiversity loss, tidal 

inundation of coastal areas, coral reef bleaching, decreased water availability, loss of 

biodiversity, added droughts, and others (Rahman, 2009). The impact of climate change 

on Malaysia’s rich biodiversity is of foremost concern, where, with the complex 

interspecific relationship between animal and plant species, impact on one could well 

impact the other. In the years between 1997 and 1998, the most severe and widespread 

bleaching of corals happened and the reefs in 42 countries were affected, with extensive 

coral mortality being reported in South of Japan, Seri Lanka, the Maldives, India, 

Kenya, Tanzania, Seychelles and other sites in the Indopacific (Fitt et al., 2001). Rising 

sea surface temperature (SST) in tropical/subtropical waters have moved reef-building 

corals, 0.5 °C nearer to their upper thermal boundaries. Natural temperature fluctuations 
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can drive corals into temperatures that result in bleaching faster than in the past. During 

summer when SST exceed the maximum by more than 1 °C for one month or more, 

corals bleach by expelling their symbiotic algae, showing either the pale colours of 

coral pigments or the brilliant white skeleton (Eakin et al., 2008). In the 2010/11 austral 

summer a severe marine heatwave which influenced 2000 km of the midwest coast of 

Australia occurred with SST anomalies of 2-5 °C above normal climatology. The heat 

wave was influenced by a strong Leeuwin Current during an extreme La Nina event at a 

global warming hot spot in the Indian Ocean. This contest had a vital effect on the 

oceanic ecosystem with changes to seagrass or algae and coral habitats, as well as fish 

kills and southern expansion of the range of several tropical species (Caputi et al., 

2016). 

 

2.2 Abiotic Stress and Algae 

Algae, like other marine organisms living in intertidal or shallow subtidal habitats, 

are regularly exposed to strong water motion and subjected to extreme fluctuations in 

temperature, pH, irradiance, salinity or nutrient availability, and the amplitude of these 

fluctuations are far exceeded climate changes prediction in the coming decades (Olsenz, 

2011). Principally, at the population level, physiological responses to climate change 

will display as changes in the timing of annually recurring events (phenology), 

abundance, and the spatial organization (dispersion and distribution) of organisms. 

Suboptimal states and weak individual performance can result in reduced population 

productivity as well as decreased resilience to disturbance. Well-documented biological 

impacts from climate change involve shifts in population range and distributions 

(Doney et al., 2001). While, at the species level, responses to environmental changes 

can be described to a small set of basic alternatives: (i) persistence without 

acclimatization or adaptation (tolerance), (ii) persistence with acclimatization or 
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adaptation, (iii) persistence enabled by migration to remain within some particular 

climatic niche and (iv) extinction (Harley et al., 2012).  

Algae respond to environmental changes by utilizing diverse strategies. For example, 

heat stress affects membrane fluidity, and algae, in response, can modify their 

membrane fatty acid composition to maintain homoeostasis (Morgan-Kiss et al., 2006). 

Moreover, algae protect their proteins and enzymes using molecular chaperones, such 

as heat shock proteins (HSPs) or degrade denatured proteins in processes involving 

ubiquitin (Craig et al., 1993). In addition, algae regulate their carbohydrate 

concentrations and structures to utilise the energy of endogenous carbon sources 

efficiently and protect other molecules via accumulation of compatible solutes (Welsh, 

2000; Daroch et al., 2013). Algae regulate the photosynthetic machinery in order to 

acclimatise to stress conditions. Furthermore, these characteristics of algae can be 

exploited for the production of desired metabolites through the abiotic stress as a tool 

integrated with microalgal biorefinery for its sustainable development (Paliwal et al., 

2017).  

 

2.2.1 Abiotic Stress Effects on Lipids and Membrane of Algae  

The capability of algae to survive against various ecological conditions is strongly 

reflected in the unusual pattern of their cellular lipids and their capacities for changing 

lipid metabolism (Thompson, 1996; Wang et al., 2016). The physical properties of the 

membrane rely on its fatty acid profile and the degree of saturation which regulates the 

fluidity of membranes (Singh et al., 2002). The fluidity of membranes is affected by 

fluctuations in temperature. Low temperature reduces membrane fluidity, which is 

ameliorated via desaturation of membrane lipids by fatty acid desaturases (FADs) 

(Sakamoto and Murata, 2002). Thus, cells maintain their membrane fluidity at low 

temperature by increasing the content of membrane unsaturated fatty acids (UFAs) to 
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achieve a looser packing of lipids and decrease the solidification of membrane lipids 

(Lyon and Mock, 2014). Conversely, heat increases membrane fluidity, which is 

ameliorated by the incorporation of de novo synthesised saturated fatty acids (SFAs) 

into membrane lipids, and the presence of membrane-stabilizing proteins (Los et al., 

2013). Moreover, shortening the length of fatty acids in membrane lipids is another 

acclimation strategy vis-à-vis elevated temperature (Dodson et al., 2014).  

Basically, two main family groups of enzymes control fatty acid structures; 

desaturases and elongases (Khozin-Goldberg and Cohen, 2011). During stress 

conditions, cells also show an increase in fatty acid synthesis. The mechanisms involved 

in lipid homoeostasis can be monitored by analysing the expression of the central 

regulatory genes, such as genes encoding subunits of acetyl-CoA carboxylase 

(ACCase), ketoacyl-ACP synthase (KAS), desaturase, and elongases. ACCase, which 

consists of four subunits, namely accA, accB, accC, accD, regulates the rates of fatty 

acid synthesis (Podkowinski and Tworak, 2011; Singh et al., 2016). In certain stress 

conditions, such as metal stress (e.g. iron), up-regulation of ACCase subunits was 

observed along with elevated ACCase activity and fatty acid synthesis in Chlorella 

sorokiniana (Wan et al., 2014). ACCase activity yields malonyl-ACP, where the 

malonyl entity participates in a series of condensation reactions, leading to the 

lengthening of the precursor fatty acid in which KAS is the rate-limiting enzyme 

(Rismani-Yazdi et al., 2011; Lei et al., 2012). In Dunaliella salina, higher levels of 

KAS were observed when cells were exposed to higher salinity (Azachi et al., 2002). It 

is important to note that the SFAs formed might undergo desaturation and elongation 

steps to form longer chains of unsaturated fatty acids, or polyunsaturated fatty acids 

(PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and 

docosahexaenoic acid (DHA) (Pereira et al., 2003).  
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In eukaryotes, energy can be stored as triacylglycerols (TAGs), which act an 

essential carbon source (Merchant et al., 2012), contributing to a vital part of survival in 

stressful conditions (Singh et al., 2002; Fan et al., 2014). Most microalgae accumulate 

TAG under nitrogen or phosphorus limiting conditions (Fan et al., 2014), high salinity 

(Bartley et al., 2013) and also temperature stress (Fakhry and Maghraby, 2015; Elsayed 

et al.,  2017). Two pathways to form TAG are emphasised; namely the acyl-CoA 

dependent (Kennedy pathway) and the acyl-CoA-independent (Lenka et al., 2016). In 

algae, the Kennedy pathway is the primary pathway where TAG is produced through 

the sequential transfer of acyl groups from acyl-CoA to the various positions of the 

glycerol-3-phosphate backbone, facilitated by acyltransferases such as glycerol-3-

phosphate acyltransferase (GPAT), acyl-CoA: lysophosphatidic acid acyltransferase 

(LPAAT), and the acyl-CoA: diacylglycerol acyltransferase (DGAT). GPAT transfers 

the FA from the acyl-CoA pool (acyl-ACP in plastids) and its overexpression resulted 

in up to 50% increase of TAG in Chlamydomonas reinhardtii without affecting cell 

growth (Iskandarov et al., 2016). DGAT catalyses the last step of TAG assembly and is 

proposed as a rate-limiting step of TAG biosynthesis (Lenka et al., 2016). 

Transformation of the gene encoding DGAT was used as a strategy to obtain higher 

lipid content in C. reinhardtii (Ahmad et al., 2014). Alternatively, TAG can also be 

produced by three enzymatic reactions in the acyl-CoA-independent pathway, involving 

phospholipid diacylglycerol acyltransferase (PDAT), diacylglycerol acyltransferase 

(DGAT), and diacylglycerol transacylase (DGTA) (Chen and Smith, 2012). PDAT is 

reported as the main enzyme for TAG biosynthesis in C. reinhardtii (Yoon et al., 2012)  

and increased levels of PDAT were observed when the microalga was subjected to 

nutrient limitations, such as iron (Urzica et al., 2013) and nitrogen (Boyle et al., 2012).  

PUFAs are fatty acids containing 18 carbons or more with the presence of two or 

more double bonds (Leonard et al., 2004). They affect membrane fluidity owing to their 
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very low melting points. Therefore, the solidification of the membrane lipids can be 

reduced by increasing the ratio of PUFAs in the membrane (Brett and Müller‐Navarra, 

1997). Among the enzymes involved in lipid metabolism, ∆9 fatty acid desaturases 

(FADs) catalyse the first committed step in desaturation and initiate the conversion of 

SFAs to mono-unsaturated fatty acids (MUFAs), which are essential for the generation 

of PUFAs (Xue et al., 2016). These desaturases introduce the first double bond to 

palmitic acid (C16:0) and stearic acid (C18:0) and convert them to palmitoleic acid 

(C16:1) and oleic acid (C18:1), respectively (Xue et al., 2016). Up-regulation of several 

fatty acid desaturases (Δ9ACPCiFAD, Δ12CiFAD, ω3CiFAD2 and Δ6CiFAD) was 

observed in the Antarctic ice Chlamydomonas sp. ICE-L when it was exposed to salinity 

stress (An et al., 2013). Antarctic Chlorella vulgaris, in response to cold and salt stress, 

up-regulated the Δ12 FAD, which catalyses the desaturation at the Δ12 position (Lu et 

al., 2010). Under low temperature (0 C), Δ9CiFAD, ω3CiFAD1 and ω3CiFAD2 were 

up-regulated in the microalga while Δ6CiFAD increased with increasing temperature. 

However, the temperature did not cause deregulation of Δ12CiFAD except at a specific 

temperature (15 C). These observations suggested that ω3CiFADs might have 

important roles in cold adaptation while Δ6CiFAD enhanced survival under high 

temperature (An et al., 2013). Stearoyl-ACP desaturase (SAD) is another enzyme 

involved in oleic acid (18:1) synthesis via the insertion of the first double bond into 

stearic acid (18:0) (John and Cahoon, 1998; Shanklin and Somerville, 1991). Stress 

conditions such as high light and nitrogen deficiency (N-) drastically up-regulated the 

transcripts of SAD in Chlorella zofingiensi and resulted in the accumulation of total 

fatty acids including oleic acid (Liu et al., 2012). Interestingly, it was noted that by 

increasing the levels of unsaturated fatty acids in the membrane, the photosynthetic 

machinery of algae could also be stabilised under chilling (Wada, et al., 1994) and 

salinity stresses (Allakhverdiev et al., 2001). 
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2.2.2 Abiotic Stress Effects on Protein 

Heat stress has been shown to induce the aggregation and denaturation of proteins, 

resulting in membrane injury and alterations to metabolic fluxes (Fu et al., 2008). 

Consequently, accumulation of unfolded proteins under stress conditions triggers the 

expression of molecular chaperones, such as heat shock proteins (HSPs), that act to re-

establish protein homoeostasis (Fulda et al., 2010). Expression of HSPs induced by 

high-temperature is commonly observed in various living organisms (Parsell and 

Lindquist, 1993; Gupta, 2010). According to their molecular masses, HSPs are 

categorised into HSP100, HSP90, HSP70, HSP60, HSP40 and the small HSPs (Waters 

et al., 1996). HSP90s known to have a noticeable function in conserving protein 

homoeostasis by stabilising and maintaining the conformation of unstable proteins close 

to their native forms. In addition to its role in maintaining proper assembly of protein 

complexes, HSP90 is also involved in various signalling and cellular pathways (Richter 

and Buchner, 2001; Young et al., 2001). HSP90 varies from 82 to 96kD. Proteins that 

belong to this class function as ATP-dependent chaperones that bind to highly 

structured folding intermediates, preventing aggregation. HSP90s can act alone or in 

concert with other proteins (Reddy et al., 1998). It has been suggested that the HSP90 

complex performs this “buffering” activity by the activation/folding of signalling 

proteins that have variable domains such as R proteins (Sangster and Queitsch, 2005), 

which are part of the disease resistance response in plants (Krishna and Gloor, 2001). 

HSP90 is essential for maintaining the activity of numerous signalling proteins; it plays 

a key role in cellular signal transduction networks. At a molecular level, Hsp90 binds to 

substrate proteins, which are in a near-native state and thus at a late stage of folding 

(Jakob et., 1995) poised for activation by ligand binding or interaction with other 

factors. In fulfilling its role, HSP90 operates as part of multi-chaperone machinery in 

the cytosol, which includes HSP70 (Bose et al., 1996). On the other hand, HSP70 
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chaperones are involved in other aspects of protein processing, specifically protein 

translocation and protein folding (Bukau and Horwich, 1998). Some members are 

constitutively expressed (HSC) whereas others are expressed only under environmental 

stresses. They cannot act by themselves and work with two co-chaperones namely DnaJ 

homologs and HSP40 in eukaryotes in an ATP dependent reaction. The major function 

of this protein seems to be protein folding (Diefenbach and Kindl, 2000). Another 

function is folding and transport of proteins into the chloroplast and the mitochondrion 

(Zhang and Glaser, 2002). Chloroplast stromal HSP70B in C. reinhardtii and 

Dunaliella were reported to play a role in molecular protection and repair of PSII 

(Schroda et al., 1999; Yokthongwattana et al., 2001). HSP70B was also suggested as a 

stress marker for Chlorella sp. from different habitats (Chankova et al., 2013). For the 

Antarctic algae, an increase of 5–10 C above normal temperature triggered the 

expression of HSP70B gene (Vayda and Yuan, 1994). Moreover, the expression of 

several small HSPs gene was up-regulated at species-specific threshold temperature 

indicating the association of temperature sensing systems in algae (Kobayashi et al., 

2014). Also, significantly higher levels of HSP gene were detected in C. acidophila, 

suggesting that these chaperones might contribute to the survival of acidophilic algae 

under extreme conditions (Gerloff-Elias et al., 2006).  

In addition to HSPs, several other proteins are involved in protecting cells against 

stress-induced damages. Late-embryogenesis abundant (LEA) proteins in the higher 

plant Macrotyloma uniflorum act as molecular shields to prevent interactions of 

aggregation-prone protein species by steric or electrostatic repulsion (Tunnacliffe and 

Wise, 2007; Veeranagamallaiah et al., 2011). These proteins can be classified into six 

groups, localised in both nuclear and cytoplasm regions (Hong-Bo et al., 2005). LEA 

proteins have also been identified in algae (Honjoh et al., 1995; Honjoh et al., 2000; 

Lan et al., 2013). They are highly hydrophilic and are thought to stabilise other proteins 
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and membranes during dehydration via a mechanism involving hydrogen-bond 

stabilisation (Shih et al., 2008). Expression of LEA could be triggered by water stress 

such as cold shock or desiccation during cold acclimation and drought stress in 

Arabidopsis thaliana (Wang et al., 2011). Stable protein 1 (SP1) is another protein that 

plays a role in protein homoeostasis and is expressed during temperature stress (Wang 

et al., 2002). Its overexpression in plants noticeably decreases levels of reactive oxygen 

species (ROS) (Ling and Jarvis, 2015).  

During stress, proteins that are irreversibly denatured or misfolded are labelled by 

ubiquitins for degradation (Hershko and Ciechanover, 1998). The ubiquitinated proteins 

can then be acted upon by proteolytic enzymes known as proteasomes. Ubiquitination 

can be induced by different stresses and it regulates various biological processes in 

eukaryotes, namely receptor endocytosis, cell-cycle control, intracellular signalling, 

transcription, gene silencing, DNA repair, and stress responses (Kwapisz et al., 2005; 

Kaliszewski and Zoladek, 2008). Enhanced ubiquitin levels are associated with 

increased levels of protein degradation and turnover (Hawkins, 1991; Shahsavarani et 

al., 2012). Up-regulation of ubiquitin has been observed in algae in response to heat 

(Pearson et al., 2010) and light stress (Heinrich et al.,  2012). Furthermore, under 

unfavourable conditions such as heat stress, protein synthesis might be reduced as a 

strategy to limit the risk of generating misfolded proteins (Allakhverdiev and Murata, 

2004; Chankova et al., 2013; Pancha et al., 2014). During stress conditions, the 

accumulation of several amino acids originating from either protein breakdown or de 

novo synthesis was reported (Lankadurai et al., 2013). These include several amino 

acids, mainly those derived from oxaloacetate and pyruvate (Ala, Asp, Ile, Leu, Pro, 

Thr, Val) (Kaplan et al., 2004; Guy et al., 2008). Eventually, degradation of denatured 

proteins results in a pool of amino acids that serve as building blocks for de novo 
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protein (re)synthesis, although some of these amino acids, such as proline, might 

function as compatible solutes as well. 

 

2.2.3 Abiotic Stress Effects on Carbohydrate 

According to the energy allocation models, there is an increase of cell maintenance 

costs under harsh conditions due to the higher energy demand to maintain homoeostasis 

(Calow, 1991). Hence, carbohydrate metabolism is affected by abiotic stress resulting in 

a decrease of carbon storage and an increase in levels of dissolved sugars (Arbona et al., 

2013). González and Ballesteros (2012) reviewed the effects of several environmental 

factors on the carbohydrate content of algae. Cultivation parameters such as limiting 

nutrients or starvation, inorganic carbon supply, sodium chloride concentration, 

irradiance and temperature can all affect the activity of enzymes associated with 

carbohydrate accumulation in algae (Vinocur and Altman, 2005). Interestingly, different 

algae have shown different patterns in carbohydrate homoeostasis when exposing to 

temperature changes; for example, in Spirulina maxima the elevated temperature 

significantly increased the carbohydrate content, (Oliveira et al., 1999) while in six 

Caulerpa spp. isolated from the Gulf of Mexico, the total carbohydrate content 

increased during cold seasons (Rathore et al., 2009). In contrast, in a study on tropical 

microalgae from Australia, no consistent pattern was observed in carbohydrate content 

in response to temperature treatments (Renaud et al., 2002). Among carbohydrates, 

sucrose is the major product of photosynthesis and plays crucial roles in growth, 

development, storage, signal transduction and acclimation to environmental stresses in 

plants and algae (Jiang et al., 2015). Sucrose formation is heavily temperature 

dependent and is enhanced by an increase in temperature, which may be due to the 

involvement of a thermophilic enzyme system in sucrose synthesis (Müller and 

Wegmann, 1978). However, algae respond differently to altering sucrose levels when 
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subjected to temperature changes; for example in Dunaliella, sucrose was accumulated 

at elevated temperatures, while in Chlorella (Guy, 1990) and Klebsormidium flaccidum 

(Nagao and Uemura, 2012) sucrose accumulation was instead reported at low 

temperatures. In addition, an increased level of sucrose was observed in the 

cyanobacterium Synechocystis sp. during salt stress, suggesting a role for sucrose as an 

osmoprotectant (Miao et al., 2003). The enzyme sucrose phosphate phosphatase (SPP), 

known to be an essential component of the sucrose synthesis pathway, is involved in 

hydrolysing sucrose 6-phosphate (S6P) into sucrose and inorganic phosphate (Nagao 

and Uemura, 2012). The SPP family ubiquitously exists in algae (Jiang et al., 2015). In 

C. reinhardtii, the enhanced expression of the SPP gene in response to cold stress 

resulted in a corresponding increase in sucrose levels (Valledor, et al., 2013).  

Algae also respond to environmental stress, especially nutrient deficiency, by 

accumulating starch as the primary carbon and energy storage (Geider and Roche, 2002; 

Wang et al., 2014). The biosynthesis of starch is regulated by the rate-limiting enzyme 

ADP-glucose pyrophosphorylase (AGPase) whose activity is affected by temperature 

and redox mechanisms (Ball and Morell, 2003; Thitisaksakul et al., 2012). For example, 

in Chlorella zofingiensi starch abundance increased significantly at an early stage of 

nitrogen starvation, with a significant reduction of starch synthesis rate at a later stage 

followed by an increase in starch degradation and lipid production (Huang, et al., 2014). 

Similarly, AGPase was highly expressed in Chlorella vulgaris in the first few hours of 

response to N-starved conditions, while its expression reduced after 120 hours of 

incubation (Ikaran et al., 2015). Vitova et al., (2015) conducted a review of the 

approaches to enhance the bioaccumulation of starch and lipids, namely the use of 

inhibitors to prevent DNA synthesis or cell division as well as by nutrient starvation 

involving the macro elements such as nitrogen, phosphorus and sulphur. Starch is 

known as the most common storage form of carbohydrate and as a dense and 
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osmotically inert form of energy storage (Pfister and Zeeman, 2016). In 

phototrophically grown algae, starch accumulates during the cell cycle, prior to the 

period of nuclear and cellular division, and is utilised as a carbon and energy reserve to 

ensure completion of cell division processes is independent of external supplies of 

carbon and energy either during photosynthesis or in the dark (Vitova et al., 2015). 

Hence, starch degradation is an essential process in the cell, especially in photosynthetic 

organisms during the dark (Smith et al., 2005). Starch phosphorylase plays a vital role 

in starch degradation (Rathore et al., 2009) and its expression has been shown to be 

significantly induced by nitrogen starvation (Li et al., 2012). 

 

2.2.4 Abiotic Stress Effects on Antioxidant Defence Mechanisms 

Under optimal growth conditions, ROS such as superoxide (O2
•-), hydroxyl radicals 

(OH•), peroxyl radicals (RO2
•), hydroperoxyl radicals (HO2

•), singlet oxygen (1O2) and 

hydrogen peroxide (H2O2) are primarily produced as a part of cellular growth at low 

levels in various organelles, namely chloroplasts, mitochondria, and peroxisomes 

(Ahmad et al., 2014). However, the equilibrium between the production and scavenging 

of ROS could be affected by stress, resulting in increased levels of ROS and eventually 

oxidative stress (Malan et al., 1990; Apel and Hirt, 2004; Murik et al., 2014). In 

chloroplasts, the main reason for ROS production is the limitation of CO2 fixation, 

linked to the over-reduction of the electron transport chain (Davidson and Schiestl, 

2001). The accumulation of ROS in chloroplasts may occur via the Mehler reaction 

where the formation of superoxide occurs due to the transfer of electrons from 

photosystem I (PSI) to O2 instead of to ferredoxin (Dietz et al., 2016). During oxidative 

stress, superoxide radicals act as oxidants and facilitate the production of short-lived 

hydroxyl radicals (Fridovich, 1995) which are highly reactive and can induce DNA 

damage via denaturation (Lesser, 2006). Primarily ROS act by inhibiting the repair of 
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PSII and not by damaging PSII (Nishiyama et al., 2004). It is suggested that both the 

singlet oxygen and superoxide radical are strong oxidants and both oxidise elongation 

factor G (EF-G), which is involved in the synthesis of the D1 protein (Nishiyama and 

Murata 2014). At first, ROS were thought to be toxic by-products of aerobic 

metabolism, however more recent studies revealed that ROS play a key role as signal 

transduction molecules in many organisms (Mittler et al., 2004), so a basal level of ROS 

is vital for the functions of living cells (Mittler, 2017).  

Principally, ROS elevation induces the synthesis of ROS scavenging enzymes, such 

as superoxide dismutases (SODs), peroxidases (PODs), catalases (CATs) and 

thioredoxins (TRXs) as well as enzymes involved in the biosynthesis of glutathione 

(Lemaire et al., 2007; Gill and Tuteja, 2010). As the first line of defence, superoxide 

dismutases (SODs) rapidly convert O2
•- to O2 and H2O2 and the generated H2O2 can be 

converted into H2O by peroxidases, such as ascorbate peroxidase (APX) and glutathione 

peroxidase (GPX) found in vacuoles, cell walls and the cytosol (Alscher et al., 2002; 

Elbaz et al., 2010; Caverzan et al., 2012). It is suggested that high levels of SOD were 

associated with the acclimation of Grateloupia turuturu to stress (Liu and Pang, 2010). 

Induced activities of SODs, APX and GPX under diverse abiotic stress conditions have 

been reported in microalgae (Fischer et al., 2006; Park et al., 2006; Yildiztugay et al., 

2014; Chen et al., 2015; Yanguez et al., 2015). The high APX activity seen in 

Chlamydomonas under stressed conditions indicated that APX potentially contributes to 

this alga’s tolerance to oxidative stress (Tanaka et al., 2011). Similarly, in Ulva 

limnetica, APX was up-regulated more than 20 fold under salinity stress (Ichihara et al., 

2011). In addition to APX, catalase (CAT) is recognised as a dominant enzyme that 

catalyses the conversion of H2O2 to H2O or other non-toxic molecules (Mittler et al., 

2004; Luis et al., 2006). In plants and algae, catalase (CAT) scavenges H2O2 from 

photorespiration and oxidation of fatty acids (Kato et al., 1997; Vega et al., 2005). 
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Interestingly, CAT activity was correlated with the chlorophyll content during 

photoacclimation and exhibited protection against photodynamic damage induced by 

ROS (Dykens and Shick, 1984). Also, increased carotenoid content, along with 

increased catalyse activity, was observed in response to elevated ROS in Porphyra 

umbilicalis Kutzing (Sampath-Wiley et al., 2008). It is recognized that manganese 

superoxide dismutase (MnSOD) and CAT are the predominant enzymes responsible for 

mitochondrion protection. Up-regulation of CAT was observed in C. reinhardtii cells 

subjected to various stresses, including acidic conditions (Aksmann et al., 2014). In 

addition, CAT activity also contributed to the antioxidant defence and acclimation of 

the green alga Scenedesmus vacuolatus when exposed to copper (Sabatini et al., 2009). 

However, in the cyanobacterium Anabaena doliolum, the activity of CAT is salt 

sensitive and its inhibition resulted in cells’ susceptibility to salt stress (Srivastava et al., 

2008). The other reported antioxidant compounds in relation to photosynthesis, are 

carotenoids and α-tocopherols. Carotenoids are essential components found in 

photosynthetic algae. They are mainly involved in the light-harvesting process during 

photosynthesis while protecting the photosynthetic system against photo-induced 

oxidative stress (Vidhyavathi et al., 2008). As antioxidants, carotenoids are capable of 

quenching 1O2 and excitation energy from chlorophyll, hence reducing the production 

and accumulation of 1O2 (Demmig-Adams, 1990; Young, 1991). Carotenoids have been 

reported to increase antioxidant metabolism of P. umbilicalis, leading to its ability to 

withstand harsh environmental conditions such as high temperature, high irradiance and 

dehydration (Sampath-Wiley et al., 2008). It was also noted that ROS triggers the 

parallel accumulation of carotenoids in Dunaliella (Ye et al., 2008) and increased 

expression of carotenoid biosynthesis related genes was observed in Haematococcus 

pluvialis under several stress conditions (Vidhyavathi et al., 2008). On the other hand, 

tocopherols (Toc) also have vital roles in maintaining redox homoeostasis and their 
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biosynthesis has been shown to increase under stress conditions. Toc functions by 

deactivating ROS (mainly 1O2 and OH•) generated in thylakoid membranes during 

photosynthesis and by inhibiting lipid peroxidation via removal of lipid peroxyl radicals 

(LOO•) (Maeda et al., 2005). Although ROS are produced in both normal and stress 

conditions, cell defence mechanisms counter radical damage by limiting the formation 

of ROS as well as by facilitating its removal. 

 

2.2.5 Photosynthesis  

Photosynthesis is a reaction driven by light, whereby energy from the sun is used to 

fix carbon from carbon dioxide (CO2) into organic carbohydrates via reducing agents 

from the splitting of water to release oxygen (Characklis and Marshall, 1990). 

Photosynthesis can be divided into two reactions: (1) the thylakoid membrane-bound 

light reactions (where H2O is split) and (2) the carbon reduction reactions (formerly 

known as the dark reactions), which takes place in the stroma  (Reinfelder et al., 2000; 

Riebesell, 2000). Pigment molecules have a native state, where all their electrons 

inhabit low stable electron orbitals (Eº). If the photon receives a specific amount of 

energy, it can boost electrons to the next orbital. A pigment molecule with an electron 

boosted to a higher orbital is regarded as excited. The excited state is transient, where 

the energy is altered to one of four de-excitation routes including; (1) to non-specific 

neighbouring molecules as molecular motion (heat), (2) via fluorescence by emitting a 

photon in the red band (lower energy, longer wavelength), (3) by transferring energy to 

an adjacent chlorophyll molecule and boosting another electron to a higher orbital 

(enabling this molecule to reach an excited state), and (4) through driving a chemical 

reaction by loss of the excited electron from the chlorophyll a molecule (used in 

photosynthesis) (Consalvey et al., 2005). 
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2.2.5.1 Abiotic Stress Effects on Photosynthesis  

Environmental changes can disrupt the balance between energy supply and 

consumption in photosynthetic algae leading to alterations to the photosynthetic 

apparatus. In algae and higher plants, the reaction centre of PSII is bounded by the core 

antenna (CP43 and CP47) and the outer antenna, which includes the less-abundant 

minor light-harvesting complex I (LHC) and the major light-harvesting complex II 

(LHCII) (Elrad et al., 2002). These LHCs comprise proteins that bind chlorophylls (Chl 

a and Chl b). The LHCb gene family encodes both the minor LHC proteins and the 

LHCII. In the thylakoid membrane, LHCII is the most abundant pigment-protein 

complex and about half of all chlorophylls are associated with it. The main role of 

LHCII is to capture and pass on light energy to the reaction centre of PSII and take part 

in regulating the distribution of excitation energy between PSII and PSI. Transcriptional 

regulation of genes encoding LHCII plays an essential role in antenna size adjustment 

(Teramoto et al., 2001; Elrad et al., 2002). Algae regulate the expression of nuclear 

chlorophyll a–b light-harvesting complex (LHCa, LHCb), thereby controlling the 

antenna size. For example, when C. reinhardtii was grown under light-limiting 

conditions, the up-regulation of the LHC gene expression resulted in a larger antenna 

size (Elrad et al., 2002). Moreover, environmental changes can affect the subunit 

composition of reaction centres (PSI and PSII). For example, the psbC gene encodes a 

PSII chlorophyll-binding protein, involved in splitting and acting as an oxygen-evolving 

enzyme of photosynthesis (Qian et al., 2009), and is affected by harsh conditions like 

temperature stress (Chong et al., 2011). The psaB gene encoding one of the reaction 

centre subunits of PSI (Qian et al., 2009) was down-regulated in Chlorella vulgaris 

when this alga was exposed to toxic chemicals (Qian et al., 2011). Although other 

stresses, such as salinity, might have an effect on the expression of these genes, high 

light illumination is more likely to be associated with their regulation (Shapira et al., 
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1997; Nama, Madireddi et al., 2015). It is noteworthy to consider that gene expression 

is controlled at several steps starting with transcription of a gene, splicing, editing steps, 

and finally mature mRNA. The expression of chloroplast genes (psbC, psaB and rbcL) 

were initially thought to be controlled at the post-transcriptional level, associated with 

mRNA stability (Pfannschmidt, 2003). While it is likely that photosynthetic gene 

expression is controlled at all levels of expression (Qian et al., 2008), studying their 

expression in transcriptomic level can provide a suitable resolution of their synthesis. 

Photosynthetic fixation of carbon dioxide is essential for algal growth and 

development, providing the carbohydrates required for metabolism, as structural 

components and supplying cellular building blocks. Also, photosynthesis acts as a 

global sensor of environmental stress that induces cellular energy imbalance leading to 

the distinct changes in redox chemistry linked to thylakoid membranes and adjustment 

of cellular sugar status (Biswal et al., 2011). Photosystems and key enzymes associated 

with carbon dioxide fixation, such as ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RubisCO) play critical roles in photosynthesis. Studies have shown that the expression 

levels of genes involved in photosystem structure and RubisCO subunits were 

significantly influenced by various stresses (Qian et al., 2009; Qian et al., 2012; Luo et 

al., 2015). For example, rbcL, which encodes the large subunit of RubisCO (Spreitzer 

and Salvucci, 2002) was up-regulated upon temperature increase to 20 C, then the 

further rise, down-regulated its expression (Deng, 2014). Also, expression of rbcL was 

inhibited under desiccation, high salinity, and low salinity conditions as well as at 

temperatures above and below the normal ambient temperature (Xu et al., 2013). The 

map of photosynthesis pathway with its components is shown in Figure 1. 
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Figure 2.1: KEGG map of photosynthesis pathway (www.genome.jp/kegg). 

 

Photoinhibition associated with damage to the D1 protein of PSII can occur 

whenever algal cells are receiving light, and the damage is continuously repaired by de 

novo synthesis of D1, followed by the activation of the reaction centre to achieve a 

balance between the photodamage of PSII and its repair (Takahashi and Murata, 2008). 

Three main steps in PSII repair are conspicuously sensitive to abiotic stress, namely, 

degradation of the D1 protein in photodamaged PSII, synthesis of pre-D1 and 

processing of pre-D1 to the mature D1 protein (Nishiyama and Murata, 2014). It was 

suggested that adverse stresses might not increase photodamage directly but rather 

affect the PSII repair process by inhibiting the (re)synthesis of D1 (Nishiyama and 

Murata, 2014). For example, in Synechocystis sp. PCC6803 salt stress inhibited protein 

synthesis, degradation of the D1 protein, and processing of pre-D1 into the mature D1 

protein, which is necessary for the assembly of the active PSII complex (Allakhverdiev 

et al., 2002). In cyanobacteria, synthesis of D1 protein is mainly regulated at the 

transcription of its coding gene, psbA with fine-tuning during the elongation phase of 

translation. However, in chloroplasts of C. reinhardtii, the expression of psbA is highly 
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controlled by mRNA processing especially during the initiation of translation (Mulo et 

al., 2012). Besides the regulation of D1 protein synthesis during photoinhibition, amino 

acid changes in D1 protein were observed in response to temperature. Together with the 

physicochemical properties of the thylakoid membrane, these changes might contribute 

to the structural flexibility required for electron transfer in the PSII system (Giardi et al., 

1997; Lukes et al., 2014). 

 

2.2.5.2 Photosynthetic Parameters Measurement Principle 

Fluorescence is the re-emission of a photon of light, with a lower energy than the 

photon absorbed. Chlorophyll a re-emits light energy in the red band (Govindjee, 1995) 

(Kautsky and Hirsch 1931, Govindjee 1995). At room temperature, most of the 

fluorescence that we measure comes from PSII, with PSI only having a minor influence 

(Krause and Weis, 1991; Pflindel, 1998; Hall and Rao, 1999). In microalgae, only a 

very minor ratio (typically 1-5%) of the light energy absorbed is used in this way (Kirk, 

1983). When no photons are available to strike the antennae complexes (i.e. in the 

dark), the reaction centres are pronounced as "open". This shows that no electrons have 

been provided from the splitting of water to the reaction centres of the PSII. The rate-

limiting step for energy transmission via PSII is the oxidation/reduction of QA. As a 

result of this, the reaction centre is known to be open once QA is oxidised and the yield 

of fluorescence is at its minimum, (Fo). If a short pulse of high light is introduced by the 

fluorimeter to the algal cells, this is adequate to close all of the reaction centres (i.e. 

reduce all QA). This is called the saturating pulse, which differs among photosynthetic 

organisms, with a higher intensity and longer exposure to vascular plants compared to 

algae. When the reaction centres are all closed, the yield of fluorescence, in the course 

of the length of the saturating pulse, reaches a maximum (Fm
o). 
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In the light, photons strike the antenna complex and excite the pigment molecules. 

Some of the reaction centres at PSII will close (QA
-), and the fluorescence signal will 

increase to a yield between Fo and Fm (Fs). Fs is the fluorescence yield relative to the 

closure of the reaction centres induced by actinic light (drives photosynthesis). 

Basically, it takes several minutes for Fs to stabilise (an approximation after 30 secs to 2 

mins are used) and back to normal, F' (Oxborough et al., 2000). The prime superscript 

represents a measurement of fluorescence yield achieved in the light, therefore, a 

maximum fluorescence yield in the light is meant to be Fm'. F' may increase with 

increasing light level. Mostly, Fm' is lower than Fm, due to the non-photochemical 

quenching (NPQ), which is a way of down-regulation that turn away some of the light 

energy from the PSII reaction centres. If light energy is diverted away from the reaction 

centres, then there is less energy to induce fluorescence, and the yield decreases. 

By understanding the pathways involved in fluorescence and photosynthesis, the 

aforementioned parameters can be utilised to speculate about the electron transport rate 

(ETR) and photosynthetic efficiency, which means that fluorescence can be used as an 

ecological tool. The difference between the dark-adapted maximum (Fm) and minimum 

(Fo) fluorescence is the variable fluorescence (Fv). In the light-adapted state, the 

variance between the fluorescence yield at a certain light level (F') and the light-adapted 

maximum fluorescence (Fm') is defined as the fluorescence that has been quenched by 

photochemistry, Fq'. Fq' is relative to the number of open reaction centres and the 

amount of harvested light energy actively used to drive the photochemistry. Some 

researchers use the notation ∆F/Fm', where ∆F equals Fm'-F'. The light utilisation 

efficiency can then be calculated using these yields of fluorescence, either as a 

theoretical maximum efficiency (Fv/Fm) in the dark-adapted state or as the efficiency at 

a particular light level (Fq'/Fm') in the light-adapted state. As light level increases, the 

light utilisation efficiency decreases because there are more reaction centres closed, and 
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therefore unable to take advantage of increases in light energy. A decrease in this 

parameter can also be indicative of stress (Underwood and Kromkamp 1999). 

 

2.3 Algal Gene Regulatory Mechanisms and Gene Manipulation 

Understanding the biological principles and regulatory networks by which algae live 

by can help explain their successful survival, proliferation, and distribution. 

Furthermore, knowledge on their responses toward stress conditions is required if 

successful outcomes are expected for the role of algae to help deal with increasing 

demand for feed, food, and biomass (Moreno-Risueno et al., 2010). A large body of 

literature has been devoted to studies of the effects of abiotic stress on algae at the 

molecular level in order to determine the roles and functions of stress-related genes and 

proteins (Hema et al., 2007; Jamers et al., 2009; Kebeish et al., 2014). Gene expression 

of Chlorella strains in response to different abiotic stress is presented in Table 2.1. This 

knowledge could be translated into practical industrial applications, for example, stress-

induced production of lipids and antioxidants. Lipid content is extremely important to 

biofuel production, whereas antioxidants such as astaxanthin are known to be important 

biomolecules in the pharmaceutical industry (Hu et al., 2008; Ambati, et al., 2014). 

Although the desired product can be obtained by introducing the associated stress, if the 

growth is compromised by stress, its overall productivity is also reduced. Recently, 

advances in OMICS technologies, such as metabolomics, proteomics, transcriptomics, 

and genomics have provided deeper insights (Nouri et al., 2015), leading to the 

possibility of engineering strains with higher yields.  However, for the mass cultivation 

of genetically engineered algae, biosafety guidelines, in addition to a cost-effective 

production system, must be in place.  
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Table 2.1: The list of several studies reporting gene expression of Chlorella strains 

in response to abiotic stress. 

Species Class of 

Genes 

Functions Associated 

Stress 

Ref. 

Chlorella sp. HSP90 Keep inherently unstable proteins 

in a close-to-native conformation 

Temperature 

and salinity 

Liu et al. 

(2014) 

Chlorella. vulgaris HIC6, 

HIC12 

Encoding LEA, hydrogen-bond 

stabilising effects on enzymes 

Low 

temperature 

Machida et al. 

(2008) 

Chlorella pyrenoidosa accA, 

accD 

Encoding subunit of ACCase 

regulate fatty acid synthesis rate 

Nutrition 

limitation 

Fan et al., 

(2014) 

Chlorella  vulgaris AGPase ADP-glucose pyrophosphorylase, 

Starch synthesis 

Nitrogen 

starvation 

Ikaran et al. 

(2015) 

Chlorella  vulgaris SP Starch phosphorylase, starch 

degradation 

Nitrogen 

starvation 

Ikaran et al. 

(2015) 

Chlorella sorokiniana  rbcL Large subunit of RubisCO metal 

toxicity 

Wan et al., 

(2014) 9 

Chlorella vulgaris psbC Encodes a PSII chlorophyll-

binding protein 

salinity Kebeish et 

al.,2014 

Chlorella vulgaris psaB Reaction centre subunits of PSI herbicide Qian et al., 

(2009) 

Chlorella vulgaris psbA D1 protein synthesis UV 

radiation 

Garcia-

Gomez et al., 

(2016) 

 

With advances in the technology of gene editing using approaches such as CRISPR 

(Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated 

gene 9), precise gene manipulation can be realised to obtain stress-tolerant algae. This 

technology has been adapted to the model microalga, C. reinhardtii (Jiang et al., 2014), 
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and also employed in the marine diatom P. tricornutum to efficiently produce stable 

targeted mutations (Nymark et al., 2016). CRISPR can directly edit the genome 

precisely at the region of interest by either NHEJ or HDR mutations, which leads to a 

defined DNA replacement, deletion, and insertion (Xu et al., 2014). With this 

technology, further accomplishments can also be achieved in the functional study of 

algae proteins and genes associated with abiotic stress, characterization of their 

metabolic pathways, and the understanding of their biology (Lander et al., 2016). There 

are extensive interactions between components of signalling, regulatory and metabolic 

pathways, which lead to abiotic stress response/adaptation (Nakashima, 2009; Garg et 

al., 2014; Mickelbart et al., 2015). In many instances, knock-out of a single gene may 

not produce the desired phenotype, making it difficult to pinpoint its function. Multiple 

genes can be targeted simultaneously using the CRISPR-Cas9 system, which can 

overcome the problem posed by functional redundancy of genes (Jain, 2015). CRISPR 

technology is still in its infancy in algal studies, and it is expected that it can, in the 

future; it can contribute to the improvement of our understanding of algal metabolism 

and responses to environment, and be used to produce more stress-tolerant algae that 

can be used for industrial applications. 

 

2.4 Chlorella 

Chlorella is a genus of single-cell green algae belonging to the phylum Chlorophyta. 

It is sub-spherical, spherical, or ellipsoid in shape, ~2–10 μm in diameter, single or 

forming colonies, and lacks flagella. Chlorella has a single chloroplast, rigid cell wall, 

and lacks flagella (Eckardt, 2010). It is made up of green photosynthetic pigments 

chlorophyll a and b in its chloroplast. According to Guiry and Guiry (2017), the genus 

Chlorella can be classified as follows (Empire: Eukaryota, Kingdom: Plantae, Phylum: 

Chlorophyta, Class: Trebouxiophyceae, Order: Chlorellales, Family: Chlorellaceae, 
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Genus: Chlorella). These taxa can be found in diverse habitats, such as freshwater 

bodies, ponds, soil, marine, brackish water, as well as hot springs (Phang, 2004). These 

small organisms are simply propagating plants, demonstrating the suitable experimental 

model representing biochemical and physiological properties of macro-and green 

microphytes (Krienitz et al., 2015). 

 

 

Figure 2.2: Image of Chlorella sp. using optical microscope (Salbitani and Carfagna 

2016). 

 

The microalgae demonstrate substantial roles: as primary producers in aquatic 

ecosystems, it induces photo-oxygenation and removes CO2, which is used as a source 

of nutraceuticals, wastewater treatment, and feedstocks biofuel (Chu et al., 2009; Lim et 

al., 2010). Chlorella is used for biochemical and physiological studies since the cultures 

are easy to handle and it displays feasible growth performance (Krienitz et al., 2015). 

Ng et al. (2014) confirmed the potential of Chlorella sp. in producing electrical power 

due to its high photosynthetic rate and its ability to form a biofilm on indium tin oxide 
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(ITO). The immune-modulating and anticancer properties from the Chlorella extracts 

are used for medical treatment in certain countries (Safi et al., 2014). Blanc et al. (2010) 

reported the first genome sequence of Chlorella variabilis NC64A. Its’ genome size is 

46.2 MB, with 12 % of the genome being repeated sequences. A total of 9791 protein-

encoding genes are predicted in the genome. The mitochondrial genome accumulates as 

a circle of 78500bp, comprising of 62 genes, whereas the chloroplast genome forms a 

circle of 124793bp, consist of 114 genes (Orsini et al., 2016).  

 

2.5 Chlorella Responses to Elevated Temperature 

Several studies on the physiological responses of Chlorella strains towards elevated 

temperature have been carried out. Temperature is one of the important factors 

controlling the growth and biochemical composition of Chlorella. Teoh et al., (2005) 

investigated the influence of culture temperature on biochemical composition, growth 

and fatty acid profiles of Antarctic Chlorella. It was shown that temperature had the 

most significant effect on the protein content of Chlorella strains; by increasing 5 °C 

the protein content increased; however, the further rise of temperature inhibited protein 

synthesis. Also, the percentage of PUFA decreased as temperature increase (Teoh et al., 

2004). In another study which compared the physiological responses of Chlorella strain 

from different latitudes in response to temperature stress reported that the three 

Chlorella strains from different regions are eurythermal, with a big overlap on tolerance 

ranging from 4 °C to 38 °C. It was concluded that the Antarctic strain was able to 

tolerate a broad range of temperature so that it is likely to survive if global warming 

continues (Teoh et al., 2013). Cao and co-workers reported that the Antarctic Chlorella 

strain was able to grow in the broad range of temperature. The reported Antarctic 

Chlorella strain showed the tendency to secrete soluble sugar into the culture medium 

with increasing temperature, whereas its intracellular soluble sugar content did not 
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change with temperature variations. Accordingly, it was proposed that the algal cells 

might suffer from osmotic stress at high temperature, which could be regulated by 

excretion of soluble sugar (Cao et al., 2016). Photochemical responses of Chlorella 

strain studied in another research stated that elevated increasing temperature had 

significant effects on the photosynthetic properties and growth rates of Chlorella 

pyrenoidosa where by gradually increasing temperature,  photosynthesis and the growth 

were inhibited (Zhang et al., 2012). In Chlorella vulgaris, heat stress resulted in 

retardation of cell division, inhibition of photosynthetic oxygen evolution and phase 

shifts of circadian patterns. However, cells appeared to possess the potential for 

adaptation to high temperature induced by growth temperature in the range 25–35 ºC 

which was demonstrated by the enhanced thermal stability of PSII as revealed by 

analysis of chlorophyll fluorescence induction kinetics (Sayed et al., 2000). 

In the mass cultivation of Chlorella, it is economically important to screen strains 

adaptive to broad temperature fluctuation for outdoor cultivation where there is no 

temperature control being carried out. In a study conducted by Yang et al., (2016) three 

Chlorella strains were selected from different latitudes. All the three Chlorella strains 

showed the abilities to accumulate lipid under daytime temperature variations and their 

fatty acid profiles were suitable for biodiesel production, though the biochemical 

composition and growth were appeared to be region-specific. In the other study, the 

effect of elevated temperature on the composition of intracellular fatty acids and the 

release of free fatty acids (FFA) into a culture medium by Chlorella vulgaris was 

studied; it was reported that the relative content of intracellular more unsaturated fatty 

acids decreased with the elevation of temperature, while no change observed in 

extracellular unsaturated free (Sushchik et al., 2003). Results showed 30 ºC was optimal 

for achieving high lipid and biomass; by raising daytime temperature can lessen night 

biomass loss and stimulate lipid accumulation (Han et al., 2013). Besides, the effects of 
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elevated temperature on protein synthesis were also being studied as protein has 

important use as a food and fertilizer. For example, in a study conducted by Valliammai 

and Gnanam (1987), on Chlorella protothecoides demonstrated that during heat stress 

the synthesis of soluble protein inhibited more than the synthesis of membrane-bound 

proteins. They suggested that in Chlorella, the membrane-bound ribosomes are less 

prone to damage by the heat shock than the free ribosomal components involved in the 

synthesis of soluble proteins. Also, the temperature has a substantial influence on the 

utilization efficiency of glucose and growth. In a separate study, Chlorella pyrenoidosa 

was heterotrophically grown at diverse temperatures (15, 20, 25, 30 and 35 °C) in order 

to investigate the effects of temperature on algae productivity, the consumption rate of 

glucose and conversion ratio of glucose to algae cells. The heterotrophic productivity 

and consumption rate of glucose increased with the increase of temperature. When the 

temperature was increased from 15 to 30 °C, the conversion ratio of glucose to algae 

cells enhanced, but with the additional temperature rise from 30 to 35 °C, the 

conversion ratio severely plummeted. The highest heterotrophic productivity (0.161 

g/L.d) was found at 35 °C. Therefore, at 30 °C, Chlorella pyrenoidosa will achieve a 

high growth rate with a low cost of cultivation (Zhao et al., 2015).  
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3 CHAPTER 3: MATERIALS AND METHODS 

3.1 Chlorella Strains and Culture Conditions 

Three Chlorella species from different latitudes were used in this study: tropical 

(UMACC 245) and Antarctic (UMACC 250) were obtained from the University of 

Malaya Algae Culture Collection (UMACC). The temperate Chlorella (UMACC 373) 

was purchased from the Culture Collection of Algae and Protozoa (CCAP) and was 

originally isolated from Loch Linnhe, Argyll, Scotland where it is deposited as CCAP 

211/75. The stock cultures were grown in Prov (Provasoli) medium (Phang and Chu, 

1999; Appendix. A) and maintained in a controlled environment incubator, illuminated 

with cool white fluorescent lamps (40 µmol photons m-2 s-1 on a 12:12 light-dark cycle) 

at the following ambient temperatures; 4 °C (Antarctic), 18 °C (temperate), and 28 °C 

(tropical). For the ease of reference, the selected strains were referred to as Chlorella-

Ant: Antarctic Chlorella (UMACC 250), Chlorella-Trop: Tropical Chlorella (UMACC 

245), Chlorella-Temp: Temperate Chlorella (UMACC 373). 

 

3.2 Experiment Setups  

3.2.1 Experiment 1: Growth and Biochemical Characterization of Chlorella 

strains  

The algal cultures were first kept at their respective ambient temperatures. For the 

experiments, 10% (v/v) inocula from exponential phase cultures were prepared using 70 

mL of inoculum (from an exponential phase culture), where the cell density was 

standardized to an optical density of 0.2 at 620 nm (OD620), which was then inoculated 

into 630 mL fresh Prov medium in a 2 L conical flask. The triplicate batch cultures of 

each strain were then grown at pre-set temperatures, which exceeded the ambient 
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temperature (Table 3.1) for ten days. The cultures were shaken continuously at 80 rpm 

in an orbital shaker incubator (Model 718, Hotech Instrument Corp., Taipei, Taiwan). 

The light was provided by cool-white fluorescent lamps (40 µmol photons m-2 s-1) on a 

12:12 light-dark cycle. Shaking and cotton plugs were used on the growth vessels, and 

no more than half of the vessel volume was used as a culture to ensure adequate gas 

exchange. In order to study growth and photosynthetic parameters, daily sampling was 

conducted. On day 10, when the cultures reached the stationary phase, it was harvested 

for a biochemical test. The flowchart of experiment 1 is shown in Figure 3.1. 

 

Table 3.1: List of the selected temperature for each Chlorella strains 

Latitudes Chlorella 

Strains 

Growth 

Medium 

Ambient 

Temperature 

Temperature 

Range 

Tropical UMACC 245 Provasoli 28 °C 28, 33, 35, 38 and 40 °C 

Temperate UMACC 373 Provasoli 18 °C 18, 25, 28, 33, 35 and 38 °C 

Antarctic UMACC 250 Provasoli 4 °C 4,13,18, 25, 28, 33, 35 and 38 °C 
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Figure 3.1: The flowchart of experiment 1. 

 

3.2.2 Experiment 2: Stress and Recovery Treatment 

After the first experiment (growth studies at various temperatures), for each strain, 

the temperatures inducing severe damage to photosynthesis (caused Fv/Fm to decrease to 

zero) and inhibited growth were selected for the temperature stress and recovery 

experiments. 38 °C was selected for both Chlorella-Ant and Chlorella-Temp, while 40 

°C was selected for Chlorella-Trop. In this experiment, an inoculum size of 40 % (v/v) 

was prepared by inoculating 1200 mL of culture (from the exponential phase), where 

the cell density was standardised at an optical density of 0.2 at 620 nm (OD620), into 

1800 mL of fresh Prov media. During the stress treatment, the cultures were incubated 
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at their stress-inducing temperatures, and the decrease in Fv/Fm was closely monitored 

to assess stress levels. When the Fv/Fm value decreased to ~0.4, 0.2, and 0.0, 500 mL of 

the cultures were transferred to the empty, sterilised, 1 L conical flask, and returned to 

the normal ambient temperature to determine their capacity for recovery. The cultures 

were considered recovered when the Fv/Fm regained the value above 0.4. The flowchart 

of experiment 2 is presented in Figure 3.2. 

 

 

Figure 3.2: The flowchart of experiment 2. 
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3.2.3 Experiment 3: Gene Expression Profiling and ROS Measurement upon 

Stress and Recovery 

During stress and recovery treatments, the cultures were harvested at four-time 

points including; day zero, when Fv/Fm decrease to 0.4 and 0.2 and when it recovered to 

0.4. At each time point, the ROS level was measured. This was followed by RNA 

isolation steps, as per 3.3.12. The RNA samples were purified using genomic DNA 

removal Kit based on manufacturer protocol, and then the synthesized cDNA was used 

as a template for RT-qPCR. The flowchart of experiment 3 is presented in Figure 3.3. 

 

 

Figure 3.3: The flowchart of experiment 3. 
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3.3 Analytical Methods 

3.3.1 Growth study 

3.3.1.1 Monitoring of Growth by Optical Density (OD620)  

The optical density of the cultures was measured at an absorbance of 620 nm (OD620) 

using UV-vis spectrophotometer (Shimadzu, Japan). First, three millilitres of distilled 

water was placed in the clean cuvette then the auto-zero function was selected to blank 

before reading the samples. A growth curve based on optical density was determined by 

plotting the OD versus time (day). 

 

3.3.1.2 Specific Growth Rate 

The specific growth rate was calculated according to the natural logarithm of optical 

density (OD620) plotted versus time (day) within the exponential phase of cultures. The 

following formula was used to calculate the specific growth rate (µ, day−1): 

µ (day−1) = (Ln N2 -Ln N1) / (t2 -t1) 

Where N2 is OD620 at t2, N1 is OD620 at t1, and t2 and t1 are times within the 

exponential phase (Claquin,  2008). 

 

3.3.2 Photosynthetic Parameters Measurement  

To measure the photosynthetic properties of the microalgae, chlorophyll a variable 

fluorescence parameters were measured by a Pulse-Amplitude-Modulation (PAM) 

chlorophyll fluorometer (Water PAM; Heinz Walz, Effeltrich, Germany). Rapid light 

curves (RLCs) were obtained under software control (Win control, Walz) (Ralph and 

Gademann, 2005). The samples were kept in dark for at least 15 min prior to 

measurement (Wong, 2015; Cao et al., 2016; Wang and Xu, 2016). RLCs were 
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constructed by exposing the samples to 8 increasing red actinic irradiances (48, 105, 

158, 233, 358, 530, 812 and 1216 μmol photons m−2 s−1) for an interval of 10 s, each 

separated by a 0.8 s saturating flash (2000 μmol photons m−2 s−1). The maximum 

quantum efficiency (Fv/Fm), was calculated as Fv/Fm = (Fm-F0)/Fm, where Fm is the 

maximum fluorescence, F0 is the minimum fluorescence and Fv is the variable 

fluorescence. The relative electron transport rate (rETR) was deliberate by multiplying 

the irradiance by quantum yield measured at the end of each light interval (Harbinson et 

al., 1989). Alpha (α), defined as the initial slope of the rETR vs irradiance curve, is used 

as a measure of photosynthetic efficiency. Values for α and the maximum relative 

electron transport rate (rETRmax) were calculated by fitting the data from RLCs to an 

exponential function using a multiple non-linear regression (Platt et al., 1980). The 

program setup is presented in Appendix B. 

 

3.3.3 Biochemical studies  

3.3.3.1 Chl-a Concentration and Carotenoid Content  

Extraction of chlorophyll a and carotenoids was accompanied by filtering 20 mL of 

the sample on a glass-fibre filter (Whatman GF/C, 0.45 μm). The filtered samples were 

smashed with a glass hand-homogenizer in a 10 mL of acetone (100%). The samples 

were then covered with aluminium foil and incubated at 4 C overnight. Prior to 

spectrophotometric measurement, the samples were centrifuged at 1409 g for 10 min to 

yield a clear supernatant. Chlorophyll a concentration was determined by measuring the 

absorbance of the cell extracts at 665, 645, and 630 nm using a UV–vis 

spectrophotometer (Shimadzu UV1700, Japan) using the formula of Strickland and 

Parsons (1972). 
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Chlorophyll a (µg/mL) = (A× volume of acetone in mL (10 mL)/volume of sample 

in mL (20 mL) 

Where A = 11.6 (A665nm) - 1.31 (A645nm) - 0.14 (A630nm).  

In addition, carotenoids were measured from the same supernatant by measuring the 

absorbance at 452 nm and the carotenoid concentration obtained using the formula of 

Strickland and Parsons (1972).  

Carotenoid concentration (µg/mL) = A452nm × 3.86 × Volume of acetone (10 

mL)/Volume of sample (20 mL). 

 

3.3.3.2 Dry Weight Determination   

The glass-fibre filter (Whatman GF/C, 0.45 µm) were dried in the oven at 80 C for 

24 h, and then cooled down in a desiccator for 6 hours then the filter papers weighted. 

The known volume of samples (50 mL) was filtered. The filtered samples were flushed 

with ammonium formate, since they are all marine species to eliminate salt. The filtered 

samples were kept in the oven at 80 C for 24 h and later transferred into desiccator for 

6 hours. The samples were finally weighed and recorded, and they were returned back 

to the desiccator for 24 h. The samples were weighed again and recorded until a 

constant weight is achieved. The weight variance between the filter paper and the 

constant weight was recorded as the algal dry weight. Biomass concentration is 

expressed in g Dry Weight L-1 (g DW L-1). 

 

                                  [Filter with microalgae weight]   –   [Pre-weighed filter]  
       Dry weight =     __________________________________________________ 
                                          Volume of culture 
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3.3.3.3 Lipid Extraction  

Lipids were extracted from the filtered samples and its concentration determined by 

gravimetric method (Bligh and Dyer, 1959). In 5 mL of methanol-chloroform (2:1, v/v) 

the samples were mashed with a hand homogenizer and transferred into 15 mL 

centrifuge tube and then centrifuged at 3,000 rpm for 10 min. The clear supernatant was 

transferred to a new centrifuge tube containing 2 mL of distilled water and 2 mL of 

chloroform. The mixture was vortex vigorously and centrifuged at 3,000 rpm for 10 min 

to separate it into two phases. The lower phase (green colour) pulled out with a 

specially drawn Pasteur pipette and transferred into a screw-capped test tube. Following 

that the extract was blown with a mild stream of Nitrogen gas, and the dried extract was 

kept in a desiccator for 24 h before measuring the weight. The difference in weights was 

taken as the weight of the lipid extract. 

 

3.3.3.4 Fatty Acid Transesterification 

Lipid transesterification was conducted by the adding 1 mL of sodium methoxide 

(1% H2SO4-MeOH) to dissolve the lipid extract and transferred into a screw-capped test 

tube. The tube was heated at 90 C for 1 h using a test tube heater (Stuart SHT1, 

Netherland). The test tubes were shaken frequently. The tubes were cooled down in 

room temperature before the addition of 1 mL hexane to the heated extract, the mixture 

was carefully mixed using vortex and left to separate into two phases. The superior 

layer containing the fatty acid methyl ester (FAME) was aspirated into a new clean 

screw-capped test tube. Extraction of FAME was repeated with the addition of another 

1 mL of hexane to the extract. The pooled hexane extracts were evaporated by a mild 

stream of nitrogen gas. The FAME was re-dissolved in 100 µL of hexane and 
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transferred into a clean glass vial (capacity: 3.5 mL) and wrapped with Parafilm. Then 

the samples were kept in the freezer at −20 C for gas chromatography analysis. 

 

3.3.3.5 Gas Chromatography  

The gas chromatography system (Shimadzu GC 14A, Japan) comprised of a flame 

ionization detector (FID) and an integrator (Shimadzu CR6A Chromatopac, Japan). The 

system was equipped with a polar capillary column (DB 23, J & W Scientific, USA) 

with dimensions of 30 m X 0.25 mm and 0.25 µm thickness. The split ratio of the 

injector was set at 1:60 and the carrier gas (nitrogen) was at a flow rate of 0.6 mL min-1. 

Flame ionisation detector (FID) with temperatures of both the injector and detector 

fixed at 260 °C. Helium was used as the carrier gas at 2 mL min−1. The flows of 

hydrogen gas and purified air for the FID were provided at rates of 40 and 400 mL 

min−1, respectively. The injections were performed in duplicate for each extraction 

consisting 1 µL of sample. The quantification was according to the integrated peak 

areas of the chromatogram. The amount of each fatty acid (in % total fatty acid) was 

inferred from the standard curves based on the peak area. 

 

3.3.3.6 Determination of Protein Content 

Bradford (1976) method used to determine the protein content of algal cells. For the 

protein extraction, 50 mL of each replicate was filtered on Whatman GF/C, 0.45 µm. 

The filtered samples were mashed in a hand homogenizer in 6 mL of NaOH (0.5 M) 

and transferred to plastic centrifuge tubes. The mashed samples were incubated at 80 ℃ 

for the duration of 20 min in a water bath. The samples were then centrifuged for 10 

min at 3,000 rpm. The supernatants were removed to a screw-capped test tube while the 

extraction was repeated by addition of another 6 mL of NaOH. The supernatants were 
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pooled together and made up to 10 mL. Then protein assay was done using aliquots of 

100 µL.  

 

Table 3.2: Protein Standard Preparation 

Concentration (µg) 0 10 20 30 40 50 60 70 80 90 100 

BSA (mL) 0 1 2 3 4 5 6 7 8 9 10 

dH2O (mL) 10 9 8 7 6 5 4 3 2 1 0 

 

 

Here, 100 µL aliquots of each concentration were added to 3 mL of protein reagents. 

The samples were then incubated for 30 minutes before reading the absorbance at 595 

nm (OD595) using Shimadzu UV-vis spectrophotometer. Then, a standard curve of 

Absorbance against BSA concentration was plotted using prepared standard dilutions 

according to table 3.2.  

 

3.3.3.7  Determination of Carbohydrate Content  

Carbohydrate extraction was conducted according to Dubois’s (1956) method. 50 

mL of each replicate was filtered on Whatman GF/C (0.45 µm) filter paper. The filtered 

samples were mashed in a hand homogenizer in 6 mL of HCl (2 M) and transferred to 

plastic centrifuge tubes. The homogenized samples were incubated in a water bath at 80 

C for 1 h. Then, were centrifuged at 3,000 rpm for 10 min and the supernatants were 

removed to new clean screw-capped test tubes while the extraction was repeated by the 

adding another 6 mL of HCl. The supernatants were pooled together to make up a total 

volume of 10 mL. Aliquots of 0.5 mL were pipetted into glass test tubes and 1.5 mL of 

distilled water was added followed by the addition of 0.5 mL of newly prepared phenol 
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solution via the phenol-sulphuric acid method as defined by Kochert (1978). Next, 5 

mL of concentrated H2SO4 (95.5% v/v) was added and vortex using low speed. After 

incubation for 30 minutes, the optical density was measured at 485 nm (OD485). The 

exact amounts of carbohydrates were extrapolated from the standard curve which was 

prepared according to table 3.3. 

 

Table 3.3: Carbohydrate Standard Preparation 

Concentration 

(mg/mL) 

0 5 10 15 20 25 30 35 40 45 50 

Glucose (mL) 0 1 2 3 4 5 6 7 8 9 10 

dH2O (mL) 10 9 8 7 6 5 4 3 2 1 0 

 

For carbohydrate standard, a sequence of glucose solution was prepared from the 

stock solution. 100 µL of aliquots from each concentration was transferred into glass 

test tubes. 1.9 mL of distilled water was added to the tubes followed by the addition of 

100 µL of 100% aqueous phenol. Lastly, 5 mL of concentrated sulphuric acid was 

gently added to the tubes. The samples were mixed by vortex until they homogenized, 

and incubated for 30 minutes. The absorbance was taken at 485 nm and a standard 

graph of absorbance versus glucose concentration was extrapolated. 

 

3.3.4 Detection of Reactive Oxygen Species (ROS) 

To determine the ROS level, the oxidant-sensing probe 2',7'-

dichlorodihydrofluorescein diacetate (DCFH-DA) purchased from Sigma Aldrich and 

was used as per the method described by Rastogi et al., (2010). The 10 mM stock 

solution was prepared by dissolving the powder into Dimethyl Sulfoxide (DMSO). 
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Then, a 2,000 µM working solution was used for the measurement. Samples were 

centrifuged at 10,000 rpm for 10 mins, washed thrice with Prov medium to remove 

extracellular ROS, then re-suspended in 1 mL Prov medium, and finally, 10 µL of 10 

mM DCFH-DA was introduced. The cells were incubated at 37 ºC for 15 mins in the 

dark, then centrifuged and washed with the same method in order to remove 

extracellular DCFH-DA. Finally, the fluorescence intensity of the DCF compound was 

measured using a microplate reader at excitation/emission wavelength 488/525 nm and 

was directly correlated to the concentration of intracellular ROS by normalizing it to the 

OD. 

 

3.3.5 Gene Expression Assay 

3.3.5.1  RNA extraction 

The RNA extraction protocol was obtained from a recently optimized protocol by 

Poong et al. (2017). The consumables used for RNA extraction were pre-treated with 

0.1% diethyl pyrocarbonate and autoclaved for 45 minutes. All RNA extractions were 

performed in triplicate using ~300 mg fresh weight. The cells were centrifuged at 4500 

g for 7 min at 4 C. RNA was obtained by elution in 50 μL of RNase-free water 

(Invitrogen, USA), then after assessing their quality and quantity were stored at −80 C. 

This method utilizes the standard TRIzol method plus, with an additional 1.2 M NaCl 

precipitation.  

The cells were homogenized with a mini pestle mixer (Kimble Chase, Vineland, NJ, 

USA) after the addition of 1 mL TRIzol reagent. They were simultaneously flash frozen 

with liquid nitrogen in a pre-chilled mortar and grinded with a pestle mixer, followed by 

continual grinding after the addition of 1 mL TRIzol reagent to break the cells and 

extract RNA more efficiently. Caution was taken not to allow cells to thaw before 
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TRIzol was added into the tube. As the frozen TRIzol-cell mixture started to melt, the 

homogenization was continued. Then, the homogenized mixture was centrifuged at 

12,000 g for 15 min at 4 C. Following that, the upper layer was removed to a new pre-

chilled centrifuge tube and 200 µL of chloroform was added and left at room 

temperature for 5 minutes. It was then centrifuged at 12,000 g for 15 minutes at 4 C. In 

the next step, which is the upper aqueous phase, one volume (500 μL) of ice-cold 

isopropanol and a half volume of 1.2 M NaCl (250 μL) were added, mixed well, and 

incubated for an hour at −20 C. The RNA was collected by centrifugation at 12,000 g 

for 15 min at 4 C. At this point, a white colour pellet should be apparent. In order to 

purify the RNA, the pellet was washed twice with 1 mL 70% ethanol, and then the 

remaining ethanol was evaporated at 55 C for 10 mins in a heating block. At the final 

step, 50 µL of DNase free water was added to dissolve the pellet at 55 C using a 

heating block.  

 

3.3.5.2  RNA Purification and quantification 

In order to purify the extracted RNA and remove any existing genomic DNA 

(gDNA), the TURBO DNA-free™ Kit (Ambion, Cat. No. AM1907, Lithuania) was 

used for each RNA extract. Briefly, 5 µL of TURBO DNase buffer was added to the 50 

µL of RNA solution and incubated at 37 ºC for 30 mins to break down existing genomic 

DNA. Next, 5 µL of DNase inactivation reagent was added and kept at room 

temperature for 5 mins to inactivate reagents, subsequently, the added reagent was 

removed using centrifugation. The procedure is detailed in Figure 3.4. 
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Figure 3.4: Summary of genomic DNA removal from RNA isolate.  

 

NanoDrop Spectrophotometers (NDS) 2000c was used to assess the absorption 

of RNA sample at several wavelengths, such as 260/280 and 260/230 ratios, which are 

important indicators of RNA quality and concentration. 

 

3.3.5.3  cDNA Synthesis 

The cDNA synthesis was performed with 3200 ng of RNA using the High Capacity 

RNA-to-cDNA kit (Applied Biosystems, Cat. No. 4387406, USA). The total volume of 

35 µL reactions was made by adding 16 µL reverse transcriptase buffer and 17.25 µL of 

RNA sample, then 1.75 µL reverse transcriptase enzyme was added. The reaction tube 

was mixed, then spun down and placed in the thermal cycler set at parameters, as per 

the manufacturer protocol (Table 3.4). 

 

• Add 5 µL 10X TURBO DNase Buffer and 1µL 
TURBO DNase to RNA, and mix gently 

Add DNase digestion Reagents 

• Incubate at 37 C  for 20-30 mins 

Incubate   

• Add resuspended DNase inactivation reagent (5 µL) 

Add DNase inactivation Reagent 

• Incubate 5 min at room temperature, mixing 
occasionally 

Incubate and mix 

• Centrifuge at 10,000 g for 1.5 in and transfer the 
RNA to a fresh tube 

Centrifuge and transfer RNA 
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Table 3.4: Thermal cycler set up for cDNA synthesis. 
 

 

 

 

 

3.3.5.4 Primer Design and Validation  

To obtain the primer sequence for the photosynthetic genes and gene related to fatty 

acid synthesis which are responding to heat stress, literature was searched, then 

accordingly the reported corresponding primers were tested (all tested primers are 

shown in Appendix C). Out of the reported primers, only the primers for rbcL and SAD 

were able to amplify the corresponding genes. For the rest of the genes (H3, psbC, 

psaB, psbA, accD and FAD3) primers were designed. The gene encoding the protein of 

interest obtained then the gene was searched among Chlorella strain sequences reported 

in National Center for Biotechnology Information (NCBI) database. The mRNA 

sequences of the genes of interest obtained from NCBI were used to do multiple 

sequence alignment (MSA) using ClustalW2 (www.ebi.ac.uk/). From MSA result the 

conserved regions were highlighted, subsequently from the highlighted region, the 

primers were designed using IDT online tool (http://sg.idtdna.com/calc/analyzer) based 

on the criteria such as; a melting temperature (Tm) in the range of 55 °C to 65 °C, 

absence of dimerization capability, the product size between 70 to 200bp, absence of 

significant hairpin formation, lack of secondary priming sites, low to moderate specific 

binding at the 3' end (avoid high GC content to prevent mispriming) the best primers 

were selected. The example of conserved regions of the selected genes where primers 

were chosen was highlighted (Appendix D). The housekeeping gene, histone protein 

subunit (H3) was used for data normalization. At least three technical repeats per 

Parameters  Step1 Step 2 Step 3 

Temperature 37 C 95 C 4 C 

Time 60 min 5 min As required 
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biological repeat were analysed. The following genes were amplified: psaB, psbC, rbcL, 

psbA, accD, FAD3 and SAD. Initially, primers were tested by performing conventional 

PCR, and then the PCR product was run in 3% agarose gel for 35 minutes (Appendix 

E). PCR amplification was performed using i-Taq Plus DNA polymerase (iNtRON 

Biotechnology). To run PCR an initial DNA denaturation step at 94 °C for 2 min was 

followed by 35 amplification cycles (0:20 melting at 94 °C, 0:20 annealing at 60 °C, 

0:30 extension at 68 °C). All primers pairs were tested for dimer formation and the PCR 

products were sent for sequencing for the validation (the result of sequencing for each 

primer is presented in Appendix F) before using them with the actual samples. The final 

list of primers used in this study is presented in Table 3.5. 

 

Table 3.5: List of genes and primers used for RT-qPCR amplification. 

Gene 
name 

Primer sequence Function Amplicon 
size 

Ref. 

H3  F: GAGATCCGCAAGTACCAGAAG 
R: GGTCTTGAAGTCCTGGGC  

Endogenous 
control  

93bp This study 

psaB F: GCTGGTCAATCTTTGGCTTC 
R: AAAGTCTCCGGTCCGATGGT 

encodes for 
the PSI  

314bp Xiong et al. 
(2014). 

psbC F: CTATGCGTTTCTGGGATTTCCGTG 
R: GCGTTAATTTCAGTTGCTACACCA 

A component 
of PSII. 

184bp This study 

psbA F: GGTCCTACCAACTTATCGTTTG 
R: GGACGCATACCTAAACGGAAAGA 

Encodes for 
the D1 protein 

94bp This study 

rbcL F: ATACCGTGTGGAGGACCTTG 
R: AGCCAGTTCCAGGTGAAGAA 

Carbon 
fixation 

235bp Wan et al., 
2014. 

FAD3 F:TGTGGCTGGACGTGGTGACCTACCT 
R: TGAAGATGCCGTAGTCGCGGTC 

Omega-3 
biosynthesis  

137bp This study 

SAD F: AGTTCTTCAGGCTTGATCCTG  
R: TCGTTGAACAGGTTCCTGCC 

First step of 
desaturation  

136bp Jusoh, et 
al., 2015 

accD F: TTAGTTTGTGCTTCTGGTGG 
R: AGCACAATTTTGATGAACATG 

fatty acid 
synthesis 
regulation 

102bp This study 
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3.3.5.5  Performing RT-qPCR  

The PCR reaction was prepared according to PowerUP SYBR® Green Master Mix 

(Applied Biosystems Cat. No. A25776, USA) guideline. The total volume of 10 µl was 

prepared by adding 5 µl PowerUP SYBR® Green Master Mix (Applied Biosystems 

Cat. No. A25776, USA), with 4 µl forward and reverse primers (0.5 µM primer final 

concentration), and 1 µl cDNA sample. The primers stock was prepared based on the 

conventional protocol by standardising the concentration to 100 ng/ µl. No template 

control (NTC) was prepared using all of the reaction components, except samples. Real-

time qPCR (RT-qPCR) was performed on an ABI 7500 Fast (Applied Biosystems, 

USA), and the following cycling steps were set: initial Uracil-DNA Glycosylase (UDG) 

activation at 50 °C  for 2 mins and dual-lock DNA polymerase at 95 °C for 2 mins, 

followed by 40 cycles with 15 secs 95 °C, 60 secs 60 °C (Table 3.6). The data was 

collected at the extension step (60 °C). In order to obtain the melting curve, right after 

PCR amplification, the samples were heated from 60 to 95 °C in a 20 min gradient 

(Table 3.7).  

 

Table 3.6: RT-qPCR cycling condition. 

Steps Temperature Duration Cycles 

UDG activation 50 °C 2 minutes Hold 

Dual-Lock DNA polymerase 95 °C 2 minutes Hold 

Denature 95 °C 15 seconds 40 

Anneal/extend 60 °C 1 minutes 
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Table 3.7: Dissociation curve condition (Melt curve stage). 

Step Temperature  Duration  Ramp rate   

1 95 °C 15 sec 1.6 /Second   

2 60 °C 1 minute 1.6 /Second 

3 95 °C 15 seconds 0.15 /Second  

 

3.3.6 Statistical Analyses 

The effects of temperature on photosynthetic parameters, such as Fv/Fm, alpha and 

rETRmax were determined using repeated measures analysis of variance (ANOVA) 

followed by adjusted Bonferroni tests for pair-ways mean comparison. As cultures 

exhibited different initial values of rETRmax, its effects were excluded as a covariate 

using analysis of covariance (ANCOVA). In addition, independent sample t-tests were 

used to compare the ratio of chlorophyll to carotenoid between stress and recovery 

levels. Also, the effect of temperature on the fatty acid profile was analysed using one-

way ANOVA, followed by a comparison of means using a Tukey test. In both analyses, 

the ANOVA assumptions (variance homogeneity, normal distribution) were examined 

using the Levene’s and Kolmogorov-Smirnov tests. All the statistical analyses were 

carried out in SPSS 23.0 (SPSS Inc., Chicago, IL, U.S.A.), and the differences were 

considered significant when P < 0.05. For RT-qPCR analysis, all calculations were done 

using Microsoft Excel. The averages for cycle thresholds (CT) of the H3 (normalizer) 

was calculated for each sample. The ΔCT for each of the time points was subtracted 

from the averaged CT of normalizers to get the ΔΔCT. Using this, the fold change was 

calculated using the equation: 2 -ΔΔCT (Livak and Schmittgen, 2001). Standard 

deviations were calculated using the fold changes for each replicate within the time 

points. Significant differences were determined using p-values from the Excel statistical 

tools. 
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4 CHAPTER 4: RESULTS 

4.1 Growth and Biochemical Characterization of Selected Marine Chlorella 

Strains. 

4.1.1 Growth Study 

4.1.1.1 Optical Density (OD) 

The optical density of the three Chlorella strains were based at OD620 nm. For all of 

the strains, increasing the growth temperature increased the optical density as well, 

however, exceeding those temperature ranges would limit the growth. In Chlorella-Ant, 

growing the cultures at temperatures above the ambient (4 °C) to 28 °C improved 

growth, but further increasing the temperature hinders it. At 33 °C, slight growth was 

observed, but at 35 °C, growth was totally inhibited (Figure. 4.1a). In the temperate 

strain at 25°C, the growth performed is less than the ambient growth (18 °C), but at 28 

°C, its performance was much better. However, at temperatures exceeding 28 °C, the 

growth decreased. Similar to the Antarctic strain, it showed no growth at 35 °C (Figure. 

4.1b). In the tropical strain, the best growth performance was observed when cultures 

were grown at the ambient temperature (28 °C). In this strain, as the temperature 

increased, the growth decreased. It was able to grow at 38 °C, but cultivation at 40 °C 

caused serious damage to the cell, and the culture was gone after few days of cultivation 

(Figure. 4.1c). 
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Figure 4.1: Optical density of Chlorella strains grown at different temperatures from 

day-0 to day-10 of (a) Chlorella-Ant (UMACC 250), (b) Chlorella-Temp (UMACC 

373) and (c) Chlorella-Trop (UMACC 245). Data are presented as a mean ± standard 

division of the mean. 
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Figure 4.1, continued: Optical density of Chlorella strains grown at different 

temperatures from day-0 to day-10 of (a) Chlorella-Ant (UMACC 250), (b) Chlorella-

Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are presented as a 

mean ± standard division of the mean. 

 

4.1.1.2 Chlorophyll-a to Carotenoid Content 

The ratio of chlorophyll to carotenoid of studied Chlorella strains are presented in 

Figure. 4.2. The response of strains toward changing the ratio of chlorophyll to 

carotenoid ratio was different between the strains. For example in Chlorella-Trop 

temperature did not impact on the ratio (Figure. 4.2c), while in Chlorella-Ant the ratio 

decreased at elevated temperature (Figure. 4.2a). In the Antarctic strain, in most of the 

temperatures, the ratio was fluctuating around 2. Although initially in treatment at 28 

°C, the ratio was around 1.5, it increased during cultivation and reached 2.4 on day 10. 

In this strain, growing culture at 33 °C and 35 °C had a negative impact on the ratio and 

caused reduction as it continued to grow (Figure. 4.2a). In the temperate strain, the ratio 

was higher when cultures were grown at 25 °C and 28 °C but at higher temperatures, 
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the ratio slightly declined and remained constant during cultivation time (Figure. 4.2b). 

In the tropical strain, the ratio did not show any trend to temperature change but when it 

was grown at 38 °C the ratio declined as it continued to grow and it reached to 1.1 at 

day 10 (Figure. 4.2c). 

 

 

 

Figure 4.2: Ratio of chlorophyll a to carotenoid of (a) Chlorella-Ant (UMACC 250), 

(b) Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are 

presented as a mean ± standard division of the mean. 
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Figure 4.2, continued: Ratio of chlorophyll a to carotenoid of (a) Chlorella-Ant 

(UMACC 250), (b) Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 

245). Data are presented as a mean ± standard division of the mean. 

 

4.1.1.3 Specific Growth Rate (µ) 

The specific growth rates of three Chlorella strains are presented in Figure 4.3. 

Among the investigated strains, Chlorella-Ant and Chlorella-Trop showed the lowest 

and the highest specific growth rates at their ambient temperatures, respectively. The 

growth rate of Chlorella-Trop gradually declined with increasing temperature from 28 

C to 38 C. Chlorella-Trop was grown at 28 C exhibited the highest growth (µ= 0.670 

Day-1) compared to other temperatures while at 40 C, the growth was completely 

halted. For Chlorella-Temp, the temperature increase from 18 C to 28 C resulted in a 

positive effect on the growth rate, while further increase beyond 28 °C decreased the 

specific growth rate. The highest growth rate was observed at 28 C (µ= 0.569 Day -1), 

while the lowest rate was at 35 C (µ= 0.020 Day -1). Similarly, in Chlorella-Ant, 

temperature increase up to 25 C positively impacted the specific growth rate; however, 
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maximum growth rate was recorded at 25 C (µ= 0.553 Day -1), while the minimum rate 

was recorded at 35 C (µ= 0.111 Day -1). 

 

 

Figure 4.3: The specific growth rate of Chlorella-Ant, Chlorella-Temp, and Chlorella-

Trop under different temperatures. Data represent the mean value of triplicates and error 

bars are standard deviations. Different letters in each strain indicate significant 

differences at P < 0.05. 
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from 45 % to 36 % when the cultures were grown at 28 C and 35 C, respectively 

(Figure. 4.4b). In Chlorella-Trop, the protein content significantly changed due to 

temperature fluctuations. The highest protein content measured at 28 C by 36 %, while 

the lowest occurred when it was grown at the highest temperature (38 C) by 23 % 

(Figure. 4.4c). 

 

 

 

Figure 4.4: Protein content of (a) Chlorella-Ant (UMACC 250), (b) Chlorella-Temp 

(UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are presented as a mean ± 

standard division of the mean. Different letters in each strain indicate significant 

differences at P < 0.05. 
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Figure 4.4, continued: Protein content of (a) Chlorella-Ant (UMACC 250), (b) 

Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are 

presented as a mean ± standard division of the mean. Different letters in each strain 

indicate significant differences at P < 0.05. 

 

4.1.2.2 Carbohydrate Content  

The carbohydrate contents of the three Chlorella strains were generally lower than 

the protein content between 6 − 25 %DW. In Figure 4.5 the carbohydrate contents of 
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temperature treatments significantly by changing its carbohydrate content, however, this 
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content were significant among the studied temperatures. The carbohydrate content 

significantly decreased when it grew at 35 C, while the highest proportion of 
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content due to increasing temperature. The proportion of carbohydrate in the culture 

grown at ambient (28 C) was reported to be 19 % DW, while when it was grown at 38 

C, its percentage increased to 24 % DW (Figure. 4.5c). 

 

 

 

Figure 4.5: Carbohydrate content of (a) Chlorella-Ant (UMACC 250), (b) Chlorella-

Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are presented as a 

mean ± standard division of the mean. Different letters in each strain indicate significant 

differences at P < 0.05. 
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Figure 4.5, continued: Carbohydrate content of (a) Chlorella-Ant (UMACC 250), (b) 

Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are 

presented as a mean ± standard division of the mean. Different letters in each strain 

indicate significant differences at P < 0.05. 

 

4.1.2.3 Lipid content  

In Figure 4.6, the lipid contents of selected strains are presented for different 
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ambient temperature (18 C) by 28 % DW, while the highest lipid content observed in 

Chlorella-Trop when it was grown at a high temperature (38 C). The lipid content in 
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due to temperature (Figure. 4.6a). In the temperate strain, the lipid content increased in 

tandem with the temperature. The lipid content increased from 28 % DW to 40 % DW 

when it was grown at 18 C and 35 C, respectively (Figure. 4.6b). In the tropical strain, 

similar to the temperate strain, it increased in tandem with increasing temperature. The 
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C and 38 C, respectively (Figure. 4.6c). 
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Figure 4.6: Lipid content of (a) Chlorella-Ant (UMACC 250), (b) Chlorella-Temp 

(UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are presented as a mean ± 

standard division of the mean. Different letters in each strain indicate significant 

differences at P < 0.05. 
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Figure 4.6, continued: Lipid content of (a) Chlorella-Ant (UMACC 250), (b) 

Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are 

presented as a mean ± standard division of the mean. Different letters in each strain 

indicate significant differences at P < 0.05. 
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increased significantly (one-way ANOVA, p<0.05) at 25 °C, but decreased at 35 °C. Of 

the three strains, Chlorella-Trop accumulated the greatest amount of PUFA, while 

Chlorella-Ant accumulated a high percentage of SFA at the analyzed temperatures 

(above 73%). Furthermore, in Chlorella-Temp and Chlorella-Trop, no significant 

changes (one-way ANOVA, p>0.05) were observed in the proportions of PUFA when 

exposed to high temperatures (Table 4.1). 

 

Table 4.1: Fatty acid profile of Chlorella-Trop, Chlorella-Temp and Chlorella-Ant 

incubated at three different temperatures. Data are presented as the mean percentage of 

total fatty acids; n=3. Different superscripts within a row indicate a significant 

difference between growth temperatures of each strain (p<0.05). (–) indicates that the 

fatty acid was not detected. 

 Chlorella-Trop Chlorella-Temp Chlorella-Ant 

 28 °C 33 °C 38 °C 18 °C 28 °C 35 °C 4 °C 28 °C 35 °C 

Saturated fatty acids 

C4:0 1.89 0.35 0.96 0.77 1.89 1.01 36.04 19.49 22.98 

C6:0 - - - - - - - - - 

C8:0 3.00 2.47 1.38 0.99 1.85 2.95 1.46 2.05 3.10 

C10:0 6.23 4.32 1.97 2.90 4.02 5.28 2.06 4.50 4.90 

C11:0 1.70 1.15 1.17 0.60 0.63 0.89 0.88 0.46 0.91 

C12:0 1.73 2.50 1.21 1.10 1.16 0.69 0.15 0.96 0.23 

C13:0 1.53 1.64 0.45 1.00 1.20 1.00 0.22 1.31 0.03 

C14:0 0.99 0.76 0.85 0.61 0.70 0.93 0.68 0.47 0.85 

C15:0 0.30 0.23 0.19 0.21 0.22 0.00 0.00 0.00 0.04 

C16:0 35.87 33.60 38.96 35.29 47.97 50.57 35.85 36.23 45.84 

C18:0 8.29 6.59 9.18 4.55 8.66 8.69 17.77 7.59 19.12 

C23:0 0.09 0.13 - 0.02 0.02 - - - 0.05 

SUM 61.62±7.5a 53.75±0.8 a 56.30±19.4 a 48.04±5.9 b 68.33±11.2 a 72.01±0.8 a 95.10±5.5 ab 73.05±4.7 b 98.05±1.9 a 

Monounsaturated fatty acids 
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C14:1 0.17 0.20 0.21 0.11 0.03 - - - - 

C15:1 1.63 0.39 0.03 1.91 0.55 - - 0.18 - 

C16:1 6.88 4.97 3.31 2.87 0.82 - - 0.35 - 

C18:1n9c 2.25 1.71 1.29 42.16 15.05 13.70 1.80 8.30 0.67 

C20:1n9 3.56 2.74 2.27 - - - - - - 

C22:1n9 0.10 0.24 0.18 - - - - - 0.09 

SUM   14.60±2.7 a 1  0.25±0.1 b  7.28±1.3 b 4 7.06±5.8 a 16.45±3.6 b  13.70±1.5 b 1.80±1.7 b 8.83±3.9 a 0.76±1.1b 

 

 

4.1.3 Photosynthesis Properties 

4.1.3.1 Maximum Quantum Yield (Fv/Fm) 

The Fv/Fm values of Chlorella-Ant varied slightly between 0.49 and 0.67 at 4 – 28 

°C, indicating a healthy state of the photosynthetic apparatus in the cells. Incubation at 

33 °C and 35 °C negatively influenced the Fv/Fm, lowering it to under 0.4 by the end of 

the experiments. Further increase in temperature (at 38 °C) decreased the Fv/Fm from 

0.680 to under 0.1 within four days of incubation (Figure. 4.7a). After seven days of 

incubation, Fv/Fm at 33 °C and 35 °C showed a significantly different trend compared 

with incubations under 28 °C (repeated-measure ANOVA, P<0.05). Despite the 

significant decline of Fv/Fm at 33 °C and 35 °C from day seven (repeated-measure 

ANOVA, P<0.05), they reached similar Fv/Fm values on day ten. The Fv/Fm values of 

Chlorella-Temp fluctuated between 0.510 – 0.670 at 18 °C to 33 °C, showing an active 

photosynthetic state, while incubation at 35 °C adversely affected the Fv/Fm value with 

Polyunsaturated fatty acids 

C18:2n6t - - 1.68 0.99 1.97 4.38 0.87 2.99 0.20 

C18:2n6    23.78     36.00 24.39 3.92 13.26 9.91 2.23 15.14 0.99 

C20:2 - - 0.20 - - - - - - 

C20:3n3 - - 10.15 - - - - - - 

SUM   23.78±4.9 a 36.00±0.9 a 36.42±18.9 a 4.90±0.6 a 15.22±13.8 a 14.29±0.7 a 3.10±3.9 ab 18.13±10.8 a  1.19±0.8 b 
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a decrease to less than 0.2 within 8 days of incubation. Moreover, a further increase in 

temperature (at 38 °C) decreased the Fv/Fm to less than 0.2 after two days of incubation 

(Figure. 4.7b). The Fv/Fm of Chlorella-Temp showed a marked decline from day four at 

33 °C and from day two at 35 °C, and the Fv/Fm was significantly different (repeated-

measure ANOVA, P<0.05) at the end of treatment. The maximum quantum yield 

(Fv/Fm) of Chlorella-Trop incubated at 28 °C and 33 °C fluctuated around 0.5-0.7 

displaying the natural variability of Fv/Fm in the Chlorella species, while at 35 °C and 

38 °C, the Fv/Fm, dropped to 0.36 at the end of the treatment. As expected, a further 

increase in temperature (at 40 °C) reduced the Fv/Fm to less than 0.1 on day three 

(Figure. 4.7c). For Chlorella-Trop, the Fv/Fm at 33 °C to 40 °C were significantly 

different (repeated-measure ANOVA, P>0.05) compared to the control (28 °C) from 

day seven onwards, with 35 °C and 38 °C showing similar patterns of inhibition. 

 

 

Figure 4.7: Maximum quantum yield (Fv/Fm) of (a) Chlorella-Ant (UMACC 250), (b) 

Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are 

presented as a mean ± standard division of the mean. 
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Figure 4.7, continued: Maximum quantum yield (Fv/Fm) of (a) Chlorella-Ant 

(UMACC 250), (b) Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 

245). Data are presented as a mean ± standard division of the mean. 
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4.1.3.2 Photosynthetic Efficiency (α). 

Incubation of Chlorella-Ant at 4 – 25 °C positively influenced the α value, while at 

28 °C, the α value did not increase and only fluctuated between 0.341 and 0.485. In 

contrast, additional temperature increases (33 °C and 35 °C) adversely impacted the α 

value, and it declined significantly (repeated-measure ANOVA, P<0.05) after day 

seven. As can be expected at 38 °C, the α value decreased abruptly to under 0.1 in a 

short amount of time (Figure. 4.8a). Incubation of Chlorella-Temp at 18 °C to 33 °C 

positively influenced the α value, while at 25 °C, α remained quite similar. At 35 °C, 

the α value increased for the first two days, after which it dropped significantly (Figure. 

4.8b). The α value of Chlorella-Trop at 28 °C was the highest (0.582) on day 1, 

thereafter it reduced and fluctuated between 0.409 – 0.440. Chlorella-Trop at 33 °C had 

a higher value of α, with a maximum of 0.759 at day four, and although α decreased 

slightly at day five, it remained higher compared to other temperatures. Incubation at 35 

°C increased the α value in the first two days, but the effect was not constant, and it 

began to decrease gradually from day three. In contrast, incubation at 38 °C did not 

increase the α value, and from day two, it suffered a precipitous decline. As expected, 

incubation at 40 °C significantly reduced the α value in a short period of time (Figure. 

4.8c).  
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Figure 4.8: Photosynthetic efficiency (α) of (a) Chlorella-Ant (UMACC 250), (b) 

Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are 

presented as a mean ± standard division of the mean. 
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Figure 4.8, continued: Photosynthetic efficiency (α) of (a) Chlorella-Ant (UMACC 

250), (b) Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data 

are presented as a mean ± standard division of the mean. 

 

4.1.3.3 rETRmax 
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showed an extreme reduction after several days of incubation (Figure. 4.9c). 
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Figure 4.9: rETRmax of (a) Chlorella-Ant (UMACC 250), (b) Chlorella-Temp 

(UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are presented as mean ± 

standard division of the mean. 
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Figure 4.9, continued: rETRmax of (a) Chlorella-Ant (UMACC 250), (b) Chlorella-

Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245). Data are presented as 

mean ± standard division of the mean. 
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temperature to determine their capacity for recovery. The cultures were regarded as 

recovered when the Fv/Fm regained its value of above 0.5. 

 

4.2.1 Growth and Photosynthesis 

After incubation at a temperature that caused a severe reduction in Fv/Fm (stress-

inducing temperatures), the cultures were returned to ambient temperatures for 

recovery. Generally, the stressed cells exhibited photosynthetic activity after being 

transferred to control temperatures, and the period of recovery varies with strain and 

condition. The Chlorella-Trop exhibited quick recovery in both growth and 

photosynthesis. In contrast, the Fv/Fm of Chlorella-Ant continuously decreased even 

after the cultures were returned to its respective ambient temperature. The incubation of 

Chlorella-Ant at the stress-inducing temperature of (38 °C) reduced the Fv/Fm from 

0.649 to ~0.4, 0.2 and 0.0, in 48, 72, and 120 hours, respectively, while their 

photosynthetic recovery took 96, 144, and more than 196 hours, individually (Figure. 

4.10a). In Chlorella-Ant, a slight increase in biomass was observed when it was 

transferred to ambient temperature after enduring a set lag time (Fig 4.11a). For 

Chlorella-Temp, its incubation at the stress-inducing temperature (38 °C) decreased the 

Fv/Fm value from 0.520 to ~0.4, 0.2, and 0.0, in 6, 24, and 72 hours respectively, with a 

photosynthetic recovery periods of 66, 72, and 168 hours, individually (Figure. 4.10b). 

However, the Chlorella-Temp that recovered from having its Fv/Fm value reduced to 0.0 

was not able to grow even after 168 hours of incubation at its ambient temperature 

(Figure. 4.11b). In Chlorella-Trop, incubation at the stress-inducing temperature (40 

°C) reduced the Fv/Fm from 0.637 to ~0.4, 0.2, and 0.0, in 54, 72, and 192 hours 

respectively, with a photosynthetic (Fv/Fm) recovery periods of 24, 48, and 120 hours, 

respectively (Figure. 4.10c). The recovered cultures from Fv/Fm 0.4 were able to grow, 

while the recovered cells from the other stress levels did not show any significant 
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growth (Figure. 4.11c). The Chlorella-Trop reported increasing growth upon recovery 

from all stress levels (Figure. 4.11c). 

 

 

 

Figure 4.10: Maximum quantum yield (Fv/Fm) of (a) Chlorella-Ant (UMACC 250), 

(b) Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245) during 

stress and recovery. Data are presented as a mean ± standard division of the mean. 
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Figure 4.10, continued: Maximum quantum yield (Fv/Fm) of (a) Chlorella-Ant 

(UMACC 250), (b) Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop 

(UMACC 245) during stress and recovery. Data are presented as a mean ± standard 

division of the mean. 

 

 

Figure 4.11: Optical density (OD) of (a) Chlorella-Ant (UMACC 250), (b) Chlorella-

Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245) during stress and 

recovery. Data are presented as a mean ± standard division of the mean. 
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Figure 4.11, continued: Optical density (OD) of (a) Chlorella-Ant (UMACC 250), (b) 

Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 245) during stress 

and recovery. Data are presented as a mean ± standard division of the mean. 
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recovery (Figure. 4.12b). In Chlorella-Trop, the ratio did not report any significant 

changes (t-test, P>0.05) with increasing exposure time, however, its ratio significantly 

increased (t-test, P<0.05) after recovery from the high-stress levels (Fv/Fm ~0.2 and 0.0) 

(Figure. 4.12c). 

 

 

 

Figure 4.12: Comparison of Chlorophyll-a to the carotenoid ratio of (a) Chlorella-Ant 

(UMACC 250), (b) Chlorella-Temp (UMACC 373) and (c) Chlorella-Trop (UMACC 

245) at different stress level and upon the corresponding recovery. Error bars denote 

standard deviations from triplicate samples. An asterisk (*) refers to the significant 

difference between chlorophyll to carotenoid ratio during stress and recovery. S0.4, 

Fv/Fm ~0.4; S0.2, Fv/Fm ~0.2; S0, Fv/Fm ~0. 
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Figure 4.12, continued: Comparison of Chlorophyll-a to the carotenoid ratio of (a) 

Chlorella-Ant (UMACC 250), (b) Chlorella-Temp (UMACC 373) and (c) Chlorella-

Trop (UMACC 245) at different stress level and upon the corresponding recovery. Error 

bars denote standard deviations from triplicate samples. An asterisk (*) refers to the 

significant difference between chlorophyll to carotenoid ratio during stress and 

recovery. S0.4, Fv/Fm ~0.4; S0.2, Fv/Fm ~0.2; S0, Fv/Fm ~0. 
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In Chlorella-Ant, the expression of psbC during stress increased to a maximum of 24.8-

fold when Fv/Fm decreased to ~0.2, and after being transferred to ambient temperature, 

although the transcript abundance decreased, it remained up-regulated by 6.1-fold. In 

Chlorella-Ant during stress, rbcL transcript abundance decreased to 0.6-fold when 

Fv/Fm declined to ~0.4, but it increased to 1.9-fold due to additional stress (Fv/Fm ∽ 

0.2). However, during recovery, it was unexpectedly down-regulated 0.2-fold (Fig 

4.13). FAD3 transcript abundance increased to ~3-fold during stress, and continued to 

increase (7.6-fold) during recovery. The expression of accD was up-regulated during 

stress and further increased stress, the expression continued to increase. When Fv/Fm 

dropped to ~0.2 it reached a maximum of 18.9 fold, however, it was slightly down-

regulated by 14.1 fold during recovery. The SAD expression was highly affected during 

stress and up-regulated by 11.4 and 66.9-fold when Fv/Fm decreased to ~0.4 and 0.2, 

respectively (Figure. 4.13). 

 

 

Figure 4.13: Transcript abundance of psbA psaB, psbC, rbcL, FAD3, accD and SAD of 

Chlorella-Ant during stress and recovery. Error bars denote standard error from 

triplicate samples. 
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The expression patterns of the selected genes in Chlorella-Temp are presented in 

Figure 4.14. In Chlorella-Temp, the expression of psbA was down-regulated by 0.12 

and 0.77-fold of change when Fv/Fm decreased to ~0.4 and 0.2, respectively. After being 

transferred to its ambient temperature, the expression was considerably up-regulated 

and reached to a fold change of 7. In the Chlorella-Temp, the expression psaB was 

inhibited during stress, and reached ~0.15-fold, however, after being transferred to its 

ambient temperature, it was up-regulated to 3.4-fold. In Chlorella-Temp, the expression 

of psbC was inhibited during stress, however, during recovery, the expression of psbC 

increased slightly, but remained lower than its control counterpart. In Chlorella-Temp, 

during stress, rbcL expression was down-regulated by 0.2 and 0.6-fold when Fv/Fm 

declined to ~0.4 and 0.2, respectively; while during recovery, it was up-regulated by 

15.6-fold. The expression of FAD3 was inhibited during stress and was down-regulated 

by 0.6 and 0.4-fold when Fv/Fm declined to ~0.4 and 0.2, respectively. The transcript 

abundance of accD was initially inhibited when Fv/Fm decreased to 0.4, but it began to 

increase due to further stress (Fv/Fm ∽0.2), and the expression continued to increase 

even when subjected to the ambient temperature and reached to a maximum of 19.6-

fold. The expression of SAD showed a similar pattern to accD, but it reached its 

maximum of 2.7-fold during recovery (Figure. 4.14). 
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Figure 4.14: Transcript abundance of psbA psaB, psbC, rbcL, FAD3, accD and SAD of 

Chlorella-Temp during stress and recovery. Error bars denote standard error from 

triplicate samples. 
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an increase in temperature. However, it recovered to its normal level during recovery. 

The expression of SAD was unaffected when Fv/Fm decreased to ~0.4, while additional 

stress caused a reduction in the SAD transcripts, where the expression did not increase 

during recovery (Figure. 4.15). 

 

 

Figure 4.15: Transcript abundance of psbA psaB, psbC, rbcL, FAD3, accD and SAD 

of Chlorella-Trop during stress and recovery. Error bars denote standard error from 

triplicate samples. 
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fold when the culture was recovered (Figure. 4.16a). In Chlorella-Temp, by exposing 

culture to heat, ROS level reduced to 0.30-fold in the first 2 hours of exposure. Further 

stress (Fv/Fm ~0.4) slightly increased it to 0.38-fold and increasing this to (Fv/Fm ~0.2) 

resulted in 0.31-fold. During recovery, it again decreased to 0.19-fold (Figure. 4.16b). 

In Chlorella-Trop, ROS level notably changed after exposure to heat stress and 

decreased to 0.25-fold in the first 2 hours, and remained roughly at the same level 

during stress. Also, during recovery, the ROS level decreased 0.16-fold (Figure. 4.16b).  

 

 

Figure 4.16: ROS level of (a) Chlorella-Trop, (b) Chlorella-Temp and (c) Chlorella-

Ant at different stress level and upon recovery. Error bars denote standard deviations 

from triplicate samples. 
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Figure 4.16, continued: ROS level of (a) Chlorella-Trop, (b) Chlorella-Temp and (c) 

Chlorella-Ant at different stress level and upon recovery. Error bars denote standard 

deviations from triplicate samples. 
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5 CHAPTER 5: DISCUSSION 

5.1 Experiment 1: Growth, Photosynthetic Performance and Biochemical 

Compositions of the Chlorella Strains 

5.1.1 Growth study 

Microalgae often show physiological acclimations and/or adaptations to cope with 

changes in their respective natural environments (Hodaifa, Martínez, & Sánchez, 2010). 

Among the approaches for modelling the relationship between the temperature and 

growth rate, the temperature coefficient Q10 has been the most commonly used 

(Ahlgren, 1987). The temperature coefficient Q10 (growth rate increase by a 10 °C rise 

in temperature) is often parameterized using the Arrhenius function and is expected to 

present a value near 2. In other words, for each 10 °C increase, the growth is expected 

to double until unfavourable temperatures are reached (Ras et al., 2013). Generally, 

beyond the optimum temperature, the growth rate begins to decrease, as enzymes are 

denatured, until it stops completely (Robert et al., 2002). Meanwhile, in low-

temperature conditions, the growth rate decreases due to the reduced enzyme activity in 

metabolic processes such as glycolysis and the Krebs cycle (Jiang and Chen, 2000). 

Also, at low temperatures, photosynthetic activity is decreased (Öquist, 1983) while the 

energy requirement for protective metabolism increases (Mock and Valentin, 2004), 

these together leading to a lower growth rate. In this study, the specific growth rate of 

Chlorella-Ant increased from 0.266 to 0.553 day−1 with increasing temperature from 13 

to 25 °C, showing a two-fold increase in growth rate by an approximately 10 °C 

increase. Likewise, the specific growth rate of Chlorella-Temp doubled (increased from 

0.270 to 0.569 day−1) by increasing the temperature from 18 to 28 °C. This indicates 

that both strains fitted the Arrhenius equation whereby their growth approximately 

doubled with a 10 °C rise in temperature. Chlorella-Ant and Chlorella-Temp showed 
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similar trends in terms of their growth response to temperature (Figure. 4.3). 

Surprisingly, Chlorella-Ant was able to tolerate a broad range of temperature, from 4 to 

38 °C, showing the highest growth rate at 25 °C. This suggests that this strain is more 

psychotrophic rather than psychrophilic. Generally, it is believed that Antarctic algae 

are mostly psychrophilic (being able to grow at 0 C or less but cannot grow at 

temperatures above 15 C) (Smith et al., 1994). However, in some studies, Antarctic 

algae showed growth over a wide range of temperature and were able to survive even at 

30 C (Seaburg et al., 1981; Tang et al., 1997; Teoh, 2004; Hu, 2012). These studies 

suggested that the Antarctic algae are psychrotrophs rather than psychrophilic. 

Chlorella-Ant exhibited growth patterns similar to Chlorella-Temp. For example, both 

showed an optimum temperature range from 25 to 28 C, and also shared a similar 

upper limit temperature range (35 to 38 C). It can be suggested that Chlorella-Ant 

might have originated from the temperate region possibly by natural dispersal or human 

activity (Broady and Smith, 1994) since it is expected that microalgae demonstrate 

physiological responses that are consistent with their respective climate zones (source 

location) (Montes-Hugo et al., 2009). Our studied Chlorella strains were unable to 

tolerate temperatures above 40 C, which agreed with a previous study involving 72 

Chlorella strains that suggested an upper limit of temperature for Chlorella species to 

be between 38 and 42 C (Kessler, 1985). This implies that the temperature range of 38 

to 40 C is the upper limit for Chlorella strains. 

 

5.1.2 Photosynthetic Performance 

Stresses caused by environmental factors are often manifested in changes to 

physiological parameters such as Fv/Fm, α and ETRmax. Algae exhibit multiple 

photosynthetic responses when exposed to temperatures above and under their optimal 
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temperatures. Fv/Fm is a measure of the efficiency with which photons absorbed by PSII 

are used in photochemistry instead of being quenched (Maxwell and Johnson, 2000). 

Thus, a decrease in Fv/Fm is often a reflection of reduced PSII activity (Ralph and 

Gademann, 2005). However, it must be recognized that a reduction in Fv/Fm is not 

necessarily associated with damage to PSII, considering that stressed cells might initiate 

defence mechanisms like non-photochemical fluorescence quenching (NPQ), causing 

Fv/Fm to decline (Baker, 2008). Many environmental factors, such as temperature, light, 

and nutrient status, will directly or indirectly affect PSII (Pereira et al., 2000; 

Murkowski, 2001; Cao et al., 2016). The reduction in Fv/Fm ratio does, however, 

suggest a loss in the efficiency of primary photochemistry of stressed cells. Generally, 

in this study, the Fv/Fm values at ambient temperature were lower for Chlorella-Temp 

and Chlorella-Trop than for Chlorella-Ant, indicating that Chlorella-Ant was more 

efficient at processing absorbed light for photosynthesis (containing more reaction 

centres to be open). The α values were roughly similar between the strains at ambient 

temperatures, suggesting similar efficiencies of light harvesting; although it has been 

observed that α may be higher in polar algae (Stamenković and Hanelt, 2013). In 

Chlorella-Ant, rETRmax was considerably higher at ambient temperatures compared to 

other strains, showing strong adaptation of electron transport machinery to the ambient 

temperature. For Chlorella-Trop, as temperature increased up to 33 C, both Fv/Fm and 

α increased, while rETRmax decreased. This also suggests that rETRmax was the most 

sensitive parameter of the RLC. For Chlorella-Temp, temperature increase up to 28 C 

had a positive effect on photosynthesis, but further increase caused inhibition. 

Chlorella-Temp showed higher photosynthetic performance at its ambient temperature 

(18 C) compared to other temperatures, as shown by the higher and more stable α 

value and Fv/Fm. However, temperature increase up to 33 °C increased both the α and 

Fv/Fm to near ambient values. Surprisingly, rETRmax showed a higher value at 28 °C 
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and 33°C than at the ambient temperature (18 °C), indicating enhanced electron flow in 

the electron transport chain of thylakoid to optimize photosynthesis (Nixon and 

Mullineaux, 2001). The effect of temperature on photosynthetic efficiency differed from 

one study to another. For example, in a study of eight species of temperate marine 

microalgae, it was reported that the α value varied between species, and the species 

isolated from the same growth environment showed different photosynthetic 

efficiencies when exposed to a series of temperatures (Salleh and McMinn, 2011). The 

reduction in the capacity of photosynthesis (rETRmax) at high temperatures was seen in 

all strains. The rETRmax is greatly inhibited at high temperatures, proving its 

sensitivity to high temperatures. More importantly, photosynthetic capacity is 

considered to be temperature dependent in marine microalgae (Meiners et al., 2009). A 

similar pattern is observed in a temperate microalgae community, with rETRmax 

increasing alongside temperature, up to an optimal value of (20 °C), then declining as 

per the enzymes that control the RUBISCO activity (i.e., RUBISCO activase), while 

others involved in carbon fixation were deactivated (Macintyre, 1997). Chlorella has 

been a target for mass cultivation due to its wide range biotechnological applications 

(Mata et al., 2010). However, a major issue in establishing a new flourishing, 

microalgae-based, agrobiotechnology lies in achieving large-scale biomass under 

outdoor conditions (Varshney et al., 2015). Nevertheless, mass cultivation poses several 

limitations including difficulty in controlling culture temperature (Ugwu et al.,  2008). 

Thus, the ability of Chlorella strains to grow at a broad range of temperature is an 

important consideration in mass culture. In our study, Chlorella-Ant, Chlorella-Temp 

and Chlorella-Trop were able to grow in a wide range of temperature from 4 to 38 °C 

and showed photosynthesis efficiency. This suggests a potential for the studied strains 

to be cultivated in various climatic regions. 
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5.1.3 Biochemical Compositions  

Due to the fact that microalgae are the primary producers in the food chain, they 

were extensively studied, especially in the context of its biochemical composition. 

Changes to the optimal temperature were accompanied by the physiological 

modifications in the cell (Show et al., 2017). There are no steady trends in the 

proximate biochemical composition as a function of temperature (Teoh et al., 2010). It 

is known that the response of biochemical composition to temperature variations is 

more likely to be species-specific. For example, de Castro Araújo and Garcia (2005) 

reported carbohydrate content and lipid of diatom Chaetoceros cf. wighamii to be 

higher at lower temperatures (20 and 25 °C) compared to a higher temperature (30 °C), 

while protein content was not influenced. An increase in temperature from 20 °C to 25 

°C practically doubled the lipid content of Nannochloropsis oculata, while an increase 

from 25 °C to 30 °C resulted in a reduction of the lipid content of Chlorella vulgaris 

from 14.71 to 5.90 % (Converti et al., 2009). A similar trend was reported on the 

temperature effect on lipid accumulation in Scenedesmus sp. Temperature reductions 

from 25 °C to 20 °C increased the lipid content by 1.7-fold, with only 8 % decreases in 

the growth rate (Li et al., 2011). Chlorella isolated from the Arctic had been shown to 

accumulate protein and lipids under lower temperatures (<15°C) (Cao et al., 2016).  

The response of different Chlorella strains is based on its respective protein contents. 

In Chlorella-Ant, the protein contents did not significantly change due to increased 

temperatures, but it reported a slight fluctuation of ~46 %. This suggests that this strain 

synthesised a new protein to acclimate to the high temperature. In Chlorella-Temp, a 

decreasing trend due to increasing temperature was observed, which means that 

temperature had a negative impact on protein synthesis. In Chlorella-Trop, the protein 

content changed in tandem with temperature, with an observed decreasing response to 
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temperate strain. This suggests that both strains partially decreased their protein 

synthesis when the temperature increased to avoid protein aggregation. 

The studied strains responded to temperature treatments significantly due to 

changing carbohydrate content. However, this response differs from the studied strains, 

suggesting the important role of high temperature in carbohydrate acclimation. In the 

Antarctic strain, changes in carbohydrate content were significant. In the temperate 

strain, a decreasing trend in carbohydrate percentage was observed due to increasing 

temperature. This suggests that the temperate strain tend to utilize carbohydrate as an 

energy source when the temperature increases. In the tropical strain, the trend was 

opposite of the temperate strain, where it reported an increase in carbohydrate content 

due to increasing temperature. This seems to suggest that tropical strain accumulates 

carbohydrate when experiencing high temperature, probably as a mechanism to lower 

energy consumption. Generally, no significant changes in lipid content were observed 

in all studied strains. In the Antarctic strain, no trend was observed due to temperature 

changes in the lipid content. Changes may be reflected in the composition of lipids, as 

the cells may accumulate higher levels of saturated/unsaturated fatty acids. In both 

temperate and tropical strains, the lipid content reported increasing trend due to 

increasing temperature, indicating that lipid might be the reserve energy source instead 

of carbohydrate when exposed to high temperature. 

The ability of algae to acclimate/adapt to changing thermal environment is also 

reflected in the distinct changes to the lipids in their membrane (Thompson, 1996). As 

mentioned earlier, temperature affects membrane fluidity by altering the saturation level 

of membrane fatty acids. In our study, the Antarctic strain showed a high proportion of 

saturated fatty acids, which is consistent with suggestions that algae acclimate to higher 

temperatures by using SFA to modulate membrane fluidity (Hu et al., 2008; Yamori et 

al., 2014), which is also in agreement with several other studies (Horváth et al., 2012; 
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Olofsson et al., 2012; Luo et al., 2015). However, SFAs were also found to increase 

under nitrogen limitation and UVB radiation, suggesting SFA accumulation as a 

common adaptation method during stressful conditions (Platt et al., 1980; Zheng et al., 

2014). Increases in SFA have been observed in UV stressed cells and this has been 

suggested as an adaptation strategy under stress because these fatty acids can serve as 

an energy source under such conditions (Wong et al., 2004). SFAs are more efficient 

energy storage compounds comparing to PUFAs as they have a more compact structure 

and are more resistant to oxidative damage (Holman, 1954). Usually, microalgae under 

stress tend to divert carbon into storage, particularly into triacylglycerols (TAGs) 

(BenMoussa-Dahmen et al., 2016)  due to a limited storage capacity for carbohydrate 

(Yang et al., 2016). PUFAs play several important roles in cellular and tissue 

metabolism, such as regulating membrane fluidity and electron transport as well as the 

thermal adaptation (Cardozo et al., 2007). For instance, lipids function in the stability of 

membrane-bound proteins (Pick et al., 1985) such as PSII (Murata, et al., 1990), and 

Los et al., (2013) suggest that unsaturation of membrane lipid fatty acids protects the 

PSII complex from photoinhibition at low temperatures by enhancing the recovery from 

the photoinhibitory damage. Our results indicated that the percentage of PUFA 

decreased in stressful temperatures, and increased at optimal temperatures, supporting 

Chlorella’s potential capability for producing fatty acids (PUFAs) for the nutraceutical 

industry at optimum temperatures. A decrease in PUFAs has also been reported in 

cultures exposed to UV stress (Liang et al., 2006). In terms of ecological implications, a 

decrease in PUFAs could influence the nutritional quality of the microalgae for 

consumption by organisms at higher trophic levels (Wong et al., 2007). 
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5.2 Experiment 2: Stress and Recovery Treatments 

The selected strains were able to recover their respective photosynthetic activities 

when transferred to their respective normal ambient temperatures from different stress 

levels. However, the photosynthetic recovery period and ability to regain growth varied. 

Chlorella-Trop was able to regain and retain the ability to grow from various stress 

levels, which is indicative of the high recovery capacity of Chlorella-Trop. Chlorella-

Temp and Chlorella-Ant were able to grow after being transferred from (Fv/Fm ~0.4 and 

0.2), while growth was not observed when recovered from the highest stress level 

(Fv/Fm ~0). The latter outlined the magnitude of damage in the proliferation ability, 

despite the full recovery of the photosynthetic machinery. As discussed earlier, the 

tropical strain reported the fastest recovery from each stress levels, while the Antarctic 

strain reported the slowest recovery. Chlorophyll to the carotenoid ratio in the tropical 

strain did not change significantly during stress but increased during recovery. 

Contrarily, the ratio decreased in the Antarctic strain and was not fully restored during 

recovery. This can be due to the fact that metabolisms in the Antarctic strains are 

slower, which means that it needs more time to repair any damages (Bowden et al., 

2006). There are several target sites for high temperature-induced damage, such as the 

CO2 fixation system, photophosphorylation, and the electron transport chain (Yoshitaka 

et al., 2001). Damage can result from the inhibition of the Calvin cycle, and 

consequently, increases in the reactive oxygen species (ROS) level (Saibo et al., 2008). 

Recent studies in the cyanobacterium Synechocystis revealed that ROS inhibits the de 

novo synthesis of D1 protein (Shunichi Takahashi et al., 2004). In addition, an inverse 

correlation of ROS and D1 protein accumulation was found in Dunaliella tertiolecta 

(Chlorophyta) (Segovia et al., 2015). In their review, Nishiyama and Murata (2014) 

suggested that abiotic stresses act by inhibiting the repair of PSII, rather than 

accelerating the photodamage itself via inhibiting the synthesis of D1 protein. In a study 
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on Antarctic microalgae, it was suggested that the values of Fv/Fm below 0.1 were 

considered a “recovery” threshold for Antarctic microalgae, below which the cells were 

unable to recover (Reeves et al., 2011). In our study, it was observed that all of the 

strains, including the Antarctic strain, were able to recover their photosynthetic activity 

from even the highest stress level (Fv/Fm ~0.0). Although some of the Chlorella-Ant 

cells could not survive stress, those that do were able to recover their photosynthetic 

activity upon recovery. There are many instances in nature whereby the stressed algal 

cells reach the maximum stress level that they can tolerate without triggering 

programmed cell death. In fact, their performance could decline to a certain extent, 

followed by a full recovery (Tzan-Chain and Ban-Dar, 2013). For example, desiccated 

desert green algae can recover high levels of photosynthetic quantum yield after 

rehydration (Gray et al., 2007). Photoinhibited cells are often able to recover to their 

prior photosynthetic capacity levels rapidly after its removal from extreme 

environments (Salleh and McMinn, 2011). The ability of algae to recover from high-

temperature fluctuations is a vital characteristic enabling them to survive, particularly in 

the intertidal ecosystems, where organisms experience substantial variation in 

temperature (Campbell et al., 2006). Understanding species-specific thermal stress is 

important in understanding how temperature changes could lead to changes in the 

Chlorella species’ composition. The ability of photoautotrophs such as Chlorella to 

survive high-temperature fluctuations is ecologically important for primary production 

and marine ecosystem dynamics. Overheating during the day could occur in closed 

system mass cultivation (Endres et al., 2016). Therefore, the selection of algae with 

high recovery capacity from temperature stress is important. 

Apart from the role of carotenoids in the assembly of photosystems, they are also 

photoprotectors in photosynthesis (Fanciullino et al., 2014). In addition, it is known that 

carotenoids, such as those involved in energy dissipation by heat via xanthophyll cycle 
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and quenching of singlet oxygen formed during photo-oxidation, increase stress 

conditions (Thompson, 1996; Demmig-Adams and Adams, 1996; Boussiba, 2000; 

Behera and Choudhury, 2003; Pintó-Marijuan and Munné-Bosch, 2014). In certain 

instances, the chlorophyll to carotenoid ratio has been proposed as a sensitive indicator 

of photooxidative damage (Hendry and Price, 1993), with its ratio decreasing during 

stressful conditions. The stress and recovery experiments reported here also showed 

changes in chlorophyll: carotenoid under heat stress, possibly due to increased levels of 

carotenoids and reduced synthesis of chlorophyll. 

 

5.3 Experiment 3: Gene Expression Studies 

Fv/Fm is a measure of the efficiency of photons absorbed by PSII being used in 

photochemistry instead of being quenched (Maxwell & Johnson, 2000). It is important 

to note that a decrease in Fv/Fm is not essentially related to the damage to PSII, as the 

stressed cells might recruit defence mechanisms such as non-photochemical 

fluorescence quenching (NPQ), causing Fv/Fm to decrease (Baker, 2008). Hence, in this 

study, the gene expression of psbA, psaB, psbC and rbcL, which are the key genes 

involved in PSI, PSII, and carbon assimilation (CO2 fixation), were evaluated.  

It was reported that the PSII of cyanobacteria, green algae, and higher plants is prone 

to light-induced inactivation, and the D1 protein is the primary target of such damage. 

As a consequence of this, the D1 protein, which is encoded by psbA, is degraded and re-

synthesized in a multistep process called PSII repair cycle (Mulo et al., 2012). As 

shown in Figure. 4.15, the abundance of psbA in Chlorella-Trop was only marginally 

reduced during stress, but it could reach control levels during recovery. This confirms 

Chlorella-Trop’s ability to maintain psbA expression level during stress, and its fast 

recovery suggests that the damage was rapidly repaired. In Chlorella-Temp, the initial 
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abundance of psbA during stress exhibited a significant decrease, but increased stress 

causes the cells to increase psbA abundance and activate their respective repair 

mechanisms. During recovery, the psbA remarkably increased to continue its repair. In 

the case of Chlorella-Ant, there was a substantial increase in the psbA abundance, 

which intensified as stress increased. This suggests the high competency of Chlorella-

Ant in repairing its D1 protein, even during stress, and it might be one of the factors for 

its high-temperature photosynthetic tolerance. 

PsaB is one of the main constitutes of PSI biogenesis and involves the formation of 

the chlorophyll a protein complex I (CPI) that binds most of the pigments and redox 

cofactors of PSI (Balczun et al., 2005). It also binds a total of ~100 Chl a molecules 

with psaA (Melis, 1991). The decrease in psaB transcript’s abundance may result in the 

loss of PSI, and consequently, its reduced activity (Morgan-Kiss et al., 2006). In this 

study, psaB transcript abundance in both Chlorella-Ant and Chlorella-Trop increased 

during temperature stress and decreased during recovery, which indicates that both 

strains are capable of synthesising psaB subunit that could repair the PSI. Although the 

transcript abundance of psaB in Chlorella-Temp decreased significantly during stress, it 

increased considerably during recovery, which implies that Chlorella-Temp was not 

able to resynthesize psaB during stress, but was able to do so during recovery to build 

up PSI. The deregulation of psaB was also reported in Chlorella vulgaris when exposed 

to toxic chemicals (Qian et al., 2011).  

Another photosynthetic gene, psbC, encodes a PSII chlorophyll-binding protein, 

involved in water-splitting and acting as an oxygen-evolving enzyme of photosynthesis 

(Qian et al., 2009). It is also affected by harsh conditions, such as temperature stress 

(Chong et al., 2011). During temperature stress, Chlorella strains from different 

latitudes responded differently to psbC transcript abundance. In Chlorella-Trop, the 

psbC abundance increased during stress and kept increasing even during recovery 
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(reaching almost 8-fold). The damage occurred during stress might not be fully 

repaired, and the cell tried to compensate for this during recovery as well. In contrast, 

no deregulation of psbC was observed in Chlorella-Temp during stress/recovery. In 

Chlorella-Ant, psbC was up-regulated as stress intensified, and reached up to 25-fold 

relative to its control. This strain has a high capacity for maintaining the psbC level in 

harsh conditions to build up PSII for stress adaptation. Both psaB and psbC were 

involved in electron transport, and their down-regulation might hinder mitochondrial 

electron transport, which resulted in the accumulation of surplus electron, reduced 

transcription of PSI and PSII genes, as well as oxidative stress (Liu et al., 2015). 

Photosynthetic fixation of carbon dioxide is essential for algal growth and 

development due to its provision of the carbohydrates required for metabolism, 

structural components, and cellular building blocks (Biswal et al., 2011). Ribulose-1,5-

bisphosphate carboxylase/oxygenase (RubisCO) play critical roles in photosynthesis 

and expression of genes encoding its subunits, and rbcL is significantly influenced by 

various stresses (Qian et al., 2009; Qian et al., 2012). The expression of rbcL was 

inhibited due to high salinity, desiccation, and low salinity conditions, as well as 

temperatures above and below its normal ambient temperature (Xu et al., 2013). In both 

Chlorella-Ant and Chlorella-Trop, the rbcL transcript abundance increased when Fv/Fm 

reached 0.2 during stress. The cells have the capacity to undergo the carbon fixation 

process even during stress by up-regulating the expression of rbcL. In Chlorella-Temp, 

rbcL transcript levels decreased during stress, but significantly increased 16-fold during 

recovery. This might be due to the susceptibility of Chlorella-Temp rbcL transcription 

machinery to temperature stress and its need to compensate post-recovery. 

These expression analyses of key metabolic genes may provide insight into the 

actual mechanism of lipid accumulation in the microalgae in response to cultivation 

conditions (Jianhua et al., 2014). Recently, evolved molecular techniques, such as 
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transcriptome analysis, microarray analysis, and full-length or EST (expressed sequence 

tag) transcript sequencing can generate knowledge of how lipid biosynthetic genes are 

expressed under different stress conditions and the key genes involved in triggering 

lipid accumulation (Shin et al., 2015). Therefore, gene expression analysis could help us 

improve existing stress strategies and develop novel strategies for better lipid yields in 

microalgae. Gene expression analysis also reveals the key functional genes involved in 

lipid biosynthesis, which could be exploited for improved applicability of molecular 

techniques, such as metabolic and genetic engineering (Poonam Singh et al., 2016). 

Omega-3 is an important very long-chain polyunsaturated fatty acids. In all of the 

studied strains, the expression of gene encoding Omega-3 desaturase, FAD3, was 

inhibited during stress, indicating that the temperature stress can result in the inhibition 

of Omega-3 desaturation in Chlorella strains, which could result in the reduction of the 

nutritional value of Chlorella strains in the food web. However, FAD3 in Chlorella-

Temp and Chlorella-Ant were able to recover to levels of the control sample during 

recovery. This confirms its capability for producing high-value products after enduring 

temperature stress. The level of FAD3 transcript increased by up to 5.4 times after only 

3 h of cold exposure (Guschina and Harwood, 2006). Similarly, it was reported that the 

expression of FAD3 in Chlamydomonas sp. ICE-L contributed to its adaptation to low 

temperature when it showed higher FAD3 transcript abundance due to exposure to low 

temperature (Kumari et al., 2013). Recently, Zhang et al. (2011) demonstrated enhanced 

mRNA level of CiFAD3 in Chlamydomonas sp. ICE-L that increased 3.8-fold at a 

salinity of 62 %. 

Acetyl-CoA carboxylase (ACCase) catalyses the first rate-limiting step in the fatty 

acid biosynthetic pathway via the formation of malonyl-CoA from acetyl-CoA (Jianhua 

et al., 2014). On the other hand, the accD gene, which encodes the beta subunit of 

ACCase, was up-regulated in Chlorella sorokiniana when grown under N limited 
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condition, while accD was up-regulated under higher Mg concentration (Singh, 2017). 

The effect of iron on lipid accumulation in Chlorella sorokiniana showed that the 

expression of genes, such as accD, was up-regulated at higher concentrations of iron 

resulting in high lipid productivity (Singh et al., 2016). In our study, the expression of 

accD varied between strains when exposed to heat stress. Both Chlorella-Trop and 

Chlorella-Ant enhanced their respective transcript’s abundance, which may result in 

enhanced fatty acid biosynthesis. However, it was reduced during recovery, which 

could be due to the lack of available energy. In Chlorella-Temp, during stress, the accD 

was down-regulated to confirm reduced fatty acid synthesis, while during recovery, 

fatty acid synthesis was interestingly boosted, and cells tried to accumulate fatty acids.  

In green algae, the soluble stromal enzyme stearoyl-ACP desaturase (SAD) 

determines the ratio of saturated-to-unsaturated fatty acids and catalyzes the first 

desaturation reaction, converting 18:0-ACP to 18:1 Δ9-ACP (Sangram et al., 2016). In 

Chlorella zofingiensis, the SAD gene was up-regulated in response to high light 

irradiation; as a result of this, the treated cells accumulated a higher amount of TFA 

including oleic acid (Jin, 2010). Changes in SAD were more apparent in Chlorella-Ant 

relative to its studied counterparts. In the Antarctic strain, SAD significantly increased 

during stress, and its expression intensified in tandem with stress. 

ROS included free radicals (hydroxyl radical OH•, phenoxy radicals RO•, peroxy 

radicals ROO•) and other ROS (superoxide radical anion O2 •−, singlet oxygen 1O2, 

hydrogen peroxide H2O2) (Qian et al., 2009). Chloroplasts are the main source of ROS, 

which can cause cell damage in various ways when electron transport is blocked. These 

surplus electrons are transported to molecular oxygen, generating ROS (Kumar et al., 

2008). The consequences of the formation of ROS include the gradual peroxidation of 

lipid structures (Baryla et al., 2000), oxidative DNA damage (Kasprzak, 2002), and 

photosynthetic apparatus damage (Dewez et al., 2005). In this research, it was found 
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that the ROS content did not report any trend in responding to heat stress among the 

studied Chlorella strains, indicating different defence mechanisms being activated in 

each strain. 

In Chlorella-Trop, the ROS level notably changed post-exposure to heat stress and 

declined in the first 2 hours. It remained at similar levels during stress and recovery. 

This suggests that this strain may activate the ROS scavenging enzyme to avoid 

oxidative damage. In Chlorella-Temp, similar to Chlorella-Trop exposing culture to 

heat, the ROS level was reduced to almost half in the first 2 hours of exposure and 

remained lower compared to the ROS level prior to treatment. By contrast, in Chlorella-

Ant, by exposing the culture to heat, the ROS level increased during stress and 

recovery. This confirmed the failure of this strain in removing ROS effectively, while 

the damage was unfixed during recovery. Also, the role of ROS level as a signal 

transduction must be undertaken. 
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6 CHAPTER 6: CONCLUSION 

6.1 Conclusion 

The following conclusions can be deduced based on the findings of this study: 

Growing the selected Chlorella strains at temperatures above their ambient caused an 

increase in their growth rate, although further temperature increase decreased the 

specific growth rate. The studied Chlorella strains were able to grow at temperatures of 

up to 38 C, although exceeding this limit inhibit both photosynthesis and growth. 

Surprisingly, Chlorella-Ant was able to grow well by 20 C more than its ambient, and 

showed active photosynthesis properties even at 35 C, although its growth was 

inhibited, which indicates that the Antarctic strain seems to be psychrotolerant rather 

than psychrophilic. The tropical strain appears to be living near their upper-temperature 

limit, as per its inhibition of growth and photosynthesis with further increase in 

temperature. The tropical and temperate strains showed a preference for specific niches, 

as presented by their in vitro growth and photosynthetic behaviour. 

Changes in biochemical compositions, such as lipid, carbohydrates, and proteins 

were inconsistent with temperature changes. These tests were only able to detect total 

contents, while changes due to temperature were more apparent in the molecules. For 

example, cells might change its fatty acids saturation level, but maintain their total fatty 

acid percentage in the cell. Chlorella cells tend to accumulate more PUFA at ambient 

temperature instead of stress, indicating that high temperature significantly affects the 

quality of Chlorella as food in an aquatic system. Growing the studied strains at high 

temperature caused changes in its fatty acid profile. For instance, in Chlorella-Trop at 

38 °C, the saturated fatty acid decreased by 10%, while, mono-saturated and poly 

saturated acids increased by 3%. In Chlorella-Temp, at 35 °C, the saturated fatty acid 

increased by 14%, while the mono-saturated and poly saturated decreased by 4% and 
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increased by 10 %, respectively, and in Chlorella-Temp, at 35 °C saturated fatty acid 

increased by 3%, mono-saturated and poly saturated acids decreased by 1% and 2%, 

respectively. 

The stressed Chlorella strains were able to recover even from a state in which 

photosynthesis was totally inhibited. This confirms its ability to recover from high-

temperature stress even when their photosynthesis and growth were inhibited, although 

a portion of biomass was lost during stress. Among the studied strain, Chlorella-Trop 

reported the fastest recovery in both photosynthesis and growth ability. The Antarctic 

strain was able to recover; however, it was slowest in regaining its photosynthesis and 

growth ability. The ability of the Chlorella strain to recover from temperature 

fluctuation is important, particularly in the mass cultivation project. The main concern 

in setting a successful, microalgae-based, agrobiotechnology rests in producing large-

scale biomass under outdoor conditions (Varshney et al., 2015). Considering mass 

cultivation poses some obstacles including difficulties in controlling culture temperature 

(Ugwu et al., 2008). Thus, the ability of Chlorella strains to grow at a broad range of 

temperature is an important factor in mass culture. 

In the topical strain (Chlorella_Trop), the expression of photosynthetic genes 

amplified as stress increased but down-regulated during recovery except for psbC which 

continued to increase. This indicates the significant role of psbC in repairing PSII as the 

main subunit. Also, during stress the gene expression profile showed this strain tend to 

accumulate saturated fatty acid which is in line with numerous studies that Chlorella 

accumulates fatty acids during stress to store energy. Expression of the photosynthetic 

genes in Chlorella-Temp was inhibited during stress but increased substantially during 

recovery. This is in line with several reports in which different stressors including 

temperature (Chong et al. 2011), salinity (Kebeish et al. 2014b) and toxins (Qian et al. 

2009a; Kebeish et al. 2014a; Liu et al. 2015). This may indicate a strategy to conserve 

Univ
ers

ity
 of

 M
ala

ya



 

109 

existing resources and energy to cope with possible extended periods of stress (Poong et 

al. 2018). The subsequent up-regulated expression of these genes during recovery is 

perhaps a measure to resynthesize and restore the damaged components. Active 

transcription of the photosynthetic genes in Chlorella-Ant (even when it was under 

stress) proposes that this strain uses a strategy of increasing the expression of 

photosynthetic genes to compensate for the decline in photosynthetic activity caused by 

the heat-induced damage to the photosynthetic components. In this strain, the obvious 

changes in accD and SAD expression implying that this strain accumulates fatty acids 

during stress similar to tropical strain, however, increased FAD3 during recovery 

suggests then they converted to PUFAs. While, in the Chlorella-Trop, FAD3 down-

regulated during recovery presenting decreased PUFA synthesis. 

Based on the growth rate and photosynthetic parameters (Fv/Fm, Alpha and 

rETRmax), the temperature changes had a significant effect on growth and 

photosynthesis. Also, the changes in biochemical compositions, such as protein and 

carbohydrate content, were observable. However, the lipid percentage of the cell did not 

report substantial variations. The lipid composition itself was modulated during 

temperature change via changes in the saturation level of the fatty acid in order to adapt 

to temperature.  

The expression pattern of the studied Chlorella strains was different. Chlorella-

Trop and Chlorella-Ant showed a more similar pattern in response to temperature 

stress. Also, in both Chlorella-Trop and Chlorella-Ant, the psbC showed remarkable 

up-regulation during stress and recovery. In Chlorella-Temp, during stress, both 

photosynthetic genes and fatty acid synthesis related genes were down-regulated, while 

their expressions were up-regulated during recovery. 
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6.2 Appraisal of Study 

This study dealt with the actual topic of the impacts of climate change, especially 

global warming on the microalgae in marine ecosystems. In this research, the growth 

and photosynthetic performance of three Chlorella sp. from different habitats were 

analyzed. To a greater extent, the expression pattern of several selected genes related to 

photosynthesis and fatty acid synthesis during stress and recovery were studied. Some 

interesting findings in this research could well benefit future studies on global warming 

and ocean ecology. Studies on stress tolerance mechanisms are important towards 

understanding and predicting future impacts of climate change on microalgae. The 

understanding of the responses and adaptation of microalgae to changing climates could 

provide invaluable information towards mitigating climate change and bring our 

attention to the increasing vulnerability of species in the ecosystems. As pointed out 

earlier, microalgae are primary producers that form the basis of many aquatic food 

chains, therefore, any changes to the size and composition of algal communities can 

result in profound impacts to the ecosystems and fisheries productivity. Many species of 

microalgae, including Chlorella, are economically important as sources of health 

supplement, pigments, biofuel, and others. Thus, by understanding the response of 

microalgae to various stressors, such as thermal stress, they can be optimized for 

various purposes, such as lipid production, which can be used as biofuel in the future. 

Furthermore, by understanding the consequences of the abiotic stressors on these 

organisms, we can potentially predict possible changes to biogeochemical and nutrient 

cycles, and how they affect Earth. 
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6.3 Future Research Direction 

Understanding a single factor might not be able to bring an explicit conclusion to 

express the complexity of an actual environment. It is possible to combine additional 

factors, such as introducing UV radiation, enhanced CO2 concentrations, and 

community study. It is important to understand how the interactive effects can be 

additive, synergistic, or antagonistic towards influencing the growth of microalgae. 

Work on additional strains from each latitudinal region and ecological niches are 

required for a stronger conclusion on the relationship between latitude and temperature 

response. In a natural environment, the interaction of biotic and abiotic factors displays 

a substantial effect on the population dynamic of microalgae. More advanced 

techniques can be used to identify genes involved in temperature adaptation and 

acclimated, which can be used to engineer more tolerant organisms/organisms with a 

particular feature for use in industrial/medical applications. 
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