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CHARACTERIZATION OF TUMOURIGENIC SUBPOPULATIONS IN 

NASOPHARYNGEAL CARCINOMA ISOLATED BY SIDE POPULATION 

AND CANCER STEM CELL MARKER APPROACHES 

 

ABSTRACT 

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy of the nasopharynx.  

Studies on NPC tumourigenic subpopulations are often performed in NPC cell lines due 

to a lack of sizeable NPC tissues.  Commonly used methods to identify the 

subpopulations include sphere-forming culture, side population (SP) assay and cancer 

stem cell (CSC) markers.  The main objective of this study is to characterize the 

biological properties of tumourigenic cells in NPC isolated separately using SP assay 

and CSC markers from established NPC cell lines and/or early-passage NPC patient-

derived xenografts (PDXs).  SP assay identifies stem-like cells by their ability to 

extrude Hoechst 33342 dye.  Using this first approach, SP cells were identified in HK1, 

a recurrent NPC cell line and in xeno-284, an early-passage NPC PDX established from 

recurrent metastatic NPC.  HK1 contained 5 to 10% of SP cells while xeno-284 had less 

than 0.5% SP cells.  HK1 SP cells significantly formed more holoclones than its non-SP 

(NSP) cells, an in vitro clone morphology closely related to self-renewal.  SP cells also 

had higher aldehyde dehydrogenase (ALDH) activity than NSP cells, showed 

asymmetrical cell division and contained slow-proliferating cells.   ABCG2, SOX2, 

TERT, MYC as well as certain Hedgehog, Notch, TGF- and Wnt signalling pathway 

transcripts were significantly upregulated in SP cells.  Despite significant differences 

seen in vitro and in gene expression experiments, SP and NSP cells showed an overall 

comparable tumour formation ability and tumour-initiating cell (TIC) frequency in nude 

mice.  CSC markers are successfully used to identify tumourigenic stem-like cells in 

solid tumours.  In the second approach, CD24, CD44, EpCAM and a combination of 

EpCAM/CD44 markers were used to isolate subpopulations of cells from C666-1, a cell 

line established from an undifferentiated NPC biopsy and from xeno-B110, an early-
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passage NPC PDX established from a NPC biopsy.   CD44br and EpCAMbr cells from 

C666-1 and xeno-B110 enriched for faster-growing tumourigenic cells with resulting 

larger tumours.  Marked growth differences in xeno-B110 were associated with higher 

percentage of S-phase cells and mitotic figures in the marker bright groups as compared 

to marker dim groups.  EpCAM/CD44dbr marker from xeno-B110 did not enhance for 

faster-growing cells or higher TIC frequency than CD44br marker alone.  CD24br, 

CD44br and EpCAMbr cells from xeno-B110 were more enriched for TICs than their 

respective dim phenotypes in the first passage and retained self-renewal property upon 

serial transplantation in vivo for three successive passages.  At the final passage of serial 

transplantation, CD24br cells were 10.55 folds more enriched with TICs than CD24dim 

cells, CD44br cells had a 7.07-fold enrichment over CD44dim cells and there was a 

4.89-fold TIC enrichment for EpCAMbr cells over EpCAMdim cells.  KLF4 and 

CDKN1A transcripts were downregulated in all bright phenotypes which also had 

induced larger tumour growth, indicating a tumour suppressor role for KLF4 in NPC.  

Together, the study has shown that SP and CSC markers could isolate NPC cells with 

differential biological properties in vitro.   

Keywords:  nasopharyngeal carcinoma, biological properties, tumourigenic, side 

population, cancer stem cell markers 
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PENCIRIAN SEL-SEL TUMORIGENIK KARSINOMA NASOFARIN YANG 

DIISOLASI DENGAN KAEDAH “SIDE POPULATION” DAN PENANDA SEL 

STEM KANSER 

 

ABSTRAK 

Karsinoma nasofarin (NPC) merupakan kanser sel epitelium nasofarin.  Kajian ke 

atas sel-sel tumorigenik NPC biasanya dilakukan dengan titisan sel NPC 

memandangkan kekurangan tisu NPC yang bersesuaian saiz.  Kaedah-kaedah yang 

sering digunakan untuk mengkaji sel-sel tumorigenik termasuk kultur sfera, “side 

population” (SP) dan penanda-penanda sel stem kanser (CSC).  Objektif utama tesis ini 

adalah mencirikan sifat-sifat biologi sel-sel tumorigenik NPC yang diisolasi masing-

masing dengan kaedah SP dan penanda-penanda CSC daripada titisan sel NPC dan/atau 

NPC “patient-derived xenografts” (PDX) generasi awal.  Kaedah SP mengenalpasti sel-

sel bercirikan sel stem berupaya mengepam pewarna Hoechst 33342.  Melalui kaedah 

pertama, sel-sel SP dikenalpasti dalam HK1, sejenis  titisan sel  NPC berulang selepas 

rawatan dan dalam xeno-284, sejenis NPC PDX generasi awal yang dibentuk daripada 

NPC berulang selepas rawatan.  HK1 mengandungi 5 hingga 10% sel-sel SP manakala 

kurang daripada 0.5% sel-sel SP dalam xeno-284.  Sel-sel SP HK1 membentuk lebih 

banyak “holoclone” daripada sel-sel bukan SP (NSP) (p < 0.05), suatu morfologi klon in 

vitro yang dikaitrapat dengan sifat pembaharuan diri yang tinggi.  Sel-sel SP juga 

mempunyai aktiviti enzim aldehid dehidrogenasa (ALDH) yang lebih tinggi daripada 

sel-sel NSP.  Ia menjalani pembahagian sel secara asimetrik dan tumbuh perlahan.  

Ekspresi transkrip ABCG2, SOX2, TERT, MYC serta sesetengah transkrip yang 

berfungsi dalam laluan isyarat Hedgehog, Notch, TGF- dan Wnt ditingkatkan dengan 

signifikan dalam sel-sel SP.  Walaupun terdapat perbezaan signifikan dalam in vitro dan 

di ekspresi gen, tiada perbezaan ketara di antara sel-sel SP dan NSP dalam keupayaan 

membentuk kanser  dan frekuensi sel-sel “tumour-initiating” (TIC) pada tikus togel.  

Kaedah penanda CSC berjaya mengenalpasti sel-sel tumorigenik bercirikan sel stem 
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dalam kumpulan kanser pepejal.  Penanda-penanda CD24, CD44, EpCAM dan 

kombinasi EpCAM/CD44 digunakan untuk mengasingkan sel-sel di C666-1, sejenis 

titisan sel daripada biopsi NPC dan di xeno-B110, sejenis NPC PDX generasi awal yang 

juga daripada biopsi NPC.  Terdapat lebih banyak sel tumorigenik tumbuh cepat dalam 

sel-sel CD44br dan EpCAMbr C666-1 dan xeno-B110.  Kedua-dua jenis sel ini turut 

menghasilkan ketumbuhan yang lebih besar.  Perbezaan pertumbuhan yang lebih ketara 

dalam xeno-B110 disebabkan oleh peratus lebih tinggi kandungan sel-sel yang berada 

dalam fasa-S dan mitosis di kumpulan penanda terang berbanding dengan kumpulan 

penanda malap.  Berbanding dengan sel-sel CD44br sahaja, sel-sel EpCAM/CD44 

terang daripada xeno-B110 tidak lebih memperkayakan populasi sel yang tumbuh cepat 

ataupun meningkatkan frekuensi TICnya.  Sel-sel CD24br, CD44br dan EpCAMbr lebih 

tinggi frekuensi TIC daripada sel-sel masing-masing dalam kitaran pertama dan juga 

menunjukkan sifat pembaharuan diri di dalam eksperimen “serial transplantation in 

vivo” sebanyak tiga kitaran berturut-turut.  Di dalam kitaran “serial transplantation” 

terakhir, sel CD24br mengandungi frekuensi TIC 10.55 kali lebih banyak daripada sel 

CD24dim, sel CD44br 7.07 kali lebih banyak daripada sel CD44dim dan sel EpCAMbr 

sebanyak 4.89 kali lebih banyak daripada sel EpCAMdim.  Sel-sel penanda terang 

menunjukkan tahap transkrip KLF4 dan CDKN1A lebih rendah berbanding sel-sel 

penanda malap, yang turut menghasilkan ketumbuhan lebih besar di dalam tikus.  Ini 

mencadangkan bahawa KLF4 berfungsi sebagai penidas kanser.  Kesimpulannya, 

kaedah SP and penanda-penanda CSC berupaya mengisolasi sel NPC yang mempunyai 

sifat-sifat biologi yang berlainan in vitro.   
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CHAPTER 1: GENERAL INTRODUCTION 

Cancers or tumours are complex tissues made up of multiple subpopulations of cells 

which interact with each other and the microenvironment they reside in (Hanahan & 

Weinberg, 2011; Welch, 2016).  Within them are cells with heterogeneous phenotypes, 

functions, lineages and behaviour, to name a few.  For example, there are tumour cells 

responsible for seeding and forming a tumour (“tumour-initiating cells” or “cancer stem 

cells”), cells which are fast-growing to drive tumour expansion (“proliferating cells”), 

slower-growing cells which evade current regimens of therapy (“quiescent cells”) and 

cells with invasive and migratory abilities to form new growth at secondary sites 

(“metastatic cells”).  To complicate matters, cancer cells are not “static” as cellular 

plasticity helps to change and shift the phenotypes and functions (ElShamy & Duhé, 

2013; Hanahan & Weinberg, 2011; Vicente-Dueñas et al., 2009).   

Nasopharyngeal carcinoma (NPC), a type of head and neck cancer, afflicts certain 

ethnicities in specific localities worldwide.  It is endemic amongst the Cantonese people 

of Southern China and high in frequency in Northern Africa, the Inuits of Greenland, 

the Bidayuh tribe of Sarawak, East Malaysia and the Chinese descent in Malaysia  

(Torre et al., 2015; Zainal Ariffin & Nor Saleha, 2011).  Advances in its therapy with 

the use of intensity-modulated radiotherapy (IMRT) and combination of chemo-

radiotherapy (CRT) have delivered much improvement to NPC outcome.  However, 

10% of patients still develop recurrent NPC (Zhang et al., 2013b).          

1.1 Research question 

My research question is “What are the differences within the subpopulations of 

tumourigenic cells in NPC?”  Understandably, NPC researchers have worked on 

delineating the differences between subsets of tumour cells in aspects ranging from 

tumour initiation, growth properties such as proliferation, cell cycle, migration and self-
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renewal, genetics, chemo- and radioresistance to targeted therapy (Friedrich et al., 2003; 

Kong et al., 2010; Lin et al., 2014a; Lun et al., 2012; Ma et al., 2013; Wang et al., 

2013b; Zhuang et al., 2013).  Nevertheless, majority of these researches were performed 

using NPC cell lines which have been in passage for many generations, such as C666-1, 

CNE-1 and CNE-2 (both CNE lines contained partial HeLa genome and are suspected 

to originate from a single individual (Chan et al., 2008), HONE-1 and SUNE-1.  It is 

known that repeated passaging of cell lines leads to growth changes, genetic drift and/or 

instability and ultimately, an undesired selection of abnormal cell clones which give rise 

to a different presentation of the malignancy than that in real life.  Hence, the findings 

from studies utilizing NPC cell lines may present a certain degree of deviation from the 

actual manifestation in NPC patients.    

1.2 Study objectives 

The main study objective is to characterize the biological properties of tumourigenic 

cells isolated using two approaches from NPC cell lines and early-passage NPC patient-

derived xenografts (PDXs). 

The specific objectives are: 

i. to identify and isolate putative tumourigenic cells using side population 

(SP) and cancer stem cell (CSC) marker approaches, 

ii. to characterize the tumour initiation, growth, proliferation and self-renewal 

properties of selected isolated cells in in vitro and in vivo models, and 

iii. to determine the differential gene expressions of these cells. 

1.3 Study significance 

i. Patient-derived xenografts (PDXs) as a model to study NPC 

tumourigenesis in this work present a closer resemblance to the actual 

malignancy than widely-used cell lines.  Data from this study will provide 
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more relevant information on different subpopulations of NPC, their 

growth properties and gene expression profiles as compared to published 

data from NPC cell lines. 

ii. The findings on self-renewal ability of CSC marker-selected 

subpopulations will provide a basis for the evaluation of different NPC 

cell clones and their potential to sustain growth for long term as well as to 

induce recurrent NPC in patients.  This also provides evidence for 

designing more effective treatment programmes to eradicate NPC cells 

which have longer life span. 

iii. The difference in gene expression profiles of tumourigenic NPC cells 

identified by different CSC markers will provide a better comprehension 

of the association of each marker and the corresponding deregulation of 

genes responsible for various aspects of tumourigenesis.  With this 

knowledge, improved diagnosis and treatment plans can be put in place in 

the future. 

1.4 Novelty of study 

This study used early-passage NPC PDXs to elucidate biological differences, if any, 

amongst NPC tumourigenic cells, side-by-side with authenticated NPC cell lines C666-

1 and HK1.  Early-passage PDXs are advocated to be used as study models for tumour 

heterogeneity, CSCs  and therapy-related studies (Clevers, 2011; Dodbiba et al., 2015; 

Julien et al., 2012; Visvader & Lindeman, 2012).   

To the best of my knowledge, this study is the only NPC report which systematically 

estimated tumour-initiating cell (TIC) frequency in a limiting dilution manner (from 

large cell numbers to the smallest of 10 cells) and thoroughly verified self-renewal 

ability for three successive passages in vivo using marker-selected cells from an early-
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passage NPC PDX.  Existing NPC publications on CSCs primarily derive their findings 

from the use of NPC cell lines (authenticated and unauthenticated) and utilizing in vitro 

sphere or spheroid assay to test for self-renewal ability.  The sphere or spheroid assay, 

often used as a surrogate experiment for in vivo tumourigenicity, is a subject of 

discussion regarding its suitability to determine true self-renewal ability of a TIC 

(Calvet et al., 2014; Pastrana et al., 2011; Weiswald et al., 2015).           

Tumourigenicity is the mainstay of this study.  In order to avoid under-reporting of 

tumour formation, growth observation for serial transplantation experiment was 

performed for 150 days per serial passage.  Also, NOD-scid gamma (NSG) mice (strain 

NOD.Cg-Prkdc
scid

 Il2rg
tm1Wjl

/ SzJ) were used for the serial transplantation experiment, 

instead of less immunodeficient mouse models such as nude and NOD/SCID mice.  As 

shown by Quintana et al. (2008) and Zhou et al. (2014), NSG mice allowed higher and 

faster engraftment of human tumourigenic cells due to no functional T and B cells in 

addition to an absence of natural killer cells.      

1.5 Correlation of chapters 

Chapter 2 presents an in-depth review of literature pertaining to NPC, 

tumourigenicity, SP and CSC marker approaches to study non-NPC malignancies.  

Chapter 3 consists of literature review on past NPC publications using SP approach, the 

methodology of the SP approach undertaken in this study to identify tumourigenic and 

non-tumourigenic cells in recurrent NPC (HK1 cell line and xeno-284 PDX), results and 

discussion.  The work has been published in Cancer Cell International (Hoe et al., 

2014).  My second approach to identify and characterize tumourigenic and non-

tumourigenic cells using widely-used CSC markers in primary NPC (C666-1 cell line 

and xeno-B110 PDX) is presented in Chapter 4.  Existing literature on CSC marker-

related studies in NPC is also included in the chapter.  The work has been published in 
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Scientific Reports (Hoe et al., 2017).  Chapter 5 contains a general discussion on both 

isolation approaches, limitations encountered in this study, proposed future direction 

and concluding remarks.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Nasopharyngeal carcinoma 

Nasopharyngeal carcinoma (NPC) is the most common type of nasopharyngeal 

tumour with distinctive geographical distribution (Chan et al., 2005).  According to 

GLOBOCAN 2012, more than 90% of new NPC cases occur in less developed 

countries with the highest incidence rates in Southeast Asia especially in Malaysia, 

Indonesia and Singapore (Figure 2.1) (Torre et al., 2015).  It is also high amongst 

Cantonese descent in Southeast China, North Africans from Tunisia and Algeria, and 

amongst the Inuits of Alaska, Greenland and North Canada (Chan et al., 2005; Torre et 

al., 2015).       

            

Figure 2.1:  Age-standardized rate (per 100,000) of nasopharyngeal carcinoma    

grouped by geographical locations and sex (Torre et al., 2015). 
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According to the latest Malaysian cancer statistics collected from 2007 to 2011, NPC 

ranked the fifth most common cancer and the third highest in the overall population and 

amongst Malaysian males, respectively (Figure 2.2) (Azizah et al., 2016).  It was also 

reported that NPC was the second most common cancer in Malaysian males of working 

age of 25 to 59 years.  Further stratification revealed that local Chinese had the highest 

NPC incidence (age-standardized rate, ASR of 11.0 and 3.5 per 100,000 population for 

males and females, respectively), followed by the Malays (ASR of 3.3 and 1.3 for males 

and females, respectively) and the Indians (ASR of approximately 1 for each males and 

females).  The ASR of Malaysian male and female Chinese was each third highest in the 

world, after China (cancer statistics from 2004 to 2007) and Singaporean Chinese 

(cancer statistics from 2003 to 2007) (Azizah et al., 2016; Forman et al., 2014).  In the 

same Malaysian report, most of the local NPC patients were diagnosed at Stages III 

(29.3%) and IV (33.3%).  An earlier study conducted in the state of Sarawak, East 

Malaysia with data collection from 1996 to 1998 reported that the risk of getting NPC 

was the highest in Bidayuh natives (2.3 and 1.9 folds higher than the average Sarawak 

males and females, respectively) with ASR of 31.5 (males) and 11.8 (females) (Devi et 

al., 2004).         
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Figure 2.2:  Ten most common cancers in Malaysia (2007-2011) (Manan et al., 2016). 

 

2.1.1 Disease presentation, diagnosis and staging 

Nasopharynx refers to the upper part of the throat or pharynx which is behind the 

post-nasal space (Figure 2.3).  NPC usually presents at the fossa of Rosenműller of the 

nasopharynx with no definitive or specific symptoms which can range from neck lumps, 

blood-stained saliva, nose bleed to a blocked ear (Figure 2.4) (Khoo & Pua, 2013).   

A biopsy of abnormal-looking nasopharynx is the usual first step towards a 

confirmed diagnosis of the malignancy (Chua et al., 2016; Khoo & Pua, 2013).  This is 

followed by histopathological examination of the sample which categorizes it according 

to the 2005 WHO criteria:  keratinizing squamous cell carcinoma, non-keratinizing 

squamous cell carcinoma (differentiated and undifferentiated), and basaloid squamous 

cell carcinoma (Chan et al., 2005).   

0

5

10

15

20

25

30

B
re

as
t

C
o
lo

re
ct

al

T
ra

c
h
ea

, 
b
ro

n
ch

u
s,

 l
u
n
g

L
y
m

p
h
o
m

a

N
as

o
p
h
ar

y
n
x

L
eu

k
ae

m
ia

C
e
rv

ix
 u

te
ri

L
iv

e
r

O
v
ar

y

S
to

m
ac

h

O
th

er
s

P
er

ce
n

ta
g

e 



9 

Staging is then performed to assess the extent of the disease in order to determine its 

prognosis and choice of treatment modalities.  Currently, this is done according to the 

American Joint Committee on Cancer (AJCC), 7
th
 edition (Table 2.1) (Khoo & Pua, 

2013).           

 

Figure 2.3:  Location of nasopharynx in a drawing of head and neck region. 

(http://www.cancer.net/cancer-types/nasopharyngeal- cancer/medical-illustrations) 

 

 

  

Figure 2.4:  Endoscopy images of nasopharynx.  i. Normal-looking nasopharynx with 

arrow pointing at fossa of Rosenműller.  ii.  Arrow points at a NPC growth.  (Khoo & 

Pua, 2013) 

ii. i. 

http://www.cancer.net/cancer-types/nasopharyngeal-%20cancer/medical-illustrations
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Table 2.1:  TNM classification for nasopharyngeal tumours according to the AJCC 

Staging, 7
th
 Edition (Chan, 2010; Khoo & Pua, 2013). 

 

Primary Tumour (T) 

T1 - Tumour confined to nasopharynx, or extends to oropharynx and/or nasal 

cavity without parapharyngeal extension 

T2 - Tumour with parapharyngeal extension (posterolateral infiltration of 

tumour) 

T3 - Tumour involves bony structures and/or paranasal sinuses 

T4 - Tumour with intracranial extension and/or involvement of cranial 

nerves, hypopharynx, orbit, or with extension to the infratemporal 

fossa/masticator space 

 

Regional Lymph Nodes (N) 

N0 - No regional lymph node metastasis 

N1 - Unilateral metastasis in cervical lymph node(s), 6 cm or less in greatest 

dimension, above the supraclavicular fossa, and/or unilateral or 

bilateral, retropharyngeal lymph nodes, 6 cm or less, in greatest 

dimension 

N2 - Bilateral metastasis in cervical lymph node(s), 6 cm or less in greatest 

dimension, above the supraclavicular fossa 

N3 - Metastasis in a lymph node(s) greater than 6 cm and/or to 

supraclavicular fossa 

N3a - Greater than 6 cm in dimension 

N3b - Extension to the supraclavicular fossa 

 

Distant Metastasis (M) 

M0 - No distant metastasis 

M1 - Distant metastasis 

 

Clinical Stage Groups (Anatomic Stage/Prognostic Groups) 

Stage I: T1, N0, M0 (“early stage”) 

Stage II: T1, N1, M0; T2, N0, M0; T2, N1, M0 (“early stage”) 

Stage III: T1, N2, M0; T2, N2, M0; T3, N0, M0; T3, N2, M0 (“locally advanced”) 

StageIVA: T4, N0, M0; T4, N1, M0; T4, N2, M0 (“locally advanced”) 

Stage IVB: Any T, N3, M0 (“locally advanced”) 

Stage IVC: Any T, any N, M1 (“distant advanced”) 
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2.1.2 Aetiological factors 

NPC can be attributed to three groups of causation factors. 

2.1.2.1 Viral presence  

As NPC is ubiquitously linked to the presence of the Epstein-Barr virus (EBV),  

serological testing of EBV antibody against EBV immunoglobulin A viral capsid 

antigen (IgA VCA) and early antigen (IgA EA) is widely used as a screening, diagnostic 

and/or disease monitoring tool (Chan, 2010; Gourzones et al., 2013; Lo et al., 2004).  

However, Chua and colleagues pointed that EBV presence may not be the sole driving 

force towards malignant epithelial cell transformation as the virus was undetected in 

biopsies from high-risk individuals for NPC (Chua et al., 2016).  Another virus, the 

human papillomavirus (HPV), was also detected in a large study to evaluate its status in 

NPC from endemic South China cohorts and non-endemic US cohort (Lin et al., 

2014b).  Two important observations were noted in this study:  there were less than 4% 

(3/86 cases) of EBV negative NPC with an absence of HPV in all 86 cases in the 

endemic cohort.  Within the non-endemic cohort, approximately 91% (10/11 cases) of 

EBV negative NPC occurred in the whites, of which half had smoking habit and HPV-

16 infection.      

2.1.2.2 Dietary and lifestyle practices or occupational hazards 

Besides EBV infection, a history of salted fish and other types of preserved food 

consumption containing N-nitrosamines (carcinogens released during food preservation) 

has been found to be a common risk factor in NPC patients (Feng, 2013).  Contrarily, 

consumption of fresh fruits and/or vegetables was associated with lower risk of NPC 

(Jia et al., 2010; Jin et al., 2014; Wang et al., 2016a).  In fact, foods with higher 

presence of antioxidants and phytochemicals such as dark green leafy vegetables, 

carrots and citrus fruits conferred stronger protective effects against NPC which may be 
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due to better regulation of cellular processes, reduction of oxidative DNA fragmentation 

and inhibition of EBV protein expression (Liu et al., 2012; Wang et al., 2016a).  Other 

alleged factors with weak or inconsistent associations include consumption of herbal 

teas, slow-cooked soups and liquour, cigarette smoking, and occupational exposure to 

dust, chemical fumes, smoke and formaldehyde (Chan et al., 2005; Chua et al., 2016).         

2.1.2.3 Genetic susceptibility 

Tsao and colleagues reviewed that the incidence of NPC is 20 to 50 folds higher in 

endemic locations such as Southern China than in the West (Tsao et al., 2014).  

Additionally, there was increased risk in families with three or more relatives having 

NPC amongst a high-risk group of Cantonese populations in that region (Jia et al., 

2004).  Besides ethnicity, a susceptibility locus within the major histocompatibility 

complex region of chromosome 6p21, which encodes the human leucocyte antigen 

(HLA) class I genes, has also been named as a risk factor (Tsao et al., 2014).  These 

genes are involved in encoding for proteins which identify and present foreign antigens, 

including EBV-encoded peptides, to the immune cells for elimination.        

2.1.3 Prognosis  

The most promising prognostic factor is the disease presenting stage (currently in use 

the AJCC 7
th

 edition), whereby overall survival had dropped from 90% for Stage I to 

nearly 60% for Stage IVA-B in a large scale retrospective study with 2,687 consecutive 

NPC patients in Hong Kong (Lee et al., 2005).   

Nonetheless in this genomic era, plasma cell-free EBV DNA is also being 

successfully utilized to screen for new NPC cases as well as in disease surveillance.  For 

example, plasma EBV DNA concentration was found to be significantly much higher in 

pre-treatment recurrent NPC patients than those who were relapse-free (a median of 

3,035 versus 1,202 copies/mL; p < 0.05)  (Lin et al., 2004).  In another study with 210 
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NPC patients (111 new patients and 99 previously reported patients) who were given 

induction CRT and followed for more than 6 years, a significant correlation was found 

between EBV DNA levels and relapse-free survival, overall survival and relapse rates in 

the group of new patients (Wang et al., 2013a).  EBV DNA measurements at pre- and 

post-treatment stages were also significantly associated with poorer survival of NPC 

patients (p < 0.001) in a meta-analysis comprising of 10,732 NPC patients (Zhang et al., 

2016).   

2.1.4 Treatment modalities 

2.1.4.1 Radiotherapy 

NPC is highly radiosensitive with radiotherapy (RT) being its primary curative 

treatment, especially for primary NPC cases (Chan, 2010; Chua et al., 2016).  IMRT is 

becoming a standard RT technique especially in larger well-equipped hospitals as it 

allows a more precise and highly controllable dose delivery of the radiation beams 

whilst ensuring minimal exposures to adjacent healthy tissues or organs, as compared to 

conventional two-dimensional RT (Lee et al., 2015; Zhang et al., 2013b).  Despite 

studies showed more than 90% of locoregional control for T1 and T3 tumours, 5-year 

locoregional control rates for T4 tumours were below 80% (Lee et al., 2015; Zhang et 

al., 2013b). 

2.1.4.2 Chemotherapy and RT 

A combination of chemotherapy and RT (CRT) yielded better disease control and 

survival in patients with locally advanced NPC, with cisplatin (a platinum-based 

chemotherapy agent) being the drug of choice (Chua et al., 2016).  As pointed by Lee 

and colleagues, NPC patients are usually diagnosed at advanced stages with more than 

33% mortality within 5 years of diagnosis; hence, concurrent CRT with or without 

adjuvant chemotherapy has significantly improved on event-free survival versus RT 
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alone (5-year overall survival of 67 to 95% versus 37 to 86%, respectively), irrespective 

of chemotherapeutic regimens given (Lee et al., 2015).   

As for recurrent and metastatic NPC cases, since NPC is also chemosensitive, first-

line doublet chemotherapy (a combination of cisplatin and 5-fluorouracil (5-FU) or 

other agents) achieves 50 to 80% response rates, however the median survival only 

ranges from 12 to 20 months (Chan, 2010).  Small recurrent NPC tumours (rT1 to rT2) 

can be also managed by surgery, brachytherapy or stereotactic radiosurgery (Chua et al., 

2016).         

2.1.4.3 Targeted therapies against EBV and its proteins 

Despite advances achieved in the management of localized primary NPC, it is 

recognized that current modalities are below optimal levels for patients with advanced 

and recurrent NPC (as reviewed in subchapter 2.1.4.2), in addition to treatment-acquired 

complications and/or resistance.  This leads to the search for more innovative, curative 

and less burdensome therapies.   

A phase II clinical trial combining T-cell immunotherapy with standard 

chemotherapy was recently undertaken in patients with advanced EBV positive NPC 

with and without prior CRT (Chia et al., 2014).  Gemcitabine (a third generation 

chemotherapy agent) and carboplatin (a second generation platinum-based agent) 

administration followed by up to six doses of EBV-specific T cells containing mixtures 

of latent membrane protein (LMP)1, LMP2 and immunodominant EBV antigens such 

as Epstein-Barr nuclear antigens (EBNAs) were given in four cycles (“GC-CTL” study).  

There were three complete and 22 partial responses, respectively, with the remaining 10 

patients in stable condition amounting to an overall response rate of 71.4%.  Median 

overall survival for the GC-CTL study was 29.9 months as compared to 17.7 and 21.4 

months achieved by two independent chemotherapy trials at the same centre. 
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Another approach targets the LMP1 of EBV with the use of DNAzymes, i.e. 

synthetic single-stranded DNA catalysts which bind to their complementary sequence in 

target mRNAs (Lu et al., 2005).  One such LMP1-binding DNAzyme is DZ1 which was 

evaluated in a clinical trial with 40 NPC patients receiving either DZ1 or saline, in 

conjuction with RT (Cao et al., 2014).  At week 12, the mean tumour regression rate 

was significantly higher in DZ1-treated group (98%) than in saline control group (88%) 

and DZ1 group also had more samples with undetectable EBV DNA copy number than 

in the control group (p < 0.001).  Importantly, there was no adverse effect observed due 

to DZ1 injections.  

2.1.4.4 Targeted therapies against cancer stem cells 

With the current keen interest in cancer stem cells (CSCs), there have been attempts 

to identify and target such cells in NPC.  Briefly, CSCs are a subpopulation of cancer 

cells possessing self-renewal and differentiation abilities to continuously drive tumour 

growth.  These cells will be reviewed in-depth in subchapter 2.2.  A study was 

performed on NPC cell lines to target CSCs with nigericin, an antibiotic derived from 

Streptomyces hygroscopicus (Deng et al., 2013).  Cell lines used included clones of 

CNE-2 with high and low metastatic abilities (S18 and S26, respectively), and HONE-1 

and SUNE-1.  SP cells having CSC characteristics were 2,500 folds higher in S18 cells 

than S26 cells.  The inhibitory effect of nigericin such as toxicity, reduction of SP cells 

and lower tumour formation in nude mice was detected at higher level in S18 cells than 

S26 cells.  Selective targeting of nigericin was also seen in HONE-1 and SUNE-1 cells.  

The mechanism of nigericin inhibition was related to the presence of polycomb group 

protein BMI1 (encoded by B cell-specific Moloney murine leukemia virus integration 

site 1 gene, BMI1), a marker for self-renewal, which was reduced markedly in S18 cells 

upon its treatment.  Overexpression of BMI1 in the cells partially restored their SP 

content and metastatic ability.    
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A recent pre-clinical study in NPC used a specific inhibitor against a component of 

Wnt signalling pathway which is one of the most investigated pathways in cancer 

studies including CSCs.  Chan and colleagues used ICG-001 inhibitor to block CREB-

binding proteins (CBP)/b-catenin-mediated transcription of various stem cell genes and 

to enhance p300/b-catenin transcription which reduced CD44 and SOX2 expressions as 

well as sphere growth in C666-1 cell line (measurements of CD44 and SOX2 levels, 

and numbers of spheres were indicative of CSC presence in NPC) (Chan et al., 2015).  

The effects of ICG-001 alone, and combination of ICG-001 and cisplatin were also 

evaluated in nude mice bearing C666-1-cell induced tumours.  Cisplatin alone (p = 

0.13) and ICG-001 alone (p = 0.16) did not suppress tumour growth as compared to 

combined ICG-001 and cisplatin (p = 0.02).  Mice treated with ICG-001 alone or 

combined with cisplatin had better health than mice with cisplatin only treatment.     

Although there is much progress seen and excitement felt in development of targeted 

therapies for NPC, the severe lack of authentic NPC study models which can be used to 

demonstrate proof-of-principle of novel treatment approaches at the bench is a grave 

concern as illustrated by the above studies on CSC-targeted therapy and also reviewed 

by Lee and colleagues (Lee et al., 2015). 

2.2 Tumourigenicity 

2.2.1 Definitions 

Tumourigenicity refers to the process of cells forming (benign or malignant) tumours 

consisting of viable and mitotically active cells in immunodeficient animal models 

(Bunz, 2008; Frandsen et al., 2001).  It is an experimental characteristic reflecting the 

malignant nature of the original tumour from which the cells were derived (Bunz, 

2008).   
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Tumour-initiating cells (TICs) are cells which are capable of initiating, inducing or 

forming progressively growing tumours in animals with compromised immunity such as 

nude, NOD/SCID and NSG mice, and need not be rare (Clarke et al., 2006; Kelly et al., 

2007; Stewart et al., 2011; Valent et al., 2012).  

According to the consensus reached in the American Association for Cancer 

Research (AACR) workshop on cancer stem cells in 2006, a cancer stem cell (CSC) is 

“a cell within a tumor that possess the capacity to self-renew and to cause the 

heterogeneous lineages of cancer cells that comprise the tumor.” and needs to be 

defined experimentally by its “ability to recapitulate the generation of a continuously 

growing tumor”.  This in turn leads to putative CSCs being alternatively referred to as 

“TICs” and “tumourigenic cells” in literature  (Clarke et al., 2006, p. 9340).  The 

frequency of TICs or CSCs are usually measured in a xenograft transplantation 

experiment involving multiple doses of cell inoculation (“limiting dilution analysis”, 

LDA) (Clevers, 2011; Valent et al., 2012).   

2.2.2 Models of tumour initiation 

Generally, there are two basic models which are accepted for tumour initiation, 

development, propagation and heterogeneity (Baccelli & Trumpp, 2012; Imrich et al., 

2012; Visvader & Lindeman, 2008).  The clonal or stochastic evolution model describes 

that most cancers originate from a single cell; genetic instability causes it to undergo 

uncontrolled growth resulting in the production of different clones of cells which do not 

organize into any hierarchy, and ultimately tumours are formed (Figure 2.5i) (Nowell, 

1976; Vlashi & Pajonk, 2015).  Conversely, the CSC model denotes that all cancer cells 

belong to a hierarchy similar to normal tissues, and only a small subset of these cells 

located at the apex of this organization (“CSCs”) possess the ability to initiate tumours 
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indefinitely and to give rise to heterogeneous cell populations (Figure 2.5ii) (Shackleton 

et al., 2009; Valent et al., 2012; Vlashi & Pajonk, 2015).   

  

 

 

 

 

 

 

 

 

Figure 2.5:  Models of tumour initiation.  i. Clonal evolution model follows a non-

hierarchical structure where growth advantage is given to any tumour cell with genetic 

instability.  A dominant clone is produced from a cell (red) after numerous mutations.  

Tumour cells (red and orange) originating from this clone have similar tumourigenic 

potential.  Other cells (grey and black) lack of ability to form tumours.  ii. CSC model is 

based on a hierarchy where only a small subpopulation of cells (brown) at the apex has 

the ability to sustain tumour formation and generate heterogeneity through 

differentiation (grey and green cells). (Visvader & Lindeman, 2012) 

 

 

2.2.3 Characteristics of tumourigenic cells 

Table 2.2 summarizes the characteristics of tumourigenic cells in solid tumours 

identified by various methods. 

 

 

i.  Clonal evolution model 

ii.  Cancer stem cell (CSC) model 
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Table 2.2:  Characteristics of tumourigenic cells. 

Characteristics References 

Initiate and drive tumourigenesis Hanahan & Weinberg, 2011 

Stewart et al., 2011 

Abnormal cell division, growth and differentiation Tysnes, 2010 

Ability to recapitulate histology of original tumour as 

well as to give rise to both subpopulations of 

tumourigenic and non-tumourigenic cells 

Tysnes, 2010 

Perpetual growth ability in certain subsets of cells Hanahan & Weinberg, 2011 

Stewart et al., 2011 

 Xu et al., 2015 

Ability to evade immune surveillance and make use of 

immune cells to support own growth 

Krampitz et al., 2016 

A certain degree of resistance to radiation and 

chemotherapy 

Chang, 2016 

Genetically altered and/or with enhanced expression of 

stemness-related genes and transcription factors 

Chan et al., 2009 

Hanahan & Weinberg, 2011 

May or may not be rare depending on type of 

malignancy 

Ishizawa et al., 2010 

Kelly et al., 2007 

 

2.2.4 Study models of tumourigenicity in NPC 

As reviewed earlier, NPC is a highly radiosensitive malignancy with either RT alone 

or combined CRT as its main treatment modalities (Chan, 2010; Xu et al., 2016a).  

Hence, NPC patients are not usually subjected to surgery as a treatment modality and 

this leads to a near dearth of fresh NPC tumour samples for lab-based studies.  If there 
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are, limited tissue quantity is inherent as these samples are usually from post-nasal 

space biopsies (Chan et al., 2008; Gullo et al., 2008).  As a result, most NPC 

investigations into various aspects of its tumourigenesis are performed with NPC cell 

lines which were established years ago (Feng et al., 2013; Lun et al., 2012; Tsang et al., 

2013; Xu et al., 2016b; Yang et al., 2013).   

As EBV is found in almost all NPC cases except for keratinizing NPC from non-

endemic areas, the most frequently used and sole authenticated EBV positive NPC cell 

line to date is C666-1 which was derived from an undifferentiated NPC xenograft (Chan 

et al., 2008; Hui et al., 1998).  Other common NPC cell lines in use include HK1 (from 

recurrent well-differentiated NPC sample; EBV negative; authenticated), HONE-1 

(poorly differentiated NPC; in vitro EBV loss; suspicious identity), CNE-1 (well-

differentiated squamous NPC; EBV negative; suspicious identity) and CNE-2 (poorly 

differentiated NPC; EBV negative; suspicious identity) (Chan et al., 2008; Glaser et al., 

1989; Gullo et al., 2008; Huang et al., 1980; Strong et al., 2014). 

Besides sample size limitation, NPC primary cells are also known to be difficult to 

propagate in vitro for long term (Gullo et al., 2008).  This led to the establishment of 

NPC PDXs from NPC patient samples such as C15 and C17 (Busson et al., 1988); 

however, they are used at a lower frequency than the above NPC cell lines at preclinical 

investigations mainly due to technical difficulties.              

2.3 Side population assay 

One of the methods to identify tumourigenic cells and putative CSCs is side 

population (SP) assay.  It utilizes vital fluorescent dyes such as Rhodamine 123 and 

Hoechst 33342 to segregate cells with dye-pumping ability from those which do not.  

Rhodamine 123 binds to mitochondrial membrane and is also a substrate for ABCB1 

drug transporter (ATP-binding cassette subfamily B1) (Bertoncello & Williams, 2004).  
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Hoechst 33342, on the other hand, penetrates the intact plasma membrane of live cells 

to bind to DNA at the AT-rich regions of its minor groove, is the preferred substrate for 

ABCG2 drug transporter and more commonly used for CSC studies (Wu & Alman, 

2008; Golebiewska et al., 2011).  Actively metabolizing cells which contain ABC 

transporters are able to efflux the dye, leaving these cells to be lightly-stained with 

Rhodamine 123 or Hoechst 33342; such cells are referred to as “SP cells”.   

When the Hoechst 33342-stained cells are analysed in a flow cytometer, a 

hummingbird profile can be seen on a Hoechst Blue versus Hoechst Red diagram where 

SP cells are usually positioned at the tip of “its beak” due to their low Hoechst 33342 

staining intensity (Figure 2.6).  The location of SP cells (“SP gate”) is then confirmed 

with the use of ABC transporter inhibitors such as verapamil, fumitremorgin C (FTC) 

and reserpine (Golebiewska et al., 2011).   

 

 

Figure 2.6:  Flow cytometry dot plots showing profiles of SP cells stained with  

Hoechst 33342 in the presence and absence of verapamil or reserpine inhibitor.  i. SP 

cells are usually positioned at the (tip of) the hummingbird’s beak (without inhibitor).  

ii. Verapamil is not the optimal ABC transporter inhibitor for the cells as about half of 

total SP cell population was still present.  iii. Proper setting of the SP gate is confirmed 

with the use of appropriate ABC transporter inhibitor such as reserpine in this 

experiment. (Jakubikova et al., 2011) 

 

 

i. ii.

. 

 A. 

iii.

. 

 A. 
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Historically, this assay was first used by Goodell et al. (1996) who found that SP 

cells isolated from murine bone marrow contained haematopoietic stem cell (HSC) 

marker Sca-1 positive cells, they were able to repopulate in vivo and were enriched in 

HSC activity more than 1,000 times.  Post-transplantation, the SP cells conferred 

protection to lethally irradiated mice.   

There has been a plethora of SP investigations in cancers on their biological features 

and functions ever since.  For example, SP cells from a renal cell carcinoma cell line 

were able to differentiate into non-SP (NSP) cells in vitro, showed resistance to 

irradiation and 5-FU, and formed tumours in NOD/SCID mice more efficiently than 

NSP cells at 2,000-cell inoculation, (Huang et al., 2013).  Although both phenotypes 

were able to form secondary xenografts, NSP cells showed growth disadvantage with 

smaller tumours.   

Increased levels of -catenin protein and CCND1 gene, both members of the Wnt/-

catenin pathway, and increased expressions of stem cell markers such as Nestin, OCT4, 

SOX2 and NANOG in osteosarcoma samples were found to contribute to self-renewal 

(assayed by sphere formation) and tumourigenicity potential in SP cells (Yi et al., 

2015).   

SP cells were both detected in melanoma patient samples and also PDXs (Luo et al., 

2012).  Characterization of SP and NSP cells from the xenografts found that SP cells 

showed resistance to paclitaxel and temozolomide (chemotherapeutic drugs for 

melanoma patients) which were partially attributed to the overexpression of ABC 

transporter ABCB1 and ABCB5 genes in these cells.  Also, pathway analysis of their 

microarray data showed that NF-kB, -4-integrin and IL-1 pathways were 

significantly deregulated in SP as compared to NSP cells.  All three pathways had been 

previously shown to be involved in apoptosis resistance after suffering DNA damage 
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(Arlt et al., 2002; Weaver et al., 2002; Yamamoto & Gaynor, 2001).  Nonetheless, the 

melanoma SP study did not proceed to verify tumour-initiating and self-renewal 

abilities of SP and NSP cells in vivo and thus, the SP cells could only be deemed as 

“stem-like”.  

On the other hand, Nakayama et al. (2014) reported that SP cells from a 

hepatocarcinoma cell line did not conform to the CSC identity although they exhibited 

faster proliferation in vitro, formed significantly more spheroids and induced tumour 

formation at least 2.5 folds more than NSP cells.  The conclusion was derived from the 

inabilities of SP cells to out-perform NSP cells in drug resistance, colony-forming and 

cell cycle experiments.  Additionally, in vivo self-renewal ability, the gold standard to 

classify CSCs, was not tested.   

Literature review of the identification of SP cells and elucidation of its roles in NPC 

will be covered in Chapter 3.        

The ability to pump out fluorescent dyes such as Hoechst 33342 and Rhodamine-123 

is associated with the presence of ABC transporter(s) expressed in the cell which uses 

energy released from the hydrolysis of ATP to adenosine diphosphate to transport its 

substrate against a concentration gradient across the membrane (Kathawala et al., 2015).  

To date, there are seven known subfamilies of ABC transporters (ABCA to ABCG) 

with at least 48 human ABC genes (Dean et al., 2001).  ABCB1/MDR1/P-glycoprotein 

is one of the three major ABC transporters and the first one to be identified for 

overexpression in multidrug resistance tumour cell lines (Dean, 2009).  Cells 

overexpressing ABCB1 protein are resistant to chemotherapy agents such as 

doxorubicin, vinblastine and paclitaxel (Dean et al., 2001).  Likewise, overexpression of 

ABCC1/MRP1 transporter renders resistance to many anticancer drugs; however, it 



24 

does not confer resistance to taxanes (e.g. paclitaxel and docetaxel) (Kathawala et al., 

2015).    

ABCG2, the second member of G subfamily of ABC transporters and the ABC 

transporter of interest in this study, transports many types of substrates including 

chemotherapy drugs such as mitoxantrone, flavopiridol, topotecan, gefitinib, imatinib 

and erlotinib (Ding et al., 2010).  Its cDNA was highly expressed in stem cells isolated 

from murine bone marrow, spleen, thymus as well as rhesus monkey bone marrow and 

SP phenotype was directly linked to its presence (Zhou et al., 2001).  However, in a 

triple knockout of Bcrp1/Mdr1a/1b (presently known as ABCG2/ABC1A/1B) mouse 

model, there was still a presence of 0.05  0.08% SP cells (p < 0.01) (Jonker et al., 

2005).  In a large panel of 150 untreated human carcinomas compromising 21 tumour 

types, ABCG2 protein was frequently detected in all tumour types using 

immunohistochemistry technique (Diestra et al., 2002).  Both membraneous and 

cytoplasmic staining was seen in ABCG2 positive tumours; however, there was no 

associated disease staging or clinical outcome analysis performed in the study.  A recent 

study in pancreatic cancer found that ABCG2 positive cells were co-expressed with 

gastrin, an autocrine factor linked to cell proliferation in some cancers (Wang et al., 

2016b).  By activating NF-B pathway, gastrin upregulated ABCG2 expression and 

subsequently an increase of SP cells.  Furthermore, wound healing experiments revealed 

that migration of pancreatic cancer cell line BxPC-3 stimulated with recombinant 

gastrin (rhGastrin) was more enhanced than unstimulated BxPC-3 or BxPC-3 with 

rhGastrin and ABCG2 knockdown.      

The type of ABC transporter inhibitor to be used for a particular sample in SP assay 

depends on the identity of ABC transporter family member present.  Golebiewska et al. 

(2011) reviewed that verapamil, cyclosporine A and probenecid individually inhibits 
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dye efflux mechanism of cells containing ABCB1 transporter, FTC specifically blocks 

ABCG2 transporter activity, while imatinib, an inhibitor of ABCB1 and ABCC1, may 

also hinder ABCG2 activity.   

SP assay is not without its share of criticisms.  Firstly, DNA-binding dyes such as 

Hoechst 33342 are known to be toxic to living cells at high concentrations and 

especially upon exposure to UV light (Golebiewska et al., 2011).  Most of the reviewed 

SP studies above had used 5 or 10 M of Hoechst 33342 which conferred low toxicity 

to cells at the usual incubation period of 90 min (Fried et al., 1982).  Nonetheless, 

different cell types responded dissimilarly to Hoechst 33342 as Fried et al. found out in 

a comparative study using HeLa S-3, a human cervical cancer cell line; SK-DHLZ, a 

human lymphoma cell line; and normal human bone marrow cells.  The concern of 

toxicity suffered by NSP cells due to an accumulation of Hoechst 33342 which would 

lead to subsequent poor viability and experimental bias in these cells was unfounded.  

Evidences presented by Huang et al. (2013), Nakayama et al. (2014) and Yi et al. (2015) 

showed that NSP cells were viable post-sorting and were able to proliferate, to form 

spheroids and in vivo tumours amongst other abilities, albeit at a lower scale than SP 

cells.  The differences in the experimental data could be attributed to biology rather than 

viability.   

Secondly, there is considerable variability in reporting the percentage of SP cells in 

publications using the same sample type or cell line.  For example, breast carcinoma cell 

line, MCF7 stained with 5 M of Hoechst 33342 for 90 min at 37 ºC in three 

independent studies gave a range of 0.39 to 7.5% of SP cells (Engelmann et al., 2008; 

Han & Crowe, 2009; Nakanishi et al., 2010).  One of the plausible reasons leading to 

the data inconsistency is the lack of a clear reporting of step-by-step gating strategy to 
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enable cross-publication comparisons.  This could be rectified by standardizing the 

reporting of data in SP assay as reviewed by Golebiewska et al. (2011). 

2.4 CSC markers  

Solid tumours are diagnosed clinically by histopathology with or without the 

expression of disease or cell type specific markers such as EBV-encoded small RNAs 

(EBERs) for NPC (Gourzones et al., 2013), and cytokeratin, estrogen receptor, 

progesteron receptor and HER2neu for triple-negative breast carcinoma (Dent et al., 

2007).  In addition to tumour subtypes, heterogeneity in cell proliferation, 

differentiation, tumourigenic potential and regeneration, phenotype and response to 

therapy is also often seen in tumour cells (Visvader & Lindeman, 2008, 2012).  As CSC 

model is one of the models used to explain for tumourigenesis (reviewed in subchapter 

2.2.2), surface markers associated with CSCs (“CSC markers”) have been 

acknowledged to play an essential role in distinguishing tumourigenic from non-

tumourigenic cells   (Shackleton et al., 2009).   

Table 2.3 shows a selection of seminal and recent publications which used CSC 

markers to isolate tumour subpopulations for studies on biological differences in 

cancers.  The list of markers is not an exhaustive one of all published reports.  Other not 

frequently in use markers include CD29, CD90, CD117 and CXCR4 (reviewed in 

Medema, 2013; Wang et al., 2015). 

Following subchapters are in-depth reviews of CD24, CD44, EpCAM and a 

combination of dual or triple of these markers as identification markers for CSCs and/or 

TICs as well as their functions or roles in tumourigenesis. 
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Table 2.3:  Isolation of tumour subpopulations from patient or cell line samples using 

CSC markers. 

Marker Malignancy Combinatory 

marker(s) 

In vivo serial 

transplantation 

References 

CD24 breast cancer  

 

 

 

pancreatic 

cancer  

 

 

hepatocellular 

carcinoma 

(HCC) 

 

NPC  

 

 

oral cancer  

CD44; 

CD44 and 

ESA 

 

CD44 and 

ESA 

 

 

none 

 

 

 

none 

 

 

CD44 

yes 

(four cycles) 

 

 

yes 

(four cycles) 

 

 

yes 

(one cycle) 

 

 

no 

 

 

no 

Al-Hajj et al., 

2003  

 

 

Li et al., 2007 

 

 

 

Lee et al., 

2011 

 

 

Yang et al., 

2014b 

 

Ghuwalewala 

et al., 2016 

 

CD34 acute myeloid 

leukaemia  

 

CD38 no Lapidot et al., 

1994 

CD44 colorectal 

cancer (CRC)  

 

 

 

head and neck 

squamous cell 

carcinoma 

(HNSCC) 

 

 

 

ovarian cancer  

 

 

gastric cancer  

 

 

ESA; 

CD166; 

ESA and 

CD166 

 

none 

 

 

 

none 

 

 

CD117 

 

 

none 

no 

 

 

 

 

yes 

(two to three 

cycles) 

 

no 

 

 

no 

 

 

no 

Dalerba et al., 

2007 

 

 

 

Prince et al., 

2007 

 

 

Oh et al., 2013 

 

 

Chen et al., 

2013 

 

Yu et al., 2014 
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Table 2.3, continued 

Marker Malignancy Combinatory 

marker(s) 

In vivo serial 

transplantation 

References 

CD44 NPC 

 

 

 

 

 

 

liver cancer 

none 

 

 

 

 

 

 

none 

 

no 

 

 

 

 

 

 

no 

Janisiewicz et 

al., 2012 

Lun et al., 

2012 

Yang et al., 

2014a 

 

Park et al., 

2016 

 

CD133 brain cancer 

  

 

bone cancer  

 

 

NPC  

 

none 

 

 

none 

 

 

none 

no 

 

 

no 

 

 

no 

Singh et al., 

2003 

 

Tirino et al., 

2008 

 

Zhuang et al., 

2013 

 

CD166 non-small cell 

lung cancer 

(NSCLC) 

 

none yes 

(two cycles) 

 

Zhang et al., 

2012b 

ABCG2 NPC 

  

 

liver cancer  

 

 

breast cancer  

none 

 

 

none 

 

 

none 

 

no 

 

 

no 

 

 

no 

Zhang et al., 

2012a 

 

Zhang et al., 

2013a 

 

Leccia et al., 

2014 

 

ALDH  

(aldehyde 

dehydrogenase) 

breast cancer  

 

 

 

prostate cancer  

 

none 

 

CD44 

no 

 

no 

Charafe-

Jauffret et al., 

2009 

Yu et al., 2011 
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Table 2.3, continued 

Marker Malignancy Combinatory 

marker(s) 

In vivo serial 

transplantation 

References 

EpCAM  

(epithelial cell 

adhesion 

molecule) 

gastric cancer  

 

 

liver cancer  

 

 

NSCLC  

 

 

mouse breast 

cancer 

CD44 

 

 

none 

 

 

CD166 

 

 

none 

yes 

(three cycles) 

 

no 

 

 

no 

 

 

no 

Han et al., 

2011  

 

Yamashita et 

al., 2013 

 

Norashikin et 

al.,  2015 

 

Hiraga et al., 

2016 

 

 

 

2.4.1 CD24 

CD24 is a surface protein made up of 32 amino acids and heavily glycosylated with a 

myriad of functions in T-cell proliferation and differentiation, B-cell development and 

autoimmune diseases (Tan et al., 2016).  P-selectin, an endothelial cell adhesion 

molecule, is expressed under inflammatory conditions which occur during tumour 

metastasis (McEver et al., 1989).  As CD24 acts as an alternate ligand for P-selectin 

(Aigner et al., 1998), CD24/P-selectin binding facilitates the passage of tumour cells in 

the bloodstream during metastasis, hence CD24 is also referred to as a marker for 

metastasis in non-small cell lung carcinoma (Lee et al., 2010).  Additionally, CD24 

increases proliferation and adhesion of tumour cells to fibronectin, collagen types I and 

IV, and laminin (Baumann et al., 2005).   

The absence or low expression of CD24 is synonymous with identifying breast CSCs 

as was first highlighted by Al-Hajj et al. (2003).  Limiting dilution experiments were 

performed in NOD/SCID mice with several combinations of CSC markers on breast 

cancer patients and PDXs.  With a combination of CD44
+
CD24

-/low
 phenotype, patient 
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cells induced tumour formation in vivo with the lowest inoculation of 5,000 cells (1/1) 

as compared to no growth with CD44
+
CD24

+
 phenotype (0/2).  TIC frequency for the 

CD44
+
CD24

-/low
 cells was 159 folds higher than CD44

+
CD24

+ 
cells (1 in 4,985 as 

compared to 1 in 795,024, respectively).  PDX cells selected for CD44
+
CD24

- 

phenotype had increased tumourigenicity potential (10/10 with 1,000 cells) as compared 

to CD44
+
CD24

+ 
(0/10 with 1,000 cells) and successfully formed tumours with 10,000 

cells at second passage.  CD44
+
CD24

-/low 
cells were also successfully serial-passaged 

for four cycles in NOD/SCID mice with similar tumourigenicity.  They also found that 

differences in growth for the cells were not due to differences in cell cycle as both 

tumourigenic and non-tumourigenic cells had similar cell cycle distribution.  The 

CD44
+
CD24

-/low 
cells displayed typical CSC features as they were able to form tumours 

with enhanced TIC frequency, to self-renew in vivo and to give rise to phenotypically 

diverse cells.      

The phenotype of CD44
high

CD24
low 

was also recently examined in OSCC 

(Ghuwalewala et al., 2016).  In comparison to CD44
high

CD24
high

 and CD44
low

CD24
high 

cells, CD24
low

 cells displayed the usual characteristics associated with CSC phenotype.  

Additionally, the authors found that CD44
high

CD24
low 

cells underwent epithelial-

mesenchymal transition (EMT) with a lower E-cadherin (marker for epithelial cells) to 

vimentin (marker for mesenchymal cells) ratio seen in these cells, contained 1.5-fold 

more SP cells and had an enhanced ability to resist 5-FU treatment than 

CD44
low

CD24
high 

cells.  However, the functionality of these CSCs was not evaluated in 

in vivo studies.    

On the other hand, the presence of CD24 expression (CD24
+
 phenotype) was more 

associated with tumour-initiating and stemness than CD24
-
 phenotype in chemoresistant 

HCC PDXs (Lee et al., 2011).  CD24 mRNA in cisplatin-treated PDXs was 2.9 folds 
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higher than untreated PDXs.  In vivo growth investigations revealed that CD24
+
 cells 

from HCC cell lines had higher tumour incidence and TIC frequency (1 in 2,367 cells) 

but grew at a slower rate in vitro, were able to self-renew in vivo more efficiently 

(96.7% tumour formation) and to metastasize more efficiently than CD24
-
 cells (TIC 

frequency of 1 in 69,669 cells).  By using knockdown and overexpression experiments, 

it was found that these traits were regulated by NANOG, a self-renewal marker, upon 

the binding of phosphorylated STAT3 to its promoter.   

Taken together, the CD24 phenotype (CD24
+
 or CD24

-/low
) responsible for 

tumourigenicity and/or stemness is tumour type-dependent.   

Literature review of CD24 in NPC studies will be covered in Chapter 4. 

2.4.2 CD44 

CD44 is a surface protein with complex structure and functions.  A full length CD44 

gene is made up of 20 exons and 19 introns:  10 exons are found in all isoforms 

(“constant” exons) with the remaining ones (“variable” exons) present in various 

combinations due to alternative splicing in the membrane-proximal stem region (Figure 

2.7) (Yan et al., 2015).  CD44s is the smallest, standard isoform or variant lacking all 

variable exons and is expressed on most vertebrate cells.  CD44v isoforms are only 

expressed on some epithelial cells, during certain conditions such as embryonic 

development and lymphocyte activation, and in some cancers (Zöller, 2011).  Most of 

the investigations on CD44 as a CSC or TIC marker used panCD44 antibodies which 

recognize both CD44s and CD44v isoforms (Zöller, 2011).  Likewise, my study used a 

CD44 antibody (clone G44-26) which was regularly reported in flow cytometry-based 

CSC studies, and recognizes both CD44s and CD44v (Biddle et al., 2013).  CD44 

protein is a receptor for hyaluronan (hyaluronic acid, HA) which is a major component 

of the extracellular cell matrix, as well as a co-receptor for growth factors and 
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cytokines.  Its binding with HA aids in cell-cell and cell-matrix interactions which 

further defines its many roles in cancer cell dissemination processes such as cell 

migration and survival signal transmission (Naor et al., 2009).        

  

 
 

Figure 2.7:  Diagrammatic structure of CD44 gene.  CD44 comprises of exons which 

are constant in every CD44 mRNA and protein (“constant exons”, green and yellow), 

with some other exons which are variably found in CD44 splicing isoform (CD44v) 

mRNAs and proteins (“variable exons”, pink).  The standard CD44 (CD44s) does not 

contain any variable exon.  ICD, intracellular cytoplasmic domain; TM, transmembrane 

region; UTR, untranslated region.  (Yan et al., 2015) 

 

Zöller (2011) wrote that CD44 is a major receptor for hyaluronan (HA) and the 

binding of HA to CD44 had important implications for TIC homing, migration and 

adhesion processes.  CD44 is also associated with genes controlling stem cell 

characteristics via Wnt pathway, of which CD44 is a transcriptional target.  Highly 

conserved Wnt pathway is involved in embryonic development and tissue homeostasis, 

which causes tumour formation when deregulated (Wend et al., 2010).   
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Prince et al. (2007) found that CD44
+
 phenotype from patient and xenograft cells 

from HNSCC fulfilled the defining characteristics of CSCs, namely the abilities to self-

renew and to differentiate.  CD44
+
 cells isolated from one patient induced tumour 

formation in mice from as low as 5,000 cells (3/3; overall TIC frequency 1 in 1) as 

compared to no growth with more than 40,000 CD44
-
 cells (0/9).  Moreover, CD44

+
-

induced tumours recapitulated the original tumour histology.  Serial passaging was 

successfully performed for two to three cycles with CD44
+
 but not CD44

-
 cells.  BMI1, 

a self-renewal gene, had a more than 4-fold upregulation in CD44
+
 cells but was barely 

detected in its counterpart.   

CD44 tumour initiation advantage was also shown in a combination study with 

EpCAM marker in CRC (Dalerba et al., 2007).  Tumours formed with 5,000 and fewer 

EpCAM
high

CD44
+
 cells (TIC frequency 1 in 492 cells), whereas there was no growth 

from 10,000 EpCAM
low

CD44
-
 cells (TIC frequency 1 in 205,998 cells).  The 

EpCAM
high

CD44
+
 phenotype showed asymmetric division ability by giving rise to 

similar proportions of EpCAM
high

CD44
+ 

and EpCAM
low

CD44
-
 to those of parental 

growths.     

Pathway-related studies showed that biological characteristics of CD44
+/high

 cells 

may be effected by AKT, Hedgehog and TGF-1 pathways, amongst others.  CD44
high

 

in combination with CD133
high

 phenotype selected for CRC cells which were more 

protective against radiation at all studied doses from 2 to 6 Gy, and AKT isoforms 1, 2 

or both increased the expression of CD44 (Sahlberg et al., 2014).   Both isoforms belong 

to the AKT pathway which is partially responsible for conferring anti-apoptosis and 

radiation resistance abilities.  On the other hand, the Hedgehog pathway was 

instrumental in causing chemotherapy resistance of CD44
+
 cells in gastric cancer (Yoon 

et al., 2014).  CD44 showed a synergistic relationship with TGF-1 pathway in inducing 
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EMT and CSC characteristics in HCC cells (Park et al., 2016).  CD44
+
TGF-1

+
 cells 

showed lower E-cadherin but higher N-cadherin expression levels in addition to 

increased levels of AKT, GSK-3 and -catenin.  They also formed larger spheres, an 

alternative measurement of CSC presence in vitro.  Upon TGF-1 inhibition or CD44 

knockdown, HCC cells could not exhibit both characteristics.  Separately, the increase 

of CD44
+
 cells in CRC as a result of hypoxia was found to be related to Wnt/-catenin 

pathway (Dong et al., 2016).   

Although the utility of CD44
+
 as a marker for CSCs and/or TICs as well as its 

interplay in major deregulated pathways for cancers has been vastly examined and 

verified in various solid tumours as reviewed above, Oh et al. (2013) reported that 

CD44
-
 cells in HNSCC spheroids behaved similarly to CD44

+
 cells.  Both 

subpopulations were able to regenerate spheroids, had increased levels of OCT4, SOX2 

and nestin proteins, possessed similar chemoresistance to cisplatin and percentage of SP 

cells, and similar tumour-forming ability in nude mice (TIC frequencies of 1 in 2,309 

cells and 1 in 4,579 cells for CD44
+
 and CD44

-
, respectively).  Subsequently, Zheng & 

Franzmann (2013) pointed out the possibility of phenotype conversion as one of the 

plausible reasons for causing the attributes of CD44
-
 cells in the former study.   

Literature review of CD44 in NPC studies will be covered in Chapter 4. 

2.4.3 EpCAM           

Since its discovery in 1979, epithelial cell adhesion molecule (EpCAM) was referred 

to by numerous names including epithelial surface antigen (ESA) and human epithelial 

antigen (HEA125).  The nomenclature has since been set as EpCAM or CD326 (Trzpis 

et al., 2007).  EpCAM is a surface marker, comprising of 314 amino acids and functions 

as an epithelial-specific intercellular cell adhesion molecule with additional 

involvement in cellular signalling, cell migration, proliferation and differentiation 
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(Patriarca et al., 2012).  Although EpCAM is expressed by both normal and malignant 

epithelial tissues, its expression is low on the basolateral membrane of normal epithelial 

cells as opposed to high expression level on apical membrane in cancer cells (Ni et al., 

2012).   

Despite the establishment of EpCAM’s positive role in cell proliferation and 

elucidation of mechanisms involved as mentioned above and proven by Münz et al. 

(2004), Kroepil et al. (2013) and others, EpCAM-transfected pancreatic cell lines 

showed lower or no difference in proliferation, and lower abilities to invade and migrate 

(Akita et al., 2011).  In fact, there was a positive correlation between its expression and 

overall survival in pancreatic cancer patients (56.2% of EpCAM-high patients survived 

their cancer for 3 years versus only 19.2% for EpCAM-low patients, p < 0.01).  The 

authors argued that the clinical significance of EpCAM depends on type of malignancy 

as other studies had found that it was both a good and a bad prognostic marker in 

cancers such as kidney, gastric, breast and gallbladder.  Separately, EpCAM also had no 

effect on cell proliferation in a prostate carcinoma study (Massoner et al., 2014).  

Although EpCAM expression was incremental from low to high grade and metastatic 

lesions in patients, both parental and EpCAM-knockdown prostate carcinoma cell lines 

had comparable growth in vitro. 

EpCAM
pos

 cells from mouse breast cancer cells displayed certain features of CSCs 

(Hiraga et al., 2016).  Although there was no difference in in vitro proliferation, 

invasion and migration abilities between EpCAM
pos

 and EpCAM
neg

 cells, there was a 

significant increase of tumour-initiating potential in EpCAM
pos

 cells at the lowest 

inoculation of 100 cells (TIC frequency of 1 in 95 cells compared to 1 in 281 cells for 

EpCAM
neg

 cells) as well as in the development of bone metastasis by EpCAM
pos

 cells.  

Nonetheless, lentiviral transduction of EpCAM into EpCAM
neg

 cells could not establish 
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the features of EpCAM
pos

 phenotype in these cells, which showed that EpCAM alone 

was most likely insufficient to induce stemness in mouse breast cancer.     

EpCAM marker has also been used in combination studies with other common CSC 

markers to explore its functions and roles.  Its role in tumour initiation cannot be 

overlooked in the seminal study on tumourigenic breast cancer cells (Al-Hajj et al., 

2003).  The presence of ESA positive cells in the combination of CD44
+
CD24

-/low
 

formed 100% tumours in all inoculations from 1,000 to 100 cells (24/24) as compared 

to no growth in CD44
+
CD24

-/low
ESA

-
 cells (0/24).   

The combination of EpCAM
+
 and CD44

+
 were found to be identifying for CSCs in 

gastric cancer samples as these cells were consistently more tumour-initiating and were 

able to self-renew in vivo as compared to EpCAM
-
CD44

-
 and the remaining two 

combinations (Han et al., 2011).  EpCAM
+
CD44

+
-resulting tumours were successfully 

passaged for three cycles; yet, EpCAM
-
CD44

- 
cells failed to induce secondary growths.   

CD166
+
EpCAM

+
 marker was selective for CSC-like cells in NSCLC cell line, A549 

(Norashikin et al., 2015).  Although there were promising results from in vitro and in 

vivo growth experiments, moderate upregulation of pathways regulating drug 

metabolism and ABC drug transporters, and downregulation of p53, apoptosis and 

ECM-receptor interaction pathways, in vivo self-renewal ability of CD166
+
EpCAM

+
 

cells was not evaluated in the study.  

In the search for markers to identify circulating tumour cells (CTCs) which are 

involved in disseminating metastases, EpCAM by virtue of it being an epithelial cell 

marker, was selected as the marker for CTCs in the first and only US Food and Drug 

Administration-approved test kit for clinical detection of metastatic breast, colorectal 

and prostate cancer (Hofman et al., 2011).  An increased understanding of CTCs and 
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EMT-MET processes later led to disputes concerning the use of EpCAM to monitor 

treatment efficacy and to detect disease recurrence (reviewed in Gabriel et al., 2016).     

Literature review of EpCAM in NPC studies will be covered in Chapter 4.



 

38 

CHAPTER 3: EVALUATION OF STEM-LIKE SIDE POPULATION CELLS IN 

A RECURRENT NASOPHARYNGEAL CARCINOMA CELL LINE   

3.1 Introduction  

Chapter 3 illustrates the use of side population (SP) assay as my first approach to 

identify, isolate and study biological as well as gene expression differences between 

tumourigenic and non-tumourigenic cells in NPC.  HK1 is a cell line established from a 

well-differentiated recurrent NPC sample (Huang et al., 1980), while xeno-284 is a 

PDX line established in our laboratory from a poorly differentiated recurrent metastatic 

NPC sample.  Both HK1 and xeno-284 are EBV negative.  The presence of the SP 

subpopulation was first assessed in HK1 and xeno-284 cells.  Due to the scarcity of SP 

cells in xeno-284, sorting of SP and NSP subpopulations for comparison of in vitro 

growth properties could only be performed in HK1.  Aldehyde dehydrogenase (ALDH) 

activity which is usually high in stem cells and CSCs was also determined in the sorted 

HK1 cells.  Gene expression studies were performed in sorted HK1 to identify stem cell 

related genes and pathways which may be responsible for in vitro observations.  Finally, 

in vivo tumourigenicity experiments were performed using sorted HK1 for duration of 

up to seven weeks to evaluate the tumour-initiating ability of its SP and NSP cells.    

3.2 Brief Literature Review 

Nasopharyngeal carcinoma (NPC) is the most common malignancy arising from the 

nasopharynx and its causation is closely associated with the Epstein-Barr virus, 

environmental as well as dietary factors (Lo et al., 2004).   Majority of NPC cases 

present in late stages which is largely due to the hidden location of the tumour in 

addition to either no or apparently trivial symptoms ignored by patients or even medical 

professionals (Khoo & Pua, 2013; Pua et al., 2008).  Also, NPC disease recurrence, 

therapeutic resistance and metastasis remain major clinical problems (Wei & Sham, 

2005).   
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The cancer stem cell (CSC) model is one of the models used to describe tumour 

initiation (Baccelli & Trumpp, 2012; Imrich et al., 2012; Visvader & Lindeman, 2008).  

It hypothesizes that there is a hierarchy within the tumour cell population and only a 

rare subset of cancer cells has the ability to self-renew and to differentiate, leading to 

the recapitulation of the original tumour (Clarke et al., 2006).  As such, CSCs are 

believed to be important contributors to the process of metastasis, and reactivation of 

proliferating CSCs is thought to be one of the underlying causes of disease recurrence.  

CSCs are found to behave differently from the rest of tumour cells; amongst others, they 

have enriched tumour-initiating potential and have efficient drug extrusion systems to 

evade most chemotherapeutic drugs (Alison et al., 2012).  These cells undergo 

asymmetric divisions to give rise to daughter cells:  one will be stem-like and the other 

does not show stem cell characteristics.  Some CSC-enriched subpopulations were 

slower in proliferation (reviewed in Moore & Lyle, 2011), whilst others reported an 

equal or rapid proliferation rate than the non-CSC subpopulations (Akunuru et al., 2011; 

Cao et al., 2011).   

A limiting dilution analysis (LDA) in animal models entails inoculating a series of 

cell numbers into the hosts to quantify frequency of cells possessing a particular 

function which are present in a mixed and larger population (Hu & Smyth, 2009; 

Rosenbloom et al., 2015).  As it is a dose-response experiment in which each cell 

number elicits a positive or negative response in the host, LDA is typically used in stem 

cell and CSC studies to estimate the frequency of TICs.  Hu and Smyth (2009) designed 

a highly-cited free online software called Extreme Limiting Dilution Analysis (ELDA; 

http://bioinf.wehi.edu.au/software/elda/) to calculate TIC frequencies for stem cell 

research, amongst other analyses.  TIC frequency is computed as a central estimate and 

confidence interval.  Three key features of this software are its ability to handle extreme 

data situations with 0% or 100% responses, to compare frequencies across multiple 
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populations, and to analyse non-Poisson distribution.  ELDA also accommodates well 

the small numbers of replicates usually seen in stem cell and CSC research by using 

likelihood ratio tests, instead of t-test methods which can give misleading results in 

small sample sets.   

As CSCs are known to possess drug extrusion ability, SP assay, originally 

established by Goodell et al. (1996) for haematopoietic stem cells, was used for 

identification of putative stem cells and progenitors in solid tumours (Fukaya et al., 

2010; Kato et al., 2010; Lim et al., 2011).  The ability of SP cells to extrude the Hoechst 

33342 dye, causing them to appear as dimly stained cells in flow cytometry dot plots, is 

dependent on the activity of the ATP-binding cassette (ABC) drug transporter family 

which includes ABCB1, ABCC1 and ABCG2 (Wu & Alman, 2008).  Verapamil is a 

potent inhibitor for ABCB1 which also weakly inhibits ABCG2 activities, while FTC 

specifically inhibits ABCG2 (Duan et al., 2004; Robey et al., 2007).   

In NPC research, SP assay was first used in CNE-2 a poorly-differentiated NPC cell 

line (Wang et al., 2007).  SP cells were identified with the use of verapamil indicating 

the involvement of ABCB1 drug transporter in CNE-2.  The presence of ABCB1 gene, 

however, was not confirmed in qPCR.  Instead, ABCG2 gene was measured and found 

to be lowly expressed in SP cells with no expression in NSP cells.  Although the growth 

rate of SP cells during culture was faster than NSP cells, both cells exhibited similar 

proliferation index and S-phase fraction in cell cycle analysis.  SP cells also displayed 

the ability to differentiate into NSP cells by asymmetric cell division as the percentage 

of original SP cells decreased after nearly three weeks in culture.  A 4-week in vivo 

tumourigenicity experiment revealed that SP cells formed more tumours in NOD/SCID 

mice than NSP cells in a limiting dilution manner from 200,000 cells to 10,000 cells.  

The SP cells also showed higher resistance to X-ray which was attributed to a higher 
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presence of Smoothened (SMO) protein in the cells.  SMO is a receptor protein in the 

Hedgehog pathway which has been implicated in tumourigenesis, embryonic 

development and EMT, amongst others (Takebe et al., 2015).   

A follow-up study by the group found that cancer cells with stem-like features could 

be induced by DNA damage (Liang et al., 2010).  UV and mitomycin C treatment 

increased the proportion of SP cells by approximately 3 folds in CNE-2 S26 cells which 

were related to deregulated levels of key regulators of cell cycle and mitosis Mad2, 

Aurora B and Cdh1.  Besides DNA damage, the presence of a latent membrane protein 

of the EBV, LMP2A, could also increase SP population, in part, through PI3K/Akt 

pathway (Kong et al., 2010).   

Ma et al. (2013) reported the influence of another pathway on SP phenotype.  

Treatment with epidermal growth factor (EGF) increased SP cells by 2.5 and 1.6 folds 

in CNE-1 and CNE-2 cells, respectively and also raised the levels of phosphorylated 

epidermal growth factor receptor (EGFR), AKT and ERK1/2.  Gefitinib, an inhibitor of 

the EGFR pathway, reduced SP cells to almost none in both cell lines, in addition to a 

substantial reduction in phosphorylated EGFR.  Likewise, PI3K and ERK inhibitors 

only abolished the phosphorylation of AKT and ERK1/2, respectively.  Knockdown of 

EGFR expression led to reduction of spheroid formation in parental CNE-2 cells.  -

catenin was also influential in maintaining the SP phenotype as sh--catenin- 

transduced cells showed a reduction of SP percentages with and without addition of 

EGF.  It was thus concluded that SP phenotype and stemness properties in NPC were 

regulated by EGFR/PI3K/AKT pathway and mediated by -catenin.   

Many important findings on SP and CSC phenotypes, stemness-related functions and 

cellular properties in NPC were ascertained from investigations performed on CNE-1 
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and CNE-2 cell lines as reviewed above.  Chan et al. (2008) performed an extensive 

authentication of CNE-1 and CNE-2 in addition to other commonly used NPC cell lines 

and xenografts.  Due to the highly similar short tandem repeat (STR) profiles of these 

two cell lines, it was implied that they were genetically similar and derived from one 

single cell line despite both lines being established from two different NPC tumours.  

Repeated profiling of both lines sourced from other laboratories in Hong Kong and 

Singapore also gave similar results.  It was further reported that HPV-18 genome was 

present in CNE-1 and CNE-2 and their STR profiles were similar to the STR profile of 

HeLa, postulating that CNE-1 and CNE-2 could be developed “from the fusion of HeLa 

with an unknown cell line by somatic cell hybridization” (Chan et al., 2008, p. 2170).  

NPC cell lines are not currently available in cell line repositories such as American 

Type Culture Collection (ATCC) with high biological standards in the acquisition, 

authentication, production and preservation of reference cell lines.  In my study, HK1 

cells had been previously obtained from the University of Hong Kong and STR 

profiling had been performed in the Department of Chemistry, Malaysia.  HK1 cells 

used in my study shared a 100% match of STR profile with the one published by Chan 

et al. (2008) (Appendix C).           

3.3 Materials 

3.3.1 Cell line 

HK1 cells were obtained as a gift from Professor George SW Tsao (University of 

Hong Kong).  The cell line was established from a recurrent NPC patient having well-

differentiated squamous carcinoma with prior radiation therapy (Huang et al., 1980).   
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3.3.2 NPC patient-derived xenograft (PDX) 

Xeno-284 was established from a recurrent NPC patient with poorly differentiating 

squamous cell carcinoma with prior concurrent chemo-radiotherapy (manuscript in 

preparation). 

3.3.3 Cell lines and culture reagents 

3.3.3.1 Complete medium 

Total volume of 100 mL 

RPMI-1640 medium (with phenol red)  89.5 mL 

Fetal bovine serum     10 mL  

10,000 U/mL Penicillin-Streptomycin  500 L 

All items were obtained from Thermo Fisher Scientific Inc., MA, USA. 

3.3.3.2 Freezing medium 

Total volume of 10 mL 

Complete medium     5 mL 

Dimethyl sulfoxide Hybri-Max (DMSO)  1 mL  

Fetal bovine serum     4 mL 

DMSO was purchased from Sigma-Aldrich, MO, USA. 

3.3.3.3 1X phosphate-buffered saline (PBS) 

Total volume of 100 mL 

Deionized water (dH2O)    100 mL 
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Phosphate-buffered salt     1 tablet  

Phosphate-buffered salt was obtained from Takara Biotechnology, Shiga, Japan. 

3.3.3.4 1X PBS supplemented with 1X antibiotic-antimycotic 

Total volume of 100 mL 

1X PBS      99 mL 

100X antibiotic-antimycotic    1 mL  

Antibiotic-antimycotic was purchased from Thermo Fisher Scientific Inc., MA, 

USA. 

3.3.4 HBSS+ buffer 

Total volume of 100 mL 

Hanks’ balanced salt solution (HBSS)  98 mL  

Fetal bovine serum     2 mL 

HEPES      0.2383 g  

HBSS and HEPES were obtained from Thermo Fisher Scientific Inc., MA, USA and 

Sigma-Aldrich, MO, USA, respectively. 

3.3.5 Reagents for RT-qPCR 

3.3.5.1 75% ethanol 

Total volume of 10 mL 

Absolute ethanol     7.5 mL 

dH2O      2.5 mL 
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Absolute ethanol (molecular biology grade) was purchased from Merck Millipore, 

MA, USA. 

3.3.5.2 Reverse transcription (RT) mix 

Total volume of 10 L (equivalent to 1 reaction of RT) 

5X buffer BC3     4 L 

control P2      1 L 

RE3 reverse transcriptase mix   2 L 

RNase-free water     3 L 

All items were components from RT
2 

Profiler PCR Array kits (SABiosciences, MD, 

USA). 

3.3.5.3 quantitative PCR (qPCR) mix 

Total volume of 2.7 mL (equivalent to a 96-well PCR Array) 

2X RT
2
 SYBR Green mastermix   1.35 mL 

cDNA       102 L 

RNase-free water     1.248 mL 

All items were components from RT
2 

Profiler PCR Array kits (SABiosciences, MD, 

USA). 

3.4 Methods 

This study was performed according to the protocols approved by Research 

Management Committee of Institute for Medical Research (project code:  JPP-IMR 09-
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037) and Animal Care and Use Committee of the Ministry of Health, Malaysia 

(approval code:  ACUC/KKM/02(1/2011)).   

3.4.1 Cell culture 

HK1 adherent cells were cultured in complete medium.  The cells were maintained in 

a 5% CO2-humidified incubator (model NU-4750E, Nuaire, MN, USA) at 37 C.  Cell 

culture experiments were carried out in a biosafety cabinet class II and culture media 

and reagents were warmed to 37 C in a water bath prior to use. 

3.4.1.1 Thawing of frozen culture and culturing of revived cells 

A cryovial containing cryopreserved cells was removed from the liquid nitrogen tank 

and immediately thawed in a water bath at 37 C with gentle swirling.  Thawed content 

was pipetted dropwise into a 15-mL centrifuge tube containing 5 mL of cold complete 

medium.  The cell suspension was centrifuged at 1,000 rpm for 5 min and the 

supernatant was subsequently discarded.  The cell pellet was resuspended with 5 mL of 

complete medium and transferred to a 6-cm culture dish.  The dish was maintained in 

the incubator.  Medium was changed every 2 - 3 days. 

3.4.1.2 Passaging of cells 

HK1 cells were passaged when they were 80 - 90% confluent (i.e. logarithmic 

growth phase).  The spent medium was discarded and the cells were gently rinsed with 3 

mL of 1X PBS.  The cells were trypsinized with 2 mL of TrypLE™ Express Enzyme 

(1X) (Thermo Fisher Scientific Inc., MA, USA) at 37 C for 5 - 8 min.  Cells were 

viewed under a phase contrast inverted microscope for detachment.  Trypsinization 

process was stopped with the addition of 2 - 3 mL of complete medium.  The cell 

suspension was transferred to a 15-mL centrifuge tube and centrifuged at 1,000 rpm for 

5 min.  The supernatant was discarded and the cell pellet was gently resuspended with 2 
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mL of complete medium prior to transfer to the required numbers of new 10-cm culture 

dishes.  Six mL of complete medium were then added with gentle swirling to ensure an 

even distribution of cells in each dish.       

3.4.1.3 Cryopreservation 

Freezing medium was freshly prepared and chilled for each cryopreservation process.  

After the cells had been detached, centrifuged and the supernatant was discarded, the 

cell pellet was gently resuspended with chilled freezing medium.  Cryovials were 

prelabelled and chilled prior to filling with 1 - 2 X 10
6
 cells per vial.  The cryovials 

were then stored at -20 C for 2 - 3 h, followed by -80 C storage for overnight prior to 

long term storage in liquid nitrogen.    

3.4.1.4 Cell counting by automated cell counter 

Following cell detachment and resuspension in complete medium, the cells were 

counted prior to use.  Ten L of cell suspension were combined with 10 L of trypan 

blue solution for cell viability and counting checks.  Ten L of the mixture were then 

loaded into a Countess® cell counting chamber slide.  The loaded slide was then 

inserted into the Countess® automated cell counter (Thermo Fisher Scientific Inc., MA, 

USA).  Image quality was first adjusted to ensure a good contrast between live and dead 

cells before cells were counted automatically.   

3.4.1.5 Mycoplasma detection 

Mycoplasma contamination in cultured cells was periodically checked with Venor 

GeM Mycoplasma Detection Kit for Conventional PCR (Minerva Biolabs, Berlin, 

Germany) following the manufacturer’s protocols.     



 

48 

3.4.2 NPC patient-derived xenograft 

Xeno-284 xenograft was maintained and passaged in vivo in NOD-scid gamma 

(NSG) mice (NOD.Cg-Prkdc
scid

 Il2rg
tm1Wjl

/ SzJ; The Jackson Laboratory, ME, USA) as 

a subcutaneous growth in the SPF Animal Facility (Institute for Medical Research, 

Malaysia).  Only xeno-284 samples of passage 12 and below were used in this study.   

3.4.2.1 Harvesting of xenograft 

Mouse bearing a tumour was checked for its correct identity via its ear tag.  The 

mouse was humanely euthanized using CO2 and/or cervical dislocation method.  The 

exterior of the subcutaneous xenograft and its surrounding area was first disinfected 

with 10% w/v Povidone iodine solution (Polylab Biotech Sdn. Bhd., Malaysia).  The 

xenograft was gently excised out and transferred to a sterile glass petri dish.  Visible 

blood clots, blood capillaries and/or fat were removed.  It was then cut length-wise to 

inspect for the presence of necrotic tissue which would be removed.  A cross section of 

the xenograft tissue was preserved in 10% neutral buffered formalin (Leica Biosystems, 

IL, USA).   

3.4.2.2 Digestion of xenograft 

Xeno-284 was freshly harvested as above and rinsed with cold 1X PBS 

supplemented with 1X antibiotic/antimycotic.  The xenograft tissue was minced finely 

in the presence of 5 mL of 1X collagenase/dispase solution (Roche, Mannheim, 

Germany) in a sterile glass 6-cm petri dish.  The mixture was incubated for 60 min in a 

5% CO2-humidified incubator at 37 ºC with constant mixing.  The cell suspension and 

undigested xenograft pieces were separated by sieving through 40-µm cap strainer.  The 

clear flow-through was centrifuged at 900 rpm for 6 min and the supernatant was 

discarded.  The cell pellet was resuspended in 2 mL of RBC lysis buffer (Qiagen, 

Hilden, Germany) followed by another centrifugation step as described earlier.  The cell 
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pellet was resuspended with 2 - 3 mL of 1X PBS and centrifuged as described earlier.  

Supernatant was discarded and the pellet was resuspended with HBSS+ buffer prior to 

cell count and viability check.   

3.4.3 SP assay with Hoechst 33342  

For this assay, HK1 cells were grown in 10-cm culture dishes and were consistently 

used at logarithmic growth phase for every flow cytometry analysis or cell sorting.  

Spent medium was discarded and the cells were rinsed with 1X PBS.  Cell detachment 

for SP assay was performed with Accutase (Millipore, MA, USA) instead of TrypLE™ 

Express Enzyme (1X) under the same conditions.  The chemical components in 

Accutase are proprietary with “proteolytic and collagenolytic” activity.  It was used for 

Hoechst 33342 experiments as it contained reportedly less proteolytic activity than 

trypsin-containing dissociation enzymes such as TrypLE™ Express, thus ensuring a 

better preservation of the biological state of HK1 during and after cell detachment 

(Biddle et al., 2013).  Cell suspension was centrifuged as described above, supernatant 

was discarded and cell pellet was resuspended with 1X PBS for a wash prior to Hoechst 

33342-staining.  

A modification of Goodell’s method was used to stain both HK1 and xeno-284 cells 

(Goodell et al., 1996).   The cells were resuspended at a concentration of 1 X 10
6
 cells 

per mL in HBSS+ buffer.  Hoechst 33342 dye (Molecular Probes, OR, USA) was added 

into the cell suspension at a final concentration of 5 μM in the presence or absence of 

FTC (ABCG2 inhibitor) at a final concentration of 1 μM (Sigma, MO, USA) or 

verapamil (ABCB1 inhibitor) at a final concentration of 50 and 100 μM (Sigma, MO, 

USA). The cells were incubated for 90 min in a 37 ºC water bath with intermittent 

mixing.  The centrifuge tubes containing stained cells were immediately immersed into 

an ice bucket and all subsequent steps were performed on ice, with cold buffer or at 4 
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C.  Excessive Hoechst 33342 dye was removed from the cell suspension by washing 

with cold HBSS+ followed by centrifugation at 1,000 rpm (HK1 cells) or 900 rpm 

(xeno-284 cells) for 6 min at 4 C.  The resulting pellet was resuspended to a final 

concentration of 1 X 10
6
 cells per mL with cold HBSS+.  In order to delineate host 

mouse cells, xeno-284 cells were further stained with H2Kd-phycoerythrin (PE) 

antibody (1:10 dilution, BD Pharmingen, MA, USA) for 30 min at 4 ºC.  Hoechst 

33342-stained HK1 and xeno-284 cells were also stained with propidium iodide (PI, 2 

μM, BD Pharmingen, MA, USA) and 7-aminoactinomycin D (7-AAD, 1:400 dilution, 

BD Pharmingen, MA, USA), respectively, for determination of cell viability.  7-AAD 

(emission wavelength ~670 nm) was used as a viability dye for xeno-284 cells due to a 

similar emission wavelength of approximately 585 nm for PI and PE (conjugated to 

H2Kd antibody), leading to a technical challenge in discriminating the fluorescence 

signals accurately.  The stained cells were analysed and sorted in a BD FACSAria II 

SORP cytometer (BD Biosciences, MA, USA) equipped with a 355-nm UV laser power 

of 50 mW.  The Hoechst 33342 fluorescence was detected via a 405/20 band-pass filter 

(Hoechst Blue) and a 670 long pass filter (Hoechst Red).   

Flow analysis was performed with BD FACSDiva software (version 6.1.3; BD 

Biosciences, CA, USA) in a hierarchical manner.  Single cells were identified and gated 

using the in-built doublet discrimination gating strategy.  The single cells were then 

analysed for viable cells, after which SP cells were identified with FTC or verapamil 

inhibitor.  Presence of cells was reported as percentage of single, viable SP or NSP 

cells.   

3.4.4 Clone morphology experiment 

Sorted cells were plated at a low cell density of 50 cells per well in a 96-well culture 

plate containing complete medium.  Upon seeding, microscopic inspection of each well 
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was performed to ensure there was no cell clumping.  The cells were incubated in 5% 

CO2-humidified incubator at 37 C.  Once the cells were adherent, the culture medium 

was changed every two days.  The identification and description of different clone 

morphologies were performed using previously reported method (Felthaus et al., 2011; 

Harper et al., 2007; Roudi et al., 2016; Shigeishi et al., 2013).  The numbers of 

holoclones, meroclones and paraclones were counted with a phase contrast inverted 

microscope on day 8 post-sorting.  Data were recorded from three independent 

experiments with 12 replicate wells per SP or NSP cells in each experiment.   

3.4.5 Aldehyde dehydrogenase (ALDH) experiment 

Sorted cells were left for overnight recovery in the culture conditions as mentioned 

above.  The cells were detached using Accutase as described above and ALDH staining 

was performed with the ALDEFLUOR staining kit (Stem Cell Technologies, 

Vancouver, Canada).  After cell count, 0.25 X 10
6
 cells from each population (SP or 

NSP) were resuspended in ALDEFLUOR assay buffer containing 1.5 µM ALDH 

activated substrate (BODIPY-aminoacetaldehyde , BAAA) (“test” sample).  Half of 

each stained population was then mixed with 15 µM ALDH inhibitor (N,N-

diethylaminobenzaldehyde, DEAB) in another tube (“control” sample).  All stained 

samples were then incubated for 45 min at 37 ºC with constant mixing. This was 

followed with a centrifugation step at 1,000 rpm for 5 min at 4 C.  The stained cells 

were washed, resuspended in cold ALDEFLUOR assay buffer containing 2 µM PI and 

analysed in BD FACSCalibur (BD Biosciences, MA, USA).  SKBR3 cell line was used 

as a staining positive control for the experiment.  Analysis gate for ALDH positive cells 

was drawn on stained viable parental HK1 cells with DEAB inhibitor.  Presence of cells 

was reported as percentage of viable ALDH positive cells.  Data were obtained from 

five independent experiments. 
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3.4.6 Asymmetric division experiment 

Ten thousand sorted cells were re-cultured for three weeks in complete medium as 

described above.  Hoechst 33342 staining was performed and the cells were analysed in 

a BD FACSAria II SORP cytometer as previously described.  Data were recorded from 

three independent experiments. 

3.4.7 Proliferation experiment 

Sorted cells were left to recover from the sorting process in a 5% CO2-humidified 

incubator at 37 ºC for approximately two hours.  The “recovered” cells were seeded at 

3,000 cells per 200 µL of complete medium into each well of the E-plate 16 (Roche, 

Mannheim, Germany).  Cell index values were recorded over a period of 125 h with an 

interval of 1 h for the first day, followed by every 6 h for the remaining experiment by 

the xCELLigence System’s Real time Cell Analyser (RTCA) DP instrument (Roche, 

Mannheim, Germany).  Cell index values represent measurements of electrical 

impedance of monitored cells which reflect cell growth (number and viability), 

morphology and adhesion ability.  The cell index values of SP and NSP cells at each 

time point were then normalized to the control cells (parental HK1 cells which were 

only stained with PI and sorted from PI negative gate).  Data were obtained from three 

independent experiments.   

3.4.8 Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) 

experiment 

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was 

performed using RT
2 

Profiler Human Stem Cell and Stem Cell Signaling PCR Arrays 

and kits (SABiosciences, MD, USA).  The 96-well Human Stem Cell PCR Array 

detects expression of 84 genes related to the identification, growth and differentiation of 

stem cells (see Appendix A for list of genes).  The 96-well Human Stem Cell Signaling 
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PCR Array profiles the expression of 84 key genes involved in signal transduction 

pathways important for embryonic stem cell (ESC) and induced pluripotent stem cell 

(iPSC) maintenance and differentiation (Appendix B).  Each array contains five 

housekeeping genes, genomic DNA (gDNA) control, RT control and positive PCR 

control.      

3.4.8.1 Total RNA extraction 

Total RNA was isolated using TRIzol (Invitrogen, CA, USA).  Sorted cells were 

centrifuged at 1,000 rpm for 5 min and the supernatant was discarded.  The pellet was 

resuspended with 750 L of TRIZOL Reagent per 5 - 10 X 10
6
 cells and the cells were 

lysed by repetitive pipetting.  The homogenized cells were incubated for 5 min at room 

temperature to allow for complete dissociation of nucleoprotein complexes, followed by 

the addition of 200 L of chloroform per 1 mL of TRIZOL Reagent.  The tube was 

capped securely, vortexed vigorously for 15 s and incubated at room temperature for 2 - 

3 min.  The cell mixture was centrifuged at 12,000 x g for 15 min at 4 C.  Following 

centrifugation, the mixture was separated into three layers:  lower red phenol-

chloroform phase, an opaque interphase, and a colourless upper aqueous phase.  The 

upper phase which contained RNA was carefully removed into a new tube without 

disturbing the interphase.  RNA was then precipitated with the addition of 500 L of 

100% isopropanol per 1 mL of TRIZOL Reagent used.  The mixture was incubated at 

room temperature for 10 min and centrifuged at 12,000 x g for 10 min at 4 C.  The 

supernatant was carefully aspirated and RNA could be seen as a gel-like pellet at the 

side or bottom of the tube.  The pellet was washed with 1 mL of 75% ethanol per 1 mL 

of TRIZOL Reagent used.  Resuspension of the pellet in 75% ethanol was properly 

done by vortexing.  The mixture was then centrifuged at 7,500 x g for 5 min at 4 C and 



 

54 

the ethanol was carefully removed.  The clean RNA pellet was air-dried for 5-10 min at 

room temperature.  RNA was dissolved in 10-20 L of nuclease-free water.    

3.4.8.2 Quantification of total RNA 

The concentration and quality of the extracted RNA was determined with NanoDrop 

8000 spectrophotometer (Thermo Scientific, DE, USA).  Nuclease-free water was used 

as a “blank”.  Only RNA samples with a 260/280 ratio of ~ 1.8 to 2.0 were used for 

reverse transcription (RT).   

3.4.8.3 Reverse transcription (RT) 

Prior to RT, gDNA elimination was performed on the total RNA.  For a 10-L 

gDNA elimination reaction mixture, 100 ng of total RNA was added with 2 L of 

Buffer GE and the remaining volume was made up to 10 L with nuclease-free water.  

The mixture was incubated at 42 C for 5 min and immediately placed on ice for 5 min. 

Ten L of RT mix was then added into the tube containing 10 L of gDNA 

elimination mixture.  The content was mixed gently by pipetting prior to incubating at 

42 C for exactly 15 min.  RT reaction was stopped by incubating the mixture at 95 C 

for 5 min.  Subsequently, 91 L of nuclease-free water was added into the reaction and 

mixing was performed by pipetting several times.  The mixture was then placed on ice 

before proceeding with qPCR.   

3.4.8.4 Quantitative PCR (qPCR) and data analysis 

For a 2.7-mL mixture of qPCR components sufficient for a 96-well PCR Array, 102 

L of cDNA was mixed with 2.598 mL of qPCR master mix.  The components were 

evenly mixed and dispensed into a nuclease-free loading reservoir.  Using an 8-channel 

pipettor, 25 L of qPCR mixture was added into each well of the PCR Array.  The array 
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was tightly sealed with the provided optical adhesive film and centrifuged at 1,000 x g 

for 1 min at room temperature to remove bubbles.  The array was then loaded into the 

ABI7500 Fast Real-Time thermal cycler (Applied Biosystems, CA, USA) for qPCR:  

activation of HotStart DNA Taq polymerase at 95 C for 10 min, followed by 40 cycles 

of denaturing at 95 C for 15 s and annealing/extending at 60 C for 1 min.      

Relative expression was determined using comparative cycle threshold (CT) method.  

Genes with CT values of more than 35 were removed from analysis.  CT value of each 

gene was normalized against the geometric mean CT value of five housekeeping genes 

(CT geoHK), with the formulae 2
-dCT

 (dCT = CT gene of interest – CT geoHK).  The 

normalized values were used to calculate fold change ratios between SP and NSP cells 

(=2
-ddCT

).  Data were obtained from three independent experiments.     

3.4.9 In vivo tumourigenicity experiment 

Inoculations of SP and NSP cells into nude mice were performed in a limiting 

dilution manner with 1,000, 100 and 10 cells.  Sorted cells were mixed with BD 

Matrigel basement membrane matrix (BD Biosciences, MA, USA) and inoculated 

subcutaneously into 5 – 6-week-old nude mice (Balb/c nu/nu; Animal House of IMR, 

Malaysia).  Tumour latency data, defined as the period between inoculation day and the 

first day of tumour detection, were recorded.  Once a palpable growth was detected, 

tumour volume was recorded every two days.  Tumour volume (mm
3
) was calculated 

from 0.5 X (width
2
 X length).  All tumours were harvested once the length or width 

reached 10 mm (animal ethics’ consideration) or on day 50 post-inoculation (to 

maintain an equal tumour burden amongst the mice).  Limiting dilution analysis was 

performed using the Extreme Limiting Dilution Analysis (ELDA) software (Hu & 

Smyth, 2009).  Data for each group of mice were from three independent experiments.   
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3.4.10 Haematoxylin and eosin (H&E) staining 

SP and NSP tumours were formalin-fixed for 24 h and paraffin-embedded in an 

automated tissue processor Leica ASP300 S (Leica Biosystems, Victoria, Australia).  

Four-micrometre formalin-fixed, paraffin-embedded tissue sections from SP and NSP 

tumours were mounted on plain glass slides and stained with H&E in an autostainer 

Leica XL (Leica Biosystems, Victoria, Australia).  Histopathological observations were 

made under a light microscope by a pathologist and all tumours were confirmed to be 

NPC. 

3.4.11 Statistical analysis 

Data are reported as mean ± standard deviation (SD), mean ± standard error of the 

mean (SEM) or boxplot with whiskers showing the 5 - 95 percentile as indicated in the 

figure description.  All statistical analyses were performed using paired Student’s t test 

from the GraphPad Prism 5 software (GraphPad Software Inc., CA, USA), except for 

clone morphology which used unpaired Student’s t test.  A p-value of < 0.05 was 

deemed to be statistically significant. 

3.5 Results 

3.5.1 Optimization of Hoechst 33342 staining 

Hoechst 33342 staining assay was first optimized using human lung carcinoma cell 

line A549 which had been reported to contain a high percentage of SP cells (Sung et al., 

2008).  Two main parameters were optimized:  the concentration of Hoechst 33342 dye 

and the type of ABC transporter inhibitor.  There were 31.7% of single, viable SP cells 

which was equivalent to 25.5% of total cells and similar to Sung et al. with the 

commonly used concentration of 5 M of Hoechst 33342  (Figure 3.1).   
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Figure 3.1:  Staining of A549 cells with 5 M of Hoechst 33342 dye and viability dye 

PI. i. Using doublet discrimination gating strategy, stained A549 cells were identified 

and gated for single cells (“FSC gate”).  The single cells were then gated for a subset of 

live or viable cells (“Live”).  Finally, SP cells were identified and gated using an 

appropriate inhibitor (“SP cells”).  ii. Statistics box shows the percentage of cells 

analysed in a hierarchical manner.  Percentage of cells are calculated from the 

population of cells they are gated from (“%Parent”) or from the total cell population 

(“%Total”).  FSC: forward scatter, SSC: side scatter, A: area, H: height, W: width, PI: 

propidium iodide 
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Optimization of the appropriate ABC transporter inhibitor to be used for A549 was 

also performed (Figure 3.2).  There was a total inhibition of dye efflux ability of A549 

cells with FTC at a final concentration of 1 M, unlike verapamil at a final 

concentration of 50 M.    

 

 

 

 

 

  

Figure 3.2:  Optimization of ABC transporter inhibitor in A549. i. A549 cells stained 

with Hoechst 33342.  ii. FTC at 1 M was able to block the dye efflux ability of stained 

A549 cells which led to an absence of cells with low Hoechst staining (“SP cells”).  iii. 

Verapamil at 50 M was unable to block the dye efflux ability of stained A549 cells, 

leading to many cells with varied intensity levels of Hoechst staining.  Bona fide SP 

gate could not be identified with verapamil. 

 

3.5.2 Detection of SP cells in HK1 and xeno-284 

HK1 cell line used in this study had been previously validated by STR profiling and 

found to be identical to the HK1 cell line used by others (Chan et al., 2008) (Appendix 

C).  SP phenotype, as identified by low Hoechst 33342 blue/red fluorescence intensity, 

was detected in 5 - 10% of single, viable HK1 cells (representative dot plot as shown in 

Figure 3.3).   

 

 

i. ii. 

Hoechst Red-(A) 

H
o
e
c
h

st
 B

lu
e
-(

A
) 

iii. 



 

59 

 

 

 

 

 

 

 

Figure 3.3:  Detection of SP and NSP cells with Hoechst 33342 dye in HK1 cells. 

There were 9.5% of single, viable SP cells in HK1.  Non-SP (“NSP”) cells were also 

gated as control cells for downstream experiments. 

 

The ability of these SP cells to efflux Hoechst 33342 dye was inhibited by FTC and 

not verapamil (representative dot plots as shown in Figure 3.4) which suggests that 

ABCG2 was the functional ABC transporter in these cells.       

  

 

 

 

 

 

Figure 3.4:  Comparison of ABC transporter inhibitors in HK1. i. FTC at 1 M was the 

suitable ABC transporter inhibitor for HK1, instead of verapamil (50 M and 100 M) 

(ii and iii). 
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Compared to HK1, xeno-284 cells had very few (less than 0.5% on average) or no SP 

cells during repeated runs with different batch of xenograft cells (representative dot 

plots from two xeno-284 xenografts as shown in Figure 3.5).  As such, only HK1 SP 

and NSP cells were used for subsequent downstream experiments.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Detection of SP and NSP cells in xeno-284 xenografts. 
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3.5.3 Cell morphology during in vitro culture 

Post-sorting, HK1 SP and NSP cells exhibited different growth patterns in culture 

with complete medium.  There were three different morphologies observed after the 

cells attached and started to grow:  cells growing into a tight cluster or colony with an 

overall well-defined clone border which are known as “holoclones”, cells with minimal 

growth and were widely scattered or growing into small fragmented colonies known as 

“paraclones”, and cells growing slightly scattered with an overall irregular clone border 

and showing intermediate structure between holoclones and paraclones which are 

known as “meroclones” (Figure 3.6) (Harper et al., 2007).     
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Figure 3.6:  Three different clone morphologies displayed by SP and NSP cells in vitro. 

Holoclone (i), meroclone (ii) and paraclone (iii) morphologies in cultured SP and NSP 

cells of HK1.  All photographs were taken on day 9 post-sorting. 
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After more than a week of in vitro culture, most of the SP cells grew into holoclones 

as compared to NSP cells which primarily formed meroclones and/or paraclones.  

Repeated experiments showed that SP cells formed more holoclones (6.11  2.89) than 

NSP cells (2.34  1.57) (p < 0.0001) (Figure 3.7). 
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Figure 3.7:  Number of holoclones in SP and NSP cells of HK1. SP cells formed 

holoclones markedly than NSP cells.  Results, median  (n = 3 sorting experiments with a 

total of 36 wells per SP or NSP cells).  *** p < 0.0001  

 

3.5.4 Expression of aldehyde dehydrogenase (ALDH) activity 

The enzymatic activity of ALDH1, a marker of stemness, (Alison et al., 2010) can be 

detected using ALDEFLUOR staining kit.  In the presence of ALDH1, BAAA substrate 

is converted into BODIPY-aminoacetate (BAA) which is retained intracellularly, 

leading to increased fluorescence which can then be detected by flow cytometry and cell 

imaging.  ALDH
bright

 region in flow cytometry analysis is defined with a “control” 

sample containing cells incubated with both BAAA and DEAB (an ALDH1 inhibitor). 

  Figure 3.8 shows that the staining condition for the experiment was initially 

optimized in SKBR3 breast cancer cell line which was reported to have high ALDH1 

expression (Marcato et al., 2011).   
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Figure 3.8:  Optimization of ALDH staining in SKBR3 by flow cytometry. i. SKBR3 

cells in ALDH assay buffer containing BAAA and DEAB inhibitor, and viability dye PI 

(“SKBR3 Ctrl + PI”) showed less than 1% of ALDH
bright

 cells (“R3”).  ii. SKBR3 cells 

in ALDH assay buffer containing only BAAA and viability dye PI (“SKBR3 Test + 

PI”) showed approximately 26% of ALDH
bright

 cells (“R3”).  Net percentage of 

ALDH
bright

 expression was given by a deduction of “SKBR3 Ctrl + PI” data from 

“SKBR3 Test + PI” data.  

 

The ALDH
bright

 region for SP and NSP cells was defined with viable parental HK1 

stained with both BAAA and DEAB reagents (representative dot plots as shown in 

Figure 3.9).  The ALDH
bright

 gate (R6) was set using these cells and used for SP and 

NSP cells in the same experiment.     
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Figure 3.9:  Detection of ALDH
bright

 cells in parental HK1 by flow cytometry.  i. HK1 

cells in ALDH assay buffer containing BAAA and DEAB inhibitor, and viability dye PI 

(“HK1 Ctrl + PI”) showed less than 1.5% of ALDH
bright

 cells (“R6”).  ii. HK1 cells in 

ALDH assay buffer containing only BAAA and viability dye PI (“HK1 Test + PI”) 

showed approximately 9% of ALDH
bright

 cells (“R6”).  Net percentage of ALDH
bright

 

expression was given by a deduction of “HK1 Ctrl + PI” data from “HK1 Test + PI” 

data.  

 

Expression of ALDH
bright

 cells for SP and NSP cells was then determined by each 

subpopulation individually stained with BAAA and viability dye PI only (“Ctrl +PI” 

tube), and BAAA, DEAB and PI (“Test + PI” tube) (representative dot plots as shown 

in Figure 3.10).   
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Figure 3.10: Detection of ALDH
bright

 cells in SP and NSP cells by flow cytometry.   

i. SP cells in ALDH assay buffer containing BAAA and DEAB inhibitor, and viability 

dye PI (“SP Ctrl + PI”) showed approximately 1.6% of ALDH
bright

 cells (“R6”).  There 

were approximately 29% of ALDH
bright

 cells in SP cells in ALDH assay buffer 

containing only BAAA and viability dye PI (“SP Test + PI”).  Nett percentage of 

ALDH
bright

 expression in SP cells was given by a deduction of “SP Ctrl + PI” data from 

“SP Test + PI” data.  ii. NSP cells in ALDH assay buffer containing BAAA and DEAB 

inhibitor, and viability dye PI (“NSP Ctrl + PI”) showed approximately 0.5% of 

ALDH
bright

 cells (“R6”).  There were approximately 3.5% of ALDH
bright

 cells in NSP 

cells in ALDH assay buffer containing only BAAA and viability dye PI (“NSP Test + 

PI”).  Nett percentage of ALDH
bright

 expression in NSP cells was given by a deduction 

of “NSP Ctrl + PI” data from “NSP Test + PI” data.   
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The SP cells showed a significantly higher population of ALDH
bright

 cells (18.08 ± 

11.46%) than NSP cells (5.10 ± 3.56%) (p < 0.05) (Figure 3.11).   
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Figure 3.11:  Expression of ALDH
bright

 cells in SP and NSP cells.  Although SP cells 

contained significantly higher ALDH
bright

 cells than NSP cells, there was a greater 

variation amongst its replicates than in NSP cells. Results, median (n = 5 flow 

cytometry experiments).  * p < 0.05   

 

 

3.5.5 Mode of cell division during in vitro culture 

In order to determine if the sorted cells were able to divide symmetrically or 

asymmetrically in vitro, freshly-sorted SP and NSP cells were cultured in complete 

medium for 21 days with fresh medium change every 2 - 3 days.  The cultured cells 

were subjected to Hoechst 33342 staining and SP cell analysis as described earlier.   
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Figure 3.12:  Analysis of SP and NSP fractions in sorted cells after short-term culture. 

SP cells (purple) were collected and cultured for 21 days, prior to re-staining with 

Hoechst 33342 dye and viability dye PI for an analysis of SP cell percentage.  Similarly, 

NSP cells (light blue) were collected and cultured for 21 days prior to a repeat staining 

round with Hoechst 33342 dye and viability dye PI for an analysis of SP cell 

percentage.  Results from 1 representative experiment are shown here. 

 

Each subpopulation of sorted cells had divided into both SP and NSP fractions upon 

re-analysis (representative dot plots as shown in Figure 3.12).  SP sorted cells had 

divided into 24.57 ± 7.97% SP fraction with remaining subpopulation comprising of 

NSP fraction.  NSP sorted cells had largely remained as NSP fraction with only 6.07  

1.74% SP fraction.       

3.5.6 Proliferation during in vitro growth 

Proliferation or growth rates of SP and NSP cells in vitro were measured using an 

impedance-based experiment.  SP cells had the slowest proliferation in all replicate 
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experiments with NSP cells having the highest growth rate (representative growth 

curves as shown in Figure 3.13).   
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Figure 3.13:  Growth curves of SP, NSP and control HK1 cells cultured in complete 

medium for 125 hours.  SP cells proliferated slower than NSP and control 

subpopulations.  Results, mean  SD (n = 4 wells per group from 1 sorting experiment). 

 

Normalized growth rates were calculated by dividing the cell index of SP or NSP 

cells at each recorded time point with the cell index of the control cells in order to rule 

out any bias due to technicality.  There was a significant difference in the average 

normalized growth rates between SP and NSP cells (p < 0.0001) (Figure 3.14).  SP cells 

grew at a slower rate as compared to NSP cells especially at the first 72 h of 

observation.  At the end of the experiment, the growth rates of SP and NSP cells were 

getting similar to the growth rate of control cells.     
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Figure 3.14:  Average normalized growth curves of SP and NSP cells.  Growth curves 

of SP and NSP cells were normalized against the growth curve of control HK1 cells in 

each experiment.  Results, mean  SD (n = 3 sorting experiments).   

 

3.5.7 Relative quantification of stem cell and stem cell signalling genes 

A total of 168 genes related to stem cell identification and/or involved in key stem 

cell pathways were analysed by quantitative RT-PCR.  Fifty genes were significantly 

upregulated by at least 2 folds in SP cells compared to NSP cells (p < 0.05) (Appendix 

D).  None of the genes tested was significantly downregulated in SP cells.  

Stem cell genes which were upregulated in SP cells included TERT (5.44 folds), 

MYC (3.01 folds), SOX2 (2.87 folds) and ABCG2 (2.63 folds) (p < 0.05) (Figure 3.15).   
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Figure 3.15:  Relative expression of stem cell genes which were significantly 

deregulated and of more than 2-fold change in SP cells. Fold change ratio was 

expressed as normalized expression of SP cells versus normalized expression of NSP 

cells.  Results, mean with 95% CI (n = 3 sorting experiments).  p < 0.05 

  

Members of commonly deregulated signalling pathways in cancer were also 

upregulated significantly more than 2 folds in SP cells: they included GLI1, GLI2, 

GLI3, PTCHD2, SUFU and PTCH1of the Hedgehog pathway, NOTCH1 and JAG1 of 

the Notch family, LTBPs2-3, ACVR1B, SMAD1 and SMAD7 of the TGF superfamily 

and BCL9, FZD6-7, FZD2 and BCL9L of Wnt signalling pathway (p < 0.05) (Figure 

3.16).   
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Figure 3.16:  Relative expression of stem cell signaling genes which were significantly 

deregulated and of more than 2-fold change in SP cells.  Fold change ratio was 

expressed as normalized expression of SP cells versus normalized expression of NSP 

cells.  Results, mean with 95% CI (n = 3 sorting experiments).  p < 0.05 

 

  

3.5.8 Tumourigenicity of SP and NSP cells 

Cells from SP subpopulation and NSP subpopulation were inoculated subcutaneously 

into nude mice to determine their tumour-forming ability.  Figure 3.17 shows 

representative average growth curves of tumours initiated by 1,000, 100 and 10 SP and 

NSP cells.  Overall, SP cells formed faster-growing and larger tumours than NSP cells. 
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Figure 3.17:  Growth curves of nude mice inoculated with 1,000, 100 and 10 SP and 

NSP cells.  Tumour growths were measured every 1 - 3 days and all mice were 

terminated as described in Methods.  Results, mean  SEM (n = 3 or 4 mice per group 

from 1 sorting experiment for each inoculation).   
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Tumour latency data showed that 3 out of 4 tumours from the inoculation of 10 SP 

cells were detected earlier than the first tumour arising from the inoculation of NSP 

cells of the same number (Figure 3.18).  This was suggestive of SP cells possessing a 

growth advantage over NSP cells; however, it was lost at higher inoculations of 100 and 

1,000 cells.    
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Figure 3.18:  Tumour latency data of SP and NSP cells.  Disparity in the latency data 

was most evidently seen at the lowest inoculation number of 10 cells, whereby 4 out of 

11 SP mice had earlier tumour growths as compared to only 2 out of 12 NSP mice 

which had growth at a later period (n = 3 sorting experiments with a total of 12 mice per 

inoculation group, except for “10 SP” group which had 11 mice).  

 

An estimation of number of TICs by ELDA software failed to reveal significant 

differences between the SP and NSP subpopulations, implying that the difference in the 

potential of SP and NSP cells to form tumours was not significant (p > 0.05) (Table 

3.1).   
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Table 3.1:  Tumour-initiating cell (TIC) frequency of SP and NSP mice inoculated with 

a limiting dilution of 1,000, 100 and 10 cells. 

 

Phenotype 

Number of tumours/number of mice TIC frequency 

(95% CI) 

 

p-value 
1,000 cells 100 cells 10 cells 

SP 12/12 8/12 4/11 1 in 66 (1/35 – 1/126) 
 

0.7 

NSP 12/12 10/12 2/12 1 in 56 (1/30 – 1/104) 

   

There was no visible difference between gross morphology of SP and NSP tumours 

(representative photographs as shown in Figure 3.19).  Regardless of SP or NSP 

tumours, they were either mostly encapsulated or slightly attached to surrounding skin 

nearly all of them were reddish and contained necrosis of various degrees.  
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Figure 3.19:  Photographs of excised tumours initiated from SP cells and NSP cells of 

1,000, 100 and 10 cell inoculations. 

 

Both SP and NSP tumours showed similar histomorphology as seen in unsorted HK1 

cells grown in mice (Figure 3.20).  There was also no substantial difference between SP 

and NSP tumours in the degree of differentiation, stromal reaction and cell 
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100 
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pleomorphism, except for one SP tumour which showed vascular invasion (Figure 

3.20iv). 

 

 

 

 

 

 

 

 

 

 

Figure 3.20:  Photographs of H&E staining of resulting tumours after inoculation with 

(i) unsorted HK1 cells, (ii) SP cells and (iii) NSP cells.  Tumours derived from SP and 

NSP cells showed similar histomorphology to unsorted HK1 cells (black arrowhead 

pointing to squamous carcinoma; long arrow pointing to keratinization).  iv. A SP cell-

derived tumour showed vascular invasion (white arrowhead pointing to the invasion of 

SP cells into a blood vessel) (all photos with objective 40X). 

 

3.6 Discussion 

With a growing plethora of antibodies and dyes to identify cancer cells as well as the 

advances in flow cytometry and cell sorting techniques to isolate and purify multiple 

subpopulations of cells from a single sample, cell biologists of present day are able to 

study the roles, functions and abilities of heterogeneous cancer cells ranging from 

tumour formation, cell division, disease metastasis to therapy resistance, with more ease 

and accuracy.  SP assay which depends on the presence of ABC drug transporter(s) to 

i. ii. 

iii. iv. 
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efflux fluorescent dyes is one of the approaches frequently adopted to identify and 

isolate cancer cells with putative stemness qualities.  These cells are capable of 

initiating tumours at a higher rate, possess slower or faster proliferation, can form more 

colonies or spheroids in vitro, and are able to survive radiation and/or chemotherapeutic 

drugs (Golebiewska et al., 2011; Wu & Alman, 2008).   

Both HK1 and xeno-284 cells were established from patients with recurrent NPC 

(Huang et al., 1980; manuscript in preparation).  Cancer recurrence is believed to be 

associated with the resistance of cancer cells to treatment, of which overexpression of 

ABC drug transporters is one of the main mechanisms of evasion to chemotherapy 

(Kathawala et al., 2015).  Hence, HK1 and xeno-284 cells were used for SP assay in this 

study to isolate and characterize biological differences of SP and NSP subpopulations. 

Two main criticisms of SP assay, namely Hoechst 33342 toxicity and variations in 

data due to differences in gating strategy (Golebiewska et al., 2011; Montanaro et al., 

2004; Wu & Alman, 2008), were also addressed in this study.  Firstly, Hoechst 33342 

was used at a final concentration of 5 M which could be considered as the “standard” 

concentration in SP assay and had minimal, if any, toxicity effects on stained cells 

(Broadley et al., 2011; Goodell et al., 1996; Luo et al., 2012; Yi et al., 2015).  Although 

HK1 NSP cells lacked of the ABC drug transporters which are responsible for pumping 

out Hoechst 33342 dye from the cells, they did not suffer from the retained dye as 

evidently seen in the in vitro cell morphology, cell division and proliferation 

experiments, in addition to the aptness of NSP cells to form tumours in nude mice.  

Secondly, the position of SP gate is largely dependent on the type of ABC drug 

transporter present in the sample; as such, both FTC and verapamil were initially tested 

at different concentrations in HK1.  FTC at a final concentration of 1 M was able to 

block nearly 100% of dye-pumping action of a subpopulation of HK1, as opposed to the 
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inability of verapamil to do so at 50 and 100 M.  Also, a conservative SP gating 

strategy was used in this study to ensure only cells with the lowest Hoechst intensity 

were gated as “SP” cells and cells with relatively high Hoechst intensity as “NSP” cells.  

This is to reduce the likelihood of including other subpopulations of cells with varying 

abilities to efflux the dye, as was reported in Montanaro et al. (2004).        

The bulk of SP publications on identification of tumourigenic cells, and thereafter 

investigation of their biological properties, used cancer cell lines as their study models 

(Fukaya et al., 2010; Kato et al., 2010; Nakayama et al., 2014; Salcido et al., 2010).  

This may be primarily due to technical difficulties in establishing PDXs, leading to their 

rarity.  Percentages of SP cells from PDXs are generally much lower than cell lines, as 

were similarly seen in prostate tumour and melanoma PDXs (Luo et al., 2012; 

Patrawala et al., 2005).  Both studies used an enzyme digestion cocktail containing 

collagenase which was also used in this study.  One of the prostate tumour PDXs had 

undetectable presence of SP with another registering a 0.07% SP presence (Patrawala et 

al., 2005).  Although the melanoma PDX model had a slightly higher presence of SP 

cells (0.34%) (Luo et al., 2012), the content was still a few folds lower than cancer cell 

lines which typically had a reported range of >1 to 10% SP cells.   

Due to the low and inconsistent presence of SP cells in xeno-284, HK1 was used as a 

study model to discern the biological properties of SP and NSP subpopulations in in 

vitro and in vivo experiments.  The range of SP cells detected in the HK1 cells used in 

this study (5 - 10%) was similar to a later publication on SP cells in NPC cell lines 

which reported an approximate 5.20  0.72% SP presence in their HK1 cells (Zheng et 

al., 2016).  SP gate was however determined with the use of verapamil at a final 

concentration of 50 M in the latter.  One plausible explanation for the difference in dye 

efflux inhibition efficacy of verapamil in this and Zheng and colleagues’ studies is the 
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different source of HK1 cells:  University of Hong Kong (this study) and Chinese 

University of Hong Kong (Zheng et al., 2016).   SP presence in HK1 cells was also  

comparable to those detected in the primary cultures of NPC cells from NPC patients 

(approximately 3.9%) (Wang et al., 2015).   

Results from in vitro experiments indicated that the SP cells of HK1 were more 

stem-like than NSP cells.  Both SP and NSP cells exhibited different clone morphology 

when grown in complete growth medium.  SP cells tended to form holoclones as 

opposed to NSP cells which mostly grew as meroclones and/or paraclones.  The 

association of holoclones and stemness properties, in particular self-renewal, has been 

widely accepted in CSC studies in which its formation was often regarded as a read-out 

of CSC phenotype (Li et al., 2008; Locke et al., 2005; Roudi et al., 2016; Shigeishi et 

al., 2013).  One caveat of using in vitro approach to identify CSCs is the sub-optimal 

physiological culture conditions do not fully support or provide factors such as three-

dimensional structure and environment for in vivo tumour formation and self-renewal.  

Hence, holoclones need to be further assayed for their ability to induce tumour 

formation followed by serial-passaging of the induced tumours for a thorough validation 

of CSC identity.  

ALDEFLUOR assay buffer used in the ALDH experiment contained an efflux 

inhibitor which prevented active efflux of the fluorescent BAA product from stained 

cells, thus allowing cells with high ALDH activity to be detected (Alison et al., 2010).  

As such, ALDH
bright

 cells could be regarded synonymous with SP cells as the 

mechanism of dye pumping accorded by the presence of ABC drug transporters is the 

common backbone of both ALDH and SP assays.  This was clearly evident in this study 

where HK1 SP cells were significantly enriched with ALDH activity.  A later 

publication using RT-qPCR approach concurred with the data in this study as it also 
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found that SP cells had higher expression levels of ALDH1A1 gene than NSP cells in 

HK1 (p < 0.01) (Zheng et al., 2016).  Ishiguro et al. (2016) reported that ALDH
high

 cells 

from ovarian cancer patients showed stem-like features as they contained higher levels 

of SOX2, OCT3/4 and NANOG proteins and were able to grow as spheroids more 

efficiently than ALDH
low

 cells.  Most importantly, their study showed that ALDH
high

 

cells were able to form xenografts but not ALDH
low

 cells.            

The type of ABC drug transporter present in HK1 was further validated with a more 

than 2-fold upregulation of ABCG2 expression in SP cells.  This was also similarly 

reported in the other HK1 publication on SP cells (Zheng et al., 2016).  Although 

several types of transporter can be expressed within the same cell or within distinct SP 

subpopulations (Golebiewska et al., 2011), the possibility of a presence of ABCB1-

expressing cells in HK1 remains remote as dye-pumping activity in these cells was not 

inhibited even at a high verapamil concentration of 100 M. 

Gene expression data indicated that SP cells of HK1 displayed stemness signature.  

These cells showed increased mRNA levels for SOX2, MYC and TERT, which were 

associated with CSC biology and maintenance of pluripotency state (Chen et al., 2012; 

Wu et al., 2013b).  Over-expression of  Hedgehog pathway genes such as GLI1, GLI2, 

GLI3FL, PTCH1 and PTCHD2 was in line with reports that Hedgehog pathway can 

induce ABCG2 expression (Singh et al., 2011) and that members of the pathway such as 

GLI1, GLI2, GLI3 and PTCH1 had increased mRNA and protein expression in stem-

like cells in EBV positive NPC (Lun et al., 2012; Port et al., 2013).  

Nonetheless, there were other findings in this study which suggest that the stem-like 

characteristics of SP cells in HK1 may be transient.  SP cells of HK1 grew slower in 

culture which concurred with other reports that CSCs from various tumours had slower 

proliferation rate, thus enabling these cells to evade chemotherapeutic agents targetting 
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fast growing cells (Buczacki et al., 2011; Dembinski & Krauss, 2009). However, the 

slower growth rate of SP cells of HK1 gradually diminished after nearly a week in vitro 

and would be similar to that of NSP cells if the growth observation had been prolonged 

(Figure 3.16).  A separate study on SP cells from CNE-2 found that SP fraction grew 

faster than NSP fraction in vitro despite containing similar proliferation index and cell 

cycle content (Wang et al., 2007).  However, the authors did not give an explanation for 

this observation.  Also, NSP cells gave rise to SP cells in long term culture (Figure 

3.13). Altogether, these two time course in vitro experiments on proliferation and cell 

division indicated that the difference between SP and NSP sorted cells may be transient, 

as both phenotypes could give rise to each other as a result of asymmetric division.  

Phenotype interconversion during culture was similarly reported in previous SP studies 

on glioma, NPC and renal cell carcinoma cell lines (Huang et al., 2013; Platet et al., 

2007; Wang et al., 2007). 

The transient stem-like phenotype displayed by SP cells of HK1 would explain for 

the discordance of in vitro results with in vivo data.  Although SP cells were generally 

more tumourigenic (i.e. formed faster-growing tumours in addition to a growth 

advantage in the lowest inoculation of 10 cells), an overall comparable tumour-initiating 

potential of both SP and NSP cells was recorded after seven weeks of in vivo 

transplantation with similar TIC frequency for both SP and NSP cells.  These two 

seemingly mismatched observations of growth rate and TIC frequency may be 

attributed to the presence of TICs with differential growth rates in both SP and NSP 

cells.  The discordance of in vitro and in vivo results had been reported in studies 

utilizing SP approach to identify CSCs in thyroid and cervical cancers (Mitsutake et al., 

2007; Qi et al., 2014) as well as studies using surface marker approach to identify CSC 

in NPC and colorectal cancer (Peickert et al., 2012; Zhang et al., 2012a).  Moreover, a 

prior NPC study reported that ALDH positive cells of 5-8F and CNE-2 cell lines 
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showed stemness features including higher tumour-initiating ability than ALDH 

negative cells (Wu et al., 2013a).  Based on this finding, the ability of NSP cells of HK1 

to generate tumour growth in this study may be also partially contributed by the 5% 

presence of ALDH
bright

 cells in them. 

The negative in vivo findings suggested that SP approach in the study model of HK1 

only enriched for a subtype of tumourigenic cells with stem-like or partial stemness 

features but not bona fide CSCs as there was no significant difference in tumour 

initiation ability between SP and NSP cells.  This is in contrast to an earlier report that 

showed significant tumour growth difference of SP cells over NSP cells in NPC (Wang 

et al., 2007).  The disparity may be related to firstly, the type of NPC cell line being 

studied.  Wang et al. (2007) utilized CNE-2 cells which had been reported to be contain 

a partial genome of HeLa, whereas HK1 NPC cells used in this study was verified by 

STR profiling to be free from HeLa cell contamination (Chan et al., 2008).  Secondly, 

FTC was used in this study as a dye efflux inhibitor to identify ABCG2-specific SP 

cells from HK1 and xeno-284 cells, instead of verapamil, a classic inhibitor for 

ABCB1-expressing cells (Duan et al., 2004; Robey et al., 2007) which showed no 

inhibition in this study but was used in Wang and colleagues’ study.  Lastly, the length 

of tumour assessment time was different.  Mice inoculated with CNE-2 SP and NSP 

cells were euthanized four weeks after inoculation, whereas mice were observed for 

seven weeks in this study.  Although both studies did not employ long period of 

observation, preferably for more than eight weeks to prevent under-estimation 

(Quintana et al., 2008), there is a higher likelihood of under-reporting for CNE-2 NSP 

cells with an observation period of only four weeks in Wang and colleagues’ study than 

in this study. 
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3.7 Conclusion 

This study shows the presence of dye-extruding SP subpopulation, a characteristic of 

stem cells, in HK1 (a cell line generated from well-differentiated recurrent NPC) but 

they were minimal in xeno-284 cells (a PDX derived from poorly differentiated 

recurrent NPC in our lab).  Additionally, HK1 SP cells were ABCG2-specific.  In spite 

of SP cells growing slower and possessing more traits of stemness in vitro (holoclone 

formation, ALDH activity, asymmetric division and upregulation of stem cell genes and 

associated pathways) than NSP cells, in vivo validation study showed that both SP and 

NSP cells of HK1 had similar tumourigenic potential.  Therefore, it is concluded that 

the SP approach alone cannot identify for CSCs accurately in the study model of HK1.         
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CHAPTER 4: CD24, CD44 AND EPCAM ENRICH FOR TUMOUR-

INITIATING CELLS IN A NEWLY ESTABLISHED PATIENT-DERIVED 

XENOGRAFT OF PRIMARY NASOPHARYNGEAL CARCINOMA 

4.1 Introduction 

The use of CSC markers as my second approach to identify, isolate and study NPC 

tumourigenic and non-tumourigenic cells is presented and discussed in this chapter.  

HK1, xeno-284 cells, C666-1 cell line derived from in vitro-passaged xenograft cells of 

an undifferentiated NPC biopsy (Hui et al., 1998) and xeno-B110 established from a 

non-keratinizing differentiated NPC biopsy were first immunophenotyped for CD24, 

CD44 and EpCAM expression levels using flow cytometry.  Isolation of CD24, CD44, 

EpCAM, and combination of EpCAM and CD44 bright and dim cells from C666-1 and 

xeno-B110 was carried out for tumour initiation (incidence and latency), growth and 

mitotic activity assessments.  Due to marked growth differences seen in xeno-B110 

marker-selected cells, cell cycle and gene expression analyses were also performed in 

these cells.  Finally, self-renewal (a determinant of stemness) was further evaluated in 

xeno-B110 marker-selected cells by conducting serial transplantation passages in vivo 

for three cycles. 

4.2 Brief Literature Review 

  Cancer cells are known to be made up of heterogeneous cell types with unequal 

ability to form tumours and it is strongly believed that tumour formation is associated to 

the presence of a subpopulation of cancer cells called cancer stem cells (CSCs) which 

lie at the apex of tumour cell hierarchy (De Sousa E Melo et al., 2013; Shackleton et al., 

2009).  Besides having the common characteristics of tumourigenic cells such as the 

abilities to initiate and drive tumour formation and propagation, to evade immune 

surveillance, to resist therapy and having altered genetic makeup (Chang, 2016; 

Hanahan & Weinberg, 2011; Krampitz et al., 2016), CSCs have self-renewal ability 
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which ensures the perpetuality of tumour generation, and the ability to differentiate and 

give rise to heterogeneous lineages of cells which constitute the tumour (Clarke et al., 

2006; Hanahan & Weinberg, 2011).   

The use of CSC markers has aided in the isolation of tumourigenic and non-

tumourigenic cells directly from clinical samples for the study of their roles in 

tumourigenesis.  For example, EpCAM
high

CD44
+
 marker identified cells which were 

responsible for successful engraftments of six human colorectal carcinoma samples in 

immunodeficient mice and these patient-derived xenografts (PDXs) had similar 

heterogeneity to their original patient tumours (Dalerba et al., 2007).  In non-small cell 

lung carcinoma samples, CD166
+
 marker identified tumour-initiating cells (TICs) which 

consistently form tumours in vivo and CD166
+
 cells were able to self-renew to initiate 

subsequent PDXs for at least two generations (Zhang et al., 2012b).  However, there is a 

dearth of such studies using clinical samples in NPC due to sample size limitation as 

surgery is not being the mainstay treatment modality (Chan, 2010; Lee et al., 2015).  

Hence, NPC biological-based studies were mostly performed on NPC cell lines which 

have been in passage for many generations (Lun et al., 2012; Su et al., 2011; Yang et 

al., 2014b) or primary culture-derived xenograft (Yang et al., 2013, 2015), some with 

questionable authenticity and/or origin as were reported for CNE-1, CNE-2 and HONE-

1 (Chan et al., 2008; Strong et al., 2014).  Cell line misidentification and/or cross-

contamination are universal issues which also occur in other cancers (MacLeod et al., 

1999).  To circumvent this, early-passage PDXs which have close resemblance to 

clinical samples, are advocated to be used as study models for tumour heterogeneity, 

CSCs and therapy-related studies, instead of cell lines (Clevers, 2011; Dodbiba et al., 

2015; Julien et al., 2012; Visvader & Lindeman, 2012). 
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The use of CD24 marker to identify and to isolate subpopulations of NPC for 

biological-based investigations especially on stem-like characteristics has been 

minimally reported.  Kondo et al. (2011) reported that CD44
high

CD24
low

 subpopulation 

from AdAH cells (an EBV-negative nasopharyngeal epithelial cell line) transfected with 

LMP1 showed the ability to form more spheres in vitro than untransfected control cells.  

As the study focused on the role of LMP1 in inducing CSC phenotype in 

nasopharyngeal epithelial cells, there was no comparative analysis on the efficiency of 

CD24
low

 and CD24
high

, and CD44
low

 and CD44
high

 cells in sphere formation, a read-out 

of self-renewal ability in vitro (Pastrana et al., 2011).  CD24
+
 cells showed stem-like 

phenotype in NPC cell lines TW02 and TW04 on the basis of having higher levels of 

pluripotent markers of OCT4 and SOX2 as well as of stemness markers of NANOG, 

BMI1 and REX1 (Yang et al., 2014b).  Functionally, CD24
+
 cells from both cell lines 

were also able to form tumours at low inoculations of 500 and 1,000 cells (overall TIC 

frequency of 1 in 435 for TW02 and 1 in 540 for TW04) as compared to no tumour 

growth of same number of CD24
-
 cells, besides showing more enhanced in vitro 

proliferation and higher resistance to cisplatin or docetaxel.  Serial transplantation of 

CD24
+
 cells was not performed to determine self-renewal ability.   In a separate NPC 

study using hybrid HONE1 cells (a NPC cell line), the presence of CD24 was also 

associated with stem-like features as there was an enhanced presence of CD24
+ 

cells and 

expression of pluripotency genes such as SOX2, KLF4, OCT4 and NANOG (Cheng et 

al., 2013).      

Based on the latest reviews on CSC markers in NPC cell lines, CD44, an 

extracellular receptor for hyaluronan, seems to be the most widely studied marker with 

roles ranging from tumour initiation, cell proliferation and differentiation to 5-

fluorouracil (5-FU) treatment resistance (Lun et al., 2014; Yu & Loh, 2014).  CD44
+
 

cells from NPC cell line, SUNE-1 5-8F were presumed to be CSCs due to having 
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significantly increased BMI1 and OCT4 transcript levels, higher proliferation rate as 

well as resistance to radiation and chemotherapy treatments in vitro; however, the 

tumour-initiating ability of CD44
+
 cells was not verified in this study (Su et al., 2011).  

A separate study using C666-1 cell line found that CD44
+
 cells at 100,000-cell 

inoculation formed faster-growing tumours in NSG mice despite not having a 

proliferation advantage over CD44
-
 cells in vitro and had similar LMP1, EBNA, BamH1 

and VIM gene expressions (Janisiewicz et al., 2012).  Lun et al. (2012) used sphere-

forming assay to enrich for self-renewing cells in C666-1 and demonstrated that CD44 

was highly expressed in these spheres.  CD44
+
 cells from parental C666-1 were resistant 

to 5-FU treatment and had higher sphere formation efficiency than CD44
-
 cells.  

Importantly, the ability of CD44
+
 cells to form spheres was related to higher expression 

of CCR7, a gene which significantly correlated with disease recurrence or metastasis in 

a cohort of 39 primary NPC samples in the same study.  Nonetheless, a comparison of 

tumour-initiating ability of C666-1 spheroids, CD44
+
 and CD44

-
 cells was not 

performed.  Although CD44 is the most studied marker in NPC, little has been revealed 

regarding its TIC frequency and self-renewal ability in vivo in this malignancy.  As 

reviewed in Chapter 2, CD44 exists in more than one (iso-) form due to alternative 

splicing.  Functionally, CD44 variant 3 (CD44v3) showed higher resistance against 

cisplatin than CD44v6, CD44v10 and CD44s in a HNSCC cell line (Wang et al., 2009), 

CD44v8-10 was found to be responsible for tumour initiation instead of CD44s in an 

adenocarcinoma cell line (Lau et al., 2014), and high CD44v3 and high CD44v6 

expression levels were individually related to lower survival rate and treatment 

resistance at primary sampling site in 42 NPC patients (Sagawa et al., 2016).  Most 

studies, however, looked at both CD44s and CD44v isoforms and utilized panCD44 

antibodies (unless specified) as described in Chapter 2.        
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To the best of my knowledge, there is only a previous NPC study which used 

EpCAM as a surface biomarker to identify NPC cells with stem-like features.  Jiang et 

al. (2016) found that expression of -catenin was related to a stem-like phenotype by 

virtue of increased EpCAM, c-myc, Nanog, Oct3/4 and Sox2 expressions in NPC cell 

line, CNE2.  A suppressed -catenin presence in modulated CNE-2 cell line led to a 

reduction of protein expression levels of EpCAM and the other CSC markers, and also 

smaller tumour volumes in nude mice. 

Tumourigenic cells and their ability to induce growth are partly driven by the 

presence of stem cells which are capable of self-renewal to ensure long-term 

maintenance of the growth (Clarke et al., 2006; Clevers, 2011; Hanahan & Weinberg, 

2011).  Currently available “CSC” reports on defining the presence of such cells in NPC 

(aforementioned studies) do not thoroughly assess this ability with in vivo serial 

transplantation experiment, a gold standard to functionally define normal stem cells and 

CSCs (Clarke et al., 2006; Tang, 2012; Visvader & Lindeman, 2008).  As such, these 

studies could only be deemed to be looking at CSC-like or stem-like cells, instead of 

bona fide CSCs.    

4.3 Materials 

4.3.1 Cell lines 

HK1 is a NPC cell line established from an EBV negative recurrent NPC sample.  

The patient was diagnosed with well-differentiated squamous carcinoma with prior 

radiation treatment (Huang et al., 1980).  HK1 was obtained as a gift from Professor 

George SW Tsao (University of Hong Kong). 

C666-1 is a clone of parental NPC cell line, C666 which was derived from xeno-666, 

a NPC PDX.  Xeno-666 was established from an EBV positive primary NPC sample.  
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The patient was diagnosed with undifferentiated NPC (Cheung et al., 1999).  C666-1 

was obtained as a gift from Professor KW Lo (Chinese University of Hong Kong). 

4.3.2 NPC patient-derived xenografts (PDXs)  

Xeno-284 is a NPC PDX established from an EBV negative recurrent NPC sample.  

The patient was diagnosed with poorly differentiating squamous cell carcinoma with 

prior concurrent chemoradiotherapy.  

Xeno-B110 is a NPC PDX established from an EBV positive primary NPC sample.  

The patient was diagnosed with non-keratinizing differentiated carcinoma.  Xeno-B110-

gfp-luc2 was established from xeno-B110 transduced with lentivirus carrying GFP-

Luc2 DNA transfer plasmid.   

4.3.3 Cell lines and culture reagents 

4.3.3.1 Complete medium for HK1 cells 

Total volume of 100 mL 

RPMI-1640 medium (with phenol red)  89.5 mL 

Fetal bovine serum (FBS)    10 mL  

10,000 U/mL Penicillin-Streptomycin  500 L 

All items were obtained from Thermo Fisher Scientific Inc., MA, USA. 

4.3.3.2 Complete medium for C666-1 cells 

Total volume of 100 mL 

RPMI-1640 medium (with phenol red)  88.5 mL 

FBS       10 mL 
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100X GlutaMAX    1 mL 

10,000 U/mL Penicillin-Streptomycin  500 L 

All items were obtained from Thermo Fisher Scientific Inc., MA, USA. 

4.3.3.3 Freezing medium for HK1 and C666-1 cells 

Total volume of 10 mL 

Complete medium     5 mL 

Dimethyl sulfoxide Hybri-Max (DMSO)  1 mL  

FBS       4 mL 

DMSO was purchased from Sigma-Aldrich, MO, USA. 

4.3.3.4 1X phosphate-buffered saline (PBS) 

Total volume of 100 mL 

Deionized water (dH2O)    100 mL 

Phosphate-buffered salt     1 tablet  

Phosphate-buffered salt was obtained from Takara Biotechnology, Shiga, Japan. 

4.3.3.5 1X PBS supplemented with 1X antibiotic/antimycotic 

Total volume of 100 mL 

1X PBS      99 mL 

100X antibiotic-antimycotic   1 mL  
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Antibiotic-antimycotic was purchased from Thermo Fisher Scientific Inc., MA, 

USA. 

4.3.4 HBSS+ buffer 

Total volume of 100 mL 

Hanks’ balanced salt solution (HBSS)  98 mL  

FBS       2 mL 

HEPES      0.2383 g  

HBSS and HEPES were obtained from Thermo Fisher Scientific Inc., MA, USA and 

Sigma-Aldrich, MO, USA, respectively. 

4.3.5 Reagents for cell cycle analysis 

4.3.5.1 1X PBS supplemented with 50% FBS 

Total volume of 10 mL 

1X PBS      5 mL 

FBS       5 mL 

4.3.5.2 70% ethanol 

Total volume of 10 mL 

Absolute ethanol     7 mL 

dH2O      3 mL 

Absolute ethanol (analytical grade) was purchased from Merck Millipore, MA, USA. 
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4.3.6 Reagents for RT-qPCR 

4.3.6.1 70% ethanol 

Total volume of 10 mL 

Absolute ethanol     7 mL 

dH2O      3 mL 

Absolute ethanol (molecular biology grade) was purchased from Merck Millipore, 

MA, USA. 

4.3.6.2 80% ethanol 

Total volume of 10 mL 

Absolute ethanol     8 mL 

dH2O      2 mL 

Absolute ethanol (molecular biology grade) was purchased from Merck Millipore, 

MA, USA. 

4.3.6.3 Reverse transcription (RT) mix 

Total volume of 5 L (equivalent to 1 reaction of RT) 

Reverse Transcription Master Mix   1 L 

Nuclease-free water top up to 5 L (after the addition 

of RNA) 

Both items were components from Fluidigm® Reverse Transcription Master Mix kit 

(Fluidigm, CA, USA). 
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4.3.6.4 Preamplification pre-mix 

Total volume of 3.75 L (equivalent of 1 reaction of preamplification) 

PreAmp Master Mix    1 L 

0.2X pooled TaqMan assay mix   1.25 L 

Nuclease-free water    1.50 uL 

PreAmp Master Mix and nuclease-free water were components from Fluidigm® 

PreAmp Master Mix kit (Fluidigm, CA, USA).  Individual 20X TaqMan gene 

expression assays (primers) were purchased from Thermo Fisher Scientific Inc., MA, 

USA. 

4.3.6.5 quantitative PCR (qPCR) 

Total volume of 5 L of 10X assay 

20X TaqMan assay    2.5 L 

2X assay loading reagent    2.5 L 

Individual TaqMan gene expression assays were purchased from Thermo Fisher 

Scientific Inc., MA, USA.  Assay loading reagent was obtained from Fluidigm, CA, 

USA. 

Total volume of 5 L of sample  

2X TaqMan Universal PCR Master Mix 2.5 L 

20X GE sample loading reagent   0.25 L 
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preamplified cDNA    2.25 L 

TaqMan Universal PCR Master Mix was obtained from Thermo Fisher Scientific 

Inc., MA, USA.  GE sample loading reagent was purchased from Fluidigm, CA, USA. 

4.4 Methods    

This study was performed according to the protocols approved by Research 

Management Committee of Institute for Medical Research (project code:  JPP-IMR 11-

026) and Animal Care and Use Committee of the Ministry of Health, Malaysia 

(approval code:  ACUC/KKM/02(3/2013) and ACUC/KKM/02(05/2016)). 

4.4.1 Cell culture 

Both HK1 and C666-1 were adherent cells cultured in respective complete medium.  

The cells were maintained in a 5% CO2-humidified incubator at 37 C.  Cell culture 

experiments were carried out in a biosafety cabinet class II and culture media and 

reagents were warmed to 37 C in a water bath prior to use. 

4.4.1.1 Thawing of frozen culture and culturing of revived cells 

A cryovial containing cryopreserved cells was removed from the liquid nitrogen tank 

and immediately thawed in a water bath at 37 C with gentle swirling.  Thawed content 

was pipetted dropwise into a 15-mL centrifuge tube containing 5 mL of cold complete 

medium.  The cell suspension was centrifuged at 1,000 rpm for 5 min and the 

supernatant was subsequently discarded.  The cell pellet was resuspended with 5 mL of 

complete medium and transferred to a 6-cm culture dish.  The cells were cultured in the 

incubator.  Medium was changed every two to three days. 



 

96 

4.4.1.2 Passaging of cells 

HK1 or C666-1 cells were passaged when they were 80 - 90% confluent (i.e. 

logarithmic growth phase).  The spent medium was discarded and the cells were gently 

rinsed with 3 mL of 1X PBS.  The cells were trypsinized with 2 mL of TrypLE™ 

Express Enzyme (1X) (HK1 cells) or trypsin-EDTA (0.05%) (C666-1 cells) (Thermo 

Fisher Scientific Inc., MA, USA) at 37 C for 5 - 8 min.  Cells were viewed under a 

phase contrast inverted microscope for detachment.  Trypsinization process was stopped 

with the addition of 2 - 3 mL of complete medium.  The cell suspension was transferred 

to a 15-mL centrifuge tube and centrifuged at 1,000 rpm for 5 min.  The supernatant 

was discarded and the cell pellet was gently resuspended with 2 mL of complete 

medium prior to transfer to the required numbers of new 10-cm culture dishes (BD 

Falcon, NJ, USA brand for C666-1 cells).    Six mL of complete medium were then 

added with gentle swirling to ensure an even distribution of cells in each dish.  Cell 

detachment for immunophenotyping experiments was performed using Accutase 

(Millipore, MA, USA) instead of TrypLE™ Express Enzyme (1X) or trypsin-EDTA as 

described above.        

4.4.1.3 Cryopreservation 

Freezing medium was freshly prepared and chilled for each cryopreservation process.  

After the cells had been detached, centrifuged and the supernatant was discarded, the 

cell pellet was gently resuspended with chilled freezing medium.  Cryovials were 

prelabelled and chilled prior to filling with 1 - 2 X 10
6
 cells per vial.  The cryovials 

were then stored at -20 C for 2 - 3 h, followed by -80 C storage for overnight prior to 

long term storage in liquid nitrogen.    
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4.4.1.4 Cell counting by automated cell counter 

Following cell detachment and resuspension in complete medium, the cells were 

counted prior to use.  Ten L of cell suspension were combined with 10 L of trypan 

blue solution for cell viability and counting checks.  Ten L of the mixture were then 

loaded into a Countess® cell counting chamber slide.  The loaded slide was then 

inserted into the Countess® automated cell counter (Thermo Fisher Scientific Inc., MA, 

USA).  Image quality was first adjusted to ensure a good contrast between live and dead 

cells before cells were counted automatically.   

4.4.1.5 Mycoplasma detection 

Mycoplasma contamination in cultured cells was periodically checked with Venor 

GeM Mycoplasma Detection Kit for Conventional PCR (Minerva Biolabs, Berlin, 

Germany) following the manufacturer’s protocols.     

4.4.2 NPC patient-derived xenografts (PDXs) 

Xeno-284 and xeno-B110 xenografts were maintained and passaged in vivo in NOD-

scid gamma (NSG) mice (NOD.Cg-Prkdc
scid

 Il2rg
tm1Wjl

/ SzJ; The Jackson Laboratory, 

ME, USA) as subcutaneous growth in the SPF Animal Facility (Institute for Medical 

Research, Malaysia).  Only PDXs of passage 5 - 9 were used in this study.   

4.4.2.1 Harvesting of xenograft 

Mouse bearing a tumour was checked for its correct identity via its ear tag.  The 

mouse was humanely euthanized using CO2 and/or cervical dislocation method.  The 

exterior of the subcutaneous xenograft and its surrounding area was first disinfected 

with 10% w/v Povidone iodine solution (Polylab Biotech Sdn. Bhd., Malaysia).  The 

xenograft was gently excised out and transferred to a sterile glass petri dish.  Visible 

blood clots, blood capillaries and/or fat were removed.  It was then cut length-wise to 
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inspect for the presence of necrotic tissue which would be removed.  A cross section of 

the xenograft tissue was preserved in 10% neutral buffered formalin (Leica Biosystems, 

IL, USA).   

4.4.2.2 Digestion of xenograft 

Freshly harvested xenograft was rinsed several times with sterile cold 1X PBS buffer 

supplemented with 1X antibiotic/antimycotic (Thermo Fisher Scientific Inc., MA, 

USA).  It was minced into fine pieces in the presence of RPMI-1640 supplemented with 

10% fetal calf serum and 1X penicillin/streptomycin (all from Thermo Fisher Scientific 

Inc., MA, USA) (“RPMI-10 medium”) in a sterile 6-cm glass petri dish.  The mixture 

was transferred to a 50-mL Falcon tube (BD Biosciences, MA, USA) and allowed to 

stand for 8 min at room temperature.  Dead and dying cells present in the supernatant 

were removed and the remaining clumps of tissue pieces were transferred back to the 

glass petri dish.  The tissue was digested in the presence of 1:1 ratio of RPMI-10 and 

collagenase/dispase (Roche Life Science, IN, USA) for xeno-284 and collagenase type 

II (Sigma-Aldrich, MO, USA) for xeno-B110 in the presence of 2 U per mL of DNase I 

(Thermo Fisher Scientific Inc., MA, USA) to prevent clumping of undigested tissue 

pieces during digestion.  Digestion was performed at 37 C in the 5% CO2-humidified 

incubator for 1 h at medium speed on a rotating belly dancer.  The slurry of cell 

suspension mixed with undigested pieces was filtered with a 40-µm cell strainer.  The 

cell suspension was centrifuged at 900 rpm for 6 min at room temperature and the cell 

pellet was washed once in sterile 1X PBS.  The clean cell pellet was resuspended in 1 

mL of RBC lysis buffer (Qiagen, Hilden, Germany) and incubated for 3 - 5 min at room 

temperature to lyse red blood cells.  After centrifugation at 900 rpm for 6 min, the cell 

pellet was washed once in sterile 1X PBS and spun again.  The final cell pellet was 

resuspended in HBSS+ buffer for cell and viability counts with trypan blue exclusion 

method.  
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4.4.3 Staining for immunophenotyping analysis of CSC markers or cell sorting 

C666-1 or HK1 cells were detached using Accutase (in the presence of DNase I for 

C666-1 cells to minimise cell clumping) and resuspended in HBSS+ buffer.  Cell 

suspension was stained with CD24 antibody conjugated to phycoerythrin (PE) (clone 

ML5; BD Biosciences, CA, USA), CD44 antibody conjugated to PE (clone G44-26; BD 

Biosciences, CA, USA), or EpCAM antibody conjugated to allophycocyanin (APC) 

(clone HEA-125; Miltenyi Biotec, Bergisch Gladbach, Germany) each at 10 L per 10
6
 

cells, for 10 min at room temperature in the dark.   

Prior to antibody-staining, xeno-284 and xeno-B110 cell suspension in HBSS+ 

buffer was blocked with Fc receptor blocking reagents for mouse and human antibodies 

at a 1:10 ratio (Miltenyi Biotec, Bergisch Gladbach, Germany) for 10 min at room 

temperature.  Fc receptor-blocked xenograft cell suspension was then stained with 

mouse H2Kd antibody conjugated to fluorescein isothiocyanate (FITC) (clone SF1-1.1; 

BD Biosciences, CA, USA) and, CD24 antibody conjugated to PE, CD44 antibody 

conjugated to PE, or EpCAM antibody conjugated to APC, each at 10 L per 10
6
 cells, 

for another 10 min at room temperature in the dark.   

Stained cells were washed once with sterile 1X PBS and centrifuged at 900 rpm for 6 

min at room temperature before being resuspended in HBSS+ buffer at a concentration 

of 1 X 10
6
 cells per 500 L for flow analysis or 5 - 8 X 10

6
 cells per mL for cell sorting.  

The cells were then filtered with a 40-µm cell strainer before the addition of 0.2 g/mL 

of DAPI as a viability dye as well as 10 U per mL of DNase I to prevent cell clumping 

into the stained cell suspension.  Unstained cells and cells stained with respective 

isotype control antibody (mouse IgG2a,-FITC/PE clone G155-178, mouse IgG2b,-PE 

clone 27-35, mouse IgG1-PE, mouse IgG2b-FITC clone GC198 or mouse IgG1-APC) 

were used as negative and gating controls, respectively.   
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4.4.4 Flow cytometry 

4.4.4.1 Data acquisition and cell sorting 

Data acquisition and cell sorting were performed on FACSAria SORP sorter 

equipped with 488-, 561-, 640- and 355-nm lasers (BD Biosciences, CA, USA).  

Fluorescence emission was measured with 530/30 (FITC), 582/15 (PE), 670/30 (APC) 

and 450/50 (DAPI) optical filters.  Compensation was set up with CompBead Plus 

particles (BD Biosciences, CA, USA) singly-stained with the antibody being used.  A 

small aliquot of cells (0.5 - 1 X 10
6
 cells) heated at 95 C for 10 min were stained with 

DAPI and used to compensate for DAPI spillover.  Cells stained with isotype-matched 

antibodies were used as gating controls.  Data acquisition, data analysis and cell sorting 

were performed using BD FACSDiva software (version 6.1.3; BD Biosciences, CA, 

USA).   

4.4.4.2 Gating strategies for immunophenotyping and cell sorting experiments 

For the immunophenotyping of CD24, CD44 and EpCAM markers, a hierarchical 

gating strategy was employed to identify the positive and negative marker expressions.  

Doublet discrimination gating was applied to remove doublets, followed by viable cell 

gating.  Single viable cells were then gated for CD24, CD44 or EpCAM expression.  

The xenograft cells had an additional mouse cell exclusion gate (H2Kd negative) 

performed prior to gating for the individual surface marker.  The expression levels for 

C666-1 and HK1 were reported as percentage of single viable cells, whereas the 

expression levels for xeno-284 and xeno-B110 were given as percentage of single viable 

non-H2Kd cells.  The experiment was repeated three times. 

Hierarchical gating strategy was also employed in the cell sorting experiment to 

identify the bright and dim phenotypes of CD24, CD44, EpCAM, and combination of 

EpCAM and CD44 (“EpCAM/CD44”) cells.  Similarly, doublet discrimination gating 
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was first applied followed by viable cell gating.  Single live cells were then gated for 

H2Kd negative CD24, CD44, EpCAM or EpCAM/CD44 positive cells.  The bright and 

dim phenotypes of each marker were gated from the marker positive cells and sorted or 

collected for downstream experiments.  Only the top total 5% of brightly-stained cells 

or the bottom total 5% of dimly-stained cells were regarded as “markerbr” or 

“markerdim” cells, respectively.  Collection of sorted cells was performed at a sample 

flow rate of 1,000 - 1,500 cells per second at 4 C.  Sorted cells were collected into 1.5-

mL or 15-mL polypropylene tube containing approximately 400 L or 3 mL of 

complete medium, respectively.  Typical collection time ranged from 5 min to slightly 

more than an hour, depending on the number of sorted cells needed for a downstream 

experiment.   

4.4.4.3 Post-sort analyses 

Approximately 2,000 - 5,000 sorted cells were collected for post-sort analyses.  They 

were re-analysed by flow cytometry and found to be typically above 90% purity.  Their 

morphology was also assessed microscopically.  The majority of sorted cells were 

single, round and healthy-looking.    

4.4.5 In vitro growth of marker-selected xeno-B110 cells 

Xeno-B110-gfp-luc2 was previously established by a lentiviral transduction of GFP-

Luc2 plasmid into xeno-B110 cells for a separate project (patent in application).  The 

GFP-transduced cells were successfully and could be continuously propagated in vivo.  

Xeno-B110-gfp-luc2 cells were digested and stained with antibodies for cell sorting as 

described above.  Twenty thousand freshly-sorted cells each of GFP positive non-

mouse, GFP positive EpCAMbr and EpCAMdim phenotypes were seeded in 50 L of 

complete medium per well for a total of three wells per phenotype in a 96-well 

ViewPlate-96 Black plate (PerkinElmer Inc., MA, USA).  Luminescent signal generated 
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with the addition of 2X D-Luciferin was regarded as a read-out of growth of viable 

xenograft cells.  Signals were read on day 0, 2, 4, 6 and 8. 

2X D-Luciferin diluted in RPMI-10 medium was added into each well of xenograft 

cells containing RPMI-10 in a 1:1 ratio.  The plate was gently agitated in the dark for 3 

min and luminescent signal was read by EnVision multi-label plate reader (PerkinElmer 

Inc., MA, USA).  Cell medium containing D-Luciferin was gently removed and the 

cells were gently washed twice with 200 L of RPMI-10.  The cells were replenished 

with 100 L of fresh complete medium and returned to the incubator until the next 

reading.   

4.4.6 In vivo tumourigenicity 

Data for tumour incidence and latency, growth curve and mitotic figures were 

obtained from five mice replicates per markerbr or markerdim group, whereas serial 

transplantation experiment was performed on five to six mice replicates per cell 

inoculation in the second generation (2,500 and 5,000 cells), five to six mice replicates 

per cell inoculation in the third generation (500 and 1,000 cells) and three to six mice 

replicates per cell inoculation in the fourth generation (10, 100 and 500 cells).  The 

exact number of mice used in each experiment is as indicated in the figures/tables.   

4.4.6.1 Animal strain, husbandry and endpoint 

Four to 6 weeks old female NOD-scid gamma (NSG) mice (NOD.Cg-Prkdc
scid

 

Il2rg
tm1Wjl

/ SzJ; The Jackson Laboratory, ME, USA) were used and housed in 

individually vented cages GM500 DGM (Tecniplast, PA, USA) with Pure-o’Cel 

bedding and Enrich-n’Nest paper chips (The Andersons Inc., OH, USA) in the SPF 

Animal Facility with standard environmental conditions of temperature at 20 - 24 C, a 

relative humidity of 45 - 65% and a 12-h dark-light cycle.  They had ad libitum access 
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to sterile pelleted mouse feed and sterile acidic water (pH2.8 - 3.1) supplemented with 

co-trimoxazole (1:20 dilution). 

A mouse would be sacrificed immediately if it showed signs of being unfit or 

moribund (even before the experiment endpoint was reached) such as big visible tumour 

(1,000 - 1,500 mm
3
), significant weight loss (more than 15% body weight), any 

impairment of basic body functions (feeding, walking, etc.) and signs of continuous 

distress which could not be alleviated by other means. 

4.4.6.2 Preparation of sorted cells for subcutaneous inoculation 

Sorted cells in 1.5-mL or 15-mL polypropylene tube were centrifuged at 1,200 rpm 

for 6 min at room temperature.  Supernatant was carefully aspirated out and the cell 

pellet was homogeneously mixed with 100 L cold RPMI-1640 medium (Thermo 

Fisher Scientific Inc., MA, USA) and 100 L cold BD Matrigel basement membrane 

matrix (BD Biosciences, CA, USA).  Cold RPMI-1640 medium was then aspirated into 

a pre-chilled 1-mL syringe until the “0” graduated line, followed by the cell-Matrigel 

mixture.  Presence of air bubble was removed by gently tapping the syringe to get the 

air bubble to the top of the syringe prior to pushing the bubble out with the plunger.  

The syringe containing cell suspension-Matrigel mixture was then placed in a near 

upright position (needle facing down) in an ice bucket and immediately transported to 

the SPF Animal Facility for mouse inoculation.   

4.4.6.3 Tumour incidence, latency and growth curve 

An endpoint experiment to measure tumour incidence, latency, growth curve and 

mitotic figures was performed with CD24, CD44, EpCAM and EpCAM/CD44 cells 

from C666-1 and xeno-B110.  Two thousand markerbr/double markerbr, or 

markerdim/double markerdim cells were inoculated into five mice per group (a total of 
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seven groups for C666-1 and eight groups for B110).  Tumour volume measurements 

were recorded every two to three days using the formulae of (width
2
 X length)/2.   All 

animals (with and without tumour burden) were terminated at day 52 (C666-1 animals) 

or day 69 (xeno-B110 animals) post-inoculation when the majority of xenografts were 

below 800 mm
3
.  The rate of xenograft volume increase (m) was calculated from the 

slope of the best-fit line of a plot of volume versus time generated by a simple linear 

regression (modified from Blankenberg et al., 1995).     

Tumourigenicity was measured by tumour incidence (i.e. number of tumours/number 

of inoculated mice) and latency (i.e. time from inoculation to time of first tumour 

measurement).  In the event of no measurable growth, the length of experiment was 

taken as the period of latency for the calculation of mean latency per phenotype for the 

animal, i.e. 52 days for C666-1 experiment, 69 days for xeno-B110 experiment and 150 

days for serial transplantation experiment.  Mean tumour volume per group was 

calculated as total volume of all xenografts divided by total inoculated mice and used to 

plot for in vivo growth curves.  Frequencies of TICs were calculated using Extreme 

Limiting Dilution Analysis (ELDA) software by Hu & Smyth (2009).  The basis of and 

logics employed in ELDA have been described in Chapter 3.    

4.4.6.4 Serial transplantation 

Serial transplantation was performed for CD24, CD44 and EpCAM cells from xeno-

B110 to assay for their self-renewal ability.  The experiment was not performed on 

EpCAM/CD44 cells because they did not enhance in vivo growth or show higher TIC 

frequency than single CD44br cells.  Markerbr xenografts from the first generation were 

digested, stained and re-sorted for markerbr cells according to the above mentioned 

xenograft processing and flow cytometry procedures.  The cells were then re-inoculated 

into recipient mice in a limiting dilution manner.  Markerdim xenografts were also re-
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sorted for markerdim cells prior to re-inoculation in a limiting dilution manner.  This 

was performed for three successive passages of xenografts.  In order to avoid 

underestimating the frequencies of TICs (Quintana et al., 2008), mice with no tumour 

burden were kept for 150 days of observation prior to humane termination.   

4.4.6.5 Harvesting of xenograft 

Mouse bearing a xenograft was checked for its correct identity via its ear tag.  The 

mouse was humanely euthanized using CO2 and/or cervical dislocation method.  The 

exterior of the subcutaneous xenograft and its surrounding area was disinfected with 

10% w/v Povidone iodine solution (Polylab, Malaysia).  The xenograft was gently 

excised out and transferred to a sterile glass petri dish.  Visible blood clots, blood 

capillaries and/or fat were removed.  It was then cut length-wise to inspect for the 

presence of necrotic tissue which would be removed.  A cross section of the xenograft 

was preserved in 10% neutral buffered formalin (Leica Biosystems, Newcastle, UK).  

The remaining xenograft was digested into single cell suspension for downstream 

experiments as previously described. 

4.4.7 Histology and scoring of mitotic figures  

Xenograft tissues were formalin-fixed for 24 h, processed in an automated tissue 

processor Leica ASP300 S (Leica Biosystems, Melbourne, Australia), embedded in 

paraffin and sectioned at 3-m thickness.  Haematoxylin and eosin (H&E) staining was 

performed using an autostainer Leica XL (Leica Biosystems, Melbourne, Australia) and 

evaluated by a histopathologist.  Mitotic figures were counted in seven to 10 high power 

fields (HPFs; 40X objective) per section (i.e. per xenograft tissue) using Leica DM1000 

LED light microscope (Leica Microsystems, Singapore) by the histopathologist.   

There was presence of necrosis and/or stromal cells in the majority of harvested 

xenografts from C666-1 and xeno-B110 experiments.  As such, mitotic activity index 



 

106 

(MAI) could not be accurately evaluated (Medri, 2003).  To circumvent this problem, 

the presence of necrosis and/or stromal cells were first evaluated by the 

histopathologist.  Following this, MAI was adjusted to the presence of 100% viable 

tumour cells in a HPF (“adjusted MAI”), with the following formulae: 

In a HPF, x% was necrotic and/or had stromal infiltration and there was a presence of n 

mitotic figures.  The presence of viable tumour cells (i.e. non-necrotic cells) y equals 

(100 – x)%.  Therefore, adjusted MAI for a HPF = [100% / y%] X n. 

Mean adjusted MAI per section was calculated as total adjusted MAI from all scored 

HPFs divided by total number of HPFs in the section (Figure 4.1).  Mean adjusted MAI 

per group of xenografts was calculated as total of mean adjusted MAI per section from 

all sections divided by total number of sections in the group. 

 

    

 

 

Figure 4.1:  Schematic diagram of a H&E-stained xenograft tissue section used for 

scoring of mean adjusted MAI per section.  In this illustrated xenograft tissue section, 

mitotic figures were scored in 10 available high power fields (HPFs, blue circles) under 

40X objective.  Mean adjusted MAI per section was calculated as total adjusted MAI 

from all 10 HPFs divided by 10 HPFs.    

 

 

 

4.4.8 EBER-in situ hybridization (ISH) staining 

Xenograft tissues which had been processed into formalin-fixed paraffin-embedded 

tissue blocks were sectioned at 3-µm thickness and prepared for EBER-ISH and 

cytokeratin IHC staining.  Pre-treatment steps and staining were performed on the 
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BondMax
TM

 fully automated IHC and ISH immunostainer (Leica Biosystems, 

Melbourne, Australia). 

Prior to hybridization with specific RNA probes (EBER, RNA positive control and 

RNA negative control), the tissue sections underwent pre-treatment steps which 

included baking, dewaxing, rehydration and proteinase K enzymatic retrieval with Bond 

Enzyme Pretreatment Kit  (Leica Biosystems, Newcastle, UK).  Subsequently, the tissue 

sections were hybridized with EBER probe (Bond ready-to-use ISH EBER Probe, Leica 

Biosystems, Newcastle, UK), RNA positive control probe (Bond ready-to-use ISH RNA 

Positive Control Probe, Leica Biosystems, Newcastle, UK) or RNA negative control 

probe (Bond ready-to-use ISH RNA Negative Control Probe, Leica Biosystems, 

Newcastle, UK) for 2 h at 37 C, followed by post-hybridization washing steps at 

ambient temperature.  The RNA positive control probe is proprietary and used to 

indicate correct tissue preparation with good quality RNA and a proper staining 

technique.  The RNA negative control probe is also proprietary and used to verify the 

specificity of the labelling of probe to target RNAs in the tissue.  After hybridization, 

the tissue sections underwent further staining processes which included peroxidase 

blocking (Bond Polymer Refine Detection, Leica Biosystems, Newcastle, UK) for 5 min 

at ambient temperature and incubation with anti-FITC/horseradish peroxidase (HRP) 

antibody (1:50 dilution, Dako, CA, USA) for 20 min at ambient temperature.  

Visualization of HRP activity was carried out by incubation with DAB chromogen 

(Bond Polymer Refine Detection, Leica Biosystems, Newcastle, UK) for 8 min at 

ambient temperature.  Finally, they were counterstained using haematoxylin for 5 min.  

All staining steps were followed by washing steps using washing buffer or deionized 

water.  
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4.4.9 Cytokeratin immunohistochemistry (IHC) staining 

Cytokeratin IHC staining was performed with Bond Polymer Refine Detection 

System (Leica Biosystems, Newcastle, United Kingdom).  The sections underwent pre-

treatment steps which included baking for 30 min at 60 °C, dewaxing using Bond 

Dewax Solution (Leica Biosystems, Newcastle, UK) and rehydration with absolute 

ethanol (Merck Millipore, MA, USA).  They were then treated with antigen retrieval 

solution (Bond ER2, Leica Biosystems, Newcastle, UK) for 20 min at 98 °C.  Next, the 

sections were incubated with peroxidase blocking solution for 8 min at ambient 

temperature and followed by incubation with Rodent Block M blocking solution 

(Biocare Medical, CA, USA) for 15 min at ambient temperature.  Subsequently, the 

sections were incubated with mouse anti-human cytokeratin (clone AE1/AE3; 1:100 

dilution, Dako, CA, USA) for 15 min and followed by a second incubation with Rodent 

Block M blocking solution for 15 min at ambient temperature.  This followed with 

incubation with post primary rabbit anti-mouse IgG for 8 min and incubation with the 

polymer of anti-rabbit poly-HRP-IgG for 8 min at ambient temperature.  Finally, the 

expression of cytokeratin was visualized using DAB chromogen (staining of 10 min at 

ambient temperature), and haematoxylin was used as a counterstain (5 min at ambient 

temperature).  All staining steps were followed by washing steps using either washing 

buffer or deionized water.  After the final staining step, tissue samples were dehydrated 

by absolute alcohol (1 min) and clearing in xylene (3 min).   

4.4.10 Cell cycle analysis 

Markerbr or markerdim xeno-B110 cells (CD24, CD44, EpCAM and 

EpCAM/CD44) were centrifuged at 1,200 rpm for 6 min at room temperature.  

Supernatant was discarded until approximately 100 L remained in the tube.  This 

volume was used to resuspend the cell pellet and the cell suspension was transferred to a 

1.5-mL tube for a repeat centrifugation step.  Supernatant was carefully aspirated 
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without disturbing the cell pellet.  Three hundred microlitres of cold 1X PBS 

supplemented with 50% FBS was used to thoroughly resuspend the pellet.  By using 

dropwise dispensing method, 900 L of cold 70% ethanol was slowly added to the 

suspension with gentle mixing.  The fixed cell suspension was incubated at -20 C until 

analysis.  On analysis day, the fixed cells were washed with cold 1X PBS twice to 

remove the ethanol and precipitated protein.  Centrifugation was performed at 1,200 

rpm for 6 min.  The pellet was resuspended in cold 1X PBS and filtered with a 40-µm 

cell strainer before the addition of 1 g per mL of DAPI.  Cell cycle analysis was 

performed on the FACSAria SORP sorter and fluorescence emission for DAPI was 

measured with 450/50 optical filter with a 355-nm laser.  Percentage of cells in each cell 

cycle phase was analysed using ModFit LT software version 6 (Verity Software House, 

Inc., ME, USA).  The experiment was repeated at least three times. 

4.4.11 RT-qPCR experiment 

4.4.11.1 RNA extraction of marker-selected xeno-B110 cells 

Total RNA from markerbr or markerdim xeno-B110 cells (CD24, CD44, EpCAM 

and EpCAM/CD44) were extracted using miRNeasy Micro kit (Qiagen, Hilden, 

Germany).    Freshly-sorted cell pellet was lysed with 700 L of QIAzol lysis buffer and 

vortexed for 1 min to ensure complete cell lysis.  The homogenate was placed at room 

temperature for 5 min to promote dissociation of nucleoprotein complexes.  For phase 

separation, 140 L of chloroform was added to the homogenate and the tube was shaken 

vigorously for 15 s, prior to incubation at room temperature for 5 min.  The chloroform-

homogenate mixture was then centrifuged at 12,000 x g for 15 min at 4 C.  The clear 

upper aqueous phase was carefully aspirated to a new tube and 525 L of 100% ethanol 

was added.  The mixture was pipetted up and down several times, and transferred to an 

RNeasy MinElute spin column in a 2-mL collection tube.  The spin column was spun at 
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10,000 x g for 15 s at room temperature.  After discarding the flow-through and a wash 

with Buffer RWT, an on-column DNase digestion was performed with an addition of 80 

L of DNase I solution directly onto the spin column membrane, followed by 

incubation for 15 min at room temperature.  Buffer RWT was added into the column, 

prior to centrifugation at 10,000 x g for 15 s.  The flow-through was reapplied to the 

spin column and spun as before.  The flow-through was discarded and 500 L of Buffer 

RPE was added, followed by centrifugation at 10,000 x g for 15 s.  Prior to elution, the 

total RNA was washed with 500 L of 80% ethanol.  This was followed with two 

centrifugation steps to ensure total removal of the ethanol.  Finally, total RNA was 

eluted from the membrane of the column with the addition of 14 L of nuclease-free 

water and a full speed centrifugation for 2 min.  All RNA samples were stored at -80 C 

until used.               

4.4.11.2 RNA extraction of RNA positive control cell lines 

Total RNA from C666-1, HK1, HONE1, B95.8, SW480, Namalwa and MDA231 

were extracted using RNeasy® Plus Mini kit (Qiagen, Hilden, Germany).  Buffer RLT 

Plus was added to the cell pellet and the lysate was homogenized with a QIAshredder 

spin column following the manufacturer’s protocol.  The homogenized lysate was then 

transferred to a gDNA Eliminator spin column and centrifuged at 10,000 x g for 30 s at 

room temperature to remove genomic DNA.  To ensure appropriate binding conditions 

for RNA, the flow-through was mixed with 350 L of 70% ethanol and transferred to an 

RNeasy spin column for centrifugation at 10,000 x g for 15 s at room temperature.  

Removal of contaminants from the membrane-bound RNA was performed with Buffer 

RW1 and Buffer RPE as per manufacturer’s protocol.  After the final wash with Buffer 

RPE, the column was centrifuged at full speed for 1 min at room temperature to ensure 

complete removal of Buffer RPE.  Total RNA was eluted from the membrane of the 
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column with 40 L of nuclease-free water.  All RNA samples were stored at -80 C 

until used.  They were equally pooled to generate RNA positive control.  Starting from 

500 ng/L of total RNA, a four-fold serial dilution of the RNA positive control sample 

was carried out to generate 16 standard points to be used in quality assessment of assays 

for gene expression study.   

4.4.11.3 Quantification of total RNA         

Quantitation of RNA was performed using NanoDrop 8000 Spectrophotometer 

(Thermo Fisher Scientific Inc., MA, USA).  Nuclease-free water was used as a “blank”. 

Samples with contamination at 230- and/or 270-nm were cleaned using RNeasy® Plus 

Micro kit (Qiagen, Hilden, Germany) and re-quantitated.     

4.4.11.4 Reverse transcription (RT) 

RT was performed using Fluidigm® Reverse Transcription Master Mix (Fluidigm, 

CA, USA) with 2 L of each standard point, 4 ng of total RNA each from CD24br and 

CD24dim-selected cells, and 8 ng of total RNA each from CD44br, CD44dim, 

EpCAMbr, EpCAMdim, EpCAM/CD44dbr and EpCAM/CD44dim-selected cells in a 

PCR plate.  Nuclease-free water was used as a RT negative control.  Each 5-L RT 

reaction was made up of 1 L of RT Master Mix, the specified amount of total RNA 

with the remaining volume made up by nuclease-free water.  The plate was then 

incubated at 25 C for 5 min, 42 C for 30 min and 85 C for 5 min. 

4.4.11.5 Preamplification 

Preamplification was performed using Fluidigm® PreAmp Master Mix (Fluidigm, 

CA, USA).  Each 5-L preamplification reaction consisted of 1.25 L of cDNA sample 

and 3.75 L of pre-mix.  Nuclease-free water was used as preamplification negative 

control.  The preamplification conditions were 95 C for 2 min followed by 14 cycles of 
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denaturation at 95 C for 15 s and annealing/extension at 60 C for 4 min.    

Preamplified cDNA products were diluted 1:5 in TE buffer prior to qPCR. 

4.4.11.6 quantitative PCR (qPCR) and data analysis 

qPCR was performed using Fluidigm® 48.48 Dynamic Array integrated fluidic 

circuits (IFC) in the Biomark System (Fluidigm, CA, USA, Figure 4.2).  Briefly, an 

IFC is a chip made up of fabricated rubber as a base material and contains a series of 

channels transected by control lines.  When pressurised, the channels deflect to form an 

effective seal.  Tens of thousands of tiny structures can be integrated into a dense 

network of channels for regulating micro-, nano- or picolitre-scaled samples and 

reagents.  The features and benefits of using an IFC include its precision and efficiency 

despite needing only  5 L of cDNA per sample (48.48 Dynamic Array), 

versatility/scalability to high-throughput qPCR (for example, 48.48 Dynamic Array 

enables a maximum of qPCR of 48 samples against 48 genes/assays simultaneously), 

and cost-effectiveness due to less sample and reagents being used per qPCR.   

RT negative control, preamplification negative control and a no-template qPCR 

control were included in each IFC so that non-specific amplification (if any) can be 

ruled out from further analysis.  Data from standard points were used to construct 

standard curves for the evaluation of linear amplification in each assay. Three sorting 

replicates each for CD24, CD44 and EpCAM, and two sorting replicates for 

EpCAM/CD44 were analysed in this study. All qPCR reactions were performed in 

triplicate wells.   

Prior to loading, the IFC was primed by injecting control line fluid into the 

accumulator on both sides of the array (Figure 4.2) and loaded into the IFC Controller 

MX for a Prime (113x) script run.  This was followed by loading of 5 L of each assay 
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and 5 L of each diluted preamplified cDNA sample into their respective inlets on the 

array as shown in the figure.  The filled array was loaded into the IFC Controller MX 

for a Load Mix (113x) script run.  The primed and loaded IFC was then loaded into 

Biomark System with the following qPCR cycling conditions:  50 C for 2 min (UNG 

step to protect against carryover contamination of dUTP-containing DNAs), 95 C for 

10 min (Hot Start step to activate the Taq DNA polymerase) followed by 40 cycles of 

denaturation at 95 C for 15 s and annealing at 60 C for 60 s.   

 

 

Figure 4.2:  Overview of Fluidigm 48.48 Dynamic Array IFC.  (adapted from 

Fluidigm® 48.48 Real-Time PCR Workflow Quick Reference, BioMark Real-Time 

PCR Analysis Software User Guide, PN 68000088) 

 

Fluidigm Real-Time PCR Analysis software was used to generate raw Ct values.  

Wells with undetected amplification (Ct = 999) or higher than 25 were excluded from 

calculation of average Ct values.  Ct > 25 is regarded as low expression in Biomark 

(Tan & Tan, 2017).  Microsoft Excel was used to calculate average Ct values from 

duplicate or triplicate wells.  Assays were excluded from data analysis when one of the 

followings was identified:  (a) non-linearity was observed in the standard curves of 
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serially-diluted pooled RNA positive controls (R
2 
 0.9), (b) PCR efficiency outside the 

range of 90 - 110% or (c)  undetected amplification in more than 33% of all samples.   

Geometric mean of three reference genes (RGs) UBC, HPRT1 and RPL13A was used 

for data normalization.  List of assays analysed is in Appendix E.  Gene expression was 

calculated with the formulae 2
(-dCt)

 whereby dCt = Ctassay –Ctgeo mean RGs.  The normalized 

values of markerbr
 
were divided by the normalised markerdim to calculate fold change.  

4.4.12 Statistical analysis 

Data are reported as mean  SD or SEM as indicated in each figure description. 

Unpaired t-test was applied for mean latency and adjusted MAI, and paired t-test for 

cell cycle and RT-qPCR data using GraphPad Prism 6 (GraphPad Software, Inc., CA, 

USA).  Significance was defined at the p < 0.05 or p < 0.01 level as indicated in each 

figure description.  TIC frequency was analysed according to Extreme Limiting Dilution 

Analysis (ELDA) (Hu & Smyth, 2009). 

4.5 Results 

4.5.1 Immunophenotyping of CD24, CD44 and EpCAM expression in NPC cell 

lines and NPC PDXs 

Prior to use, HK1 and C666-1 cells were authenticated by STR profiling and found to 

be identical and closely related, respectively, to the ones used by other NPC researchers 

(Chan et al., 2008) (Appendix C).  Routine tests also showed that both cell lines were 

mycoplasma-free.  Xeno-284 and xeno-B110 showed a high concordance to their 

respective original patient sample used for their engraftment in NSG mice (Appendix 

C).   

Slightly different gating strategies were employed to immunophenotype the 

expression of CD24, CD44 and EpCAM in NPC cell lines and NPC PDXs due to the 
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presence of mouse cells in the latter.  After doublet and viability gating on both types of 

samples, PDX samples were subjected to a mouse cell delineation gating prior to 

analyses of CSC marker expressions. 

As shown in Figure 4.3, doublet gating was initially performed on C666-1 cells to 

remove doublets and/or cell clumps from the analysis.  A viability gate was applied to 

single cells (“singlet gate”) prior to determining the expression level of each CSC 

marker.  Stained cells from HK1 were similarly analysed.  Single cells from both cell 

lines were typically above 90% viability after detachment and antibody staining 

(representative data as shown in Figure 4.3).  
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Figure 4.3:  Flow cytometry dot plots detailing the gating strategy employed for 

immunophenotyping C666-1 cells.  i.  C666-1 cells were stained with CD44 antibody 

conjugated to PE and viability dye DAPI and subsequently analysed in a hierarchical 

manner as shown in the statistics box (ii).  In the sample depicted here, 99.5% of single, 

viable C666-1 cells are CD44 positive. 

 

 

 

As PDX cells contained a mixture of NPC (human cells) and host mouse cells, 

single, viable PDX cells (typically above 80% viability) were further stratified into 

mouse and non-mouse cells by H2Kd antibody (a mouse cell marker) conjugated to 

FITC (H2Kd-FITC) (Figure 4.4).  The expression levels of CSC markers were then 

determined from non-mouse (H2Kd negative) cells.   

i. 

ii. 
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Figure 4.4:  Flow cytometry dot plots detailing the gating strategy employed for 

immunophenotyping xeno-B110 cells. i. Xeno-B110 cells were stained with H2Kd 

antibody conjugated to FITC, EpCAM antibody conjugated to APC and viability dye 

DAPI and subsequently analysed in a hierarchical manner as shown in the statistics box 

(ii).  In the sample depicted here, 66.5% of single, viable, non-mouse xeno-B110 cells 

are EpCAM positive. 

 

The percentage of CD24-expressing cells was the highest in xeno-B110 (85.37 

10.51% positive cells), moderate in xeno-284 and HK1 (55.33 14.17% and 62.77 

14.63%, respectively), and nearly absent in C666-1 (0.00 0.06%) (Figure 4.5).  The 

marker was similarly barely detectable in C666-1 maintained and propagated as 

xenografts for three successive passages (Figure 4.6).  CD44 was expressed in all NPC 

i. 

ii. 
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samples, ranging from a moderate proportion in xeno-B110 (70.15 3.23%) to the 

highest proportion in HK1 (99.47 0.15%).  There was an overall high percentage of 

EpCAM-expressing cells in all samples (more than 95% positivity), except for xeno-

B110 (75.79 12.45%).  The negative subpopulations of CD24, CD44 and EpCAM 

were scarce in xeno-B110 (Figure 4.7); hence, bright and dim phenotypes of each 

marker were selected and studied for their biological properties instead of positive and 

negative subpopulations.   

 
 

Figure 4.5:  Immunophenotyping of CD24, CD44 and EpCAM in NPC cell lines and 

NPC PDXs.  Three common CSC surface markers (CD24, CD44 and EpCAM) were 

differentially expressed in NPC cell lines and NPC PDXs.  Percentage of marker 

positive cells from the cell lines was counted from the total number of single, viable 

cells. As for the PDXs, the denominator was total number of single, viable, non-mouse 

cells. Results, mean SD (n = 3 flow cytometry experiments).   
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Figure 4.6:  Immunophenotyping of CD24 in C666-1 maintained and propagated in 

vitro and in vivo.  Expression of CD24 was measured by flow cytometry in in vitro-

maintained C666-1 cells (“C666-1”) as compared to in vivo-propagated C666-1 

xenografts (“xeno-C666-1”) for three successive passages (p1-p3).  Percentage of CD24 

positive cells was counted from total number of single, viable, non-mouse cells.   

 
 

 

    

 

 

 

 

Figure 4.7:  xeno-B110 contained differential expression levels of CD24, CD44 and 

EpCAM.  Representative contour plots of immunophenotyping data for CD24, CD44 

and EpCAM showed that non-mouse (H2Kd negative) cells with CD24
neg

, CD44
neg

 or 

EpCAM
neg

 expression were too few to be sorted from xeno-B110.   
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4.5.2 Characterization of CD44, EpCAM and combination of EpCAM and CD44 

marker-selected cells in C666-1   

Majority of NPC are EBV-positive.  Therefore,  subsequent in vitro and/or in vivo-

based experiments to characterize biological differences of marker-selected (marker 

bright or marker dim) NPC cells were performed using C666-1 as a representative NPC 

cell line and xeno-B110 as a representative early-passage NPC PDX (Figure 4.8) as 

both samples are EBV positive and derived from primary NPC specimens.   

Besides CD24, CD44 and EpCAM, a combination of EpCAM and CD44 

(“EpCAM/CD44”) was also investigated to determine if it would further enrich for 

tumourigenic and/or faster-growing cells as both markers had been independently found 

to be associated with tumour initiation and proliferation in published reports.     

 

 

 

 

 

 

 

Figure 4.8:  Schematic work flow of characterization studies in C666-1 and xeno-B110.  

Self-renewal in vivo, cell cycle and gene expression analyses were only performed in 

xeno-B110 cells (*).  
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Owing to an extremely low level of CD24 positive cells in C666-1 (Figure 4.5), only 

CD44, EpCAM and EpCAM/CD44-selected C666-1 cells were evaluated for their 

tumourigenicity in NSG mice.  Table 4.1 showed the tumour formation ability of 2,000 

marker-selected cells in a 52-day experiment.  All cell phenotypes initiated 100% 

tumour formation (5/5 for each phenotype), except for CD44dim phenotype (80%, 4/5).  

Only CD44 group of xenografts showed a significant growth difference between the 

phenotypes:  CD44br cells induced faster growth with a mean latency of 35.60 1.50 

days in contrast to CD44dim cells with a longer mean latency of 44.80 6.85 days (p = 

0.03). 

Table 4.1:  Tumour initiation and mean latency data of the xenografts arising from 

bright and dim phenotypes of CD44, EpCAM and EpCAM/CD44 cells from C666-1. 

Sample Phenotype 

Number of 

tumours/Number 

of mice 

Mean 

latency ± SD                               

(days) 

p value 

2,000 cells 

C666-1 

 

viable 5/5 42.00 ± 5.55 

 
CD44br 5/5 35.60 ± 1.50 

0.03 
CD44dim 4/5

#
 44.80 ± 6.85 

EpCAMbr 5/5 40.60 ± 3.07 

0.14 
EpCAMdim 5/5 45.20 ± 4.62 

EpCAM/CD44dbr 5/5 40.60 ± 5.85 

0.21 
EpCAM/CD44ddim 5/5 46.00 ± 5.40 

 

# 
mouse with no tumour was given latency of 52 days (duration from inoculation until 

termination of experiment) 
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Growth curve of CD44br-induced xenografts was indicative of higher proliferation 

rate as shown by the higher rate of volume increase (steeper slope) as compared to the 

growth curve of CD44dim-induced xenografts (Figure 4.9i).  The former also produced 

larger xenografts than the latter at the end of the experiment (Figure 4.9ii).  Although 

most of the CD44br and CD44dim xenografts were less than 800 mm
3
 on day 52, 

necrosis and/or stromal infiltration were observed in nearly all of them (Figure 4.10).  

Hence, the calculation of mitotic activity index (MAI) was adjusted to 100% presence 

of viable tumour cells in each xenograft section (“adjusted MAI”).    CD44br xenografts 

had slightly more necrosis and/or stroma presence than CD44dim xenografts (p > 0.05) 

which may be attributed to their comparatively higher proliferation rate (m = 26.85) 

than the other xenografts.  The mean adjusted MAI for CD44br xenografts was 13.00 ± 

2.17 as compared to 8.50 ± 3.01 for CD44dim xenografts (p > 0.05) (Figure 4.9iii). 

 

 

 

 

 

 

 

 

 



 

123 

 

 

 

 

 

 

                                                                                              

 

Figure 4.9:  In vivo growth properties of CD44 cells from C666-1.  Freshly-sorted 

CD44br and CD44dim cells were inoculated into NSG  mice and monitored for 52 days.  

i. Growth curves of CD44br and CD44dim xenografts, ii. image of the harvested 

xenografts on day 52 and iii. mean adjusted MAI per group between CD44br and 

CD44dim xenografts.  Results of growth curve, mean ± SEM of 4 or 5 xenograft 

replicates. m, rate of volume increase.  Red circle in (ii) indicates a fat tissue and is 

considered as “no tumour”. 
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Figure 4.10:  Presence of necrosis and/or stroma in analysed high power fields (HPFs) 

of FFPE sections of markerselected cellinduced C6661 xenografts.  Majority of the 

marker-selected cell-induced C666-1 xenografts contained varying presence of necrosis 

and/or stroma.  Results, mean (n = 4 or 5 xenografts per phenotype with 7 to 10 HPFs 

per xenograft).     

 

 

There were less apparent differences between the growth curves and size of 

EpCAMbr and EpCAMdim xenografts (p > 0.05) (Figure 4.11i and ii) which was also 

reflected in the mean latency data (Table 4.1).  However, the mean adjusted MAI for 

EpCAMbr was significantly higher than the mean adjusted MAI for EpCAMdim 

xenografts (p = 0.03) (Figure 4.11iii).     
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Figure 4.11:  In vivo growth properties of EpCAM cells from C666-1.  Freshly-sorted 

EpCAMbr and EpCAMdim cells were inoculated into NSG mice and monitored for 52 

days.  i. Growth curves of EpCAMbr and EpCAMdim xenografts, ii. image of the 

harvested xenografts on day 52 and iii. mean adjusted MAI per group between 

EpCAMbr and EpCAMdim xenografts.  Results of growth curve, mean ± SEM of 5 

xenograft replicates. m, rate of volume increase.  * p < 0.05 

  

 

Compared to single CD44 and EpCAM marker-induced xenografts, xenografts 

arising from cells co-expressing EpCAM and CD44 (“EpCAM/CD44”) did not show 

any enrichment of growth abilities (Figure 4.12).  EpCAM/CD44dbr and 

EpCAM/CD44ddim xenografts showed similar growth curves and mean adjusted MAI 

values.   
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Figure 4.12:  In vivo growth properties of EpCAM/CD44 cells from C666-1.  Freshly-

sorted EpCAM/CD44dbr and EpCAM/CD44ddim cells were inoculated into NSG mice 

and monitored for 52 days. i. Growth curves of EpCAM/CD44dbr and 

EpCAM/CD44ddim xenografts, ii. image of the harvested xenografts on day 52 and iii. 

mean adjusted MAI per group between EpCAM/CD44dbr and EpCAM/CD44ddim 

xenografts.  Results of growth curve, mean ± SEM of 5 xenograft replicates. m, rate of 

volume increase. 

 

 

4.5.3 Characterization of CD24, CD44, EpCAM and EpCAM/CD44 marker-

selected cells in xeno-B110 

Xeno-B110 is a NPC PDX newly established in the Institute for Medical Research, 

Malaysia.  As part of its characterization work in a separate study, STR profiling shows 

that it is closely related to the original patient specimen (90.2%, Appendix C) and 

epithelial in nature (Figure 4.13ii).  Xeno-B110 is also EBV positive with 
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heterogeneous staining intensities amongst its cells (Figure 4.14iii).  Sample preparation 

and data analysis for STR profiling were performed by Norazlin Abd. Aziz and Dr. 

Kitson Liew (Institute for Medical Research, Malaysia).  Sample preparation, staining 

of EBER-ISH and cytokeratin IHC, and imaging were performed by Norazlin Abd. Aziz 

(Institute for Medical Research, Malaysia).  

 

 

 

 

 

 

Figure 4.13:  Representative cytokeratin IHC images of human skin tissue and xeno-

B110.  i. Human skin tissue section (as positive control) were stained with cytokeratin 

antibody and showed positive brown stain in epithelial cells and negative stain in non-

epithelial cells (arrow).  ii. Xeno-B110 tissue section was similarly stained and showed 

uniform positive brown stain. (20X objective; scale bar 100 m).   
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Figure 4.14:  Representative ISH images of xeno-B110.  Xeno-B110 tissue sections 

were stained with i. RNA positive control, ii. RNA negative control and iii. EBER 

probe.  (20X objective; scale bar 100 m).   

 

 

A pilot experiment was first performed to determine its tumour-initiating ability with 

a titration of cell inoculation numbers (Table 4.2).  Host mouse cells were removed by 

cell sorting and only viable non-mouse cells (“H2Kd negative”) were inoculated into 

NSG mice.  There was a 100% tumour formation from 100,000 to 500 cell inoculations 

(except for 5,000 cell inoculation at 83.33%).  Tumour formation was greatly reduced at 

100 cell inoculation (2/6; 33.33%) with no tumour formation with 10 cells (0/6; 0%).   

 

 

ii. i. 

  iii. 
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Table 4.2:  Tumour initiation and mean latency data of the xenografts arising  from 

limiting dilutions of non-mouse cells (H2Kd neg) of xeno-B110.        

Sample/ 

Phenotype 

Number of cells 

inoculated 

Number of 

tumours/Number 

of mice 

Mean latency ± SD                               

(days) 

xeno-B110/ H2Kdneg 

 

100,000 4/4 63.50 ± 1.00 

50,000 4/4 71.75 ± 13.70 

30,000 4/4 71.00 ± 6.93 

10,000 4/4 78.75 ± 11.06 

5,000 5/6* 74.83 ± 37.74 

500 3/3 70.33 ± 14.57 

100 2/6* 126.00 ± 37.71 

10 0/6* 150.00 ± 0.00 

* mouse with no tumour was given latency of 150 days (duration from inoculation 

until termination of experiment) 

 

A subsequent tumourigenicity experiment using 2,000 marker-selected cells for 

inoculation revealed that there was a significant difference in mean latency data 

between bright and dim phenotypes of each marker, with almost all phenotypes 

initiating a 100% tumour formation (5/5 or 4/4), except for CD44dim (60%; 3/5) and 

EpCAMdim (80%; 4/5) (Table 4.3). 
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Table 4.3:  Tumour initiation and mean latency data of xenografts arising from H2Kd 

negative bright and dim phenotypes of CD24, CD44, EpCAM and EpCAM/CD44 cells 

in xeno-B110. 

Sample Phenotype 

Number of 

tumours/Number 

of mice 

Mean latency 

± SD                  

(days) 

p value 

2,000 cells 

xeno-B110 

  

CD24br 

 

5/5 56.20 ± 2.68 

0.03 
CD24dim 

 

4/4^ 60.25 ± 1.50 

CD44br 

 

5/5 57.80 ± 2.68 

0.03 
CD44dim 

 

3/5* 64.20 ± 4.55 

EpCAMbr 

 

5/5 54.40 ± 3.58 

0.02 
EpCAMdim 

 

4/5* 63.00 ± 5.61 

EpCAM/CD44dbr 

 

5/5 54.80 ± 2.68 

<0.01 
EpCAM/CD44ddim 

 

5/5 63.60 ± 4.93 

^ 1 mouse died after inoculation 

* mouse with no tumour was given latency of 69 days (duration from inoculation until 

termination of experiment) 

 

The percentage of S-phase cells was similar in freshly-sorted fixed CD24br (8.94  

1.18%) and CD24dim (7.93  2.59%) subpopulations (p > 0.05) (Figure 4.15i).  Despite 

this, there was a significant 4-day difference in mean latency data for CD24br and 

CD24dim xenografts (Table 4.3).  Moreover, CD24br xenografts were more 

proliferative than CD24dim xenografts as indicated by more than 3-fold difference in 

rate of volume increase (Figure 4.15ii) which corresponded with a visible difference in 

harvested xenograft sizes (Figure 4.15iii) and mean adjusted MAI values (Figure 

4.15iv).  
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Figure 4.15:  In vivo growth properties of CD24 cells from xeno-B110.  i. Freshly-

sorted and fixed CD24br and CD24dim cells were analysed for their cell cycle 

distribution.  Another batch of freshly-sorted CD24br and CD24dim cells were 

inoculated into NSG mice and monitored for 69 days.  ii. Growth curves of CD24br and 

CD24dim xenografts, iii. image of the harvested xenografts on day 69 and iv. mean 

adjusted MAI per group between CD24br and CD24dim xenografts.  Results of cell 

cycle profile, mean ± SD of 3 flow cytometry experiment replicates. Results of growth 

curve, mean ± SEM of 4 or 5 xenograft replicates. m, rate of volume increase. X, mouse 

died immediately after inoculation. 

                                                                                                                   

On the other hand, CD44br cells contained 13.26  1.56% of S-phase cells compared 

to 4.41  0.47% in CD44dim cells (p < 0.01) (Figure 4.16i).  As described earlier, there 

was a significant difference of mean latency between CD44br and CD44dim xenografts 

X 

CD24br 

CD24dim 

i. ii. 

iii. iv. 
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(6.4 days; p = 0.03) (Table 4.3).    CD44br cells produced faster-growing (more than 4-

fold difference in rate of volume increase) (Figure 4.16ii) and larger xenografts (Figure 

4.16iii) than CD44dim cells in NSG.   Similar to C666-1 xenografts, a higher presence 

of necrosis and/or stroma was observed in CD44br xenografts as compared to CD44dim 

xenografts (p < 0.0001) (Figure 4.16) which may be caused by a relatively higher 

proliferation rate (m = 38.27) than the other xenografts.  The mean adjusted MAI for 

CD44br xenografts was higher than the mean adjusted MAI for CD44dim xenografts (p 

> 0.05) (Figure 4.16iv).         
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Figure 4.16:  In vivo growth properties of CD44 cells from xeno-B110.  i. Freshly-

sorted and fixed CD44br and CD44dim cells were analysed for their cell cycle 

distribution.  Another batch of freshly-sorted CD44br and CD44dim cells were 

inoculated into NSG mice and monitored for 69 days.  ii. Growth curves of CD44br and 

CD44dim xenografts, iii. image of the harvested xenografts on day 69 and iv. mean 

adjusted MAI per group between CD44br and CD44dim xenografts.  Results of cell 

cycle profile, mean ± SD of 4 flow cytometry experiment replicates.  Results of growth 

curve, mean ± SEM of 5 xenograft replicates. m, rate of volume increase. ** p < 0.01 (S-

phase) 
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Figure 4.17:  Presence of necrosis and/or stroma in analysed high power fields (HPFs) 

of FFPE sections of marker-selected cell-induced xeno-B110 xenografts.  Many marker-

selected cell-induced xeno-B110 xenografts contained varying presence of necrosis 

and/or stroma, except for CD24br, CD24dim and CD44dim xenografts.  Results, mean 

(n = 4 or 5 xenografts per phenotype with 7 to 10 HPFs per xenograft).   **** p < 

0.0001 

 

Akin to CD44br cells, EpCAMbr cells had significantly higher presence of S-phase 

cells (12.43  2.77%) as compared to EpCAMdim cells (5.06  0.33%) (p = 0.01) 

(Figure 4.18i).  EpCAMbr xenografts also formed tumours much earlier with a 

significant 8.6-day difference (Table 4.3) and grew at a faster volume increase rate 

(Figure 4.18ii) which correlated with a higher mean adjusted MAI (Figure 4.18iv) than 

EpCAMdim xenografts. 
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Figure 4.18:  In vivo growth properties of EpCAM cells from xeno-B110.  i. Freshly-

sorted and fixed EpCAMbr and EpCAMdim cells were analysed for their cell cycle 

distribution.  Another batch of freshly-sorted EpCAMbr and EpCAMdim cells were 

inoculated into NSG mice and monitored for 69 days.  ii. Growth curves of EpCAMbr 

and EpCAMdim xenografts, iii. image of the harvested xenografts on day 69 and iv. 

mean adjusted MAI per group between EpCAMbr and EpCAMdim xenografts.  Results 

of cell cycle profile, mean ± SD of 4 flow cytometry experiment replicates.    Results of 

growth curve, mean ± SEM of 5 xenograft replicates. m, rate of volume increase. * p < 

0.05 (S-phase) 

 

 

 

i. ii. 

EpCAMbr 

EpCAMdim 
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S-phase cell distribution within the EpCAM/CD44 group was alike CD44 group and 

EpCAM group (Figure 4.19i).  EpCAM/CD44dbr cells had 14.77  4.15% of S-phase 

cells whereas there was 3.22  0.47% of such cells in EpCAM/CD44ddim (p = 0.04).  

There was a significant 8.8-day difference in mean latency data between the double 

bright and double dim cells (Table 4.3).  The growth curves of EpCAM/CD44dbr and 

EpCAM/CD44ddim xenografts also showed a very obvious difference in the rate of 

volume increase (Figure 4.18ii) which was seen in the sizes of harvested xenografts 

(Figure 4.18iii).  These differences were not reflected in the mean adjusted MAI 

between EpCAM/CD44dbr (16.92  2.42) and EpCAM/CD44ddim (16.32  2.67) 

xenografts (p > 0.05) (Figure 4.19iv).  Together, the cell cycle and in vivo growth data 

showed that EpCAM/CD44dbr marker did not identify for a substantial increase of 

tumourigenic cells than CD44br or EpCAMbr marker alone. 
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Figure 4.19:  In vivo growth properties of EpCAM/CD44 cells from xeno-B110.           

i. Freshly-sorted and fixed EpCAM/CD44dbr and EpCAM/CD44ddim cells were 

analysed for their cell cycle distribution.  Another batch of freshly-sorted 

EpCAM/CD44dbr and EpCAM/CD44ddim cells were inoculated into NSG mice and 

monitored for 69 days.  ii. Growth curves of EpCAM/CD44dbr and EpCAM/CD44ddim 

xenografts, iii. image of the harvested xenografts on day 69 and iv. mean adjusted MAI 

per group between EpCAM/CD44dbr and EpCAM/CD44ddim xenografts.  Results of 

cell cycle profile, mean ± SD of 3 flow cytometry experiment replicates.  Results of 

growth curve, mean ± SEM of 5 xenograft replicates. m, rate of volume increase. * p < 

0.05 (S-phase) 
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Overall, growth-related experiments assayed using xeno-B110 cells showed larger 

differences than C666-1 data.  There are also numerous publications which 

demonstrated the advantages of using early-passage PDXs over long passaged cell lines 

in cancer studies (Chapters 4.2 and 4.6).  Hence, subsequent characterization 

experiments were performed using xeno-B110 only. 

4.5.4 In vitro growth of marker-selected xeno-B110 cells 

Previous attempts to grow bulk/parental (no marker selection) xenograft cells from 

two other NPC PDXs C15 or C17 in vitro, either for short or long term, had been 

unsuccessful.  Xeno-B110 cells transduced with green fluorescent (gfp) and luciferase 

(luc2) proteins, previously established for a separate project, were then used in this 

experiment to accurately determine in vitro growth ability of marker-selected xenograft 

cells.  EpCAM-selected cells from this xenograft were employed as a study model.   

Figure 4.20 describes the gating strategy used to sort for single, viable non-mouse 

GFP positive EpCAMbr and EpCAMdim cells.  After removal of non-viable and non-

mouse cells, the remaining cells (“COI” as named in the statistics box in Figure 4.20) 

were analysed for GFP and EpCAM expressions.  EpCAMbr and EpCAMdim cells 

were sorted from the brighter GFP subpopulation.   

Non-mouse (“mouse depleted”) xeno-B110-gfp-luc2 cells were used as a growth 

control for the in vitro experiment (Figure 4.21).  EpCAMbr, EpCAMdim and non-

mouse xenograft cells showed positive growth during the first week of culture (up to 

day 6), with EpCAMbr cells having the fastest growth rate, followed by EpCAMdim 

and non-mouse cells.  However, all xenograft cells were unable to sustain their growth 

under artificial conditions in the second week (after day 6).  By day 11, luminescence 

levels for all three phenotypes had fallen to nearly the baseline level of day 0.     
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Figure 4.20:  Flow cytometry dot plots detailing the gating strategy employed for 

sorting EpCAMbr and EpCAMdim cells from xeno-B110-gfp-luc2.  Xeno-B110-gfp-

luc2 cells were stained with H2Kd antibody conjugated to PE, EpCAM antibody 

conjugated to APC and viability dye DAPI and subsequently analysed in a hierarchical 

manner as depicted in the statistics box.  Single, viable, non-mouse GFP positive 

EpCAMbr and EpCAMdim cells were collected for the in vitro growth experiment.    

  

 

 

  

Figure 4.21:  In vitro growth curves of non-mouse cells, EpCAMbr cells and 

EpCAMdim cells from xeno-B110-gfp-luc2.  Non-mouse (“mouse depleted cells”) and 

EpCAMbr and EpCAMdim cells were depleted or sorted from xeno-B110-gfp-luc2, 

respectively.  The cells were seeded in complete medium and luminescence reading was 

taken after the addition of 2X D-Luciferin at different time points as shown above.  

Results, mean  SEM of triplicate wells per phenotype from 1 representative sorting 

experiment. 

 

br 

dim 
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4.5.5 Enrichment of tumour-initiating cells (TICs) by CD24, CD44 and EpCAM 

in the first generation of xeno-B110 

Table 4.4 shows the results of a limiting dilution assay performed on CD24, CD44, 

EpCAM and EpCAM/CD44-selected cells from xeno-B110 from the highest 

inoculation of 30,000 cells to the lowest inoculation of 10 cells.  It is observed that 

CD24br cells had approximately a 2-fold increase of TICs as compared to CD24dim 

cells (p >0.05).  CD44br cells were significantly 17.49-fold more enriched in TICs than 

CD44dim cells (p < 0.001). EpCAMbr cells had a 4.97-fold TIC enrichment over 

EpCAMdim cells (p = 0.01).  Significant TIC frequency enrichment was also seen in 

EpCAM/CD44dbr cells (8.25 folds; p < 0.01).  Nonetheless, it is noted that the 

enrichment fold of EpCAM/CD44dbr cells did not exceed that of CD44br cells. 

 



 

 

                 

 

Table 4.4:  Limiting dilution assay for CD24, CD44, EpCAM and EpCAM/CD44 cells from xeno-B110 (first generation). 

 

Cell 

inoculation 

Number of tumours/Number of inoculated mice 

H2Kd 

neg 

CD24 

br 

CD24 

dim 

CD44 

br 

CD44 

dim 

EpCAM 

br 

EpCAM 

dim 

EpCAM/

CD44dbr 

EpCAM/ 

CD44ddim 

xeno-B110 

30,000 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 

10,000 4/4 6/6 6/6 5/5 5/5 5/5 5/5 6/6 6/6 

5,000 5/6 5/5 6/6 4/4 4/4 6/6 6/6 5/5 5/5 

2,000 ND 5/5 4/4 5/5 3/5 5/5 4/5 5/5 5/5 

500 3/3 3/3 3/3 3/3 3/3 3/3 2/3 3/3 2/3 

100 2/6 2/6 1/6 5/6 1/6 3/6 2/6 5/6 1/6 

10 0/6 1/6 0/6 2/6 2/6 0/6 0/6 1/6 0/6 

Estimated 

TIC 
frequency            

(CI) 

 1 in 1177 

(393-
3526) 

1 in 159 

(63-404) 

1 in 285 

(108-754) 

1 in 45 

(18-110) 

1 in 787 

(333-
1859) 

1 in 147 

(58-373) 

1 in 730 

(308-
1728) 

1 in 56    

(23-135) 

1 in 462 

(181-1181) 

p value 
  

0.42 < 0.001 0.01 < 0.01 

Enrichment 

factor 
  1.79 17.49 4.97 8.25 

ND, not determined 

1
4

1
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4.5.6 Self-renewal property of CD24, CD44 and EpCAM marker-selected cells 

from xeno-B110 

As CSCs are defined primarily by their ability to propagate long term, an in vivo 

serial transplantation experiment was performed using CD24, CD44 and EpCAM cells 

from xeno-B110 for three successive passages (up to the fourth generation).  All groups 

of xenografts were re-sorted for respective phenotype of cells prior to re-inoculation 

into recipient NSG mice as secondary/tertiary/quartenary xenografts.  Table 4.5 shows 

the TIC frequencies for all three markers at the fourth generation.  All phenotypes 

(bright and dim from all markers) could self-renew by growing up to fourth generation 

although with different TIC frequencies.  The histology of parental xeno-B110 cells was 

recapitulated throughout the four generations of xenografts (Figure 4.22).   

 

Table 4.5:  TIC frequency of CD24, CD44 and EpCAM cells from xeno-B110 (fourth 

generation). 

 

Cell 

inoculation 

Number of tumours/Number of inoculated mice 

CD24 CD44 EpCAM 

br dim br dim br dim 

xeno-B110 

500 3/3 1/3 3/3 2/3 3/3 2/3 

100 5/6 2/6 4/6 1/5 4/6 1/6 

10 1/6 0/6 2/6 0/6 0/6 0/6 

Estimated 

TIC 

frequency  

(CI) 

 
1 in 

56  

(23 – 

135) 

1 in 

591 

(177 – 

1971) 

1 in   

67    

(27 – 

163) 

1 in 

474 

(149 – 

1511) 

1 in 

104 

(42 – 

261) 

1 in 

509 

(162 – 

1605) 

p value 
 

< 0.01 < 0.01 0.03 
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Figure 4.22:  Representative H&E images of resulting xenografts from xeno-B110 

CD24br and CD24dim cells (1st generation) and subsequent serially-passaged 

generations.  CD24br and CD24dim cells from xeno-B110 were inoculated into 

recipient NSG mice and gave rise to the first generation of xenografts.  The harvested 

CD24br xenografts were stained and re-sorted for CD24br cells prior to inoculation into 

NSG which formed the second generation.  Serial passaging was thus continuously 

performed until the fourth generation for both cell phenotypes.  All generations 

displayed similar histology of non-keratinizing differentiated NPC as the parental xeno-

B110.  (20X objective; scale bar 100 m). 
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4.5.7 Relative quantification of cell cycle, proliferation, pluripotency and 

stemness-related genes in CD24, CD44, EpCAM and EpCAM/CD44 

marker-selected cells from xeno-B110 

The expression levels of 25 genes were measured in freshly-sorted marker-selected 

xeno-B110 cells (Appendix E).  Seventeen assays (three reference genes, three genes 

coding for CSC markers used in this study and 11 genes associated with cell cycle, 

proliferation, pluripotency and stemness) passed quality control assessment while the 

remaining eight assays had poor PCR efficiency and/or showed no or nonlinear 

amplification.  Dot plots showing the fold changes of 14 genes of interest for CD24, 

CD44, EpCAM and EpCAM/CD44-selected cells which passed quality control 

assessment are shown in Appendix F.   

Although xeno-B110 is EBV positive as evident by positive EBER-ISH staining 

(Figure 4.14iii), LMP1 and LMP2A mRNA transcripts from EBV were below the 

detection limit of the experiment (Appendix E).  As expected, there was a more than 2-

fold difference of CD24 mRNA transcript between CD24br and CD24dim cells (Figure 

4.23i).  Similarly, EPCAM level was more than 2-fold enriched in EpCAMbr cells than 

EpCAMdim cells (Figure 4.23ii).  The expression level of CD44 was only slightly 

increased in CD44br cells as compared to CD44dim cells (Figure 4.23iii).          
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Figure 4.23:  Gene expression levels of CD24, EPCAM and CD44 in CD24br, CD44br, 

EpCAMbr and EpCAM/CD44dbr cells from xeno-B110.  Fold changes of CD24, 

EPCAM and CD44genes were calculated as ratio of normalized gene expression of 

bright (dbright) cells to normalized gene expression of dim (ddim) cells of each marker.  

Results, mean SD of 2 or 3 sorted cell sample replicates.  

i. 

ii. 

iii. 
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Pluripotency gene, KLF4 was significantly downregulated in CD24br (p = 0.02) and 

EpCAMbr cells (p < 0.01) compared to their respective dim phenotype (Figure 4.24i).  

EpCAM/CD44dbr cells also showed a downregulation trend for KLF4 transcript (p > 

0.05).  CDKN1A, a cell cycle inhibitor as well as a transcriptional target of KLF4 

protein was also downregulated in the bright phenotypes of EpCAM and EpCAM/CD44 

(p > 0.05) (Figure 4.24ii).  VIM, a marker for epithelial-mesenchymal transition (EMT), 

was moderately upregulated in CD24br cells (p > 0.05) (Figure 4.24iii).      

Cell cycle regulators were also deregulated in the freshly-sorted marker-selected 

xeno-B110 cells.  CCND1 transcript was significantly downregulated in EpCAMbr cells 

(p = 0.02) (Figure 4.25i).  There were more than 6 folds of CCNE1 transcript in 

EpCAM/CD44dbr cells than EpCAM/CD44ddim cells (p > 0.05) (Figure 4.25ii).  

Higher MKI67 transcript level was seen in CD44br cells than in CD44 dim cells (p = 

0.03) which was also observed in EpCAM/CD44dbr cells as compared to 

EpCAM/CD44ddim cells (p > 0.05); however, it was downregulated more than 1.5 

folds in CD24br cells (p < 0.01) (Figure 4.25iii).   
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Figure 4.24:  Gene expression levels of KLF4, CDKN1A and VIM in CD24br, CD44br, 

EpCAMbr and EpCAM/CD44dbr cells from xeno-B110.  Fold changes of KLF4, 

CDKN1A and VIM genes were calculated as ratio of normalized gene expression of 

bright (dbright) cells to normalized gene expression of dim (ddim) cells of each marker.  

Results, mean SD of 2 or 3 sorted cell sample replicates.  

* p < 0.05, ** p < 0.01 

i. 

ii. 

iii. 
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Figure 4.25:  Gene expression levels of CCND1, CCNE1 and MKI67 in CD24br, 

CD44br, EpCAMbr and EpCAM/CD44dbr cells from xeno-B110.  Fold changes of 

CCND1, CCNE1 and MKI67 genes were calculated as ratio of normalized gene 

expression of bright (dbright) cells to normalized gene expression of dim (ddim) cells of 

each marker.  Results, mean SD of 2 or 3 sorted cell sample replicates.  * p < 0.05 

ii. 

iii. 

i. 
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4.6 Discussion 

This study attempts to illustrate the biological properties of NPC cells identified by 

three CSC markers concurrently using the same samples, namely CD24, CD44 and 

EpCAM which are widely reported markers for isolation of tumourigenic cells (Al-Hajj 

et al., 2003; Han et al., 2011; Hiraga et al., 2016; Prince et al., 2007; Visvader & 

Lindeman, 2012).  Firstly, CD44br and EpCAMbr cells from both C666-1 and xeno-

B110 consistently enriched for faster-growing tumourigenic cells, resulting in larger 

tumour growth.  More notable growth differences within a group, regardless of markers, 

were seen in xeno-B110 cells.  Secondly, higher TIC frequencies were observed in 

CD44br and EpCAMbr cells of xeno-B110 within the first generation of marker-

induced growth.  Thirdly, cells co-stained with a combination of CD44br and EpCAMbr 

markers (“EpCAM/CD44dbr marker”) did not show additional enhancement of in vivo 

growth or had higher TIC frequency than cells stained with CD44br marker alone.  

Fourthly, CD24br, CD44br and EpCAMbr cells of xeno-B110 displayed self-renewal 

ability throughout three successive serial transplantation passages.  Finally, there was an 

inverse relationship between in vivo tumour growth and the expression of KLF4 gene, 

i.e. CD24br, CD44br, EpCAMbr and EpCAM/CD44dbr cells of xeno-B110 consistently 

induced larger tumour growth than their respective dim phenotypes with downregulated 

KLF4 transcripts in the CD24br, EpCAMbr and EpCAM/CD44dbr cells.    

Immunophenotyping of CD24 and CD44 in NPC had been performed in HK1 and 

C666-1 cell lines.  Yang et al. (2014b) reported there were 0.86% of CD24 positive and 

16.30% of CD44 positive cells in HK1, whereas there were 5 to 45% of CD44 positive 

cells in C666-1 as published in two independent studies (Janisiewicz et al., 2012; Lun et 

al., 2012).  This study found that regardless of C666-1 maintained and propagated as a 

cell line or a xenograft, CD24 was barely detected.  Also, there were slightly more than 

60% of CD24 positive and nearly 100% of CD44 positive cells in HK1, and more than 
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90% of CD44 positive cells in C666-1.  The variations in CD24 and CD44 expression 

levels in HK1 and C666-1 are believed to have arisen from technical differences such as 

culture conditions, the type of enzyme and the length of incubation used during 

detachment of the adherent cell lines as well as gating strategies used to derive the 

reported percentage of positive cells (Golebiewska et al., 2011; Greve et al., 2012; Khan 

et al., 2015).  The overall high expression levels of CD24, CD44 and EpCAM presented 

in Figure 4.5 cannot be equated to bona fide presence of NPC cells with stemness 

properties in these samples without further empirical experiments, as can be clearly seen 

in the later part of this study.  Numerous CSC meetings and review papers have pointed 

out that CSCs cannot be identified by mere phenotypic descriptions of presence/absence 

or high/low level of markers; they must be functionally defined by key abilities to self-

renew, differentiate and induce tumours (Clarke et al., 2006; Dashzeveg et al., 2017; 

Valent et al., 2012).     

An earlier study using C666-1 reported that the minimum number of unselected 

parental C666-1 cells able to initiate tumour growth in nude athymic mice was 500,000 

cells (83%; 5/6 with latency of 28 days) (Lun et al., 2012).  This study found that as few 

as 2,000 cells of C666-1 could form tumours in vivo (100%; 5/5 with latency of 42 

days).  There are two major differences between both these studies which attributed to 

the data disparity: 1) cell sorting technique was used to select for single viable parental 

C666-1 cells prior to inoculation in this study as compared to Lun et al.’s use of 

unselected C666-1 cells, and 2) NSG mice were used in this study as compared to 

inoculation into nude mice strain in Lun and colleagues’ study.  

Faced with an inherent lack of fresh NPC specimens and when available, limited 

NPC tissue size, most NPC investigations were and are still performed using NPC cell 

lines and/or archival NPC tissue sections.  As pointed by Fernando et al. (2006) and 
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Cree et al. (2010), there are several disadvantages with using cancer cell lines.  Cancer 

cell lines are grown in plastic dishes with serum or other growth factor supplements to 

enable them to survive in an artificial environment, unlike cancer cells which are 

naturally capable of independent growth with reduced attachment to substrate and other 

cells. Also, the former exhibit uniformity as they are largely consisting of a 

homogeneous population of rapidly-proliferating cells after numerous passaging cycles 

often in serum-supplemented media.  On the other hand, a high level of concordance 

between PDXs (passages 6 to 12) and the corresponding patient’s tumour was verified 

in a large scale PDX study on colorectal cancer (Julien et al., 2012).  Their finding of a 

high genomic stability within the first 10 generations of PDXs was also shared by an 

evaluation of esophageal and gastro-esophageal junction cancer PDXs (Dodbiba et al., 

2015).  A recent comparative study on molecular similarities of patient tumours, PDXs 

and cancer cell lines reported highly similar differentially expressed genes between 

patient tumours and PDXs, in contrast to cancer cell lines which had much poorer 

expression similarity to patient tumours and PDXs (Guo et al., 2016).  The relevance of 

PDX model as a surrogate for freshly-isolated cancer cells is reflected in the increasing 

numbers of publications, especially in CSC studies, which used freshly-isolated cancer 

cells and/or early-passage PDXs to obtain salient information, instead of solely deriving 

their data from cancer cell lines (Facompre et al., 2016; Guo et al., 2016; Samaeekia et 

al., 2017).  In view of these evidences, early-passage PDX cells (i.e. passages 5 to 9) 

were used throughout this study. 

The high in vivo growth seen in parental xeno-B110 cells (Table 4.2) may be 

attributed to the probability of xeno-B110 itself being highly tumourigenic and also to 

the use of NSG mice in this study.  NSG mice are mutated in the severe combined 

immune deficiency (scid) gene and have a complete null allele of the IL2 receptor 

common gamma chain (IL2rg
null

).  Both mutations caused the mice to be deficient in 
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mature lymphocytes (B and T cells) and NK cells (Shultz et al., 2005).  In addition, they 

are reported to have a median survival time of more than 89 weeks and were “non-

leaky” at more than 1 year of age, both of which are crucial determinants for long term 

in vivo experiments.  NSG mice can also provide highly efficient engraftment of 

exogenous cells as demonstrated by the seminal work of Quintana et al.  (2008).  The 

use of BD Matrigel basement membrane matrix extracted from the Engelbreth-Holm-

Swarm mouse sarcoma as a co-inoculation agent in this study may have also improved 

tumour formation from as low as 100 cells.  The ability of such low cell numbers to 

initiate tumours has been reported elsewhere.  A 5-cell inoculation of melanoma cells 

mixed with Matrigel and injected into NSG mice had a tumour formation efficiency of 

39% (7/18) (Quintana et al., 2008).  One hundred cells each of Matrigel-mixed CD44
+
 

subpopulation and triple positive subpopulation of CD44/CD24/ESA combination from 

pancreatic cancer PDX formed tumours at an efficiency of 25% (4/16) and 50% (6/12), 

respectively (Li et al., 2007).    

Biological differences in marker-selected cells were largely reflected in the growth 

and self-renewal data of this study. Compared to CD44br, EpCAMbr and 

EpCAM/CD44dbr, CD24br cells in xeno-B110 were not enriched with proliferative 

cells and had decreased expression for proliferation marker MKI67.  Nonetheless, TIC 

frequency at the final serial transplantation cycle in vivo at the fourth generation 

signified that CD24br cells were enriched with TICs and could sustain long term self-

renewal.  KLF4 transcript was previously reported to be inversely correlated with 

epithelial-mesenchymal transition (EMT) SLUG transcript in hepatocellular carcinoma 

(Lin et al., 2012).  In this study, gene expression analysis of CD24br cells showed a 

lower presence of KLF4 transcript with an upregulated VIM expression, another EMT 

marker.  The interconnection of EMT, stem-like and tumour initiation had been 

highlighted before.  Twist- or Snail-expressing non-tumourigenic human mammary 
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epithelial cells underwent EMT and generated progenies which managed to form 

mammospheres and tumours more efficiently (Mani et al., 2008).  As such, self-

renewing and EMT marker-expressing xeno-B110 CD24br cells could be CSC-like.   

The abilities of CD24
+
 cells to induce tumours and to form passageable spheres had 

been shown to be related to STAT3-mediated upregulation of NANOG expression in a 

study using chemoresistant hepatocellular carcinoma PDXs (Lee et al., 2011).  CD24 as 

a potential CSC marker for NPC has received lesser attention than CD44.  CD24
+
 

enriched for only stem-like properties in NPC cell lines TW02 and TW04 as CSC 

functionality i.e. in vivo self-renewal was not verified (Yang et al., 2014b).  

CD44
high

CD24
high

 cells from three NPC cell lines (TW01, TW06 and HONE1) 

displayed stem-like and EMT phenotypes as compared to parental unsorted cells (Shen 

et al., 2016).  Upon knockdown of both CD44 and CD24 in the cells, sphere formation, 

chemoradioresistance, wound healing and invasion properties were suppressed.  

Overexpression of CD44 and CD24 in the NPC cell lines, which restored the CSC-like 

features, was found to be related to the activation of STAT3.  Conversely, CD24
low

 and 

CD44
high

 LMP1-transfected nasopharyngeal epithelial cells produced spheres in vitro, 

an attribute associated with stemness (Kondo et al., 2011).  As the above studies made 

use of cell lines with unknown authenticity, it is suggested that CD24br cells from 

ideally fresh NPC specimens or early-passage NPC PDXs to be evaluated for tumour 

initiation as well as in vivo self-renewal ability in more serial transplantation passages.  

This is to demonstrate with more conviction whether firstly, CD24 is a CSC marker for 

NPC and secondly, it is a better CSC marker than the currently regarded CD44 for NPC 

(Yang et al., 2014a).          

CD44 is amongst the most investigated CSC markers in NPC (Lun et al., 2014); 

nonetheless, it was largely examined in NPC cell lines such as C666-1, SUNE-1 and 
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CNE-1 (Lun et al., 2012; Su et al., 2011; Yang et al., 2014a).  The most striking 

differences between this study and current published reports are the use of an early-

passage NPC PDX as a study model, and the verification of self-renewal ability, central 

to (cancer) stem cell’s definition, using serial transplantation experiment following the 

recommendations of AACR Workshop on CSCs (Clarke et al., 2006), instead of using 

spheroid or colony-forming assays (Fillmore & Kuperwasser, 2008; Xu et al., 2015; 

Yang et al., 2014a).  Tumour initiation and in vivo growth data from CD44 xenografts 

of C666-1 and xeno-B110 concurred with prior studies.  CD44br cells were also 

proliferative in nature consistent with remarkably high S-phase cell content and 

increased MKI67 mRNA transcripts.  Additionally, they were able to self-renew in vivo 

for at least three passages.   

Although this study did not find differential BMI1 expression between CD44br and 

CD44dim cells in xeno-B110 (Appendix F), tumourigenicity ability of CD44
+
 cells had 

been attributed to the functionality of self-renewal marker BMI-1 (Xu et al., 2016b).  

Upon inoculation into nude mice, only CD44
+
 cells from SUNE-1 5-8F had tumour 

formation (4/4) whereas CD44
-
 and BMI-1-knockdown CD44

+
 cells did not form any 

growth (0/4 for both groups).  Two drawbacks of Xu and colleagues’ report are the use 

of SUNE-1 5-8F cells with unknown authenticity, and the relatively short observation 

period of four weeks for a CSC in vivo study.  Tumour generation in vivo generally 

takes longer to occur as reported by Quintana et al. (2008) who found that most human 

melanoma cell-induced xenografts in NOD/SCID developed after eight weeks of 

inoculation.  Parental and marker-selected C666-1 cells, and non-mouse and marker-

selected xeno-B110 cells in this study recorded mean latency of more than 35 and 60 

days, respectively.  Therefore, the possibility of underestimating no-xenograft growth 

effect of BMI-1-knockdown CD44
+
 cells remains.  Nonetheless, there was a 
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concurrence of in vivo data between the study by Xu and colleagues and this study, i.e. 

CD44
+
 or CD44br marker enriched for TIC in NPC.   

EpCAM has been in use as a CSC marker in breast, colon and pancreatic cancers 

since 2000s (Gires et al., 2009).  Clinically, high expression of EpCAM was also 

notably associated with higher gastric carcinoma cell proliferation and disease 

progression (Kroepil et al., 2013).  Concurring with these studies, EpCAMbr marker in 

xeno-B110 identified for fast-growing as well as serial-transplantable cells with stable 

TIC frequency at both first and fourth generations.  In a study to evaluate the functions 

of -catenin in stemness maintenance and tumourigenicity of NPC (Jiang et al., 2016),  

stable suppression of -catenin in a CNE-2 cell line (“pLKO.1-sh--catenin-CNE2”) led 

to reduction of EpCAM, vimentin, NANOG and SOX2 proteins in addition to SP cells.  

Amongst other findings, pLKO.1-sh--catenin-CNE2 cells were shown to contain lower 

percentage of S-phase cells and higher E-cadherin expression with arising tumours also 

significantly smaller than those of control and parental cells.  Association of lower 

EpCAM level with fewer cells in S-phase as well as smaller and slower proliferating 

tumours in vivo are also seen in this study.   

The role and links of EpCAM to cell proliferation were extensively investigated by 

Gires’s group.  EpCAM was proven to have directly induced proliferation by 

upregulating expression of MYC at both mRNA and protein levels as well as cyclin A 

and cyclin E proteins (Münz et al., 2004).  EpCAMbr cells of xeno-B110 functionally 

showed a positive relationship with proliferation (i.e. faster xenograft growth and higher 

percentage of S-phase cells) although upregulation of CCNE1 and MYC transcripts were 

not observed.  This suggested that either upregulation of cyclin E and c-myc proteins in 

NPC cells is at the post-transcriptional level or proliferation in EpCAMbr NPC 
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xenografts may be via a different mechanism other than the involvement of cyclin E and 

c-myc.                   

As EpCAMbr cells and CD44br cells of xeno-B110 independently appeared to have 

the highest proliferation and TIC enrichment in the first generation of CSC marker-

induced xenografts in this study, it was hypothesized that the combination of 

EpCAM/CD44dbr marker would identify for cells which were even more proliferative 

and/or enriching for TICs than these single markers.  However, there was no difference 

in the proliferation of EpCAM/CD44dbr xenografts as compared with CD44br and 

EpCAMbr xenografts.  Although TIC frequency of EpCAM/CD44dbr xenografts in the 

first generation was higher than that of EpCAMbr marker, it was comparable to CD44br 

marker.  The failure of EpCAM/CD44dbr marker in this study to outperform CD44br 

marker in further enriching for proliferative cells or cells with higher TIC frequency 

may indicate that CD44 individually exerted a stronger influence than EpCAM in 

tumour growth. 

Absent or weak LMP1 expression in NPC tumours had been reported elsewhere (Bell 

et al., 2006; Lo, 2016).  The expression of LMP2A was inconsistent from Ct 22 to Ct 

999 (undetected) in the replicates of marker-selected xeno-B110 which led to a mean 

calculation of high Ct values in each marker.  However, in the concurrently run of 

pooled RNA positive control comprising of C666-1, HK1, HONE1, B95.8, SW480, 

Namalwa and MDA231, LMP1 transcript was detected with a mean Ct of 12.34 to 

17.90 and LMP2A was also similarly detected with a mean Ct of 15.65 to 21.60.  Hence, 

the overall low expression of both latent genes (“beyond the detection limit” of qPCR 

platform) in marker-selected xeno-B110 cells may be attributed to heterogeneous 

expression of the LMPs in xeno-B110 as seen in Figure 4.14iii.  Sequences for both 

LMP1 and LMP2A assays (primers) had been reported in Wasil et al. (2013).   
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There are a few lines of evidence in this study which imply that KLF4 is anti-

proliferation in xeno-B110.  Bright phenotypes of CD24, CD44, EpCAM and 

EpCAM/CD44 caused larger xenograft growth, were more actively proliferating and 

had higher percentages of S-phase cells.  CD24br, EpCAMbr and EpCAM/CD44dbr 

cells also expressed decreased KLF4 transcripts than their respective dim cells, and 

CDKN1A, a target gene of KLF4, was also downregulated in EpCAMbr and 

EpCAM/CD44dbr cells.  The data are in concordance with others.  Overexpression of 

KLF4 in a mouse mammary tumour xenograft resulted in limited tumour formation 

(Yori et al., 2011).  Liu et al. (2013) found that KLF4 mRNA level was lower in NPC 

specimens than normal nasopharyngeal tissues, and NPC patients with larger tumours 

had slightly decreased KLF4 level than those with smaller tumours.  In pancreatic 

cancer, KLF4 knock-out mice grew larger tumours than mice with wild type KLF4 (Yan 

et al., 2016).  The inverse relationship between KLF4 level and cell proliferation is 

consistent with the report of KLF4 engaging p53 to activate the transcription of 

CDKN1A gene which encodes p21 (also known as WAF1 or CIP1), in turn leading to 

cell cycle arrest (McConnell & Yang, 2010).       

4.7 Conclusion 

This study has demonstrated that CD44br and EpCAMbr cells were fast-growing and 

more tumourigenic than their respective dim phenotype with resulting larger tumour 

growth in frequently used NPC cell line C666-1 and in early-passage NPC PDX xeno-

B110.  The combination of CD44br and EpCAMbr markers, however, did not further 

enrich for more fast-growing or tumourigenic cells.  Larger growth differences were 

observed in xeno-B110 than in C666-1 marker-selected cells.  CD24br, CD44br and 

EpCAMbr cells isolated from xeno-B110 were also enriched for TICs and they retained 

self-renewal property upon serial transplantation in vivo.  KLF4 was downregulated in 

CD24br, EpCAMbr and EpCAM/CD44dbr cells of xeno-B110.  With observational 
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data that KLF4 is anti-proliferation, this study provides preliminary evidence of an 

association between variations of KLF4 and tumourigenicity of NPC subpopulations 

identified by CD24, CD44 and EpCAM.     

 

                

   

 



 

159 

CHAPTER 5: GENERAL DISCUSSION AND CONCLUSION 

5.1 General discussion 

This study evaluated the use of two approaches (SP and CSC markers) to identify 

tumourigenic NPC cells in two NPC study models (cell line and PDX).  Using SP 

approach, both SP and NSP cells in HK1 cell line were similar in tumourigenic potential 

and TIC frequency, despite showing (significant) differences in in vitro growth-related 

experiments as well as gene expression data.  On the other hand, CSC markers (CD24, 

CD44 and EpCAM) were able to differentiate C666-1 cell line and xeno-B110 PDX 

into subpopulations of unequal tumourigenicity abilities as well as different TIC 

frequencies.  These in vivo growth differences were also reflected in cell cycle, mitotic 

activity and gene expression.  Although all subpopulations were able to induce tumour 

formation, contrasting self-renewal capabilities between bright and dim phenotypes of 

each marker surfaced during long term propagation.   

To date, there is no one single identification method or marker which is exclusively 

responsible for selecting tumourigenic cells from NPC cells.  The lack of a universal 

and “failproof” identification method or marker to identify tumourigenic cells within a 

malignancy has been reported elsewhere.  For example, Wu & Alman (2008) remarked 

that some cell lines lacking SP cells were equally capable of initiating tumours.  Certain 

CSC markers such as CD133 reportedly showed discordance in tumour formation 

ability within the same malignancy.  CD133 was first reported to be capable of 

distinguishing tumourigenic from non-tumourigenic brain tumour cells:  as few as 100 

CD133
+
 cells produced a tumour but not from 10

5
 CD133

-
 cells (Singh et al., 2004).  

Subsequent independent studies revealed equal tumourigenic activities in CD133
+
 and 

CD133
-
 brain tumour cells (Beier et al., 2007; Chen et al., 2010; Joo et al., 2008).       



 

160 

In discussing tumourigenesis, it would be remiss not to briefly mention of tumour 

heterogeneity and cell plasticity here although both topics are out of the scope of this 

study.  Tumour heterogeneity may be seen at both intra- and inter-tumour levels, 

whereby different subpopulations of tumour cells show distinctive morphology, growth 

as well as phenotype and genotype profiles (Jamal-Hanjani et al., 2015; Marusyk & 

Polyak, 2010).  Hence, different identification methods, verification experiments and 

subsequent comparison of data may be required to prove the existence of different 

tumour clones.  Cell plasticity, on the other hand, describes the ability of a cell to take 

on characteristics of another cell either in a uni- or bi-directional route (Meacham & 

Morrison, 2013).  When and if a cell shows plasticity, the transition between 

tumourigenic and non-tumourigenic cells and vice-versa will have a profound 

consequence on the outcome of an in vivo transplantation experiment as the experiment 

may no longer be able to distinguish between these two categories of cells. 

Although human tumourigenic cell and CSC are both defined functionally, 

preferably in animal models, there are some concerns regarding xenotransplantation.  

Firstly, most tumour cell transplantations are performed in immunocompromised mice 

which cause no or limited inflammation (van Staveren et al., 2009), as opposed to 

cancer-related inflammation (CRI) seen in patients (Colotta et al., 2009).  CRI which 

includes infiltration of white blood cells and other immune cells such as tumour-

associated macrophages and cytokines, is regarded as a key component of tumours.  

Secondly, the uptake and growth of implanted tumour cells or pieces are variable in 

mice and this may be due to a lack of or incompatible microenvironmental cues in 

mouse stroma (Williams et al., 2013).  To circumvent the lack of human stromal and 

haematopoietic components seen in immunocompromised mice, genetically engineered 

mouse models (GEMMs) are established; however, generation of GEMMs with more 

than one driver mutation necessary to drive efficient tumourigenesis are very tedious 
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and laborious (Williams et al., 2013).  Thirdly, processing of PDXs into single cell 

suspension prior to isolation of tumour cells can present a multitude of challenges.  

Commonly employed physical and enzymatic dissociation methods can be harmful to 

tumour cells if they are not first optimized in a pilot study.  Certain CSC markers such 

as CD8, CD24 and CD44 may be more sensitive to enzymes resulting in under-

representation in post-dissociation immunophenotyping (Autengruber et al., 2012; Quan 

et al., 2012).  This study did not verify the effects of Accutase and collagenase type II 

on surface marker expression.  However, independent comparative studies found that 

Accutase preserved the highest levels of CD24 and/or CD44 expression amongst the 

common types of cell detachment enzymes used in cell culture (Paebst et al., 2014; 

Quan et al., 2012).  Collagenase type II had also been used successfully to digest solid 

tumours for CD44 and ALDH expression studies (Lau et al., 2014; Wang et al., 2011).  

Besides, post-dissociated and sieved cell suspension contains cell aggregates and dead 

cells which will make analysis and/or separation of subpopulations difficult.  It is thus 

critical to ensure that stringent gating strategies be used to discriminate single viable 

cells from cell aggregates and dead or dying cells by flow cytometry techniques prior to 

analysis or cell sorting for downstream verification experiments. 

5.2 Study limitations 

This study has several limitations, namely: 

i. a dearth of fresh and sizable tissue specimens which are confirmed to be 

NPC for immediate processing into cell suspension prior to 

immunophenotyping analysis and/or cell sorting for downstream 

experiments.  All collaborating local hospitals within the vicinity of the 

laboratory do not offer surgery as a treatment regimen for NPC.  Instead, 

patients with confirmed NPC are sent for radiotherapy which offers a more 
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promising treatment outcome as NPC is highly radiosensitive (Chan, 2010; 

Chua et al., 2016). 

ii. as a result of the above, this study and most of previous studies on NPC 

elsewhere had to rely heavily on NPC cell lines as a study model for 

biological-based investigations.  Yet, ever since the findings of HeLa 

partial genomes present in and possible mistaken identities of several 

frequently used NPC cell lines (Chan et al., 2008; Strong et al., 2014), 

there remains only two verified commonly used NPC cell lines, namely 

HK1 (EBV negative) and C666-1 (EBV positive).   

iii. this study commenced with using SP approach to identify tumourigenic 

NPC cells in EBV negative samples (HK1 and xeno-284) as xeno-B110 

(EBV positive) was yet to be established.  C666-1 (EBV positive) could 

not be successfully analysed in FACSAria during the SP study, due to 

immense cell clumping and thereafter clogging of the sample line in the 

equipment.  Upon the publication of HK1 SP study in Cancer Cell 

International, xeno-B110 was established and successfully maintained in 

vivo.  Armed with better technical knowledge of sample preparation and an 

improved ability to use FACSAria for analysis and cell sorting of clumpy 

cells, biological properties of tumourigenic NPC cells were next examined 

using CSC marker approach in C666-1 and xeno-B110 samples as the 

majority of NPC cases are EBV positive.      

iii. with the exception of limiting dilution (TIC frequency) and serial 

transplantation assays, in vivo growth endpoint experiments were 

conducted for 50 days (SP approach with HK1 cells; Table 3.1), 52 days 

(CSC marker approach with C666-1 cells; Table 4.1) and 69 days (CSC 

marker approach with xeno-B110 cells; Table 4.3).  As the observation 
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period was kept short due to unequal tumour burden in the mice, there 

remains a small possibility of under-reporting in the growth data.   

v. one of the biological characteristics investigated in this study is self-

renewal ability for long term tumour propagation.  Preferably, this ability 

is examined in patient specimens or in study models as similar as possible 

to the former.  As discussed in Chapter 4, PDXs are the next-best study 

model for NPC due to insufficient fresh tissue specimens.  Although there 

are at least three other known NPC PDXs in addition to xeno-284 and 

xeno-B110 (i.e. C15, C17 and C18), the former had been established for 

more than two decades with numerous in vivo passages which made them 

unsuitable as a study model for self-renewal ability. 

vi. at the current stage of thesis-writing, xeno-B110 cells still cannot be 

adapted to grow well in vitro, as shown in Chapter 4.  With a logarithmic 

growth phase lasting for less than a week, it poses tremendous challenges 

for drug inhibition or gene modulation experiments to study and/or verify 

the effects of KLF4 and other genes of interest in tumourigenicity.   

vii. a certain level of heterogeneity in xeno-B110 was seen in the RT-qPCR 

data, in which there was at least one sorting replicate having a different 

expression level than the other replicates for a particular transcript 

(Appendix F).  The so-called outlier also differed from transcript to 

transcript.  Also, there was a lack of available xeno-B110 at the time of 

experiment which led to a minimal number of replicates in the RT-qPCR 

experiment. 

5.3 Future direction of study 

This study provides a proof-of-concept research which highlights the potential of 

CD24, CD44 and EpCAM as markers to identify tumourigenic NPC cell with stemness-
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related capabilities in a NPC PDX model.  In order to establish which marker amongst 

CD24, CD44 and EpCAM is a bona fide CSC marker for NPC cells, extensive in vivo 

serial transplantation beyond three successive passages of marker-selected NPC cells 

from additional early-passage NPC PDX models is warranted.  This is to rule out the 

possibility of CD24, CD44 or EpCAM being a marker for tumour progenitor cells, 

which are tumour cells with proliferative and dividing abilities in addition to short-term 

self-renewal propensity (Seaberg & Van Der Kooy, 2003).  Furthermore, it will be 

interesting to perform gene expression profiling of these marker-selected NPC cells at a 

single-cell level using more sensitive detection platforms such as RNA-seq in order to 

verify the degree of transcriptional heterogeneity in the malignancy.  The information 

will provide insights on transcript variation and regulation within and between different 

clones of NPC cells having differential expression of the markers for more in-depth 

mechanistic studies.  

5.4 Conclusion 

This study was carried out to characterize tumourigenic subpopulations of NPC cells 

isolated with SP and CSC marker approaches.  In the first part of the study, SP cells 

from HK1 cell line displayed more stem-like properties in vitro than NSP cells such as 

an increased formation of holoclones, ability to undergo asymmetric cell division and 

slower proliferation.  The former also expressed higher levels of ALDH activity and 

showed upregulation of genes from the Hedgehog, Notch, TGF and Wnt pathways as 

compared to NSP cells.  Yet, both SP and NSP cells showed similar tumour formation 

ability and TIC frequency.  CD24, CD44, EpCAM and EpCAM/CD44 markers were 

evaluated for their abilities to identify NPC tumourigenic cells in C666-1 cell line and 

xeno-B110 PDX in the second part of the study.  CD44br, EpCAMbr and 

EpCAM/CD44dbr cells of C666-1 and xeno-B110 cells identified for faster-growing 

cells with higher tumourigenic potential and TIC frequency in vivo than their respective 
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dim phenotype.  Subsequent work found that the faster-growing tumourigenic CD44br, 

EpCAMbr and EpCAM/CD44dbr cells of xeno-B110 had higher percentage of S-phase 

cells and mitotic activity than CD44dim, EpCAMdim and EpCAM/CD44ddim cells, 

respectively.  However, EpCAM/CD44dbr marker was unable to further enrich for 

faster-growing tumourigenic cells than single CD44br marker.  CD24br, CD44br and 

EpCAMbr markers could also isolate for self-renewing NPC cells with different 

efficiencies.  KLF4 transcript was downregulated in CD24br, EpCAMbr and 

EpCAM/CD44dbr cells which had also induced larger tumour growth, indicating an 

anti-proliferation role for KLF4 in NPC.   

Overall, higher degree of and more convincing differential biological properties were 

obtained from the use of early-passage PDX samples rather than from long established 

cell lines in this study.  Also, cellular stemness properties need to be ascertained 

functionally and thoroughly, instead of deriving only from phenotypic characterisation.  

The potential utility of CSC surface markers for disease prognosis in clinical settings is 

much more warranted than SP technique in terms of ease of application, shorter 

turnaround time and practicality. 
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APPENDICES 

Appendix A:  List of genes in RT² Profiler™ PCR Array Human Stem Cell 

Gene symbol Description 

ABCG2 ATP-binding cassette, sub-family G (WHITE), member 2 

ACAN Aggrecan 

ACTC1 Actin, alpha, cardiac muscle 1 

ADAR Adenosine deaminase, RNA-specific 

ALDH1A1 Aldehyde dehydrogenase 1 family, member A1 

ALDH2 Aldehyde dehydrogenase 2 family (mitochondrial) 

ALPI Alkaline phosphatase, intestinal 

APC Adenomatous polyposis coli 

ASCL2 Achaete-scute complex homolog 2 (Drosophila) 

AXIN1 Axin 1 

BGLAP Bone gamma-carboxyglutamate (gla) protein 

BMP1 Bone morphogenetic protein 1 

BMP2 Bone morphogenetic protein 2 

BMP3 Bone morphogenetic protein 3 

BTRC Beta-transducin repeat containing 

CCNA2 Cyclin A2 

CCND1 Cyclin D1 

CCND2 Cyclin D2 

CCNE1 Cyclin E1 

CD3D CD3d molecule, delta (CD3-TCR complex) 

CD4 CD4 molecule 
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Gene symbol Description 

CD44 CD44 molecule (Indian blood group) 

CD8A CD8a molecule 

CD8B CD8b molecule 

CDC42 Cell division cycle 42 (GTP binding 

protein, 25kDa) 

CDH1 Cadherin 1, type 1, E-cadherin (epithelial) 

CDH2 Cadherin 2, type 1, N-cadherin (neuronal) 

CDK1 Cyclin-dependent kinase 1 

COL1A1 Collagen, type I, alpha 1 

COL2A1 Collagen, type II, alpha 1 

COL9A1 Collagen, type IX, alpha 1 

CTNNA1 Catenin (cadherin-associated protein), alpha 1, 102kDa 

CXCL12 Chemokine (C-X-C motif) ligand 12 

DHH Desert hedgehog  

DLL1 Delta-like 1 (Drosophila) 

DLL3 Delta-like 3 (Drosophila) 

DTX1 Deltex homolog 1 (Drosophila) 

DTX2 Deltex homolog 2 (Drosophila) 

DVL1 Dishevelled, dsh homolog 1 (Drosophila) 

EP300 E1A binding protein p300 

FGF1 Fibroblast growth factor 1 (acidic) 

FGF2 Fibroblast growth factor 2 (basic) 

FGF3 Fibroblast growth factor 3 

FGF4 Fibroblast growth factor 4 
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Gene symbol Description 

FGFR1 Fibroblast growth factor receptor 1 

FOXA2 Forkhead box A2 

FRAT1 Frequently rearranged in advanced T-cell lymphomas 

FZD1 Frizzled family receptor 1 

GDF2 Growth differentiation factor 2 

GDF3 Growth differentiation factor 3 

GJA1 Gap junction protein, alpha 1, 43kDa 

GJB1 Gap junction protein, beta 1, 32kDa 

GJB2 Gap junction protein, beta 2, 26kDa 

HDAC2 Histone deacetylase 2 

HSPA9 Heat shock 70kDa protein 9 (mortalin) 

IGF1 Insulin-like growth factor 1 (somatomedin C) 

ISL1 ISL LIM homeobox 1 

JAG1 Jagged 1 

KAT2A K(lysine) acetyltransferase 2A 

KAT7 K(lysine) acetyltransferase 7 

KAT8 K(lysine) acetyltransferase 8 

KRT15 Keratin 15 

MME Membrane metallo-endopeptidase 

MSX1 Msh homeobox 1 

MYC V-myc myelocytomatosis viral oncogene homolog (avian) 

MYOD1 Myogenic differentiation 1 

NCAM1 Neural cell adhesion molecule 1 
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Gene symbol Description 

NEUROG2 Neurogenin 2 

NOTCH1 Notch 1 

NOTCH2 Notch 2 

NUMB Numb homolog (Drosophila) 

PARD6A Par-6 partitioning defective 6 homolog alpha (C. elegans) 

PDX1 Pancreatic and duodenal homeobox 1 

PPARD Peroxisome proliferator-activated receptor delta 

PPARG Peroxisome proliferator-activated receptor gamma 

RB1 Retinoblastoma 1 

S100B S100 calcium binding protein B 

SIGMAR1 Sigma non-opioid intracellular receptor 1 

SOX1 SRY (sex determining region Y)-box 1 

SOX2 SRY (sex determining region Y)-box 2 

T T, brachyury homolog (mouse) 

TERT Telomerase reverse transcriptase 

TUBB3 Tubulin, beta 3 

WNT1 Wingless-type MMTV integration site family, member 1 

ACTB Actin, beta 

B2M Beta-2-microglobulin 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

HPRT1 Hypoxanthine phosphoribosyltransferase 

RPLP0 Ribosomal protein, large, P0 
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Appendix B:  List of genes in RT² Profiler™ PCR Array Human Stem Cell Signaling 

Gene symbol Description 

ACVR1 Activin A receptor, type I 

ACVR1B Activin A receptor, type IB 

ACVR1C Activin A receptor, type IC 

ACVR2A Activin A receptor, type IIA 

ACVR2B Activin A receptor, type IIB 

ACVRL1 Activin A receptor type II-like 1 

AMHR2 Anti-Mullerian hormone receptor, type II 

BCL9 B-cell CLL/lymphoma 9 

BCL9L B-cell CLL/lymphoma 9-like 

BMPR1A Bone morphogenetic protein receptor, type IA 

BMPR1B Bone morphogenetic protein receptor, type IB 

BMPR2 Bone morphogenetic protein receptor, type II 

(serine/threonine kinase) 

CDX2 Caudal type homeobox 2 

CREBBP CREB binding protein 

CTNNB1 Catenin (cadherin-associated protein), beta 1, 88kDa 

E2F5 E2F transcription factor 5, p130-binding 

ENG Endoglin 

EP300 E1A binding protein p300 

FGFR1 Fibroblast growth factor receptor 1 

FGFR2 Fibroblast growth factor receptor 2 

FGFR3 Fibroblast growth factor receptor 3 
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Gene symbol Description 

FGFR4 Fibroblast growth factor receptor 4 

FZD1 Frizzled family receptor 1 

FZD2 Frizzled family receptor 2 

FZD3 Frizzled family receptor 3 

FZD4 Frizzled family receptor 4 

FZD5 Frizzled family receptor 5 

FZD6 Frizzled family receptor 6 

FZD7 Frizzled family receptor 7 

FZD8 Frizzled family receptor 8 

FZD9 Frizzled family receptor 9 

GLI1 GLI family zinc finger 1 

GLI2 GLI family zinc finger 2 

GLI3 GLI family zinc finger 3 

IL6ST Interleukin 6 signal transducer (gp130, oncostatin M 

receptor) 

LEF1 Lymphoid enhancer-binding factor 1 

LIFR Leukemia inhibitory factor receptor alpha 

LRP5 Low density lipoprotein receptor-related protein 5 

LRP6 Low density lipoprotein receptor-related protein 6 

LTBP1 Latent transforming growth factor beta binding protein 1 

LTBP2 Latent transforming growth factor beta binding protein 2 

LTBP3 Latent transforming growth factor beta binding protein 3 

LTBP4 Latent transforming growth factor beta binding protein 4 

NCSTN Nicastrin 

NFAT5 Nuclear factor of activated T-cells 5, tonicity-responsive 
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Gene symbol Description 

NFATC1 Nuclear factor of activated T-cells, cytoplasmic, calcineurin-

dependent 1 

NFATC2 Nuclear factor of activated T-cells, cytoplasmic, calcineurin-

dependent 2 

NFATC3 Nuclear factor of activated T-cells, cytoplasmic, calcineurin-

dependent 3 

NFATC4 Nuclear factor of activated T-cells, cytoplasmic, calcineurin-

dependent 4 

NOTCH1 Notch 1 

NOTCH2 Notch 2 

NOTCH3 Notch 3 

NOTCH4 Notch 4 

PSEN1 Presenilin 1 

PSEN2 Presenilin 2 (Alzheimer disease 4) 

PSENEN Presenilin enhancer 2 homolog (C. 

elegans) 

PTCH1 Patched 1 

PTCHD2 Patched domain containing 2 

PYGO2 Pygopus homolog 2 (Drosophila) 

RBL1 Retinoblastoma-like 1 (p107) 

RBL2 Retinoblastoma-like 2 (p130) 

RBPJL Recombination signal binding protein for immunoglobulin 

kappa J region-like 

RGMA RGM domain family, member A 

SMAD1 SMAD family member 1 

SMAD2 SMAD family member 2 

SMAD3 SMAD family member 3 

SMAD4 SMAD family member 4 

SMAD5 SMAD family member 5 

SMAD6 SMAD family member 6 
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Gene symbol Description 

SMAD7 SMAD family member 7 

SMAD8 SMAD family member 8 

SMAD9 SMAD family member 9 

SMO Smoothened, frizzled family receptor 

SP1 Sp1 transcription factor 

STAT3 Signal transducer and activator of transcription 3 (acute-

phase response factor) 

SUFU Suppressor of fused homolog (Drosophila) 

TCF7 Transcription factor 7 (T-cell specific, HMG-box) 

TCF7L1 Transcription factor 7-like 1 (T-cell specific, HMG-box) 

TCF7L2 Transcription factor 7-like 2 (T-cell specific, HMG-box) 

TGFBR1 Transforming growth factor, beta receptor 1 

TGFBR2 Transforming growth factor, beta receptor II (70/80kDa) 

TGFBR3 Transforming growth factor, beta receptor III 

TGFBRAP1 Transforming growth factor, beta receptor associated protein 

1 

VANGL2 Vang-like 2 (van gogh, Drosophila) 

ZEB2 Zinc finger E-box binding homeobox 2 

ACTB Actin, beta 

B2M Beta-2-microglobulin 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

HPRT1 Hypoxanthine phosphoribosyltransferase 

RPLP0 Ribosomal protein, large, P0 

 

 

 



 

 

 

 

Appendix C:  Short tandem repeat (STR) profiling data of C666-1, HK1, xeno-284 and xeno-B110* 

Cell 

line 
D 

5S818 
D 

13S317 
D 

7S820 
D 

16S539 
vWA THO1 TPOX CSF1PO 

D 

3S1358 
FGA 

D 

8S1179 
D 

21S11 
D 

18S51 
D 

19S433 
D 

2S1338 
Amelogenin 

% 

Match 

C666-1
1
 11, 12 8, 11 11, 12 10 

17, 

18 
6, 8 8, 11 

11, 15, 

16 
16, 17 

23, 

24 

11, 13, 

14, 15 

28, 
29, 

30.2, 

31.2 

16 
13, 

15.2 
16, 23 X,Y 

 
 

 

C666-1
2
 11 8, 11 11, 12 10 

17, 

18 
6, 8 8, 11 11 16, 17 24 11, 15 

28, 

31.2 
16 

13, 

15.2 

15, 16, 

23 
X, Y 

85.7 

 
                  

HK1
1
 11, 13 11 8, 11 9, 11 

18, 
19 

7, 9 8, 11 11, 12 15 26 11, 13 28, 29 17 14 20, 23 X  

 
HK1

2
 11, 13 11 8, 11 9, 11 

18, 
19 

7, 9 8, 11 11, 12 15 26 11, 13 28, 29 17 14 20, 23 X 
100 

 

                  

Patient’s 

sample 
11 12 10, 11 11, 12 

17, 

19 
9, 10 8 10 16, 18 19 14 29, 30 14, 17 13 19, 20 X, Y 

 

xeno-

284 
11 12 10, 11 11, 12 

17, 

19 
9, 10 8 10 16 19 14, 15 29 14, 17 13 19, 20 X 91.7 

                  

Patient’s 

sample 
12 8, 9 10, 11 10 

18, 

20 

6.3, 

8.3 
11 11 15, 16 

23, 

24 
15 

29, 

33.2 
14, 20 13 17, 23 X, Y 

 

xeno-

B110 
12 8, 9 10, 11 10 

18, 

20 
9 11 11 16 

19, 

23, 

24 

15 
29, 

33.2 
14, 20 13 17, 23 X, Y 90.2 

                                    

   
1
 published data from Chan et al. (2008) 

   
2
 data from cell line used in this study 

   * sample preparation and data analysis were performed by Pauline Balraj (HK1 cells), Norazlin Abdul Aziz (patients’  

samples) and Dr. Kitson Liew (C666-1, xeno-284 and xeno-B110) (Institute for Medical Research, Malaysia) 
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Appendix D:   List of 50 genes significantly deregulated by at least 2 folds in SP 

cells as compared with NSP cells (p < 0.05) 

 

Gene Gene description Fold change p-value 

Pluripotency maintenance 

SOX2 SRY (sex determining region Y)-box 2 2.87 0.002 

STAT3 signal transducer and activator of 

transcription 3 (acute-phase response 

factor) 

2.02 0.01 

FGF signalling 

FGFR3 fibroblast growth factor receptor 3 20.45 0.03 

Hedgehog signalling 

GLI2 GLI family zinc finger 2 24.02 0.000 

GLI1 GLI family zinc finger 1 14.12 0.002 

PTCHD2 Patched domain containing 2 9.76 0.02 

SUFU suppressor of fused homolog 

(Drosophila) 

6.26 0.01 

PTCH1 Patched 1 3.52 0.02 

GLI3FL GLI family zinc finger 3 2.40 0.03 

Notch signalling 

NOTCH1 Notch 1 6.04 0.04 

PSENEN presenilin enhancer 2 homolog (C. 

elegans) 

5.04 0.001 

JAG1 Jagged 1 2.50 0.01 

DTX2 Deltex homolog 2 (Drosophila) 2.27 0.03 

NCSTN nicastrin 2.26 0.004 

DLL1 Delta-like 1 (Drosophila) 2.21 0.001 

TGF signalling 

RGMA RGM domain family, member A 74.27 0.01 

ENG endoglin 19.35 0.01 

LTBP3 latent transforming growth factor beta 

binding protein 3 

14.78 0.002 

E2F5 E2F transcription factor 5, p130-binding 7.85 0.04 

LTBP2 latent transforming growth factor beta 

binding protein 2 

  

ACVR1B activin A receptor, type IB 4.90 0.003 

SMAD1 SMAD family member 1 3.49 0.01 

EP300 E1A binding protein p300 3.42 0.003 

TGFBRAP1 transforming growth factor, beta 

receptor associated protein 1 

2.82 0.02 

BMPR2 bone morphogenetic protein receptor, 

type II (serine/threonine kinase) 

2.76 0.03 

SMAD7 SMAD family member 7 2.05 0.01 
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Gene Gene description Fold change p-value 

Wnt signalling 

LRP5 

 

low density lipoprotein receptor-related 

protein 5 

5.22 

 

0.02 

PYGO2 Pygopus homolog 2 (Drosophila) 5.22 0.04 

BCL9 B-cell CLL/lymphoma 9 4.80 0.01 

FZD7 Frizzled family receptor 7 4.48 0.01 

FZD2 Frizzled family receptor 2 3.88 0.04 

AXIN1 Axin 1 3.39 0.002 

MYC 

 

v-myc myelocytomatosis viral oncogene 

homolog (avian) 

3.01 

 

0.02 

NFAT5 

 

nuclear factor of activated T-cells 5, 

tonicity-responsive 

2.61 

 

0.01 

FZD6 Frizzled family receptor 6 2.41 0.004 

PPARD 

 

peroxisome proliferator-activated 

receptor delta 

2.09 

 

0.01 

 

BCL9L B-cell CLL/lymphoma 9-like 2.02 0.01 

Miscellaneous 

CD4 CD4 molecule 10.54 0.03 

ALPI alkaline phosphatase, intestinal 9.48 0.03 

TERT telomerase reverse transcriptase 5.44 0.003 

KRT15 keratin 15 4.69 0.01 

S100B S100 calcium binding protein B 3.98 0.04 

BGLAP 

 

bone gamma-carboxyglutamate (gla) 

protein 

3.81 

 

0.01 

 

T T, brachyury homolog (mouse) 2.88 0.02 

ABCG2 

 

ATP-binding cassette, sub-family G 

(WHITE), member 2 

2.63 0.003 

KAT2A K(lysine) acetyltransferase 2A 2.62 0.002 

JAG1 Jagged 1 2.50 0.006 

BMP1 bone morphogenetic protein 1 2.44 0.03 

COL1A1 collagen, type I, alpha 1 2.09 0.03 

TUBB3 tubulin, beta 3 2.04 0.03 

 

 

 

 

 

 

205

 
 195 



 

 

 

Appendix E:  List of TaqMan assays used in RT-qPCR with preamplification 

step 

Assay TaqMan ID Remark 

HPRT1 Hs01003267_m1 Ok 

RPL13A Hs01926559_g1 Ok 

UBC Hs008 24723_m1 Ok 

ABCG2 Hs01053790_m1 Failed 

ALDH1A1 Hs00946916_m1 Failed 

BMI1 Hs00180411_m1 Ok 

CCND1 Hs00765553_m1 Ok 

CCNE1 Hs01026536_m1 Ok 

CD24 Hs02379687_s1 Ok 

CD44 (all 8 

isoforms) Hs01075862_m1 Ok 

CDKN1A Hs00355782_m1 Ok 

CTNNB1 Hs00355049_m1 Ok 

EPCAM Hs00158980_m1 Ok 

GLI1 Hs01110766_m1 Undetected 

KIT Hs00174029_m1 Failed 

KLF4 Hs00358836_m1 Ok 

LMP1 custom Undetected 

LMP2A custom Undetected 

MKI67 Hs01032443_m1 Ok 

MYC Hs00905030_m1 Ok 

NANOG Hs02387400_g1 Failed 

NES Hs04187831_g1 Failed 

NOTCH1 Hs01062014_m1 Ok 

SOX2 Hs01053049_s1 Ok 

VIM Hs00185584_m1 Ok 

 

Failed, failed QC due to non-linear amplification or poor PCR efficiency 

Undetected, more than 35% of samples below detection limit (Ct = 999) 
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Appendix F: Expression levels of 14 genes which passed QC, showed 

amplification and were analysed in CD24, CD44, EpCAM and EpCAM/CD44 

groups of cells from xeno-B110 

 

 

 

 

 

Results, mean of 2 or 3 sorting replicates per transcript. * p < 0.05, ** p < 0.01 
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