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Mathematical modeling of the tumor cells population dynamics in Breast

Cancer

ABSTRACT

The role of mathematics in cancer research has steadily increased over time. Multidis-

ciplinary collaboration in cancer research is essential and mathematical applications can

significantly contribute to many areas of cancer research. For example, mathematical

models can provide deeper insight and establish a framework for understanding proper-

ties of cancer cells. Modeling the effects of radiation on cancer cells is one of the most

interesting areas in mathematical biology and a variety of models by using the Target

theory and DNA fragmentations have been applied to describe how radiation influence

tumor cells. In this study, two new mathematical frameworks are proposed to model the

population dynamics of heterogeneous tumor cells after the treatment with external beam

radiation. The first model is derived based on the Target Theory and Hit Theory. Accord-

ing to these theories, the tumor population is divided into m different sub-populations

based on the different effects of ionizing radiations on human cells. This model con-

sists of a system of differential equations with random variable coefficients representing

the dynamics transition rates between sub-populations. The model is also describing

the heterogeneity of the cell damage and the repair mechanism between two consecutive

dose fractions. In the second model, we study the population dynamics of breast cancer

cells treated with radiotherapy by using a system of stochastic differential equations. Ac-

cording to the cell cycle, each cell belongs to one of three subpopulations G, S, or M,

representing gap, synthesis, and mitosis subpopulations. Cells in the M subpopulation

are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant.

Therefore, in the process of radiotherapy, cell death rates of different subpopulations are
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not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately,

the small changes in cell death rate in each subpopulation during treatment are consid-

ered. Therefore, a new definition for the lifespan of the tumor based on population size is

introduced. Tumor Lifespan is defined as the minimum number of dose fractions needed

to remove the whole tumor. The stability of the first model is studied by considering three

cases. For the first and second cases, we assumed that each cell has two and three targets

(m = 2 and m = 3). Applying Routh-Hurwitz criterion, it is proven that the system is

stable when the probability that one target becomes deactivated after the application of

a dose fraction (q) is greater than or equal to 0.5. Finally, the system stability for the

third case is investigated analytically when each cell assumed has m targets. By using

Gershgorin theorem, it is shown that the system is stable where q > 0.5. In the second

model, the existence and uniqueness of the solution are proven and an explicit solution

for the SDE model is presented. Moreover, the system stability is investigated via a nec-

essary and sufficient condition on model parameters. The transition rates are estimated

in a steady state condition. Subsequently, the model is solved numerically using Euler-

Murayama and Milstein methods and the other parameters of the model are estimated

using parametric and nonparametric simulated likelihood estimation parameter methods.

Finally, we did a number of experiments on MCF-7 breast cancer cell line. The cell cycle

analysis assay has been used to analyze experimental data. Then the obtained data is ap-

plied and able to calibrate and verify our models.

Keywords: Mathematical Modeling, Tumor Cells Population Dynamics, MCF-7 Breast

Cancer Cell Line, Tumor Lifespan, Target Theory, Flowcytometry, Cell Cycle Analysis

Assay
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Permodelan Matematik untuk Populasi Dinamik Sel Tumor bagi Kanser

Payudara

ABSTRAK

Peranan matematik dalam penyelidikan kanser telah meningkat dari semasa ke semasa.

Penyelidikan kanser adalah kajian pelbagai disiplin dan matematik gunaan boleh menyum-

bang dalam banyak perkara. Sebagai contoh, model matematik boleh memberi gambaran

yang lebih mendalam untuk memahami ciri-ciri sel kanser. Pemodelan kesan radiasi pada

sel kanser adalah salah satu bidang yang menarik matematik biologi dan beberapa model

seperti sasaran teori dan DNA fragmentasi dalam menggambarkan bagaimana sel tumor

terkesan oleh radiasi. Dalam tesis ini, dua kerangka matematik baru dicadangkan bagi

membentuk model heterogen dinamik populasi sel tumor selepas rawatan dengan sinaran

pancaran luaran. Model pertama berdasarkan Teori Sasaran dan Teori Hit. Menurut teori

ini, populasi tumor dibahagikan kepada m sub-populasi berdasarkan kesan yang berbeza

daripada pancaran pengionan pada sel manusia. Model ini dibentuk oleh sistem per-

samaan pembezaan dengan pekali pembolehubah rawak yang mewakili kadar peralihan

antara sub-populasi. Model ini juga menggambarkan kepelbagaian kerosakan sel dan

mekanisme pembaikan di antara dua dos yang berturut-turut. Dalam model kedua, kita

mengkaji dinamik populasi sel kanser payudara yang dirawat dengan radioterapi dengan

menggunakan sistem persamaan pembezaan stokastik. Mengikut kitaran sel, setiap sel

tergolong dalam salah satu daripada tiga sub-populasi G, S atau M, yang mewakili ju-

rang, sintesis dan sub-populasi mitosis. Sel dalam sub-populasi M sangat radio-sensitif,

manakala sel-sel dalam sub-populasi S sangat radio-tahan. Oleh itu, dalam proses ra-

dioterapi, kadar kematian sel sub-populasi adalah tidak sama. Di samping itu, meman-

dangkan proses aliran cytometry gagal mengesan sel apoptotic dengan tepat, maka pe-
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rubahan kecil dalam kadar kematian sel dalam setiap sub-populasi semasa rawatan akan

dipertimbangkan. Oleh itu, takrif baru untuk jangka hayat tumor berdasarkan saiz popu-

lasi diperkenalkan. Jangka hayat tumor ditakrifkan sebagai bilangan minimum dos yang

diperlukan untuk mengeluarkan keseluruhan tumor. Kestabilan model pertama dikaji

dalam tiga kes. Untuk kes pertama dan kedua, kita andaikan setiap sel mempunyai dua

dan tiga sasaran (m = 2 dan m = 3). Menggunakan criteria Routh-Hurwitz, terbukti sis-

tem itu adalah stabil apabila kebarangkalian bahawa satu sasaran dinyahaktifkan apabila

dos (q) adalah lebih besar daripada atau sama dengan 0.5. Akhirnya, kestabilan sistem

untuk kes ketiga disiasat secara analitik apabila setiap sel mempunyai m sasaran. Dengan

menggunakan teorem Gershgorin, didapati sistem adalah stabil bila q> 0.5. Untuk model

kedua, kewujudan dan keunikan penyelesaian ditunjukkan dan penyelesaian tepat untuk

model SDE itu dikemukakan. Selain itu, kestabilan sistem disiasat melalui syarat perlu

dan mencukupi k eats parameter model. Kadar peralihan dianggarkan dalam keadaan

mantap. Selepas itu model ini diselesaikan secara berangka menggunakan kaedah Euler-

Murayama dan Milstein dan parameter lain dianggarkan dengan menggunakan kaedah

kemungkinan simulasi berparameter dan tak berparameter. Akhirnya kita lakukan beber-

apa eksperimen pada MCF-7 garis sel kanser payudara. Kitaran sel analisis assay telah

digunakan untuk menganalisis data eksperimen. Kemudian data yang diperolehi digu-

nakan untuk mengesahkan model yang telah dibina.

Keywords: Pemodelan Matematik, Tumor Sels Dinamik Populasi, Talian Sel Kanker

Payudara MCF-7, umor jangka hayat, Teori Sasaran, Flowcytometry, Analisis Analisis

Kitaran Sel
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CHAPTER 1

INTRODUCTION

Cancer affected millions of people in the world and Radiation Therapy (XRT) is one of

the common methods of cancer treatment. There are many obstacles in In Vivo and In

Vitro conditions. For instance, experiments are usually expensive. Another limitation in

experiments is time. In these cases In Silico condition can be very useful.

The role of mathematics in cancer research has steadily increased over time and the future

of this discipline is both exciting and critical as new patients are diagnosed with cancer

every day. Multidisciplinary collaboration in cancer research is essential and mathemati-

cal applications can contribute significantly to many areas of cancer research.

Mathematical models can provide insight and establish a framework for understanding

properties of cancer cells, e.g., by modeling the biochemical behavior within a single

cancer cell or by modeling a tumor growth.

In this thesis two mathematical models are proposed to explain the population dynamics

of tumor cells which are treated with external beam radiation therapy.

The first system is modeled the tumor cells population dynamics by using a system of

ordinary differential equations (ODE). The model is also based on target theory and hit

theory.

Then we model the tumor cells population dynamics via a multidimensional stochastic

differential equation (SDE). In this model subpopulations show the number of cells in

each phase of cell cycle.
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1.1 Research problem

The majority of existing models assume that the cell sensitivity will be constant during

the radiation. The same assumption is also taken into account for the cell population, i.e.,

a surviving cell is expected to be viably considered as an irradiated cell.

In such circumstances, all cells are believed to have similar survival probability. While,

there are strong evidences that damaged cells would be unable to resist the radiation.

According to literature, another common drawback of mathematical models of the domain

is the lack of considering the inherent error in death rate caused by the flow cytometry

method. This error is rooted in recognizing apoptotic cells as live cells.

Furthermore, in the previous clinical cancer researches only tumors with 109 cells have

been detectable. However, after resection surgeries, small tumors may still remain. Hence,

clinicians irradiate the tissue to kill the rest of tumor cells.

It may causes side effects in normal tissues. Therefore, it is important to predict how

many dose fractions are needed to remove the tumor. In other words, it is crucial to know

what will be the tumor lifespan.

1.2 Research Questions

Research Questions of this research are:

1. How to model tumor cells population dynamics where the treatment heterogeneity

and cell cycle position are taking accounted for?

2. Under which conditions on the model parameters the system is stable?

3. What is the tumor lifespan?

1.3 Objectives

The objectives of this study are listed as following:
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I ODE Model

a) Tumor Cells population size is modeled by using a system of Ordinary Differ-

ential Equations(ODE) and based on target theory and hit theory.

b) The system stability is probed based on Routh-Hurwitz theorem. This shows

under which condition treatment is beneficial.

c) The effects of each parameter( so called Bifurcation Analysis ) is studied.

d) The tumor lifespan is defined based one the tumor cells population size.

II SDE Model

a) Tumor cells population size is modeled by applying a multi-dimensional Stochas-

tic Differential Equations(SDE).

b) Stability analysis of the system is studied.

c) The model is calibrated and verified by using experimental data.

1.4 Thesis Outline

This thesis is organized as follows:

Chapter 2 is divided into three sections. In the first section, biological terms such as cell

cycle, apoptosis, radiation therapy as one of the most common cancer therapies, the defi-

nition of cell death in radio biology, the effect of radiation on cell cycle arrest and target

theory are presented.

The second section is for mathematical background such as Markov chain, Brownian mo-

tion and white noise, Ito stochastic differential equations (SDEs), numerical soloutions

of SDEs and parametric and non-parametric simulated likelihood estimation parameter

methods.

Finally early mathematical models of the tumor growth, mathematical models of the ef-

fect of radiation on cells and cell cycle models are listed on the last section.

3

Univ
ers

ity
 of

 M
ala

ya



In chapter 3, two mathematical models are presented to explain the effect of radiation

therapy on the population dynamics of tumor cells.

The first model is a system of m ordinary differential equations where the subpopulations

are classified according to the effect radiation on cells and m is the number of targets in

each cell.

In the second model tumor cells are divided into three subpopulations where each sub-

population shows the cell cycle position. Thereafter, the cells population dynamics is

modeled via a multi-dimension Ito stochastic differential equation.

Finally, the tumor lifespan is defined for the models based on the tumor cells population

size.

Mathematical results for both models are presented in chapter 4.4.4.

The ODE model is considered in three cases

1. Case m = 2:

Generally it is very difficult to distingush between cells with single-strand break and

cells with double strand breaks. Therefore cells are divide into two subpopulations,

cells with DNA fragmentation and the cells without DNA break.

2. Case m = 3:

Thereafter, it is supposed that the cells with SSB and DSB be detectable. Subse-

quently, cells with SSB, cells with DSB and cells without DNA fragmentation.

3. General case: Suppose that each cell has m targets and each target may be deacti-

vated after the application of a dose fraction. Therefore, m subpopulations are cells

with zero, one, two, . . . and m−1 inactive targets.

Using Routh-Hurwits and Gershgorin Theorems, it is shown that the system is stable

under some conditions of model parameters. Moreover the effects of different parameters
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on the tumor lifespan is studied.

In the subsequent section, the SDE model is studied. Then the existence and uniqueness

of solution and the explicit solution of the equation is probed. Subsequently, the stability

analysis of the system is investigated and a necessary and sufficient condition of the model

stability is proven. The last section of this chapter is presented the simulation results.

In this section, the model is solved numerically by using Euler-Maruyama and Milstein

Methods. Then the model parameters are estimated applying SLE method and by using

the simulated data.

The results obtained from real experiments are shown in chapter 5. According to the

data obtained from experiments on MCF-7 breast cancer cells, the model parameters are

estimated by using the simulated likelihood estimation method.

Chapter 7 is for conclusion.
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CHAPTER 2

LITERATURE REVIEW

2.1 Biological Background

2.1.1 Cell Cycle Progression and Apoptosis

Cell division is an essential procedure in live organisms. During this process, DNA con-

tent is duplicated and one mother cell is divided into two daughter cells. All these progres-

sions are a continuous process and take place in a harmonized system to provide proper

separation and configuration of daughter cells including whole genomes. This process

is called cell cycle progression. Cell cycle consists of four main phases: Gap 1 (G1),

Synthesis (S), Gap 2 (G2) and Mitosis (M).

2.1.1 (a) Cell Cycle Progression

The duration of cell cycle in vivo is approximately 24 hours (Bernard & Herzel, 2006).

However, some factors may affect the cell cycle duration such as cell type and the organ-

ism. For example, in only 90 minutes yeast cells can complete their cell cycle. In general,

the cell cycle is divided into two main parts:

(i) Mitosis

(ii) Interphase

Mitosis (M) is referring to the phase in which a mother cell divides into two daughter cells

and it is the most remarkable phase of the cell cycle, connecting the main restructuring

of almost all parts of the cell. Mitosis happens right after the G2 phase. In this phase,

a mother cell has two copies of DNA and two different nuclei and the mother cell splits
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into two new baby cells. Evidence show that a proper cell division takes only about an

hour in a human cell (Simms, Bean, & Koerber, 2012).

Mitosis is broken up into the four stages as below:

(i) Prophase

(ii) Metaphase

(iii) Anaphase

(iv) Telophase

The period between two consecutive mitosis is called the interphase. More than 95% of

cell cycle duration happens in interphase. The mitosis phase begins when nuclear is sep-

arated, in proportion to the daughter chromosomes division (karyokinesis) and frequently

finishes at the end of cytoplasm division (cytokinesis).

The time proportion of cell cycle in which cells are organizing for separation is defined

as the interphase. During this time cells grow and DNA replicates in proper arrangement.

This period of the cell cycle has three different phases:

(i) G1 phase (Gap 1)

(ii) S phase (Synthesis)

(iii) G2 phase (Gap 2)

G1 phase is considered as the first phase of cell cycle progression. This phase initiates

after exactly mitosis phase and the finishes right before DNA replication. Therefore, in

G1 phase cells are metabolically dynamic and continuously grow. However, they are not

able to reproduce their DNA.
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Synthesis or S phase is starting after the first gap. During the S phase, DNA synthesis

or copying happens and the quantity of DNA contains in each cell duplicates. In other

words, the number of DNAs is duplicated at the end of the S phase.

Note that if a cell contains a certain number of chromosomes at G1, then the number of

chromosomes remains unchanged even after synthesis phase. During the S phase, DNA

replication begins in the nucleus, and the centriole duplicates in the cytoplasm in animal

cells.

G2 phase or the second gap of cell cycle begins after synthesis. In this phase, the common

errors of the synthesis phase are repaired and proteins are preparing to enter into mitosis

phase.

In addition to the mentioned phases of cell cycle, a quantity of cells in the mature animals

do not divide and some of them divide only infrequently, as wanted to substitute injured

or dead cells.

These inactive cells, which are neither separating nor preparing to split are called quies-

cent cells and G0 is considered as the phase of cell cycle in which cells are quiescent.

Cells in G0 phase of cell cycle stay metabolically active but do not proliferate except re-

quested to do conditional on the organism.

2.1.1 (b) Apoptosis

Apoptosis, or programmed cell death, is a common part of the progress and healthiness

of multicellular organisms. Cells die in because of a number of stimuli. Throughout

apoptosis, cells act in a controlled and regulated trend. Therefore apoptosis is distinct

from necrosis in which uncontrolled cell death causes serious problems for cells. In

contrast, apoptosis is supposed as a normal process of cell death in which cells play an

essential role in their own death.
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Figure 2.1: Schematic illustration of the cell cycle progression and checkpoints.

2.1.2 Radiation Therapy

In 1896, an important lecture titled Concerning a New Kind of Ray was presented by

Prof. Wilhelm Conrad Roentgen. He entitled it the X-ray, and used the algebraic symbol

X to illustrate an undefined quantity.

The instantaneous universal keenness was there. During a few months, machines were

being developed to apply X-rays to detect cancer. Then, radio articles were using as

an instrument in cancer treatment after three years. Subsequently, the first Nobel Prize

awarded in physics was given to him in 1901. At first, radiotherapy functioned just with

radium and relatively low-voltage diagnostic instruments.

In France, it was proven as a crucial discovery that everyday radiation dose fractions dur-

ing a few weeks considerably increased the chance of patient treatment. The mechanisms

and the techniques that dispense radiation particles have developed progressively over the

time.

In early 20th century, after applying of radiation as a treatment and diagnosis method,

it was presented that radiation parallel with cancer treatment could also cause it. Many
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of first radiologists using their radiotherapy equipment, tested radiation power on their

own arms skin try to find a dose that would cause a pink response (erythema), which was

similar to skin sunburn. They named this erythema dose, and this measurement was es-

timated the proper fraction of daily radiation dose.

Conformal radiation therapy (CRT) applies special computers and CT images in order to

very precisely draw the tumor’s position in three dimensions. The patient is covered with

a plastic cast for irradiating the cancerous tissue through radiation particles and avoiding

the normal tissues from the side effects of them.

The radiation beams are matching to the shape of the tumor correspondingly. They are

sent to the tumor from many different directions. The IMRT (Intensity-Modulated Ra-

diation Therapy) is similar to CRT in company with targeting photon beams from many

different ways, the beams’ power has a probability to change. This makes additional con-

trol in decreasing the radiation particles to hit healthy tissue when sending a high dose to

the tumor.

An associated methodology, conformal proton beam radiation therapy, applies a similar

method to concentrate radiation on the tumor cells. Besides, another alternate of using X-

rays, this methodology applies proton beams. Protons are atoms’ portions lead to minor

injury to tissues. They go through but are extremely efficacious to destroy the cancerous

cells. It shows that proton beam radiation can transfer additional radiation to the tumor

when possibly declining injury to the adjoining normal tissues.

2.1.3 Cell Death definition in Radiobiology

The popular utilization of radiation in cancer therapy finishes principally from its ability

to justify the death of tumor cells. Pathways inside the DNA Damage Response (DDR)

system extremely affects the biological consequences of radiation, comprising cell mor-

tality (Han & Yu, 2009).
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The DDR also identifies the class of cell mortality that happens, and in addition to the

sensibility of cells death following radiation, DDR identifies the timing of their death.

As the DDR varies in different forms of tumor and normal, the presence of cell mortality

can also change among different cell types expansively.

It is so crucial to describe what is predestined by the cell death in cancer therapy and

radiobiology. In a few years, it has been less attention the differentiations in the mecha-

nisms or types of cell mortality after applying the radiotherapy or the other treatments.

The reason was that some of the pathways which affect cell mortality were not known

during that time. Moreover, evaluation of cell death rate is difficult. Cell death occurs

frequently at different times of radiation and after passing one or two round of cell cycle,

in living cells, which continue to proliferate. So, it is difficult to measure cell mortality

rate.

Instead, researchers concentrated on measuring clonogenic survival, which is described

as the ability of a cell to proliferate for an unlimited time period after irradiation. This

is extremely applicable and robust parameter for measuring radiation effect because any

cell which keeps proliferative capability can be a reason to fail for controlling the tumor

locally. So, in radiobiology, cell death is usually associated with any process leads to the

endless conquest of clonogenic ability. This is a too general presence standard of cell

death, and clearly does not mean when utilized to critically distinguished cell types that

do not proliferate, like muscle and nerve cells.

For these cells, it is reasonable to assess the specific kinds of cell mortality leading to

cell damage or to consider how radiation changes the role of them. Nonetheless, loss of

proliferating ability is generally a suitable definition for cell death in radiobiology and

a very useful to the proliferating cells. Two classifications of cell death made occur by

irradiation. They are:
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1. Pre-Mitotic:

In lesser of cell types, cell death occurs fast, during some hours after irradiation

(Endlich, 2000).

2. Post-Mitotic:

The massive most of proliferating normal and tumor cells die at a pretty long time

after irradiation, regularly after trying mitosis one time or more.

2.1.4 Radiation and Cell Arrest

Mammalian cell cycle consists of G1, S, G2 and M phases, and the radio-sensitivity are

changed in the various phases. It is extensively believed that in cellular radiobiology the

subsequent sights of the diverse radio-sensitivities are related to the different stages of the

cell cycle (Sinclair, 2012; Su, 2006).

• Cells are highly radio-sensitive in the G2/M phase of the cell cycle.

• If G1 has a significant interval, there is typically a time period with a resistance,

which decreases towards the S phase.

• the resistance is enhanced in the S phase, with the maximum enhancement occurs

in the last portion of the phase.

Advancement from one phase to the other happens by phosphorylation or dephosphory-

lation of Cyclin-dependent kinases (Cdks).

Arrest at cell cycle checkpoints are frequently caused by DNA injuries, which are termed

DNA integrity checkpoints. There are more checkpoints at the margins between nearby

phases. Also there is an S phase checkpoint which distinguishes a delayed replication

fork.

The checkpoint reactions are preserved between organisms, though the various phases
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and mechanisms are fewer amongst mammalian cells (Durocher & Jackson, 2001; Rouse

& Jackson, 2002). In mammalian cells, PI3-K related protein kinases (PIKK kinases),

ATM (ataxia telangiectasia mutated protein)/ATR (ataxia telangiectasia and Rad3-related

protein) are among main regulatory checkpoint responses.

(I) G1/S arrest:

Two dominant forms of G1/S arrest are prolonged arrest and a more transient re-

sponse which was detected in mammalian cells explicitly (Di Leonardo, Linke,

Clarkin, & Wahl, 1994; Little, 1968). The earlier is a p53- dependent reaction and

the second one is similar to the G1/S response observed in yeast. Observations

show that p53 null cell lines or transformed fibroblasts (usually lack this arrest ac-

cording to p53 inactivation) exposed higher radio-resistance compared to p53 wild

cells (Lee & Bernstein, 1993). Therefore, G1/S arrest after irradiation is not useful

for the survival of cells.

(II) S phase arrest:

Cell cycle arrest in the S phase permits changes of the radiation-induced lesions be-

fore being repaired by DNA replication into permanent chromosomal breakdowns.

The S-phase checkpoint is the most complicated one among the cellular check-

points. Evidence shows that initial S phase arrest in next radiation are ATM-

dependent but future S phase arrest are related to ATR (ataxia telangiectasia and

Rad3-related protein) (Zhou et al., 2002).

Cells are lacking in genes of NBS and ATM and show a phenotype which is called

radio-resistant DNA synthesis. S phase arrest cannot be detected without fixing the

injuries (Jackson, 2002).
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(III) G2/M arrest:

The influence of G2/M arrest on cells after generation of damages by irradiation is

not clear, even though it is largely approved that the arrest increases cell survival

and decreases the chance of genomic modifications.

Protein kinases Chk1 and Chk2 control the G2/M checkpoint. As a consequence

of the induced injuries, both of the Phosphorylation of Chk and its motivation are

ATM-dependent.

According to evidence, ATM phosphorylates Cds1 and/or Chk1, which in turn

phosphorylates and inactivates Cdc25. After γ- irradiation several diversities in

the G2/M arrest were identified among the normal and ATM lacking cells. After

one irradiation, the normal cells show a postponement in going to the M phase from

the G2 phase, and A-T cells presented a shorter delay in comparison with the nor-

mal cells. This shows that the G2/M arrest is partially ATM-dependent (Beamish

& Lavin, 1994).

2.1.4 (a) Single-Strand Breaks (SSB) & Double-Strand Breaks (DSB)

From the evidence of radiobiological research, it is recommended that DNA is used as the

standard aim for the radiations’ biologic effects. Today, it is well-known that radiation

creates an extensive range of DNA damages, which contain lesions to nucleotide bases

(base damages), DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) (Han

& Yu, 2010).

Radiation-caused DNA damages are essential in understanding radiation-caused cell death,

cell alteration and carcinogenesis, over initiation of gene alteration and chromosome de-

viation (Lehnert, 2007; Valentin, 2006).

Ionizing-radiation- caused base lesions have been detected widely in vitro in radiation

of free bases, oligonucleotides, nucleosides or DNA in hydrous dilutions or in the solid-
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state (von Sonntag, 1987; Nicoloff & Hoekstra, 1996). Even though special sorts of DNA

base lesions such as 8-hydroxydeoxyguanosine have substantial biological importance in

some research areas, existing information indicates that such insulated base damages are

playing an insignificant role in the radiation mutagenesis (Ward, 1998).

The base excision repair trail can fix the damaged bases. Researches on radiation damages

to different positions in the DNA proposes that SSB is also not significant in mammalian

cells. An SSB is produced by the response of any of deoxyribose hydrogens (Ward,

1998). In the existence of oxygen, radiation will enhance the making of alkali-labile sites

(Hutchinson, 1985). DNA ligation can mend the maximum number of the SSBs made by

ionizing radiation (von Sonntag, 1987). However, DSBs produced by ionizing radiation

or other carcinogenesis substances are supposed to be most related damage to carcino-

genesis and mutations.

Unrepaired DSBs are important dangers to the genomic integrity (Hoeijmakers, 2001).

DSBs can cause chromosomal abnormalities, which instantaneously affect a lot of genes

to cause failure and cells death (Rich, Allen, & Wyllie, 2000). It is proven that DSBs

can be created in some of the natural procedures such as counting replication, oxidative

metabolisms, meiosis, and production or formation of antibodies (Dahm-Daphi, 2000).

Genome protection involves in the ability to overhaul DSBs and to validate that fixation

is completed with enough reliability.

Two central DSB repair ways are mentioned which one homologous recombination (HR)

and non-homologous end joining (NHEJ).

HR controls DSB conservations in yeast and NHEJ controls it in mammalian cells, cor-

respondingly. There are several excellent review articles discussing the DSB repair’s

mechanisms in the literature (Jeggo, 1998; Karran, 2000; Khanna & Jackson, 2001; Kurz

& Lees-Miller, 2004; Sancar, Lindsey-Boltz, Ünsal-Kaçmaz, & Linn, 2004; Collis, De-

Weese, Jeggo, & Parker, 2005).
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HR is a useful DSB repair’s trail. The genetic data missing at the broken ends of the ho-

mologous chromosome or unspoiled sister chromatid is saved by HR. In the HR develop-

ment, the injured DNA physically associates with an unspoiled DNA with a homologous

order and considers it as a model for repair.

Single-strand annealing (SSA) is an additional procedure for repairing DSBs by using

the homology amongst two end points of the linked orders. The progression depends on

homologous areas to arrange the DNA constituents to be joined again. Areas with SSBs

have formed nearby the damage, which extends to the consecutive orders. When this pro-

gression has completed sufficiently to disclose the supplementary orders, both DNAs are

strengthened and then they ligated.

DNA repair mechanism through the NHEJ trail is emergent and uneven procedure rejoins

both ends of a double-strand break whenever there is not necessity of order homology

between both ends.

Even though DSB repair is fairly popular, not as much of it is understood on how can

different ends join in DSBs. Tumorigenic chromosome translocations can be created by

Links between ends from diverse DSBs.

Two theories for the connection of DSBs in translocations are named the dynamic breakage-

first theory and the static contact-first theory, change basically in their constraint for DSB

mobility.

The breakage-first theory considers that breaks happened at far enough positions which

can consequently be taken together to form translocations (Sax, 1941). This theory ex-

pects that DSBs should travel over huge areas in the nucleus before their interaction.

Whether such wide immigration and consequent interaction of DSBs can essentially hap-

pen is imprecise. In order to assess DSB including chromosome domains are movable

and can act with each other or not, (Aten et al., 2004) presented near-horizontal linear

tracks of DSBs in nuclei by means of illustrating cells to α particles from a radiation

16

Univ
ers

ity
 of

 M
ala

ya



source which is located beside the cells.

DSBs are visualized by immunofluorescence of γ-H2AX. Variations in the 3-D circula-

tions of DSBs are calculated by examining the morphology trial at many intervals after

radiation. The alterations in the track morphology are observed only in few minutes after

DSB initiation, representing the domains’ movement.

2.1.5 Target Theory

In the 1920s, target theory and hit theory were introduced for the first time. During this

decade, biologists were starting to improve quantum methods to deactivate phenomena

when biological tissue was irradiated (Dessauer, 1922; Crowther, 1924).

Other researchers continued the radiation’s modeling affects the alive cells experimentally

and theoretically (Atwood & Norman, 1949; E. C. Pollard, Guild, Hutchinson, & Setlow,

1955; D. E. Lea, 1955; E. Pollard, 1959)).

After these influential models, several mathematical models have been proposed to show

the relation between cells and radiation particles (J. F. Fowler, 1989; Sy & Han, 1982;

Ditlov, 2009; Satow & Kawai, 2006; Chapman, 2007; Ditlov, 2009).

In target theory, it is supposed that each cell has a certain number of dynamic sites called

targets. Targets are radiosensitive, i.e., they may be deactivated by radiation particles

and a cell dies if all its targets become deactivated. For instance, it is recognized that the

chromosomes are very sensitive targets (Dertinger & Jung, 2013). However, additional

evidences show that nuclear membrane or some other cell organelles, which are closed

to the nuclear membrane can be considered as targets as well (Datta, Cole, & Robinson,

1976). When each target is hit by a number of radiation particles, it will be deactivated.

Several classes of hit models are categorized by the number of hits and targets.
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1. Single target–single hit

2. Single target–multi hit

3. Multi target–single hit

4. Multi target–Multi hit

In above-mentioned models, it is common to assume that all cells have homogeneous be-

havior. In fact, there are at least three focal causes to question this theory. The first reason

is that heterogeneity comes from the non-uniform 3-D dose of radiation distribution. The

second issue is the alterations among the cell types (proliferating, necrotic, quiescent,

stem cells, etc.) and the non-uniform concentration of nutrients and oxygen. The third

reason is associated to a cell-to- cell injuries inconsistency and also to the diversity of the

radiation effects on cells.

2.2 Mathematical Background

2.2.1 Routh-Hurwitz Criterion

Suppose that

ẋ = A . x (2.2.1)

illustrates the dynamics of cells population and

A(i+1, j+1) =



Π(i, j)+µ(1−q)m−1 i, j = 0

Π( j, i) i 6= j

Π(i, j)−1 Others

(2.2.2)

18

Univ
ers

ity
 of

 M
ala

ya



is the matrix associated with Equation (2.2.1), where i, j = 0, ...,(m−1) and

x = (x0,x1, ...,xm−1)
>

Therefore:

Theorem 2.2.1. Let A ∈Mm×m. The system (2.2.1) is stable at equilibrium point x∗ = 0

if and only if all the eigenvalues of the matrix A have negative real part.

Proof. See (Sideris, 2013)

Theorem 2.2.2. (Routh-Hurwitz Criterion) Suppose that P(λ ) = amxm + am−1xm−1 +

a1x+a0 is the characteristic polynomial of a matrix A ∈Mm×m. Let

Dk = det



a1 a3 a5 . . . a2k−1

1 a2 a4 . . . a2k−2

0 a1 a3 . . . a2k−3

0 1 a2 . . . a2k−4

...
...

...
...

...

0 0 0 . . . ak



(2.2.3)

where a j = 0 if j > m. Then roots of P(λ ) have negative real part if and only if Dk > 0

for all k = 1, ...,m.

Proof. (Teschl, 2012)
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Following theorem is a straightforward result of combination Theorem (2.2.1) and Theo-

rem (2.2.2) in case m = 2.

Theorem 2.2.3. Let A ∈M2×2. If λ1, and λ2 are the eigenvalues of the matrix A, then the

system (2.2.1) is stable at equilibrium point x∗ if and only if

a1 =−(λ1 +λ2)> 0

and

a2 = λ1 λ2 > 0

where

P(λ ) = λ
2 +a1λ +a2

is the characteristic polynomial of matrix A.

2.2.2 Gershgorin Discs and Gershgorin Theorem

Let A be a complex (m×m) matrix, with entries (Atk). For t ∈ {1, ...,m} let Rt = ∑
k 6=t
|Atk|

be the sum of the absolute values of the non-diagonal entries in the t-th row. Let D(Att ,Rt)

be the closed disc centered at Att with radius Rt . Such a disc is called a Gershgorin disc

(Varga, 2010).

Theorem 2.2.4. Every eigenvalue of A lies within at least one of the Gershgorin discs

D(Att ,Rt).

Proof. Let λ be an arbitrary eigenvalue of A and let x = (xk) be the corresponding eigen-

vector. Let t ∈ {1, . . . ,m} be chosen such that |xt |= max
k
|xk| (That is to say, choose t so

that xt is the largest (in absolute value) number in the vector x). Then |xt |> 0, otherwise

x = 0. Since x is an eigenvector, Ax = λx, and thus:
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∑
k

Atkxk = λxt ∀t ∈ {1, . . . ,m}

So, splitting the sum, we get

∑
k 6=t

Atkxk = λxt−Attxt

Dividing both sides by xt (xt 6= 0 for this choice of t) and take the absolute value to obtain

|λ −Att | =

∣∣∣∣∑k 6=t Atkxk

xt

∣∣∣∣ (2.2.4)

≤ ∑
j 6=i

∣∣∣∣Atkxk

xt

∣∣∣∣
≤ ∑

k 6=t
|Atk|= Rt

where the last inequality is valid because

∣∣∣∣xk

xt

∣∣∣∣≤ 1 for j 6= t

2.2.3 Markov Chain

Present probability theory deals with chance processes where the information of prior

results effects predictions for upcoming trials. Theoretically, once a series of accidental

trials is observed, all of the previous results might affect the forecasts of the following

trial. For instance, predicting the grades of a student on a series of assessments in a spe-

cific course.

A. A. Markov started the study of a vital novel classification of the chance process in

1907 in which the result of a certain test can influence the result of the subsequent test.
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This kind of process is named a Markov chain.

Assume that I is a countable set, i.e., I = {i, j,k, . . .}. Therefore, each i ∈ I is called a

state and I is the state-space.

Now suppose that (Ω,F,P) is a probability space. Ω is a set of outcomes, F is a set of

subsets of Ω, and for any A ∈ F, P(A) is the probability of A. In this part, we will focus

on a sequence of random variables X0,X1, . . . ,Xn, in which a number of simple rules de-

termine the corresponding joint distribution.

A random variable X with values in I is considered as a function X : Ω→ I.

In addition, the vector λ = (λi : i ∈ I) is named a measure if λi ≥ 0 for all i. A measure is

called a distribution when ∑i∈I λi = 1.

Now, suppose that {λi : i ∈ I} such that 0 ≤ λi ≤ 1 for all i and ∑i λi = 1 is a dis-

tribution over I. More specially, suppose that λ = σi = (0, . . . ,1, . . . ,0). Moreover,

P = (pi j : i, j ∈ I) with pi j ≥ 0 for all i, j and ∑ j pi j = 1 is called the transition ma-

trix. Subsequently, each row of a transition matrix is a distribution over I.

Definition 2.2.1. Suppose that (Xn)n≥1 is a sequence of random variables. (Xn) is called

a Markov chain with transition matrix P and primary distribution λ if for any n≥ 0 and

i0, . . . , in+1 ∈ I,

1. P(X0 = i0) = λi0

2. P(Xn+1 = in+1|X0 = i0, . . . ,Xn = in) = P(Xn+1 = in+1|Xn = in) = pinin+1

(Xn) is called a Markov (λ ,P).
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2.2.4 Brownian Motion

Robert Brown discovered Brownian motion for the first time when he observed the tiny

motion of microscopic particles moved in water in a random directions. Caused by the

disordered movement of separate water particles, each such molecule is squeezing in all

directions.

In 1905, Albert Einstein mentioned a diffusive movement of mesoscopic particles (i.e.,

macroscopically very small, but still visible through a microscope) suspended in a liquid,

by accepting Boltzmann’s view of atomism.

Once the particles in the liquid experience heat movement and push the mesoscopic par-

ticle in an arbitrary way, the particle is forced to move in any direction irregularly, which

is called a Brownian motion.

Assume that (Ω,F,P) is a probability space. A stochastic process is a measurable func-

tion X(t,ω) defined on the product space [0,+∞)×Ω. Especially:

(a) for t ∈ [0,+∞), X(t, ·) is a random variable,

(b) The pathway X(·,ω) is a measurable function for any ω ∈Ω,.

Definition 2.2.2. A stochastic process W(t,ω) is entitled a Brownian Motion (BM) if:

1. P{ω : W(0,ω) = 0}= 1.

2. For any 0≤ s < t, the random variable W(t)−W(s) has a normal distribution with

mean 0 and variance (t− s). Therefore, for any a < b,

P(a≤W (t)−W (s)≤ b) =
1√

2π(t− s)

∫ b

a
e

x2
2(t−s) dx. (2.2.5)

3. For any 0≤ t1 < t2 < · · ·< tn, the random variables {W(t1),(W(t2)−W(t1)), . . . ,(W(tn)−
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W(tn−1))}, are independent. Under this condition we say W(t,ω) has independent

increments.

4. Almost all sample paths of W(t,ω) are continuous functions, i.e.,

P{ω : W(·,ω) is continuous}= 1. (2.2.6)

2.2.5 White Noise

Brownian motion is considered as the fundamental structure to build a large group of

Markov processes with continuous sample paths, named diffusion processes.

A special form of diffusion processes will be discussed in this section with similar noise

as typical Brownian motion, and different drift.

Stochastic Differential Equations (SDEs) are useful method to define these forms of

processes. A stochastic differential equation is written as:

Ẋ = b(X)+E (t) (2.2.7)

where b :R→R is a particular smooth function and E (t) = Ẇ (t) shows the derivative of

Brownian motion with respect to time, or white noise.

Equation (2.2.7) can be interpreted in two ways:

1. A Brownian motion Ẋ = E perturbed by a drift term b(X), or

2. An ordinary differential equation Ẋ = b(X) perturbed by an additive noise.

Pointwise derivations of Brownian motions are not defined, but it is possible to explain

them in a distributional sense to obtain a general form of a stochastic process named white
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noise represented by:

E (t,ω) = Ẇ (t,ω) (2.2.8)

White noises can also be shown by E dt = dW . The word white noise comes from the

spectral theory of stationary random processes. According to Definition. (2.2.2), the

Brownian motion has Gaussian independent increments property with mean zero. Hence,

its derivation with respect to time is also a Gaussian stochastic process with mean and its

values at different times are independent.

2.2.6 Ito Stochastic Differential Equations

Notation. Suppose that W(·), and X0 are an m-dimensional Brownian motion, and an

n-dimensional random variable which is independent of W(·), respectively. Then

F (t) := U (X0,W(s)(0≤ s≤ t)) t ≥ 0 (2.2.9)

is called the σ -algebra made by X0 describing the history of the Wiener process until (and

including) time t.

Definition 2.2.3. Let X(·) is a real-valued stochastic process such that

X(r) = X(s)+
∫ r

s
F dt +

∫ r

s
G dW

where F ∈ L1(0,T ), G ∈ L2(0,T ) and 0≤ s≤ r ≤ T . Then for 0≤ t ≤ T , X(·) is said to

have the stochastic differential for 0≤ t ≤ T , which is written as:

dX = F dt +G dW (2.2.10)
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Theorem 2.2.5. (Ito’s Formula). Let X(·) has a stochastic differential

dX = F dt +G dW

where F ∈ L1(0,T ) and G ∈ L2(0,T ). Assume u : R× [0,T ]→ R is continuous and its

partial derivatives ∂u
∂ t , ∂u

∂x and ∂ 2u
∂x2 are continuous. If

Y (t) := u(X(t), t)

then Y has the stochastic differential

dY =
∂u
∂ t

dt +
∂u
∂x

dX +
1
2

∂ 2u
∂x2 G2 dt (2.2.11)

= (
∂u
∂ t

+
∂u
∂x

F +
1
2

∂ 2u
∂x2 G2) dt +

∂u
∂x

G dW (2.2.12)

Equation (2.2.11) is called Ito’s formula or Ito’s chain rule.

Hence,

Definition 2.2.4. According to the notation, an Ito stochastic differential equation (SDE)

is defined as a differential equation of the form:

{
dX = b(X, t) dt +B(X, t) dW

X(0) = X0
(2.2.13)

Definition 2.2.5. An Rn-valued stochastic process X() is called a solution of the Ito SDE

(2.2.13) for 0≤ t ≤ T when it provides the subsequent conditions:

1. X(·) is progressively measurable with respect to F (·)

2. F := b(X, t) ∈ L1
n(0,T )
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3. G := B(X, t) ∈ L2
n×m(0,T )

4. X(t) = X0 +
∫ t

0 b(X(s),s)ds+
∫ t

0 B(X(s),s)dW a.s. for all 0≤ t ≤ T

Following are some well-known examples of SDEs.

Example 2.2.1. Suppose that m = n = 1 and g be a continuous function (not a random

variable). Then the SDE equation

{
dX = gXdW

X(0) = 1
(2.2.14)

has the unique solution as:

X(t) = e−
1
2
∫ t

0 g2ds+
∫ t

0 gdW (2.2.15)

for all 0≤ t ≤ T .

Next example is called one-dimensional Geometric Brownian Motion (GMB).

Example 2.2.2. Suppose P(t) is the stock price at time t. Therefore, the growth of P(t)

in time can be modeled by assuming that dP
P , the relative change of price, is changing

according to the following SDE

dP
P

= µdt +σdW (2.2.16)

when µ and σ show drift and stock volatility, respectively. Hence, the equation (2.2.16)

can be written as:

dP = µPdt +σPdW (2.2.17)
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Using Ito formula, we have:

P(t) = P(0) eσW+(µ−σ2
2 )t (2.2.18)

Definition 2.2.6. Let

b(X , t) = c(t)+d(t)X

and

B(X , t) = C(t)+D(t)X

where

c : [0,T ]→ Rn

d : [0,T ]→Mn×n

C : [0,T ]→Mn×m

D : [0,T ]→ L(Rn,Mn×m)

Then, equation (2.2.13) is called a linear stochastic differential equation (linear SDE).

Definition 2.2.7. A linear SDE is homogeneous if c≡C ≡ 0 for all values of 0≤ t ≤ T .

Moreover a linear SDE is called linear in the narrow sense if D≡ 0.

Remark 2.2.1. b and B fulfil the conditions of the existence and uniqueness theorem

when

sup
t
[|c(t)|+ |D(t)|+ |E(t)|+ |F(t)|]< 1 (2.2.19)

Moreover, the linear SDE

{
dX = (c(t)+D(t)X)dt +(E(t)+F(t)X)dW

X(0) = X0
(2.2.20)
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has a unique solution with E(|X0|2)< 1.

2.2.7 Numerical Solution

In most cases, it is not easy to find the exact solution for SDEs. Hence, it is important to

solve them by using numerical methods. In this part, two standard numerical methods to

solve SDEs are reviewed.

Consider the one-dimensional Ito SDE Suppose that

{
dX = f (Xt ,θ) dt +g(Xt ,θ) dW

X(0) = x0
(2.2.21)

be an Ito stochastic differential equation, where W is an m-dimensional Brownian mo-

tion. In addition, assume that f : R×Θ→ R and g : R×Θ→ R1×m are given functions

of θ ∈ Θ, where θ is an unknown finite-dimensional parameter. For more convenience,

we use f (Xt) in place of f (Xt ,θ).

2.2.7 (a) Euler-Maruyama Method

Euler-Maruyama method is known as one of the most popular numerical methods for

solving SDEs. First, consider the Ito SDE (2.2.21) on interval of [t0,T ]. Now let t0 < t1 <

< tn < < tN = T be a discretization of the interval [t0,T ]. Thus, the Euler-Maruyama

approximation is defined as a continuous time stochastic process satisfying:

{
yn+1 = yn +hn f (yn)+g(yn)∆Wn

y0 = x0
(2.2.22)

where yn = y(tn) and hn = tn+1− tn is the step-size and n = 0,1, . . . ,N−1. In addition

∆Wn =W (tn+1)−W (tn)∼N (0,hn) (2.2.23)
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in which W (t0) = 0, and N has normal distribution.

The multi-dimensional Euler-Maruyama method is defined as:

{
yk

n+1 = yk
n +h f k +g(k,k)∆Wk

n

yk
0 = xk

0
(2.2.24)

The Euler-Maruyama method has strong order of convergence 1
2 (and weak order of con-

vergence 1). We refer the reader to (Kloden & Platen, 1992) for more details.

It should be noted that the accuracy order of a numerical scheme may equals p in general,

but this order may change for SDEs in individual form. For example, the strong order of

accuracy in Euler-Maruyama process with additive noise is one.

As the Euler-Maruyama method has a lower order of accuracy, the numerical outcomes

are less accurate. To solve this issue it is possible to use a small step-size , or more

efficient methods such as Milstein method.

2.2.7 (b) Milstein Method

In 1-dimentional SDEs, the Milstein scheme is defined as:

yn+1 = yn +h f (yn)+g(yn)∆Wn +
1
2

g(yn)g′(yn)((∆Wn)
2−h) (2.2.25)

Here, the term "′" demonstrates differentiation with respect to X .

This scheme has the strong order 1 of convergence, where E(x2
0)< ∞. f and g are twice

continuously differentiable, and f , f ′, g, g′ and g′′ satisfy a uniform Lipschitz condition.

Note that in case of SDEs with additive noise, both the Euler-Maruyama and the Milstien

method show same outcomes.

Now consider a d-dimensional system of (Ito) SDEs:

dXt = f (Xt ;θ)dt +g(Xt ;θ)dWt , X(0) = x0 (2.2.26)
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where W is m-dimensional Wiener process, f : Rd×θ → Rd and g : Rd×θ → Rd×m.

Let m = d. Therefore g is a diagonal matrix and the SDE has diagonal noise. In this case,

the multi-dimensional Milstein method for the kth element (k = 1, . . . ,d) of the Ito SDEs

is written as:

yk
n+1 = yk

n +h f k +g(k,k))∆Wk
n +

1
2g(k,k) ∂g(k,k)

∂Xk ((∆Wk
n)

2−h)

yk
0 = xk

0
(2.2.27)

where f k denote the kth element in f , and g(k,k) denotes the (k,k)th element in g. Readers

are referred to (Kloden & Platen, 1992) for more details in general form.

2.2.8 Parameter Estimation of a SDE model

Stochastic differential equations are powerful and useful methods to model the progres-

sion of dynamics phenomena, e.g. population dynamics of tumor cells, over the time. In

these models, parameters play a critical role in characterizing the dynamics of the sys-

tem. It frequently happens that the model parameters are not identified precisely, though

sample data for the individual dynamic phenomena are accessible.

The main interest is to find improved approximations for the model parameters by means

of the observed data. Practically, the most important problem in parameter estimation

arises when the data is available only in discrete time points in a time interval, while

SDEs are continuous processes.

There have been many research articles which have addressed new methods of param-

eter estimation in diffusion processes in the literature. Among these, we refer readers

to (Durham & Gallant, 2002; Ait-Sahalia, 2002; Aït-Sahalia, 2002; Alcock & Burrage,

2004; Bibby, Jacobsen, & Sørensen, 2004; Brandt & Santa-Clara, 2002b; Hurn, Lindsay,

& Martin, 2003; Nicolau, 2002).
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The overall structure is specified by the subsequent n-dimensional system of (Ito) SDEs

dXt = f (t,Xt ;θ)dt +g(t,Xt ;θ)dWt

X0 = x0
(2.2.28)

where t > 0 and W is an m-dimensional standard Brownian motions, f : [0,+∞)×Rn×

Θ→Rn and g : [0,+∞)×Rn×Θ→Rn×n are identified functions conditional on param-

eter θ ∈Θ.

In addition, suppose that x0 is a deterministic initial value and x0,x1, . . . ,xn are series

of past observations from the diffusion process X obtained from non-stochastic discrete

time-points t0 < t1 < · · · < tn. As X is Markovian, the maximum likelihood estimator

(MLE) of θ can be determined when the transition densities p(xt ;xs,θ) of X are identi-

fied, for s < t. In this case, the log-likelihood function of θ is given by

ln(θ) =
n

∑
i=1

log p(xi;xi−1,θ) (2.2.29)

By maximizing the function in equation (2.2.29) with respect to the parameter θ , the

maximum likelihood estimator θ̂ can be estimated. Under mild regularity conditions,

θ̂ is reliable, i.e., it is asymptotically normally distributed and asymptotically efficient,

when n goes to infinity (Dacunha-Castelle & Florens-Zmirou, 1986).

The difficulty with the MLE is that the transition density function of the underlying dif-

fusion process is often unknown. One response to this problem is to compute an approx-

imate transition density function numerically by:

1. solving numerically the Kolmogorov partial differential equations, which is satis-

fied by the transition density (Lo, 1986);

2. deriving a closed-form Hermite expansion to the transition density (Aït-Sahalia et
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al., 2008; Aït-Sahalia, 2002);

3. simulating R times the process to Monte-Carlo integrate the transition density (e.g.

(Hurn et al., 2003; Nicolau, 2002; Pedersen, 1995)): this method is known as sim-

ulated maximum likelihood (SML).

Recently a novel method using exact simulation was proposed (Beskos, Papaspiliopou-

los, Roberts, & Fearnhead, 2006). Each of these techniques has been successfully imple-

mented by the aforementioned authors, but each one has limitations (Ait-Sahalia, 2002).

Note that methods 1 and 3 which are mentioned above are computationally intense and

poorly accurate. Durham and Gallant (Durham & Gallant, 2002) developed their im-

portant sampling ideas in order to improve the performance of Brandt and Santa-Clara’s

(Brandt & Santa-Clara, 2002b, 2002a) method. Our opinion is that a method should be

not only accurate and fast but also practical. The simulation-based method 3 which is

mentioned above, is highly time-consuming and has proved that it is less accurate than

e.g. method 2 (Jensen & Poulsen, 2002).

On the other hand, they are very general and have proved to be applicable over a wide

range of SDE models. In general, method 2 should be the choice (but see (Stramer &

Yan, 2012) for some limitations), but computing the Hermite expansion of the transition

density could be a very difficult task, especially if the SDE is multivariate and non-linear.

Parameter estimation methods have some limitations. For instance, achieving a good

estimation is highly depending on some elements such as the number of available obser-

vations (n) (the larger the better), the number of simulations (R) (the larger the better),

the step-size (h) (the smaller the better), the suitability of the initial value of θ in the

optimization process.

Remark 2.2.2. To solve the above mentioned problems, it is highly recommended to plot
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SDE trajectories with different parameter values and perceive how the trajectories per-

form with respect to the real data, before the parameter estimation. When a proper value

for parameters is establishing, it can be considered as an initial value in the parameter

estimation process.

2.2.8 (a) A Non-Parametric Method

In the case of one-dimensional Ito SDE, a non-parametric simulated maximum likelihood

method is proposed in (Hurn et al., 2003). Here, we propose some improvement compare

with the original method and apply to the multidimensional SDEs.

Suppose that p(ti,xi;(ti−1,xi−1),θ) is the transition density of xi from xi−1 to xi. Then the

maximum likelihood estimation for θ is known by maximizing the value of the following

function:

L(θ) =
n

∑
i=1

p(ti,xi;(ti−1,xi−1),θ) (2.2.30)

with respect to θ .

Practically, L(θ) is estimated by means of the Monte Carlo simulations as it is described

by the subsequent method:

1. Take the time interval [ti−1, ti] and split it into M subintervals of size h = (ti −

ti−1)/M. Therefore, equation (2.2.28) is applied to these partitions by applying the

procedure (e.g. Euler-Maruyama, Milstein) in which xi−1 at time ti−1 is taken as

the initial point and consequently an approximation of X at ti is obtained.

Repeating this procedure R times, R estimations of the X procedure at time ti begin-

ning from xi−1 at ti−1 are generated. We demonstrate these values with X1
ti, . . . ,X

R
ti ,

i.e. X r
ti is the obtained value of (2.2.28) at ti beginning from xi−1 at ti−1 in the rth

simulation (r = 1, . . . ,R);

2. We use the simulated values X1
ti, . . . ,X

R
ti to make a non-parametric kernel density
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estimate of the transition density p(ti,xi;(ti−1,xi−1),θ)

pR(ti,xi; ti−1,xi−1,θ) =
1

Rhi

R

∑
r=1

K(
xiX r

ti
hi

) (2.2.31)

Here, hi is the kernel bandwidth at time ti and K(·) is an appropriate symmetric,

non-negative kernel function with the unit mass;

3. The previous process is iterated for each xi and the obtained pR(ti,xi; ti−1,xi−1,θ)

values are used to produce

LR(θ) = Π
n
i=1 pR(ti,xi; ti−1,xi−1,θ) (2.2.32)

4. LR(θ) is maximized with respect to θ to get the estimation MLE θ R of θ .

Remind that the precise structure of LR necessitates that the Wiener increments, after the

generation, are kept stable for the subsequent optimization process. A proper choice of

K(·) is given by the normal kernel

K(u) =
1√
2π

exp(−u2/2) (2.2.33)

with bandwidth given by (Scott, 2015)

hi = (4/3)1/5siR1/5, i = 1, . . . ,n (2.2.34)

where si’s show the standard deviation of the sample data presented to the kernel at time

ti, i.e. si which is calculated in X1
ti, . . . ,X

R
ti .
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Note that, for numerical limitations, it is more appropriate to minimize the negative log-

likelihood function

logLR(θ) =
n

∑
i=1

log pR(ti,xi;(ti−1,xi−1),θ) (2.2.35)

and the estimated MLE is obtained by θ R = argminθ log(LR(θ)). In the case of multi-

dimensional SDEs, the method can be directly developed, for example, by considering

pairwise independence of system variables in the method. Here, the multidimensional

kernel density estimator can be demonstrated as the result of the kernels of each variable

and the bandwidth for the generic dimension k of the SDE denoted by

hi,k = (4/(d +2))1/(d+4)si,kR1/(d+4) (2.2.36)

where i = 1, . . . ,n and k = 1, . . . ,d (Scott, 2015).

Remark 2.2.3. In statistics regularity conditions typically refer to necessities that cause

function or groups of functions (usually probability density functions) behave well in

numerous senses. These assumptions are considered in proofs of statements that are

believed to hold in most practical cases and frequently not clearly stated in the theorem

statement. Mild or weak term fundamentally state that it is considered to observe these

regularity conditions nearly all the time in practice.

2.2.8 (b) A Parametric Method

In the prior subsection, a non-parametric method has been presented to estimate the

parameters of an SDE model. This scheme is applicable to approximate both Ito and

Stratonovich SDEs by means of either the Euler-Maruyama or the Milstein methods,

while the parametric method described here is only applicable to Ito SDEs by means
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of only the Euler-Maruyama separation.

The simulated maximum likelihood method introduced in this section was originally pre-

sented in (Pedersen, 1995) and was developed in (Durham & Gallant, 2002) using im-

portance sampling methods. For simplicity, we only take the original form. For a d-

dimensional fully observed SDE, L(θ) is estimated by means of Monte Carlo simulations

based on the following procedure:

1. Consider interval I = [ti−1, ti] with the partitions of length h = (ti− ti−1)/M, then

equation (2.2.28) is applicable on the mentioned subinterval by means of a normal

scheme such as Euler-Murayama or Milstein.

Here, xi−1 at time ti−1 is taken as the initial value and consequently an estimation of

X at ti−1 +(M−1)h is achieved. This process is repeated R times, thus producing

R estimations of the X at time ti−1 +(M−1)h beginning from xi−1 at ti−1.

Remember that the X values X1
ti, . . . ,X

R
ti are the integrated value of (2.2.28) at ti

beginning from xi−1 at ti−1 in the rth iteration(r = 1, . . . ,R);

2. The simulated values X1
ti, . . . ,X

R
ti are applied to build a non-parametric kernel

density estimate of the transition density p(ti,xi;(ti−1,xi−1),θ)

pR(ti,xi; ti−1,xi−1,θ) =
1
R

R

∑
r=1

Φ(xi;meanR
i,VarR

i) (2.2.37)

in which

meanR
i = X r

ti−1 +h f (ti−1 +(M−1)h,X r
ti−1;θ), (2.2.38)

and

VarR
i = h

R

∑
r=1

(ti−1 +(M−1)h,X r
ti−1;θ), (2.2.39)

Here, Φ(x; ·, ·) representing the multivariate normal density at x and ∑(t,x;θ) =
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g(t,x;θ)g(t,x;θ)>, where > indicates transposition;

3. The prior technique is iterated for each xi and the pR(ti,xi; ti−1,xi−1,θ) are obtained

values to be used in

LR(θ) = Π
n
i=1 pR(ti,xi; ti−1,xi−1,θ) (2.2.40)

4. logLR(θ) is minimized with respect to θ to obtain the MLE estimation θ R of θ .

The convergence of θ R to the MLE of θ when M→∞ and R→∞, with R
1
2

M → 0 is proven

under mild regularity conditions (Brandt & Santa-Clara, 2002b).

2.3 Mathematical Models

There are a large number of mathematical models proposed for the population dynamics

of tumors and the tumor growth. We refer reader to review articles (Araujo & McElwain,

2004; Bellomo & Preziosi, 2000; Bellomo, Li, & Maini, 2008; Byrne, Alarcon, Owen,

Webb, & Maini, 2006; Martins, Ferreira, & Vilela, 2007; Nagy, 2005; Roose, Chapman,

& Maini, 2007; Chaplain, 2008).

Partial differential equations (PDEs) are one of the most popular methods to describe the

spatial models. Different PDE models are proposed for tumor growth. Among that, we

refer the reader to (Araujo & McElwain, 2004; Roose et al., 2007; Chaplain, 2008)).

Mathematical models based on kinetic theory are also known as the second class of math-

ematical models for tumor growth (Bellomo & Delitala, 2008).

The other important class of models for the population dynamics of tumor cells and the

tumor growth are Ordinary Differential Equations (ODEs) models.

These forms of models are called non-spatial models (Adam & Bellomo, 2012; Dullens,
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Van Der Tol, De Weger, & Den Otter, 1986; Bajzer, Marušić, & Vuk-Pavlović, 1996;

Sachs, Hlatky, & Hahnfeldt, 2001a; Nagy, 2005).

With a simple and intuitive structure, ODE models are able to explain the interaction be-

tween tumor cells with each other, tumor cells and normal tissues and the response of

tumor cells to the different treatments (Bajzer et al., 1996; Sachs et al., 2001a).

ODE models can be classified based on the compartments of the model (e.g. one (Gompertz,

1825), two (Sachs et al., 2001a), three (Bajzer et al., 1996), six (Piantadosi, Hazelrig, &

Turner, 1983) or more ((Piantadosi et al., 1983)) compartments. The other models focus

on the practical features of the tumor growth (Nagy, 2005).

2.3.1 Early Models of tumor growth

The first mathematical models for the tumor growth were focused on the dynamics of

tumor growth. Many researchers considered diffusion processes as the most remarkable

part of tumor growth models. For instance, the effects of X-rays on the Jensen’s rat sar-

coma growth conducted by Mayneord, in 1932.

They found that the tumor’s growth changed linearly with respect to time in the last pe-

riod of their growth (Mayneord, 1932)). Same findings were achieved by Haddow in 1938

(Haddow, 1938) during the study of mouse carcinomas.

As reported in (Mayneord, 1932), researchers were highly interested in the tumor growth

rate since the tumor disappearance or is continued growth after radiation was an insuffi-

cient criterion to evaluate the impact of radiation on tumor growth.

After histological investigation discovered that dynamic growth was limited to a thin cov-

ering at the tumor’s margin, a mathematical model was developed by Mayneord (Mayneord,

1932) in which the influence of different distributions of dynamically separating cells was

investigated.

Many researchers continued experimental studies to investigate how hypoxic tumor cell
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affected the tumor’s radio-sensitivity (Cramer, 1934; Mottram, 1936; Gray, Conger, Ebert,

Hornsey, & Scott, 1953).

A mathematical framework was proposed by (Thomlinson & Gray, 1955) to model the

oxygen diffusion and utilize it to complete an experimental study of some forms of

bronchial carcinoma, which grow in the solid rods. These rods are capillaries free. Cells

are fed by diffusion of metabolites obtained from the adjacent stroma. In big tumors,

necrotic centers enclosed by whole tumor cell are detectable.

According to the facts, a declining trend in oxygen pressure must exist between the mar-

gin and the center of each tumor cord. Using the different damages caused by X- or γ-

radiation in anoxic cells with well-oxygenated cells, researchers tried to estimate the crit-

ical value of the tumor cord’s outer radius where the oxygen concentration goes to zero

at the center of tumor, by using the theory developed by (A. Hill, 1928).

In 1825, Gompertz proposed an actuarial model (Gompertz, 1825). Later, the model was

used to study the population growth in biological and economical events (Winsor, 1932).

Gompertzian model is widely used for examining the growth in both normal (Laird, Tyler,

Barton, et al., 1965) and tumor cells.

(Laird, 1964) showed that many of primary tumors in rabbit, rat, and mouse could be

modeled by Gompertzian equations. (Burton, 1966) developed a model to examine not

only the oxygen distribution in spherical tumors in which the blood supply is entirely

restricted to the surface but also the resulting relative radius of the central zone to the

total radius. These results were used to show that growth curve could be described by a

Gompertzian equation.

2.3.2 Mathematical models of radiation effect

The earliest models for the fractionated radiation therapy was developed based on some

theories such as target theory and hit theory (Cohen, 1971) and Power Law equation of
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the Nominal Standard Dose theory of fractionated cell kill (Ellis, 1969).

However, the Linear Quadratic (LQ) model was widely used by many researchers from

the beginning of the 1980s. This model was used to predict the relationship between cell

mortality caused by radiation and radiated dose fractions, where the magnitude of each

dose fraction was around 2 Gray.

LQ model was formed based on the prominent work (D. Lea & Catcheside, 1942) by

Lea and Catcheside or the DNA Single-Strand Break (SSB) and Double-Strand Breaks

(DSBs).

In the middle of 1980s, using LQ model became very popular and some researchers mod-

ified the model. For instance, (Withers, Taylor, & Maciejewski, 1988) considered the

time-factor for the tumors with rapid response.

Moreover, (Alper, 1979) modified the model based on the oxygenation enhancement ratio

(OER) for the tumors, which were radio-resistant in hypoxia condition.

Later, some other mathematical models were proposed (e.g. the binary misrepair model

and models of repair capacity saturation). In a research by (Brenner, Hlatky, Hahn-

feldt, Huang, & Sachs, 1998), similar outcomes were shown in a comparison between

LQ model and these models under specific condition (e.g. 2 Gray in each dose fraction).

A comprehensive review article in the history of mathematical modeling of fractionated

radiation therapy has been provided by (Dale, Jones, et al., 2007). This article and some

other works such as (J. F. Fowler, 1989; J. Fowler, 2014; Bentzen, 1993) are recom-

mended as a key reference for all tumor growth mathematical modelers.

In the last two decades of the 20th century, along with the development and extensive

applications of LQ model in clinical research, other models has been developed.

In the first step, these models had a mathematical framework. However, some researchers

utilized the stochastic modeling methods to explain the influence and action of ionizing

radiation on alive cells. The models became more complex over the time, so it was re-
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quired to propose more accurate models and to model on smaller scales.

Macroscopic tumors modeling is the most relevant mod for comparisons to human data

and eventual translation into clinical use, consequently, the modeling of the tumors vas-

cular system became of interest.

In massive clinical data for specific tumors such as head and neck (Dunst et al., 2003);

(Nordsmark & Overgaard, 2004; Rischin et al., 2006), hypoxic condition is very impor-

tant. Subsequently, some mathematical modelers considered oxygenation parameters in

their models.

As a consequence, modelers applied diffusion theory to model the carrying of oxygen

through tissue (S. E. Hill, 1928). Such a mentioned theories were used to develop new

complex stochastic and hybrid mathematical models (Tannock, 1972; McElwain, Call-

cott, & Morris, 1979).

In the 1980s, using a personal computer was very popular in some parts of the world like

US, Germany, and Norway. Therefore, tumor growth and treatment modeling were im-

proved in this period. CELLSIM (later called 2D CELLGROW) (Donaghey, 1980, 1983)

is one of the earliest stochastic models for the growth of vascular tumors.

(O’Donoghue, 1997) proposed a mathematical model based on the Linear Quadratic (LQ)

model to show the tumor growth changes. He examined a type of tumor cell proliferation

that is exponential at small tumor sizes and Gompertzian at larger sizes. Moreover, by

using deterministic equations, tumor mass curves and cell survival fraction were plotted

as a function of time.

Duchting et al. in the 1980s and 1990s developed mathematical stochastic models of the

tumor growth treated by radiation. They were pioneer to consider cell by cell modeling

of the tumor cells population dynamic by considering the cellular oxygenation parame-

ters, cellular kinetics and radiation schedule parameters (Düchting & Vogelsaenger, 1985;

Duechting, Ginsberg, & Ulmer, 1995; Duechting, Lehrig, Ginsberg, Dedeleit, & Ulmer,
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1992; Düchting & Vogelsaenger, 1981).

Seminal models has been proposed by Kocher et al in 1990s (Kocher, Treuer, & Müller,

1997; Kocher et al., 2000). In their study, oxygenation was considered via modeling a 3D

regular vessels array inside the tumor mass.

In the late 1990s, Wouters group proposed a new mathematical model in which the tu-

mor oxygenation and reoxygenation processes have been considered (B. G. Wouters &

Brown, 1997; B. Wouters et al., 2002).

A stochastic modeling of tumor growth was developed in the next few years. The model

considered cells with different ranges of proliferative capacity. It also described the kinet-

ics of fast repopulation and radiation therapy and chemotherapy as a treatment (Marcu,

Van Doorn, & Olver, 2004; Marcu, Van Doorn, Zavgorodni, & Olver, 2002; Marcu,

Bezak, & Olver, 2006).

The model showed that the asymmetry loss in stem cells division (for a small percentage

of stem cells population) could be the essential mechanism in tumor repopulation while

cells movement from G0 phase to G1 phase of the cell cycle does not play an important

role in tumor regrowth.

Two mathematical models of tumor treatment including stochastic parameter distribution

were proposed in 2002.

In the first model, microvascular density and 2D tumor heterogeneity were modeled and

clinically verified (Nilsson, Lind, & Brahme, 2002).

In the second study, the model accounted for the transporting different doses to different

cells according to the oxygen status (Popple, Ove, & Shen, 2002).

In this model, both chronic (permanent) and acute (temporal) hypoxia was considered. It

is verified that 20% to 50% increase in dose in the hypoxic condition required the same

dose to control the tumor growth in the oxic condition.

In 2006, a spatial mathematical model was developed by Sovik group to dose-paint radio-
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resistant tumors sub-volumes with higher than normal doses (Søvik, Malinen, Bruland,

Bentzen, & Olsen, 2006).

Considering reoxygenation, the model was verified by applying clinically appropriate

oxygenation distribution. They showed that applying different doses to different parts of

the tumor can notably boost Tumor Control Probability (TCP). Moreover, they found that

the reoxygenation rate is an important parameter in the model.

Tumors without reoxygenation had the most benefit of dose redistribution. In addition,

the level of the temporal hypoxia influenced results less than that of permanent one.

In the models proposed by Dasu et al. (Daşu & Denekamp, 1999; Toma-Daşu, Daşu, &

Karlsson, 2006; Toma-Daşu, Daşuu, & Brahmeu, 2009) the influence of hypofractiona-

tion, acute and chronic hypoxia on tumor control has been explored via a probabilistic

model (Toma-Daşu et al., 2006; Daşu, Toma-Daşu, & Karlsson, 2005). After that, the

most important model parameter was measured.

Model outcomes verified that a complete explanation is needed for tumor oxygenation to

predict the treatment results. Moreover, results showed that the existence of permanent

oxygenation is more important than the changes of acute hypoxia between fractions of

treatment.

Lastly, many stochastic models are developed to model the relation between vascularized

tumor growth and radiation therapy in the past decades.

For example, Stamatakos et al have proposed several studies to model the effects of radi-

ation on tumor growth for brain and lung cancers.

Early works started with a 3D discrete model (Starnatakos et al., 2001) using in vitro

small lung cancer cells. In this work, they improved the models proposed by Duechting

et al. in the 1980s.

Since 2004, they concentrated on glioblastoma multiform. The models has been cali-

brated and verified by using experimental and clinical data (G. Stamatakos et al., 2010;
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G. Stamatakos, Antipas, Uzunoglu, & Dale, 2014; D. Dionysiou, Stamatakos, Gintides,

Uzunoglu, & Kyriaki, 2008; Antipas, Stamatakos, Uzunoglu, Dionysiou, & Dale, 2004;

D. D. Dionysiou & Stamatakos, 2006; G. S. Stamatakos, Georgiadi, Graf, Kolokotroni,

& Dionysiou, 2011).

Considering angiogenesis, Borkenstein et al. (Borkenstein, Levegrün, & Peschke, 2004)

introduced a spatial model for tumor growth treated by radiation in which each tumor cell

was considered individually. Capillaries are located in a 3D lattice.

Cells were oxygenated according to the distance to the nearby capillary cell. It was shown

that cells in a hypoxic condition secrete an angiogenesis factor comparing to the propor-

tion of hypoxic tumor cells.

HYP-RT is a temporal stochastic model (Harriss-Phillips, Bezak, & Yeoh, 2014; Tuck-

well, Bezak, Yeoh, & Marcu, 2008) simulating individual tumor cell division and the

effects of fractionated radiotherapy, with assumed randomized spatial cell placement in

the tumor.

The model is based on the proliferative hierarchy of epithelial cells, simulating head and

neck squamous cell carcinoma growth and radiotherapy, with hypoxia modeled by using

realistic oxygen distributions and a dose per fraction dependent OER curve.

The model is capable of simulating the effects of reoxygenation of hypoxic tumors as

well as the accelerated repopulation. Results show that accelerated repopulation and the

percentage of stem cells are the two most important parameters controlling growth rate

and radiotherapy outcome.

2.3.3 Cell Cycle Models

Investigating the effects of treatments on breast cancer cell lines involves determining

how they influence cell proliferation rate.

As cells proliferate, they progress through a series of distinct phases. In the first phase,
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the G1 (gap phase), cells are only receptive to environmental signals. This phase is named

so as it appears as a gap between the previous cell division stage and subsequent DNA

synthesis phase (Uzman, 2003).

If a cell decides to divide, it makes an irreversible decision to progress into the S phase,

or the synthesis phase, during which DNA synthesis occurs.

Upon DNA synthesis completion, the cell moves into the G2 phase (the second gap

phase), when accumulated errors in the replicated DNA are reviewed and corrected.

The cell then moves into the M phase (mitosis phase), where the duplicated chromosomes

are separated into two sets of nuclei. At the end of the M phase, the cell splits into two

identical cells via a process called cytokinesis. Both daughter cells begin their cycle again

in the G1 phase (Uzman, 2003).

Several mathematical models for cell cycle progression have been developed (Sible &

Tyson, 2007). For instance, Piantadosi et al.’s cell cycle model contains five compart-

ments: G0, G1, S, G2 and M (Piantadosi et al., 1983). It uses a system of six nonlinear

ODEs to model the tumor growth.

Similar approaches have been presented in (Pena, 2004) and (Sachs, Hlatky, & Hahnfeldt,

2001b), by considering two compartments. According to (Pena, 2004), cells are divided

into quiescent and active compartments. (Sachs et al., 2001b) considers hypoxic and nor-

moxic tumor cells in the subpopulation.

Basse et al. studied tumor growth populations in human cell lines through a multi-

compartment model of cell cycles (Basse, Baguley, Marshall, Wake, & Wall, 2004).

Using an age structure model, Albano and Giorno developed a mathematical model of

cell population dynamics for colorectal cancer (Albano & Giorno, 2006). Simms et

al.,(Simms et al., 2012), applied a three-compartment cell cycle model to the MCF-breast

cancer cell line.

It introduced a cell population dynamic based on three main subpopulations, namely G,
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S and M, each of which is divided into three, two, and two subpopulations, respectively.

This approach resulted in a system of seven nonlinear delay ODEs describing cell popu-

lation dynamics.

One common drawback among above mentioned mathematical models is that they all

suffer from lack of considering the inherent error in the death rate caused by the flow cy-

tometry method. This error is rooted in recognizing apoptotic cells as live cells (Daukste,

2012).
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CHAPTER 3

MATHEMATICAL MODELS

In this chapter, first, we introduce a discrete model which describes the effect of radiation

as the treatment and included DNA repair mechanism in cells based on the Target The-

ory and Hit Theory in section (3.1). Thereafter two mathematical models will propose

to study the population dynamics of tumor cells which are treated by radiation.

According to the Target Theory, the tumor population is divided into m different sub-

populations based on the different effects of ionizing radiations on human cells in the first

model in section (3.2).

A hybrid model consists of a system of ordinary differential equations with random vari-

able coefficients representing the transition rates between sub-populations, is used to

model the dynamics of cell sub-populations within the tumor.

Moreover, a new mathematical model is proposed for studying the population dynamics

of breast cancer cells treated with radiotherapy by using a system of stochastic differential

equations (SDEs) through the second model in section (3.3).

According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M,

representing gap, synthesis, and mitosis subpopulations.

Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopu-

lation are highly radio-resistant. Subsequently, the proposed model is calibrated by using

experimental data from previous experiments involving the MCF-7 breast cancer cell line.

Finally, we will propose a new definition for the tumor lifespan based on the tumor cell

population size in section (3.4).
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3.1 Markov chain model for a single cell

According to the target theory and hit theory, each cell has a certain number m of radio-

sensitive sites so-called targets. These targets may be deactivated by radiation particles

and a cell dies if all of its targets become deactivated. Therefore, after the application of

one dose fraction of radiation, one cell may have m+1 possible states.

1. The cell has i deactivated target(s) where i ∈ {0,1, ...,m−1}.

2. The cell has m deactivated targets. This cell is considered to be dead.

For example, different states for a cell with m = 3 targets is shown in Figure (3.1).

Figure 3.1: Different states for a cell with m = 3 targets.

Now let Zk be the random variable describing the state of the cell at time k and Zk =

i ∈ {0,1, ...,m} is the number of deactivated targets at time k. We suppose that Zk is

a discrete-time Markov chain. Hence, the cell state at time k + 1 only depends on the

current state at time k.

In the next subsection we evaluate the transition matrix Π, which models both the effect

of radiation and repair Mechanism

3.1.1 Treatment Mechanism

Denote P(i, j) the probability to deactivate j targets at time k+ 1 when i targets are dis-

abled at time k. Let q be the probability of inactivating a target after applying a dose frac-

tion u0. Moreover, we suppose that disabling targets in the cell are independent events.
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Thus after applying a fraction dose, the possible states at time k+ 1 of a cell which was

in state i at time k are {i, i+1, ..., m}. The cell may switch at time k+1 to the state j by

the deactivation of j− i target(s) among the m− i active ones. Consequently,

P(i, j) =

{(m−i
j−i

)
q j−i(1−q)m− j

0
i≤ j
j < i

(3.1.1)

and the explicit expression is:

P =



[(1−q)m (m
1

)
q (1−q)m−1 ... qm

0 (1−q)m−1 ... qm−1

. . . .

. . . .

. . . .

0 0 ... q

0 0 ... 1



(3.1.2)

Figure (3.2) shows the transition graph of the radiation process before taking the repair

of inactive targets into account, for the case of a 3-target cell, i.e. m = 3.

3.1.2 Repair Mechanism

We introduce now repair mechanisms of deactivated targets, which occur between the

application of two consecutive dose fractions. Let r be the probability of an inactive target

in a living cell to revive during the period that separates two consecutive dose fractions.

We assume that any target can be repaired independently from each other. The possible

states at time k+1 of a cell which was in state i at time k are {0,1, ..., i}. Denote R(i, j)

the probability that the cell switches at time k+1 to the state j. Since i− j targets among
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Figure 3.2: The transition graph of the radiation process before considering the repair mecha-
nism, for the case of m = 3.

the i inactive targets are repaired, then

R(i, j) =

{( i
j

)
ri− j(1− r) j

0
j ≤ i < m

i < j
(3.1.3)

where R(m,m) = 1 and R(m, j) = 0 for m 6= j.

and the explicit expression is:

R =



[1 0 ... 0

r 1− r ... 0

r2 (2
1

)
r (1− r) . 0

. . . .

. . . .

rm−1 (m−1
1

)
rm−2 (1− r) ... 0

0 0 ... 1



(3.1.4)
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3.1.3 Transition matrix of Zk

We model the dynamics of the Markov chain Zk first by taking the effects of dose fractions

and second by taking the repair mechanisms into account as follows:

Π = P R (3.1.5)

where P models the effects of dose fractions and R describes repair mechanisms.

In the case of a 3-target cell,

R =



[(rq+q′)3− (rq)3 3 r′q q′2 +6rr′q2q′ 3r′2q2q′ q3

rq′2 r′q′2 +4rr′qq′ 2r′2qq′ q2

r2q′ 2rr′q′ r′2q′ q

0 0 ... 1



(3.1.6)

where q′ = 1−q and r′ = 1− r.

Figure (3.3) shows the transition graph corresponding to the Markov chain (Zk) after

taking the repair of inactive targets into account.

Figure 3.3: The transition graph for (Zk) after the application of treatment and repair mechanism.
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3.2 An ODE model for tumor Cells Population Dynamics Based on Target Theory

One of the typical methods to treat cancer is External Beam Radiation Therapy (XRT). It

has been verified that the ionization the process initiated through radiating particles leads

to lesions in the cells (Curtis, 1986). The lesions negatively affect the DNA structure,

which is considered one of the most harmful kinds of radiotherapy damage (Wyman &

Kanaar, 2006), (Hoeijmakers, 2001). In this regard, probabilistic models such as Tumor

Control Probability (TCP) (Zaider & Minerbo, 2000; Dawson & Hillen, 2006; Gay &

Niemierko, 2007) and Normal Tissue Complication Probability (NTCP) (Lyman, 1985;

Källman, Ågren, & Brahme, 1992) can be utilized in the classification and evaluation of

radiation treatment planning.

Numerous stochastic models have been developed to predict tumor response to radiation

treatment (e.g. linear quadratic model (Zaider & Minerbo, 2000; J. F. Fowler, 1989),

cell population dynamics models (Quinn & Sinkala, 2009; Sachs et al., 2001b; Gámez,

López, Garay, & Varga, 2009), mixed-effects behavioral models (Bastogne et al., 2010)

and cell cycle models (Kirkby, Burnet, & Faraday, 2002).) Most of these models do not

incorporate biological tumor damage heterogeneity, which is the focus of our study. We

refer the reader to Michelson and Leith (Adam & Bellomo, 1997) for information on dif-

ferent types of heterogeneity.

The Target Theory is an essential concept for understanding radiation biology (Rédei,

2008). The target is assumed to be a radio-sensitive site within cells. Each cell contains

a certain number of targets, each of which may be deactivated after being hit by radiation

particles. Moreover, between two consecutive dose fractions, each target may become

active again the following immune system reaction (Turner, 1975). Even though many

complex interpretations of the target theory have been developed, the basic principle en-

tails the death of the organism on account of the target(s) inactivation within the organ-
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ism. Despite the target being considered a unit of biological function (Nomiya, 2013),

the number of targets and their locations in an organism are sometimes vague. Regarding

cell sensitivity, a large part of models usually assumes that cell sensitivity is constant dur-

ing radiation (Keinj, Bastogne, & Vallois, 2011, 2012; O
′
Rourke, McAneney, & Hillen,

2009). The same assumption is also made for cell populations, i.e., a surviving cell is

expected to be viably considered an irradiated cell. Therefore, all cells are supposed to

have similar survival probabilities. However, there is strong evidence that damaged cells

are unable to resist radiation (Keinj et al., 2011, 2012).

The clinical significance of the intra-tumor heterogeneity of cell phenotypes and cell dam-

age is discussed in (Gupta et al., 2011; Durrett, Foo, Leder, Mayberry, & Michor, 2011).

As such, providing a definition for the suitable duration of treatment is rather a clinical

challenge, especially when therapeutic response variability is considered. In this regard,

Kienj et al. developed a discrete-time Markov chain multinomial model for tumor re-

sponse (Keinj et al., 2011). This model employs the Target Theory.

As described in (Keinj et al., 2011), this multinomial model can be generalized to in-

corporate the heterogeneity of cell damage as a result of treatment. However, the model

merely enumerates the surviving cells in the tumor rather than the tumor’s lifespan. This

model inspects the number of surviving cells in the tumor and not the tumor lifespan as

seen in the majority of models utilized to measure tumor response to treatment.

In this section, a new mathematical model is proposed for the population dynamics of

heterogeneous tumor cells following external beam radiation treatment.

According to the Target Theory, the tumor population is divided into m different subpop-

ulations based on the diverse effects of ionizing radiation on human cells.

A hybrid model consists of a system of differential equations with random variable coef-

ficients representing the transition rates between subpopulations.

Such model is utilized to model the dynamics of cell subpopulations within a tumor. The
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model also describes the cell damage heterogeneity and the repair mechanism between

two consecutive dose fractions.

3.2.1 Assumptions

We adopted the following assumptions in our modeling framework:

1. Cells have the same phenotype but act independently.

2. In the radiotherapy process, the magnitude of each dose fraction (u0) is constant

during treatment (i.e. u0 = 2 Gy). The time lag between two consecutive dose

fractions is 24 hours.

3. Each cell consists of m targets, which may be deactivated with probability q after

each dose fraction. As described earlier, P(i, j) represents the treatment probability

matrix in the transition from i to j inactive targets, i.e., deactivating j targets when

i targets were disabled before. This probability is written as:

P(i, j) =

{(m−i
j−i

)
q j−i(1−q)m− j

0
i≤ j
j < i

(3.2.1)

4. Each target may be revived with probability r. As described previously, R(i, j)

represents the repair probability matrix in the transition from i to j, as given by:

R(i, j) =

{( i
j

)
ri− j(1− r) j

0
j ≤ i < m

i < j
(3.2.2)

where R(m,m) = 1 and R(m, j) = 0 for m 6= j.

5. xi indicates the cell subpopulation with i deactivated target(s), where i = 0, ...,(m−

1). For i 6= j, each cell can move from xi to x j with the constant time-independent

transition rate of α(i, j).
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6. A cell is considered as a dead cell if all targets are deactivated. The cell death rate

in subpopulation xi is considered constant, Di.

7. Cells can reproduce if all targets become active. For simplicity, we assume that just

before the repair mechanism acts, cells in subpopulation x0 can give birth to new

cells proportional to subpopulation x0 with a constant rate of (β ). As such, each

cell in subpopulation x0 can divide into exactly two daughter cells with probability

µ or it can remain unchanged with probability (1− µ) between two consecutive

dose fractions.

Therefore, we can divide the tumor cells population into m subpopulations {x0,x1, . . . ,x(m−1)}

according to the effect of radiation particles on cells. The schematic illustration of tumor

cells population is shown in Figure. (3.4).

Figure 3.4: Schematic illustration of tumor cell population model.

3.2.2 Model derivation

As indicated in Fig. (3.4), tumor dynamics is generally described as the effect of radio-

therapy on the different tumor cell subpopulations.
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Based on the conservation low

dxi(t)
dt

= In(t)−Out(t) (3.2.3)

Subsequently, the conservation law for subpopulation xi’s, i = 0, . . . ,m− 1 is written as

follows.

For i = 0:

dx0(t)
dt

= β x0(t)︸ ︷︷ ︸
Birth due to mitosis

+
m−1

∑
j=1

α( j,0)x j(t)︸ ︷︷ ︸
transition to x0

−

transition from x0︷ ︸︸ ︷[m−1

∑
k=1

α(0,k)
]

x0(t)−
Death︷ ︸︸ ︷

D0 x0(t) (3.2.4)

and for i 6= 0:

dxi(t)
dt

=
m−1

∑
j=0
j 6=i

α( j, i) x j(t)

︸ ︷︷ ︸
transition to xi

−

transition from xi︷ ︸︸ ︷[m−1

∑
k=0
k 6=1

α(i,k)
]

xi(t)−
Death︷ ︸︸ ︷

Di xi(t) (3.2.5)

These equations produce the following ODE system:

dx0(t)
dt

= β x0(t)+
m−1

∑
j=1

α( j,0) x j(t)−
[m−1

∑
k=1

α(0,k)+D0

]
x0(t) (3.2.6)

dx1(t)
dt

=
m−1

∑
j=0
j 6=1

α( j,1) x j(t)−
[m−1

∑
k=0
k 6=1

α(1,k)+D1

]
x1(t)

...

dxm−1(t)
dt

=
m−2

∑
j=0

α( j,m−1) x j(t)−
[m−2

∑
k=0

α(m−1,k)+Dm−1

]
xm−1(t)
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3.2.3 Model Calibration

The probability that a cell will remain in x0 after radiation is P(0,0). Therefore, the

average number of births in one day after applying the kth dose fraction and just before

the (k+1)th dose fraction is equal to:

n(k) = x0(k) µ P(0,0)

= x0(k) µ(1−q)m (3.2.7)

As seen in Eq. (3.2.7), the newborn cells population size is proportional to x0. Therefore,

the birth rate can be taken as:

β = µ(1−q)m (3.2.8)

Lemma 3.2.1. Suppose that a cell has i deactivated target(s) just before the application

of a dose fraction and Π = PR. After treatment and repair,

1. Π(i, j) represents the probability that a cell with i deactivated target(s) has j deac-

tivated target(s) right before the application of the next dose fraction.

2. An average number of xiΠ(i, j) cells move from xi into x j.

3. For fixed m and k ≥ 1, map i→Πk(i,m) is an increasing map.

Proof. 1. Suppose that Π = PR. Therefore:

Π(i, j) =
m

∑
k=0

P(i,k)R(k, j) (3.2.9)

58

Univ
ers

ity
 of

 M
ala

ya



Eq. (3.1.3) shows that R(m, j) = 0 for j < m. Therefore:

Π(i, j) =
m−1

∑
k=0

P(i,k)R(k, j) (3.2.10)

Now assume that a cell has i deactivated targets just before applying a dose frac-

tion. After radiation and right before the repair mechanism, this cell may remain

in subpopulation xi with probability P(i, i), or it may move to subpopulation xk,

k = i+1, ...,(m−1), with probability P(i,k).

Following the repair, this cell may move from subpopulation xk to subpopulation x j

with probability R(k, j). Therefore, the probability of transitioning from subpopu-

lation xi into subpopulation x j after treatment and repair (one day) is Π(i, j).

2. The effect of treatment and repair on one cell is independent of the rest of the

cells. Therefore, the average number of cells moving from subpopulation xi into

subpopulation x j is equal to xiΠ(i, j).

3. See (Keinj et al., 2012).

The following corollary is a direct consequence of lemma (3.2.1).

Corollary 3.2.1. With the same assumptions in Lemma (3.2.1):

1. The cells’ transition rate from subpopulation xi into subpopulation x j is equal to

α(i, j) = Π(i, j) (Day−1) (3.2.11)
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2. The death rate of subpopulation xi is

Di = Π(i,m) (Day−1) (3.2.12)

Remark 3.2.1. According to lemma 3.2.1, we can separate the tumor cells into different

sub-populations according to their sensitivities to radiation. Therefore, the death rate in

a subpopulation with more deactivated targets is higher than a subpopulation with fewer

deactivated targets, which can be interpreted as treatment heterogeneity in the model.

Now, starting with subpopulation x0, cells give birth at a constant rate of µ(1−q)m (Day−1).

In addition, cells move from subpopulation xi into subpopulation x0 at a rate of Π(i,0) (Day−1).

Conversely, cells move from subpopulation x0 into subpopulation xi at a rate of Π(0, i) (Day−1)

or may die at a rate of Π(0,m) (Day−1) where Π is the transition matrix. Hence, for any

i = 0, ...,(m−1):
m

∑
k=0

Π(k, i) = 1 (3.2.13)

and
m

∑
k=0
k 6=i

Π(i,k) = 1−Π(i, i) (3.2.14)

By substituting Equations (3.2.8), (3.2.11), (3.2.12) and (3.2.13) in equation (3.2.4) we

have:

dx0(t)
dt

= (µ(1−q)m) x0(t)+
[m−1

∑
j=1

Π(i, j) x j(t)
]
−
[ m

∑
k=1

Π(0,k)
]

x0(t)(3.2.15)

= (µ(1−q)m) x0(t)+
[m−1

∑
j=1

Π(i, j) x j(t)
]
−
[
1−Π(0,0)

]
x0(t)

Therefore:
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dx0(t)
dt

= [Π(0,0)+µ(1−q)m−1] x0(t)+
m−1

∑
j=1

Π( j,0)x j(t) (3.2.16)

For i = 1, ...,(m−1), the same analysis shows that:

dxi(t)
dt

=
m−1

∑
j=0
j 6=i

Π( j, i) x j(t)− xi(t)
m

∑
k=0
k 6=i

Π(i,k) (3.2.17)

therefore we get:

dxi(t)
dt

=
m−1

∑
j=0
j 6=i

Π( j, i) x j(t)− xi [1−Π(i, i)] (3.2.18)

Finally, by substituting Equation (3.2.16) and Equation (3.2.18) in Equation (3.2.6), the

tumor growth model is described by:

dx0(t)
dt

= [Π(0,0)+µ(1−q)m−1] x0(t)+
m−1

∑
k=1

Π(k,0)xk(t) (3.2.19)

dx1(t)
dt

= [Π(1,1)−1] x1(t)+
m−1

∑
k=0
k 6=1

Π(k,1)xl(t).

...

dxm−1(t)
dt

= [Π(m−1,m−1)−1] xm−1(t)+
m−2

∑
k=0

Π(k,m−1)xk(t).

with initial conditions x(0) = (n0,0, ...,0)>.
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3.3 The SDE model for the tumor cells population dynamics based on cell cycle
position

According to experimental results, cells radio-sensitivity are changing based on the cell

cycle stage (Valenzuela, Mateos, de Almodóvar, & McMillan, 2000). The experiments

has verified that a cell is more radio-sensitive during the G2/M-phase (Quiet, Weichsel-

baum, & Grdina, 1991; Tell et al., 1998) and more radio-resistant in the S-phase (Howard

& Pelc, 1986; Nagasawa, Keng, Harley, Dahlberg, & Little, 1994).

In the proposed model, the tumor cell population is divided into three subpopulations

according to radio-sensitivity (Simms et al., 2012; Wake & Byrne, 2013; Falcetta, Lupi,

Colombo, & Ubezio, 2013; Weber, Jaehnert, Schichor, Or-Guil, & Carneiro, 2014; Gurkan-

Cavusoglu, Schupp, Kinsella, & Loparo, 2011), i.e., gap (G), synthesis (S), and mitosis

(M), with the possibility of cell death in each subpopulation. These represent a concise

formulation of the cell cycle.

3.3.1 Assumptions

1. The magnitude of radiation is constant (2Gy) during treatment.

2. Cells population consists of three time-dependent subpopulations G(t), S(t) and

M(t), which in turn representing Gap, Synthesis and Mitosis.

3. The transition rate of cells moving from subpopulation G into subpopulation S is the

time-dependent rate α(t); the transition from subpopulation S into subpopulation

M is the constant rate β and subpopulation M to subpopulation G is the constant

rate γ , which can be considered the birth rate.

4. All cells are at risk of dying, but at different rates. The death rate of cells in sub-

population G is a constant rate q1, whereas cells in subpopulations S and M have q2

and q3 rates respectively.
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Figure 3.5: Schematic illustration of the cell cycle in a tumor treated by radiation

5. Due to environmental noise effects such as inaccuracy of the cytometry method in

counting cells in the apoptosis stage, a noise in the death rate is deemed to capture

these effects. Therefore, cell death rates are given by:

f (t) = q1 + r1(t) (3.3.1)

g(t) = q2 + r2(t)

h(t) = q3 + r3(t)

where r1(t), r2(t), and r3(t) are stochastic noise terms, and q2 < q1 < q3.

3.3.2 Stochastic Differential Equation Model

When cells are proliferating, they move from one subpopulation into another (Bernard &

Herzel, 2006; Johnston, Edwards, Bodmer, Maini, & Chapman, 2007).

During the radiotherapy with gamma rays (2−4 Gy), the transition rates of cell movement

change at checkpoints G1 and G2. As illustrated in Figure (3.5), using transition rates
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between subpopulations, the population dynamic is described by:



dGT (t)
dt

=−(α(t)+ f (t))GT (t)+2γMT (t)

dST (t)
dt

= α(t)GT (t)− (β +g(t))ST (t)

dMT (t)
dt

= βST (t)− (γ +h(t)))MT (t)

(3.3.2)

By applying (3.3.1), (3.3.2) can be written as:



dGT (t)
dt

=−[α(t)+(q1 + r1(t))]GT (t)+2γMT (t)

dST (t)
dt

= α(t)GT (t)− [β +(q2 + r2(t))]ST (t)

dMT (t)
dt

= βST (t)− [γ +(q3 + r3(t))]MT (t)

(3.3.3)

Assuming that ri(t)dt = σidW i for i = 1,2,3 (Evans, 2012), the stochastic differential

equation system describing the population dynamics of cells is written as:



dGT (t) = [−(α(t)+q1)GT (t)+2γMT (t)]dt− [σ1GT (t)]dW 1(t)

dST (t) = [α(t)GT (t)− (β +q2)ST (t)]dt− [σ2ST (t)]dW 2(t)

dMT (t) = [βST (t)− (γ +q3)MT (t)]dt− [σ3MT (t)]dW 3(t)

(3.3.4)

with initial conditions GT (0) = 0.49n0, ST (0) = 0.39n0, and MT (0) = 0.12n0, where n0

is the initial number of cells (Sutherland, Hall, & Taylor, 1983).

We are assuming:

X(t) = (GT (t),ST (t),MT (t))>
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(3.3.4) can be written in matrix form as:

dX = AXdt−σXdW (3.3.5)

where A and σ are the following matrices:

A =



−(α +q1) 0 2γ

α −(β +q2) 0

0 β −(γ +q3)


σ =



σ1 0 0

0 σ2 0

0 0 σ3


(3.3.6)

3.3.3 Model Calibration

Loss of reproductive capacity is a widely accepted definition for cell death in radiobiology

and is highly applicable to the proliferating cells, including tumor cells for radiotherapy.

Cell death quantification is complicated by the fact that cells die at various times after

irradiation, often after one or two trips around the cell cycle, and among surviving cells

that continue to proliferate.

In the context of radiobiology, cell death rate is generally equated with any process that

leads to the permanent loss of clonogenic capacity (Joiner & van der Kogel, 2009).

3.3.4 Steady-State Solution

To evaluate the main model parameters α , β , and γ , it is first assumed that q1 = q2 = q3 =

0 and r1 = r2 = r3 = 0. If α is constant (which is hereby called unchanging environmental

conditions), then our system will eventually reach a certain steady-state behavior that we

call steady-state phase.
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System (3.3.5) is in a steady state phase, when the proportion of cells across the model

phases is constant over time. Note that, as it is experimentally observed, the actual cell

populations do not reach a steady-state and instead grow exponentially.

Other mathematical models such as Begg et al.’s (2010) (Begg, Wall, & Wake, 2010) take

these steady-state conditions into account by incorporating the terms balancing exponen-

tial growth. Throughout this paper, we refer to this condition as a steady-state phase, or

an unchanging environmental conditions.

As it is seen below, parameter α as well as constants of proportions of the model phase

could be expressed in terms of experimentally determined parameters.

The cell cycle can be modeled as:



dGT (t)
dt

=−αGT (t)+2γMT (t)

dST (t)
dt

= αGT (t)−βST (t)

dMT (t)
dt

= βST (t)− γMT (t)

(3.3.7)

Now, consider that 

Ĝ(t) =
GT (t)
NT (t)

Ŝ(t) =
ST (t)
NT (t)

M̂(t) =
MT (t)
NT (t)

(3.3.8)

are the ratios of cells in each subpopulation. Then by using (3.4.3) and (3.3.7) we have:

dNT (t)
dt

= γMT (t) = γM̂(t)NT (t) (3.3.9)

The proliferation rate is defined as:

ρ = γM̂ (3.3.10)
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Differentiating (3.3.7) and using (3.3.9) and (3.3.10) will result in:

dĜ(t)
dt

=
d GT (t)

NT (t)

dt

=
1

NT (t)
.
dGT (t)

dt
− GT (t)

N2
T (t)

.
dNT (t)

dt

=
1

NT (t)
.(−αGT (t)+2γMT (t))−ρĜ(t)

= −(α +ρ)Ĝ(t)+2γM̂(t) (3.3.11)

Therefore the system (3.3.7) is converted to:



dĜ(t)
dt

=−(α +ρ)Ĝ(t)+2γM̂(t)

dŜ(t)
dt

= αĜ(t)− (β +ρ)Ŝ(t)

dM̂(t)
dt

= β Ŝ(t)− (γ +ρ)M̂(t)

(3.3.12)

In the steady-state, 

dĜ(t)
dt

= 0

dŜ(t)
dt

= 0

dM̂(t)
dt

= 0

(3.3.13)

Therefore, 

−(α +ρ)Ĝ+2γM̂ = 0

αĜ− (β +ρ)Ŝ = 0

β Ŝ− (γ +ρ)M̂ = 0

(3.3.14)

In the steady-state this problem is equivalent to the following eigenvalue and eigenvector
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problem. 

−α 0 2γ

α −β 0

0 β −γ





Ĝ

Ŝ

M̂


= ρ



Ĝ

Ŝ

M̂


(3.3.15)

Now, according to the Perron-Frobenius theorem (Varga, 2009), Ĝ, M̂, Ŝ and ρ can be

explicitly stated as the solution to (3.3.15) in terms of α , β , γ .

There are three different solutions for Ĝ, M̂, Ŝ and ρ possible but positivity of the matrix

selects the Perron solution.



α =
(γ +ρ)M̂+ρ Ŝ

Ĝ

β =
(γ +ρ)M̂

Ŝ

γ =
ρ

M̂

(3.3.16)

3.3.5 Evaluation of the model parameters

In this section experimental data is engaged to numerically evaluate the main model pa-

rameters. Here by combining equations (3.3.9) and (3.3.10) we get:

dNT (t)
dt

= ρNT (t) (3.3.17)

Therefore

NT (t) = NT (0)eρt (3.3.18)

Assuming that K is the doubling time, we will have

ρ =
ln(2)

K
(3.3.19)
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Table 3.1: Estimated parameter values in steady-state condition

Parameter Estimated Value

ρ 0.0289(hr−1)

α 0.0892(hr−1)

β 0.0819(hr−1)

γ 0.2468(hr−1)

In (Sutherland et al., 1983), multiple experiments were performed to determine the aver-

age steady-state values of G, S and M under the same growth conditions.

The results are reported as 48.9± 0.6%, 39.4± 0.6% and 11.6± 0.3%, for G, S and M

respectively. The doubling time is reported to be 24 hours and thus ρ = 0.0289. The data

does not provide any particular margin of error for the observed doubling time.

Yet, the large enough number of repetition of the experiment guaranties a reasonably ac-

curate value for the doubling time. Replacing ρ by its numerical value in (3.3.16), yields

to the values of main model parameters listed in Table (3.1).

3.4 Tumor lifespan

What dose of radiation is required to remove the tumor completely? A small number of

cells may still remain after resection, that is not visible and detectable by MRI.

Therefore, it is crucial to know how many dose fractions must be applied to eliminate

remaining cancerous cells.

In this section, we are going to answer this question by using the tumor lifespan concept.

Subsequently, tumor lifespan is defined in terms of population dynamics.

Now, suppose that NT (t) shows the tumor population size at time t.

Definition 3.4.1. The tumor lifespan is defined as the minimum necessary dose fractions

needed for the tumor removal. As such, the tumor lifespan is defined as:

L = min{t : bNT (t)c= 0} (3.4.1)
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in which bNT (t)c represents the integer part (or floor) of NT (t) and the tumor population

size at time t in the first and second models is defined as:

NT (t) =
m−1

∑
l=0

xl(t)+n(btc) (3.4.2)

NT (t) = GT (t)+ST (t)+MT (t) (3.4.3)

respectively.
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CHAPTER 4

MATHEMATICAL RESULTS

Stability Analysis is referring to the terms applied to investigate the stability of solutions

of differential equations and of trajectories of dynamical systems under small changes

of initial conditions. Suppose that x∗ ∈ Rm is an equilibrium point for the differential

equation ẋ = f (x).

x∗ is a stable equilibrium if for every neighborhood U of x∗ in Rm there is a neighborhood

U1 of x∗ in U such that every solution x(t) with x(0) = x0 in U1 is defined and remains in

U for all t > 0.

A different form of stability is asymptotic stability. If U1 can be chosen above so that,

in addition to the properties for stability, we have lim
t→∞

x(t) = x∗, then we say that x∗ is

asymptotically stable.

An equilibrium x∗ that is not stable is called unstable. This means there is a neighborhood

U of x∗ such that for every neighborhood U1 of x∗ in U , there is at least one solution

x(t) starting at X(0) ∈U1 that does not lie entirely in U for all t > 0 (Hirsch, Smale, &

Devaney, 2012).

4.1 Single-Strand Break (SSB) and Double-Strand Breaks (DSBs) as one subpop-
ulations

There are some assay to recognize single-strand break (SSB) and double-strand breaks

(DSB) such as PCR (polymerase chain reaction), comet, halo, TUNEL (Terminal deoxyri-

bonucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling) assay,

HPLC-Electrospray tandem mass spectrometry, FISH (Fluorescence in situ hybridiza-

tion), FCM (Flow cytometry), annexin V labeling, immunological assays including im-
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munofluorescent and chemiluminescence thymine dimer detection, immunohistochem-

ical assay, Enzyme-linked immunosorbent assay (ELISA), Radio immunoassay (RIA),

Gas chromatography-mass spectrometry and electrochemical methods (Kumari, Rastogi,

Singh, Singh, & Sinha, 2008).

The main drawback of these methods is that they are not able to distinguish between SSDs

and DSBs. As a result we can take both populations (DSBs and SSBs) as one subpopula-

tion. Therefore we can consider m= 2. Subsequently the tumor population is divided into

two subpopulations cells without DNA fragmentation and cells with DNA fragmentation

(SSBs and DSBs).

4.1.1 Stability Analysis

Based on Equation (2.2.2), the matrix A in the system (2.2.1) is defined as below

A(q,r) =


2(q−1)2−2qr(q−1)−1 −r(q−1)

2q(q−1)(r−1) (q−1)(r−1)−1

 (4.1.1)

where 0≤ q,r ≤ 1.

Theorem 4.1.1. Suppose that the matrix A is defined as Equation (4.1.1), and q = 0.5.

Therefore, the system (2.2.1) is stable at equilibrium point (0,0)> for all 0 < r < 1.

Proof. For q = 0.5

A =


r/2−1/2 r/2

1/2− r/2 −r/2−1/2

 (4.1.2)
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In addition:

λ1 +λ2 = −1 (4.1.3)

And

λ1 λ2 =
(1− r)

4
(4.1.4)

Therefore for any 0 < r < 1, the eigenvalues of the matrix A have negative real part.

Hence the system (2.2.1) is stable for all 0 < r < 1.

Theorem 4.1.2. Suppose that m= 2 and the system(2.2.1)be stable for the value of q= q0

and r = r0. If q1 > q0, then, for q = q1 and r = r0 the system(2.2.1) is stable too.

Proof. Suppose that a(q,r) = A11 +A22 and d(q,r) = det(A). Base on linear algebra if

λ1 and λ2 are the eigenvalues of the matrix A then λ1 +λ2 = a(q,r) and λ1λ2 = d(q,r).

Both eigenvalues of the matrix A have negative real part if and only if a(q,r) < 0 and

d(q,r)> 0.

To proof the theorem, it is sufficient to show that for fixed value of 0< r < 1, the functions

a(q,r) and d(q,r) are decreasing and increasing, respectively.

Let

a(q,r) = (q−1)(r−1)+2(q−1)2−2qr(q−1)−2

Now suppose that r is fixed, therefore

da
dq

= 4q+ r−2qr−2r(q−1)−5

By direct calculation it is very easy to show that da
dq < 0.
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Figure(4.1.a) shows that this function is decreasing, where 0 < r < 1 and 0 < q < 1.
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(a) The values of the function d
dq(a) (b) The values of the function d

dq(d).

Figure 4.1: Stability analysis in case m = 2.

Now let d(q,r) = det(A). Therefore

d(q,r) = 3qr− r−q−4q2r+2q3r+4q2−2q3

and

d
dq

(d) = 8q+3r−8qr+6q2r−6q2−1

Suppose that

f (r) =
d

dq
(d)

for fixed q. therefore

d f
dr

= 6q2−8q+3

is positive for all 0 < q < 1. So this function is increasing on the interval [0,1]. However

f =
d

dq
(d)> 0

if and only if q > 0.1396.

By plotting it is clear that d
dq(d)> 0, whether q > 0.1396.

As seen in Figure(4.1.b) this function is positive. Hence the function d(q,r) is increasing.
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Now let q1 > q0 and let the system (2.2.1) be stable for q = q0. The function a(q,r) is

decreasing, therefore

a(q1,r0)< a(q0,r0)< 0 (4.1.5)

Moreover, the function d(q,r) is increasing. Subsequently,

d(q1,r0)> d(q0,r0)> 0 (4.1.6)

Finally, Equations (4.1.5) and (4.1.6) show that the system (2.2.1) is also stable for q = q1

and r = r0.

As a result of Theorem (4.1.1) and Theorem (4.1.2) it is clear that:

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Treatment Probability (q)

T
he

 R
ep

ai
r 

M
ec

ha
ni

sm
 P

ro
ba

bi
lit

y 
(r

)

 

 

µ=1

Figure 4.2: Stability Analysis For m = 2. Red area represents the system stability region.

Theorem 4.1.3. For m = 2, the system (2.2.1) is stable, where q≥ 0.5 and 0 < r < 1.
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Theorem 4.1.4. Suppose that S denotes the set of values q such that the system (2.2.1) is

stable corresponding to all 0 < r < 1. Therefore:

inf
q

A = 0.5 (4.1.7)

Proof. By Theorem(4.1.3) S 6= /0. Suppose that m = 2, therefore the matrix A in the

system (2.2.1) is defined as in equation (4.1.1).

For small positive h:

A(0.5−h,r) =


2(−h−0.5)2−2r(0.5−h)(−0.5−h)−1 −r(−h−0.5)

2(0.5−h)(−h−0.5)(r−1) (−0.5−h)(r−1)−1

 (4.1.8)

if λ1 and λ2 are the eigenvalues of matrix A in Equation (4.1.8), therefore:

λ1 +λ2 = 3h−hr−2h2r+2h2−1

= 2h2(1− r)+h(1− r)+2h−1 (4.1.9)

In addition

λ1λ2 = det(A)

= (2h3 +h2 +0.5h+0.25)(1− r)−2h (4.1.10)

Suppose that r→ 1−. Subsequently,

λ1 +λ2 < 0 (4.1.11)
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and

λ1λ2 < 0 (4.1.12)

Therefore eigenvalues have different signs.

As a result the system is unstable at this equilibrium point (0,0). Theorem (4.1.3) com-

pletes the proof.

Corollary 4.1.1. For any ε > 0 there exist r0 = 1− ε such that the system ẋ = A(q0,r0)x

is unstable at equilibrium point 0, where q0 = 0.5− ε .

Suppose that m = 2, x = (x0,x1)
> and A is the matrix shown in Equation(4.1.1). As seen

in figure (4.2) the system is stable for q = 0.5 and r = 0.1 and unstable for q = 0.3 and

r = 0.1.

First suppose that q = 0.5 and r = 0.1. Therefore:

A(q,r) =


−0.4500 0.0500

0.4500 −0.5500

 (4.1.13)

and the eigenvalues of the matrix A are

λ1 =−0.3419

and

λ2 =−0.6581

It is verified by figure (4.3).a that the system is stable at equilibrium point (0,0).
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Now let q = 0.3 and r = 0.1. Here :

A(q,r) =


0.0220 0.0700

0.3780 −0.3700

 (4.1.14)

Here

λ1 = 0.0807

and

λ2 =−0.4287

are the eigenvalues correspond to the matrix A. Figures (4.5) and (4.6) show that how the

system is unstable at equilibrium point (0,0).
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Figure 4.3: The Dynamics of The Population Size where m=2, q=0.5, and r=0.1 (Stable Case)

4.1.2 Bifurcation Analysis

In this section we will show that how the change in the parameters of the model is influ-

encing the lifespan.

1. Figures(4.7 -4.9) show the stability region of the system when the value of param-

eter µ is changed.
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Figure 4.4: Trajectories where the system is stable. The number of targets are supposed to be
two in each cell.
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Figure 4.5: The Dynamics of The Population Size where m = 2, q = 0.3, and r = 0.1 (Unstable
Case).

a) Figure (4.7) shows a big difference among the stability region of the system,

for m = 2 where µ = 0.1, µ = 0.5, and µ = 1.

b) The same results are shown where m = 5 in Figure (4.8).

c) Despite the cases (1a) and (1b), the difference among stability regions for

m = 10 is insignificant [Figure(4.9)]. Therefore, it can be inferred that the

parameter µ is not an influential parameter when the number of targets are
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Figure 4.6: Trajectories where the system is unstable. The number of targets are supposed to be
two in each cell.

greater than 10.

2. As seen in Figures (4.10) and (4.11), the stability region experiences significant

change if the number of targets varies from m = 4 to m = 50. However, for big

values of m, the stability region is changing slightly (Figure(4.11)).

For instance, stability regions corresponding to m = 10 and m = 20 are different in

only one point. In contrast, the difference in the stability region corresponding to

m = 4 and m = 2 cases are significant.

As a result we can imply that for low values of m there are quit different stability

area, however, for high values m, the stability areas are the same.

3. The next parameter of the model is the probability that a cell gives birth after the

application of a dose fraction (µ).

First, suppose that m = 2, q = 0.6. The effect of parameter µ on the tumor lifespan

(L) are shown in Figure (4.12), in which the initial number of cells varies among
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n0 = 103,107 and 1010. The blue and red solid lines show the tumor lifespan, when

the parameter 0≤ r ≤ 1 corresponding to µ = 0.1 and µ = 1, respectively.

4. Now suppose that q = 0.6, n0 = 107 and µ = 1. Figure (4.13) represents the influ-

ence of parameter m on the tumor lifespan (L).

The blue and red solid lines are corresponding to the values µ = 0.1 and µ = 1 in

which m changes among 3, 5 and 7. As seen, the tumor lifespan corresponding to

different values of µ are almost the same if m if large enough (for instance m = 7).

5. For fixed values of q = 0.8, and n0 = 103, the tumor lifespan remains unchanged

for m = 2 and m = 3. (Figure (4.14)).

In addition, for m = 6, and m = 7, the changes in the tumor lifespan is insignificant

(Figure (4.15)). However, A big gap in the tumor lifespan is visible, for m = 2, and

m = 7 and 0.3≤ r ≤ 1.

6. As seen in (Figure (4.14), (4.15)), the lifespan corresponding to the values of q =

0.8, and m = 2 is fairly similar to the tumor lifespan associated with q = 0.9, and

m = 7. This shows that, although the repair mechanism (r), and the number of a

cell’s target (m), are important in this model, controlling the parameter (q) is the

most important model parameter.

7. Now, suppose that m = 2, and n0 = 103. For low, middle, and high values of the

repair mechanism probability, if q = 0.5, the tumor lifespan changes between 30

and 130. However, for q ≥ 0.6 the changes in the values of repair mechanism

parameter (r), affect the tumor lifespan insignificantly(Figure (4.16)).

8. Suppose that m = 2, and n0 = 103. However the system (2.2.1) is stable, when

q = 0.5, this value of (q) is not suitable (Figure (4.17)). In addition, the tumor
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lifespan stabilizes and it is constant for q = 0.6 and q = 0.8, respectively.

9. Finally, it is clear that the treatment parameter (q) is more important than the repair

mechanism parameter (r), because if we can control the treatment parameter in an

acceptance range of 0.8 ≤ q ≤ 1 then the tumor lifespan will be stabilized for any

value of the repair mechanism value r, and as a result, treatment process will be

more effective.

10. Table (4.1) shows the change of tumor lifespan (L) for a fixed value of n0 = 103

and a small value of r (r = 0.3) corresponding to the different values of parameters

q and m. The tumor lifespan clearly stabilizes when q≥ 0.8.

11. In contrast, Table (4.2) shows the variation in tumor lifespan for a fixed value of

n0 = 103 and large value of r (r = 0.9) and different values of parameters q and m.

As seen before the q = 0.5 is not a suitable value for the treatment parameter. In Figures

((4.18), (4.19)), the 3-D simulation of the tumor lifespan for q ≥ 0.6 , and 0 ≤ r < 1 for

two values m = 2, m = 6 are represented, respectively.

Moreover, we compare the values of L corresponding to different values of 0.6 ≤ q ≤ 1

and 0≤ r ≤ 1 for m = 2 and m = 6 in Figure (4.20).

Finally, 3-D stability region of the system (2.2.1) where m = 2,5 and m = 10,20 and

µ = 1 in Figures (4.21) and (4.22), respectively.
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Figure 4.7: Stability Region Where m = 2
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Figure 4.8: Stability Region Where m = 5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Treatment Probability (q)

T
he

 R
ep

ai
r 

M
ec

ha
ni

sm
 P

ro
ba

bi
lit

y 
(r

)

 

 
µ=1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Treatment Probability (q)

T
he

 R
ep

ai
r 

M
ec

ha
ni

sm
 P

ro
ba

bi
lit

y 
(r

)

 

 

µ=0.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Treatment Probability (q)

T
he

 R
ep

ai
r 

M
ec

ha
ni

sm
 P

ro
ba

bi
lit

y 
(r

)

 

 

µ=0.1

(a) µ = 1 (b) µ = 0.5 (c) µ = 0.1

Figure 4.9: Stability Region Where m = 10
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Figure 4.10: Stability Region where m = 4 and m = 10

4.2 Single-Strand Break (SSB) and Double-Strand Breaks (DSBs) as two subpop-
ulations

Ionizing radiation not only causes Double-Strand Breaks (DSBs) but also a substantial

extent of DNA base lesions which is called Single-Strand Breaks (SSBs) (Khoronenkova

& Dianov, 2015; Vilenchik & Knudson, 2000). One Gray of irradiation will produce

roughly 105 ionizations, 1000 DNA base damages, 1000 single-strand DNA breaks (SSBs)

and 20 to 40 double-strand DNA breaks (DSBs) (Joiner & van der Kogel, 2009).

Specialized repair systems have consequently progressed to detect and repair base dam-
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(a) m = 20. (b) m = 50

Figure 4.11: Stability Region where m = 20 and m = 50
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Figure 4.12: Influence of µ on the tumor lifespan in case m = 2.
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Figure 4.13: Influence of µ on the tumor lifespan in case q = 0.6 and n0 = 107.

age, i.e. base excision repair (BER), and single-strand breaks, i.e. single-strand break

repair (SSBR). SSBR is closely associated with BER. Single-strand breaks can result in

DSB development by two means. The first way, ionizing radiation damage frequently

takes place in groups, and subsequently, a number of SSBs will also exhibit damage to

neighboring DNA bases.

During base damage repair via BER, SSBs form temporarily. Upon the strand opposite a

radiation-induced SSB incurring base damage, the break created temporarily during BER

may join the radiation break on the opposite strand, resulting in a DSB.
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Figure 4.14: Compare the lifespan trend for m = 2 and m = 3, where q = 0.8 and n0 = 103.

Table 4.1: Influence of the parameters q, m on the Tumor Lifespan L, where n0 = 103 and r = 0.3.

q/m 2 3 4 5 6 7

0.6 18 18 21 24 28 33

0.7 13 14 15 17 19 21

0.8 11 11 12 13 14 15

0.9 9 9 10 10 10 11

The second way is if an SSB has come upon a replication fork in the S phase, and if the

fork and single-ended DSB will disintegrate (Joiner & van der Kogel, 2009).

Mutations, genomic instability, and cell death can result from failing to mend DNA breaks

like DSBs. Due to the critical effects of DSBs, cells have developed homologous recom-

bination (HR) and non-homologous end joining (NHEJ) as two principal repair mecha-

nisms (Ohnishi, Mori, & Takahashi, 2009).

In the course of HR, a double-strand break may transform into a single strand break,

because the single-strand DNA production is essential for HR (Joiner & van der Kogel,
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m=6
m=7

Figure 4.15: Compare the lifespan trend for m = 6 and m = 7, where q = 0.9 and n0 = 103.

Table 4.2: Influence of the parameters q, m on the Tumor Lifespan L, where n0 = 103 and r = 0.9.

q/m 2 3 4 5 6 7

0.6 31 39 54 81 124 193

0.7 17 21 27 54 50 69

0.8 12 14 16 27 24 30

0.9 9 10 11 16 13 14

2009).

4.2.1 Stability Analysis

After applying a dose fraction, a generic, realistic assumption is that cells have only

four possibilities of: not being affected by radiation particles (cells in subpopulation x0),

incurring single-strand breaks (cells in subpopulation x1), incurring double-strand breaks

(cells in subpopulation x2), or dying. In this regard, we study a system with three targets,

m = 3.

We examine the stability of the system reproduced by Equation (2.2.1) for a parameter
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Figure 4.16: The influence of the repair mechanism probability (r) on the tumor lifespan where
m = 2 and n0 = 103.

value of µ = 1, and m = 3.

In this case, Equation (2.2.1) is reduced to:

dx0(t)
dt

= [Π(0,0)+µ(1−q)3−1]x0(t)+Π(1,0)x1(t)+Π(2,0)x2(t)

dx1(t)
dt

= Π(0,1)x0(t)+ [Π(1,1)−1]x1(t)+Π(2,1)x2(t)

dx2(t)
dt

= Π(0,2)x0(t)+Π(1,2)x1(t)+ [Π(2,2)−1]x2(t)

(4.2.1)

with the initial condition x(0) = (n0,0,0).

Now, suppose that A denotes the coefficient matrix of system (4.2.1) as follows:

A(q,r) =



[3qr(q−1)2−2(q−1)3−3q2r2(q−1)]−1 r(q−1)2−2qr2(q−1 −r2(q−1)

3q2r(2r−2)(q−1)−3q(q−1)2(r−1) [2qr(2r−2)(q−1)− (q−1)2(r−1)]−1 r(2r−2)(q−1)

−3q2(q−1)(r−1)2 −2q(q−1)(r−1)2 −[(q−1)(r−1)2]−1


(4.2.2)
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Figure 4.17: The influence of the treatment probability (q) on the tumor lifespan where m = 2
and n0 = 103.

M =



(1−q)m (m
1

)
q (1−q)m−1 ... qm

0 (1−q)m−1 ... qm−1

. . . .

. . . .

. . . .

0 0 ... q

0 0 ... 1


We use the Routh-Hurwitz criterion for A (which is described in Theorem (2.2.2)) to

prove the stability result.
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Figure 4.18: The tumor Lifespan where m = 2, n0 = 103, 0.6≤ q≤ 1, and 0≤ r ≤ 1.

Theorem 4.2.1. Suppose that

P(λ ) = λ
3 +a1 λ

2 +a2 λ +a3

represents the characteristic polynomial of a matrix A3×3. The system ẋ = A x is stable if

and only if:

a1 > 0, a3 > 0, a1a2 > a3 (4.2.3)

Theorem 4.2.2. (Stability result): System (4.2.1) is stable for all values of 0 < r < 1 and

q = 0.5.

Proof. Let P(λ ) be the characteristic polynomial of matrix A. By using the Routh-

Hurwitz criterion„ system (4.2.1) is stable if and only if:

a1 > 0, a3 > 0, a1a2 > a3 (4.2.4)
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Figure 4.19: The tumor Lifespan where m = 6, n0 = 103, 0.6≤ q≤ 1, and 0≤ r ≤ 1.

The characteristic polynomial of matrix A for q = 0.5 is written as:

P(λ ) = λ
3 +

1
8
(r2− r+4)λ 2 +

1
32

(−r3 +7r2−16r+42)λ +
9

32
(1− r) (4.2.5)

It is clear that a1 > 0 and a3 > 0. Therefore, it is sufficient to show that a1a2 > a3 for

0 < r < 1. Considering

g(r) = a1a2−a3 =
1

256
(−r5 +8r4−39r3 +170r2−226r+600) (4.2.6)

It can be verified that g(r)> 0 for 0 < r < 1 (see Fig. (4.23) (a)). Therefore, the Routh–

Hurwitz criterion is satisfied.

Theorem 4.2.3. For q < 0.5, there exists 0 < r < 1, such that system (4.2.1) is unstable

at the equilibrium point (0,0,0).

Proof. Suppose that h > 0 is an arbitrary real number. Corresponding to q = 0.5−h and
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Figure 4.20: Comparing the tumor lifespan where m = 2 and m = 6.
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Figure 4.21: 3-D stability region.

r = 1−h,

P(λ ) = λ
3 +a1λ

2 +a2λ +a3 (4.2.7)

represents the characteristic polynomial of the coefficient matrix in ODE system (4.2.1),

where

a3 =−
h

32
(64h8 +96h7 +32h6−80h5 +52h4−74h3 +4h2−18h+39) (4.2.8)
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Figure 4.22: 3-D stability region.
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Figure 4.23: Stability analysis.

Based on the Routh-Hurwitz criterion, the ODE system (4.2.1) is stable at (0,0,0) if and

only if:

a1 > 0

a3 < a1a2

a3 > 0 (4.2.9)

But a3 < 0 for all h > 0 (Fig. (4.23) (b)) because a3(0) = 0 and a3(h) is a decreasing

function on [0,1]. Hence:

a3(h)< 0 (4.2.10)

Therefore system (4.2.1) is unstable at the equilibrium point (0,0,0).
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The following corollary is a direct result of Theorem (4.2.3).

Corollary 4.2.1. Suppose that S denotes the set of all values q such that system (4.2.1) is

stable at equilibrium point 0 ∈ R3 corresponding to all 0 < r < 1. Then:

inf
q

S = 0.5 (4.2.11)

4.2.2 Numerical simulation: Lifespan and bifurcation analysis

In this section, we study the influence of system parameters on lifespan and also provide

a numerical bifurcation analysis of the ODE system (4.2.1). This is a linear system with

three parameters, q, r and n0. The numerical simulations were carried out using the

MATLAB software package.

4.2.2 (a) Parameters’ influence on the lifespan

Based on the tumor lifespan definition provided in Equation (4.52), we demonstrate that

parameter q has the highest impact on the lifespan.

Figure (4.24) shows the effect of parameter µ on the tumor lifespan for r = 0.2, which is

similar to the result in (Keinj et al., 2012). Figure (4.25) depicts the effect of parameter µ

on the tumor lifespan for different initial condition values: n0 = 103, 107 and 1010. The

blue solid line and red dash line represent the tumor lifespan corresponding to µ = 0.1

and µ = 1, respectively. In this case, it is clear that when µ changes from 0.1 to 1 there

is a slight change in tumor lifespan (L).

Table (4.3) shows the variation in the tumor lifespan for the fixed value of n0 = 100 and

different values of parameters q and r. The tumor lifespan is clearly stabilized for q≥ 0.8.

This result emphasizes that the effect of parameter q on tumor lifespan is more dominant
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Figure 4.24: The influence of parameter µ on tumor lifespan for q = 0.6 and r = 0.2. (a)
n0 = 100 , (b) n0 = 1000.
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Figure 4.25: Influence of µ on tumor lifespan where n0 changes from 103 to 1010 when q = 0.6
and 0 < r < 1.

than the other parameters (see Figure (4.26)). In addition, corresponding to the fixed

parameter value q = 0.9, the tumor lifespan changes are insignificant for 0 < r < 1 and

102 < n0 < 105 (see Table (4.4)). The variations in tumor lifespan (L) with respect to the

changes in the initial tumor cell numbers, n0, are depicted in Figure (4.27) and are in very

good agreement with the results in (Keinj et al., 2012).
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Table 4.3: Influence of parameters (q) and (r) on the tumor lifespan (L) for n0 = 100.

q�r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5 14 16 19 23 28 36 50 77

0.6 11 12 13 14 16 17 20 23

0.7 9 9 10 10 11 11 12 13

0.8 7 8 8 8 8 8 9 9

0.9 6 6 6 6 7 7 7 7
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Figure 4.26: (a) Influence of inactivation probability (q) on tumor lifespan (L). The blue and red
solid lines represent the tumor lifespan values corresponding to r = 0.3 and r = 0.4, respectively.
(b) Influence of the reactivation probability of a target after a dose fraction (r) on tumor lifespan
(L). The blue and red solid lines represent the tumor lifespan values corresponding to r = 0.3 and
r = 0.4, respectively

Table 4.4: Tumor lifespan for q = 0.9 when n0 varies between 102 and 105.

n0�r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

102 6 6 6 6 7 7 7 7

103 9 9 9 9 9 10 10 10

104 12 12 12 12 12 12 13 13

105 14 15 15 15 15 15 16 16

4.2.3 Bifurcation analysis

The system (4.2.1) is stable if all eigenvalues have negative real parts. For q = 0.6 and

r = 0.2, the eigenvalues are evaluated as:

λ1 =−0.4672, λ2 =−0.8422, λ3 =−0.9501 (4.2.12)
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Figure 4.27: Variations in tumor lifespan (L) with respect to changes in the initial number of
tumor cells (n0) for r = 0.1 and q = 0.5.

This indicates that this system is asymptotically stable at the equilibrium point, (0,0,0)

(see Figure(4.28)). Also, for q = 0.2 and r = 0.4 the eigenvalues are calculated as:

λ1 = 0.3225, λ2 =−0.4636, λ3 =−0.8404 (4.2.13)

This shows that the system is unstable (see Figure(4.29)). The system phase-plane dia-

grams are provided in Figure(4.30).

The system parameters stability ranges for cases µ = 1, µ = 0.5 and µ = 0.1 are depicted

in Figure (4.31.a), Figure (4.31.b) and Figure (4.31.c), respectively. Here, no significant

differences are observed in the stability regions of the system (4.2.1) for different values

of µ .

Regarding the bifurcation value of the parameter q, we have studied several cases. The

value of q is changed with different values of r. The results clearly demonstrate that the
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Figure 4.28: Dynamics of all tumor cells (N(t)) and subpopulations x0(t), x1(t) and x2(t), for
q = 0.6 and r = 0.2.
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Figure 4.29: Dynamics of all tumor cells (N(t)) and subpopulations x0(t), x1(t) and x2(t), for
q = 0.2 and r = 0.4.

system is stable for q≥ 0.5 (see Figure (4.32), Figure (4.33) and Figure (4.34)).

According to the discussion provided in section (4.4.3), the system is generally stable

when the Routh-Hurwitz criterion is satisfied. In this case, the three conditions of Theo-

rem (4.2.2) can be represented as 3D graphs with respect to parameters q and r, which are

depicted in Figure (4.35). A stability region is characterized by the intersection of these

surfaces, is illustrated in Figure (4.36).
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Figure 4.31: Stability region of the system(4.2.1) with respect to the values of µ = 0.1, µ = 0.5
and µ = 1.
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Figure 4.32: 3-D diagram of the population dynamics of subpopulations x0, x1 and x2. n0 =
1000, and q varies from 0.4 to 0.6 with step size 0.05. Here, r changes: (a) r = 0.4, (b) r = 0.5,
(c) r = 0.6.

4.3 The general case of m targets

Now Suppose that m is an arbitrary integer.

System (2.2.1) can be written as:

ẋ(t) = A(q,r) x(t) (4.3.1)
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Figure 4.33: 3-D diagram of the population dynamics of subpopulations x0, x1 and x2. n0 =
1000, and q varies from 0.4 to 0.6 with step size 0.05. Here, r changes: (a) r = 0.7, (b) r = 0.8,
(c) r = 0.9.
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Figure 4.34: System bifurcation analysis, where q varies between 0.4 and 0.6 and r = 0.9. The
system is stable when q≥ 0.5
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Figure 4.35: 3-D plot for |a1(q,r)|, |a1(q,r)a2(q,r)−a3(q,r)| and |a3(q,r)|. The system(4.2.1)
is stable if and only if these functions are positive.

where matrix A is described as:

Atk =



Π(0,0)+µ(1−q)m−1 i, j = 0

Π(i, i)−1 i = j and i 6= 0

Π( j, i) i 6= j

(4.3.2)
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a1(q,r) a2(q,r)> a3(q,r). The Routh-Hurwitz Criterion is satisfied for all values of q and r in the
blue region.

where t = i+1 and k = j+1. Therefore

A11 = Π(0,0)+µ(1−q)m−1

and for 2≤ t ≤ m

Att = Π(t−1, t−1)−1 (4.3.3)

= Π(i, i)−1

Lemma 4.3.1. Suppose that B = A>. If Rt defines as

Rt = ∑
k 6=t

Btk (4.3.4)

therefore

1.

Rt > 0 (4.3.5)
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2.

Btt +Rt =


µ(1−q)m−qm i = 0

−q(m−i) 1≤ i≤ (m−1)

(4.3.6)

Proof. 1. According to Equation(2.2.2), for any 1≤ t ≤ m

Rt = ∑
k 6=t

Btk

= ∑
j 6=i

Π(i, j)

> 0 (4.3.7)

2. First consider that B = A> and t = 1. Therefore:

m

∑
k=1

B1k = B11 +
m

∑
k=2

B1k

= Π(0,0)+µ(1−q)m−1+
m−1

∑
j=1

Π(0, j)

= Π(0,0)+µ(1−q)m−1+(1−Π(0,0)−Π(0,m))

= µ(1−q)m−qm (4.3.8)

Moreover, for 2≤ t ≤ m

m

∑
k=1

Btk = Btt +∑
k 6=t

Btk

= (Π(i, i)−1)+∑
j 6=i

Π(i, j)

= −Π(i,m)

= −qm−i (4.3.9)
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The main result of this section is written as follows:

Theorem 4.3.1. For any m≥ 2, 0< µ ≤ 1 and 0< r < 1, the system ẋ= A(q,r)x is stable

at equilibrium point 0, where q > 0.5.

Proof. To complete the proof we must show each eigenvalue of matrix A has negative

real part. To provide this we will show that for any q > 0.5, 0 < r < 1 and m ≥ 2 any

point of Gershgorin circles D(Att ,Rt) have negative real part, where 1 ≤ t ≤ m. For this

purpose we apply Gershgorin Theorem on matrix B = A>.

Based on Lemma.(4.3.1),

Btt +Rt =


µ(1−q)m−qm i = 0

−q(m−i) 1≤ i≤ (m−1)

(4.3.10)

Not that function qm is an increasing function when q > 0 and m is an integer. Therefore,

for 1−q < 0.5 < q we have:

µ(1−q)m < (1−q)m < qm (4.3.11)

where 0≤ µ ≤ 1.

Consequently, Btt ∈R and Btt +Rt < 0 where q > 0.5 (Figure (4.37)). This shows that the

Gershgorin Circles belong in the left side of real line. In addition, according to Gershgorin

Theorem (2.2.4), each eigenvalue of matrix B belongs in one of Gershgorin discs.

Therefore, each eigenvalue of matrix B has negative real part. Hence, every eigenvalue of

matrix A has negative real part. This completes the proof.
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Figure 4.37: Gershgorin disc B(Att ,Rt).

Theorem 4.3.2. Suppose that m ≥ 2 is an integer, A ∈Mm×m and the set S denotes the

value q such that the system (4.3.1) be stable corresponding to all 0 < r < 1 and 0 < µ ≤

1. Therefore:

inf
q

A = 0.5 (4.3.12)

Proof. According to Theorem (4.3.1), the system (2.2.1) is stable where q > 0.5.

Now suppose that ε > 0. Therefore, corresponding to q0 = 0.5− ε and for m = 2 there

exists r0 = 1− ε such that the system (2.2.1) is unstable. Hence:

inf
q

A = 0.5 (4.3.13)

4.4 SDE Model

A SDE model for the tumor cells population has been proposed in Equation(3.3).
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4.4.1 Existence and Uniqueness of the solutions

Since the coefficient functions are linear they are globally Lipschitz, so standard theorems

on global existence and uniqueness of solutions hold (Kloden & Platen, 1992).

4.4.2 Explicit Solution

Using multi-dimensional Îto formula, a vector linear stochastic differential equations, the

explicit solution to the system (3.3.5) is written as (Kloden & Platen, 1992):

X(t) = e(A−
1
2 B2)t+BW (t)X(0) (4.4.1)

When X(0) is constant. The expected value of X(t) solves the deterministic equation:

dE[X(t)] = AE[X(t)]dt (4.4.2)

which results in:

E[X(t)] = eAtE[X(0)] (4.4.3)

4.4.3 Linear Moment Stability Analysis

In this section, the stability of stochastic differential equations is introduced. There are

several kinds of stability questions and several ways to define stability for stochastic dif-

ferential equations.

Theorem 4.4.1. Suppose that A is the matrix in Equation (3.3.6). System

dE[X(t)] = AE[X(t)]dt (4.4.4)
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is stable if and only if

(1+
q1

α
)(1+

q2

β
)(1+

q3

γ
)> 2 (4.4.5)

Proof. Suppose that λ1, λ2, and λ3 are the eigenvalues of matrix A. Therefore

tr(A) =−[(α +q1)+(β +q2)+(γ +q3)] = λ1 +λ2 +λ3 (4.4.6)

det(A) = 2αβγ− [(α +q1)(β +q2)(γ +q3)] = λ1 λ2 λ3 (4.4.7)

In addition

tr2(A) = [(α +q1)+(β +q2)+(γ +q3)]
2

tr(A2) = (α +q1)
2 +(β +q2)

2 +(γ +q3)
2 (4.4.8)

The system(4.4.4) is stable if and only if

tr(A)< 0 (4.4.9)

tr2(A)− tr(A2)> 0 (4.4.10)

det(A)< 0 (4.4.11)

From Equation(4.4.6) and Equation (4.4.8), it is clear that

tr(A) < 0 (4.4.12)

tr2(A)− tr(A2) > 0 (4.4.13)
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(a) The stability region of the system (4.4.4) (b) Phase Diagram G-S-M.

Figure 4.38: Stability region of the system.

Therefore the system is stable if and only if

2αβγ− [(α +q1)(β +q2)(γ +q3)]< 0 (4.4.14)

which proves the result.

Remark 4.4.1. Figure (4.38.a) and Figure (4.38.b) demonstrate the stability region and

the system phase diagram, which are corresponding to parameters q1,q2, and q3, re-

spectively. The initial values (30,40,30), (50,30,20) and (49,39,12) are depicted in the

phase diagram with red, blue and green lines, respectively.

4.4.4 Simulation Results

The Euler-Maruyama and Milstein algorithms are two common numerical methods for

solving stochastic differential equations (Kloden & Platen, 1992). Both parametric and

nonparametric methods could be applied to estimate the model parameters.

The selection for the parameters are as follows. We have estimated parameters α , β ,

and γ based on the experimental data provided for these parameters in (Sutherland et al.,

1983). The other parameters such as qi’s, σi’s and the initial conditions are considered
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constants. They are selected randomly based on the nature of the problem and the order

of the magnitudes of these constants.

The nonparametric method is applicable to both Euler-Maruyama and Milstein algo-

rithms, and the parametric method is only applicable to the Euler-Maruyama algorithm.

We have utilized the modified version of the SDE_Toolbox 1.4.1 of MATLAB for the

simulation (Pena, 2004).

Note that in this analysis the transition rates are considered constants. Therefore these

values are stable over time. However, the cell death rates are variable and highly depen-

dent on the type and magnitude of treatment.The estimated values corresponding to the

transition rates are reported in Table (4.6). Moreover, the values given in Table (4.5) were

selected for the death rates.

Table 4.5: Experiment-dependent parameters

Parameter Estimated Value

q1 0.06 (hr−1)

q2 0.02 (hr−1)

q3 0.1 (hr−1)

As mentioned before, the initial values reported by Sutherland et al. (Sutherland et al.,

1983) are used for subpopulations G, S and M. These values are:

Ĝ(0) = 49%

Ŝ(0) = 39%

M̂(0) = 12% (4.4.15)

Remark 4.4.2. The constants which are used in the simulation are as follows (Table(4.6)):
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Table 4.6: Initial Values of model parameters.

Parameter Initial Value Type of parameter

α 0.04328 Free

β 0.0824 Free

γ 0.3655 Free

G 49 Constant

S 39 Constant

M 12 Constant

q1 0.06 Constant

q2 0.02 Constant

q3 0.1 Constant

σ1 0.0375 Constant

σ2 0.0141 Constant

σ3 0.0327 Constant

4.4.4 (a) The Euler-Maruyama Algorithm–Parametric Method

In this case, the model is run 100 times and the data is generated. The parameters are

estimated by a parametric method. In addition, the Euler-Maruyama algorithm with step

size h= 0.01 is used to solve Equation (3.3.5) with parameter values in Equation (4.4.15).

Using the parametric method, the main parameters α , β andγ are estimated and provided

in Table(4.7).

Table 4.7: Estimated parameter values with 95% confidence intervals for the transition rates
using the parametric method

Parameter Estimated Value 95% Confidence Interval

α 0.04328 [-0.0052, 0.0918]

β 0.0824 [ 0.0315, 0.1333]

γ 0.3655 [ 0.1744, 0.9055]

Figures (4.39.a), (4.40.a) and (4.41.a) show the simulation results of 100 trajectories of
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(a) Time Evolution of GT (b) Time Evolution of GT

Figure 4.39: Cell population dynamics for subpopulation G over 100 trajectories by solving
Equation(3.3.5). Here, the black circles are the trajectories corresponding to the observed numbers
of cells (parametric method). The blue lines represent the first and third quartiles of the simulated
trajectories and the red lines illustrate 95% confidence interval areas obtained by taking, at each
time, the 2.5th and 97.5th percentiles of the simulated trajectories. The green line is the empirical
mean of the process.

the cell population dynamics for subpopulations G, S and M, respectively. In Figures

(4.39.b), (4.40.b) and (4.41.b), the black circles represent the trajectories corresponding

to the estimated values in Table (4.7).

In addition, the red and blue lines in the right graph columns, represent the 95% empirical

confidence interval, and the first and third quartiles of the 100 trajectories numerical so-

lutions for the cell population dynamics in subpopulations G, S and M, respectively. The

green solid line signifies the point-by-point sample mean of the trajectories.

Now, suppose that G40, S40 and M40 represent the sizes of subpopulations G, S and M cor-

responding to 100 times running the simulation. Applying the Monte-Carlo simulation

yields the process, statistical analyses (i.e., mean value, variance, median, 95%-percent

confidence interval for the trajectories, first and third quartiles, process skewness and kur-

tosis). The results are given in the Table (4.8).

Finally, the number of cells in each subpopulation after applying the last dose fraction

are shown in Figures (4.8.a), (4.8.b), and (4.8.c).
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(a) Time Evolution of ST (b) Time Evolution of ST

Figure 4.40: Cell population dynamics for the subpopulation S over 100 trajectories by solv-
ing Equation (3.3.5). Here, the black circles are the trajectories corresponding to the observed
numbers of cells (parametric method). The blue lines represent the first and third quartiles of the
simulated trajectories and the red lines illustrate 95% confidence interval areas obtained by taking,
at each time, the 2.5th and 97.5th percentiles of the simulated trajectories. The green line is the
empirical mean of the process.
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(a) Time Evolution of MT (b) Time Evolution of MT

Figure 4.41: Cell population dynamics for the subpopulation M over 100 trajectories by solv-
ing Equation (3.3.5). Here, the black circles are the trajectories corresponding to the observed
numbers of cells (parametric method). The blue lines represent the first and third quartiles of the
simulated trajectories and the red lines illustrate 95% confidence interval areas obtained by taking,
at each time, the 2.5th and 97.5th percentiles of the simulated trajectories. The green line is the
empirical mean of the process.
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Table 4.8: Monte Carlo Statistics for the G, S and M subpopulations at time T=40 hours.

G40(t) S40(t) M40(t)

Process Mean 23.53 25.60 6.24

Process Variance 6.84 4.14 0.29

Process Median 23.37 25.52 6.21

95 % confidence interval for the trajectories [19.24, 28.34] [21.94, 29.75] [5.31, 7.31]

Process First and Third quartiles [21.60, 25.38] [24.27, 27.01] [5.83, 6.61]

Process Skewness 0.37 0.16 0.21

Process Kurtosis 3.42 2.42 2.63
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Figure 4.42: Histogram of the observed number of cells in each subpopulation at time T=40
over 100 trajectories with Euler-Maruyama approximation.

4.4.4 (b) The Euler-Maruyama Algorithm–Nonparametric Method

In this section the model is run 100 times. The parameters are estimated by nonpara-

metric method and the Euler-Maruyama method with step size h = 0.01 is used to solve

Equation(3.3.5) numerically with the initial parameter values

GT (0) = 49, ST (0) = 39, MT (0) = 12 (4.4.16)

The main parameters α , β , and γ are estimated and the results are presented in Table(4.9).

Figures (4.43), (4.44) and (4.45) represent the simulation of 100 trajectories of the cell

population dynamics in subpopulations G, S and M, respectively.

The picture descriptions are similar to the parametric ones.

Similar to the parametric case, the statistical analysis of the process is provided in Ta-
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(a) Time Evolution of GT (b) Time Evolution of GT

Figure 4.43: Cell population dynamics for subpopulation G. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.
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(a) Time Evolution of ST (b) Time Evolution of ST

Figure 4.44: Cell population dynamics for subpopulation S. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.
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Table 4.9: Estimated parameter values and 95% confidence intervals of the movement rates
using the nonparametric method.

Parameter Estimated Value 95% Confidence Interval

γ 0.2088 [-0.3365, 0.7543]

α 0.0770 [ -0.0240, 0.1779]

β 0.0890 [ 0.0385, 0.1394]
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(a) Time Evolution of MT (b) Time Evolution of MT

Figure 4.45: Cell population dynamics for subpopulation M. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.

ble(4.10).

Table 4.10: Monte Carlo Statistics for the G, S and M subpopulations at time T=40 hours.

G40 S40 M40

Process Mean 26.54 27.01 6.60

Process Variance 9.66 5.24 0.33

Process Median 26.42 26.99 6.57

95% confidence interval for the trajectories [21.88, 32.20] [22.90, 31.58] [5.64, 7.65]

Process First and Third quartiles [24.21, 28.58] [25.44, 28.61] [6.24, 6.95]

Process Skewness 0.35 0.20 0.23

Process Kurtosis 3.15 2.54 2.83
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Figure 4.46: Histogram of the observed number of cells in each subpopulation at time T=40
over 100 trajectories with Euler-Maruyama approximation.

4.4.4 (c) Milstein Method

The model is run 100 times and the Milstein method with step size 0.01 is used to solve

the SDE system (3.3.4) numerically, with the same initial parameter values used with the

E-M method. Again, the parametric method is used to estimate the main parameters α ,

β , and γ . The outcomes are presented in Table (4.11).

The figures listed in Figure (4.47), Figure(4.48) and Figure (4.49) display the results for

Table 4.11: Estimated parameter values and 95% confidence intervals of the movement rates
using the nonparametric method

Parameter Estimated Value 95% Confidence Interval

α 0.0770 [ -0.0240, 0.1779]

β 0.0890 [ 0.0385, 0.1394]

γ 0.2088 [-0.3365, 0.7543]

this method with the same description as in the case of the E-M method.

Suppose that Q40, S40 and M40 represent the sizes of subpopulations G, S and M cor-

responding to 100 simulation times. Table(4.12) illustrates the results of applying the

Monte-Carlo simulation of the process statistical analyses (i.e., the mean value, variance,

median, 95% confidence interval for the trajectories, first and third quartiles, process

skewness and kurtosis).
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(a) Time Evolution of GT (b) Time Evolution of GT

Figure 4.47: Cell population dynamics for subpopulation G. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.
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(a) Time Evolution of ST (b) Time Evolution of ST

Figure 4.48: Cell population dynamics for subpopulation S. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.
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(a) Time Evolution of MT (b) Time Evolution of MT

Figure 4.49: Cell population dynamics for subpopulation M. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.

Table 4.12: Monte Carlo Statistics for the G, S and M subpopulations at time T=40 hours.

G40(t) S40(t) M40(t)

Process Mean 26.54 27.01 6.60

Process Variance 9.66 5.24 0.33

Process Median 26.42 26.99 6.57

95% confidence interval for the trajectories [21.88, 32.20] [22.90, 31.58] [5.64, 7.65]

Process First and Third quartiles [24.21, 28.58] [25.44, 28.61] [6.24, 6.95]

Process Skewness 0.35 0.20 0.23

Process Kurtosis 3.15 2.54 2.83

4.4.4 (d) Whole tumor population dynamics

Using

NT = GT +ST +MT (4.4.17)

The entire cell population dynamics (NT ) over 20 trajectories and observed data are de-

picted in Figures (4.51.a) and (4.51.b).

Based on the results, it is evident that there is no significant difference in cell popula-

tion dynamics between the two parametric (Figure (4.51.a)) and nonparametric (Figure

(4.51.b)) methods.
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Figure 4.50: Histogram of the observed number of cells in each subpopulation at time T=40
over 100 trajectories with Milstein approximation.
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(a) Time Evolution of NT (b) Time Evolution of NT

Figure 4.51: (a) Cell population dynamics in the whole tumor over 20 trajectories, where the
system of SDEs (3.3.5) is solved by Euler-Maruyama algorithm and the parameters are estimated
by a parametric method; (b) Cell population dynamics in the whole tumor over 20 trajectories,
where the system of SDEs (3.3.5) is solved by Euler-Maruyama or Milstein algorithm and the
parameters are estimated by nonparametric method.

4.4.4 (e) Lifespan

According to definition (3.4.1), the tumor lifespan can be defined when the population

size is decreasing after receiving the treatment. In this part The simulation is run 200

times and for each time the tumor lifespan is evaluated. Figure (4.52.a) shows the tumor

lifespan corresponding to each sample, and Figure (4.52.b) represents histogram of the

tumor lifespan.
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Figure 4.52: Lifespan diagrams.
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CHAPTER 5

EXPERIMENTAL RESULTS

The experiments have been done in Translational Core Laboratory (TCL) which is

located at 11th level of Pediatrics building at University of Malaya.

5.1 Methodology

5.1.1 Chemical and reagent

1. 70% Ethanol with distilled water.

2. 50 µg/ml of stock propidium iodide.

3. 100 mg/ml of stock RNase (Ribonuclease I )

5.1.2 Cell Cultures

Cell line: MCF7 purchased from American Type Culture Collection (ATCC).

Culture media: DMEM (ref: 111965-092, Gibco) supplemented with 10% FBS (Fetal

Bovine Serum)( Ref:10270, Gibco) and 1% of penicillin-streptomycin (Ref: 15140122,

Gibco).

5.1.3 Seeding and Radiation

The number of 7E5 cells per well was seeded in seven(7) 10 cm Petri dishes and the plates

were labeled as control 0, control 24, irradiated 24, control 48, irradiated 48, control 72

and irradiated 72.

The cells have been harvested and treated by 2ml of Trypsine. Then the cells were kept

in incubator for 5 minutes at 37oC.

Subsequently, the cells were fixed in zero, 24, 48 and 72 houre after radiation.
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Moreover, a large number of doublet cells were observed in the last experiment. There-

fore, the flow cytometry was run for ECC1 cell this time and it was observed that the

doublets are mainly because the MCF-7 cells like to stitch each other.

Then the cells were irradiated in the department of Oncology with the magnitude of 2

Gray. The details of the linear accelerator are:

• Brand: Varian

• Model: 2100CD

• Country: Palo Alto, California, USA

The duration of radiation is between 20-33 seconds.

5.1.4 Cell Cycle Assay

5.1.4 (a) Cell Counting Using Hemocytometer

The number of cells was counted by using hemocytometer.

5.1.4 (b) Preparing Cells

To prepare the cells, hemocytometer is cleaned with alcohol. The cells are spun by cen-

trifuge at 500g. Thereafter, the media is removed and kept 3-4 µl to have higher concen-

tration.

Subsequently, the cells are mixed by using a pipette. Finally, 100 µl of cells are mixed

with 400 µl of Trypan Blue.

5.1.4 (c) Protocol

First, 2 µl of the mixture of Trypan Blue and cell suspension were taken and applied to

the hemocytometer. Then both chambers were filled underneath the coverslip, allowing
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the cell suspension to be drawn out by capillary action.

Using a microscope, it was focused on the grid lines of the hemocytometer with a 4X

objective. Subsequently, the live, unstained cells (live cells do not take up Trypan Blue

and are bright under microscope) were counted in one set of 16 squares.

When counting, employ a system whereby cells are only counted when they are set within

a square or on the right-hand or bottom boundary line.

Following the same guidelines, dead cells stained with Trypan Blue (blue color cells) can

also be counted for a viability estimate.

Finally, the hemacytometer was moved to the next set of 16 corner squares and carry on

counting until all 4 sets of 16 corners are counted (Figure 5.1).

Figure 5.1: Cell counting by using hemocytometer.

5.1.4 (d) Cell’s Viability

To calculate the viability of cells the following procedure was used: First, the average cell

count from each of the sets of 16 corner squares is taken.Then this average is Multiplied

by 10,000.

In this experiment the dilution factor is considered as 5. Therefore, the obtained number

is Multiplied by 5 to correct for the 1:5 dilution from the Trypan Blue addition.
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The final value is the number of viable cells/mL in the original cell suspension.

The live and dead cell count is added together to obtain a total cell count. Finally, Dividing

the live cell count by the total cell count, the viability percentage is calculated.

5.1.4 (e) PI staining

The protocol of cell cycle assay by flow cytometry is as follow:

Cells were washed using PBS Then the cells were treated by 1-2 µl of Trypsin. Thereafter,

cells were kept in incubator (37oC and 5% CO2) for 5 minutes.

Then cells were counted as explained in section (5.1.4 (a)). Subsequently, cells were spun

at 500 g for 6 minutes to remove the In the next step, the cells were washed with 1 ml of

PBSCells were fixed in cold 70% ethanol. To minimize clumping, the ethanol were added

drop-wise to the pellet while vortexing. The cells were incubated at 4oC for 30 minutes.

Then cells were washed two times with 1ml of PBS and spun at 850g. The cells were

treated with 50 µl of a 100 µg/ml ribonuclease. This will ensure only DNA, not RNA,

was stained.

Finally, 200 µl of PI (from 50 µg/ml stock solution) were added to the suspension.

5.2 Result

In the previous experiments, cells were received only one dose fraction with the mag-

nitude of 2 Gy. To be more realistic, the number of dose fractions of radiation were

increased into three consequent does fraction. The magnitude of each dose fraction was

considered as 2Gy.

Finally, cell cycle analysis has been done by flow cytometry. The result of cell cycle anal-

ysis for time points 0, 24, 48 and 72 hours post radiation are presented in Figure.(5.2).

The proportion of cells in each phase of cell cycle (G1, S and G2/M) in each time point

and cell’s viability are presented in Figure.(5.3) and Figure.(5.4), respectively. Finally,

the data is summarized in Table.(5.1).
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(a) Control 0 hours

(b) Control 24 hours (c) Irradiated 24 hours

(d) Control 48 hours (e) Irradiated 48 hours

(f) Control 72 hours (g) Irradiated 72 hours

Figure 5.2: Cell cycle analysis for cells at time points zero, 24, 48 and 72 hours after radiation
in two cases control and irradiated cells.

5.3 Simulation and Parameter Estimation

As shown in section(5.2), the MCF-7 cells were harvested and fixed at specific time points

zero, 24, 48 and 72 hours post radiation. the collected cells were analyzed using flow

cytometry method and the results are shown in Table(5.1).

By using the curve fitting method of MATLAB software, the appropriate curves were

fitted to the data and the population size at time points 8, 16, 32, 40, 56 and 64 hours post

radiation were generated corresponding to each sub-population. Subsequently, the data
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Figure 5.3: The proportion of cells in G1, S and G2/M phase for cells at the time of radiation
(time 0) and 24, 48 and 72 hours after radiation in two cases control and irradiated cells. The blue
and red colors are for control and irradiated cells, respectively.

Figure 5.4: Cells viability for cells 24, 48 and 72 hours after radiation in two cases control and
irradiated cells. The blue and red color show the control and irradiated cells, respectively.
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Table 5.1: Proportion of cells in G1, S and G2/M phase corresponding to the fourth experiment.

Time point G% S% M% CV %

Control 0 hours 62.07 28.24 9.69 3.94

Control 24 hours 58.69 23.66 17.65 4

Irradiated 24 hours 73.34 13.54 13.12 3.59

Control 48 hours 53.90 26.97 19.13 3.56

Irradiated 48 hours 58.54 21.12 20.34 3.92

Control 72 hours 64.04 24.10 11.86 3.74

Irradiated 72 hours 63.82 21.43 14.73 4.67

were aggregated in Table(5.2)

5.3.0 (a) The Euler-Maruyama Algorithm–Parametric Method

Here, the model is run 100 times and the data is generated. The parameters are estimated

by a parametric method. In addition, the Euler-Maruyama algorithm with step size h = 1

is used to solve Equation(3.3.5) with parameter values in Equation(5.3.1).

G(0) = 450,000

S(0) = 204,740

M(0) = 70,250 (5.3.1)

Using the parametric method, the main parameters q1, q2 and q3 are estimated and pro-

vided in Table(5.3).

Figures(5.5.a), (5.6.a) and (5.7.a) show the simulation results of 100 trajectories of the

cell population dynamics for subpopulations G, S and M, respectively. In Figures(5.5.b),

(5.6.b) and (5.7.b), the black circles represent the trajectories corresponding to the esti-

mated values in Table(5.3).

In addition, the red and blue lines in the right graph columns, represent the 95% empirical
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Table 5.2: The population size in G1, S and G2/M phase.

Time point G S M

Control 0 hours 450,000 204,740 70,250

Control 8 hours 523,544 205,549 107,441

Irradiated 8 hours 560,376 139,628 80,149

Control 16 hours 529,177 202,625 132,991

Irradiated 16 hours 597,804 110,320 92,326

Control 24 hours 498,865 201,110 150,025

Irradiated 24 hours 586,720 108,320 107,360

Control 32 hours 464,625 206,067 161,784

Control 32 hours 551,155 125,295 125,818

Irradiated 40 hours 458,400 222,736 171,338

Control 40 hours 515,744 152,732 148,284

Control 48 hours 512,050 256,215 181,735

Irradiated 48 hours 504,908 182,160 175,330

Control 56 hours 657,948 311,730 196,534

Irradiated 56 hours 542,414 205,388 207,533

Control 64 hours 927,681 394,358 218,486

Irradiated 64 hours 653,163 213,760 245,469

Control 72 hours 1,352,845 509,113 250,543

Irradiated 72 hours 861,570 198,860 289,710

Table 5.3: Estimated parameter values with 95% confidence intervals for the death rates using
the parametric method

Parameter Estimated Value 95% Confidence Interval

q1 0.0292 [ 0.01191 , 0.04769 ]

q2 0.1219 [ 0.1219 , 0.1219 ]

q3 -0.15725 [ -0.17467 , -0.12983 ]

confidence interval, and the first and third quartiles of the 100 trajectories numerical so-

lutions for the cell population dynamics in subpopulations G, S and M, respectively. The

green solid line signifies the point-by-point sample mean of the trajectories.
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(a) Time Evolution of GT (b) Time Evolution of GT

Figure 5.5: Cell population dynamics for subpopulation G over 100 trajectories by solving
Equation(3.3.5). Here, the black circles are the trajectories corresponding to the observed numbers
of cells (parametric method). The blue lines represent the first and third quartiles of the simulated
trajectories and the red lines illustrate 95% confidence interval areas obtained by taking, at each
time, the 2.5th and 97.5th percentiles of the simulated trajectories. The green line is the empirical
mean of the process.

(a) Time Evolution of ST (b) Time Evolution of ST

Figure 5.6: Cell population dynamics for the subpopulation S over 100 trajectories by solving
Equation(3.3.5). Here, the black circles are the trajectories corresponding to the observed numbers
of cells (parametric method). The blue lines represent the first and third quartiles of the simulated
trajectories and the red lines illustrate 95% confidence interval areas obtained by taking, at each
time, the 2.5th and 97.5th percentiles of the simulated trajectories. The green line is the empirical
mean of the process.
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(a) Time Evolution of MT (b) Time Evolution of MT

Figure 5.7: Cell population dynamics for the subpopulation M over 100 trajectories by solving
Equation(3.3.5). Here, the black circles are the trajectories corresponding to the observed numbers
of cells (parametric method). The blue lines represent the first and third quartiles of the simulated
trajectories and the red lines illustrate 95% confidence interval areas obtained by taking, at each
time, the 2.5th and 97.5th percentiles of the simulated trajectories. The green line is the empirical
mean of the process.

5.3.0 (b) The Euler-Maruyama Algorithm–Nonparametric Method

In this section the model is run 100 times. The parameters are estimated by nonparamet-

ric method and the Euler-Maruyama method with step size h = 1 is used to solve Equa-

tion(3.3.5) numerically with the initial parameter values in Equation (5.3.1) The main

parameters q1, q2, and q3 are estimated and the results are presented in Table(5.4).

Figures(5.8), (5.9) and (5.10) represent the simulation of 100 trajectories of the cell pop-

Table 5.4: Estimated parameter values and 95% confidence intervals of the death rates using the
nonparametric method.

Parameter Estimated Value 95% Confidence Interval

q1 0.024 [-0.003016, 0.05108]

q2 0.1219 [ 0.1219, 0.1219]

q3 -0.016902 [ -0.186265, -0.151771]

ulation dynamics in subpopulations G, S and M, respectively.

The picture descriptions are similar to the parametric ones.
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(a) Time Evolution of GT (b) Time Evolution of GT

Figure 5.8: Cell population dynamics for subpopulation G. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.

(a) Time Evolution of ST (b) Time Evolution of ST

Figure 5.9: Cell population dynamics for subpopulation S. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.

129

Univ
ers

ity
 of

 M
ala

ya



(a) Time Evolution of MT (b) Time Evolution of MT

Figure 5.10: Cell population dynamics for subpopulation M. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.

5.3.0 (c) Milstein Method

The model is run 100 times and the Milstein method with step size 1 is used to solve

the SDE system (3.3.4) numerically, with the same initial parameter values used with the

E-M method. Again, the parametric method is used to estimate the main parameters q1,

q2, and q3. The outcomes are presented in Table (5.5).

The figures (5.11), (5.12) and (5.13) display the results for this method with the same

Table 5.5: Estimated parameter values and 95% confidence intervals of the death rates using the
nonparametric method

Parameter Estimated Value 95% Confidence Interval

q1 0.0247215 [ -0.001597, 0.05104]

q2 0.121898 [ 0.10332, 0.14048]

q3 -0.1694768 [-0.18642, -0.151713]

description as in the E-M method.
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(a) Time Evolution of GT (b) Time Evolution of GT

Figure 5.11: Cell population dynamics for subpopulation G. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.

(a) Time Evolution of ST (b) Time Evolution of ST

Figure 5.12: Cell population dynamics for subpopulation S. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.
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(a) Time Evolution of MT (b) Time Evolution of MT

Figure 5.13: Cell population dynamics for subpopulation M. The black circles show the trajec-
tories corresponding to the observed data (nonparametric method). The blue lines represent the
first and third quartiles of the simulated trajectories and the red lines illustrate the 95% confidence
interval areas obtained by taking, at each time, the 2.5th and 97.5th percentiles of the simulated
trajectories. The green line is the empirical mean of the process.
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CHAPTER 6

DISCUSSION

6.1 Remind the purpose of this study

As discussed, two mathematical models are presented in this study to model the pop-

ulation dynamics of tumor cell population dynamics after treating by radiation therapy.

The first model is driven based on the damage of cell’s targets which are caused by ra-

diation particles. In this model tumor cell’s population is divided into m subpopulations

x0,x1, · · · ,xm−1 where xi denotes the subpopulation with i deactivated targets.

Then the population dynamics of the tumor cells is modeled by using a system of linear

ODEs. This model has five parameters which are q, the probability that a target becomes

deactivated after a dose fraction of radiation, r, the probability that a target becomes ac-

tive again after the action of repair mechanism, n0, the total number of cells at time point

zero post radiation, m, the number of targets in each cell and µ , the probability that a cell

in subpopulation x0 give birth.

Radiation may cause single and double-strand breaks but sometimes it is difficult to sep-

arate cells with single-strand break and cells with double-strand breaks. Based on these

evidence, the model is considered in three cases, m = 2, m = 3 and general m. Subse-

quently, using Routh-Hurwitz criterion and Gershgorin theorem, the system stability is

studied.

Cell cycle position of cells is another which researchers has been used to model the cell’s

population dynamics. Based on the flow cytometry results, we divide the tumor cell’s

population into 3 main sub-populations G, S and G2/M, according to the cell cycle posi-

tion.
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Then, the population dynamics of tumor cells is modeled by using a three-dimensional

SDE. Subsequently, the transition rates are estimated in the steady-state condition. Then,

the SDE are solved numerically based on Euler-Maruyama and Milstein methods.

A series of experiments were done on MCF-7 cell line and the cells were analyzed by

using flow cytometry method and the total number of cells in sub-populations G, S and

G2/M were counted. Finally, the death rates are estimated by using a parametric and

non-parametric parameter estimation methods and based the obtained experimental data.

Finally, a novel definition is proposed for the tumor lifespan which is defined as the min-

imum dose fraction of radiation needed to kill all tumor cells.

6.2 A summary of results

To summarize the results, the main novelties and achievements of the proposed models

are:

6.2.1 The ODE model of tumor cells population dynamics

1. The model presents an intuitive and simple formula for cell proliferation Eq. (3.2.7)

and tumor lifespan Eq. (4.52).

2. The proposed model comprises the dynamics of a tumor cell population due to

the effect of treatment on cells through the each cell’s reaction to radiation. For

instance, after applying the first dose fraction and after the repair mechanism, a

cell may remain in subpopulation x0 or move to other sub-populations, xi, i =

1, . . . ,(m−1), or it may die. Therefore, the cells’ reaction to treatment is different

in this model and can be interpreted as heterogeneity.

3. By using the model, we confirmed that the treatment effect parameter (q) plays a

more important role than the repair mechanism parameter (r). We demonstrate that

q = 0.5 is a bifurcation value, meaning the system (4.2.1) is stable for all 0 < r < 1.
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4. We showed that the death rate of subpopulation xi has less impact than that of

subpopulation x j when i < j, which means that cells with j deactivated targets

are more radiosensitive than cells with i deactivated targets. Therefore, damaged

cells are unable to resist radiation, which is in complete agreement with evidence

provided in (Keinj et al., 2011, 2012).

5. In reality, radiation particles have different effects on different cells, representing

treatment heterogeneity. For example, at the beginning of treatment, large numbers

of cells with single-strand breaks and small numbers of cells with double-strand

breaks are affected by treatment. Therefore, treatment heterogeneity is introduced

in the model through Corollary (3.2.1).

6.2.2 The SDE model of tumor cells population dynamics

1. In the first step, existence and uniqueness of the solution is studied. Then the

Stochastic Differential Equation is solved analytically.

2. The system stability is studied and it is shown that the system is stable if and only

if

(1+
q1

α
)(1+

q2

β
)(1+

q3

γ
)> 2 (6.2.1)

In simple words, if the equation(6.2.1) satisfies, the population size goes to zero.

Moreover it shows that the treatment is effective.

3. Based on the results, it is evident that there is no significant difference in cell pop-

ulation dynamics between parametric (Figure (4.51.a)) and nonparametric (Figure

(4.51.b)) methods. The tumor lifespan is estimated and presented in Figure (4.52).

4. Figures (4.51) shows the effectiveness of the radiation. According to the figures,

tumor population has a decreasing trend when q1 = 0.06, q2 = 0.02 and q3 = 1.
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5. Using experimental data provided by Satherland et. al, the transition rates were

estimated. But that data was not enough to estimate the death rates. Therefor, a

series of experiments were designed and appropriate data was produced to estimate

the death rates.

6. The model was run hundred times and the death rates are estimated by using both

parametric and non-parametric methods. The results of Table (5.3), Table (5.4)

and Table (5.5) show that the parametric method is more accurate than the non-

parametric method in this experiment. However, there is not significant difference

between the results obtained from parametric and non-parametric methods.

7. Estimated values for q1, q2 and q3 (Tables (5.3), (5.4) and (5.5)) show that, the death

rates in subpopulations S and M are the maximum and minimum. This evidence

shows that cells prefer to stay in subpopulation M.

8. According to the figure (5.4), G2/M arrest is happened which is in complete agree-

ment with the results which are obtained from Tables (5.3), (5.4) and (5.5).

9. The data is on the lower bound of 95% confidence interval when the parameters are

estimated by using the non-parametric method (figures (5.8), (5.9), (5.10), (5.11),

(5.12) and (5.13)).

10. The real data is more close to the average value obtained from simulated data (green

line) in figure (5.5)) compare to figure (5.8) and figure (5.11)

6.3 Future Works

In future, both models will be improved as follows:

1. In reality, it is difficult to distinguish cells with single and double-strand breaks.

But it is possible to detect SSBs and DSBs together by using the flow cytometry
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assays such as TUNEL assay. Subsequently, we can divide the population into two

subpopulation, cells with and without DNA fragmentation. Then, we will be able to

design appropriate experiments to detect and count the number of cells with DNA

fragmentation and finally, the ODE model will be calibrated and verified by using

the experimental real data.

2. To improve the ODE model, we can consider the most important parameter of the

model as a function of time so the ODE model will transform to a non-linear SDE

model which is very interesting for mathematicians.

3. In the SDE model, the rate of movement from sub-population G to sub-population

S is considered as a constant value. However, in real this rate is a function of time.

To improve this model this rate (α) will be considered as a function of time. Ten

by using experimental data the best fit for α(t) will be obtained.

4. Then delay terms will be added to the movement rate. By this term, the model will

be able to directly consider the delay which happens by cell cycle arrest.
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CHAPTER 7

CONCLUSION

In this study, two new mathematical frameworks were proposed to model the population

dynamics of heterogeneous tumor cells after the treatment with external beam radiation.

The first model is derived based on the Target Theory and Hit Theory. According to these

theories, the tumor population is divided into m different sub-populations based on the

different effects of ionizing radiations on human cells. This model consists of a system of

differential equations with random variable coefficients representing the dynamics transi-

tion rates between sub-populations. The model is also describing the heterogeneity of the

cell damage and the repair mechanism between two consecutive dose fractions.

In the second model, we study the population dynamics of breast cancer cells treated

with radiotherapy by using a system of stochastic differential equations. According to

the cell cycle, each cell belongs to one of three subpopulations G, S, or M, represent-

ing gap, synthesis, and mitosis subpopulations. Cells in the M subpopulation are highly

radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore,

in the process of radiotherapy, cell death rates of different subpopulations are not equal.

In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small

changes in cell death rate in each subpopulation during treatment are considered. There-

fore, a new definition for the lifespan of the tumor based on population size is introduced.

Tumor Lifespan is defined as the minimum number of dose fractions needed to remove

the whole tumor.

The stability of the first model is studied by considering three cases. For the first and

second cases, we assumed that each cell has two and three targets (m = 2 and m = 3).
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Applying Routh-Hurwitz criterion, it is proven that the system is stable when the prob-

ability that one target becomes deactivated after the application of a dose fraction (q) is

greater than or equal to 0.5.

Finally, the system stability for the third case is investigated analytically when each cell

assumed has m targets. By using Gershgorin theorem, it is shown that the system is stable

where q > 0.5.

In the second model, the existence and uniqueness of the solution are proven and an

explicit solution for the SDE model is presented. Moreover, the system stability is inves-

tigated via a necessary and sufficient condition on model parameters. The transition rates

are estimated in a steady state condition. Subsequently, the model is solved numerically

using Euler-Murayama and Milstein methods and the other parameters of the model are

estimated using parametric and nonparametric simulated likelihood estimation parameter

methods.

Finally, we did a number of experiments on MCF-7 breast cancer cell line. The cell cy-

cle analysis assay has been used to analyze experimental data. Then the obtained data is

applied and able to calibrate and verify our models.

139

Univ
ers

ity
 of

 M
ala

ya



REFERENCES

Adam, J., & Bellomo, N. (1997). A survey of models for tumor-immune system dynamics.
Springer Science & Business Media.

Adam, J., & Bellomo, N. (2012). A survey of models for tumor-immune system dynamics.
Springer Science & Business Media.

Aït-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions:
A closed-form approximation approach. Econometrica, 70(1), 223–262.

Ait-Sahalia, Y. (2002). [numerical techniques for maximum likelihood estimation of
continuous-time diffusion processes]: Comment. Journal of Business & Economic
Statistics, 20(3), 317–321.

Aït-Sahalia, Y., et al. (2008). Closed-form likelihood expansions for multivariate diffu-
sions. The Annals of Statistics, 36(2), 906–937.

Albano, G., & Giorno, V. (2006). A stochastic model in tumor growth. Journal of
Theoretical Biology, 242(2), 329–336.

Alcock, J., & Burrage, K. (2004). A genetic estimation algorithm for parameters of
stochastic ordinary differential equations. Computational Statistics & Data Analysis,
47(2), 255–275.

Alper, T. (1979). Cellular radiobiology. CUP Archive.

Antipas, V. P., Stamatakos, G. S., Uzunoglu, N. K., Dionysiou, D. D., & Dale, R. G.
(2004). A spatio-temporal simulation model of the response of solid tumours to
radiotherapy in vivo: parametric validation concerning oxygen enhancement ratio
and cell cycle duration. Physics in Medicine and Biology, 49(8), 1485.

Araujo, R. P., & McElwain, D. S. (2004). A history of the study of solid tumour
growth: the contribution of mathematical modelling. Bulletin of Mathematical Biol-
ogy, 66(5), 1039–1091.

Aten, J. A., Stap, J., Krawczyk, P. M., van Oven, C. H., Hoebe, R. A., Essers, J., &
Kanaar, R. (2004). Dynamics of dna double-strand breaks revealed by clustering of
damaged chromosome domains. Science, 303(5654), 92–95.

Atwood, K., & Norman, A. (1949). On the interpretation of multi-hit survival curves.
Proceedings of the National Academy of Sciences, 35(12), 696–709.
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