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Abstract 
 

Cart Inverted Pendulum (CIP) is a benchmark problem in nonlinear automatic control 

which has numerous applications, such as two wheeled mobile robot and under actuated 

robots. The objective of this study is to design a swinging-up controller with a robust 

sliding mode stabilization controller for CIP, and to apply the proposed controller on a real 

CIP. Two third-order differential equations were derived to create a combining model for 

the cart-pendulum with its DC motor dynamics, where the motor voltage is considered as 

the system input. The friction force between the cart and rail was included in the system 

equations through a nonlinear friction model. A Fuzzy Swinging-up controller was 

designed to swing the pendulum toward the upright position, with consideration of the cart 

rail limits. Once the pendulum reaches the upward position, Sliding Mode Controller 

(SMC) is activated, to balance the system. For comparison purposes, a Linear Quadratic 

Regulator Controller (LQRC) was design and compared with proposed SMC. Simulation 

and experimental results have shown a significant improvement of the proposed SMC over 

LQRC where, the pendulum angle oscillations were decreased by 80% in the real 

implementation. 
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Abstrak 

 

Troli bandul Inverted (CIP) sistem adalah masalah penanda aras dalam kawalan automatik 

linear. Terdapat banyak aplikasi untuk CIP dalam kehidupan kita, seperti dua robot beroda 

mudah alih yang dianggap sebagai pengangkutan era peribadi baru. Tujuan kajian ini ialah 

untuk merekabentuk pengawal berayun-up dengan pengawal penstabilan mantap untuk 

CIPS dan memohon pengawal kepada sistem sebenar. Dalam mod sistem, dua persamaan 

pembezaan tertib ketiga diperoleh untuk mewujudkan satu model yang menggabungkan 

untuk bandul cart dengan motor dinamik DC. Dalam model yang dibentangkan voltan 

motor dianggap sebagai input sistem dan semua batasan praktikal dianggap. Daya geseran 

antara cart dan rel telah dimasukkan ke dalam sistem persamaan melalui model geseran tak 

linear. A Fuzzy berayun-up pengawal telah direka untuk ayunan bandul untuk kedudukan 

tegak dalam pertimbangan had rel cart. Setelah bandul mencapai kedudukan menaik, 

Ketiga-perintah gelongsor Mod Pengawal (SMC) diaktifkan, untuk mengimbangi sistem. 

Dalam usaha untuk mengesahkan prestasi SMC dicadangkan Pengawal Pengawal Selia 

Linear kuadratik (LQRC) telah dicadangkan dan berbanding dengan cadangan SMC. 

Simulasi dan eksperimen keputusan telah menunjukkan peningkatan yang ketara SMC 

dicadangkan lebih LQRC mana, sudut ayunan bandul telah menurun sebanyak 80% dalam 

pelaksanaan sebenar. 
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Chapter one 

1 Introduction 
 

1.1 Introduction 

  

Controlling of nonlinear systems could be classified into two main categories. In the first 

one, the system is approximated into linear model, where the classical control theories are 

applied directly. This method of analysis is much simpler since it avoids dealing with the 

complicated mathematics due to systems nonlinearity. The global stability cannot be 

achieved because of neglecting the nonlinear effects. 

 On the other hand, nonlinear control techniques are applied to guarantee the global 

stability and to improve the system response. Advanced mathematical tools are 

necessitated to analyze the exact nonlinear models, and for stability guarantee (Khalil, 

2002).  

 

1.2 Inverted Pendulum System 

 

 

Inverted Pendulum (IP) is an essential bench mark problem in nonlinear control. It is a 

challenging problem for control engineers because of system nonlinearity and instability. IP 

is a normal pendulum in the upright position which could be controlled by moving the pivot 

point in the horizontal plan. Swinging up and stabilization of IP is a fundamental problem 

in control field. In this task, the pendulum is swung from the downward (stable) position to 
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the upward (unstable) position. Then, the stabilization controller is applied to keep the 

pendulum stable in that position, as it is shown in Figure ‎1.1 (Rubi et al., 2002). 

 

Figure ‎1.1: Inverted pendulum swinging-up 

 

In the real life, there are many applications for IP, for example, two wheeled mobile robot 

which is known commercially as Segway robot, Figure ‎1.2. This robot model is similar to 

IP where, the pendulum and the pivot are replaced with the robot body and the two-wheels, 

respectively. The wheels are power-driven by an electric motor to keep the robot stable 

(Cardozo andVera, 2012) .  

 

Figure ‎1.2: Segway robot(Segway, 2012) 
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Nowadays, Segway has been utilized in airports, malls, ect, by the security guards and 

workers, in order to save their time and efforts. It is expected to be the new era personal 

transports during the next decades (Voth, 2005) . Rockets and missiles are considered as IP 

applications, where the system is unstable during the initial stage of flight. Controlling of 

IP might be used to be applied in rockets to control the throttle angle. 

 

Further  application for IP is under-actuated robot, which is defined as “the robot which 

have number of actuators fewer than its degrees of freedoms”(Wang et al., 2007).  The 

main advantage of reducing the actuators number is to minimize the power consumptions; 

also it leads to more compatible design where the weight and size are significantly reduced. 

Figure ‎1.3 and Figure ‎1.4 show two examples of underactuated robots, rat and flying 

robots. IP system is considered as an under actuated system because only one actuator is 

used to control both of the pendulum and the pivot point. Therefore, IP is used as platform 

for under- actuated robots control (Tedrake, 2009).  

 

 

Figure ‎1.3: Flying under actuated robots (Tedrake, 2009). 
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Figure ‎1.4: Rat under actuated robot (Tedrake, 2009). 

 

In control laboratories, two types of IP could be found, based on the pivot point motion, 

linear or angular. In linear type, the pivot point is fixed to a cart which moves on 

horizontally on a rail, the cart is driven by an electrical motor (usually DC motor). This 

type is well known as Cart-Inverted Pendulum (CIP), Figure ‎1.5 (Das andPaul, 2011) . In 

the angular type, the pivot motion is angular and it is also driven by an electric motor. It is 

sometimes known as Futura Pendulum (Japanese scientist), see Figure ‎1.6 (Shiriaev et al., 

2007). Swinging-up of CIP is more challengeable because of the cart rail limits, in contrast 

to Furuta pendulum where the pivot motion is boundless. 

 

Figure ‎1.5: Cart Inverted Pendulum 
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Figure ‎1.6: Furuta Pendulum (Buckingham, 2003). 

 

1.3 Fuzzy Logic Control 

 

Fuzzy Logic Control (FLC) has been introduced as an alternative tool for nonlinear 

complex systems. It is also known as Knowledge Based Fuzzy Control (KBFC) because of 

using the human knowledge. The fuzzy control algorithm consists of linguistic expressions 

in form of IF-THEN rules. The rules are designed based on the human experience and 

knowledge.  

Fuzzy  logic and fuzzy  sets were introduced by Lotfy  Zadeh  in 1960s (L. A. Zadeh, 1965; 

Lotfi A. Zadeh, 1973). Fuzzy control process is divided into three main sequences: 

fuzzification, decision making and defuzzification, see Figure ‎1.7. Fuzzification process 

converts the real or crisp inputs value into the fuzzy value, based on the membership 

functions. The controller decision is taken based on the human experience through IF-

THEN rules. Finally, in deffuzification stage, the controller output is converted back to the 

physical value.  
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Figure ‎1.7: Fuzzy control process. 

 

 FLC control has been applied widely for many engineering applications. However, it has 

some drawbacks in analyzing some complicated systems where the numbers of rules are 

increased. (Passino andYurkovich, 1998). In this study, a fuzzy controller will be applied to 

swing the pendulum up under the cart rail restrictions.  

 

1.4 Sliding Mode Control 

 

Sliding mode control technique provides a robust control tool that deals with nonlinear 

systems. It was initially developed in Soviet Union during the early of 1960s (Edwards 

andSpurgeon, 1998; Itkis, 1976; Utkin, 1977). Recently, sliding mode has been extensively 

applied in many engineering aspects e.g., Robotics, aerodynamics and power electronic 

(Liang andJianying, 2010; Siew-Chong et al., 2008; Xiuli et al., 2010).     



 

7 
 

The main advantages of sliding mode are: 1) Stability guarantees 2) robustness under 

system parameters variation. 3) External disturbances rejection. 4) Fast dynamic response. 

However, sliding mode has a drawback of chattering problem (high frequencies in the 

control signal) which might cause actuators failure. Numbers of solutions have been 

introduced to decrease the chattering effects (Boiko andFridman, 2005; Mondal et al., 

2012; Young andDrakunov, 1992).    

 

The Sliding Mode Controller (SMC) design consists of two parts: the sliding surface and 

the control law.  The control law is designed to force the system states to move towards the 

sliding surface. Once the sliding surface is reached, the system state will slide on the 

surface till it reaches the stability point (Yorgancioglu andKomurcugil, 2010). In this 

project, SMC is used to design a stabilization controller CIP to keep the pendulum stable in 

the upward position under the effects of friction forces and external disturbances 

 

1.5 Objectives 

 

The main objective for this study is to design a fuzzy sliding mode controller to swing up 

and stabilize the CIP system. Several objectives are set to achieve the main objective, as 

follows: 

1- To derive third order mathematical model, that combines the Cart-Pendulum with 

its DC motor dynamics. 

2- To design a fuzzy controller for swinging the pendulum up within the cart rail 

limits. 
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3- To design sliding mode controller surface in order to keep the pendulum and the 

cart in the stability position. 

4- To test the proposed control algorithm using Matlab Simulink and Fuzzy logic tool 

box. 

5- To implement the controller on a real CIP system and compare the experimental 

results with other linear controller techniques. 

 

1.6 Thesis outline   

 

 

The rest of thesis is organized as follows: in Chapter 2 a literature review covering former 

proposed swinging-up controller for CIP has been discussed. In addition, Stabilization 

controller (linear and nonlinear) has been surveyed. A Third order combining model for 

cart-pendulum system with DC motor has been derived in Chapter3. The Cart-pendulum 

model has been obtained based on Newton’s second law of motion. The friction between 

the cart and its rail has been described with a nonlinear friction mode. The DC motor circuit 

has been modeled and linked with cart-pendulum equations in the same mathematical 

model.  

Chapter 4 presents swinging-up and stabilization controller design. Fuzzy swing-up 

controller has been designed in consideration of the cart rail limits. Sliding mode 

stabilization controller has been introduced. Moreover, LQRC has been suggested in order 

to be compared with the proposed sliding mode controller. In Chapter 5, CIP combining 

model has been cooded in Matlab Simulink. Fuzzy swing-up controller with sliding mode 

stabilization controller has been tested and simulation results have been presented. Also, the 
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swinging-up controller with LQR stabilization controller has been performed and the 

results has been illustrated.  

In Chapter 6, the proposed control techniques have been implemented in a real CIP system. 

The experimental setup has been described and the experimental results have been shown. 

A comparative study, between the proposed controller and LQR technique, has been 

conducted in Chapter 7, and the results have been discussed, and the project objectives have 

been evaluated. Finally, the study conclusion is presented in Chapter 8, and future work is 

suggested. 
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Chapter Two 

2 Literature Review 
 

2.1 Introduction  

 

It is known that CIP has two sub-controllers: swinging-up and stabilization. In swing up 

stage, the controller is applied to swing the pendulum to the upward position under the cart 

rail length limits. The more effective swing-up controller takes less time and fewer numbers 

of swings. Once the pendulum reaches the upright position, it should be balanced by a 

proper stabilization controller. This controller keeps the pendulum stable at the upright 

position, despite friction forces and external disturbances.   

 For the real controller implementation, several constraints should be considered. For 

example, the friction force between the cart and the rail which acts as an unknown 

disturbance that affect the system stability. Also, there are limits for the maximum control 

signal and the rail length. Moreover, the actuator dynamics have to be deemed for 

experimental application.  

In this chapter, a literature review covering CIP swinging up and stabilization controllers is 

presented. The swinging-up controllers review contains the main control techniques that 

have been introduced during the last two decades in order to solve the swing-up problem. 

The stabilization control review is divided into two subsections: linear techniques and 

nonlinear techniques. In nonlinear controller review we mainly focused on the sliding mode 

control which has been developed in this work. Finally, the study plan is explained based 

on the found gaps.     
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2.2 Swinging-up controllers 

 

In literature, several Swing-up controllers have been introduced during the last two decades 

to swing the pendulum system to the upward position. Starting with classical methods, 

(Furuta et al., 1991) by using feed forward control method and  (Furuta et al., 1992) that 

used pseudo state feedback controller to swing up Futura pendulum. 

New controller for swinging-up the pendulum has been developed based on the pendulum 

energy, it has been known as energy control method   (Åström andFuruta, 1996, 2000). In 

this technique, the pendulum energy (kinetic and potential) was controlled to equal the 

upward position energy. This method gives a direct relation between the maximum 

acceleration of the pendulum pivot and the number of required swing. However, the pivot 

velocity and position are not considered, thus makes this techniques are not applicable for 

CIP where the cart rail is limited. Numbers of swing-up techniques have been proposed 

based on the energy control principle such as, (Shiriaev et al., 2001)   where variable 

structure control version of energy based controller has been suggested to swing up the 

pendulum. and  (Bugeja, 2003)where swinging-up and stabilization controller based on 

feedback linearization and energy considerations is proposed. However none of these 

controllers have been tested on a real system. 

A Sliding Mode Control law for swinging the pendulum up in one time without swinging 

motion has been proposed (M. S. Park andChwa, 2009). Simulation and experimental 

results show the validity for this controller for futura pendulum, where the base motion is 

unlimited.  A new controller based on planning trajectory was proposed  and implemented 
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on a real Futura pendulum (La Hera et al., 2009). The result shows the controller 

effectiveness in swining-up the system.  

 In (Mason et al., 2008; Mason et al., 2007), an optimal time swinging-up controller is 

proposed to swing-up the pendulum. In this controller, the cart acceleration is considered to 

be the system input. Therefore, this controller cannot be implemented easily, because of 

neglecting of the system actuator.  

Nonlinear controller has been applied in (Wei et al., 1995), where the cart rail limits are 

considered. This controller needs less cart motion comparing to classical linear controllers 

control laws.  In (Chatterjee et al., 2002), energy well swinging-up controller is designed, 

where the cart rail restrictions are considered. In addition, linear stabilization controller is 

introduced to catch the pendulum in the upright position. Simulation and experimental 

results show the validity for this controller. However, in the swing-up part, five different 

parameters should be chosen by try and error which is not simple. More simple swinging-

up controller has been proposed by (Yang et al., 2009) with only two design parameters. 

This controller shows more simplicity in tuning the controller. However, this controller has 

been tested experimentally; the stabilization part has not been studied.   

A simple fuzzy swinging-up controller with stabilization controller was introduced in 

(Muskinja andTovornik, 2006). Simulation and experimental results confirmed the 

effectiveness of the swinging-up controller comparing with energy control method. 

However, the stabilization controller does not guarantee the stability because of model 

linearization. 
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2.3 Stabilization controllers  

 

Stabilization controllers of IP systems could be classified into two types: linear and 

nonlinear control techniques. In linear type, the system is approximated to linear model, 

where the classical control theories are applied directly. However, this kind of controller 

might suffer from global instability because of the model inaccuracy due to linearization. In 

nonlinear control techniques, controllers are designed based on the exact model without 

approximation. These techniques are much complicated however, the system stability is 

guaranteed and the system response is significantly improved comparied with linear 

controllers. 

2.3.1 Linear Stabilization controllers 

 

Since 1960s, inverted pendulum was used to demonstrate linear control techniques such as 

PID (Proportional Integration Derivative) and LQR (Linear Quadratic Regulator) and 

Feedback Linearization (FBL) (Furuta et al., 1978; Mori et al., 1976; Sugie andFujimoto, 

1994) .Generally, PID controllers are used to control SISO (Single-Input Single-Output) 

systems.  As CIP is considered as SIMO (Single-Input Multi-Output) system, two PID 

should be used together to control the pendulum and the cart. In this type of controller, six 

parameters should be selected to carefully to control the system, so that the controller 

tuning quite difficult. Thus, advanced techniques like neural network are used to tune the 

controller (Faizan et al., 2010) (Fallahi andAzadi, 2009; Fujinaka et al., 2000; Rani et al., 

2011). FBL controller has been proposed by (El-Hawwary et al., 2006). In order to improve 

the system stability and the disturbance rejection ability, a damping term and an adaptive 

fuzzy term is added. Simulation and experimental results show the validity for this 

controller. 
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 Linear quadratic Regulator (LQR) control technique was also used to stabilize the 

pendulum system.  In this scheme the pendulum system model is approximated into the 

linear state space form. Afterward, the  feedback gains are calculated based on the 

minimum cost function this method shows better result and simple control scheme  

comparing with PID  (Barya et al., 2010; Prasad et al., 2011, 2012; Wongsathan andSirima, 

2009) . 

In order to improve the linear controller response, LQR with nonlinear friction compensator 

has been proposed in (Campbell et al., 2008; D. Park et al., 2006). In these studies, 

nonlinear friction compensators, based on nonlinear friction models, are used to improve 

the steady state result. Simulation and experimental result showed the controller ability to 

reject some oscillation which caused by friction forces. 

 

2.3.2 Nonlinear Stabilization controllers 

 

In order to guarantee the system stability, nonlinear control techniques has been applied to 

control CIP system. In these methods, a nonlinear model is derived for the system in order 

to achieve better stability comparing to linear algorithms.  

New Takagi-Sugeno (T-S) fuzzy model has been proposed for CIP by (Tao, Taur, Hsieh, et 

al., 2008). A fuzzy controller with a parallel distributed pole was designed to stabilize the 

system. In addition, nonlinear friction model, control signal constraints and cart rail limits 

were considered. Only simulation work has done to prove the controller effectiveness. 

Sliding mode controller was proposed in (Tao, Taur, Wang, et al., 2008) to control CIP. 

The system model was divided into two subsystems (cart and pendulum), sliding mode 

controller has been proposed for each subsystem. The controller parameters were adjusted 
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by an adaptive mechanism. Simulation results showed the stability for this controller under 

disturbances. 

Decoupled sliding mode controller was proposed by(Lo andKuo, 1998). In this approach, 

the whole system is decoupled into two subsystems (pendulum and its cart); each one has 

its control target. In order to link between the two subsystems targets, an intermediate 

function is designed to ensure that the control signal will control both of subsystems. The 

fuzzy controller is added to overcome the chattering problem near the switching surface. 

Simulation results showed that both of the pendulum angle and the cart position converge 

to zero. However, this controller hasn’t considered the experimental limitation, e.g., DC 

motor dynamics, friction and cart length restriction. 

A hierarchical fuzzy sliding mode controller for CIP was introduced in (Lin andMon, 

2005). In this approach, two subsystem controllers are designed for each system state and 

an adaptive law is used to find the controller coupling parameters. Simulation results 

showed the effectiveness of this controller. Neural network decoupling sliding mode 

controller for CIP is introduced by (Hung andChung, 2007). The coupling between the two 

subsystems has been done using the neural network. The results demonstrated the 

robustness for this controller.  However, in (Hung andChung, 2007; Lin andMon, 2005) the 

decoupling techniques are more complicated comparing with Chang  controller(Ji-Chang 

andYa-Hui, 1998)and experimental verification is still needed as well.  

More advanced controller based on time varying sliding surface controller is proposed in  

(Yorgancioglu andKomurcugil, 2010). The sliding surface slope was computed by linear 

functions which are approximated from input-output relation of fuzzy rules.  Results show 

improvement of the pendulum angle response in terms of speed convergence. The cart rail 

limits and DC motor dynamics are not considered in their study. 
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2.4 Study plan 

 

In this work, a new combining model, for the cart-pendulum models and its DC motor 

dynamics, has been derived in third-order mathematical model. The motor control voltage 

is the input variable in the obtained model. This representation is applicable for the real CIP 

system. Friction forces between the cart and its rail are also considered in a nonlinear 

model. 

A fuzzy swinging-up controller is designed to swing the pendulum to the upward position. 

Using fuzzy logic control the pendulum is swung up where the cart rail limits is considered. 

Once the pendulum reaches the upward position, a sliding mode controller is designed to 

keep the pendulum stable in the upward position. To reach the full system stability for the 

pendulum and the cart, an intermediate function is designed to link the cart position with 

the pendulum angular position. LQR controller is designed and compared with the 

proposed controller. The system model, controller design, simulation and experimental 

results are shown in subsequence sections. 
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Chapter Three 

3 Mathematical model 
 

3.1 Introduction 

 

A new third order model for CIP is derived in this chapter, where the pendulum and cart 

dynamic are combined with the DC motor model. The main experimental limitations such 

as nonlinear friction force between the cart and the rail and the DC motor dynamics are 

considered. The derived model has the advantage of joining the mechanical system (cart 

and pendulum) with the electrical system (DC motor) in the same model, where the DC 

motor control voltage is considered as the system input. 

3.2 Pendulum model 

 

 

Figure ‎3.1: The Cart-Pendulum system  
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CIP has two degrees of freedom, X is the Cart displacement and θ is the pendulum angle 

position, as shown in Figure ‎3.1. The cart displacement is assumed to be positive in the 

right direction, and negative in the left direction. The pendulum angle is considered to be 

positive in CCW rotation, and negative in CW rotation. The free body diagram of the cart 

and the pendulum are shown in Figure ‎3.2 and Figure ‎3.3 , respectively. V is the veritical 

reaction force between the pendulum and the cart, H  is the horizontal reaction force 

between the cart and the pendulum. 

 

 

X

M

F

V

H

frF

 

Figure ‎3.2: Cart free body diagram 
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Figure ‎3.3: Pendulum free body diagram. 

 

The cart mass is donated by M , m is the pendulum mass, L is the length between the pivot 

and the pendulum center of gravity CG, g is the acceleration of gravity, I is the pendulum 

mass moment of inertia with respect to its CG, Ffr is the friction force between the cart and 

the rail. q is the friction coefficient in the pendulum pivot.  

Free body diagram analysis has been performed for the cart and the pendulum. For the cart 

free body diagram, by takingthe equlibrium of forces in the horizontal direction and 

applying Newton’s second low of motion,the following equation is obtained: 

 

   
fr

M X F F H  (‎3.1) 
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From the pendulum free body diagram, the summition of forces in the horizontal directions 

is: 

        2( cos sin )H m X L L  (‎3.2) 

 

By taking forces equlibrium in the vertical direction: 

       2( sin cos )mg V m L L   

 

       2( sin cos )V m g L L  (‎3.3) 

By summing the moments around the pendulum center of gravity:        

      sin cosI V L H L q  (‎3.4) 

 

Substitute from (‎3.2) into (‎3.1), and from (‎3.2) and (‎3.3) into (‎3.4), the cart-pendulum 

equations are derived: 

        2( ) ( cos sin )
fr

F M m X F m L L  (‎3.5) 

 

       2( ) sin cosI mL mgL mLX q  (‎3.6) 

 

Equations (‎3.5) and (‎3.6) are the main equations of motion for the mechanical part. As it is 

noticed, the system input is the force F. This model is not applicable from practical point of 

view, since the DC motor is still needed to generate the force F.    
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3.3 Friction model   

 

Friction is a physical phenomenon which occurs in all moving mechanical systems. It is 

considered as a resistive force generated between the two interacting surfaces and having a 

relative motion. In control systems, the friction forces have a significant effect on the 

system response, which might cause system instability. Steady state error and oscillations 

are found in the system response when the friction force is neglected. In order to eliminate 

such effects from the system response, the friction should be included in the system model 

and controller design.     

 

Most of the earlier work, dealing with the CIP, either has applied a viscous friction model 

(linear) or has neglected its effects (Muskinja andTovornik, 2006). However, the friction 

phenomena encloses many terms such as Stribeck effects, static, Coulomb and viscous 

frictions (Armstrong-Hélouvry et al., 1994; Olsson et al., 1998). Thus, exponential friction 

model Ffr is chosen, to address all mentioned terms of friction, as follows: 

 












   


/

( ) ( )
n

S

d

dC S

s

d
fr

C

X V

if X X

F F F e sgn X b X if

F
X

X

X X

F  (‎3.7) 

Where, FS is Static Friction force, FC is Coulumb Friction force,  d is the dead zone 

velocities, VS is Stribeck velocity, n is form factor, b is the viscous friction coefficient. 
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3.4 Dc Motor model 

 

 

Figure ‎3.4: DC Motor circuit 

Figure ‎3.4 illustrates the Dc motor Circuit, where, Va is the armature applied voltage 

(Control voltage), Vemf is the back EMF voltage, Ra, La and i are the armature resistance, 

inductance and current, respectively. ω is the DC Motor angular velocity, Te is the Motor 

electromagnetic torque, TJ is motor inertia torque, TB is the damping torque and TL is the 

motor load torque. The motor equations are 

   a a aemf

di
V V i R L

dt
 (‎3.8) 

 

  eemf
V K  (‎3.9) 

Ke is the Back EMF constant, and 

  e

t

T
i

K
 (‎3.10) 

  Kt is the motor torque constant. The relation between the cart linear velocity and the motor 
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angular velocity is given by ((‎3.11). 

 
X

r
   (‎3.11) 

r is the motor pulley diameter. The electromagnetic torque equation will be 

 e J B LT T T T    (‎3.12) 

Where 

 
J

X
T J J

r
   (‎3.13)    

 

 
B

X
T B B

r
   (‎3.14) 

 

 
L

T F r  (‎3.15) 

J is the motor rotor mass moment of inertia, B Motor rotor damping coefficient. 

 

3.5 Overall system model 

 

Here, two third differential equations will be derived to describe the overall system, where 

the motor applied voltage Va is the system input. By substituting from (‎3.13), (‎3.14) and 

(‎3.15) in (‎3.12). And from (‎3.12) in (‎3.10) we get the current equation 
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   

  

 

   2

[( )

( cos sin )]

e

t t

fr

t

X X
J B M m X

T r ri
K K

F m L L r

K

 
(‎3.16) 

 

Taking the time derivative of the current equation, (‎3.17) is obtained 

 

 

(‎3.17) 

By substituting from (‎3.9), (‎3.16) and (‎3.17) into (‎3.8), we get 

 

  

     



      

  

  

 

2

3

sin

[( ) ] [( ) ] [ ]

[ ] [ ] cos

3
cos sin cos

] ]

]

[ [

[ a

t

a a a
a

t t t

a e a

t t

a a a

t t t

a a
fr fr

t t

r m LR

K

L R B LJ J
V M m r X M m r X

r K r K r K

B R K r m LR
X

r K r K

r m LL r m LL r m LL

K K K

R L
F F

K K
      

(‎3.18) 

 

Equation (‎3.18) is considered as the main overall equation, describing the system states 

with the applied voltage on DC motor as an input. From (‎3.6) we can get; 

   
 


   

2( )
tan

cos cos

I mL q
X g

mL mL
 (‎3.19) 

 

       

   



   3

[( ) ] cos

sin 2 sin cos

t

fr

t

J B
M m r X X m Lr

di r r
dt K

m Lr mLr m Lr F

K
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      
  2 2 2

sin cos
( ) ( ) ( )

mLg mL q
X

I mL I mL I mL
 (‎3.20) 

Differentiate one more time, 

    
 


   

2( )
tan

cos cos

q I mL
X g X

mL mL
 (‎3.21) 

 

 

   

  

 
 

 
 

2 2

2 2

cos cos
( ) ( )

sin
( ) ( )

mgL mL
X

I mL I mL

mL q
X

I mL I mL

 (‎3.22) 

Substituting from (‎3.19) and (‎3.21) into (‎3.18), we get the pendulum angle third order 

differential equation.  

 

   




    
  
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



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   
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2
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f f f F f F

f
f

f f f f f

f
f
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(‎3.23) 
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Where the values of constants   f1→16 are:  


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t

r m L L
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K
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
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[( ) ] [ ]
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rf
K m L

 ,

 


3

[( ) ]
a

t

J
M m r L g

rf
K

 

 


4
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a

t

J
M m r L g

rf
K

,

  



2

5

[( ) ] [ ]
a

t

J
M m r L I mL

rf
K m L
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
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t
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Equation (‎3.21)  is rewritten in the form: 

 

        1 1( , , , ) (( , , , ) aX X X X V  (‎3.24) 
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Where,           

                 

 

 
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 
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 (‎3.25) 

 

   

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
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1

1
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f
f

 
(‎3.26) 

   

Similarly to get the cart position third order differential equation, substitute from (‎3.20) and 

(‎3.22) into (‎3.18) 
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(‎3.27) 
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Where the values of constants f ′1→15 are:  
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Equation (‎3.27) is rewritten in the form: 

         2 2( , , , ) ( , , , ) aX X X X X V  (‎3.28) 
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Where, 
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Chapter Four  

4 Methodology 
 

4.1 Introduction 

Methodology of Swinging-up and stabilization control is discussed in this chapter. For the 

pendulum swinging-up, fuzzy logic controller is designed to achieve the task in 

consideration of the cart rail limits. After reaching the upward position, SMC is developed 

to guarantee the system stability. Linear control technique (LQRC) is designed, in order to 

be compared with the proposed SMC. The controller schematic diagram is shown in   

Figure‎4.1. 

 

Figure‎4.1: schematic diagram for Swing up with stabilization controller. 

4.2 Fuzzy swing-up controller 

The main idea of the fuzzy swinging–up controller is based on the pendulum energy, which 

equals the summation of its kinetic and potential energies(Åström andFuruta, 2000). By 
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controlling this energy, and raise it to equal the upward position energy, the pendulum 

could be swung-up. The pendulum energy E is given by  

   
2 cosPE I m g L    (‎4.1) 

Where, IP is the pendulum mass moment of inertia around the pivot point. According to 

(‎4.1), the pendulum energy depends on the pendulum angle and the pendulum angular 

velocity. In other words, the pendulum energy can be increased by controlling the variables 

θ and θ . The cart rail limit should be also considered in swinging-up thus, for the fuzzy 

controller, three input variables are chosen: the pendulum angle θ, the pendulum angular 

velocity θ  and the cart displacement X. The DC motor control voltage Va is the output 

variable. 

 

Figure ‎4.2: Membership functions of the pendulum angle. 
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Figure ‎4.3: Membership functions of the pendulum angular velocity. 

As it is shown in Figure ‎4.2, five membership functions (1, 2, 3, 4 and5) are chosen for 

the pendulum angle. Note that the rectangular membership function (1) represents the 

pendulum angle if (π/2 ≤θ < 3π/2), where, the accurate pendulum angle measurement is 

not required. The other four membership functions are chosen to be in a triangular shape 

because they are located near to the upward position, where more accurate measurement 

is needed. In Figure ‎4.3, the pendulum angular velocity is represented by two membership 

functions N (counter clock wise) and P (clock wise) as illustrated. The cart displacement 

is represented by two triangular (P and N) and one trapezoidal (Zero) membership 

functions (Zero) as shown in Figure ‎4.4. For the output control voltage, seven singleton 

membership functions are selected in Figure ‎4.5, to represent the applied control voltage 

on the DC motor. The singleton membership functions positions are chosen to minimize 

the swinging-up time.    
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Figure ‎4.4:  Membership functions of the cart position. 

 

 

 

Figure ‎4.5 : Membership functions of the output control voltage. 
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The swing-up controller is designed based on 30 fuzzy rules. The rules conse uents are 

chosen to increase the pendulum energy to reach the upward position energy. During the 

swinging-up, the cart rail limitation should be considered.  ach three rules are designed at 

the same  endulum angle θ and angular velocity θ , with consideration of the cart position. 

 

For instance, if the pendulum angle is 1 and the pendulum angular velocity is N, the three 

rules are developed as follows: First, without consideration of the cart limits, the logical 

swing-up control action should be   . Then, the cart position membership functions (N,  

and  ero)  will be considered to form the three rules, for each rule θ and θ  are constant (1 

and N, respectively).  

Rule1:  

   f θ is   and θ  is N and X is P, then Va(swing-up)  is Zero. 

It means that the pendulum is located in the downward half cycle (π/2 ≤ θ < 3π/2) and it 

rotates in CW direction. As it is mentioned above, the logical swing-up control decision 

should be PB. Since the cart is located at the positive side of the rail (X is P).Thus, In order 

to keep the cart within the limits, and the rule consequent should be Va(swing-up)  is Zero.  

Rule 2: 

  f θ is   and θ  is N and X is Zero, then Va(swing-up)  is PM. 

For this rule the cart is located in the middle of the rail (X is Zero). Thus, the control action 

will be chosen to move the cart in the positive direction, but with a medium force, and the 

rule consequent will be Va(swing-up)  is PM.  
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Rule 3: 

   f θ is   and θ  is N and X is N, then Va(swing-up)  is PB. 

Because the cart is located at the rail negative side (X is N), the the rule consequent will be 

kept Va(swing-up)  is PB   

The rest 27 rules are chosen with the same procedures. This controller allows the pendulum 

to reach the upward position while the cart remains within the restricted limits. The fuzzy 

swing-up rules are as follows: 

Rule 4:  f θ is   and θ   is P and X is P, then Va(swing-up)   is NB 

Rule 5:  f θ is   and θ   is P and X is Zero, then Va(swing-up)   is NM 

Rule 6:  f θ is   and θ   is P and X is N, then Va(swing-up)   is Zero 

Rule 7: If θ is 2 and θ   is N and X is P, then Va(swing-up)   is NB 

Rule 8 :  f θ is 2 and θ   is N and X is Zero, then Va(swing-up)   is NM 

Rule 9:  f θ is 2 and θ   is N and X is N, then Va(swing-up)   is Zero 

Rule 10:  f θ is 2 and θ   is P and X is P, then Va(swing-up)   is Zero 

Rule 11 :  f θ is 2 and θ   is P and X is Zero, then Va(swing-up)  is PM 

Rule 12:  f θ is 2 and θ   is P and X is N, then Va(swing-up)  is PB 

Rule 13:  f θ is 3 and θ   is N and X is P, then Va(swing-up)   is NB 

Rule 14:  f θ is 3 and θ   is N and X is Zero, then Va(swing-up)   is NM 

Rule 15:  f θ is 3 and θ   is N and X is N, then Va(swing-up)   is Zero 

Rule 16:  f θ is 3 and θ   is P and X is P, then Va(swing-up)   is Zero 

     Rule 17:  f θ is 3 and θ   is P and X is Zero, then Va(swing-up)   is PM 
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Rule 18:  f θ is 3 and θ   is P and X is N, then Va(swing-up)   is PB 

Rule 19:  f θ is 4 and θ   is N and X is P, then Va(swing-up)   is NM 

Rule 20:  f θ is 4 and θ   is N and X is Zero, then Va(swing-up)   is NS 

Rule 21:  f θ is 4 and θ   is N and X is N, then Va(swing-up)   is Zero 

Rule 22:  f θ is 4 and θ   is P and X is P, then Va(swing-up)  is Zero 

Rule 23:  f θ is 4 and θ   is P and X is Zero, then Va(swing-up)   is PS 

Rule 24:  f θ is 4 and θ   is P and X is N, then Va(swing-up)   is PM 

Rule 25:  f θ is   and θ   is N and X is P, then Va(swing-up)   is NM 

Rule 26:  f θ is   and θ   is N and X is Zero, then Va(swing-up)   is NS 

Rule 27:  f θ is   and θ   is N and X is N, then Va(swing-up)   is Zero 

Rule 28:  f θ is   and θ   is P and X is P, then Va(swing-up)   is Zero 

Rule 29:  f θ is   and θ   is P and X is Zero, then Va(swing-up)   is PS 

Rule 30:  f θ is   and θ   is P and X is N, then Va(swing-up)   is PM 

Note, the swing-up time could be controlled by selecting the output voltage (Va)   

membership functions. In the real application, the swing-up time also depends on the DC 

motor maximum voltage.  

The control output value has been utilized by center of gravity defuzzification method. The 

fuzzy controller uses the following equation has been used to obtain the real control output  

max

min

max

min

( ).

( )

x

x

x

x

x x dx

CoA

x dx











 

Where CoA is the center of area which represents the control output, x is value of linguistic 

variable, xmax and xmin are the linguistic variable range. μ(x) is the variable membership.  
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4.3 Sliding Mode stabilization controller 

 

Sliding Mode Controller is designed based on the third order derived mode. From the 

system model in (‎3.24) and (‎3.28), and if D1and D2 are bounded external disturbances, the 

entire system model will have the following form  

        11 1 a DV  (‎4.2) 

 

       22 2 a DX V  (‎4.3) 

 

Where, α1 and β1 are nonlinear functions of the system states θ     θ     and θ . α2 and β2 are 

functions of θ     θ      and  . The control law is designed based on the sliding surface. The 

general equation of the sliding surface S is (Bartoszewicz andNowacka-Leverton, 2010; 

Palm et al., 1997)  

   
1( , ) .)( nd

S x t C x
dt

   (‎4.4) 

Where x is the system sate, n is the system order and C is a constant value. In this case 

(CIP) the system states are θ  θ   θ , X,   and  . Thus, two sliding surfaces, S1 for the 

pendulum subsystem and S2 for the cart subsystem, are considered. Where 

   
2

1 1 12S C C      (‎4.5) 
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2

2 2 22S C X C X X    (‎4.6) 

C1 and C2 are positive constants. Sliding surfaces S1 andS2 are constructed based on the 

constants C1 and C2. Appropriate selection of these constants values will achieve the 

desired response. 

 The control law is designed based on the sliding surfaces. Since only one control action is 

available, the Pendulum angle will be considered as primary control target and the cart 

position is the secondary target. Initially, the controller is designed to achieve the primary 

target where S1 = 0. An intermediate function is used to link between the secondary and 

primary targets. This function will achieve the cart subsystem stability if the pendulum 

stability is reached.  The control law is designed based on Lyapunov like function V 

   
2

1

1

2
V S  (‎4.7) 

As it is known from sliding mode theorem, in order to achieve the system stability the 

control law must match the following reaching condition  

   1 1 1V S S S   (‎4.8) 

Where η > 0, this condition ensures that the system will be driven into the sliding mode. 

The control law will be derived as follow, from (‎4.8)  

   
11.sgn( )S S   (‎4.9) 

Taking the first derivative for (‎4.5) 

   2
1 1 1  ( 2 )S C C      (‎4.10) 
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Substituting with (‎4.10) in (‎4.9) 

   
2

1 1 1 11 1( 2 ).sgn( )aC C D SV        (‎4.11) 

 

   
2

1 1 1 1 11 1( 2 ).sgn( ) .sgn( )aC C D S SV         (‎4.12) 

 

   

2

1 1 1

1 1
1

1 1
1 1

2
( ).sgn( ) .sgn( )a

C C D
S SV

  
 

 

  
   (‎4.13) 

From (‎4.13), the control law could be written in form 

   
  




  
 

2

1 1 1

( ) 1 1

1

2
sgn( )

a stablize

C C
V K S  (‎4.14) 

Where 

   





1

1

K
D

  

 

The first term of the control law is estimated from the system model, and it will be donated 

as   a(stabilize), where      

   
  



  


2

1 1 1

( )

1

2ˆ
a stablize

C C
V   

                                 

 



 

40 
 

This form of the control signal guarantee the stability for the pendulum subsystem since the 

reaching condition is achieved and the sliding motion will occur. The control action Va , as 

it is shown in (‎4.14), has a high-frequencies switching because of the Sgn function. To 

overcome this problem, a boundary layer will be formed by replacing Sgn function with Sat 

function as follows, 

   







  1 1( ), 0a a

S
V V K Sat where  (‎4.15) 

 

Where 

   

 

 

 

 















1 1 1 1

1 1 1 1

1 1

, 1

,

( )

1
S S

Sgn

Sat
S S

if

if

S
 (‎4.16) 

This kind of control will be capable of rejecting all the high-frequencies and solve the 

chattering problem.  

The control law in equation (‎4.15) can only guarantee the pendulum angle stability. The 

control objective is to move the pendulum and the cart subsystems to the sliding surfaces S1 

and S2, respectively, where the overall system stability could be achieved. In order to do 

that, an intermediate function Z has been introduced to link between the two subsystems 

sliding surfaces S1 and S2. The function Z design is introduced as follows: 

First, the first sliding surface will be reformed to be    

   
2

1 1 1( ) 2S C Z C       (‎4.17) 
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Where, Z is a function of S2 which means that the sliding surface S2 was incorporated into 

the sliding surface S1 through Z function. The new sliding surface has changed the control 

target from θ=0, θ =0 and θ   =0 to θ=Z, θ  =0 and θ   =0. The objective (S2 = 0) is now 

embedded in the main control target through the variable Z which is defined 

   


 2( ). U

z

S
Z sat Z  (‎4.18) 

Where, ZU is the upper limit of the function; ΦZ is the function boundary layer. Z is 

abounded oscillatory function decays to zero. When Z reach zero, S1 will be zero according 

to (‎4.17). (Yorgancioglu andKomurcugil, 2010). 

In order to prove that Z is a decaying function, from equation (‎4.17), if we defined  θ as x1, 

θ   as x2 and θ   as  x3. The controller guarantees that the pendulum subsystem moves towards 

the sliding surface S1=0. Equation (‎4.17) could be written in the form:   

   
2

1 1 1 1 2 3( ) 2 0S C x Z C x x       

                                           

By taking the second derivative: 

   
2

1 1 1 1 2 3( ) 2 0S C x Z C x x       

 

   
2

1 1 1 3 33( ) 2 0S C x Z C x x       
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The equation could be rearranged to be  

   
2 2

3 1 3 1 132x C x C x C Z    

 

This considered as a linear nonhomogenous second order differential equation. The general 

solution for x3 will be  

     1 12

3 3 3 1 3 1

0 0

( ) (0) (0) (0) ( )

t t

C t C t
x t x x C x t e C e Z d dt  


 

      
 
    

Where x3(0) and x3  (0) are the initial conditions (at t=0). 

The first term in the right side is the complementary solution which comes from solving the 

homogenous part, whereas the second term is the particular solution which comes by 

solving the nonhmogeneous part. In the steady state x3=0, which is could be achieved only 

if the second term in the right side converges to zero. That will happen if only Z decays to 

zero. 

4.4 LQR stabilization controller 

 

LQR control technique is widely used for linear control applications. For CIP, many LQR 

controllers are designed based on the linearized system model. A six order linear model 

(two third order linear equation) is expected after linearizing the system equations (‎3.24) 

and (‎3.28)(Elsayed et al., 2013).However, for comparison purposes, and by neglecting the 

motor induction, we derived a forth order CIP model (two second order linear equations) 

like the derived models in (Chatterjee, et al., 2002; Muskinja andTovornik, 2006).  
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From equations (‎3.24) and (‎3.28) and by neglecting the motor inductance (La=0) and 

linearizing the system equation around the upward equilibrium point where (θ=0). If the 

pendulum was assume to move only few degrees around the upward position, where 

   θ=0     θ=θ     θ  θ=0. Equations (‎3.24) and (‎3.28) will have the following forms: 

 

 

 
6 5 7 5 8 5 5

( / ) ( / ) ( / ) (1/ )
a

g g X g g g g g V         (‎4.19) 

 

 

 
2 1 3 1 4 1 1

( / ) ( / ) ( / ) (1/ )
a

X g g X g g g g g V        (‎4.20) 

 

Where 

2 2 2

1
[ / ][( ) ( / ( ))]

a m
g R r K M m m L I mL      ,  2

[( / ) ( / )]
a m e

g R r b K K r   

2 2 2

3
[( ) \ ( ( ))]

a m
g R r m L g K I mL  ,  

2

4
[( ) \ ( ( ))]

a m
g R r m L q K I mL   

2

5
[ / ][( ) (( )( ) / ( ))]

a m
g R r K mL m M I mL mL    , 6

[( / ) ( / )]
a m e

g R r b K K r   

7
[ ( )] / [ ]

a m
g R r g M m K 

, 8
[ ( )] / [ ]

a m
g R r q M m m L K 

 

Equations (‎4.19) and (‎4.20) are the overall system linear equation. For designing LQR 

controller, the system equations should be in the state space form. If the system states 

vector is   =     θ θ ], the general state-space form is
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  x Ax Bu  (‎4.21) 

Where, x is state matrix (1x4), u control signal matrix (1x1), A is state parameters matrix 

(4x4), B is control signal parameters matrix (1x4). Since only one control action (DC motor 

voltage) is available, u = Va. The equivalent state-space linearized system equation is  

   
2 1 3 1 4 1 1

5 7 5 5 56 8

0 1 0 0 0

0 ( / ) ( / ) ( / ) (1/ )

0 0 0 1 0

0 ( / ) ( / ) ( / ) (1/ )

a

X X

g g g g g gX gX
V

g g g g g g g





      
      
      
      
               

 
 

 

 (‎4.22) 

From LQR theory, the following sate feedback control law is applied. 

 

 
a Lu V K x    (‎4.23) 

Where K is the optimal feedback gain matrix required to get a minimum performance   

index J 

 

 0

( )T TJ x Qx u R u dt



   (‎4.24) 

Where Q and R are a real symmetric matrices which are chosen by the designer. The gain 

matrix KL is calculated by solving Reduced-matrix Riccati equation (‎4.25), after obtaining 

matrix P. 

 

 

1 0T TA P PA PBR B P Q     (‎4.25) 

Where P is an intermediate matrix used to calculate the gain matrix K (Ogata, 2002) 
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1 T

LK R B P  (‎4.26) 

 

The controller parameter Q should be carefully chosen based on the states priority. Form a 

control point of view, the pendulum angle is much more important than the cart position X. 

Therefore, a bigger value should be chosen for the angle element in Q matrix. Selection of 

R matrix value depends on the control signal constrains. Based on the values of Q and R, 

the feedback gain matrix KL is obtained. 

 

4.5 Switching between swinging-up and stabilization control 

In order to switch between the swinging-up and stabilization controllers, one-move switch 

is developed. This switch ensures the fuzzy swinging-up controller will be activated only 

one time. Once the pendulum reaches that upward point, the stabilization controller will be 

activated permanently. The switch output (Va) could be represented as follows  

 

 

( )

( )

(0 2 ), ( 1)

( 2 0), ( 1)

a swing up

a

a stablize

V if and N
V

V if or or N

 

  

   
 

  
  

Where, N is an integer counter which counts the numbers of the upward position, at (θ = 0).  
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Chapter Five 

5 Simulation results 
 

 

5.1 Introduction 

 

CIP system dynamics, given by the equations (‎3.24) and (‎3.28), have been solved and 

simulated using MATLAB Simulink. In cooperation with Fuzzy Logic toolbox, the fuzzy 

swinging-up controller is designed applied to swing the pendulum to the upward position. 

Two stabilization control (sliding mode and linear quadratic regulator) schemes are 

implemented and compared. Both controllers (SMC and LQRC) are tested in corporation 

with the fuzzy controller in the swinging–up phase. For testing purpose, nonlinear friction 

force between the cart and the rail is considered according to equation (‎3.7). This force is 

acting as an external disturbance on the controller. The cart rail limit is ±0.4m and the 

motor saturation voltage is ±6 Volt. All CIP parameters and friction forces coefficients are 

listed in Table ‎5.1. The controller parameters, for SMC and LQRC, have been chosen to 

achieve fast response. DC motor saturation voltage has been also considered in the 

controller parameters selection. For SMC, the controller parameters are chosen to be 

C1=5.5  C2=3.1  K=15  Φ = 8 10
4
  Φz =19 and Zu=0.98 .and for LQRC the selected 

parameters are R=diag [400 1 2500 1], Q= 4 and the generated feedback gain vector  KL= 

[-10 -12.9   90.5   17.4]. 
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Table ‎5.1: system parameters 

 

Parameter Value Unit 

M 0.882 kg 

m 0.32 kg 

L 0.3302 m 

I 7.88x10
-8 

kg.m
2 

g 9.8 m/s
2 

q 0.0001 N.s/rad 

La 0.18 x10
-3 

H 

Ra 2.6 Ohm 

J 3.9 x10
-7 

kg.m
2 

B 8x10
-7 

N.m.s/rad 

Kt 0.00676 N.m/A 

Ke 0.00676 V.s/rad 

r 6.35x10
-3 

m 

Fs 0.1 N 

Fc 0.08 N 

Vs 0.1 m/s 

b 1.3 N.s/m 

n 4 - 

 d 0.05 m/s 

            

 

5.2 Fuzzy swinging-up with SMC stabilization 

 

Pendulum angle response for fuzzy swing-up with SMC is shown in Figure 5.1. It is seen 

that the pendulum is swung-up from downward position, where θ=π rad, into the upward 

position, where θ=0. The pendulum is swung up within 6 seconds before the controller is 

switched to activate the SMC. The figure shows the effectiveness of the SMC to stabilize 

the pendulum, in spite of nonlinear friction forces. The cart displacement response is shown 

in Figure ‎5.2. As it is noticed, the cart starts from the rail edge, where x= 0.4 m , and it is 

kept within the rail limits before it is driven to the stability position . Figure ‎5.3 shows the 

control signal response, where it decayed into zero. 
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Figure ‎5.1: Pendulum angular position response for fuzzy swing-up with SMC. 

 

 

 

Figure ‎5.2: Cart position response for fuzzy swing-up with SMC. 
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Figure ‎5.3: Control voltage response for fuzzy swing-up with SMC. 

 

5.3 Fuzzy swinging up with LQR stabilization controller 

 

Pendulum angular position response under fuzzy Swing-up together with LQRC is shown 

in  
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Figure ‎5.4.  It is could be seen that the pendulum is swung up within 6 seconds before it is 

balanced in the upward position. The cart response is shown in Figure ‎5.5, where some 

oscillations could be noticed in the steady state response. Figure‎5.6 illustrates the control 

signal curve, where the system doesn’t achieve the stability within the simulation time.   

Due to friction uncertainties and system nonlinearity, LQRC could not achieve the full 

stability for CIP. 

 

Figure ‎5.4: Pendulum angular position response for fuzzy swing-up with LQRC. 
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Figure ‎5.5: Cart position response for fuzzy swing-up with LQRC. 

 

 

Figure‎5.6 : Control voltage response for fuzzy swing-up with LQRC. 
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Chapter Six 

6 Experimental results 
 

6.1 Introduction 

 

Simulation results have shown the proposed SMC validity to stabilize CIP under the 

friction forces effects. Simulation might not be enough to prove the controller effectiveness. 

Since there are many several physical parameters could not considered in the dynamic 

model e.g., backlash effects between the pinion of the DC motor and the rack, also the air 

drag force that acting on the pendulum motion, wear and viscoelastic deformation in the 

pinion and the temperature change. In the experimental work all theses limitation and the 

friction force are considered as system uncertainties. In this chapter, the proposed SMC is 

tested and compared with LQR experimentally.   

 

6.2 Experimental setup 

6.2.1 Electro- mechanical setup  

 

The experimental work has been performed with CIP model IP02 supplied by Quanser 

Limited, see Figure ‎6.1. The electromechanical setup consists of the cart-pendulum 

mechanical setup, DC motor and two incremental encoders. The encoders are used for 

sensing the pendulum angular position and the cart position with a resolution of 0.0015 

rad/count and 2.275x10
-5

 m/count, respectively. The cart slides on a stainless steel rod 
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using a linear bearing and it is driven by the DC motor via rack and pinion mechanism, as it 

is shown in Figure ‎6.2.   

 

Figure ‎6.1: CIP model IP02 

 

Figure ‎6.2: CIP cart with DC motor. 
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6.2.2 Real time controller setup 

 

The controller setup contains Personal Computers (PC) and AD/DA data accusation card         

(model Q8, 14 bit with encoder inputs). The acquisition card is supplied with a terminal 

board where the encoders are connected directly, as it is shown in Figure ‎6.3. The Control 

algorithms are realized with Matlab Simulink, Fuzzy logic tool box and QuaRC real-time 

toolbox developed by Quanser, with clock frequency 1 kHz. The output control signal is 

amplified by Quanser power module (model UPM 800) in order to be applied directly on 

the DC motor, see Figure ‎6.4. 

   

 

Figure ‎6.3: AD/DA card terminal board 

To Power 

module 

From 

Encoders 

To/From 

AD/DA Card 
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Figure ‎6.4: Power module. 

 

6.2.3 Velocity and acceleration estimation  

 

The sensed values of the pendulum angular position and the cart position suffer from 

quantization errors due to encoder’s measurements. The errors values will be enlarged in 

velocity and acceleration estimation, and affect the controller results (Han et al., 2007) . 

Thus, least square fitting algorithm is used to estimate velocities and acceleration for the 

cart and the pendulum. The velocity and acceleration values are estimated by a third order 

polynomial function. This function is established based on a least square fitting to the most 

From AD/DA 

Card Terminal 

board  

 

 

 

 

 

To DC Motor 
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recent 8 measured values of the encoder counts. This fitting technique is also known as  

(LSF 3/8)(Brown et al., 1992). Schematic diagram for the fitting process is shown in   

Figure ‎6.5 , where ΔT is the sampling time and T1→8 is the time for each sample. 

 

Figure ‎6.5: Schematic diagram for the fitting process. 

 

 

6.3 Fuzzy swinging with SMC experimental results  

 

 

For SMC real time implementation, the controller parameters are chosen to be C1=4, C2=2, 

K= , Φ = 2.2x 0
3
,  Φz =4 and Zu=0.9 . Figure ‎6.6-Figure ‎6.8 show the real implementation 

of fuzzy swing-up and with SMC. The pendulum is swung up within 6 seconds before the 

SMC is applied. The pendulum is balanced in the upward position where the stability could 
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be noticed. The cart displacement and control signal are driven near to the equilibrium 

point with small oscillation. 

 

 

Figure ‎6.6:  Experimental result for pendulum angular position with Fuzzy swing up and 

SMC. 

 

 

Figure ‎6.7:.  Experimental result for cart position for Fuzzy swing up with SMC. 
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Figure ‎6.8: Experimental result for control voltage for Fuzzy swing up with SMC. 

 

 

6.4 Fuzzy swinging with LQR experimental results 

 

 

For LQRC, the selected controller parameters are, R=diag[400 1 2500 1],  Q= 1 and the 

generated feedback gain vector KL=[-20  -21.6  124.96   23.2].  In Figure ‎6.9, the fuzzy 

swing-up is tasted with LQRC, the results show that the pendulum takes 6 second to reach 

the upward position, before the stabilization LQRC is applied. For the steady state 

response, some oscillations could be noticed in the pendulum angle response because of the 

friction effects and other uncertainty sources. In Figure ‎6.10, the cart response shows 

oscillations and steady state error. Figure ‎6.11 shows the control signal for LQRC, where a 

high overshoot values could be seen. 
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Figure ‎6.9: Experimental result for pendulum angular position with Fuzzy swing up with 

LQRC. 

 

 

                     

Figure ‎6.10:  Experimental result for cart position with Fuzzy swing up with LQRC. 
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Figure ‎6.11:  Experimental result for control voltage for Fuzzy swing up with LQRC. 
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Chapter Seven 

7 Comparison results and discussion 
 

7.1 Introduction 

 

A comparison study has been performed between the proposed SMC and LQRC. The aim 

of this comparison is to show the SMC effectiveness in achieving the stability under 

external disturbances, and in the real implementation. This comparison also shows the 

robustness of the proposed controller comparing with other published techniques 

(Chatterjee, et al., 2002; Muskinja andTovornik, 2006).   

 

7.2 Simulation comparison  

 

 In order to test the controller robustness, an external disturbance, with value of 0.1 rad and 

one second duration, has been applied after 20 seconds. The pendulum and cart responses 

are shown in Figure ‎7.1 and Figure ‎7.2, respectively. The pendulum angular response 

shows faster response for SMC and ability to reject the disturbance much more efficiently 

than LQRC. The maximum overshoot has been reduced by 30% when SMC is applied. The 

cart response shows the robustness of the SMC over LQRC where the maximum overshoot 

has been increased by 100% using LQR instead of SMC. Furthermore, in LQRC, the cart 

has exceeded the rail limits. 
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Figure ‎7.1 : Pendulum angular position response under disturbance. 

 

 

Figure ‎7.2: Cart position response under disturbance. 
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7.3 Experimental comparison  

 

  For the real implementation, SMC and LQRC steady state responses are compared. Figure 

‎7.3 clearly shows that the pendulum angle steady state oscillations are significantly 

decreased by using SMC. The maximum overshoot is only 2 encoder counts whereas it 

reaches 10 counts for LQRC. Steady state error with value of 0.04 rad could be noticed due 

to sensor resolution. The cart displacement comparison is seen in Figure ‎7.4. The steady 

state error is increased three times with LQRC and higher frequencies could be observed 

comparing with SMC. Again, it is obviously seen in Figure ‎7.5 that SMC is capable of 

stabilizing the system with less control signal noise and lower consumed power as well.       

Comparison results show the effectiveness of the proposed SMC however, more enhanced 

results could be achieved by using higher resolution sensors. For SMC, the controller 

robustness could be improved by using acceleration sensors since it is not considered in this 

controller implementation because of high noises.      

 

Figure ‎7.3: Pendulum angle experimental result. 
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Figure ‎7.4: Cart position experimental result. 

 

 

       

Figure ‎7.5:.  Control voltage experimental result. 
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Chapter Eight 

8 Conclusion and Future work 
 

8.1 Conclusion  

 

 In this study, fuzzy swing-up with sliding mode controller has been developed for 

swinging up and stabilization the cart-inverted pendulum system. In the system model, two 

third order differential equations have been derived to combine the DC motor dynamics 

with CIP mechanics in one model. For testing purpose, nonlinear friction force between the 

cart and the rail has been added to the model equation. A fuzzy swing-up controller is 

designed to swing the pendulum within the cart rail limits. The proposed controller is 

designed based on 30 fuzzy (If-Then) rules, where the controller inputs are the pendulum 

angle, the pendulum angular velocity and the cart position. Whereas, the output is the DC-

motor applied voltage. Once the pendulum reaches the upward position, the control 

algorithm gives a trigger signal to one-move switch to switch between the swinging-up and 

stabilization states. For system stabilization, SMC has been designed based on the derived 

model, where the overall system stability is guaranteed. For comparison purposes, LQRC 

has been designed to be compared with the proposed SMC.    

 

Simulation results reviled that, the proposed SMC is effective and robust. The controllers 

have been applied on a real CIP system and tested experimentally. The experimental results 

have shown a significant improvement for SMC in terms of system stability, steady state 
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error and steady state oscillations. The cart position steady state error was decreased by 

60% with low frequencies oscillation when applying SMC in place to LQRC. 

8.2 Future work 

 

Although the proposed SMC meets the study objectives, some points might be considered 

for future investigation. 

The experimental results could be improved by using accelerometers for acceleration 

sensing in order to decrease the acceleration noise, since the accelerations have been 

estimated based on least square fitting for the encoder counts. 

The proposed controller could be generalized and applied on any two degrees of freedom 

underactuated robots, two wheel mobile robot and any multi-degree of freedom under 

actuated system. In addition the controller the controller might be extended to be applied on 

a double inverted pendulum system.  

Other control algorithm like neuro-fuzzy control might be applied and compared with the 

proposed SMC. For implementation, low cost DSP real time controller instead of the real 

time PC.  
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Appendix 1 
 

DC Motor specification sheet 
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Encoder specification sheet 
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Appendix 2 
Matlab code for LQR controller 

M=0.883; 

m=0.2326; 

L=0.3302; 

I=7.88e-3; 

Ra=2.6; 

La=.18e-3; 

J=3.9e-7; 

B1=0; 

r=6.35e-3; 

b=0; 

q1=0; 

Km=0.00767; 

Ke=.00767; 

g=9.81; 

%We have this two equation to find the state feedbak gains 

% the first one is  

%Va= A*xddot + B*xdot - c*theta + D*theta dot 

% xddot = (-B/A)*xdot  + (C/A) theta - (D/A) thetadot  + (1/A) Va  

A=(r*(M+m)*(Ra/Km))   +   ((J*Ra)/(r*Km)) -  ((r*m*m*L*L*Ra)/(Km*(I+(m*L*L)))) 

B=((r*b+(B1/r))*(Ra/Km))  +  (Ke/r) 

C= (r*m*m*L*L*Ra*g)/(Km*(I+(m*L^2))) 

D= (r*m*L*Ra*q1)/(Km*(I+(m*L^2))) 

%the first equation will be  

% the second equation is  

%Va= F*thetaddot  -  G*theta + H*thetadot  + V* xdot 

F= -((r*m*L*Ra)/Km) + (((r*(M+m)*(Ra/Km))+((J*Ra)/(r*Km)))*((I+m*L^2)/(m*L))) 

G= ((r*(M+m)*(Ra/Km))+((J*Ra)/(r*Km))) * g  

H= ((r*(M+m)*(Ra/Km))+((J*Ra)/(r*Km))) * (q1/(m*L)) 

V= ((r*b+(B1/r))*(Ra/Km))  +  (Ke/r) 

%thesecond equation will be in form  

% Thetaddot= (-V/F) xdot + (G/F) theta - (H/F) thetadot + (1/F) Va  

AA=[0 1 0 0;0 (-B/A) (C/A) (-D/A) ;0 0 0 1;0 (-V/F) (G/F) (-H/F)]                   

BB=[0;(1/A)  ; 0 ; (1/F) ] 

q=[ 1/((0.05)^2) 0 0 0  ; 0 1 0 0  ;0 0 1/((0.02)^2) 0 ;0 0 0 1 ] 

r=[1/((0.5)^2)] 

k = lqr(AA,BB,q,r) 
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Appendix 3 
 

Simulink block for Fuzzy swing up with SMC controller 
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Simulink block for Fuzzy swing up with LQR controller 
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