
INTEGRATED VECTOR INSTRUCTION
TRANSLATOR AND OFFLOADING FRAMEWORK

FOR MOBILE CLOUD COMPUTING

JUNAID SHUJA

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

INTEGRATED VECTOR INSTRUCTION
TRANSLATOR AND OFFLOADING FRAMEWORK

FOR MOBILE CLOUD COMPUTING

JUNAID SHUJA

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Junaid Shuja (I.C./Passport No.: BP5183252)

Registration/Matrix No.: WHA130039

Name of Degree: Doctor of Philosophy

Title of Thesis: Integrated Vector Instruction Translator and Offloading Framework for

Mobile Cloud Computing

Field of Study: Distributed Systems

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction
of any copyright work has been disclosed expressly and sufficiently and the title of
the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copy-
right whether intentionally or otherwise, I may be subject to legal action or any other
action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:
Designation:

ii

Safri
Highlight

ABSTRACT

Mobile Cloud Computing (MCC) facilitates energy efficient operations of mobile devices

through computational offload. The mobile devices offload computations to nearby cloud

servers while limiting energy consumption in the low-power wait mode. The MCC of-

floading frameworks are enabled by system virtualization, application virtualization, and

native code migration techniques to address the heterogeneous computing architectures.

The existing MCC offloading techniques suffer from either computational or commu-

nicational overheads leading to higher execution time and energy consumption on the

cloud server. This research work addresses the overhead of conventional MCC offload-

ing frameworks while focusing on vectorized applications based on Single Instruction

Multiple Data (SIMD). We propose SIMDOM, a framework for SIMD instruction trans-

lation and offloading in heterogeneous MCC architectures. The SIMD translator utilizes

re-compilation of SIMD instructions of the mobile device (ARM architecture) that are

translated to corresponding cloud server instructions (x86 architecture). Based on inputs

from the application, network, and mobile device energy profilers, the offloader module

decides upon the feasibility of code offload. The SIMD translator is analyzed for its accu-

racy and translation overhead. The impact of code offload size, application partition, and

device sleep time is investigated on the energy and time efficiency of the mobile applica-

tions. The lower feasibility bounds for server speed and application partition are derived

from the system model. The SIMDOM framework prototype is implemented on a cloudlet

and a cloud server. Results show that SIMDOM framework provides 85.66% energy and

3.93% time efficiency compared to MCC-disabled execution. Comparison with state-of-

the-art code offloading framework reveals that SIMDOM provides 55.99% energy and

57.30% time efficiency. The SIMDOM framework provides 31.10% higher energy ef-

ficiency while translating SIMD instructions as compared to existing MCC offloading

iii

frameworks. The improvement in energy and time efficiency increases the usability of

MCC offloading frameworks for vectorized applications.

iv

ABSTRAK

Perkomputeran Awan Mudah-alih (MCC) memudahkan operasi cekap tenaga peranti

yang bergerak melalui pengiraan penurunan. Pengiraan peranti bergerak penurunan ke-

pada pelayan pelayan awan yang berdekatan sementara membataskan penggunaan tenaga

dalam mod penantian yang berkuasa rendah. Rangka kerja penurunan MCC dibolehkan

oleh system virtualisasi, aplikasi virtualisasi, dan teknik penghijrahan kod asli untuk me-

nangani arkitektur pengkomputeran yang pelbagai. Teknik penurunan MCC yang sedia

ada mengalami masalah samada dalam pengiraan atau komunikasi berlebihan yang mem-

bawa kepada masa perlaksanaan yang tinggi dan penggunaan kuasa pada pelayan awan.

Kerja penyelidikan ini mengemukakan rangka kerja penurunan MCC konvensional le-

bihan ketika menumpukan pada aplikasi divektorkan berdasarkan Data Beberapa Arahan

Dalam Satu (SIMD). Kami mencadangkan SIMDOM, satu rangka kerja bagi terjemahan

arahan SIMD dan penurunan dalam seni bina MCC yang pelbagai. Penterjemah SIMD

menggunakan penyusunan semula arahan-arahan SIMD dalam peranti bergerak (seni bi-

na ARM) yang diterjemahkan untuk menjawab arahan-arahan pelayan awan (seni bina

x86). Berdasarkan input dari aplikasi, rangkaian, dan tenaga peranti bergerak, modul

penurunan memutuskan di atas kemungkinan kod yang menurunkan. Penterjemah SIMD

dianalisa untuk ketepatan dan berlehihan terjemahan. Kesan daripada kod saiz code penu-

runan, menurunkan saiz, sekatan aplikasi, dan waktu tidur peranti disiasat pada kecekapan

tenaga dan masa aplikasi mudah alih. Kemungkinan yang rendah sempadan dan untuk

kelajuan pelayan dan sekatan aplikasi timbul dari model sistem. Keputusan menunjukkan

ranga kerja SIMDOM menyediakan tenaga 85.66% dan 3.93% masa efisien dibandingkan

dengan perlaksanaan MCC yang tidak digunakan. Perbandingan dengna kod penurunan

rangka kerja menemukan SIMDOM menyediakan 55.99% tenaga dan 57.30% masa yang

efisien. Rangka kerja SIMDOM menyediakan 31.10% tenaga efisien yang lebih tinggi

v

sementara menterjemahkan arahan SIMD jika dibandingkan dengan rangka kerja MCC

yang sedia ada. Penambahbaikan dalam tenaga dan masa yang efisien menambahkan

kepenggunaan penurunan rangka kerja MCC untuk aplikasi yang divektorkan.

vi

ACKNOWLEDGEMENTS

ALLAH Almighty provides the courage, knowledge, and resources to every human being

in this world. I am thankful to ALLAH Almighty for blessing me in every form of human

quality such that I have reached this point of life and completed my Ph.D. thesis.

I am thankful to my supervisors, family, and friends who have supported and en-

couraged me through difficult times of life. I am highly thankful to my supervisor, Prof.

Dr. Abdullah Gani, who took me under his guidance and provided me his support for

the completion of my Ph.D. After the early struggles in my Ph.D., I knew that only one

supervisor could guide me through this difficult phase of life. I am also thankful to Dr.

Anjum Naveed, who provided the technical guidance and ideas that form the crux of this

thesis. I was lost in ideas of mobile virtualization when Dr. Anjum advised me to work

on SIMD instructions and ARM emulation for my research.

I would also like to thank my fellow lab mates from whom I have consulted on

various technical issues. In particular, I would like to thank Abdullah, Wasim, and Dr.

Ejaz. My family has been a source of inspiration for me. I dearly want my grandmother,

mother, daughter, and wife to share the prosperous and happy days of my life with me.

Through all the difficult times, I have imagined care-free days of enjoying my time with

my family as an inspiration for hard work. I am also thankful for their support and prayers.

My college friends have been the bond of my life. They provide me hope for future

meaningful conversations and adventurous outings. I am also thankful to the FSKTM

support staff at WISMA RND and University for lending their support and resources.

Last but not the least, I am thankful to the BrightSpark Program for financially sup-

porting me throughout my Ph.D. tenure. Their strict KPI’s were a blessing in disguise

that enabled me to publish multiple Tier-1 articles as the first author.

vii

To my Family,
especially Aqsa

viii

TABLE OF CONTENTS

Abstract iii

Abstrak v

Acknowledgements vii

Dedication viii

Table of Contents ix

List of Figures xiii

List of Tables xv

List of Appendices xvi

CHAPTER 1: INTRODUCTION 1
1.1 Background 2
1.2 Motivation 3
1.3 Statement of The Problem 5
1.4 Statement of Objectives 7
1.5 Research Methodology 7
1.6 Thesis Layout 9

CHAPTER 2: OFFLOADING FRAMEWORKS IN MCC 13
2.1 MCC Architecture and Computational Offload 14

2.1.1 MCC Offload Enabling Techniques 17
2.1.1.1 System Virtualization 17
2.1.1.2 Application Virtualization 18
2.1.1.3 Native Code Migration 19

2.1.2 Cloud Augmentation for MCC Offloading Frameworks 19
2.2 MCC Offloading Frameworks 21

2.2.1 Taxonomy of MCC Offloading Frameworks 21
2.2.2 Review of MCC Offloading Frameworks 24

2.2.2.1 System Virtualization based MCC Frameworks 24
2.2.2.2 Application Virtualization based MCC Frameworks 26
2.2.2.3 Native Code Migration based MCC Frameworks 28

2.2.3 Comparison of MCC Frameworks 29
2.3 ARM Emulation Techniques 31

2.3.1 Applications of ARM Emulation Techniques 32
2.3.2 Taxonomy of ARM Emulation Techniques 33
2.3.3 Review of ARM Emulation Techniques 35

2.3.3.1 Qemu 35
2.3.3.2 Gem5 36
2.3.3.3 PQEMU 37
2.3.3.4 HQEMU 38

ix

2.3.3.5 Trace-driven approach for gem5 39
2.3.3.6 Client/server DBT 40
2.3.3.7 Retargetable Static Binary Translation 40

2.3.4 Comparison of ARM Emulation Techniques 41
2.4 SIMD Instruction Porting Techniques 42

2.4.1 Application of SIMD Instructions 43
2.4.2 Taxonomy of SIMD Porting Techniques 45
2.4.3 Review of SIMD Porting Techniques 47

2.4.3.1 FREERIDER 48
2.4.3.2 IDISA+ 48
2.4.3.3 Improving SIMD Instruction Generation in DBT 49
2.4.3.4 Liquid SIMD 50
2.4.3.5 Optimizing DBT of SIMD 51
2.4.3.6 VaporSIMD 51
2.4.3.7 Speeding up SIMD DBT 52
2.4.3.8 MC2LLVM 53

2.4.4 Comparison of SIMD Porting Techniques 54
2.5 Open Research Issues 55

2.5.1 MCC Code Offloading Challenges for Native Applications 56
2.5.2 ARM DBT Challenges 57
2.5.3 SIMD Porting Challenges 58

2.6 Conclusion 59

CHAPTER 3: PERFORMANCE ANALYSIS OF MCC OFFLOADING
TECHNIQUES 61

3.1 Background 62
3.2 Experiments: Performance Analysis of MCC Offload Enabling Techniques 63

3.2.1 Application Benchmarks 64
3.2.2 Devices 66

3.3 Experimental Results 68
3.3.1 System Virtualization 68

3.3.1.1 Multimedia Benchmarks 69
3.3.1.2 Phoronix Test Suite 70

3.3.2 Application Virtualization 71
3.3.2.1 Multimedia Benchmark 71
3.3.2.2 Scimark Benchmark 73
3.3.2.3 Dalvik Compilation Method Optimization 74

3.3.3 ARM ISA Emulators 76
3.3.3.1 System Call Emulation 76
3.3.3.2 Full System Emulation 77
3.3.3.3 ARM to Intel Atom Emulation 79

3.4 Case for SIMD Instruction Optimizations 81
3.4.1 Mathlib 82
3.4.2 Linpack 83
3.4.3 Speed 84
3.4.4 FFT 86

3.5 Discussion 87
3.6 Conclusion 90

x

CHAPTER 4: A FRAMEWORK FOR SIMD INSTRUCTION
TRANSLATION AND OFFLOADING IN MCC: SIMDOM 91

4.1 SIMDOM Framework 91
4.1.1 SIMDOM Features 92
4.1.2 System Architecture 92
4.1.3 Assumptions 93

4.2 Components of SIMDOM 94
4.2.1 SIMD Profiles 94
4.2.2 SIMD Translator 95
4.2.3 Application Profiler 100
4.2.4 Energy Profiler 102
4.2.5 Network Profiler 103
4.2.6 Offload Manager 103

4.3 System Model 104
4.4 SIMDOM Algorithm 108
4.5 Conclusion 110

CHAPTER 5: EVALUATION 112
5.1 Evaluation Process 112

5.1.1 Experimental Setup 113
5.1.2 Experimental Devices 114
5.1.3 Application Benchmarks 115

5.1.3.1 Mathlib 116
5.1.3.2 Linpack 117
5.1.3.3 Speed 117
5.1.3.4 FFT 117

5.2 Data Collection for Model Validation 118
5.2.1 Idle Power 119
5.2.2 Computing Power 120
5.2.3 Wi-Fi Power 121
5.2.4 Wi-Fi Throughput 122
5.2.5 Application Instructions 123
5.2.6 Computational Power and CPI 124

5.3 Data Collection and Analysis of SIMD Translator 125
5.3.1 Active Instructions 125
5.3.2 Semantic Accuracy 126
5.3.3 Overhead of SIMD Translator 127

5.4 Data Collection and Analysis of Application Profiler 130
5.4.1 Static Code Analysis 130
5.4.2 Overhead of Application Profiler 133

5.5 Model Bounds 135
5.5.1 Bounds for Application Partitioning 135
5.5.2 Bounds for Server Speed 137

5.6 Case Studies 138
5.6.1 Case Study: System Virtualization 138
5.6.2 Case Study: Application Virtualization 140

5.7 Conclusion 141

xi

CHAPTER 6: RESULTS AND DISCUSSION 143
6.1 Framework Validation 144

6.1.1 Energy 144
6.1.2 Execution Time 146

6.2 Comparison of SIMDOM for Application Benchmarks 147
6.2.1 Energy 147
6.2.2 Execution Time 148
6.2.3 Performance Gain 149

6.3 Comparison of SIMDOM with Qemu Offloading Framework 150
6.3.1 Energy 151

6.3.1.1 Energy Distribution 154
6.3.1.2 Impact of Sleep Time 155
6.3.1.3 Impact of Application Partitioning 161
6.3.1.4 Impact of Computational Size 164

6.3.2 Execution Time 166
6.3.2.1 Time Distribution 168
6.3.2.2 Impact of Application Partitioning 169
6.3.2.3 Impact of Computational Size 171

6.3.3 Performance Gain 173
6.4 Conclusion 175

CHAPTER 7: CONCLUSION 177
7.1 Research Objectives 177
7.2 Contributions 180
7.3 Significance of The Work 181
7.4 Scope and Limitations 182
7.5 Future Work 182

References 184

Appendices 192

xii

LIST OF FIGURES

Figure 1.1: Distribution of Mobile Data Traffic Among Applications From
2014 To 2019 4

Figure 1.2: Proposed Research Methodology 8

Figure 2.1: Generic Architecture of MCC Offloading 15
Figure 2.2: Process Diagram of Computational Offload 16
Figure 2.3: MCC Offload Enabling Techniques 20
Figure 2.4: Taxonomy of MCC Offloading Frameworks 22
Figure 2.5: Taxonomy of ARM Emulation Techniques 33
Figure 2.6: High Level Architectural Diagram of Qemu 36
Figure 2.7: SIMD vs Scalar Instructions 44
Figure 2.8: Taxonomy of SIMD Porting Techniques 46
Figure 2.9: SIMD Code: Scalar, ARM NEON and Intel SSE Instructions 47

Figure 3.1: System Virtualization Evaluation with Multimedia Benchmarks 69
Figure 3.2: Application Virtualization Evaluation with Linpack: Performance

in MFLOPS 72
Figure 3.3: Application Virtualization Evaluation with Linpack: Execution Time 73
Figure 3.4: Application Virtualization Evaluation with Scimark Benchmark:

MFLOPS Performance 74
Figure 3.5: Java and Native C MWIPS Comparison for Upstream Android

Versions: Performance in MWIPS 75
Figure 3.6: ARM and x86 based Android Framework 79
Figure 3.7: ARM to Intel Translation Overhead: Performance in MWIPS 80
Figure 3.8: Speed and SpeedSIMD Comparison on Physical and Emulated Systems 85
Figure 3.9: FFT and FFTSIMD Comparison on Physical and Emulated Systems 86

Figure 4.1: SIMDOM: A Framework for SIMD Instruction Based Multimedia
Application Offloading in MCC 93

Figure 4.2: SIMD Translator: Sample Code for Case 1: One-to-One Vector
Mapping 98

Figure 4.3: SIMD Translator: Sample Code for Case 2: One-to-Many Vector
Mapping 99

Figure 4.4: SIMD Translator: Sample Code for Case 3: Serial Implementation
with One-to-Many Vector/Scalar Mapping 99

Figure 4.5: Flow Diagram of SIMDOM: A Framework for Pre-compiled
Multimedia Application Offload 109

Figure 5.1: Experimental Setup for Evaluation of SIMDOM Framework 114
Figure 5.2: Experimental setup for measurement of energy coefficients 119
Figure 5.3: SIMD Translator Overhead on Cloudlet: Comparison of Compilers 128
Figure 5.4: SIMD Translator Overhead on Cloud: Comparison of Compilers 129
Figure 5.5: Analysis of ARM GCC and LLVM\Clang Compilers for

Application Benchmarks 131
Figure 5.6: Analysis of x86 GCC and LLVM\Clang Compilers for

Application Benchmarks 131
Figure 5.7: Application Profiler Overhead on Cloudlet 134
Figure 5.8: Application Profiler Overhead on Cloud 134

xiii

Figure 6.1: Mathematical Validation of SIMDOM Framework for FFT
Benchmark: Energy Consumption 145

Figure 6.2: Mathematical Validation of SIMDOM Framework for FFT
Benchmark: Execution Time 146

Figure 6.3: Comparison of SIMDOM Framework for Application
Benchmarks: Energy Consumption 148

Figure 6.4: Comparison of SIMDOM Framework for Application
Benchmarks: Execution Time 149

Figure 6.5: Comparison of SIMDOM Framework for Application
Benchmarks: MFLOPS Performance 150

Figure 6.6: Energy Consumption: LCD Sleep Time = 0 152
Figure 6.7: Energy Distribution: LCD Sleep Time = 0 154
Figure 6.8: Energy Consumption: Sleep Time = 15s 156
Figure 6.9: Energy Consumption: Sleep Time = 30s 158
Figure 6.10: Energy Consumption: Sleep Time = 60s 159
Figure 6.11: Energy Consumption: The Case of Application Partition 162
Figure 6.12: Energy Distribution: The Case of Application Partition 163
Figure 6.13: Energy Consumption: Linpack Benchmark on Variable Input

Matrices of Size N ∗N 165
Figure 6.14: Execution Time of Evaluated Benchmark Applications 166
Figure 6.15: Execution Time Distribution of The Evaluated Application Benchmarks169
Figure 6.16: Execution Time: The Case of Application Partition 170
Figure 6.17: Execution Time of Linpack Benchmark on Variable Input Matrices

of Size N ∗N 172
Figure 6.18: Performance of Linpack Benchmark on Variable Input Matrices of

Size N ∗N 173

xiv

LIST OF TABLES

Table 1.1: Thesis Layout 10

Table 2.1: Comparison of MCC Offloading Frameworks 29
Table 2.2: Comparison of ARM Emulation Techniques 41
Table 2.3: Comparison of SIMD Porting Techniques 54

Table 3.1: Experimental Devices for Problem Analysis 67
Table 3.2: System Virtualization Evaluation with Phoronix Test Suite 70
Table 3.3: System Call Emulation Performance: Execution Time 77
Table 3.4: Full System Emulation Performance: Execution Time 78
Table 3.5: Mathlib and MathlibSIMD Comparison on Physical and Emulated

Systems 82
Table 3.6: Linpack and LinpackSIMD Comparison on Physical and Emulated

Systems 83

Table 4.1: Symbol Table 105

Table 5.1: Experimental Devices 114
Table 5.2: Application Benchmarks 118
Table 5.3: Experimental Evaluation for pi 120
Table 5.4: Experimental Evaluation for pm 120
Table 5.5: Experimental Evaluation for pc 121
Table 5.6: Experimental Evaluation for RTT and Throughput 122
Table 5.7: Experimental Evaluation for l 123
Table 5.8: Data Collection for SIMD Translator: ARMv-7 Active NEON

Instructions 126
Table 5.9: NEON Math Library: Semantic Analysis of SIMD Translator 127
Table 5.10: Energy Consumption of System Virtualization Based MCC

Offloading Techniques 139
Table 5.11: Energy Consumption of Application Virtualization Based MCC

Offloading Techniques 141

xv

LIST OF APPENDICES

Appendix A: List of Publications 192

Appendix B: Sample Code For Linpack and LinpackSIMD Benchmarks 195

xvi

CHAPTER 1: INTRODUCTION

The advances in mobile devices and wireless technology have led to a paradigm shift

from static computing to mobile computing. The smart mobile devices provide users

with reasonable computational power within the constraints of size and battery. Smart-

phone users can perform tasks and execute applications on the modern mobile devices

that were previously only feasible on desktop and server systems. The mobile devices

still remain resource-scarce compared to server devices. The mobile devices have sev-

eral communication interfaces that allow them to offload or migrate large computations

to nearby cloud servers. The task offloading saves the mobile device energy and provides

efficient execution time. The extension of cloud resources to the mobile device for task

offloading is known as Mobile Cloud Computing (MCC).

MCC facilitates resource-scarce mobile devices to utilize resource-rich cloud server.

The mobile user provides the input to the application and the rest of computations are

performed on the cloud server. Meanwhile, the mobile device waits in low-power energy

saving state. Mobile applications are not directly executable on the cloud servers due to

the heterogeneity of computing architectures. This research work addresses the challenge

of computational offload in heterogeneous MCC computing architectures.

This chapter introduces the foundations of the research work carried out in the thesis.

The background of the primary research domain, MCC, is provided. Key motivations in

undertaking the research problem of the thesis are described. The research problem is

emphasized in the form of statements of the problem. Research aim and objectives are

highlighted in the domain of MCC. Moreover, the research methodology employed to

solve the research problem is presented.

The structure of the rest of the chapter is as follows. Section 1.1 provides the back-

ground knowledge of the field of research. Section 1.2 explains the motivations for inspir-

1

ing the research presented in this thesis. In Section 1.3, the statement of research problem

is elaborated. Section 1.4 presents the research aim and objectives. In Section 1.5, the

research methodology followed to solve the research problem is defined. At last, Sec-

tion 1.6 presents the layout of the rest of the thesis.

1.1 Background

Smartphones and mobile devices have emerged as a new computational platform over the

last decade known as Mobile Computing (MC). The paradigm of MC has been possible

due to rapid increase in the processing power and wireless access technology for mobile

devices. Modern handheld and mobile devices, known as smartphones due to their ca-

pabilities, have equivalent processing power as some of the desktop systems. However,

modern smartphones still lag behind in performance due to battery and size constraints

when compared to server devices (Satyanarayanan et al., 2015).

The performance of the mobile devices can be enhanced with Mobile Cloud Com-

puting (MCC). MCC is an operational integration of mobile and cloud computing tech-

nologies. Cloud computing offers vast resources of computation and storage that can be

augmented with resource constrained smartphones (Kumar & Lu, 2010). In MCC, the

majority of tasks are offloaded from the smartphone to the cloud. The cloud then per-

forms the required computations and sends back the result to the smartphone over the

communication interfaces. Mobile and cloud server hardware architectures are hetero-

geneous. Intel x86 based processors dominate the server market while ARM Instruction

Set Architecture (ISA) based processors power 90% of smartphones (Shuja, Gani, Bilal,

et al., 2016). Therefore, code offloaded from mobile device to the cloud server requires

Dynamic Binary Translation (DBT) due to the heterogeneity of underlying hardware ar-

chitectures. The DBT of an application translates its code from one hardware architecture

to another. However, significant overhead is incurred during the process of DBT (Hsu,

2

Hong, Hsu, Liu, & Wu, 2015). Other than DBT, system and application virtualization are

also employed as MCC offload enabling techniques for heterogeneous hardware architec-

tures (Ahmed, Gani, Sookhak, Ab Hamid, & Xia, 2015).

A number of compute-intensive applications, such as augmented reality, nat-

ural language translation, object, voice recognition, and multimedia-based software

are dependent on MCC due to resource scarcity of smartphones. Popular multime-

dia based smartphone applications are; (a) cloud storage (store retrieve files, photos,

videos e.g., Instagram, Facebook) and (b) audio video streaming e.g., YouTube, Sound-

Cloud (Satyanarayanan et al., 2015).

Multimedia based applications rely on Single Instruction Multiple Data (SIMD)

commonly known as vector instructions. SIMD instructions are a hardware capability that

allows execution of the same operation on multiple data points simultaneously. For exam-

ple, the change in brightness of a picture requires retrieving of N pixels and ADD/SUB

operation on the N pixels. The utilization of SIMD instructions significantly boosts the

performance of applications. Up to 25-50% of the code of multimedia based applications

can be SIMD instructions (Mitra, Johnston, Rendell, McCreath, & Zhou, 2013). SIMD

instructions and intrinsics vary from one ISA to another. Applications programmed with

SIMD instructions are not portable and executable on heterogeneous ISAs. Therefore,

SIMD instruction translation techniques are required to enable vectorized multimedia

applications to offload between heterogeneous MCC architectures (Manilov, Franke, Ma-

grath, & Andrieu, 2015).

1.2 Motivation

MCC is a rapidly growing technology in terms of both commercial applications and re-

search work. Over the past five years, mobile cloud computing has grown exponentially

from its inception to current vast research and application development industry. It is pre-

3

Figure 1.1: Distribution of Mobile Data Traffic Among Applications From 2014 To 2019

dicted that the mobile cloud market will grow to over $46.90 billion by 2019. Similarly,

mobile data traffic grew 74% globally in 2015. It is predicted that out of total mobile

data traffic, the cloud-based traffic will increase from 81% in 2014 to 90% in 2019. It

is estimated that 75% of total data accessed through the mobile networks by 2020 will

be of multimedia applications (Statista, 2015; Cisco, 2015). To limit the energy con-

sumption of increasing multimedia content on mobile devices, computational offloading

techniques are unavoidable. Offloaded mobile applications execute seamlessly over the

cloud servers while providing energy and execution time efficiency to the mobile users.

Figure 1.1 shows the increasing multimedia content share in mobile traffic that motivates

the development of computational offloading frameworks for multimedia applications.

Specialized hardware known as vector processors and corresponding instruction sets

are devised to adapt to the computational demands of multimedia applications. The vec-

tor processors increase the energy consumption of mobile devices due to their data and

compute intensity. Therefore, vector instructions are offloaded to the cloud server while

limiting local execution on energy-constrained mobile devices. The offloading requires

that vector instructions are cross-platform compatible. In reality, vector instructions are

platform-dependent and vary from one ISA to another. Hence, a vector instruction based

application programmed for one architecture is often not executable on another (Fu, Wu,

4

Liu, Hong, & Hsu, 2015). The challenge of offloading and seamless execution of vector-

ized smartphone applications on cloud servers for energy efficiency drives and motivates

this research work.

1.3 Statement of The Problem

Multiple techniques enable offloading of computations between heterogeneous MCC

architectures. These techniques are (a) system virtualization, (b) application virtualiza-

tion, and (c) process or native code migration (Shuja, Gani, Naveed, Ahmed, & Hsu,

2016). System virtualization addresses the heterogeneity of MCC architectures through

abstraction and migration of a full virtual machine (VM) instance. The network over-

head of VM migrations is very high for mobile devices. Due to high network latency,

system virtualization based MCC offloading is not deemed feasible for most of the mo-

bile networks (Satyanarayanan, 2015). On the contrary, application virtualization has

high computational overhead. Application virtualization techniques, such as Java-based

Dalvik VM of Android leads to low performing code as compared to native code. The

Dalvik code is interpreted to bytecode that is platform-independent and can be executed

on any Java-based VM. The intermediate bytecode translations of Dalvik VM and their

platform-specific compilations lead to computational overhead. Hence, application vir-

tualization is also not favorable for compute-intensive vectorized applications (Oh, Kim,

Choi, & Moon, 2012).

Compiled or pre-compiled native code can be migrated from the smartphone to the

cloud server. The heterogeneity of the architectures demands Dynamic Binary Translation

(DBT) of the compiled code at the cloud server. The DBT process can slow the execution

of the code by large factors due to the overhead of instruction translation (Nimmakayala,

2015). Moreover, DBT techniques often translate vector instructions to scalar instruc-

tions, hence, losing the advantage of vectorization. On the contrary, native pre-compiled

5

code based MCC offloading techniques require re-compilation and translation of mobile-

based libraries to server-based libraries. In the case of vectorized multimedia applications,

it is necessary to translate and map the SIMD instruction library of the mobile device to

the cloud server (Shuja, Gani, Naveed, et al., 2016).

Most of the current state-of-the-art MCC offloading frameworks are dependent on

system and application virtualization while addressing the requirements of heterogeneous

computing architectures (Ahmed, Gani, Khan, Buyya, & Khan, 2015). Less frequently,

compiled code migration is utilized to offload computations from the mobile device to

the cloud server (G. Lee et al., 2015). Vectorized applications require specialized tech-

niques for cross-platform execution of SIMD instructions. An efficient MCC offloading

framework that translates and maps guest vector instructions to corresponding target vec-

tor instructions such that the vectorized applications retain their performance needs to be

developed. Based on the aforementioned discussion, we can state that the problem of

efficient SIMD translations in an MCC offloading framework has not been the focus of

research. The research gap discussed above leads to the problem statement of this thesis.

MCC technologies empower applications to execute efficiently over cloud servers.

Applications rich with SIMD instructions increase the performance of smartphones.

Generic MCC frameworks do not address the heterogeneity of computing architectures

for efficient translation of SIMD instructions. MCC offloading frameworks lead to higher

computational overhead and inefficient vector-to-scalar translations of SIMD instruc-

tions. In MCC offloading frameworks, vector instructions that can be executed in one

cycle are translated to scalar instructions that take several cycles. This leads to increased

execution time and energy consumption on the cloud server as the applications require

more instruction cycles when offloaded to the cloud. As a result, the overall performance

of vectorized multimedia applications degrades in MCC offloading frameworks.

6

1.4 Statement of Objectives

In this thesis, the problem of inefficient SIMD instruction translations in MCC offloading

frameworks is addressed. The aim of our research is to enhance energy and time efficiency

of pre-compiled code based MCC offloading frameworks through efficient translation of

offloaded SIMD instructions. The objectives of this research are as follows.

• To study the MCC offloading frameworks from the perspective of offload enabling

techniques to gain insights to the performance limitations of current state-of-the-art

solutions.

• To investigate the overhead of MCC offload enabling techniques to reveal ineffi-

ciency in SIMD instruction translations.

• To design and develop an MCC offloading framework based on dynamic mapping

of SIMD instructions that supports heterogeneity of computing architectures while

providing energy and time efficiency to mobile devices.

• To evaluate the proposed framework for energy and time efficiency and compare it

with the state-of-the-art MCC code offloading frameworks.

1.5 Research Methodology

The research carried out in this thesis can be divided into four main phases according

to the four objectives defined in Section 1.4. Figure 1.2 illustrates the proposed research

methodology along with the details of the research objectives corresponding to each phase

of research.

The state-of-the-art MCC offloading frameworks with an emphasize on native code

offloading are reviewed in the first phase. The MCC offloading frameworks are classified

based on the offload enabling techniques for heterogeneous computing architectures. Fur-

ther, the MCC offload enabling techniques are classified as, (a) system virtualization, (b)

7

Figure 1.2: Proposed Research Methodology

application virtualization, and (c) native code migration. The qualitative assessment of the

MCC offload enabling techniques sheds light on the computational overhead of applica-

tion virtualization based solutions and communicational overheads of system virtualiza-

tion based solutions. Therefore, native code offloading frameworks and the optimization

of DBT process are further reviewed. In particular, the translation and porting techniques

for SIMD instructions are debated. Through a comprehensive literature review, the re-

search issue of native code offloading for SIMD instruction based applications in MCC is

identified.

The second phase of this research involves the investigation and performance eval-

uation of MCC offload enabling techniques, namely, system virtualization, application

virtualization, and DBT for compiled code migration. Multimedia benchmarks are uti-

lized in the performance evaluation to investigate the overheads of the MCC offload en-

abling techniques. The evaluation is exercised to reveal the application execution time

8

and performance of the MCC offload enabling techniques.

The third phase of this research work proposes SIMD instruction translation and of-

floading framework, SIMDOM, that enables execution of applications on heterogeneous

cloud and mobile architectures. Based on the SIMD translator algorithm, a native code

based MCC offloading framework and corresponding system model are formulated. The

basic objective of the SIMDOM framework is to reduce the energy consumption of the

mobile device while cyber-foraging computations to nearby cloud servers. To reduce

the computational and communicational overhead of offloading, SIMDOM framework

focuses on native code offloading and addresses the heterogeneity of the guest and host

architectures through re-compilation and vector-to-vector instruction translations.

The SIMD translator based SIMDOM offloading framework is evaluated in the last

phase of our research. The basic implementation of the SIMD translator is concerned with

translating and mapping ARM SIMD instructions to the corresponding x86 SIMD instruc-

tions. SIMD to scalar translations are avoided as they degrade the overall performance

of the system. A mathematical model is proposed to derive the energy and execution

time efficiency of the framework. The mathematical model is validated by experimental

results. Moreover, the effectiveness of the framework for SIMD instruction translation

and offloading is verified based on the energy, execution time, and performance param-

eters. Furthermore, the framework performance is compared with state-of-the-art code

offloading and translation frameworks in MCC.

1.6 Thesis Layout

This research entitled, "Integrated Vector Instruction Translator and Offloading Frame-

work for Mobile Cloud Computing" comprises of an extensive study. Therefore, the

thesis is divided into chapters for reader understandability. The thesis layout is expressed

in Table 1.1.

9

Table 1.1: Thesis Layout

Chapter Why How

Introduction (a) To emphasize the motivation for re-
search

(a) By stating the rational for undertaking
the research

(b) To state the problem and objectives (b) By formally writing the statement of
problem and statement of objectives
(c) Present the thesis organization

Literature re-
view

(a) To classify and investigate the strengths
and weaknesses of the state-of-the-art liter-
ature

(a) By critical analysis of the existing
frameworks

(b) To identify the open issues (b) By formulation of the taxonomy and
comparison based on the taxonomy

Problem anal-
ysis

(a) To investigate the severity of the over-
head of existing MCC offload enabling
techniques

(a) By performance analysis of MCC of-
fload enabling techniques on multimedia
benchmarks

(b) To identify the impact of SIMD instruc-
tions and their translations on application
performance

(b) By analyzing performance of vector
and SIMD-based benchmarks

SIMDOM
framework

(a) To provide details of SIMDOM frame-
work, algorithms, and system model

(a) By providing pseudo code of the SIMD
translator and offloading frameworks

Evaluation (a) To discuss the framework evaluation
parameters and their analysis

(a) By explaining the methods and tools
utilized in data collection

(b) To detail the data collection methodol-
ogy

(b) By reporting and analyzing collected
data

Results and
discussion

(a) To highlight the effectiveness of the
proposed solution by analyzing the experi-
mental results

(a) By discussing the insights gained from
the experimental results

(b) To verify and validate the experimental
results

(b) By comparing the SIMDOM frame-
work with state-of-the-art native code
offloading and translation frameworks
(Qemu)
(c) By comparing experimental results
with the mathematical model

Conclusion (a) To summarize the findings of the re-
search work and stress the significance of
the proposed solution

(a) By re-examination of the research ob-
jectives

(b) To discuss the limitations of the re-
search work and propose future directions
of the research

Chapter 2 presents the literature review for MCC offloading frameworks and offload

enabling techniques. We emphasize on native code offloading techniques that provide

lower offloading overhead. Moreover, techniques for cross-platform translation of SIMD

instructions in heterogeneous MCC architectures are focused. Qualitative comparison

and critical analysis in the aforementioned research directions based on the parameters

derived from the corresponding taxonomies is provided. The research issues highlighted

by the literature review reveal the need for a framework for cross-platform execution of

10

SIMD instructions in heterogeneous MCC architectures.

Chapter 3 reports the performance evaluation of MCC offload enabling techniques.

Vectorized benchmarks are utilized in most of the experiments to determine the overhead

of MCC offload enabling techniques. The computational overhead of system virtualiza-

tion (VirtualBox), application virtualization (Dalvik), and DBT (Qemu) is analyzed to

gather insights to the performance limitations of the MCC offload enabling techniques.

The analysis shows that the existing MCC offloading techniques have either high compu-

tational or high communicational overhead. Moreover, the performance gain for SIMD

instruction based native applications and their cross-platform translations are analyzed.

Chapter 4 describes the SIMDOM framework for translation and offloading of

SIMD instruction based vectorized applications in MCC. Each module of the SIMDOM

framework is described in detail with appropriate examples. Pseudo codes of the SIMD

translator and offloading frameworks are also described. Furthermore, a system model

for the SIMDOM framework is formulated in terms of energy optimizations.

Chapter 5 reports on the evaluation methodology for the SIMDOM framework.

The experimental setup is described with accompanying devices and vector application

benchmarks. The data collection methodology regarding experimental and mathematical

model parameters is described. Moreover, SIMD translator is analyzed for accuracy while

application profiler is analyzed for overhead in terms of execution time. Furthermore, case

studies are provided to derive the communicational overhead of system and application

virtualization based MCC offloading techniques.

Chapter 6 presents the results of experimental evaluation of the SIMDOM frame-

work to prove its significance and efficiency. The experimental evaluation is based on two

primary parameters, i.e., energy and execution time. The SIMDOM framework is com-

pared with the native code offloading and translation framework of Qemu. Moreover, the

SIMDOM framework is analyzed on varying values of system parameters, such as device

11

sleep time and benchmark size. Furthermore, the system model of SIMDOM framework

is validated with experimental data.

Chapter 7 concludes this research work by re-visiting the research objectives. The

chapter summarizes the contributions of this research work, highlights its significance,

and lists its limitations. Moreover, future research directions are provided.

12

CHAPTER 2: OFFLOADING FRAMEWORKS IN MCC

This chapter presents a literature review on the native code offloading frameworks in

MCC targeting vectorized multimedia applications. The purpose of this chapter is to

detail the literature work related to our problem domain and to identify the potential

research issues in the field of MCC native code offloading frameworks. The primary

research issue identified through the literature review is that the cross-platform translation

of native code in current MCC frameworks is not efficient. The taxonomies are devised

with reference to the MCC offloading frameworks, native code cross-platform translation,

and SIMD instruction porting techniques. Qualitative comparison of the state-of-the-art

research works is detailed in each section. The chapter also provides the basic knowledge

of the technical elements found in the thesis, such as the MCC architecture, computational

offloading, DBT techniques, and SIMD instructions.

In Section 2.1 we describe the architecture of a generic MCC framework, the process

of computational offload, and the MCC offload enabling techniques. Rest of the sections

are divided into three subsections, i.e., taxonomy, review, and comparison of the state-

of-the-art research works. Section 2.2 provides a survey of the MCC offload enabling

techniques from the perspective of system virtualization, application virtualization, and

native code migration. We focus on native code migration and survey the techniques

of DBT for cross-platform code migration between heterogeneous ISAs in Section 2.3.

We also discuss the DBT optimization techniques in this regard. In Section 2.4, we fo-

cus on DBT and porting of SIMD instructions that are commonly found in multimedia

applications. We list the studies that focus on porting of SIMD instructions across hetero-

geneous ISAs. Section 2.5 lists the identified research issues in current MCC offloading,

DBT optimization, and SIMD instructions translation techniques. Section 2.6 provides

the concluding remarks.

13

2.1 MCC Architecture and Computational Offload

The MCC paradigms functions in two major directions. Firstly, cloud computing tech-

nologies can enhance mobile features with cloud augmented applications. The major

examples of such applications are cloud enabled email services (Gmail), social media

applications (Facebook), and messaging applications (WhatsApp). Secondly, resource

intensive applications can utilize offloading techniques to migrate application instances

to a cloud server. The computational offloading is also termed is cyber-foraging (Balan,

Gergle, Satyanarayanan, & Herbsleb, 2007). The major focus of this study is the com-

putational offloading based MCC techniques that offload vectorized applications from

resource-scarce mobile devices to resource-rich cloud servers.

Over the past decade, cloud computing technologies have gained immense popular-

ity due to the underlying virtualization and pay-as-you-go model. The cloud services are

hosted in large-scale data centers that house thousands of processing and storage devices

with high energy requirements (Shuja, Bilal, et al., 2016). On the contrary, the primary

goal of modern mobile devices is to provide end-users with interactive features within

the constraints of limited battery, computation power, and limited network accessibility.

However, smartphone applications, such as voice recognition, augmented reality, and per-

sonal health monitoring are pushing the boundary of computational power and testing the

long-term battery operations (Shuja, Gani, Naveed, et al., 2016).

Modern mobile devices are multicore, with gigabytes of memory and gigahertz of

computational power. Still, smartphones are and will always remain resource-constrained

as compared to desktop systems and cloud servers. For example, the latest server

(Xeon E5) is ten times more powerful than the latest smartphone device (Samsung

S5) (Satyanarayanan, 2015). While the absolute ability of mobile devices will in-

crease over the years, their relative ability compared to cloud servers will remain low.

14

Figure 2.1: Generic Architecture of MCC Offloading

Cloud Data Centers (CDC) are an ideal candidate for augmentation with mobile devices.

CDCs comprise of thousands of server, storage, and network devices interconnected with

each other to provide pay-as-you-go business model to end users (Rehman, Liew, Wah,

Shuja, & Daghighi, 2015). Keeping in view the resource scarcity of mobile devices,

the paradigm of Mobile Cloud Computing (MCC) was established with the amalgam of

Mobile Computing (MC) and Cloud Computing (CC) (Kumar & Lu, 2010). Precisely,

MCC can be defined as an integration of cloud computing technology with mobile de-

vices to make the mobile devices resource-full in terms of computational power, storage,

and energy (Khan, Othman, Madani, & Khan, 2014). The generic architecture of MCC is

depicted in Figure 2.1.

The main objective of the MCC offloading techniques is to enable mobile devices

to operate for longer periods while saving energy utilized in compute-intensive tasks.

Along with this primary objective, computational offloading can also enable time effi-

ciency if the network delay is minimal. To reduce the network latency of MCC opera-

tions, cloudlets have been proposed. Cloudlet based servers lie in the user proximity to

provide low response time and low network latency for devices. However, cloudlets are

not as resource-rich as cloud based servers (Fernando, Loke, & Rahayu, 2013; Khan et

al., 2014).

Computation offloading is a process that enables mobile devices to migrate compute-

15

Figure 2.2: Process Diagram of Computational Offload

intensive tasks to nearby cloudlet or cloud server. The voice command enabled applica-

tions in smartphones are the most common example of computational offload. The voice

is pre-processed on the smartphone and sent to the cloud server to convert voice data into

text. One of the earliest examples of cloud augmented computational offloading appli-

cation in smartphones was Apple’s voice recognition application Siri (Flinn, 2012). The

computational offload can be in the form of process state, compiled or pre-compiled code,

complete application, or an Operating System (OS) instance (Virtual Machine) (Shuja,

Gani, Ahmad, et al., 2016). The process diagram of the computational offload is pre-

sented in Figure 2.2.

In the simplest scenario, if smartphone has offloading enabled, it checks for cloud

connectivity. If offloading is not enabled, or cloud connectivity is absent, the process ex-

ecutes locally. Based on the offloading process parameters, the feasibility of offloading is

16

analyzed in the offloading scenario. If the cloud execution is feasible, such that it saves

smartphone energy without hindering the real-time response of the application, then the

process is offloaded to the cloud. The feasibility of the computational offload is deter-

mined by four basic queries, i.e., what to offload, when to offload, where to offload, and

how to offload (Flores et al., 2015; Othman, Khan, Abid, Madani, et al., 2015).

2.1.1 MCC Offload Enabling Techniques

A number of possible techniques enable offloading of data, application, or the complete

mobile workspace to the cloud over the internet. An overview of MCC offload enabling

techniques is provided in the subsections below.

2.1.1.1 System Virtualization

System virtualization enables a Virtual Machine (VM) to reside and migrate between

multiple heterogeneous physical hosts, such as a smartphone and a cloud server. System

virtualization technology is the backbone of cloud services. Cloud servers are virtualized

to abstract the underlying resources for the purpose of sharing among multiple clients.

A virtualization solution comprises of three major components: (a) a hardware device to

be virtualized, (b) a hypervisor or Virtual Machine Monitor (VMM), and (c) guest OS or

VM that resides over the virtualized hardware. Resource consolidation, energy efficiency,

and fault tolerance are the major use cases of virtualization in server space devices (Shuja,

Gani, Naveed, et al., 2016; Mustafa, Nazir, Hayat, Madani, et al., 2015).

Smartphones and mobile devices are not suitable for system virtualization due to

large performance overhead. Mobile devices are resource constrained with limited pro-

cessing power, memory, and battery. Hosting an additional OS on a resource-constrained

mobile device is challenging as it imposes serious performance overheads and decreases

the real-time responsiveness of the devices. Moreover, ARM is the dominant mobile

architecture. System virtualization solutions for ARM devices rely heavily on paravirtu-

17

alization techniques and trap-and-emulate procedures to share mobile components among

guest OSs. The paravirtual techniques result in large overhead, thereby, compromis-

ing the real-time capability of mobile devices by burdening the already constrained re-

sources (Shuja, Gani, Bilal, et al., 2016). Therefore, smartphones are often not virtualized

at the system level. Moreover, smartphone OSs, such as Android and Windows Mobile do

not have support for system virtualization. Instead, smartphones enable application vir-

tualization in their ecosystem (Shuja, Gani, Naveed, et al., 2016; Shuja, Gani, & Madani,

2014).

2.1.1.2 Application Virtualization

Applications written in platform-independent languages, such as Java, facilitate remote

execution of tasks over heterogeneous platforms. An application executing in an ap-

plication VM can be offloaded to a similar virtual instance over the cloud (Chun, Ihm,

Maniatis, Naik, & Patti, 2011). Modern mobile devices are often equipped with applica-

tion virtualization solutions, such as Java based Dalvik Runtime in Android OS and .Net

runtime environment in Windows Mobile. Due to this reason, most of MCC offloading

techniques are enabled by application virtualization. Android OS has captured more than

80% of smartphone market share (Robinson & Weir, 2015; Ahmed, Gani, Khan, et al.,

2015). Dalvik is an application VM in Android OS that executes Java-based applications.

Applications written in Java are compiled to bytecode by Dalvik and can be executed

on any Java Virtual Machine (JVM). There are many disadvantages of application virtu-

alization approach to computational offloading in MCC. Firstly, applications executing in

the application VM suffer from computational overhead. For instance, the overhead of a

Java application can be twice as high as native C application (Sartor, Lorenzon, & Beck,

2015). Native C applications are favored for compute-intensive tasks (Yadav & Bhado-

ria, 2015; Shuja, Gani, Ahmad, et al., 2016). Secondly, application virtualization puts a

18

restriction on application development language and execution environment.

2.1.1.3 Native Code Migration

Process state or native pre-compiled code can be migrated from ARM based mobile de-

vices to Intel based cloud servers. As compared to system and application virtualization,

the amount of data to be offloaded is very less in process migration. Process code execut-

ing on a mobile device cannot be run as it is over a server due to the heterogeneity of com-

puting architectures (Shuja, Bilal, et al., 2016). Instruction Set Architecture (ISA) emu-

lation or Dynamic Binary Translation (DBT) is required while offloading code between

heterogeneous processors. Emulated mobile instances are widely used to support code

offloading in MCC. The most commonly used ARM ISA emulators are Qemu (Bellard,

2005) and gem5 (Binkert et al., 2011). ISA emulation is inherently slow due to instruction

translation overhead. Existing emulators have been largely developed with the objective

to test mobile applications on server architectures. Therefore, the performance of emula-

tors is not considered in the development process. The performance of an ARM emulated

system can be 10X slower than the physical system (Hong et al., 2014). Hence, code

migration between heterogeneous processors is often not deemed feasible.

2.1.2 Cloud Augmentation for MCC Offloading Frameworks

System virtualization based MCC frameworks offload a VM image from the smartphone

to the cloud server. The cloud provides Infrastructure-as-a-Service (IaaS) model where

clients can access processing, storage, and network resources. The main advantage of

this approach is that the cloud servers are generally virtualized and provide a standard set

of tools for task execution (Shuja, Bilal, et al., 2016). Application virtualization based

MCC frameworks migrate an application from the smartphone to the cloud server. Ap-

plication virtualization, such as that exercised in Dalvik VM, allows offloading of Java

compiled bytecode that can be executed in any JVM over the cloud. Execution environ-

19

Figure 2.3: MCC Offload Enabling Techniques

ments such as the JVM are provided in the form of Platform-as-a-Service (PaaS) by the

cloud providers (Chun et al., 2011; Othman et al., 2015). Cloud computing paradigm

also provides Software-as-a-Service (SaaS) model that enables compiled code of a mo-

bile device to be emulated on a cloud server. Compiled code has the least communication

overhead. However, mobile and cloud server hardware profiles are heterogeneous. There-

fore, code compiled for a mobile device requires emulation over the cloud server, which is

an inherently slow process (Dall & Nieh, 2014). An illustration of MCC offload enabling

techniques within the generic MCC framework is depicted in Figure 2.3.

The energy consumption of resources is also a critical factor in cloud computing.

Software, hardware, and renewable energy based techniques are applied to CDC facilities

for energy efficient and sustainable operations (Shuja, Bilal, et al., 2016; Shuja, Gani,

Shamshirband, Ahmad, & Bilal, 2016). Software based cloud energy efficiency tech-

niques employ resource scheduling algorithms to match workload demand and energy

consumption. On the contrary, hardware based techniques exploit hardware power states

and circuit properties to achieve energy efficiency (Shuja, Bilal, et al., 2016). CDCs also

exploit renewable energy resources for sustainable operations. All CDC resources, such

as servers, network devices, power distribution, and cooling systems are considered in

software and hardware based energy efficiency techniques. However, the basic objective

20

of MCC paradigm is to save mobile device energy irrespective of cloud energy consump-

tion. The notion behind this objective is the difference in the cloud and mobile resources.

Mobile devices are battery operated with limited power charge opportunities contrary

to the continuous power input for cloud resources. Moreover, the cloud resources are

near infinite as compared to mobile device resources (Satyanarayanan, 2015). Therefore,

MCC offloading frameworks generally do not consider the energy consumption of cloud

resources.

2.2 MCC Offloading Frameworks

In the below subsections, we will discuss the MCC offloading frameworks categorized

on the basis of offload enabling techniques. First, we provide a taxonomy of the MCC

offloading frameworks based on the identified qualitative parameters. Further, we provide

a review of state-of-the-art MCC offloading frameworks. Lastly, we present a compre-

hensive comparative analysis of the MCC offloading frameworks based on the identified

qualitative parameters.

2.2.1 Taxonomy of MCC Offloading Frameworks

In this subsection, we provide a comprehensive taxonomy of MCC offloading frame-

works. The taxonomy of MCC offloading frameworks based on the qualitative parameters

is presented in Figure 2.4.

MCC Offload Enabling Technique: System virtualization, application virtualiza-

tion, and native code migration enable the MCC offloading frameworks. Each of the

MCC offload enabling technique leads to varying computational and communicational

overhead. System virtualization based MCC offloading is enabled by virtualization solu-

tions, such as Xen and VMware. Application virtualization is facilitated by the Dalvik

VM in Android OS and .Net CLR in Windows Mobile. Native code migration is enabled

by cross-platform ISA emulators, such as Qemu and gem5 (Shuja, Gani, Naveed, et al.,

21

Figure 2.4: Taxonomy of MCC Offloading Frameworks

2016; ur Rehman, Sun, Wah, Iqbal, & Jayaraman, 2016).

Offload Infrastructure: The offload infrastructure facilitating MCC frameworks

can be a cloud, cloudlet, or mobile ad-hoc. Task offload to cloud server faces the chal-

lenge of proximity with the mobile clients. This challenge is addressed by cloudlet based

infrastructure that does not possess the near infinite resources of CDCs. However, the

cloudlet is a proximate and less capable version of a resource-rich CDC that can limit

the network latency between mobile and cloud servers. Mobile ad-hoc infrastructure is

formed by proximate collaborative mobile devices to facilitate each other in compute-

intensive task executions (Yaqoob et al., 2016; Whaiduzzaman, Naveed, & Gani, 2016).

Augmentation Model: The mobile client can augment to the CDC through three ser-

vice models, i.e., IaaS, PaaS, and SaaS. System virtualization enabled offloading frame-

works augment to the cloud through (IaaS) model. Application virtualization based MCC

offloading frameworks augment through PaaS services such as JVM while native code mi-

gration based MCC offloading frameworks utilize SaaS services through cross-platform

emulators (Ahmed, Gani, Sookhak, et al., 2015).

Communication Model: The mobile and cloud entities in the MCC framework

can communicate in a client server model or peer-to-peer model. Client-server model is

generally used for the resource-scarce mobile device and resource-rich cloud server. On

22

the contrary, in the case of mobile ad-hoc cloud, the mobile devices communicate in a

peer-to-peer model where each mobile device can utilize the resources of another mobile

device in a collaborative network (Yousafzai, Chang, Gani, & Noor, 2016).

Application Partitioning: The candidate application for the cloud offload can be

partitioned into a local execution part and remote execution part through a static method

based annotations, dynamic, or hybrid analysis. The static method annotates the resource

or compute-intensive part of the application as a remoteable entity. The dynamic anal-

ysis based application partitioning profiles the application, network and cloud resources

to make an optimal decision regarding remoteable part of the application. However, the

overhead of finding the remoteable code based on dynamic analysis is high. The hybrid

partitioning utilizes static annotations to minimize the overhead of finding the optimal

partitioning of the application (Niu, Song, & Atiquzzaman, 2014; Shaukat, Ahmed, An-

war, & Xia, 2016).

Profiler: Three types of profilers can be used while deciding upon the feasibility of

application offloading. These are network profiler, hardware (CPU) profiler, and software

(application) profiler. Most of the frameworks only utilize the application traces to lower

the complexity of offloading module (Ahmad, Gani, Hamid, Xia, & Shiraz, 2015).

Optimization Model: The MCC offloading frameworks apply optimization tech-

niques to lower the communicational or computational cost of the process. These opti-

mization techniques can be categorized as, (a) task based optimization techniques that

optimize the offloaded task, (b) network optimization techniques that either compress the

candidate code or find proximate cloud resources, and (c) offload decision optimization

techniques (Shuja, Gani, Ahmad, et al., 2016).

23

2.2.2 Review of MCC Offloading Frameworks

In this section, we will review the MCC offloading frameworks from the perspective of the

offload enabling techniques. We will review state-of-the-art MCC frameworks enabled by

system virtualization, application virtualization, and native code migration.

2.2.2.1 System Virtualization based MCC Frameworks

System virtualization based MCC frameworks rely on hardware virtualization technolo-

gies, such as VMware on both mobile client and cloud server. A VM is migrated from

the mobile device to the server that executes the VM with the help of the VMM. There

are two techniques to transport a VM infrastructure from the mobile device to the cloud

server; (a) VM migrations and (b) VM synthesis. If a decision is made to migrate the VM

from the mobile to the cloud, the VM at the mobile client is stopped and its state is saved

in terms of CPU, memory, and disk content and context. The state of the VM along with

its disk contents are transferred page by page to the server. However, the size of a VM

instance can be in GBs, which is often too large for bandwidth-scarce mobile networks.

The second technique for VM augmentation on a cloud server is dynamic VM synthesis.

In VM synthesis, the basic building blocks of the VM at the mobile client are sent to the

cloud server that converts them into fully functional VM (Satyanarayanan et al., 2015;

Shuja, Gani, Shamshirband, et al., 2016).

ThinkAir is a framework based on VM migration for task offloading in MCC (Kosta,

Aucinas, Hui, Mortier, & Zhang, 2012). ThinkAir is based on the assumption that the mo-

bile network bandwidths will grow over the years to allow low round trip times for VM

migrations. The framework of ThinkAir consists of the Application Programming In-

terfaces (APIs) for mobile applications, compiler support for mobile and cloud server,

mobile application execution controller, and execution flow controller on the server side.

The programmer API works on annotated code marked for remote execution. The com-

24

piler provides support for generation of code suitable for x86 ISA based cloud servers.

The execution controller makes decision of local or remote execution based on network

parameters, historical application execution times, energy consumptions, and the cost of

resources on the cloud servers. The execution flow controller on the server side further

consists of three modules, namely, client handler to manage client offloading requests,

cloud infrastructure in the form of customized VM (Android x86 port on VirtualBox),

and automatic parallelizer that parallelizes the offloaded task execution on multiple cloud

instances. The hardware profiler stores the state of hardware interfaces with parameters,

such as CPU utilization and Wi-Fi power state. The software profiler records a number of

parameters related to the software execution, such as number of instruction executed and

overall execution time. The network profiler estimates parameters, such as the perceived

network bandwidth. Moreover, the framework also incorporates an energy estimation

model based on PowerTutor (L. Zhang et al., 2010). Experimental results show that both

energy and time can be saved by cloud augmented remote execution of mobile applica-

tions.

The earliest proposal on system virtualization based cloud augmentation and VM

synthesis was put forward by (Satyanarayanan, Bahl, Caceres, & Davies, 2009). To

overcome the bandwidth constraints of mobile networks, the work proposes VM-overlay

approach. A VM-overlay consisting of configuration parameters is migrated from the

mobile to the cloudlet, which already possesses the base-VM. The base-VM is minimal

configured VM which is able to construct the full VM from the VM overlay with all

the CPU state, memory, and disk configurations. The cloudlet executes the VM until

task completion and returns VM residue to the mobile device. The performance of this

approach is dependent on the bandwidth to the cloudlet and cloudlet resources. The work

provided proof-of-concept in the form of a prototype, Kimberly. The results show that for

most of the VMs tested, the VM synthesis overhead is between one to two minutes. Most

25

of the VM synthesis time is spent on decompressing the VM overlay.

2.2.2.2 Application Virtualization based MCC Frameworks

Most of MCC frameworks utilize the application virtualization support in Windows Mo-

bile and Android OS for seamless application execution. Application virtualization al-

lows intermediate or bytecode to be migrated between JVMs running on heterogeneous

hardware platforms.

MAUI was the first framework for MCC offloading based on application virtual-

ization enabled by Microsoft .NET CLR (Cuervo et al., 2010). CLR applications are

compiled to the Common Intermediate Language (CIL). The CIL is compiled at execu-

tion time for the guest hardware ISA. MAUI framework is designed to offload application

methods to the remote server which results in energy optimization. MAUI framework

is based on managed codes for code portability for heterogeneous mobile and server ar-

chitectures. Furthermore, to identify and migrate remoteable application instances to the

cloud, MAUI utilizes program reflections. MAUI also utilizes serialization to determine

the cost of the network for the process offload. The CPU cost, network cost, and the

network state (bandwidth, latency, etc.) are used as input to linear programming problem

for code offload decision module. MAUI Framework consists of three basic modules,

namely, a client/server proxy for communication, a profiler, and a solver. Profiler instru-

ments device and programs to gather the execution, energy, and data transfer requirements

of applications. The major part of the solver is run on the servers while getting input from

the mobile device module. The solver makes the decision of offloading based on inputs

from the profiler module. The candidate code for offloading is statically annotated. Ex-

periments show that MAUI is able to slash the energy consumption of resource-intensive

application by a factor of eight.

CloneCloud is an MCC offloading framework based on Dalvik enabled application

26

virtualization (Chun et al., 2011). CloneCloud is implemented as a flexible application

partitioning and execution framework that migrates part of an application seamlessly to

improve application execution time. The CloneCloud application migration has three

components, namely, a smartphone based migrator thread that manages the migration

and re-integration of migrating code, a node manager that manages communication be-

tween mobile and servers, and a partition database. The application partitioning module

combines static analyzer and application dynamic profiler to fulfill execution objectives

while ensuring application correctness constraints. The static analyzer identifies legal

partitioning choices and set of exit and re-integration points for the application according

to the constraints. The dynamic profiler collects the data required as input for the cost

model of computational offload under different execution settings. The data is collected

from the application execution trace. The framework examines the execution profile of

each invocation based on its execution time. Furthermore, optimizer solver is utilized

to contemplate the application methods that should be migrated based on the application

constraints determined by the static analyzer. The Dalvik VM was modified to integrate

the migration capability. Experiments showed up to 20X performance enhancement and

energy savings for migrated applications.

Koukoumidis et al. (Koukoumidis, Lymberopoulos, Strauss, Liu, & Burger, 2011)

propose a pocket cloudlet architecture that takes advantage of the unused non-volatile

memory capacity of the proximate smartphones. As a result, the latency and energy

wasted in approaching the distant cloud services are reduced. The pocket cloudlet frame-

work leverages both the community and personal access models to increase the hit rate

of user queries. In this manner, the pocket cloudlet decreases the overall service latency

and energy consumption of smartphone devices. As the storage capabilities of existing

smart devices are high, either partial or full cloud services can be replicated locally. In

this manner, the mobile device is transformed into a pocket cloudlet. Pocket cloudlet

27

provides three main features for the smartphones. Firstly, it lowers the latency to access

cloud services and lowers burden on the cellular network while caching the cloud service

on mobile devices. Secondly, as the user interactions for the services take place only on

the mobile cloud, service personalization is possible. Thirdly, user privacy is preserved

as user information is not stored on third-party cloud servers.

2.2.2.3 Native Code Migration based MCC Frameworks

Most of the research work done in code offloading MCC frameworks is either based

on system virtualization or application virtualization. If a native code is migrated from

the mobile device to the cloud server, it requires DBT or recompilation techniques for

execution. Researchers so far have ignored the challenge of efficient DBT for MCC

offloading frameworks and mostly focused on virtualization enabled code offloading.

Lee et al. (G. Lee et al., 2015) proposed an architecture-aware native code offload-

ing framework for mobile devices. To support heterogeneous mobile and cloud ISAs,

the native offloader relies on LLVM front-end compiler for intermediate representation

(IR) (Zhao, Nagarakatte, Martin, & Zdancewic, 2012). The IR binaries are further com-

piled for native hardware at runtime by LLVM back-end compilers. Due to the machine

independence of IR codes, seamless application migration is enabled. The native of-

floader allocates a unified virtual address space between the mobile device and the server

to efficiently share memory objects without high overhead memory translations. The IR

binaries are target compiled in four steps, namely, target selection, target ISA specific op-

timizations, memory unification code generation, and application partitioning. In target

selection step, the framework ignores machine dependent tasks and selects tasks that can

profit from offloading through static analysis. For memory unification, the compiler allo-

cates a Unified Virtual Address (UVA) for mobile and server devices and updates its con-

tent from the mobile device. The compiler also takes care of variable memory sizes (e.g.,

28

Table 2.1: Comparison of MCC Offloading Frameworks
Framework Enabling tech-

nique
Cloud
infrastruc-
ture

Augment.
model

Comm.
model

Application
partitioning

Profiling Optimization
model

ThinkAir (Kosta et al.,
2012)

System Virtu-
alization

Cloud IaaS Client server Static Network,
application
traces

Task
optimization

VM-overlay cloudlet
(Satyanarayanan et al.,
2009)

System Virtu-
alization

Cloudlet IaaS Client server Static NA Network
optimization

MAUI (Cuervo et al.,
2010)

Application
Virtualization

Cloud PaaS Client server Dynamic CPU, net-
work traces

Task
optimization

CloneCloud (Chun et
al., 2011)

Application
Virtualization

Cloud PaaS Client server Hybrid Application
traces

Offload
decision
optimization

Pocket Cloudlets
(Koukoumidis et al.,
2011)

Application
Virtualization

Mobile Ad-
hoc

PaaS Peer to peer Dynamic Application
traces

Network
optimization

Architecture-aware na-
tive offloading (G. Lee
et al., 2015)

Native code
migration

Cloud SaaS Client server Dynamic NA Task
optimization

32 bit, 64 bit) and endianness at this step with translation codes. The native offloader di-

vides IR binaries for native and target architectures and inserts data communication codes

to application sections that require migration during the application partitioning. In the

optimization step, the target-specific function pointer and I/O management techniques are

applied. The framework also adopts copy-on-demand to migrate live application config-

urations from mobile to the server.

2.2.3 Comparison of MCC Frameworks

We identified several parameters for qualitative analysis of MCC offloading techniques

from the taxonomy. Table 2.1 lists the MCC offloading frameworks and their comparative

analysis based on the identified qualitative parameters.

The MCC offloading frameworks generally utilize cloud infrastructure as the

resource-rich offload entity (Cuervo et al., 2010; Chun et al., 2011). However, VM-

overlay based framework (Satyanarayanan et al., 2009) utilizes cloudlet infrastructure

to lower the overhead of VM migration between mobile clients and cloud servers while

pocket cloudlet utilizes mobile ad-hoc infrastructure (Koukoumidis et al., 2011). The

cloud augmentation model depends on the offload enabling technique. System virtu-

alization, application virtualization, and process code migration based MCC offloading

29

frameworks exploit IaaS, PaaS, and SaaS service models respectively.

Communication between the mobile device and cloud server can follow a client-

server or a peer to peer model. Most of the MCC frameworks are based on a client-server

model where a mobile device offloads tasks to a cloud server for further execution (G. Lee

et al., 2015; Chun et al., 2011). However, pocket cloudlet utilizes a peer-to-peer model

where multiple mobile devices harness each others memory capabilities to store and re-

trieve data that is otherwise accessed from cloud servers (Koukoumidis et al., 2011). The

cloudlet and peer-to-peer communication models result in lower resource proximity and

latency. Static application partitioning through annotation has low overhead. However,

such methods are not scalable to a broader range of mobile applications. On the con-

trary, dynamic application partitioning frameworks, such as MAUI (Cuervo et al., 2010)

can identify dynamically the optimal part of the application for cloud server execution

through rigorous application profiling. However, such approach leads to complexity in

MCC framework design which burdens the mobile client.

Resource-intensive profiling activities also lead to complexity in the MCC frame-

work and adds latency to the offload decision process (Koukoumidis et al., 2011). MCC

offloading frameworks, such as MAUI (Cuervo et al., 2010) and ThinkAir (Kosta et al.,

2012) utilize multiple profilers for the offloading decision process. Most of the frame-

works only utilize the application traces to lower the complexity of the offloading mod-

ule. MAUI (Cuervo et al., 2010) and ThinkAir (Kosta et al., 2012) apply task paralleliza-

tion on the cloud to achieve faster execution and optimization. On the contrary, VM-

overlay (Satyanarayanan et al., 2009) and pocket cloudlets (Koukoumidis et al., 2011)

apply network optimizations in the form of offload compression and proximate node cal-

culation to optimize the offloaded task.

Most of the MCC offloading frameworks are enabled by either system or applica-

tion virtualization. There are several implications to virtualization based approaches in

30

MCC offloading (Shuja, Gani, Naveed, et al., 2016; Y.-J. Kim et al., 2012; G. Lee et

al., 2015). Firstly, system virtualization is only feasible in high bandwidth networks.

Secondly, system virtualization requires that mobile OS be migrated from traditional An-

droid, Windows Mobile, and iOS based OSs to virtualization based OSs, such as Linux.

Hence, the mobile applications market reachable to smartphone users is not available in

such scenario. Thirdly, application virtualization has performance overhead as compared

to native applications. This performance overhead is due to intermediate interpretation

techniques applied to platform independent application development frameworks, such

as Java. The overhead of Java based applications can be twice as high as that of native C

language applications (Shuja, Gani, Naveed, et al., 2016). Fourthly, application virtual-

ization restricts the programming language domain for application developers. Fifthly, a

study shows that up to 50% of mobile application code can be native. Therefore, applica-

tion virtualization based schemes nullify the performance of half of the total application

code that is written in native C (G. Lee et al., 2015).

Based on the aforementioned implications of virtualization based MCC offloading

techniques it can be concluded that native code migration has much lower communica-

tional and computational overhead. However, native code migration based MCC offload-

ing frameworks have received lesser attention from research community. In the further

subsections of this chapter, we focus on the ARM based cross-platform native code mi-

gration and emulation techniques and highlight related issues.

2.3 ARM Emulation Techniques

The native code migrated between heterogeneous ISAs requires DBT or emulation.

Therefore, DBT is a necessary criterion for a complete MCC framework that consists

of heterogeneous smartphone devices (ARM) and cloud server devices (x86). There are

two commonly utilized open-source DBT or cross-platform ISA emulators for computer

31

architectures; Qemu (Bellard, 2005) and gem5 (Binkert et al., 2011). A DBT system

comprises of three main components; emulation engine, translator, and code cache. The

translator fetches the guest binary code and translates it into host binary while placing the

translated code in the code cache. The emulation engine controls the DBT by fetching the

translated code from the cache and emulating it (Michel, Fournel, et al., 2011; X. Zhang,

Guo, Chen, Chen, & Hu, 2015). In this section, we present applications of ARM emula-

tions techniques, a taxonomy of ARM emulation techniques, review the ARM emulation

tools, and compare ARM emulation techniques based on identified qualitative parameters.

2.3.1 Applications of ARM Emulation Techniques

ARM emulation techniques are adopted in multiple fields of research. The basic objec-

tive of DBT and emulation tools is to translate the application binary compiled for one

ISA to another ISA. However, the ARM emulation techniques serve other purposes in

research, such as computer architecture analysis and malware analysis. ARM emulation

techniques are utilized to simulate computer architectures. Computer architectures that

are expensive or not available in the market are simulated and analyzed with the help of

ISA emulators. Moreover, before launching an architecture in the consumer market, ex-

tensive early design analysis is investigated on ISA simulators. Cache, memory, bus, and

processor configurations are tested for performance before the manufacturing process.

ARM ISA emulators are used in cases where actual hardware is not available for research

purposes (Abadal, Martínez, Solé-Pareta, Alarcón, & Cabellos-Aparicio, 2016). Real

hardware is expense and testing for malware analysis can lead to high costs. Therefore,

simulated hardware ISA is used in malware analysis and security related research (Petsas,

Voyatzis, Athanasopoulos, Polychronakis, & Ioannidis, 2014).

32

Figure 2.5: Taxonomy of ARM Emulation Techniques

2.3.2 Taxonomy of ARM Emulation Techniques

ARM emulation and emulation optimization techniques have varied parameters, such as

objectives towards optimization of performance, emulation granularity, and emulation

process. Most of the ARM emulators are open-sourced; hence, optimizations can be

applied to existing designs. The taxonomy of ARM emulation techniques is provided in

Figure 2.5.

We identified five parameters for classification of ARM emulation techniques. These

are listed as follows,

Emulation Process: The cross-platform emulation process is either static or dy-

namic. SBT of ARM is difficult because it is common for data to be embedded within

code sections. If symbolic debug information is not present in the application binary,

extensive static analysis is required to distinguish data from code. Moreover, self-

modifying code is difficult to identify and manage in SBT systems. On the contrary,

DBT has the property to be versatile and adapt to the dynamic nature of the application

binary. Therefore, most of the ARM emulation and virtualization solutions are based on

DBT (Penneman, Kudinskas, Rawsthorne, De Sutter, & De Bosschere, 2016).

Emulation Granularity: There are basically two kinds of ISA emulators, i.e., func-

33

tionally accurate emulators, and cycle accurate emulators. Functionally accurate emula-

tors emulate the guest ISA functionality and translate the compiled instructions from one

ISA to another. Moreover, functionally accurate ISA emulators emulate what the proces-

sor does, not how the instructions are actually executed in the pipeline. On the contrary,

cycle accurate ISA emulators emulate the ISA with details up to the instruction cycle

level. Cycle accurate emulators are sometimes called simulators. Qemu is a functionally

accurate emulator while gem5 is a cycle accurate simulator (Shuja, Gani, Naveed, et al.,

2016).

Emulation Objective: The basic objective of DBT and emulation tools is to trans-

late the application binary compiled for one ISA to another ISA. The DBT tools are used

for many purposes by the research community: (a) computer architecture analysis and (a)

malware analysis (Petsas et al., 2014).

Optimization Technique: The optimizations techniques applied to enhance the per-

formance of generic emulation process are (a) parallelization, (b) statistical sampling

based execution, (c) hardware acceleration, and (d) client/server partitioning. Parallel

emulation and support for multi-threaded programs leads to faster execution of appli-

cations. The parallelization of the emulation process results in significant performance

benefits. Statistical sampling based simulation techniques choose points of interest in

the application binary to be simulated while statistically measuring the overall execution

path. Hardware acceleration requires that the target and guest ISAs be same so that a

subset of guest instructions can be executed natively without translation. Client/server

based partitioning of DBT process results in light-weight client optimizations and rig-

orous server side optimizations for frequently recurring code (Q. Guo, Chen, Chen, &

Franchettit, 2015).

Optimization Function: The optimization function of the ARM emulation tech-

niques can be (a) support for multi-threaded application emulation, (b) parallel transla-

34

tion of applications, and (c) parallel execution of multiple instances of the emulator (Ding,

Chang, Hsu, & Chung, 2011; Hong et al., 2012; Wang et al., 2011).

2.3.3 Review of ARM Emulation Techniques

In the below subsections, we discuss the ARM emulation techniques and tools along with

the optimization techniques applied to lower their performance overhead.

2.3.3.1 Qemu

Qemu is a retargetable dynamic code translation based functionally accurate ISA emu-

lator that operates in two basic modes (Bellard, 2005). In full emulation mode, Qemu

emulates a complete hardware device including many peripherals in the software. In user

mode, Qemu executes a process compiled for one ISA on another ISA. Qemu is based on

a front-end that translates the guest code to micro-operations and a back-end that trans-

lates the micro-operations to host code. Tiny Code Generator (TCG) transforms target in-

structions (the processor being emulated) via the TCG frontend to TCG micro-operations

(micro-ops or IR) which are further transformed into host instructions (the processor ex-

ecuting QEMU itself) via the TCG backend. Micro-ops are an intermediate level of code

translation that is machine independent. Hence, the micro-ops can be translated into any

target code leading to the retargetable nature of Qemu. Qemu supports multiple guest

ISA (e.g., x86, ARM, PowerPC, and SPARC) and multiple host ISAs (e.g., x86, ARM,

PowerPC, SPARC, Alpha and MIPS).

The TCG performs two optimization passes including register liveness analysis and

trivial constant expression evaluation when a block of instruction is fetched and translated

into micro-operations. The micro-ops are then translated into host code with one-to-one

mapping and stored in the translation cache. Qemu does block-chaining, i.e., it does not

translate the binary from start to end. In fact, when a translation block is encountered,

it is looked up in the translation cache. A block is translated if its translation is not

35

Figure 2.6: High Level Architectural Diagram of Qemu

present in the cache. When a translation block finishes execution, it chains itself to the

next block of the execution without going to the main execution loop. Qemu emulates

I/O access through signals and pipe functions. Qemu reads the interrupt controller before

executing any instruction. Qemu emulates the MMU in the software to handle guest

OS page tables. KVM-qemu provides faster emulation speed while utilizing hardware

virtualization extensions. KVM virtualization can be used when the CPU supports it and

the host architecture is the same as the guest architecture. Typically this means running

an x86 guest on an x86 host or ARM guest on ARM host. The KVM module executes

most of the instructions natively while interpreting only those instructions that require

supervised access. A basic structural diagram of Qemu is provided in Figure 2.6.

2.3.3.2 Gem5

Gem5 (Binkert et al., 2011) simulator emulates multiple ISAs with a modular object-

oriented design methodology. Similar to Qemu functionality, gem5 provides both process

and full system emulation for ARM. It is based on discrete event simulations allowing for

multiple CPU, memory, and device models. Moreover, four CPU models are supported,

namely, out-of-order execution, in-order execution, simple atomic execution, and KVM

based execution. Gem5 also supports two memory models, namely, classic hierarchical

memory model and network connected memory model. The gem5 simulator achieves

ISA independence by providing a single C++ base class for all instructions. All hardware

components, such as, processor cores, caches, interconnecting devices, are modeled as a

36

SimObjects. Every SimObject is represented by a Python and a C++ class. The Python

class defines the SimObject parameters while the C++ class defines its behavior and state.

As gem5 is a cycle accurate simulator, it is used in studies that measure CPU performance,

interconnect latencies of processor designs, and DRAM controller scheduling techniques.

ISA emulators and DBT tools are slow in performance than the actual physical de-

vices they simulate. The slow performance of ISA emulators is due to multiple reasons

listed as follows,

• Emulation overhead occurs due to the cross-ISA translation of instructions. The

optimizations applied to the translated code can induce further performance over-

head.

• Existing emulators have been largely developed with the objective to test mobile

applications (ARM) on x86 architectures. The performance of emulators is not

considered in the development process.

• Most of the optimized applications run several threads for performance optimiza-

tion. However, such optimizations are lost on single-threaded emulators.

• Special instruction, such as Floating Point (FP) and Single Instruction, Multiple

Data (SIMD) are translated to scalar instructions in the emulation process resulting

in performance loss.

There have been several optimization works on the performance of ISA emulators,

particularly for Qemu. The research works focusing on optimization of cross-platform

DBT, particularly ARM to x86, are listed in the below subsections.

2.3.3.3 PQEMU

PQEMU (Ding et al., 2011) emulates one instance of QEMU but parallelizes its inter-

nal DBT module. PQEMU achieves minimal overhead in locking and unlocking shared

37

data through the management of the translated code cache sections. Locks are introduced

to serialize and synchronize access to shared data. PQEMU explores two cache designs,

namely, unified code cache and separate code cache. Guest code that based on parallel ex-

ecution of threads requires unified code cache, while programs that execute independent

code are better suited to separate code cache design. PQEMU assigns each guest thread

of a multi-threaded program to a separate emulator and DBT thread. Therefore, PQEMU

achieves better performance in emulating multi-threaded programs. Performance opti-

mizations of 3.8X are achieved for parallel execution programs. However, the emulation

of the single-thread program remains same as PQEMU does not try to enhance the target

guest code in each thread. Moreover, the approach does not consider the host multi-

processor architecture for multi-threaded emulation. COREMU (Wang et al., 2011) was

proposed based on the observation that current emulation techniques do not exploit multi-

processing capabilities of the host hardware.

2.3.3.4 HQEMU

HQEMU (Hong et al., 2012) applies compiler-level optimizations to multi-threaded em-

ulation of QEMU to enhance the performance of both single-thread and multi-thread

programs. An enhanced LLVM compiler is utilized for low level code optimization with

dynamic binary optimizer (DBO) as a backend for Qemu front-end. The front-end and

back-end execute in different threads in HQEMU. Two code caches are maintained for

code translated and optimized at different levels, namely, block code cache and a trace

cache. The TCG acts as a fast translator that translates guest binary at the granularity

of a basic block, and stores translated codes to the block code cache. TCG also keeps

the translated guest binary in its IR for further optimizations in the LLVM backend. An

emulation module is added to the Qemu design that handles translation, optimization, and

execution of the guest program. When the emulation module finds code that has repeated

38

execution or has a pattern for further optimization, it sends it to the LLVM backend along

with its IR. The LLVM backend translates the TCG IR to LLVM IR. A set of LLVM

optimizations are applied to the LLVM IR for high quality code generation that is stored

in the trace cache. The LLVM optimization can lead to significant overhead to the emu-

lation process. However, as LLVM optimizations are executed over a separate thread, the

overhead is avoided. Moreover, multiple optimization requests can be serviced by LLVM

optimizer running on different worker threads. HQEMU achieves 2.4X performance en-

hancement for various SPEC benchmarks in ARM to x86 emulation.

2.3.3.5 Trace-driven approach for gem5

Researchers (Butko et al., 2015) proposed a trace-driven approach for fast simulation of

multi-core architectures using gem5. The work addresses the slow simulation of gem5

that prohibits its widespread usage in ARM emulation. Abstraction of core execution

with traces is applied as a method for fast simulation. The trace-driven approach consists

of three steps; trace collection, processing, and simulation. The trace collection phase

defines the hardware and software components of the simulated system. Synchronization

and core replication techniques are applied to the traces in the trace processing phase.

The resultant traces are added to a full system emulator. A trace of memory transactions

for one core is captured in full system simulation and augmented with synchronization

semantics. The scalar synchronized traces are replicated to vector traces for multiple-

core simulation. The vector traces are applied to the gem5 simulator to traffic injectors.

In this way, the gem5 simulator only needs to simulate the memory and interconnect

systems, hence, lowering the burden on full system simulation. Experimental analysis

was performed on gem5 ARM. Results showed a speed of up to 800 times faster than the

gem5 full system simulation for some benchmarks. The simulation error of 6% is also

reported in this approach.

39

2.3.3.6 Client/server DBT

Hsu et al. (Hsu et al., 2015) proposed a distributed client/server based DBT solution for

ARM emulation optimization. The basic technique adopted by the solution is to divide

the DBT into two components. The client performs light-weight DBT and sends requests

to the server which performs the full DBT with optimizations. The thin client comprises

of all the three components of the emulation engine. However, the translator is light-

weight; i.e., it does not perform aggressive code optimizations. In this manner, the thin

client does not entirely rely on the server and can execute stand-alone. The optimization

manager on the thin client searches for code that requires optimizations and sends it to the

optimizer server. The commonly identified code for optimizations is in the form of loops

or recursive functions. The server optimizes the DBT and saves it in an optimized code

cache. The optimized code is also sent to the optimization manager of the thin client. The

optimization manager of the thin client decides between the optimized or non-optimized

code executions on the runtime. The TCG of Qemu is utilized as the thin translator and

the LLVM is utilized as code optimizer. The results show that the client/server model

achieves 17-37% performance improvement over the baseline non-client/server model.

2.3.3.7 Retargetable Static Binary Translation

Static Binary Translation (SBT) allows the execution of aggressive translation optimiza-

tions that are not possible in DBT. However, SBT leads to issues such as handling of self

modifying code, code discovery, and code location. Researchers (Shen, Hsu, & Yang,

2014) utilized LLVM as a tool for retargetable SBT of ARM binaries. As LLVM is

based on IR, the translated ARM binary code can be retargeted to any ISA. Moreover, the

LLVM provides for aggressive code optimizations that result in performance improve-

ments. Furthermore, the solution also avoids the code discovery problem that can lead to

interpretation. The results show that the LLVM based SBT solution achieves 6X perfor-

40

Table 2.2: Comparison of ARM Emulation Techniques

ARM emulation tech-
nique

Emulation
process

Emulation
granularity

Emulation objec-
tive

Optimization
technique

Optimization func-
tion

Qemu (Bellard, 2005) DBT Functionally
accurate

Malware and archi-
tecture analysis

NA NA

Gem5 (Binkert et al.,
2011)

DBT Cycle accu-
rate

Architecture analy-
sis

NA NA

PQEMU (Ding et al.,
2011)

DBT Functionally
accurate

Malware and archi-
tecture analysis

Parallelization Support multi-
threaded application

HQEMU (Hong et al.,
2012)

DBT Functionally
accurate

Malware and archi-
tecture analysis

Parallelization Parallel DBT

Trace driven
gem5 (Butko et al.,
2015)

DBT Cycle accu-
rate

Architecture analy-
sis

Statistical
sampling

NA

Client/server
DBT (Shen et al.,
2014)

DBT Functionally
accurate

Malware and archi-
tecture analysis

Client server NA

Retargetable SBT (Hsu
et al., 2015)

SBT Functionally
accurate

Malware and archi-
tecture analysis

NA NA

mance gain compared to baseline Qemu DBT solution.

2.3.4 Comparison of ARM Emulation Techniques

Table 2.2 lists the comparison parameters and details for ARM emulation techniques.

Most of ARM emulation techniques discussed in above subsections are based on

DBT (Bellard, 2005; Ding et al., 2011). The reason behind dominant utilization of DBT

over SBT is that DBT techniques are flexible and can manage self-modifying code eas-

ily. ARM emulation techniques based on Qemu are functionally accurate. On the con-

trary, ARM emulation techniques based on gem5 are cycle accurate (Butko et al., 2015).

Similarly, the objective of ARM emulation techniques that are based on Qemu is both

malware and architectural analysis. gem5 based emulation techniques are not used for

malware analysis as the cycle accuracy leads to overhead in the rigorous testing of appli-

cations (Shen et al., 2014). Emulation optimization techniques are applied to the basic

ARM emulation tools (Qemu and gem5) in order to increase their performance. Paral-

lelization is commonly used to optimize the performance of ARM emulation (Ding et al.,

2011; Wang et al., 2011). PQEMU (Ding et al., 2011), COREMU (Wang et al., 2011),

and HQEMU (Hong et al., 2012) exploit multi-threaded applications, parallelization of

emulation, and parallelization of DBT as an objective function respectively.

41

Qemu and gem5 are the two candidates for ARM ISA emulation. There are several

performance advantages in the selection of Qemu as an ARM emulator. Firstly, Qemu

was developed with the design objective of high performance (Quick Emulator). gem5,

on the contrary, was developed with the design goal of first order performance accuracy in

hardware and software system simulation. Secondly, gem5 is a cycle accurate simulator

as compared to functional accurate Qemu. The cycle accuracy of gem5 leads to more sim-

ulation overhead as compared to Qemu. A functionally accurate simulator, such as Qemu,

focuses on what a processor does and not how it does it. However, a cycle-accurate sim-

ulator has to emulate the ISA according to actual hardware and software semantics with

accurate timing information. Both Qemu and gem5 are open-source emulators permitting

further modification and optimization.

Despite the fact that several optimization techniques have been applied to the DBT

of ARM emulation, optimal translation of special instructions, such as FP and SIMD

has not been the focus of the aforementioned studies. FP and SIMD instructions are

treated as generic scalar instructions in the emulation process resulting in performance

loss. Therefore, a cross-platform ARM emulation and translation framework is required

that focuses on efficient vector translation of SIMD and FP instructions.

2.4 SIMD Instruction Porting Techniques

In this section, we provide a list of applications of SIMD instructions in mobile and

multimedia software. We further provide a taxonomy of SIMD instruction translation

and porting techniques followed by a comprehensive review. At last, we compare the

SIMD instruction translation techniques based on the identified qualitative parameters

from the taxonomy.

42

2.4.1 Application of SIMD Instructions

The ability to execute multiple instructions in parallel allows a processor to enhance user

experience and program quality. Single Instruction, Multiple Data (SIMD) is a type of

data level parallelism in which a single instruction leads to computation of multiple data

points with multiple outputs. SIMD instructions are also known as vector instructions

while instructions other than SIMD are called scalar instructions. The hardware corre-

sponding to the SIMD instructions are known as hardware accelerators. Vector process-

ing uses a single instruction to perform the same operation in parallel on multiple data

elements. The constraint is that the data elements should be of the same type and size.

In this manner, a 32-bit hardware that normally adds two 32-bit values can perform two

parallel 16-bit or four parallel 8-bit operations in the same amount of time. Up to 25%

of the code in multimedia based applications can be SIMD instructions (G. Lee et al.,

2015). SIMD instructions are able to deliver very compact code for compute-intensive

applications. Therefore, the presence of SIMD instruction can significantly increase the

performance of applications on mobile devices while achieving efficiency in instruction

execution and energy.

A number of algorithms and applications are a candidate for SIMD instructions.

Particularly, multimedia based algorithms such as Fast Fourier Transform (FFT), image

conversions, and dot multiplications. In such applications, a common operation is to add

or subtract the same value from multiple data points, e.g., changing the brightness of a

picture. The operation requires that for each pixel, same amount of value is added or

subtracted from its red (R), green (G), and blue (B) elements. Two parameters define an

SIMD instruction; the size of the registers that store the input and output values and the

size of one element in the SIMD. For example, an SIMD instruction can operate on 64-bit

registers with configurations of eight 8-bit elements, four 16-bit elements, and two 32-bit

43

Figure 2.7: SIMD vs Scalar Instructions

elements (FELLOWS, 2014; Jiang et al., 2005; Maleki, Gao, Garzaran, Wong, & Padua,

2011). Chip makers provide support of SIMD instructions at the hardware level. Exam-

ples of SIMD ISA are MMX and SSE for Intel and NEON for ARM (Limited, 2009).

An ISA that supports SIMD instructions has separate registers and instruction pipeline

for this purpose. Such ISA configuration is known as a co-processor. Modern Graph-

ics Processing Units (GPUs) and array processors are often hardware implementations

for SIMD (Mitra et al., 2013). The difference between SIMD and scalar instructions is

depicted in Figure 2.7.

There are multiple techniques to generate SIMD instructions for the instruction

pipeline. These are listed as follows.

• SIMD instructions can be hand-written in the assembly code. Although the per-

formance of such hand-written code can be high, it is less readable, requires high

programming skills, and can lead to conflicts in the instruction pipeline due to by-

passing of the compiler technology.

• Second method of generating SIMD instructions in assembled code is to use

compiler optimizations (e.g., O3, O2) and auto-vectorization options. Auto-

44

vectorization options ask the compiler to look for code that can be translated into

SIMD instructions. Therefore, this method solely depends on the capability of the

compiler to generate SIMD instructions.

• Intrinsics are built-in functions that are specially handled by the compiler for effi-

cient execution of some instructions. Intrinsic functions can be used in C code to

generate corresponding SIMD instructions. The intrinsic functions work as an API

to SIMD assembly for the programmers. Intrinsic functions enable the programmer

to explicitly request the compiler the use of such an instruction. Therefore, many

C compilers provide platform-specific intrinsic functions. For ARM, arm_neon.h

header file defines the SIMD intrinsics.

SIMD instructions and intrinsics vary from one platform to another. Therefore, ap-

plication programmers often do not utilize SIMD intrinsic functions in practice as it limits

the applicability of the code to the SIMD target platform. However, it is difficult to write

efficient SIMD based code separately for each platform. Therefore, it is desired that an

SIMD porting or translation technique be devised such that the application programmers

can write SIMD based efficient applications that can be targeted for multiple platforms.

The task of devising an SIMD porting techniques is made difficult by many factors. For

example, for x86 and ARM ISAs, the translation and porting of SIMD instructions is not

a trivial work due to the difference in instruction length and register sizes.

2.4.2 Taxonomy of SIMD Porting Techniques

The taxonomy of SIMD translation and porting techniques is presented in Figure 2.8.

Translation Technique: The techniques utilized for cross-platform translation of

SIMD instructions can be either JIT or DBT. The JIT translation maintains a generic

platform-independent intermediate translation of SIMD instructions that can be further

translated to the target ISA on runtime. DBT also utilizes intermediate translations. How-

45

Figure 2.8: Taxonomy of SIMD Porting Techniques

ever, the DBT IR is based on emulation tool while the JIT IR is based on a compiler

technology.

Optimization Technique: The intermediate representations of both DBT and JIT

lead to two-phase retargetable translation of SIMD instructions. Most of SIMD porting

techniques perform two-phase retargetable translations. To-phase translations can be sup-

ported by the IR, graph matching, or hardware abstraction methods. Moreover, inductive

doubling can be applied to translate 32 bit instructions with the help of 16 bit operations.

Target Platforms: The cross-platform SIMD porting techniques can target two or

more than two platforms. However, the focus of our work is cross-platform emulation of

ARM ISA on Intel ISA.

Optimization Support: The optimizations can be supported through compiler or a

custom library. The compiler supported studies rely on the compilers (GCC or LLVM)

to produce instructions that are optimized for cross-platform execution. Both GCC and

LLVM provide support for x86 and ARM architectures along with support for generation

of portable IR. On the contrary, the library based SIMD translation frameworks utilize

custom libraries that support cross-platform programming of SIMD instructions.

Programming API: SIMD porting techniques can utilize the existing DBT tools,

46

Figure 2.9: SIMD Code: Scalar, ARM NEON and Intel SSE Instructions

such as Qemu or can work standalone as cross-platform programming interfaces.

2.4.3 Review of SIMD Porting Techniques

Porting of SIMD instructions across ISAs is important due to many factors. Firstly, mo-

bile device market consists of heterogeneous architectures, such as ARM and Intel. Pro-

grammers who want their vectorized applications to support both architectures require

porting of SIMD instructions. Secondly, the MCC paradigm is also based on heteroge-

neous processor architectures. Therefore, code offloading between heterogeneous proces-

sors requires porting or translation of SIMD instructions. Figure 2.9 provides an example

of sum instruction in scalar, NEON SSE, and x86 SSE format to emphasize the difference

between the semantics of SIMD intrinsics.

Optimization of SIMD instruction translations has received the attention of the re-

search community very recently. Some of the research works are based on Qemu as the

current Qemu upstream implementation has many shortcomings with respect to trans-

lation of SIMD instructions. Qemu translates SIMD instructions to multiple scalar in-

structions that consume more instruction cycles while ignoring the support for SIMD

instructions in the host ISA. Therefore, the existing approach of DBT in Qemu leaves

significant room for performance enhancement of SIMD instructions. In the below sub-

sections, we list the studies that have ported SIMD instruction between heterogeneous

ISA with particular focus on ARM NEON to Intel SSE translations

47

2.4.3.1 FREERIDER

FREERIDER (Manilov et al., 2015) methodology introduced a framework that enables

retargeting of non-portable SIMD intrinsics between heterogeneous ISA. FREERIDER

utilizes graph based matching of intrinsic functions while searching similar instructions

on the target ISA. The study also utilizes descriptive language to specify the semantics of

intrinsic functions. High-level code transformations are done to obtain optimized transla-

tions for target ISA. FREERIDER achieves retargeting in three steps. First, the intrinsics

are defined by a custom descriptive language. Then the descriptive language is repre-

sented in graphs. The graphs are then translated to C programs of the target ISA using

graph matching techniques. C header files are generated utilizing inputs from guest and

target intrinsics. The header file is utilized as input to produce data flow graphs for each

intrinsic function. The graphs act as IR and are annotated with input types. The graph

matching stage requires the header files, data flow graphs, and application source code

to perform the matching. As an output of graph matching, C code of the target ISA is

generated. In the final stage, the code is translated to the target ISA intrinsics with further

target-specific optimizations, such as loop unrolling.

2.4.3.2 IDISA+

IDISA+ (Huang, 2011) proposes a framework for cross-platform compatible SIMD pro-

gramming. The framework supports a limited set of well-defined integer SIMD instruc-

tions that are commonly utilized in multimedia applications. The framework comprises

of two components. The code generator produces portable libraries for SIMD code gen-

eration while the test suite examines the performance of the portable libraries along with

their correctness analysis. To achieve optimal performance, the code generator selects the

least instruction count as the best alternative among library routines. The libraries provide

a high level programming interface for writing portable SIMD code. The libraries auto-

48

matically select the compilation flags suitable for the target architecture. The framework

is based on inductive doubling principle to generate in-register SIMD instructions. Due

to the portability of IDSA+, performance loss is expected. However, the results show that

the code generated by the model is slightly efficient than its hand-written counterpart.

2.4.3.3 Improving SIMD Instruction Generation in DBT

Sheng et al. (Fu, Wu, & Hsu, 2015) introduced new IR for Qemu to enhance the per-

formance of Qemu for x86 and ARM emulation back-ends. The work added vector IR

to existing TCG implementations of Qemu. The study proposed two approaches to opti-

mize the existing DBT of SIMD instructions in Qemu. In the first approach, the NEON

helper functions were modified to generate LLVM vector instructions through C intrinsic

functions. However, the experiments showed that the helper function call overhead was

significant. In the second approach, vector IR support is added to the TCG so that SIMD

instructions are translated to corresponding vector instructions. In Qemu implementation,

the IR buffers comprise of instruction op-code and parameters that the register numbers.

This work modified the IR buffer to contain opcode, CPU state, and SIMD registers. The

proposed framework migrated from scalar IR to hybrid IR that also contained vector IR.

The model of vector IR was inspired by the LLVM IR. Results showed that the vector

IR implementation produced better performance for x86 emulation on all benchmarks.

However, the ARM emulation produced better performance for only three benchmarks

due to lack of compiler optimization in producing guest SIMD instructions.

The same group of researchers enhanced their earlier work to efficient SIMD trans-

lations in HQEMU (Fu, Wu, Liu, et al., 2015). HQEMU enhances Qemu with LLVM

optimizations that are applied to the code generated by the TCG and classified by the

profiler as a candidate for optimization. The authors added two methods to enhance the

SIMD translations in HQEMU. One method is to enhance the helper functions to emit

49

vector IR, while the second approach is to utilize vector optimizations in TCG. In the first

method, the pre-compiled helper functions that contained scalar LLVM IR were modi-

fied to produce vector LLVM IR which are already supported by LLVM compiler. As

a result, only the LLVM optimizer in the HQEMU is modified. To reap the benefits of

LLVM compiler in the second approach, TCG IR is converted into LLVM IR with two-

level approach. Experiments utilized SEPC2006 and Linpack benchmarks. The ARM to

x86 emulation shows 2.5X performance gains for the second approach while compared

to HQEMU. However, the helper function approach only yield 1.05X performance gains

while compared to the baseline.

2.4.3.4 Liquid SIMD

Liquid SIMD (Clark, Hormati, Yehia, Mahlke, & Flautner, 2007) addresses the issue of

binary compatibility across heterogeneous ISAs while porting SIMD instructions. The

work aims to decouple the ISA from the hardware accelerator through abstraction. The

decoupling is done by delayed binding while representing SIMD with scalar instructions

and utilizing light-weight dynamic translation to map the scalar representation on hard-

ware accelerators. The delayed binding in the Liquid SIMD framework is supported by

the compiler and a translation system. The compiler translates the SIMD instructions

to abstract scalar instructions supported by the baseline ISA. The compiler converts the

SIMD instruction to scalar instructions based on a set of syntax rules either at compile

time or after compilation with a cross-ISA compiler. The compiler also provides data flow

graphs of the application for the translation process. The translator identifies these data

flow graphs and transforms them into the target ISA specific SIMD instructions. Liquid

SIMD utilizes an abstract hardware translator for translation of SIMD instructions.

50

2.4.3.5 Optimizing DBT of SIMD

Researchers (Li, Zhang, Xu, & Huang, 2006) proposed a framework to port a program

written for one architecture to another with optimized DBT of SIMD instructions. As

SIMD registers can have different data types stored at different times, this work pro-

poses an algorithm to track the SIMD data type. The SIMD data type tracking algorithm

solves the issue of register synchronization while scanning the input code and emitting

translate code. Moreover, the work also proposes three algorithms to optimize the DBT

of SIMD instructions. These algorithms are; SIMD data type re-assignment algorithm,

the translate-time inter-block mismatch removal algorithm, and the runtime inter-block

data type mismatch removal algorithm. The type re-assignment algorithm utilizes the

data type flow to re-assign data type of multi-data type instructions. The translate time

algorithm utilizes flow graphs with well-defined data type flow equations to detect inter-

block mismatch. SIMD code blocks are explicitly made aware of neighbor data types

for this purpose. The runtime inter-block mismatch algorithm tries to correct block mis-

matches if the program execution flow changes. The work is based on x86 to x86 DBT of

SIMD instructions. A performance optimization of 3.89% is achieved by the system for

SPEC2000 integer benchmarks.

2.4.3.6 VaporSIMD

Vapor SIMD (Nuzman et al., 2011) proposes an auto-vectorizing compilation scheme that

vectorizes scalar instructions such that they can be executed on multiple heterogeneous

ISAs. The work auto-vectorizes multiple scalar instructions to a single SIMD instruction

while meeting the constraints, such as memory alignment, the cost of loop vectorizing,

and dependencies between the data elements. The proposed system utilizes split compi-

lation based auto-vectorizing and JIT compilers which lead to two-step translation from

source code to machine code. In the first compilation step, the auto-vectorizing compiler

51

works offline while translating C source code to vectorized bytecode that is portable. The

GCC offline compiler emits Common Language Infrastructure (CLI) complaint bytecode

that is used by the JIT compiler. In the second compilation step, the JIT compiler (Mono)

compiles the portable CLI complaint bytecode to the target machine code that can have

variable SIMD semantics in online mode. The Mono is a CLI compliant VM that can

target multiple ISAs with a JIT compiler. A split layer is defined for abstraction be-

tween the static and dynamic compilation steps. The split layer is equivalent to the IR

abstraction in Qemu. The work is applicable to AltiVec, SSE, AVX, and NEON SIMD

instructions. Due to the vector JIT compilation, the bytecode size and compilation time

increases. The auto-vectorizing results in 1.5X and 1.2X speedups for SSE and AltiVec

targets respectively. However, the speedup is low for ARM NEON due to the low support

of auto-vectorizing in the GCC compiler.

2.4.3.7 Speeding up SIMD DBT

Luc et al. (Michel et al., 2011) proposed a 3-address IR to map guest SIMD instruction

to host SIMD instructions. The 3-address IR is close to the intersection of guest and host

ISAs. The 3-address IR is formed on two constraints; the number of new IR instructions

should be limited so that the TCG is not burdened and enough IR instructions should be

added to allow a maximum coverage of the SIMD instruction sets in the guest and target

ISAs. Three cases arise from such instruction mappings: (a) a direct one-to-one mapping

between guest and host SIMD instruction. In such case, new vector IR is added to DBT

that allows passing of vector arguments to the TCG. An example of such instructions

is 8 bit addition operation represented by vadd.i8 Qd, Qn, Qm in NEON and paddb

xmm1, xmm2 in SSE ISA. A new IR simd_128_add_i16 is added to the TCG in this case,

(b) a one-to-many mapping in which the result of guest SIMD instruction is achieved

by execution of multiple scalar IR instructions and no new IR is added to the DBT. An

52

example of such a case is ARM Neon vsra.u32 instruction which performs a right shift on

operands and accumulates the shifted results in the output register. vsra.u32 is translated

into two IR micro-ops simd_128_shr_i32 and simd_128_add_i32. The TCG then find

an equivalent for each micro-op ,i.e. psrld and paddd in the SSE ISA and (c) there is

mapping between guest instruction and IR but there is no equivalent host instruction. An

example of such instruction is 8-bit logical left shift in ARM NEON whereas Intel SSE

does not support 8-bit shift operations. A speedup of 20% is achieved on average in the

direct mapping case for different instructions.

2.4.3.8 MC2LLVM

Researchers (Y.-C. Guo, Yang, Chen, & Lee, 2016) proposed a framework for the trans-

lation of ARM NEON and Vector Floating Point (VFP) instructions in a DBT if the host

architecture supports such instructions in hardware. Their approach is similar to that dis-

cussed in earlier subsections (Fu, Wu, Liu, et al., 2015). A machine-code-to-low-level-

virtual-machine (MC2LLVM) approach is applied for the efficient translation of SIMD

instructions. The guest vector instructions are translated into LLVM IR which keeps in-

tact the NEON and VFP instructions, unlike Qemu which translates them it into scalar

instructions. MCDisassembler from the LLVM is utilized to translate the guest binary to

MCInst. Each MCInst is further translated to LLVM IR. Target independent optimiza-

tions are applied on LLVM IR by the LLVM optimizer. LLVM IR is then translated to

the target binary with the LLVM backend. An algorithm based on FP operation input

and output is utilized to detect exceptions that can cause errors in the emulation process.

Experiments show that the MC2LLVM approach is 3X faster than QEMU in processing

NEON and VFP instructions for various benchmarks.

53

Table 2.3: Comparison of SIMD Porting Techniques

SIMD porting tech-
nique

Translation
technique

Optimization tech-
nique

Target
platform

Optimization
support

Programming
API support

FREERIDER (Manilov
et al., 2015)

JIT Two phase graph
matching

ARM to In-
tel

Library Custom API

IDISA+ (Huang, 2011) NA Inductive doubling /
NA

Multiple Library Custom API

Optimizing SIMD in
HQEMU (Fu, Wu, &
Hsu, 2015)

DBT Two phase retar-
getable

ARM to In-
tel

Compiler Qemu

Liquid SIMD (Clark et
al., 2007)

JIT Two phase hardware
abstraction

ARM to In-
tel

Compiler Custom API

Optimizing DBT of
SIMD (Li et al., 2006)

DBT Two-phase retar-
getable

Intel to In-
tel

NA Custom API

Vapor SIMD (Nuzman
et al., 2011)

JIT Two phase retar-
getable

Multiple Compiler Custom API

Speeding up SIMD
DBT (Michel et al.,
2011)

DBT Two phase retar-
getable

ARM to In-
tel

NA Qemu

MC2LLVM (Y.-C. Guo
et al., 2016)

DBT Two phase retar-
getable

ARM to In-
tel

Compiler Qemu

2.4.4 Comparison of SIMD Porting Techniques

We discussed seven SIMD instruction porting techniques in the above subsections. Ta-

ble 2.3 compares the SIMD porting techniques on quantitative parameters identified from

the taxonomy.

The frameworks discussed in the above sections have the objective of SIMD instruc-

tion translation optimization and cross-platform porting. The aforementioned frameworks

utilize two techniques for SIMD instruction translation; JIT translation based on the target

platform (Nuzman et al., 2011) and DBT which is retargetable for any target platform (Fu,

Wu, & Hsu, 2015). The basic purpose of both techniques is to translate the code into a

generic platform-independent IR which can be further translated into target specific code.

However, JIT is preferred over DBT for two reasons. First, there is a lack of transparency

in DBT as user or OS intervention is needed to translate the binary. Secondly, if the em-

ulation leads to an error, accountability can not ensure the fault is with the application or

the DBT.

Most of the SIMD porting techniques are two-phase retargetable (Nuzman et al.,

2011). Retargetability is achieved through platform-independent IR (Y.-C. Guo et al.,

54

2016). However, graph matching (Manilov et al., 2015) and hardware abstraction (Clark

et al., 2007) techniques are also used for this purpose. Retargetable IR based SIMD

porting techniques have the advantage that they can support multiple host and target plat-

forms. On the contrary, graph based matching and hardware abstraction require addition

of instruction profile to the current translation system in order to target multiple platforms.

The focus of most of the surveyed SIMD porting techniques was ARM to Intel trans-

lations. Due to recent emergence of ARM NEON ISA (Limited, 2009), all these studies

are recent and relevant to the subject discussed. However, some SIMD porting frame-

works also target platforms other than ARM and Intel (Nuzman et al., 2011). To perform

the optimization on translations, the SIMD porting techniques are either supported by

the compilers or a custom library. Compiler based support for SIMD optimizations are

mostly done along with the two-phase retargetable translations. Compilers, such as GCC

and LLVM, provide support for compiler based optimizations. As ARM to Intel DBT

is already implemented in Qemu, most of the aforementioned frameworks are based on

Qemu. However, there are serious performance drawbacks in the SIMD translations in

Qemu which are addressed by researchers (Y.-C. Guo et al., 2016; Fu, Wu, Liu, et al.,

2015). Moreover, some SIMD porting frameworks are based on LLVM optimization

based HQEMU (Fu, Wu, & Hsu, 2015). Custom API’s and programming models have

also been developed for cross-platform SIMD instruction translations (Clark et al., 2007).

However, Qemu based frameworks have more scalable nature than custom API’s. Qemu

based frameworks are feasible for complete application binaries while custom API’s only

translate SIMD instructions.

2.5 Open Research Issues

Generic MCC offloading frameworks are based on virtualization techniques that often

overlook the benefits of native application migration. Efficient translation and porting of

55

SIMD instructions among heterogeneous ISAs has also eluded the considerations of the

research community. There are several challenges to the native code migration of multi-

media application that are rich in SIMD instructions and require DBT over heterogeneous

platforms. In the following subsections, we list these challenges and open research issues.

2.5.1 MCC Code Offloading Challenges for Native Applications

The challenges to code offloading in native applications are listed as follows (Xu & Mao,

2013; Zhu, Luo, Wang, & Li, 2011).

• The biggest challenge to MCC code offloading is the handling heterogeneous hard-

ware architectures. Though system virtualization and application virtualization ad-

dress this issue through abstractions and intermediate translations, they have sig-

nificant computational and communicational overhead as compared to natively ex-

ecuted applications.

• The cross-ISA migration of live configurations for interactive and latency sensitive

applications is a complex task due to the volatile memory and CPU contexts of the

smartphone applications. The context of the offloaded application on the mobile

client can change leading to the nullification of offloaded operations on the server.

• Dynamic partitioning of applications at runtime and classification of methods that

require resource-rich cloud services without static analysis is difficult. However, the

challenge of dynamic partitioning of applications can be developed into a benefit in

case of multimedia based applications. The image processing kernels in multimedia

applications can be statically annotated with offload semantics. These kernels can

also have clones at the cloud servers that only require input for operation rather

than the entire instance of application offload.

• The MCC offloading frameworks fail if the network disconnects or falls below a

56

threshold network bandwidth. The issue of network disconnectivity is aggravated

if the offload in enabled by system or application virtualization as the data transfer

requirements increase. To address this issue, network bandwidth adoptable MCC

code offloading solutions need to be developed.

• Most of MCC frameworks address the challenge of mobile client energy while ig-

noring the energy metrics on the cloud server. Moreover, the multimedia based

kernels are resource-intensive and consume high energy. Therefore, integrated en-

ergy efficient frameworks need to be devised for MCC code offloading that consider

both mobile and server energy metrics for green computation.

2.5.2 ARM DBT Challenges

The major challenge of ARM DBT solutions is to reduce the overhead of runtime trans-

lation and optimizations. Further challenges to ARM DBT translation and optimizations

are listed as follows (Moore, Baiocchi, Childers, Davidson, & Hiser, 2009; Shen et al.,

2014; Nimmakayala, 2015).

• DBT or emulation process executes a large number of additional instructions as

compared to the native application execution. The increase in the number of exe-

cuted instructions is a result of DBT management tasks, such as code translation,

indirect branch resolution, and trace formation while frequently exiting the code

cache at run-time. The optimization of DBT management task is a challenge for

ARM emulation systems.

• DBT optimizations are beneficial for programs with longer execution times. There-

fore, DBT optimizations are not suitable for ARM ISA as it is utilized in embedded

and mobile devices where applications are client programs that have relatively short

execution time.

57

• The ARM ISA has an exposed Program Counter (PC, r15) that is can be modified

by high-level APIs. The DBT has to handle the frequent reads and writes of the

exposed PC that leads to significant run-time overhead.

• Mobile and embedded applications are mostly interactive and have high real-time,

boot-up, and response time constraints. DBT of such applications leads to higher

latency and low user interactive experience.

2.5.3 SIMD Porting Challenges

The challenges to the translation and porting of SIMD instructions are listed as fol-

lows (Fu, Wu, & Hsu, 2015; Mitra et al., 2013; Li et al., 2006; Michel et al., 2011).

• SIMD instructions vary syntactically from one ISA to another. The diversity of

hardware ISAs, instruction widths, and register sizes leads to the substantial differ-

ence between SIMD semantics across platforms. Therefore, an application written

and compiled for one platform is highly unlikely to be portable on another platform.

• SIMD registers can hold data of different types at different times. The ability of

SIMD registers to support multiple data types within the same register makes the

task of DBT difficult. The DBT process may implement a type-tracking algorithm

at translation time for accurate execution.

• ARM NEON functions are mostly 64-bit while Intel SSE operations are 128-bit.

The porting of 64-bit functions to 128-bit registers impacts the code quality. More-

over, if an ARM SIMD function is translated to multiple Intel SSE instructions,

intermediate flow can occur that requires manual handling during translation.

• A subset of Intel SSE intrinsic functions require intermediate parameters instead

of constant inputs. Hence, when they are called from a wrapper function for DBT,

errors are encountered.

58

• Even when there is a one-to-one correspondence between ARM and Intel intrinsics,

the behavior may differ on inputs that are out of range. Similarly, the rounding rules

of corresponding SIMD intrinsics can vary.

• ARM NEON ISA and x86 SSE ISA differ in many ways. ARM ISA is a register-

register architecture while Intel x86 is register-memory architecture. Intel SSE sup-

ports double precision FP operations while ARM NEON supports only single pre-

cision FP operations. Moreover, ARM NEON has instructions that have no equiva-

lent in Intel SSE. For example, there are no 8-bit shifts in x86 SIMD. In such case,

the 8-bit data has to be packed in 16 bit and then back to 8 bit after the operation.

2.6 Conclusion

In this chapter, the research domain of native code offloading MCC frameworks was sur-

veyed in detail. MCC offload enabling techniques and frameworks were presented along

with the debate on their strengths and weaknesses. It was identified that the native code

migration technique has the least computational and communicational overhead among

MCC offload enabling techniques. Further, DBT techniques for ARM ISA that are essen-

tial for native code migration between heterogeneous architectures were surveyed. The

ARM emulation or DBT techniques mainly focus on parallelization of execution. Hence,

significant room is left for optimal translation of special instruction, such as the vector and

SIMD instructions. The case of efficient cross-platform translation of SIMD instructions

was surveyed for the SIMD porting techniques. Moreover, in-depth comparison and tax-

onomy of the state-of-the-art MCC offloading frameworks, DBT optimization techniques,

and SIMD porting techniques were provided.

The main objective of the detailed literature review was to identify the potential re-

search issues in the domain of native code offloading frameworks in MCC. Through the

literature survey, multiple research problems in the domain of multimedia based native

59

MCC offloading frameworks were identified. One of the foremost challenges in MCC

offloading frameworks is the efficient offloading of native code without dependence on

system and application virtualization techniques. Native code migration brings new chal-

lenges in the form of cross-platform translation for heterogeneous mobile and cloud ar-

chitectures. The challenge of translation of native code is brought to the spotlight in the

case of SIMD instructions which are non-optimally translated from ARM ISA to x86 ISA

in existing MCC offloading frameworks. The optimal translation of SIMD instructions

in DBT systems requires re-design due to current vector-to-scalar mappings that result in

higher instruction cycles and execution time. Moreover, as vectorized multimedia appli-

cations depend on SIMD intrinsics for high performance, custom libraries, and APIs need

to be developed for cross-platform translation of such instructions.

60

CHAPTER 3: PERFORMANCE ANALYSIS OF MCC OFFLOADING
TECHNIQUES

This chapter presents a case of pre-compiled native code migration based MCC offload-

ing framework for multimedia applications by evaluating the existing MCC offloading

frameworks. Most of the MCC offloading frameworks are enabled by system and appli-

cation virtualization techniques. We present the case of pre-compiled code offloading by

experimentally demonstrating the overhead of system virtualization, application virtual-

ization, and compiled process code migration. Previous research works have focused on

performance analysis of a single MCC offload enabling technique, such as system or ap-

plication virtualization. Therefore, a collective performance analysis of the existing MCC

offload enabling techniques is required. The performance analysis will identify the level

of severity of the computational overhead faced by MCC offloading frameworks.

The rest of this chapter is organized as follows. Related work to the existing per-

formance evaluations of system and application virtualization is presented in Section 3.1.

In Section 3.2, the experiments undertaken for the performance analysis of MCC of-

fload enabling techniques are described. To put forward the case of pre-compiled code

offloading, performance analysis of existing MCC code offload enabling techniques is

performed to highlight the computational overheads in Section 3.3. In Section 3.4, an

analysis of performance enhancement in the case of SIMD instructions and the corre-

sponding DBT overhead for process code migration across heterogeneous architectures

is provided. We detail and discuss the insights gained from the performance evaluation

of MCC offload enabling techniques in Section 3.5. We provide the concluding remarks

of the performance evaluation in Section 3.6.

61

3.1 Background

In this section, we provide a review of existing performance evaluation studies of sys-

tem and application virtualization. A study on Xen, KVM, and VirtualBox virtualization

solutions finds the performance overhead for most High Performance Computing (HPC)

applications to be around 8% (Younge et al., 2011). The study utilized HPC and SPEC

benchmarks to evaluate various aspects of the system from network bandwidth to CPU

performance. The overall rating of various virtualization solutions is almost similar to

each other. Fernando et al. (Camargos, Girard, & Ligneris, 2008) evaluated Kqemu,

KVM, Xen, OpenVZ, Linux-VServer, and VirtualBox to determine most efficient Linux

server virtualization solution and the scalability of these solutions to host multiple OSs.

Benchmarks that targeted different parts of the system were used. Benchmark results

showed that Linux-VServer and KVM have the least overhead, which is at least 5% in

most of the cases as compared to the native performance.

Dalvik and .Net runtimes are utilized in smartphones for application virtualization.

As most of the smartphone devices are Android based, we will focus on Dalvik VM for

application virtualization (Smartphone OS Market Share, 2015 Q2, 2016). Researchers

have utilized Dalvik VM as a tool for code migration from mobile devices to cloud servers

for computational offloading (Chun et al., 2011). Researchers (Y.-J. Kim et al., 2012)

evaluated interpretation and compilation performance of Dalvik VM and a conventional

Java based VM. The study found that Dalvik’s register-based bytecode approach leads to

a slightly better interpretation while trace-based compilation leads to significant overhead

as compared to HotSpot VM. The article also studies Dalvik and Native C performance

utilizing Caffeinemark benchmark and finds the Dalvik overhead to be three to six times

higher as compared to Native C. Lee et al. (S. Lee & Jeon, 2010) determined overhead

of Dalvik for integer, floating point, and memory access operations. The study utilized

62

Android emulator for experiments and found at least 66%, 40%, and 96% overhead for

integer, floating point, and memory access operations respectively as compared to Native

C. Researchers also estimated that the overhead of Dalvik reduces with the new Ahead-

of-Time (AOT) compilation technique in Android 5.0 (Ehringer, 2010). However, all

performance evaluations of Dalvik VM reveal higher performance for native code than

the Java code (Jenkins, 2016).

To the best of our knowledge, the performance evaluation detailed in this chapter is

the first effort to evaluate the computational overheads of the MCC offloading techniques

collectively. This study can help researchers in understanding the limitations and the main

causes of performance degradation in current cross-platform ARM emulation techniques.

The study can also help cloud service providers in the selection of offloading mechanism

for resource constrained mobile devices based on the evaluated performance parameters.

3.2 Experiments: Performance Analysis of MCC Offload Enabling Techniques

In order to determine the severity of the computational overhead in the existing MCC

offloading frameworks, we perform a performance analysis. The performance analysis is

executed on the MCC offload enabling techniques, namely, system virtualization, appli-

cation virtualization, and DBT. We execute benchmarks application on the MCC offload

enabling techniques to evaluate the computational overhead of each. The experiments

on the MCC offload enabling techniques reveal their performance overhead compared to

native systems.

In the subsections below, we report the details of the experimental framework for the

performance analysis. To evaluate the MCC offloading techniques, we utilized various

smartphones, a server device, and multiple benchmarks. We performed experiments to

analyze the computational overhead of three common MCC offloading mechanisms: (a)

system virtualization based VM migration, (b) application virtualization based managed

63

code migration, and (c) native code based application migration. We do not quantita-

tively evaluate the communication overhead of MCC offloading mechanisms. The main

focus of our work is to evaluate the computational overhead of MCC offloading mecha-

nism. Therefore, network and communication devices are not a part of our experimental

framework.

3.2.1 Application Benchmarks

Application benchmarks evaluate the performance of a system or framework by executing

a set of instructions to reveal the execution performance. We selected the application

benchmarks for our problem analysis based on multiple criteria listed below.

• We focused on multimedia and SIMD instruction based benchmarks in most of the

cases to highlight overhead of cross-platform SIMD instruction execution.

• Open-source benchmarks were utilized so that the results of the experiments can be

replicated, verified, and thoroughly investigated.

Aside from the criteria of selection of the benchmarks, it must be understood that we

are evaluating diverse systems. Therefore, for each performance evaluation, the bench-

marks, and corresponding evaluation parameters can differ. However, we evaluate each

MCC offload enabling techniques with a set of common benchmarks. These benchmarks

are termed as multimedia benchmarks in this research work. Additional benchmarks are

utilized in evaluation when required.

The selected set of multimedia benchmarks comprises of four applications, namely,

Mathlib, Speed, Linpack, and FFT. The selected set of application benchmarks for the

experiments were either multimedia based on included explicit SIMD intrinsic instruc-

tions. We utilized two versions of each benchmark; (a) a simple version based on scalar

instructions compiled without optimization and vectorizing options and (b) a SIMD ver-

64

sion that replaces suitable scalar instructions in original version with SIMD intrinsics.

Moreover, the SIMD version of application benchmarks is compiled with optimizing and

auto-vectoring options. The set of vectorized multimedia benchmarks is rigorously uti-

lized in the performance evaluations performed throughout this thesis. An example of

part of code with scalar instructions for Linpack benchmark and corresponding vector

instructions for LinpackSIMD benchmark is illustrated in Appendix B.

The Mathlib application benchmark comprises of transcendental functions that are

evaluated over a range of input variables. The performance of the system measured by

Mathlib is in a unit of millions of vector evaluations per second (MVIPS). The Linpack

is based on a series of algebraic routines solving a system of linear equations. The unit

of performance in the Linpack benchmark is Millions of Floating-point Operations per

Second (MFLOPS). Speed application benchmark calculates the data reading speeds of

a system in Mbytes/second. Fast Fourier Transform (FFT) is one of the most commonly

used algorithms in numerical computing and multimedia based applications. The FFT

performs one-dimensional Discrete Fourier Transform (DFT) on real and complex vec-

tors. The performance of the FFT benchmark is measured in MFLOPS.

We employed the aforesaid vectorized multimedia benchmarks and traditional

Phoronix test suite for system virtualization. The Phoronix test suite contains tests that

target various components of the system. We selected ten tests that target various as-

pects of system performance, such as, network, memory, CPU and graphics subsys-

tems (Deshane et al., 2008). The processor performance was tested with 7zip and Sci-

mark test suites. 7zip compresses a file and calculates Millions of Instructions Per Second

(MIPS) during the compression process. The Scimark and Java Scimark tests inside the

Phoronix test suite consist of the LU matrix factorization. Both tests evaluate the MIPS

during the LU matrix factorization. To test the system I/O throughput, AIO-Stress test

was used. AIO-Stress is an asynchronous I/O benchmark that uses a 2048MB test file

65

and a 64KB record size for read and write operations. Stream benchmark is used to test

system memory (RAM) throughput. The disk performance is evaluated by the Linux

kernel unpacking benchmark. PyBench tests overall system performance by executing

loops and built-in function in Python. The Loopback TCP performance test measures the

loopback network adapter performance using a micro-benchmark. It calculates the time

to transfer 10GB Via Loopback. Cairo is a 2D vector graphics drawing library that tests

the performance of the system while executing graphic rendering commands. The render

benchmark evaluates the performance of video drivers.

For application virtualization, we employed multimedia benchmarks and Scimark

benchmark. We chose NIST approved Scimark for this purpose as it evaluates both Na-

tive C and Java code for several scientific computations (Boisvert, Moreira, Philippsen, &

Pozo, 2001). The Scimark benchmark consists of: (a) a Fast Fourier Transform (FFT) of

1024 size performing one-dimensional forward transform of 4000 complex numbers, (b)

Jacobi Successive Over-relaxation (SOR) method for solving 100*100 system of linear

equations, (c) Monte Carlo (MC) integration that approximates the value of Pi through

integral, (d) a 1,000 x 1,000 Sparse Matrix Multiplication (SMM) with 5,000 nonzeros,

and (e) Lower Upper (LU) matrix factorization of a dense 100x100 matrix using partial

pivoting. The Scimark calculates the MFLOPS while executing the aforementioned sci-

entific applications. The performance of DBT techniques was evaluated by a series of

customized nested loops programmed in C to and multimedia benchmarks.

3.2.2 Devices

We conducted experiments on a physical workstation to evaluate system virtualization

overhead. The physical workstation represents a generic system with Intel Optiplex755

server. 64 bit Linux is utilized as the host architecture. VirtualBox (a hosted virtualization

solution) is installed on the server to evaluate the system virtualization overhead. 64 bit

66

Table 3.1: Experimental Devices for Problem Analysis

Device Processor Memory OS
S7560 1GHz (ARMv7) 1GB Android 4.0
MT6582 1.3GHz*4 (ARMv7) 4GB Android 4.4
MT6589 1GHz*4 (ARMv7) 2GB Android 4.1.2
GTL9100 1.2GHz*2 (ARMv7) 1GB Android 4.4.4
Zen5 2GHz*2 (Intel Atom) 2GB Android 4.3
Server (Optiplex755) 2.3GHz*4 (x86) 4GB Linux 14.04
Emulated OMAP3 (Qemu) 1GHz max(ARMv7) 512MB linaro-nano 3.0

Linux is used as the guest OS with the physical memory equally divided between the

guest and host OS.

Dalvik overhead is evaluated with the help of mobile devices and Android emula-

tors installed on standard workstations. A set of five mobile devices is used to validate

comprehensive results on heterogeneous processor architectures and OSes. The reason

behind the selection of multiple Android devices is that Java compilation techniques have

evolved over time with upstream Android Application Programming Interfaces (API).

Recent AOT compilation makes the Dalvik overhead lesser as compared to previous An-

droid APIs that were based on Just-in-Time (JIT) compilation. The selected mobile de-

vices utilize different versions of Android. Moreover, most of the mobile devices used in

the experiments are ARM based as ARM ISA captures 90% share of mobile market (Do,

2011). Table 3.1 lists the details of mobile and server devices utilized in the experiments.

ARM ISA emulation evaluation is conducted on the Intel Optiplex755 server. Lat-

est versions of Qemu and gem5 emulators are installed from their respective repositories.

We utilized standard ARM kernels for Qemu and gem5 emulation. For Qemu, we utilized

Linaro based ARM file system compiled for ARMv7 based Versatile Express board for

all experiments. For gem5, we utilized ARM Embedded Linux (AEL) file system for

Versatile Express board. For most of the experiments, we used gem5.opt and gem5.fast

binaries from five gem5 binary options to evaluate the performance of gem5. gem5.opt

provides the worst emulation time as the binary includes symbols, tracing, and assert op-

67

tions. On the contrary, gem5.fast provides the best emulation time as is does not provide

support for the symbol, tracing, and assert routines.

3.3 Experimental Results

In this section, we will present our experimental results in three different directions.

Firstly, we present results of Type-2 system virtualization overhead while benchmarking

a single VirtualBox instance. Secondly, we measure the performance of Dalvik VM and

compare it with Native C and various versions of Android. We also evaluate the reduction

in Dalvik overhead with the upstream Android APIs. Thirdly, we evaluate ARM ISA and

Android emulators through system call emulation and full system emulation performance.

Moreover, we also measure the performance overhead of ARM to Intel Atom translation

layer in x86 based Android devices.

3.3.1 System Virtualization

MCC offloading frameworks often utilize system level hosted virtual machines to offload

a virtual instance to the cloud (Satyanarayanan et al., 2009). We evaluated the overhead

of hosted virtual machines for two purposes: (a) to demonstrate the overhead induced

by system virtualization based MCC offloading schemes, and (b) to calculate the lower

bound for ARM emulation performance overhead. In system virtualization, an OS is

hosted above a virtualization layer. However, the instructions are not translated from one

ISA to another. On the contrary, system emulation requires hosting of an OS over an-

other OS with the additional overhead of instruction translation from one ISA to another.

Therefore, the overhead of x86 to x86 system virtualization provides the lower bound

for ARM to x86 emulation overhead. We utilized a set of multimedia benchmarks and

Phoronix test suite v3.6.1 from Linux distribution for the evaluation.

68

Figure 3.1: System Virtualization Evaluation with Multimedia Benchmarks

3.3.1.1 Multimedia Benchmarks

The set of multimedia benchmarks includes Mathlib, Linpack, Speed, and FFT. Each of

these benchmarks executes a set of complex compute-intensive SIMD instructions. The

benchmarks are executed simultaneously on physical and virtual systems so that they

experience similar resource utilization levels. Both scalar and vector versions of each

of the aforementioned benchmarks were utilized. The results of multimedia benchmark

execution time for physical and virtual systems are shown in Figure 3.1.

The execution time of FFT benchmark is factored by seven as it skewed the bounds

of the graph. There is considerable overhead for all of the benchmarks for the virtual-

ized system. The result of eight benchmark tests reveals overhead of 14.53%, 19.06%,

30.75%, 26.66%, 25.13%, 16.50%, 15.27%, and 23.06% respectively for the virtualized

system in terms of execution time. The results reveal an average overhead of approxi-

mately 21.37% for all multimedia benchmarks related tasks in a virtualized system. The

overhead is considerable as the increase in execution time of the application will result in

higher user response time.

69

Table 3.2: System Virtualization Evaluation with Phoronix Test Suite

Test Version Target Unit Native Virtual Overhead
7zip compress-7zip-1.6.0 Processor MIPS 2129 1766 17.05%
Native Scimark scimark-2.1.2.0 Processor MFLOPS 787.13 757.07 3.82%
Java Scimark java-scimark-2.1.1.0 Processor MFLOPS 1358 1296 4.51%
AIO-Stress aio-stress-1.1.1 I/O Mb/s 11.12 10.74 3.42%
Stream stream-1.2.0 Memory Mb/s 4431.96 4298.23 3.02%
Kernel Unpacking unpack-linux-1.0.0 Disk Seconds 24.72 27.47 10.01%
PyBench pybench-1.0.0 System Seconds 3.91 4.02 2.81%
TCP Loopback network-loopback-1.0.1 Network Seconds 72.13 316.65 77.22%
Render Bench render-bench-1.1.2 Graphics Seconds 30.67 41.14 25.44%
Cairo trace cairo-pref-trace-1.0.1 Graphics Seconds 1.49 4.16 64.18%

3.3.1.2 Phoronix Test Suite

We also utilized Phoronix test suite v3.6.1 to evaluate various aspects of system perfor-

mance (Larabel & Tippett, 2013). The Phoronix test suite is commonly utilized to mea-

sure the performance of various system parameters and subsystems. However, among the

available tests, we focused on graphics based benchmarks for multimedia applications.

We executed the benchmarks simultaneously over both OS to evaluate the overhead of

hosted virtualization. The benchmarks were executed for multiple runs to get an average

estimate. We covered all aspects of system performance with processor, I/O, memory,

disk, system, network, and graphics tests. Table 3.2 shows the results of these bench-

marks on native physical and virtual systems.

The overhead of the virtual systems is between 2-4% for most of the benchmarks.

However, two exceptions can be marked out in the form network and graphics tests which

are both critical to offloading of multimedia based applications. The overhead of TCP

loopback benchmark is more than 77%. We evaluated this overhead with different net-

work configurations of the virtual machine. However, all of the scenarios depicted similar

overhead. As network performance is a critical factor in MCC offloading frameworks, it

can be stated that MCC offloading frameworks based on system virtualization will suffer

high overhead in the form of network delay.

To test the performance for multimedia based applications, we executed two graph-

ics based benchmarks from the Phoronix test suite. The Cairo and render bench tests

70

resulted in 64.18% and 25.44% performance overhead for the virtualized system. The

results imply that the performance of system virtualization for multimedia based applica-

tions will be low due to large overhead in the form of network and graphics parameters.

The overhead of processor benchmarks i.e., 7zip, native Scimark, and java Scimark have

overhead of 17.05%, 3.82%, and 4.51% respectively. The results imply that the minimum

system virtualization overhead of processor related tasks will be 3-4%.

The results in this subsection show that the overhead of system virtualization for a

CPU intensive task can range between 3.82% to 14.64%. Similarly, the overhead for net-

work related tasks can be as high as 70%. Network performance can become a bottleneck

as it is a critical factor for MCC frameworks that offload tasks to the cloud server over the

network. The network performance bottleneck is aggravated by the fact that system vir-

tualization requires the largest amount of data to be transferred over the network during

the offloading process.

3.3.2 Application Virtualization

The following subsections present results related to the overhead of Dalvik VM. We se-

lected Dalvik VM as Android devices dominate the majority of the smartphone market.

Dalvik VM is a Java based application virtualization solution adopted in Android smart-

phones. The virtualization layer of Dalvik VM allows execution of an application from

mobile space in the cloud without any code or binary level modifications. We chose Lin-

pack and Scimark benchmarks for evaluation as they can be easily installed on Android

devices from the Google PlayStore.

3.3.2.1 Multimedia Benchmark

Application virtual machines such as, Dalvik VM, are utilized in Android based smart-

phones to execute platform-independent Java applications. We argue that the overhead

of application virtualization based Java as compared to native applications prohibits its

71

Figure 3.2: Application Virtualization Evaluation with Linpack: Performance in
MFLOPS

usage in compute intensive multimedia applications. To evaluate the overhead of applica-

tion virtualization, we utilized two versions of the Linpack benchmark. A Java version of

the benchmark is devised from the native C version of the benchmark. The result of Java

and native C Linpack performance is shown in Figure 3.2.

The result depicts that Java has a significant overhead as compared to native C code.

The overhead of Java, when compared to native C, is 66.05%, 72.66%, 71.23%, 73.28%,

and 71.25% respectively on the five mobile devices for MFLOPS calculation. On average

the Dalvik to native C overhead is 70.89%. In modern smartphones, most of the applica-

tions are developed to run in Dalvik VM for cross-platform compatibility. Applications

that are required to be offloaded through application virtualization techniques suffer from

the overhead evaluated in this section. Moreover, applications that are not a candidate for

offloading also generally suffer from this overhead as Java is mostly preferred for applica-

tion development for Android. However, multimedia applications are compute intensive

and require the support of low level C libraries for optimal performance. Therefore, the

overhead of application virtualization is not desired for such applications. We did not

utilize multi-threaded benchmarks. Therefore, the Linpack results on the mobile devices

scale with the single processor speed. The execution time of the native and Java based

72

Figure 3.3: Application Virtualization Evaluation with Linpack: Execution Time

benchmarks reveal similar overhead. The result of execution time for Native and Java

Linpack benchmark is depicted in Figure 3.3.

3.3.2.2 Scimark Benchmark

We also executed Scimark Benchmark to evaluate performance of the Dalvik VM. Sci-

mark is the most commonly utilized benchmark for evaluation of application virtualiza-

tion solutions. The Scimark benchmark consists of scientific applications programmed

in both Java and Native C. SciMark benchmark evaluates five scientific algorithms and

computes Million of Floating Point Instructions (MFLOPS) performed by the device dur-

ing execution. Among the five scientific algorithms, FFT and matrix multiplication are

backbone of many multimedia applications. Complete results of the Scimark benchmark

for the set of mobile devices are listed in Figure 3.4.

We are interested in the difference of native C and Java results while ignoring the

performance of individual devices and benchmarks. Scimark benchmark also derives

composite scores based on the individual benchmark score for each device. The compos-

ite scores show the overall results of all scientific computations on the mobile devices.

The native C performance compared to Java is quite high for all of the benchmarks and

devices. In the composite scores, the overhead of Java as compared to native C is 44.03%,

73

Figure 3.4: Application Virtualization Evaluation with Scimark Benchmark: MFLOPS
Performance

55.18%, 52.78%, 53.85%, and 46.08% for the five mobile devices. The results of Scimark

benchmark show a lower Dalvik overhead than the Linpack benchmark. However, a min-

imum overhead of 44.03% for the S7560 device is still significant in terms of scientific

and compute-intensive applications. Moreover, our results depict a similar overhead for

Dalvik Java to Native C as evaluated in an earlier study (S. Lee & Jeon, 2010).

3.3.2.3 Dalvik Compilation Method Optimization

Upstream versions of Android have optimized Java compilation methods that have lead

to overall efficiency in Java performance. To evaluate the compiler optimization of Java,

we executed the Whetstone benchmark on the series of Android API’s, namely, API 21

(5.1.0 Lollypop), API 19 (4.4.4 KitKat), API 17 (4.1.1 Jellybean), and API 9 (2.3.7 Gin-

gerbread). As real Android devices with old API’s are no longer available in the market,

we performed these experiments in the Genymotion Android emulator. The hardware

configurations for the emulator were set at 1 processor core and 1536 RAM. The results

of MWIPS performance for native and Java benchmarks are depicted in Figure 3.5.

The Native C performance does not deviate significantly for different Android API’s.

However, there are three significant changes in Dalvik performance. Firstly, the overhead

of Dalvik reduces gradually with upstream Android API’s. The overhead of Java as com-

74

Figure 3.5: Java and Native C MWIPS Comparison for Upstream Android Versions: Per-
formance in MWIPS

pared to Native C is calculated as 85.73%, 85.82%, 71.70%, and 51.69% respectively

for Android API 9, 17, 19, and 21. Secondly, the Dalvik performance increases almost

twofold while migrating from API 19 to 21. This performance increase is due to migra-

tion of Android API from JIT compilation to AOT compilation. In AOT compilation, an

application Java bytecode is compiled to native code once and stored for subsequent exe-

cutions. As a result, subsequent executions do not require translation to native code. The

trade-off comes in the form of extra storage requirements for applications in AOT com-

pilation. Thirdly, there is also a performance increase from Android API 17 to 19. This

performance increase is due to Dalvik JIT code cache tuning, kernel samepage merging

(KSM), and other optimizations that increase Java performance for Android API 191.

The performance of Java based application virtualization has significantly increased

with the updates in the Android API. Incremental versions of Android API have included

different Java compilation techniques. These Java compilation techniques have evolved

from JIT compilation to AOT Compilation techniques. AOT performs better in term of

CPU performance but consumes more memory for first compilation instance. However,

approximately 50% overhead as compared Native C performance in AOT compilation

1http://developer.android.com/about/versions/kitkat.html

75

is still a significant factor that advocates migration from application virtualization based

MCC offloading mechanisms for multimedia applications.

3.3.3 ARM ISA Emulators

ARM ISA emulators are essentially developed to test mobile code on Intel based sys-

tems. Therefore, the ARM ISA emulators tend to lag behind in performance with their

physical counterparts. Qemu and gem5 are two mainstream ARM ISA emulators. In the

below subsections, firstly we evaluate ARM ISA emulators based on customized applica-

tions to determine and compare their performance with eachother and physical systems.

Afterward, we evaluate the ARM to Intel translations in the Android framework.

3.3.3.1 System Call Emulation

Qemu and gem5 can execute compiled process through the system call (user-mode) for

multiple ISAs. A process that has been compiled for ARM ISA can be executed on the

x86 ISA with the help of gem5 and Qemu system call mechanism. We used a series of

nested loops programed in C to measure the performance of gem5 and Qemu system call

emulation. The nested loops performed a singular integer operation for each iteration. We

constructed loops with variable degree of iterations resulting in seven programs starting

from 1 thousand loops to 1000 million loops. We calculated both CPU time from Unix

time calls and wall clock time to measure the time of execution of these loops on Qemu

and gem5 system call emulations. The CPU time is the sum of user and system time

measured by the Unix time call. The wall clock time is the real world time the process

took to execute. Program binaries were compiled statically with GCC compilers, i.e., gcc

4.8.4 for x86 host and arm-linux-gnueabi-gcc 4.7.3 for ARM platforms. The results of

the execution times of system call emulation of qemu, gem5.opt, and gem5.fast are listed

in Table 3.3.

The wall clock time of the results is impossible to measure for benchmarks that take

76

Table 3.3: System Call Emulation Performance: Execution Time

Number of Loops 1K 10K 100K 1M 10M 100M 1000M
Qemu CPU time (s) 0.060 0.064 0.067 0.072 0.141 0.818 7.924
Qemu Wall clock time (s) NA NA NA NA NA 1.5 9.1
gem5.opt CPU time (s) 0.533 0.659 1.177 6.894 62.532 617.25 7123.12
gem5.opt Wall clock time (s) NA NA 1.3 7.9 65 675 7301
gem5.fast CPU time (s) 0.488 0.578 1.092 6.022 56.640 557.15 6443.03
gem5.fast Wall clock time (s) NA NA 1.1 6.3 57 565 6840

sub-seconds to execute. Such results have been marked as ’NA’ in the above table. More-

over, floating point precision is hard to achieve for wall clock time of the benchmarks.

Qemu outperforms gem5 in terms of both CPU and wall clock time for system call em-

ulation. The reason behind the superior performance of qemu for system call emulation

is that in system call qemu only emulates the target CPU without memory and I/O inter-

faces (Vincent & Janin, 2011). On the contrary, gem5 emulates the target host and OS

with cycle accuracy during system call emulations. Qemu provides 87.7-99.87% faster

execution than gem5.fast system call emulation in terms of CPU time for the seven loop

programs. Qemu to gem5.fast performance ratio increases with the increase in the size of

the loops. Similarly, Qemu performs 95-99.86% faster emulation than gem5.fast in terms

of wall clock time. Moreover, gem5.fast provides approximately 7.22-12.64% faster em-

ulation time than gem5.opt for the seven loop programs in terms of CPU time. Similarly,

gem5.fast performs 6.31-24.05% faster than gem5.opt in terms of wall clock time. The

gem5 CPU time and wall clock time results are similar as gem5 is a cycle-accurate simu-

lator.

3.3.3.2 Full System Emulation

Qemu and gem5 can also emulate full systems with specific OS kernels. On an Intel based

system, these emulators can host an ARM based kernel on emulated ARM board. Full

system emulation experiments also utilized the same loops used in system call emulation.

Table 3.4 lists the results of full system execution for the native device, Qemu, gem5.opt,

77

Table 3.4: Full System Emulation Performance: Execution Time

Number of Loops 1K 10K 100K 1M 10M 100M 1000M
Native CPU time (s) 0.00 0.00015 0.0017 0.0155 0.094 0.792 7.573
Qemu CPU time (s) 0.04 0.05 0.06 0.07 0.25 1.79 19.01
Qemu Wall clock time (s) NA NA NA NA 1 2.3 15
gem5.opt CPU time (s) 0.0001 0.00037 0.0007 0.001 0.04 0.45 5.90
gem5.opt Wall clock time (s) 1 1.3 3.2 11 80 900 10215
gem5.fast CPU time (s) 0.0001 0.00037 0.0007 0.001 0.04 0.45 5.90
gem5.fast Wall clock time (s) NA NA 1.1 6.5 65 730 7800

and gem5.fast hosts while comparing them with the physical device.

The native execution results were obtained from the GTL9100 mobile device. Qemu

shows 99.7-55.75% overhead as compared to native execution with respect to CPU time.

The overhead of Qemu reduces when the size of the workload is increased. On the other

hand, native execution CPU time is slightly higher than gem5 CPU time due to mismatch

of native and emulated hardware profiles. As gem5 is a cycle accurate emulator, the CPU

time of an emulated program would match the CPU time of the program on actual hard-

ware. A hardware board with similar specification would have consumed similar time to

execute the loops. Such results are used to evaluate the accuracy of the emulator with

respect to the emulated hardware (Butko, Garibotti, Ost, & Sassatelli, 2012). Therefore,

due to cycle accurate emulation, gem5 CPU time is also slightly lower than Qemu CPU

time. gem5.opt performs 73.69-99.75% faster than Qemu in terms of CPU time. More-

over, the gem5.opt and gem5.fast CPU time remains same on multiple executions due to

cycle accurate emulation.

We are more interested in the actual world time taken by the emulator to execute the

loops. In this respect, gem5 shows high overhead as compared to Qemu. For instance, the

loop of 1000M linear instructions takes hours of wall clock to execute on both gem5.fast

and gem5.opt as compared to few seconds on Qemu. Qemu provides 73.33-99.8% faster

full system emulation than gem5.fast for the seven loop programs in terms of wall clock

time. The large overhead in wall clock time of gem5 emulation contributes to its cycle

78

Figure 3.6: ARM and x86 based Android Framework

accurate design that precisely captures timing information of each instruction. Moreover,

gem5.fast provides lower overhead than gem5.opt due to exclusion of debug and trace

options. Specifically, gem5.fast executes 49.23% faster than gem5.opt in terms of wall

clock time on average.

3.3.3.3 ARM to Intel Atom Emulation

Most of the mobile devices are equipped with ARM processors. However, some mobile

vendors such as ASUS also utilize Intel Atom processors in mobile devices. As most

of the mobile applications are compiled to execute on ARM natively, without translation

these applications can not execute on Intel based mobile devices. Applications compiled

with Java are compatible for both ARM and Intel based mobile devices due to applica-

tion virtualization. Applications that target faster native C compilation have to address

compatibility issue with both ARM and Intel architectures. To address the issue, Android

versions compiled for Intel Atom processors have a compatibility layer called Houdini,

which translates the ARM based applications to Intel architectures. The Houdini library

effectively translates ARM instructions to Intel architecture (Choi & Lim, 2016). Fig-

ure 3.6 illustrates the difference between x86 and ARM based Android frameworks.

79

Figure 3.7: ARM to Intel Translation Overhead: Performance in MWIPS

There are several points to consider for Houdini translation in x86 Android. Firstly,

Houdini provides translation for only Intel Atom based processors that are architecturally

different from Intel processors used in server devices. Intel Atom processors utilize Bon-

nell Architecture, which translates CISC based x86 instructions into RISC like micro-ops

for low energy operations. Therefore, Houdini ARM to Intel Atom translation layer is

not scalable to server devices. Secondly, the Houdini translation layer is closed source.

Therefore, it cannot be immediately extended for research purposes. However, the over-

head of the Houdini translation can be similar to a scalable ARM to Intel translation

framework. We evaluated the overhead of Houdini translation by executing four classic

benchmarks that are compiled for both ARM and Intel native architectures. The classic

benchmarks are executed on the Zen5 that is an Intel Atom based mobile device. The re-

sult of the performance of Intel native and ARM to Intel translated benchmarks is depicted

in Figure 3.7.

The ARM compiled benchmarks go through the Houdini translation layer while the

Intel compiled benchmarks are executed without any translation process. Therefore, the

MWIPS executed by the ARM compiled benchmarks are always less than Intel com-

piled benchmarks due to the overhead of instruction translation by Houdini libraries. The

80

overhead of Houdini translation comes out to be 31.63%, 22.58%, 55.53%, and 53.94%

respectively, for Whetstone, Dhrystone, Livermore Loops, and Linpack benchmarks re-

spectively. These results indicate a considerable overhead for ARM to Intel Atom trans-

lations in the existing x86 Android.

We evaluated the performance of ARM emulators in this subsection. The results

show significant overhead during evaluation of system call emulation, full system emu-

lation, and ARM to Intel Atom emulation for all ARM ISA emulation tools. Qemu and

gem5 were utilized as the open-source ARM emulation tools. Qemu shows significantly

better performance than gem5 for system call and full system emulation experiments.

Therefore, Qemu is the ideal choice to be utilized as a SaaS tool for offloaded code from

ARM based mobile device to Intel servers. ARM to Intel Atom translation by the Houdini

layer can be considered as a best case analysis for overall ARM to Intel ISA emulation.

However, on average, ARM to Intel Atom emulation overhead was found to be 40.92%.

3.4 Case for SIMD Instruction Optimizations

In this section, we forward the case of SIMD instruction optimization in heterogeneous

MCC architectures. This subsection has two objectives towards its findings. Firstly, to

assert the performance gain obtained using SIMD instructions, we execute the vectorized

multimedia benchmarks. The performance enhancement in the case of SIMD instructions

has a theoretical upper-bound equal to the depth of the SIMD vector. For example, if a

SIMD instruction adds four integers of 32-bit length each in a 128-bit register, then the

performance gain is equal to 4X. However, such theoretical bounds are impossible to

achieve due to several reasons. Every instruction in an application is not a candidate

for conversion to SIMD instructions. Moreover, the processor instruction cycles have

complex dependencies leading to in or out-of-order execution of instructions resulting in

execution latency.

81

Table 3.5: Mathlib and MathlibSIMD Comparison on Physical and Emulated Systems

Benchmark SIMD ratio Execution time (sec) Performance (MVIPS)
Mathlib (physical) 17.16% 7.28 19.31
MathlibSIMD (physical) 24.41% 5.53 57.73
Mathlib (emulated) 17.16% 34.21 9.33
MathlibSIMD (emulated) 24.41% 29.95 11.94

The second objective of the findings presented in this section is to evaluate the over-

head of DBT for native code offloading of multimedia benchmarks. Our assumption is

that the current implementation of SIMD instructions in the ARM emulators is not ef-

ficient and has high overhead. Hence, when a SIMD based application is offloaded to

the cloud server, the cross-platform execution leads to higher instruction count and lower

performance due to non-optimal translations. In the below subsections, we analyze the

SIMD translation in the current Qemu implementation. We compare and execute the

benchmarks on the physical ARM based mobile device (GTL9100) and emulated ARM

board (OMAP3 emulated in Qemu on Optiplex755 server). The GCC ARM compiler

(arm-linux-gnueabihf-gcc-4.7) is used in all of the experiments in this subsection. Opti-

mization flags for vector generation, such as O3 and ftree-vectorize were used in case of

SIMD versions of application benchmarks. We draw three inferences from the aforemen-

tioned results: (a) first for the case of SIMD instruction performance, (b) second for the

general overhead of Qemu, and (c) third for the SIMD overhead of Qemu.

3.4.1 Mathlib

We executed the Mathlib benchmark on the physical and emulated devices. The result of

the Mathlib execution time and SIMD instruction is listed in table 3.5.

As the target architecture is ARM in both physical and emulated cases, the binaries

contain same number of SIMD instructions. Due to utilization of SIMD intrinsics and

auto-vectorization flags, the percentage of SIMD instructions is higher in SIMD bench-

marks than the basic benchmarks. The SIMD application benchmark shows 24.03% and

82

Table 3.6: Linpack and LinpackSIMD Comparison on Physical and Emulated Systems

Benchmark SIMD ratio Execution time (sec) Performance (MFLOPS)
Linpack (physical) 0.75% 18.57 56.98
LinpackSIMD (physical) 3.15% 15.23 370.37
Linpack (emulated) 0.75% 161.58 15.31
LinpackSIMD (emulated) 3.15% 144.50 21.79

12.45% time efficiency on the physical and emulated system respectively compared to ba-

sic benchmarks. Similarly, the SIMD benchmark shows 66.55% and 21.85% performance

improvement on the physical and emulated respectively compared to basic benchmarks.

The time and performance efficiency is the result of employment of SIMD intrinsics and

compiler optimization flags. The SIMD intrinsics result in higher SIMD instruction count

and lower application execution time. However, it must be noted that the time efficiency

provided by SIMD benchmark is approximately twice as high for the physical systems

than the emulated system due to vector-to-scalar translations of Qemu. The emulated

ARM device executing on Qemu leads to 78.72% and 81.53% overhead in terms of time

and 51.68% and 79.31% overhead in terms of performance for Mathlib and MathlibSIMD

benchmarks respectively compared to native execution.

3.4.2 Linpack

We executed scalar and vector versions of single precision 64-bit Linpack benchmark on

both physical and emulated devices. The results of the experiment are listed in Table 3.6.

There are three implications of the aforestated result. Firstly, LinpackSIMD pro-

duces 84.61% (approximately 6X) and 17.98% performance enhancements as compared

to Linpack benchmark on the physical device in terms MFLOPS and execution time re-

spectively. The performance gain is quite substantial in the case of vectorized version of

the Linpack benchmark. The performance gain is mainly due to increase in the SIMD in-

structions in the application binary. The number of SIMD instructions are 76.19% higher

in the vectorized version of the Linpack benchmark than the non-vectorized version.

83

Secondly, the LinpackSIMD benchmark leads to 94.11% and 89.46% speedup on

native execution as compared to emulated execution in terms of MFLOPS count and ex-

ecution time respectively. However, if we make a comparison on the basis of BogoMIPS

values of the systems, the LinpackSIMD benchmark leads to 37.19% and 33.96% speedup

on native execution as compared to emulated system in terms of MFLOPS count and exe-

cution time respectively. BogoMIPS is a measure of the CPU speed in terms of MIPS. The

server device has a BogoMIPS value of 4654.87 while Qemu has the BogoMIPS value

of 471.61. The results point to the fact that the ARM to x86 translation or emulation has

significant overhead which can be reduced with efficient translation and optimizations.

The scalar Linpack benchmark leads to similar efficiency for the native execution, i.e.,

88.50% and 73.13% speedup as compared to emulated system in terms of MFLOPS and

execution time.

Thirdly, the increase in number of SIMD instructions translates well into perfor-

mance gains for the physical mobile device. The SIMD benchmark leads to 84.61% and

17.98% efficiency in terms of MFLOPS and execution time on the mobile device. On the

contrary, the performance gain on the emulated device in terms of MFLOPS and execu-

tion time are 29.73% and 10.57% respectively for the vector version of the benchmark.

This result points to the fact that the ARM to x86 translation of SIMD instructions in

Qemu is not efficient and can be enhanced with optimized translation framework.

3.4.3 Speed

We utilized the memory speed benchmark to further our case for SIMD translation opti-

mization for cross-platform execution. Similar configurations were used as in the previous

experiments. The results of executing the benchmark on physical and emulated device for

various inputs are listed in Figure 3.8.

The three inferences listed in case of Linpack can be drawn from these results too.

84

Figure 3.8: Speed and SpeedSIMD Comparison on Physical and Emulated Systems

Firstly, the Speed and SpeedSIMD binaries produced 17.49% and 11.92% SIMD instruc-

tions respectively. The memory benchmark produces a lower number of SIMD instruc-

tions while utilizing optimization and vectorizing flags. Compilers often tend to produce

a lower number of SIMD instructions if the auto-vectorization options are applied to vec-

torized code (Maleki et al., 2011).

Secondly, the results show that the performance enhancement achieved by Speed-

SIMD as compared to the Speed benchmark ranges from 76.67% to 65.16% for various

input sizes on the physical device. The average performance enhancement in the case of

SpeedSIMD benchmark is 72.66% on the physical device which is similar to the previous

results of Linpack benchmark. On the contrary, the vectorized versions of the benchmarks

produce only 27.53% better performance on average on the emulated device. Hence, it

can be asserted that a part of SIMD performance gain is lost on the emulated systems due

to non-optimal instruction translation.

Thirdly, the physical device produces 47.42% and 80.16% better performance

(MB/s) than the emulated ARM system for the basic and SIMD benchmark respectively.

However, if we make the comparison between the physical and emulated system based

on the BogoMIPS values, the physical system performs 18.74% and 31.68% better than

85

Figure 3.9: FFT and FFTSIMD Comparison on Physical and Emulated Systems

the emulated system for the non-vectorized and vectorized benchmarks respectively.

3.4.4 FFT

To establish our case of multimedia application based SIMD instruction optimization, we

evaluated the performance of FFT benchmark on physical and emulated devices. FFT

is also the backbone of many multimedia based applications, such as JPEG and MPEG

encoding. Similar to previous experiments, we utilized two version of FFT benchmark,

i.e., FFT and FFTSIMD. The results of the performance (MFLOPS) with different input

sizes (64KB to 4096KB) on physical and emulated devices are shown in Figure 3.9.

The FFT and FFTSIMD benchmarks produce 1.05% and 11.02% SIMD instructions

respectively when compiled by the GCC-ARM compiler. The results show that for all

input sizes, the FFSIMD always performs better in terms of MFLOPS performance than

the FFT benchmark on the physical device. Overall, the FFTSIMD performs 80.28% to

84.05% better than the FFT benchmark for different input sizes on the physical device.

On average, the FFTSIMD performs 82.18% better than FFT benchmarks for all input

sizes on the physical device. However, the performance gain on the emulated system

reduces to 48.5% on average. The results show that on average 41.05% of performance

lost is witnessed by the emulated systems due to non-optimal vector-to-scalar translation

86

of SIMD instructions.

The physical system performs 68.92% and 89.62% better than the emulated system

on average for FFT and FFTSIMD benchmarks. As the benchmark is optimized, the

performance of the emulated system further decreases. This result also points out to the

fact that the SIMD instructions are non-optimally translated by the DBT engine of Qemu.

If we compare the physical and emulated system on the BogoMIPS values, the physical

system performs 27.24% and 35.42% better than the emulated system for the FFT and

FFTSIMD benchmarks respectively.

All of the results listed in this section show that the SIMD based applications lead

to considerable performance optimizations as compared to basic versions of the same

applications. In most of the cases, the performance gain was more than 70%. The per-

formance gain is due to SIMD intrinsics and auto-vectorizing options utilized in SIMD

benchmarks. On mobile and embedded devices, performance and time optimizations are

particularly important due to several resource constraints, such as battery lifetime. The

mobile battery life can be increased if the application utilizes lesser time and the hard-

ware supports execution of vector instructions. Therefore, SIMD based applications and

corresponding hardware support (e.g., ARM NEON) are important for the better perfor-

mance of the mobile devices. Moreover, the aforementioned results show considerable

performance overhead in the DBT of compiled code offloading. Furthermore, the SIMD

benchmarks do not achieve the same performance gain on the emulated systems as com-

pared to the physical systems. Therefore, optimization is required in the heterogeneous

cross-platform execution of multimedia applications.

3.5 Discussion

In this chapter, we analyzed the computational performance overhead of the MCC of-

floading techniques. System virtualization suffers from performance overhead that is 4%

87

for computational tasks while more than 70% for network related tasks. For the multime-

dia benchmarks, a virtualized system suffers from 38% overhead on average as compared

to the non-virtualized system. The overhead as compared to native execution is due to the

virtualization layer that manages resources and instruction execution over real hardware.

Similarly, application virtualization can lead to a minimum 66% overhead for multimedia

applications due to application sandboxing and intermediate bytecode translations. More-

over, system and application virtualization techniques suffer from this overhead at both

the mobile and cloud server side as the offloaded mobile instance has to execute inside

a virtualization solution on both ends. Therefore, the performance overhead will double

while considering both mobile and cloud executions. On the contrary, native code migra-

tion (compiled or pre-compiled) suffers from performance overhead on the cloud server

side only due to the heterogeneity of architectures. Moreover, code migration/offloading

leads to minimal communicational overhead as compared to system and application vir-

tualization techniques due to the small size of the migration instance. Therefore, code

migration best fits in most of the MCC offloading scenarios. However, selection of best

mechanism to offload computation from a particular mobile device depends on multiple

factors, such as network bandwidth, cloud/cloudlet proximity, and computation overhead.

The performance of an ISA emulator (DBT) can be several times lower than the na-

tive system for compiled code offloading. Qemu and gem5 are the two candidates for

ARM ISA emulation. Our results show that for speed and high performance, Qemu is the

obvious choice as it leads to lower execution time as compared to gem5. There are two

main reasons behind the performance difference between Qemu and gem5. Firstly, Qemu

was developed with the design objective of high performance and fast emulation. gem5,

on the contrary, was developed with the design goal of first order performance accuracy in

hardware and software system simulation. Secondly, gem5 is a cycle accurate simulator

as compared to functional accurate Qemu. The cycle accuracy of gem5 leads to more sim-

88

ulation overhead as compared to Qemu. A functionally accurate simulator, such as Qemu,

focuses on what a processor does and not how the processor does it. Moreover, a cycle-

accurate simulator has to emulate the ISA according to the actual hardware and software

semantics with accurate timing information (Yeh, Tseng, & Chiang, 2010). Both Qemu

and gem5 are open-source emulators permitting further modification and optimization.

The native code offloading mechanisms demand that the cloud server performs the

offloaded tasks is relatively lesser time so that the overall process is beneficial for the mo-

bile client. Qemu is the best candidate for ARM ISA emulation due to lower performance

overhead than gem5. However, Qemu shows approximately 70-80% overhead compared

to native execution for compute intensive benchmarks. Moreover, we demonstrated from

experiments that the SIMD instruction translation in current Qemu leads to 3-4X overhead

when compared to native execution. Therefore, there is significant scope for improvement

in the case of SIMD instructions. The performance evaluation performed in this chapter

leads to many meaningful research directions. They are summarized as follows,

• There are overheads in all of the analyzed computational offload enabling tech-

niques. Research can be carried out on any of the MCC offload enabling tech-

niques, i.e., system virtualization, application virtualization, and DBT to reduce

their overhead for efficient offloading.

• SMID instruction translation from ARM to x86 is not efficient in Qemu. Vec-

torized multimedia applications can have significant performance speedup with the

efficient translation of guest SIMD instructions to host SIMD instructions in Qemu.

• The communication overhead of the MCC offloading techniques needs to be quanti-

tatively investigated. The computation and communication performance evaluation

will result in a comprehensive analysis of MCC offloading schemes. Modeling

89

of both communicational and computational overhead is necessary to support an

automated decision based MCC offloading framework.

3.6 Conclusion

In this chapter, the case for pre-compiled code translation for MCC offloading techniques

was presented. The MCC offloading mechanisms can be effective for the mobile users in

terms of energy savings. The mobile device can spend time in the idle state that consumes

less energy while a task is offloaded to the cloud. MCC offloading mechanisms can only

be effective with respect to execution time if the offloaded process executes faster on the

cloud server than the mobile device. As observed in our performance evaluation, the

overhead in terms of execution time for system virtualization, application virtualization,

and ARM emulation is quite high as compared to native execution.

MCC offload enabling techniques, namely, system virtualization, application virtual-

ization, and ARM ISA emulation were evaluated against a set of application benchmarks.

MCC offload enabling techniques were experimentally analyzed and their performance

overhead was determined. In most of the cases, such as Dalvik VM based application

virtualization, the overhead was found to be as high as 70% when compared to native per-

formance. The overhead for system virtualization was evaluated at 38% as compared to a

non-virtualized system for multimedia benchmarks. Similarly, the DBT leads to approx-

imately 70% overhead for compiled code offloading. The evaluation of the performance

overheads leads us to the conclusion that instead of existing system virtualization, ap-

plication virtualization, and emulation techniques, pre-compiled code offloading should

be adopted. The pre-compiled code offloading based MCC framework should provide

lower performance overhead as compared to the existing MCC offloading frameworks.

Moreover, the framework needs to address the cross-platform execution and translation

of multimedia applications that are rich in SIMD instructions.

90

CHAPTER 4: A FRAMEWORK FOR SIMD INSTRUCTION TRANSLATION
AND OFFLOADING IN MCC: SIMDOM

This chapter presents the details of our framework for cross-platform translation and ex-

ecution of SIMD instruction based applications in MCC. The framework for SIMD in-

struction translation and Offloading in MCC (SIMDOM) comprises of two main compo-

nents, namely, a SIMD translator and a application offloader. The SIMD translator maps

ARM NEON SIMD instruction set to Intel x86 SSE instruction set such that the offloaded

application seamlessly executes on the cloud server. SIMD intrinsics vary from platform

to platform. Therefore, it is difficult to write an application based on SIMD intrinsics

that can execute on multiple heterogeneous platforms, as in the case of MCC. SIMDOM

framework facilitates execution of SIMD instructions in heterogeneous MCC architec-

tures. SIMDOM framework offloads pre-compiled code to the cloud while avoiding the

high overhead of emulation. Moreover, SIMDOM framework is vector application cen-

tric where SIMD instructions and their efficient translations are utilized for performance

enhancements.

In the following sections, details of the SIMDOM framework are provided. In sec-

tion 4.1, the overview of SIMD instruction based MCC offloading framework is pre-

sented. Section 4.2 describes various components of the framework, such as SIMD trans-

lator and application profiler in detail along with the corresponding algorithms. In sec-

tion 4.3, the system model of the proposed framework based on time and energy optimiza-

tions is formulated. Section 4.4 provides the high-level flow diagram and algorithm for

the SIMDOM framework. Section 4.5 provides the concluding remarks for this section.

4.1 SIMDOM Framework

In this section, we provide the overview of the SIMDOM framework in the form of frame-

work features, high-level system architecture, and the framework design assumptions.

91

4.1.1 SIMDOM Features

The aim of the SIMDOM framework is to execute vectorized application is heterogeneous

MCC architectures. The SIMDOM framework has three features that distinguish it from

existing MCC offloading frameworks. These features are listed below.

1. The SIMDOM framework enables SIMD based multimedia applications to achieve

efficiency in execution time and energy consumption while offloading to a cloud or

cloudlet server.

2. The SIMDOM framework allows multimedia applications programmed for ARM

NEON architecture to execute unmodified on x86 SSE architecture. Hence, the

framework allows for cross-platform portability of SIMD instructions. A SIMD

based multimedia application programmed for ARM based architecture can be ex-

ecuted seamlessly on a cloud server without the overhead of binary translation.

3. The SIMDOM framework has lower computational and communicational overhead

due to the utilization of native code offloading and recompilation techniques.

4.1.2 System Architecture

We devise a framework for SIMD instruction translation and offloading in MCC (SIM-

DOM) to achieve the objective of cross-platform application execution in heterogeneous

ISAs. The SIMDOM framework is enabled by native code offloading technique rather

than conventional system and application virtualization techniques. Moreover, the code

offloading is performed at the pre-compiled application level rather than the compiled

application. The offloading of the compiled code leads to the overhead of binary transla-

tion. On the contrary, pre-code offloading requires translation of native libraries from one

ISA to another. The SIMDOM framework performs recompilation and translation of the

library that supports and defines SIMD intrinsics for the ARM ISA.

92

Figure 4.1: SIMDOM: A Framework for SIMD Instruction Based Multimedia Applica-
tion Offloading in MCC

Our framework for cross-platform (ARM to x86) translation and execution of SIMD

instructions is composed of five modules; (a) a SIMD translator for ARM intrinsic func-

tions that enables execution of ARM based vectorized multimedia applications on x86

architectures, (b) an application profiler for static analysis of application to determine

the optimal application partition for offload, (c) an energy profiler that measures the en-

ergy parameters of the system as input to the offload manager, (d) a network profiler that

profiles that state of the network, (e) and offload manager that decides upon the feasibil-

ity of code offload based on inputs from other modules. The offload manager also acts

as a client-server communication module. The proposed framework is depicted at the

high-level system in Figure 4.1.

4.1.3 Assumptions

The SIMDOM framework is based on multiple assumptions. The SIMD translator works

on ARM NEON intrinsic functions. Therefore, we assume that the smartphone appli-

cation is programmed with the ARM NEON intrinsic functions to exploit the efficient

93

translations of SIMDOM framework. The multimedia benchmarks and applications we

tested were all programmed in C language. However, the SIMD translator module can be

integrated into any Android, iOS, or Java project with simple header file (NEON-to-SSE)

inclusions. The SIMDOM framework also assumes that the application is available on a

cloud server for static application analysis. The SIMDOM framework does not take into

account the mobile battery drainage and location profile, i.e., the amount of battery left

and the distance of mobile from the cloud server while deciding upon the feasibility of

the offload.

4.2 Components of SIMDOM

We will first describe the ARM NEON and x86 SSE SIMD profiles that are the target of

our framework. The detail of SIMD profiles is necessary to understand the challenges and

technical moralities of the SIMD translator. Afterward, we will explain each component

of the SIMDOM framework in detail.

4.2.1 SIMD Profiles

SIMD instructions were first introduced to the ARMv6 architecture in 2009. The ARMv6

SIMD instructions operated on multiple 16-bit or 8-bit values packed into standard 32-bit

general purpose registers. ARMv7 and ARMv8 enhanced SIMD instructions to 64-bit and

128-bit with the advanced NEON ISA. The ARM NEON ISA supports a comprehensive

set of SIMD instructions while sharing some features with ARM Vector Floating Point

(VFP) unit. ARM NEON supports 8-bit, 16-bit, 32-bit, and 64-bit integers. Moreover,

ARM NEON also supports 32-bit single precision floating point values. 32 and 64-bit

registers support the SIMD instructions that can be accessed from both ARM NEON and

VFP co-processor. ARM NEON registers can be utilized in two configurations; firstly, as

thirty-two double-word registers of 64-bit each (D0-D31) and secondly as sixteen quad-

word registers (Q0-Q15) of 128-bit width each. However, data from the same register

94

with different configurations can be accessed in the same instruction. Therefore, NEON

instructions can have variable size input and output registers (Huang, 2011; Limited,

2009). ARM NEON is like a co-processor added to the general purpose CPU. NEON

instructions execute in their own 10-stage instruction pipeline which can dispatch two

NEON instructions per cycle. The processor can initiate some NEON instructions in the

NEON pipeline while the normal pipeline executes scalar instructions. An example of

ARM NEON instruction is VADD.I32 q1, q2, q3 which adds four 32-bit integers.

Currently, Intel Streaming SIMD Extensions (SSE) and Advanced Vector Exten-

sions (AVX) architectures support up to 256-bit and 512-bit of SIMD instructions respec-

tively. The series of SSE instructions sets is based on the previous MultiMedia eXtensions

(MMX). The SSE ISA contains eight 64-bit registers (MM0-MM7) and eight 128-bit reg-

isters (XMM0-XMM7). The support for MMX registers and instructions was migrated

to XMM registers in SSE2 ISA (Lomont, 2011). An example of x86 SIMD instruction is

_mm_add_ss that adds 128-bit single precision values. Due to the difference in instruc-

tion length and register sizes, the translation and porting of SIMD instructions across Intel

and ARM ISAs is not a trivial work.

4.2.2 SIMD Translator

The first phase of the SIMDOM framework comprises of the SIMD translator module on

the cloud server. The SIMD translator requires that the smartphone application is avail-

able at the cloud server for translation and subsequent profiling. The task of SIMD in-

struction translator is made complex by the fact that SIMD instructions in compiled code

can be obtained by multiple methods. Firstly, SIMD instructions can be hand-written in

the assembly code. Although the performance of such hand-written code can be high, it

is less readable and can lead to conflicts in the instruction pipeline. The second method

of generating SIMD instructions in assembled code is to use compiler optimizations and

95

auto-vectorization options. Auto-vectorization method solely depends on the capability

of the compiler to generate SIMD instructions. Lastly, intrinsic functions can be used in C

code to generate SIMD instructions. The compiler in-lines the intrinsic functions into as-

sembly code. For ARM, arm_neon.h header file defines the SIMD intrinsics. Smartphone

application developers utilize the SIMD intrinsics defined in arm_neon.h for execution of

efficient vectorized code. The SIMD translator is applicable to the two latter methods

of generating NEON instructions where a custom header file manages ARM NEON to

Intel SSE translations. However, the proposed SIMD translations can be extended to the

low level assembly code by replacing the corresponding assembly codes generated by the

SIMD translator. We devised a best fit algorithm to map ARM NEON instructions to x86

SSE instruction. The SIMD translator is detailed in Algorithm 1.

Algorithm 1 ARM NEON to x86 SSE Translation Algorithm
1: Input: ARM application, target ARM NEON and host x86 SSE SIMD profiles
2: Include NEON-to-SSE header file
3: for Target Instruction = 0 to EOF do
4: if one-to-one map (target ins., host ins. = True) then
5: Optimize/pack 32 and 64 bit target ins. to 64 and 128 bit host ins
6: Produce bit masks if required
7: Copy operands and map registers
8: Calculate instruction overflow/check bounds
9: Output: Vector instruction corresponding to target ins.

10: else
11: Perform target ins. to host ins. mapping through multiple instructions (one-to-

many)
12: Find least number of host ins. for target ins.
13: Produce bit masks if required
14: Copy operands and map registers
15: Calculate instruction overflow/check bounds
16: Print user warning for serial implementation
17: Output: Sequence of Vector/scalar instructions corresponding to target ins.
18: end if
19: end for
20: Return x86 application

The SIMD translator works offline (on the cloud server). It translates the ARM

NEON ABI (NEON intrinsic functions) to equivalent x86 SSE instructions. The offline

optimization results in translation of approximately 1700 ARM intrinsic functions into

96

equivalent x86 SSE instructions (ARM® NEON™ Intrinsics Reference, 2014; Lomont,

2011). The SIMD translations are defined in an NEON-to-SSE header file that must be

included in the application code scope that is to be offloaded to the cloud. The SIMD

translation reworks arm_neon.h header file that defines the ARM NEON intrinsics such

that the compiler produces x86 target code rather than ARM code. The NEON-to-SSE

header file first includes the header definition files of x86 SSE versions. If no SSE version

is defined, then SSE2 is selected as default translation target as SSE4 is only available in

newer versions of x86 ISA. Then the NEON-to-SSE file type defines both ARM NEON

and x86 SSE data types utilized as inputs in the SIMD intrinsic function translations. Af-

terward, all the NEON intrinsic functions defined in arm_neon.h header file are declared,

redefined, and implemented as x86 SSE functions. The SIMD translator generates an

ARM application binary and an x86 application binary. The ARM binary is generated

with the help of ARM compiler that does not require the SIMD instruction translation or

re-compilation. The x86 binary is generated with the help of x86 compiler and the SIMD

translator while mapping the SIMD instructions.

The SIMD translator makes the correspondence between ARM NEON intrinsics (as

defined in arm_neon.h) and x86 SSE intrinsics (up to SSE4.2). However, some of these

translations are not ideal due to the challenges listed in the previous section. For exam-

ple, where one-to-one correspondence does not exist between SIMD instructions, serial

implementation through multiple instructions is followed, which may result in low per-

formance.

Precisely, the SIMD translator translates ARM NEON vector instructions to corre-

sponding x86 SIMD instructions in three ways: (a) one-to-one mapping where one-to-one

correspondence exists between ARM NEON and x86 SSE instructions, (b) one-to-many

mapping with limited overhead, and (c) one-to-many mapping with serial implementation

and low performance. The first case of ARM to x86 SIMD translations is represented by

97

Figure 4.2: SIMD Translator: Sample Code for Case 1: One-to-One Vector Mapping

the branch taken code in Algorithm 1. The latter two cases are represented by the branch

not taken code. The examples of the aforementioned cases are provided below.

• Case 1: An example of one-to-one mapping is vadd_s8 instruction which is

mapped to _mm_add_epi8 instruction with simple input passing. Approximately

50% of ARM NEON instructions can be translated to x86 SSE instructions with

one-to-one mappings. Figure 4.2 illustrates an example of the SIMD translator for

simple one-to-one mapping.

• Case 2: ARM NEON instruction vector shift right by constant (vshrq_n_u8) has

no corresponding equivalent in x86 SSE. Therefore, the translation is done with the

help of bit masking on SSE 16-bit vector shift SSE instructions. The 8-bit input is

initially masked or packed and converted to 16-bit (or higher) variable. The 16-bit

ARM instruction is then mapped to 16-bit x86 instruction and unmasked or un-

packed through logical operations. Around 45% of the NEON SIMD functions are

implemented using one-to-many mapping if the performance effective implementa-

tion is possible. This case has limited overhead as the one-to-many translations are

mostly vector to vector. Figure 4.3 illustrates an example of the SIMD translator

for one-to-many vector mappings.

• Case 3: In the third case, the SIMD translator implements ARM NEON func-

tions using serial implementation while issuing the corresponding low performance

98

Figure 4.3: SIMD Translator: Sample Code for Case 2: One-to-Many Vector Mapping

compiler warning. The low performance in this case occurs as the SIMD transla-

tor can not map the NEON SIMD instruction to a corresponding vector instruction.

Moreover, serially implemented instructions need to store data from vector registers

to memory, process them serially and load them again to registers. For example,

the result 64-bit vector saturating add (vqadd_u64) has to be checked for bounds.

Therefore, after the translation of the instruction to corresponding SSE intrinsics,

the upper and lower bounds of the result are checked leading to a serial implemen-

tation. In both cases of one-to-many mapping, the x86 SSE instructions utilized for

translation are not necessarily SIMD instructions. Figure 4.4 illustrates example of

the SIMD translator for serial one-to-many mappings with a performance overhead.

Figure 4.4: SIMD Translator: Sample Code for Case 3: Serial Implementation with One-
to-Many Vector/Scalar Mapping

99

The ARM NEON to Intel x86 SSE translator is not commutative, i.e., one-to-one

mapping between all instructions does not exist. Therefore, the reverse of ARM NEON

to x86 SSE translations is not possible through the SIMDOM framework. As a result of

SIMD translations, two executable and static binaries are produced each for ARM and

x86 platforms. The executable produced for the x86 architecture does not require DBT

when offloaded for execution on cloud server.

4.2.3 Application Profiler

The application profiling is performed to help the offload manager in determination the

execution parameters such as local and remote application partition. The application

profiler decides on optimal offload parameters through two steps. First, the applica-

tion profiler utilizes application binaries obtained through the SIMD translator module

for static analysis. The static analysis of the application binaries is performed with the

ob ject−dump commands. As vectorizing capabilities of compilers differ, a comparison

of GCC and LLVM compilers along with the corresponding compilation flags is done

to decide the optimal compilation parameters for the static binaries. The optimal com-

pilation parameters for the application should lead to the highest percentage of SIMD

instructions in the application binary. The static analysis results in the calculation of the

percentage of SIMD instructions in both ARM and x86 binaries. The calculation of SIMD

instructions in the application binary is trivial for x86 architecture as the SIMD instruction

is marked with xmm register tags. Therefore, a simple system command (grep -c ’xmm’)

can count the number of SIMD instructions in x86 application profile. However, the same

is not true for the ARM binaries as SIMD instruction count based on NEON register tag-

ging results in incorrect findings. Therefore, a profiling program is devised that takes the

ARM binary as input and calculates the SIMD instructions as the sum of all ARM NEON

instructions. However, as we found out through profiling of candidate benchmarks that

100

only a subset of 20-30 SIMD instructions is produced repeatedly in the application bench-

marks. Therefore, the profiling program was limited to the commonly occurring subset of

active instructions to reduce profiling overhead. Application profiling based on all SIMD

instructions in the corresponding hardware architectures leads to undesired overhead. On

the contrary, limiting the application profiling to a subset of popular or active instructions

can lead to 99.7% accuracy with limited overhead (Jeffery, 2009). The total number of

lines was calculated with the system command wc− l while excluding the common file

headers for ARM and x86 binaries.

As a general rule, the application is feasible for offload if the percentage of SIMD

instructions in x86 binary is higher than the ARM binary. The percentage of SIMD in-

structions in x86 binaries is often higher than corresponding ARM binaries due to two

reasons. Firstly, the one-to-many mappings of ARM NEON intrinsics in SIMD translator

results in more instructions (vector) in the x86 binaries. Secondly, the advanced vectoriz-

ing capabilities of x86 compilers often leads to higher percentage of SIMD instructions in

x86 binaries. However, as a result of ARM NEON to x86 SSE translation, not all resul-

tant instructions are SIMD. Some NEON instructions require scalar overflow and bound

checking.

Our framework provides three simplistic application partition options based on the

vectorized multimedia application profile: (a) the offloading does not save energy so no

instruction is offloaded, (b) the complete application is offloaded to the server, or (c) only

the SIMD intrinsics are offloaded to the server. Most of the SIMD instructions present in

the static binaries are due to intrinsic functions. Therefore, the SIMD intrinsics are usu-

ally an ideal candidate for translation and offload. However, the complete application can

also be offloaded if it is programmed with a focus on higher utilization of SIMD intrin-

sics. Multimedia applications are usually a candidate for complete application offload.

Therefore, application partitioning is a relatively simple task for SIMD based multimedia

101

applications. Other than native code SIMD intrinsics, SIMD instructions can be pro-

duced in the application binary due to auto-vectorized compilation. Moreover, we found

that specific application compilation parameters lead to better SIMD output. Such pa-

rameters include auto-vectorizing, optimization, native/target ISA information and SIMD

co-processor version variables that are passed to the application binary on the compila-

tion. Most of the parameters for application compilation are initialized at the first step of

the framework through get hardware profile function.

4.2.4 Energy Profiler

The basic purpose of the energy profiler is to profile the energy consumption of the de-

vice corresponding to various tasks. Hardware, software, and hybrid energy profiling

techniques are used on the smartphone to measure the energy utilization corresponding to

application execution. Hardware based energy profiling methods deploy a power meter

with smartphone battery to measure the energy drain during application execution. Soft-

ware based methods model smartphone subsystems, their power ratings, and their energy

consumption behavior in various states to map an application profile for power consump-

tion calculations (Ahmad et al., 2015; Hoque, Siekkinen, Khan, Xiao, & Tarkoma, 2015).

We employed PowerTutor (L. Zhang et al., 2010) which is the most commonly utilized,

accurate, and open-source power estimation tool for Android based smartphones. Power-

Tutor estimates the energy consumption of an application for multiple system parameters

and subsystems such as CPU and WiFi in various power states (idle, busy) to find subsys-

tem baseline power ratings. To calculate the pi of the device, the energy profiler samples

the device energy consumption in an idle state while limiting the number of background

processes in LCD off state. To measure the power consumption of the device while ex-

ecuting computational applications pm, the energy profiler executes multimedia applica-

tions. The energy profiler sends and receives data from the cloud to estimate the value of

102

pc for Wi-Fi networks. The energy profiler provides these values as input to the offload

module for the offload decision process. The device base power ratings are calculated

once by the energy profiler and updated on each offload event to keep the updated device

energy profile. The SIMDOM framework does not consider the device battery levels in

the decision of offloading.

4.2.5 Network Profiler

The network profiler is responsible for providing the offload module with the input values

of network parameters. The two main parameters required for the offload module are the

up-link and down-link throughput of the network. The network throughput depends on

multiple parameters such as wireless link bandwidth, latency, number of hops, data trans-

fer protocol, radio state, etc. The network profiler periodically measures the throughput

and Round Trip Time (RTT) to the cloud and cloudlet servers using the Wi-Fi network

and saves the historical results for future inputs of offload module. Moreover, during an

offload operation, the network profiler measures the current state of network and updates

previous values (mean) through a simple sliding window protocol. The sliding window

protocol keeps a record of the last 20 RTT measurements while allocating highest weight

to the latest value. To measure the network parameters (up-link and down-link through-

put), the network profiler executes a client-server data transfer program similar to code

and data offloading. The program sends data from the mobile device to the remote and

local server and measures the RTT. The data transfer program is executed multiple times

to get a mean value of RRT. The RTT value is utilized in deriving the throughput of the

network.

4.2.6 Offload Manager

The basic task of the offload manager is to decide upon the feasibility of code offload.

The offload manager decides the feasibility of application code offloading based on the

103

inputs from the energy profiler, application profiler, and network profiler. The offload

manager selects the application partition which is most suitable for offload based on the

system model for energy efficiency feasibility described in the next section.

The offload manager is also assigned two tasks of server communication. Firstly, it

establishes a connection with remote cloud server to get the hardware profile for precise

SIMD translations. The server hardware profile is used to map ARM NEON instruction to

cloud server architecture. The server profiles may differ between various versions of the

SSE (SSE2, SSE3, SSSE3, etc). Secondly, the offload manager is tasked to communicate

application offload instances between the cloud and the smartphone. Upon identification

of remote server execution part, the offload manager sends an offload request to the cloud

server. The cloud server executes the code on the x86 hardware accelerator and returns

result to the offload manager. The offload manager is responsible for the complete cor-

respondence with the cloud server while the remote execution part is offloaded and sent

back to the smartphone client.

4.3 System Model

In this section, we describe our system model based on feasibility of energy-aware code

offloading framework for heterogeneous MCC architectures. Due to increasing usage

of vectorized multimedia applications, the smartphone energy consumption and battery

drainage have increased. Therefore, the basic objective of MCC offloading frameworks

is to save smartphone energy. The objective of energy saving in MCC frameworks also

corresponds to mobile users preferences obtained from user surveys (Falaki et al., 2010).

Moreover, the mobile battery technology has not been able to keep pace with the power

consumption of smartphones. Therefore, MCC offloading is a solution to the increasing

user utilization and corresponding power consumption of smartphones. Previous efforts

spent in modeling of MCC frameworks did not consider mobile and cloud ISA hetero-

104

Table 4.1: Symbol Table

Symbol Definition
pm Smartphone power rating during local computation
pu Smartphone power rating for sending data
pd Smartphone power rating for receiving data
pi Smartphone power rating for waiting in idle state
I Total number of application instructions
Il(hostCPU) Application instructions executed locally on host architecture (smart-

phone)
Ir(targetCPU) Application instructions executed remotely on the target architecture

(cloud)
Dr Network down-link throughput
Ur Network up-link throughput
sm Computational power (speed) of smartphone in MIPS
ss Computational power (speed) of server in MIPS
CPIm Cycles per instruction of smartphone
CPIs Cycles per instruction of server

geneity (Kumar, Liu, Lu, & Bhargava, 2013). We define a system model for heteroge-

neous cross-platform code offload in MCC. The list of symbols utilized in the model are

described in Table 4.1.

The energy and time models of the system are related to each other. The energy

model is derived from the time model while considering the base power of the task. We

define the energy model of the system below. The corresponding time model can be

obtained by excluding the base power (p) variable from the equations. For example, the

time required to execute an application of I instructions on the mobile can be formulated

as,

T =
I×CPI

sm
(4.1)

The energy spent to perform a user task of I computations on the smartphone can be

derived from Equation 4.1 as,

Elocal =
pm× I×CPIm

sm
(4.2)

The value of CPI depends on the composition of benchmark application, the underlying

105

hardware architecture, and the chip design. Based on SIMD instructions, we partition

the application into local and remote execution parts. Suppose that a subset of the appli-

cation, Ir instructions are offloaded to the cloud for remote execution. In this case, the

energy consumption of the smartphone is the sum of: (a) energy spent to send application

data Ir for remote execution, (b) energy spent on local execution of remaining Il instruc-

tions, (c) energy spent in wait time while server performs cross-platform translation of Ir

instructions, (d) energy spent in wait while the cloud server executes the translated Ir in-

structions, and (e) energy spent while receiving the result of Ir instructions. Incorporating

these factors of offload scenario leads to the equation,

Eo f f load = Esend(Ir)+Eexec(Il)+E
wait(Ir

translate→ Ir)
+Ewait(exec(Ir))+Erec(res) (4.3)

where,

Esend(Ir) =
pu× Ir

Ur
(4.4)

Eexec(Il) =
pm× Il×CPIm

ss
(4.5)

E
wait(Ir

translate→ Ir)
=

pi×∑
K
n=1(Ir(hostCPU)

translate→ Ir(targetCPU))×CPIs

ss
,

∀n, targetCPU 6= hostCPU (4.6)

Ewait(exec(Ir)) =
pi× Ir×CPIs

ss
(4.7)

Erec(res) =
pd× res

Dr
(4.8)

106

The aforementioned equations define the energy consumption of code offload sce-

nario in case of heterogeneous mobile and cloud architectures. In the case of homo-

geneous architectures, the energy spent on the translation of instructions from the host

architecture to the offload target architecture is nullified. The overhead of cross-platform

code translation is directly proportional to the number of instructions that require trans-

lation. The translation of instructions also depends on the cloud server computational

power and memory capacity. However, we ignore the memory capacity of a cloud server

in our model due to resource-rich nature of cloud server and due to the limited number of

memory pages required during the process of code translation. We assume that the cloud

server send backs the result of offloaded computations (Ir) to the smartphone in the form

of res which is an architecture independent variable that does not require translations.

The major factors driving the Eo f f load are the energy spent on local execution of Il and

the energy spent while waiting for translation and execution of Ir instructions on the cloud

server. The computational offload is beneficial to the smartphone user in terms of energy

if,

Elocal > Eo f f load (4.9)

To decide upon the feasibility of offload, the offload decision module can chose

among the minimum of Elocal and Eo f f load values. As the SIMDOM framework is based

on pre-compiled code offloading, the variables, such as Ir and res are in the range of

KBytes for most of the application benchmarks. Hence, the energy spent on sending

and receiving data to the cloud is minimal and can be ignored or given lesser weight-

ing (Kumar et al., 2013). The time taken to send or receive data over a wireless network

link depends on multiple parameters. The undertaking of the complete model of a wire-

less network link leads to unnecessarily complex scenario (Bianchi, 2000). Therefore, we

have followed a simplistic model in the aforementioned system model which is adopted

107

by many MCC offloading frameworks (Altamimi, 2015). The energy consumed by the

Esend(Ir) and Erec(res) functions is a product of the base function energy and the time con-

sumed while sending and receiving data. The time taken while sending or receiving the

data to the cloud, T(NT), depends on the link throughput as defined in equation 4.10.

TNT =
Ir/(Data_size)

throughput
(4.10)

4.4 SIMDOM Algorithm

We described the components of the SIMDOM framework and the system model in previ-

ous sections. In this section, we detail the overall algorithm of the SIMDOM framework

and the corresponding flow diagram.

The SIMDOM framework starts by checking the cloud/cloudlet connectivity. After-

ward, the application is offloaded to the cloud if it is already not available at the cloud

server for analysis. The SIMD translator takes the application, the host (ARM based mo-

bile device) and the target (cloud server, x86 SSE version) hardware profile as inputs.

The SIMD translator translates the SIMD intrinsics of the ARM application to the corre-

sponding x86 intrinsics. After translation, the SIMD translator generates two executable

files of the application through re-compilation. One executable is for the ARM architec-

ture (mobile device) and the other executable is for x86 architecture (cloud server). The

x86 executable is generated through re-compilation of application with the help of an x86

compiler and the SIMD translator. These executable files are provided to the application

profiler for calculation of respective SIMD instructions. The application profiler also de-

fines the application partitions for local and remote execution. Meanwhile, the network

profiler sends data packets to the local and remote cloud server to measure the RTT and

throughput. The energy profiler executes tasks on the system to measure the base values

of energy while the device is in idle, compute, and offload (Wi-Fi send and receive) state.

108

Figure 4.5: Flow Diagram of SIMDOM: A Framework for Pre-compiled Multimedia
Application Offload

The measurements of the application, network, and energy profiler are used by the offload

module to decide the feasibility of offload decision. The flow diagram of the proposed

SIMDOM framework is presented in Figure 4.5.

The main purpose of the SIMDOM framework is to enable a vectorized multime-

dia applications to execute on cloud and provide energy efficiency to the mobile device.

To offload the computations from the mobile device to the cloud server, the SIMDOM

framework performs a sequential procedure to decide upon the feasibility of code offload.

The algorithm of SIMDOM framework is provided in Algorithm 2.

109

Algorithm 2 SIMDOM Framework: Algorithm
1: Input: ARM application, hardware profiles, energy profile, network profile
2: if Cloud connectivity = TRUE then
3: if Application available on cloud = TRUE then
4: SIMD Translator: Pass arguments to NEON-to-SEE translation algorithm
5: Recompile application to ARM and x86 executable
6: Application Profiler: Profile application for SIMD instruction
7: Energy Profiler: Measure pm, pu, pd , and pi parameters
8: Network Profiler: Measure TNT through RTT and throughput for mobile to

cloud/cloudlet server connection
9: Update: Energy and network parameters to database

10: Get: Average of network parameters through sliding window update
11: Pass: application, energy, and network parameters to system model
12: if Energyo f f load > Energylocal then
13: Send ARM executable to mobile for local execution
14: else

Execute x86 app on cloud and send result to mobile device
15: end if
16: else
17: Offload application to the cloud
18: Go to: Step 4
19: end if
20: else
21: Execute locally
22: end if

4.5 Conclusion

In this chapter, the SIMDOM framework for seamless SIMD instruction translation and

offloading in MCC was presented. The basic objective of the SIMDOM framework is to

enable offloading of SIMD instructions across heterogeneous mobile and server platforms

with the help of re-compilation techniques. The SIMDOM framework consists of a SIMD

instruction translator module that translates the ARM NEON intrinsic library to x86 SSE

intrinsics. Hence, SIMD instruction based applications programmed for smartphones can

execute on cloud servers without dependence on the virtualization technologies. The

SIMD translator avoids vector-to-scalar translations that decrease the performance of ex-

isting native code offloading frameworks. As a result, offloaded vectorized applications

can efficiently execute of the cloud server without performance loss. After translation,

the SIMDOM framework decides upon the feasibility of cloud offload based on inputs

110

from three profilers. These profilers are the network profiler that measures the network

conditions, application profiler that calculates the application partitions, and energy pro-

filer that measures the energy consumption of mobile subsystems. Based on the inputs

provided by the profilers, the offload manager decides upon the feasibility of offload if

Elocal > Eo f f load .

111

CHAPTER 5: EVALUATION

This chapter presents the evaluation process utilized for evaluating the SIMDOM frame-

work. The main purpose of this chapter is to detail the data collection methods, exper-

imental setup, and parameters of the system model for the performance analysis of the

proposed algorithms. The performance evaluation analyzes different components of the

SIMDOM framework, such as the SIMD translator, application profiler, and network pro-

filer. The evaluation process also describes how the experiments were performed and what

were the assumptions undertaken in evaluation of the SIMDOM framework. Moreover,

the data collection process for the analysis of SIMDOM framework is also described.

Furthermore, mathematical analysis of the system model for the variable bounds is also

performed.

The rest of the chapter is organized as follows. In Section 5.1, the process of evalua-

tion is described at a high level. To further the details, Section 5.1.1 lists the experimental

setup while Section 5.1.2 lists the mobile and server devices utilized in the evaluation.

The application benchmarks and their input data are listed in Section 5.1.3. The data

collection methods for experimental and mathematical evaluation of SIMDOM frame-

work are presented in Section 5.2. The semantic accuracy and overhead of the SIMD

translator is analyzed in Section 5.3. Section 5.4 details the SIMDOM application profil-

ing overhead for x86 and ARM platforms. In Section 5.5, bounds for various variables

of our mathematical model are derived. Section 5.6 provides cases studies evaluating

energy consumption of the system and application virtualization based MCC offloading

frameworks. The concluding remarks of this chapter are provided in Section 5.7.

5.1 Evaluation Process

The SIMDOM framework is designed to enable execution of vectorized multimedia ap-

plications on heterogeneous MCC architectures. The SIMD framework recompiles the

112

mobile application for the cloud server along with the translation of the SIMD library.

An efficient algorithm is developed to translate ARM SIMD instruction to x86 SIMD

instructions while minimizing vector-to-scalar mappings. The SIMDOM framework re-

ceives input from the application, network, and energy profilers for the feasibility decision

of cloud offload.

A prototype system is developed and deployed on a cloud and a cloudlet server to

evaluate the SIMDOM framework. A local resource server located in close proximity of

the mobile device constituted as a cloudlet and a remote server located far from the mobile

device acted as the cloud. Multiple application benchmarks based on SIMD instructions

are defined to analyze the performance of SIMDOM framework. Each application bench-

mark has two versions, i.e., a basic version and a SIMD version where some of the scalar

instructions are replaced by the SIMD instructions. The data for benchmark applications

is collected through application profiling tools. The data for energy profiler is collected

through the PowerTutor framework. Client/server tests are performed to collect data for

the network profiler. In the subsections below, we focus on the details of the experimen-

tal setup. The details encompass the devices and application benchmarks utilized in the

experiments.

5.1.1 Experimental Setup

We utilized real-time experimental setup to evaluate the SIMDOM framework. There are

multiple reasons behind the usage of real-time experimental setup. Firstly, simulation

tools in the field of MCC are not mature and do not provide the technical capabilities to

carry out research work of this nature. Secondly, simulation tools "simulate" the real-time

parameters that leads to overhead and probabilistic estimations. Therefore, simulation

tools are more vulnerable to result skewing and estimations that can lead to low accuracy.

On the contrary, real-time system analysis provides in-depth knowledge of the system

113

Figure 5.1: Experimental Setup for Evaluation of SIMDOM Framework

parameters that effect the performance of the framework. The experimental setup for the

evaluation of the SIMDOM framework is presented in Figure 5.1.

A local server located in the same network of the mobile device constitutes the

cloudlet execution scenario. A remote server located in a building away from the mo-

bile device location constitutes as the cloud. The cloudlet and cloud server execute a

prototype of the SIMDOM framework. Both the cloudlet and cloud server also run an

instance of Qemu that provides for comparative analysis for the SIMDOM framework in

form of native code translations and offloading.

5.1.2 Experimental Devices

We utilized multiple compute devices to test the SIMDOM framework rigorously. The

specification of the devices and their computational resources is provided in Table 5.1.

Table 5.1: Experimental Devices

Device Processor Memory OS BogoMIPS
Mobile device - Samsung
Galaxy S2 (LE)

1.2GHz*2 (ARMv7) 1GB Android 4.4.4 1194.54

Local Server - Opti-
plex755 (LS)

2.3GHz*4 (x86) 4GB Linux 14.04 4654.87

Remote Server - Open-
Stack (RS)

2.4GHz*8 (x86) 32GB Linux 14.04 4788.05

Qemu Local Server
(QLS)

1GHz max (ARMv7) 512MB linaro-nano 3.0 471.61

Qemu Remote Server
(QRS)

1GHz max (ARMv7) 512MB linaro-nano 3.0 591.76

114

The mobile device is equipped with a Li-Ion 1650mAh removable battery. We incor-

porated Wi-Fi network in our framework evaluation. The smartphone device that offloads

data and computations to the servers is equipped with Wi-Fi 802.11 a/b/g/n communica-

tion interface. The local and remote servers are equipped with wired Ethernet interfaces

with maximum achievable speeds of 100Mbps.

We utilized PowerTutor power estimation framework to analyze the energy spent by

the smartphone while performing different tasks (L. Zhang et al., 2010). PowerTutor is an

Android based online power estimation framework that accurately measures the energy

of various smartphone components. The PowerTutor provides various measurements for

the experiments in the form of instantaneous power and energy consumption for different

components of the mobile device. The source of PowerTutor is available for modifica-

tion so that the tool can be customized according to the specifications of other mobile

devices 1.

The performance of native execution of SIMD instructions was measured on ARM

mobile device. The performance of binary translation of SIMD instructions was measured

on the ARM emulated device utilizing Qemu. As the processing capabilities of these

devices vary drastically, we also compare the performance on BogoMIPS values of the

systems. BogoMIPS is a measurement of CPU speed made by the Linux kernel when it

boots (E. Kim, Eom, & Yeom, 2012). The BogoMIPS is also not an accurate indicator of

the performance of a system. However, the resultant evaluations are accurate enough to

be considered as a scientific baseline (Camarasu-Pop, Glatard, & Benoit-Cattin, 2016).

5.1.3 Application Benchmarks

We utilized four application benchmarks for our experimental evaluation. The selection

of suitable application benchmarks for the SIMDOM framework depended on three fac-

1https://github.com/msg555/PowerTutor

115

tors. Firstly, as we focused on vectorized multimedia applications, the benchmarks had

to include SIMD intrinsic functions in them. The scope of our framework (SIMD intrin-

sic functions) limited the number of benchmarks that could be utilized in the evaluation.

Secondly, the SIMD translator works on C intrinsic functions. Therefore, the benchmarks

need to be developed in C code. Thirdly, we preferred open-source benchmarks for cross-

validation of our results. Application programmers often do not utilize SIMD intrinsic

functions as their usage restricts the application to a single platform. Therefore, there are

only a few readily available standard multimedia benchmarks which make explicit use of

SIMD intrinsic functions.

Based on the aforementioned criteria, we were able to select four benchmarks, i.e.,

Mathlib, Linpack, Speed, and FFT for our experimental evaluation. We devised two ver-

sions of each benchmark, i.e., a basic version and a SIMD version. The SIMD versions

contain SIMD intrinsics and are compiled with vectorization flags. The code that differen-

tiates the scalar version of the application benchmark from vector version for the Linpack

is listed in Appendix B as an example. We provide the details of these benchmarks in

below subsections.

5.1.3.1 Mathlib

The Mathlib library provides single precision sin, cos, log, and exp calculations for float

vectors based on NEON intrinsics. The NEON math library has an equivalent library

implementation for the Intel SSE architecture. The basic function of the math library is

to calculate the transcendental functions (sines and exponential) over a range of floating

point values (e.g., −1000× pi to 1000× pi) and evaluate the millions of vector evalua-

tions/second (MVIPS) executed by the system. Moreover, the library finds the maximum

deviation from the mean values for the aforementioned transcendental functions.

116

5.1.3.2 Linpack

Linpack Benchmark is based on a sequence of linear algebra routines. The benchmark

normally operates on 200x200 matrices. The test problem requires the user to set up a

random dense matrix A of size N = 200, and a right hand side vector B which is the

product of A and a vector X of all 1’s. The first task is to compute an LU factorization of

A. The second task is to use the LU factorization to solve the linear system of the form

provided in equation 5.1,

Ax = b;AεRn×n;x,bεRn (5.1)

The performance of the system is measured in MFLOPS while solving the above

stated equation (Dongarra, Luszczek, & Petitet, 2003).

5.1.3.3 Speed

The Speed benchmark calculates the data reading speeds of a system in Mbytes/second

carrying out calculations on arrays of cache and memory data of variable sizes. Calcula-

tions are presented by the equation 5.2,

x[m] = x[m]+ s× y[m] (5.2)

where m is the input size read from the memory. The value of m varies from 16KB

to 1024KB while x and y parameters are occupied by binary numbers (Wu, Krish, &

Pellizzoni, 2013).

5.1.3.4 FFT

Fast Fourier Transform (FFT) is one of the most commonly used algorithms in numerical

computing and multimedia based applications, such as JPEG and MPEG encoding for

compression (Pommier, 2012; de Carvalho Jr, Rosan, Bianchi, & Queiroz, 2013; Don-

117

Table 5.2: Application Benchmarks

Benchmark Input Input (values of N)
Mathlib/MathlibSIMD Float points multi-

ple of π

[0π,1π], [1000π,1000π]

Linpack/LinpackSIMD Integer matrices 200, 400, 600, 800, 1000, 1200, 1400
Speed/SpeedSIMD Integer matrices 16, 32, 64, 128, 256, 512, 1024, 4096, 16384,

65536
FFT/FFTSIMD Real and complex

number
64, 96, 128, 160, 192, 256, 384, 480, 512,
640, 768, 800, 1024, 2048, 2400, 4096, 8192,
9216, 16384, 32768, 262144, 1048576

garra & Luszczek, 2005). Although there are multiple implementations of FFT available,

we chose the one with SIMD intrinsics that can be utilized in performance evaluation of

the SIMD translator. FFT performs one-dimensional Discrete Fourier Transform (DFT)

of size m, of single precision real and complex vectors represented by equation 5.3.

Zk←
m

∑
j

z je2i jk
m ;1≤ k ≤ m (5.3)

The performance of the FFT benchmark is measured in MFLOPS. The details of the

input variables of the benchmarks are listed in table 5.2.

5.2 Data Collection for Model Validation

We collected the data for evaluation of the SIMDOM framework by rigorously testing

the capabilities of compute and communicate interfaces of the experimental setup. We

measured all results with the mobile battery at full capacity to remove the energy bugs.

Moreover, we executed the experimental analysis multiple times (ten in most of the cases)

to measure the mean and standard deviation values for the parameters. We utilize rounded

nearest integer values in all of the derived parameters as the power measuring setup (Pow-

erTutor) provides only integer value outputs. Figure 5.2 depicts the experimental setup

of smartphone utilized for data collection. In the below subsections, the detail of data

collection and derivation for system parameters is provided.

118

Figure 5.2: Experimental setup for measurement of energy coefficients

5.2.1 Idle Power

We sampled the device energy consumption while limiting the number of background

processes and turning off the LCD to calculate the pi of the device. When a compu-

tationally intensive task is offloaded to the cloud for energy efficiency, the mobile user

usually turns the LCD off for maximum benefits. The mobile LCD is switched on once

the results of task offloading are received. To create a similar scenario, we turned the

mobile screen off after starting the energy profiler while the user is in the wait state. We

found that the average value of pi varied with the time it took for the offloaded task to

be completed. For instance, simple loop executions of 1M instructions take few millisec-

onds to execute on the remote server. Therefore, the time that mobile device is in an idle

state and the LCD off time is minimal that leads to higher pi values. As we are focusing

on multimedia benchmarks that are compute intensive, we utilized the SIMD versions of

the benchmarks, i.e., MathlibSIMD, SpeedSIMD, LinpackSIMD (1200), and FFTSIMD

benchmarks for our evaluation. These benchmarks take a considerable amount of time

to execute on the local server. We add statistical analysis to each result in the form of

119

Table 5.3: Experimental Evaluation for pi

Benchmark Input pi mean pi std. dev. 95% confidence interval
MathlibSIMD all 28mW 0.89 ±0.78
SpeedSIMD all 27mW 0.83 ±0.73
LinpackSIMD 1200 27mW 1.22 ±1.07
FFTSIMD all 25mW 1.14 ±1.00

the sample mean, sample standard deviation, and 95% confidence interval values. The

findings of these experiments are presented in table 5.3 for five experimental runs.

Based on the aforementioned evaluation, we found out that the mean pi of our device

is 26.75mW with a standard deviation of 1.25 (based on mean sample population). The

95% confidence interval for the value of pi is ±1.22. We also consider an alternate case

for pi of the device. In the alternate case, the LCD of the mobile devices is turned off after

some pre-defined time of inactivity. Most of the smartphones provide the users multiple

choices of when to turn the device into sleep or idle mode. We consider the most energy

efficient case where the device is shifted to the idle state after 15 seconds of inactivity.

Therefore, for offloaded codes that take less than 15 seconds from the time the device

offloads task to the time the device receives the results, we consider a different value of

pi. We turned on the LCD and measured the value of pi while no task is being performed.

The pi of the device in this case is 402mW.

5.2.2 Computing Power

We executed MathlibSIMD, SpeedSIMD, LinpackSIMD (1200), and FFTSIMD bench-

marks to measure the power consumption of the device while executing computational

applications pm. The findings of the experiment are listed in table 5.4.

Table 5.4: Experimental Evaluation for pm

Benchmark Input pm mean pm std. dev. 95% confidence interval
MathlibSIMD all 585mW 2.73 ±2.39
SpeedSIMD all 578mW 2.07 ±1.82
LinpackSIMD 1400 576mW 2.40 ±2.10
FFTSIMD all 571mW 2.12 ±1.86

120

Table 5.5: Experimental Evaluation for pc

Utility Data transferred pc mean pc std. dev. 95% confidence
interval

Down-link 100 KBytes, 0.2s interval, 50s sample 485mW 2.58 ±2.26
Up-link 100 KBytes, 0.2s interval, 50s sample 461mW 3.27 ±2.87

We observed that the average pm values for the benchmarks are similar. The pm

value decreases as the computational size and execution time of the benchmark increases.

Based on the aforementioned measurements, the average mean value of pm for our math-

ematical model is 577.5mW with a standard deviation of 5.80 based on the mean sample

population. The confidence interval is ±5.68 for 95% confidence level.

Our case of SIMD based instructions is also advocated from these results. The

benchmarks take variable time for execution on the mobile device. The FFTSIMD and

FFT benchmarks took 46.02sec and 463.47sec respectively while performing the same

operations over the same input on the mobile device. The FFT benchmark took 90.07%

more time in execution as compared to FFTSIMD. However, the instantaneous energy

consumption was similar for both FFT and FFTSIMD. The only difference in the pro-

grams was the inclusion of SIMD intrinsic functions in the FFTSIMD benchmark. The

total energy consumption of the mobile device is approximately ten times higher while

executing the FFT benchmark. The SIMD instructions do not affect the instantaneous

energy but lead to lesser total execution time and total energy.

5.2.3 Wi-Fi Power

We created a data transfer utility that sends data to the local server and remote cloud to

estimate the value of pc for Wi-Fi subsystem. The utility sends ICMP packets of 100

KBytes each with a delay interval of 0.2 seconds for total time interval of 50 seconds to

our remote server. We created a similar utility to measure the down-link power consump-

tion of the Wi-Fi subsystem. The mean and standard deviation values for the down-link

and up-link pc are listed in Table 5.5.

121

Table 5.6: Experimental Evaluation for RTT and Throughput

Connection RTT mini-
mum

RTT maxi-
mum

RTT mean RTT std.
dev.

Throughput
maximum

Cloudlet-up 8.85ms 16.48ms 12.53ms 2.24ms 5.23Mbyte/sec
Cloudlet-down 1.52ms 18.10ms 4.17ms 6.41ms 10.22Mbyte/sec
Cloud-up 7.90ms 20.03 ms 15.78ms 3.25ms 4.15Mbyte/sec
Cloud-down 2.43ms 28.01ms 14.94ms 8.14ms 4.38Mbyte/sec

5.2.4 Wi-Fi Throughput

A number of parameter are involved in the measurement of the capability of a wire-

less connection based mobile device to offload data to the cloud server. The end-to-end

throughput of the link depends on parameters such as wireless link bandwidth, latency,

number of hops, data transfer protocol, radio state, etc. Our network profiler periodically

measures the throughput and Round Trip Time (RTT) to the server and saves the historical

results for future inputs to the offload decision module. To measure the network param-

eters (up and down-link throughput) we conducted experiments with client-server data

transfer programs similar to code and data offloading programs. The program sends data

of size 100KB from the mobile device to the remote server and measures the delay. We

conducted similar experiments to measure the down-link capacity of the network from

the remote server. The maximum throughput for the link can be calculated as,

throughput ≤ RWIN
RT T

(5.4)

where RWIN is the window size of the data transfer protocol. We conducted similar

experiments to measure the down-link and uplink capacity of the network for the both

remote and local server. The values of minimum, maximum, average, mean deviation

of the RTT, and maximum throughput based on the average RTT for cloud and cloudlet

server are listed in table 5.6.

The results depict that the RTT and throughput to the cloudlet are superior than that

of the cloud server. Therefore, the energy and time cost of the cloud server will be higher

122

Table 5.7: Experimental Evaluation for l

Benchmark Total instructions - x86 Total instructions - ARM
FFT 1179874658407 343021290747
FFTSIMD 76014564517 32864558129
Linpack 58864968467 13502810905
LinpackSIMD 49419351005 12660729092
Speed 69721726315 19506996423
SpeedSIMD 80479847838 20831136457
Mathlib 12623014875 3356970193
MathlibSIMD 11755307177 2540303047

than the cloudlet.

5.2.5 Application Instructions

The number of instructions in a program are not deterministic and can vary on a number

of parameters. The source code of a program is not an exact measure of how the program

is executed as a number of dynamic system libraries are involved in the overall execution.

There are multiple application profiling software that provide the detailed information

of application instructions, cache hit rates, memory fetches, etc. There are a number of

program instrumentation tools available such as, performance counters for Linux (PCL),

Google perf, and Valgrind. We used callgrind tool of the Valgrind framework to calcu-

late the total number of instructions executed by our benchmarks (Nethercote & Seward,

2007). Valgrind is the most commonly used tool in research regarding the program per-

formance, memory allocation, and OS interactions. The number of instructions executed

by an application varies on the base of several parameters, such as compiler tool-chain,

compilation flags, and target hardware architecture. For ARM applications, we utilized

a cross-compiled version of Valgrind. The details of the number of instructions for the

application benchmarks is provided in table 5.7.

The evaluation of application instructions through profiling tools shows that the num-

ber of instructions on x86 ISA is 2-10 times more than the ARM ISA for various bench-

marks. The foremost reason behind this fact is that we translate an ARM based application

123

to the x86 ISA. During translation, about 50% of the SIMD instructions result in one-to-

many mappings. Hence, the total number of instructions for the x86 ISA increases. The

highest increase in the number of instructions is witnessed for the FFT benchmark as it

contains the highest number and percentage of SIMD instructions.

Another observation from this evaluation is that for all benchmark application, ex-

cept for speed, the number of instructions executed by the vectorized versions is less than

that of normal versions. The optimization flags introduce SIMD instructions and optimize

code wherever possible. Therefore, the optimized code application has higher instruction

density and lower instruction count. However, the speed benchmark provides variable

behavior in this regard. The number of instructions increases for the optimized bench-

marks. The reason behind the higher instruction count for speed benchmark is that the

application behaves abnormally while the vectorizing flags are imposed on code that is

already vectorized.

5.2.6 Computational Power and CPI

The measure of the capability of a device to execute instructions (eg., Millions of Instruc-

tions Per Second, MIPS) is also not a deterministic process. The value of MIPS depends

on several parameters such as the processor speed and cycles per instruction (CPI). How-

ever, modern processors execute multiple instructions in one cycle. Therefore, MIPS is

not a simple count of processor speed. Several programs have been written to calculate

the MIPS value of a device. The most popular among these is the BogoMIPS. BogoMIPS

is a measurement of CPU speed made by the Linux kernel when it boots (E. Kim et al.,

2012). The BogoMIPS is also not an accurate indicator of the performance of a system.

However, the resultant evaluations are accurate enough to be considered as a scientific

baseline (Camarasu-Pop et al., 2016). Another method to measure the MIPS rating of a

124

processor is provided as (Stallings, 2000),

MIPS≤ f
CPI×106 (5.5)

The MIPS value provided by the BogoMIPS program and Equation 5.5 are approx-

imately equal. We will utilize the BogoMIPS values of the devices as a measure of their

MIPS capability in our experiments. The value of BogoMIPS have been listed in table 5.1.

The value of CPI depends on the composition of benchmark application, the underlying

hardware architecture, and chip design. For our mobile device (Samsung Galaxy S2,

ARMv7, Cortex-A9) the average CPI is found to be 1.6 while CPI value for the Intel

servers is found to be 1.3 after evaluation of multiple benchmarks (Blem, Menon, Vija-

yaraghavan, & Sankaralingam, 2015).

5.3 Data Collection and Analysis of SIMD Translator

In this section, we perform data collection for the SIMD translator. The data collection

for the SIMD translator is performed to analyze the SIMD translator for its semantic

accuracy and translation overhead. First, we perform data collection to identify the set of

active instructions produced in the application binary of the application benchmarks. The

set of active instructions is utilized to reduce the application profiling overhead. Further,

we analyze the semantic accuracy and the overhead of the SIMD translations.

5.3.1 Active Instructions

The NEON ISA comprises of more than a thousand SIMD instructions. However, most of

the benchmarks and multimedia applications include only a subset of these instructions.

These popular or active instructions can be utilized to lower to the overhead of SIMD

translation, re-compilation, and application profiling. The active NEON instructions and

their corresponding x86 translations can be pre-fetched to reduce the overhead of dynamic

125

Table 5.8: Data Collection for SIMD Translator: ARMv-7 Active NEON Instructions

Instruction Mathlib Linpack Speed FFT
vld 1163 705 380 7210
vstr 509 428 275 4391
vmov 670 96 56 638
vmul* 623 180 64 1311
vadd* 461 56 42 1372
vsub 218 6 1 942
vdiv 43 22 13 37
vabs 23 13 0 6
vpush 39 9 5 29
vpop 57 13 9 50
vdup 1 7 3 2
vneg 74 9 2 157
Total SIMD 3881 1544 850 163145

translation. We analyzed our benchmarks through static binary analysis (object dumps)

for the identification of the set of active instructions. Table 5.8 lists the set of active

NEON instructions for the ARMv-7 architecture collected from the GCC compiler with

optimization and vectorization flags for the application benchmarks.

The active instruction set comprises of vector arithmetic instructions (VADD, VSUB,

VDIV, VMUL, VMLA, VMIN, VMAX, VABS, VNEG), vector load/store instructions

(VLD, VSTR, VMOV), and miscellaneous logical and comparative operations for the

ARM NEON ISA. Other than the instructions mentioned in the table above, vmin, vmax,

vand, and vsh∗ also commonly occur in some binaries but were found in very small

numbers in the aforementioned benchmarks. Therefore, they are excluded from the table

but included in the count of total SIMD instructions.

5.3.2 Semantic Accuracy

The SIMDOM framework is based on a translator that resides on the server for SIMD

instruction translations. The SIMD translator exploits a pre-compiled multimedia smart-

phone (ARM) application such that it can be executed on the x86 server. The main trans-

lation challenge of multimedia applications is the SIMD intrinsics which vary from ARM

to x86 ISA. However, the ARM NEON to Intel SSE translations can be semantically in-

126

Table 5.9: NEON Math Library: Semantic Analysis of SIMD Translator

Function Range Maximum deviation
(original) (sec)

Maximum deviation
(SIMD translator)

Relative
difference %

sin(x)2+cos(x)2-1 [0π,1π] 1.78814e−07 1.78814e−07 0
sin(x)2+cos(x)2-1 [−1000π,1000π] 1.78814e−07 1.78814e−07 0
x− log(exp(x)) [−60,60] 1.19209e−07 1.19209e−07 0

correct if the translations do not address the challenges of ISA heterogeneity. The task

of testing each translation in the SIMD translator that translates nearly 1700 instructions

is complex. Therefore, we tested the semantic accuracy of the active NEON instructions

listed in the previous subsection with different input parameters.

To test the semantic accuracy of our SIMD translator, we utilized the FFT and Math-

lib benchmarks based on SIMD intrinsics. We observed that for the FFTSIMD bench-

mark, the results of SIMD translator matched completely with the original output in terms

of 1-dimensional FFT calculations. We tested the FFT benchmark with variable inputs

and achieved consistent results regarding the accuracy of SIMD translations.

The Mathlib benchmark finds the maximum deviation from the mean values for the

transcendental functions. The values of transcendental functions can be utilized to eval-

uate the accuracy of the SIMD translator. Table 5.9 lists the results of the maximum

deviation of the transcendental functions for the original Mathlib code and the translated

code obtained from the SIMD translator.

For all functions of the Mathlib benchmark, the maximum deviation calculated over

a range of values by the original and translated code is same. The aforementioned results

show that the SIMD translator achieves 100% semantic accuracy while translating the

NEON instructions to SSE instructions.

5.3.3 Overhead of SIMD Translator

In this subsection, we examine the overhead of SIMDOM translator. SIMD translator

is the most dynamic runtime element in our offload framework along with application

127

Figure 5.3: SIMD Translator Overhead on Cloudlet: Comparison of Compilers

profiler. The SIMD translator and application profiler have to provide inputs to the of-

fload manager for the offload feasibility evaluation. The SIMD translator and application

profiling tasks that can lead to overhead include compilation of application for the ARM

and x86 ISA on multiple configurations and translation of SIMD instructions. The over-

heads of compilation (for ARM ISA) and recompilation along with translation (for x86)

for GCC and LLVM compilers on cloudlet are listed in Figure 5.3.

The compilation time of FFTSIMD benchmark for LLVM\Clang compiler has been

factored by five to provide equivalent perspective to the rest of the results. There are sev-

eral repercussions of the preceding result. The most important implication of the result

is that the compilation time for the LLVM\Clang compiler is 83.23% and 81.91% higher

than the GCC compiler for x86 and ARM ISAs respectively on average. The GCC com-

piler can be the choice of the SIMDOM framework for lower translation and compilation

overhead of both ARM and x86 ISA.

The compilation time for the SIMD benchmarks is higher than basic benchmarks.

As the percentage of SIMD instructions is high with auto-vectorization and optimization

flags, it is necessary to utilize the extra compilation flags for investigation of application

vectorization properties. The overhead of simple benchmarks without optimization flags

128

Figure 5.4: SIMD Translator Overhead on Cloud: Comparison of Compilers

can be ignored in the overall profiling overhead as it does not lead to the optimal case of

SIMD instruction generation. For the auto-vectorized benchmarks, the overall overhead

is the sum of ARM and x86 compilation times and the ARM to x86 SIMD translation

time. The application compilation time is highest for FFT as the application is in the form

of a library consisting of multiple source files. For Linpack and Speed benchmarks, the

compilation overhead for both ARM and x86 platforms is low. Moreover, the compilation

time for the x86 ISA is higher than ARM for all benchmarks as it also includes the SIMD

intrinsic translation from NEON to SSE ISA. The overheads of compilation (for ARM

ISA) and recompilation along with translation (for x86) for GCC and LLVM compilers

on cloud server are listed in Figure 5.4.

The application translation overhead is lower on the cloud server for most of the

benchmarks due to its higher computational capability. The implications derived from

the cloudlet analysis can be noted in the cloud too. We also investigated the variance in

compilation overhead for the Linpack benchmark based on variable inputs. We found that

the input matrix size does not affect the compilation overhead of the Linpack benchmark

significantly.

129

5.4 Data Collection and Analysis of Application Profiler

In this section, we perform the data collection and analysis of the application profiler.

The data for the application profiler is collected through static code analysis of the multi-

media benchmarks against multiple ARM and x86 compilers (GCC and LLVM\Clang).

Further, the evaluation of the overhead of application profiling is performed. We also

wanted to include the ARMCC compiler in our analysis. However, its commercially paid

license did not allow for free research purpose utilization. The data collected through

static code analysis and profiling overhead analysis helps the application profiler deter-

mine the optimal parameters for application offloading for the SIMDOM framework.

5.4.1 Static Code Analysis

Static code analysis of the candidate offload application helps the application profiler to

collect data for optimal generation of SIMD instructions. The parameters considered

by the application profiler can be the selection of compiler, compilation flags, and tar-

get architectures. The application profiler investigates these parameters to find an ideal

combination of the compiler and corresponding compilation flags that lead to the highest

percentage of SIMD instructions in the program binary. Our application profiler provides

three possibilities of application partition to the offload manager: (a) zero application par-

tition if offloading does not lead to energy efficiency, (b) full application partition where

complete application is offloaded, and (c) partial application partition where only SIMD

instructions are offloaded. The static code analysis provides the compiler parameters such

that the program binary has the highest percentage of SIMD instructions for the two lat-

ter cases of application partition. The static code analysis results in the identification of

partial application partition that only comprises of SIMD instructions. The static code

analysis is based on the source dumps of the program binaries. Figure 5.5 and 5.6 provide

the comparison of ARM and x86 compilers for the production of SIMD instructions for

130

Figure 5.5: Analysis of ARM GCC and LLVM\Clang Compilers for Application Bench-
marks

multimedia benchmarks.

The static code analysis provides comparative analysis of the vectorizing capabili-

ties of ARM and x86 compilers. There are multiple implications of the aforementioned

results. Based on these implications, recommendations are forwarded to the SIMDOM

framework regarding parameters for efficient remote and local execution of multimedia

applications.

Firstly, the x86 compilers fare far better than the ARM compilers in the generation of

SIMD instructions. The x86 compilers produce an average of 26.80% SIMD instructions

Figure 5.6: Analysis of x86 GCC and LLVM\Clang Compilers for Application Bench-
marks

131

as compared to 15.49% for ARM compilers for all benchmarks. This observation points

to the fact that the support for vector instruction generation in ARM compilers is not as

efficient as the x86 compilers. Several recent studies carried out on vectorizing compilers

support this finding (Fu, Wu, & Hsu, 2015; Maleki et al., 2011).

Secondly, the major deficiency in the case of ARM compilers comes from the GCC

compiler. LLVM produces more efficient vectorizing code than the GCC compiler for the

ARM architecture. GCC produces 10.86% of SIMD instructions as compared to 20.11%

for the LLVM compiler on average for all benchmarks on ARM architectures. Hence,

the LLVM compiler is 45.99% efficient in the production of SIMD instructions than the

GCC compiler for ARM ISA. On the contrary, GCC performs marginally better than

LLVM compiler for x86 architectures. GCC produces 28.12% SIMD instructions for x86

architecture as compared to 25.48% SIMD instruction produced by the LLVM compiler

on average for all benchmarks. The GCC compiler is 9.38% efficient than the LLVM

compiler for the production of SIMD instruction for x86 ISA.

Thirdly, FFT, Linpack, and Mathlib benchmarks produce better SIMD instruction

count on optimization and vectorizing flags. However, the Speed benchmark produces

lower SIMD instruction count with vectorizing flags for both x86 and ARM ISAs. Forcing

a compiler to produce vectorized assembly code for a program that already contains vector

intrinsics can lead to such unusual performance. However, there are performance gains

in case of the optimized versions due to overall optimization of the program binary.

Fourthly, the Mathlib benchmark provides the highest percentage of SIMD instruc-

tions for both ARM and x86 binaries. The Mathlib is comprehensively programmed with

NEON intrinsics such that the transcendental function calculations are exclusively per-

formed by vector instructions. On the contrary, the remaining benchmark applications

insert NEON intrinsics wherever possible. Moreover, the Mathlib benchmark produces

the least SIMD instruction increase on optimization flags due to native vectorized code

132

that does not require optimization flags for vector generation.

The static analysis reveals that for local execution, the supporting compiler should

be LLVM\Clang for the ARM ISA for a higher percentage of SIMD instructions. In case

the code is offloaded to the x86 cloud or cloudlet server, GCC compilers should be used.

However, this use of LLVM\Clang is contradictory to our previous findings of the SIMD

translator overhead. The SIMD translator overhead revealed that the LLVM\Clang has

approximately 80% higher compilation overhead than the GCC for the x86 ISA. In case

lower translation overhead is desired, the GCC compiler should be utilized for both x86

and ARM ISAs in the SIMDOM framework. On the contrary, for long term optimiza-

tions where the translation overhead can be ignored, LLVM compiler for the ARM ISA

and GCC compiler for the x86 ISA should be utilized to produce highly optimized and

vectorized code.

5.4.2 Overhead of Application Profiler

In this subsection, we examine the overhead of the application profiler. The overhead of

application profiler occurs in two main tasks. Firstly, the overhead occurs during compila-

tion and translation of the application. The overhead of application profiling for different

compilers and ISAs has been listed in Section 5.3.3. Secondly, the overhead occurs while

profiling the application for the percentage of SIMD instructions as executed in Sec-

tion 5.4.1. In this subsection, we detail the overhead of application profiling generated

from examination of application binaries for optimal offload parameters. The application

profiler provides inputs to the offload manager for the offload feasibility evaluation in

the form of optimal application partition with the highest percentage of SIMD instruc-

tions and the corresponding profiling overhead. The overhead of application profiler for

cloudlet server is illustrated in Figure 5.7.

The high percentage of SIMD instructions is achieved with auto-vectorization flags.

133

Figure 5.7: Application Profiler Overhead on Cloudlet

Therefore, the overhead of profiling the SIMD benchmark is high compared to basic

counterparts. The cloud server provides relatively lower overhead for the application

profiler depicted in Figure 5.8.

The application profiling overhead can be used to infer the number of instruc-

tions executed by the server while profiling the application. The equation is provided

as (Stallings, 2000),

I =
T ×MIPS×106

CPI
(5.6)

Figure 5.8: Application Profiler Overhead on Cloud

134

As an example, consider the FFT benchmark for local server,

I = 3.26sec×4654.87×106 = 11672981692

We will utilize the aforementioned formulation to validate our mathematical model.

The network and energy profiler modules do not incur overhead in terms of time on the

SIMDOM framework as they execute in parallel to collect the required data on the mobile

device.

5.5 Model Bounds

In this section, we derive the mathematical bounds for some of the variables in the system

model.

5.5.1 Bounds for Application Partitioning

The optimal application partition is often hard to find in a MCC offload scenario. We

calculate the minimum ratio
Ir

I
such that offload leads to energy efficiency for the mobile

device. Based on equation 4.9,

Elocal > Eo f f load

Elocal > Esend(Ir)+Eexec(Il)+E
wait(Ir

translate→ Ir)
+Ewait(exec(Ir))+Erec(res)

As we assume in SIMDOM framework that the application is available on the server

for profiling, the energy spent on sending and receiving the data from the server is min-

imal. Therefore, Esend(Ir) and Erec(res) can be ignored in the calculation of bounds for

application partitioning. Moreover, for our simplistic case where most of the code is

135

executed on the server, Eexec(Il) can also be ignored. Therefore,

Elocal > E
wait(Ir

translate→ Ir)
+Ewait(exec(Ir))

We further assume that the to re-compile and translate the application in the SIM-

DOM framework, 10% of the total instructions are further required. That is, (Ir
translate→ Ir)

adds 10% more instructions to the total Ir instructions. Our assumption is supported by

a simple calculation. For the FFT benchmark, the number of instructions executed by

the SIMDOM framework to re-compile and translate the application (15160911590 in-

structions) are approximately 10% of the total instructions (162487172630 instructions).

Assuming the code is offloaded to the cloudlet,

pc× I×CPIm

sm
>

pi× Ir×0.1×CPIs

ss
+

pi× Ir×CPIs

ss

pc× I×CPIm

sm
>

pi×CPIs× Ir×1.1
ss

ss

sm
>

pi×CPIs

pc×CPIm
× 1.1× Ir

I

Replacing the variables with the data collected in previous sections,

Ir

I
< 94.56

The aforementioned derivation concludes that the ratio of offloaded instruction to

total instruction should be less than 94.56 in order to achieve energy efficiency during

code offload. For example, if the total code base of the application is 100 instructions,

more than 6 instructions should be offloaded to the server while ignoring the overhead

136

of network delay and communication. For the SIMDOM framework, the aforementioned

derivation puts bound on Ir. If the percentage of SIMD instructions in an application is

less than 6%, then it is not feasible to offload only SIMD instructions to the server. If we

consider the remote server instead of the local server, the ratio
ss

sm
increases. Hence, for

remote server,

Ir

I
< 97.28

Moreover, the overhead of wireless communications can not be ignored in case of

remote server.

5.5.2 Bounds for Server Speed

The ratio of
ss

sm
is often debated for the feasibility of MCC offload. The higher the dif-

ference between speed (or computational power expressed in MIPS) of the mobile and

server devices, the higher are the resultant gains in terms of energy and execution time.

We again take the example of FFT benchmark for the local server. Based on the assump-

tion debated in previous case, we derive from equation 4.9,

pc× I×CPIm

sm
>

pi× Ir×CPIs

ss
+

pi× Ir×0.1×CPIs

ss

ss

sm
>

pi×CPIs× Ir×1.1
pc×CPIm× I

ss

sm
> 0.27

The aforementioned derivations points to the fact that based on our assumption of

negligible network overhead, the server power can be approximately 4 times lesser than

137

the mobile device and still achieve energy efficiency while offloading. There are two

reasons behind the lower feasibility bound of
ss

sm
. Firstly, the low ratio of

pi

pc
allows

for the server speed to be so low. We found through the data collection in Section 5.2

that the
pi

pc
ratio is approximately 0.05. While the mobile device offloads tasks to the

cloud, its energy in wait state is very low as compared to the state where it performs local

computations. Therefore, the offload decision remains feasible even if the server speed is

lower than the mobile device. Secondly, the ratio of
Ir

I
is also low that influences lower

value for the ratio of
ss

sm
.

5.6 Case Studies

In this section, we present the case studies of MCC offload enabling techniques, i.e., sys-

tem virtualization and application virtualization. The objective of these case studies is to

analyze the communicational and computational overheads of the MCC offload enabling

techniques.

5.6.1 Case Study: System Virtualization

System virtualization is largely utilized in offloading of tasks from the mobile device to

the cloud server. In this case study, we take six scenarios of system virtualization based

MCC offloading and derive their overhead; (a) VM based cloudlet, (b) VM based cloud,

(c) uncompressed VM overlay based cloudlet, (d) uncompressed VM overlay based

cloud, (e) compressed VM overlay based cloudlet, and (f) compressed VM overlay based

cloud as described in the concept paper of VM based MCC offloading (Satyanarayanan et

al., 2009). The basic Eo f f load equation for the system virtualization based MCC offload-

ing is given as,

Eo f f load = Esend(V M)+Ewait(exec(V M))+Erec(V M)

138

Table 5.10: Energy Consumption of System Virtualization Based MCC Offloading Tech-
niques

Scenario Local server (cloudlet) Remote server (cloud)
Esend Erec Eo f f load Esend Erec Eo f f load

System VM 705.16J 358.51J 1063.67J 888.67J 885.84J 1774.51J
Uncompressed VM
overlay

36.32J 19.55J 55.87J 45.77J 45.63J 91.40J

Compressed VM over-
lay

13.69J 7.37J 21.06J 17.25J 17.20J 34.45J

We ignore the Ewait(exec(V M)) and derive only the energy spent on receiving and send-

ing the VM in all the cases discussed below. We consider the initial VM sizes and ignore

the delta values of the VM sent between cloud and mobile devices during the process of

VM migration. For the VM overlay cases, the basic Eo f f load equation is,

Eo f f load = Esend(V M)+Ecompress(V M)+Ewait(uncompress(V M)+exec(V M))

+Erec(V M)+Euncompress(V M) (5.7)

We do not know the exact parameters for compression of the VM such as, the com-

pression algorithm and the input size. Therefore, we ignore the energy consumed in

compression of the VM at multiple instances. We are only left to contemplate Esend and

Erec. We utilize the system variables derived for our model for the local server (cloudlet)

and remote server (cloud) in Section 5.2. For the VM scenarios, the most common VM

size for a Linux based 8GByte. For the VM overlay scenarios, we take the VM size values

from the pilot study (Satyanarayanan et al., 2009). The compressed and uncompressed

VM overlay migration sizes have been taken as the average of six applications listed in the

pilot study. The results of energy consumption of VM based MCC offloading techniques

are depicted in Table 5.10.

Due to the proximity of cloudlet server, the energy spent on cloudlet offloading is

less than the remote server offloading in every case. The aforementioned energy deriva-

tions for system virtualization based MCC offloading are quite high as compared to local

139

execution. Although we ignored several energy consuming tasks such as, compression

and decompression and evaluated Eo f f load only based on the energy of communicational

tasks. The lowest energy consumption is achieved by compressed VM overlay based of-

floading. However, the compressed VM overlay scenario is evaluated on the base of only

Esend(V M) and Erec(V M) values while ignoring the energy spent on compressing and com-

pressing the VM at both mobile client and server. The aforementioned results reveal that

the system virtualization based MCC offloading techniques lead to considerable overhead

in terms of network energy consumption. Therefore, even if the VM overlay and com-

pression techniques are applied, it is hard to find a scenario where system virtualization

based MCC offloading can lead to energy efficiency for the mobile devices.

5.6.2 Case Study: Application Virtualization

Application virtualization is the most commonly utilized technique for enabling of MCC

offloading. However, several overheads exist towards true implementation of and applica-

tion virtualization based MCC offloading framework. Such overheads are, but not limited

to, determination of optimal application partition, memory synchronization between the

mobile device and cloud server, and byte code interpretation. We list the aggregate of all

such overheads as Eopt(V M). The equation of offload energy in case of application based

virtualization offloading can be described as,

Eo f f load = Eopt(V M)+Esend(V M)+Ewait(exec(V M))+Erec(V M)

Where Eopt(V M) can be afforded by the mobile device or the cloud server based on the

specific implementation of the offloading framework. As there are no standard specifica-

tions of Eopt(V M) in MCC offloading frameworks, we ignore the value and determine the

energy consumption of application virtualization frameworks based offloading based on

the network operations. We obtain the mean values of VM send (1130KByte) and receive

140

Table 5.11: Energy Consumption of Application Virtualization Based MCC Offloading
Techniques

Scenario Local server (cloudlet) Remote server (cloud)
Esend Erec Eo f f load Esend Erec Eo f f load

Application virtualiza-
tion

0.097J 0.013J 0.11J 0.122J 0.036J 0.158J

(294.3KByte) from the COMET framework as it is a standard reference for application

virtualization based offloading (Gordon, Jamshidi, Mahlke, Mao, & Chen, 2012). Ta-

ble 5.11 lists the energy consumption of application virtualization based MCC offloading

technique based on our case study.

The Esend(V M) and Erec(V M) cost of application virtualization based solutions is com-

parable to, but not less than that of native code offloading based solutions such as SIM-

DOM which will be evaluated in the next chapter. However, we ignored several factors

of computational overhead such as, Eopt(V M) and Ewait(exec(V M)) as their are no standard

specifications in existing MCC frameworks. Incorporating detailed parameters in the case

study will most likely lead to an increase in the value of Eo f f load .

5.7 Conclusion

In this chapter, evaluation process for the SIMDOM framework was described in detail.

The evaluation process consisted of the experimental setup, devices, benchmarks, and

data. The data collection methodology and its statistical analysis for the energy, network,

and application modules were defined. Based on the collected data, the SIMD translator

and application profiler modules were evaluated. The feasibility bounds for the SIMDOM

framework were also determined.

We found that the application benchmarks produce a set of active instructions that

occur frequently in the application binary. The overhead of the application profiler can be

reduced while profiling only for the set of active instructions. The analysis of the SIMD

translator revealed 100% semantic accuracy in translation of instructions from ARM ISA

141

to x86 ISA. The LLVM\Clang compiler produced approximately 46% higher number of

SIMD instructions for the ARM ISA than the GCC compiler. However, the LLVM\Clang

compiler also led to 81%-83% higher compilation overhead compared to the GCC com-

piler. Therefore, for short-term optimization, GCC compiler is preferred for the applica-

tion execution on both mobile and cloud devices. The analysis of application partition

bounds shows that at least 10% of application instructions should be offloaded to a cloud

server in order to gain energy efficiency. The analysis of server speed reveals that the

offload server can be four times less powerful and still provide energy efficiency to the

mobile device while ignoring the energy consumed by the network components.

142

CHAPTER 6: RESULTS AND DISCUSSION

This chapter presents the empirical evaluation of the SIMDOM framework and provides

the main findings of our research. The SIMDOM framework enables execution of SIMD

based applications in heterogeneous MCC architectures. An application offloaded from

a mobile device is recompiled, translated, and executed on cloud server while the mobile

device waits in a low-power state. We implement a prototype of the SIMDOM frame-

work on a cloudlet and a cloud server. The empirical evaluation and comparison of

the SIMDOM framework is performed on five scenarios of application execution, i.e.,

(a) local execution (LE) on the mobile device, (b) SIMDOM execution on local server

(LS), (c) SIMDOM execution on remote server (RS), (d) Qemu execution on local server

(QLS), and (e) Qemu execution on cloud server (QRS). The SIMDOM scenarios repre-

sent our framework prototype of pre-compiled native code offloading. The Qemu scenar-

ios present the case of compiled native code offloading and translation in MCC. The cloud

and cloudlet servers are utilized to deliberate on the proximity of resource and network

overhead. Moreover, scalar and SIMD versions of the benchmarks are utilized to analyze

the efficiency of SIMD translation in SIMDOM and Qemu frameworks.

Our findings are divided into three sections. Firstly, validation of the system model

presented in Section 4.3 is performed with the empirical results in Section 6.1. In Sec-

tion 6.2, empirical analysis of the SIMDOM framework is performed for parameters such

as energy, execution time, and performance gain. The comparative analysis of SIMDOM

framework with the existing state-of-the-art MCC translation and offloading frameworks

is presented in Section 6.3. The section also contains the analysis of the impact of device

sleep time, application partition, and application computational size on the energy con-

sumption. The impact of application partition and computational size on the execution

time is also analyzed. The concluding remarks for the chapter are provided in Section 6.4.

143

6.1 Framework Validation

In this section, we validate the system model of the SIMDOM framework. We answer

the validation question: Does the developed model accurately represent the operational

SIMDOM framework? The validation of the developed system model is performed by

comparing its results with the empirical results. We validate our system model based on

two variables, i.e., energy and execution time as listed in Section 4.3.

6.1.1 Energy

We validate the system model of the SIMDOM framework for the energy consumption.

We take FFT benchmark as an example. In the local MCC-disabled execution scenario,

Elocal =
0.571W ×346645907377×1.6

1194.54×106/s
= 268.05J

For the cloudlet offload scenario, we consider the case when the complete program

is offloaded to the cloud. On the base of the FFT benchmark code size (Ir), smartphone

power rating for sending data (pu), and network up-link throughput (Ur) we find the value

of Esend(Ir) as 0.51J. We assume for our re-compilation framework that for the total num-

ber of instructions executed in translations and re-compilation can be calculated from the

total time overhead of the SIMDOM framework. In case of cloud server, the parameters

of Dr, Ur, ss, and Tovr change in the system model. For cloudlet Qemu scenario, the only

change from the SIMDOM cloudlet scenario is the value of ss. For the cloudlet, the value

of ss is 4654.87 MIPS while for the emulated device the sm value is 471.61 MIPS. We

assume that the overhead of binary translation is represented in the complete time of ap-

plication execution. For the remote Qemu server, the value of ss is 591.76. Figure 6.1

presents the comparison of empirical and mathematical energy calculation for the FFT

benchmark in various scenarios of execution.

144

Figure 6.1: Mathematical Validation of SIMDOM Framework for FFT Benchmark: En-
ergy Consumption

The x-axis represents the execution scenarios while the y-axis represents the energy

consumption in Joules. The energy consumed by MCC-disabled execution is the high-

est among the evaluated scenarios and normalized for the graph by dividing the actual

value by five. The mathematical and empirical energy calculations for FFT benchmark

differ slightly in the aforementioned scenarios. The absolute difference is 0.94%, 4.56%,

7.59%, 4.45%, and 7.98% respectively between the mathematical and empirical results

for the five scenarios. The least difference is in the case of local energy consumption

as it does not involve the dynamic and fluctuating nature of wireless medium. All other

scenarios involve Wi-Fi communications which can vary from time to time based on mul-

tiple parameters. The highest difference in mathematical and empirical results is in the

case of Qemu calculations. We did not model the memory management operations of the

server that executes Qemu and its corresponding tasks. Therefore, the imperfections in the

Qemu offloading model leads to higher error between mathematical and empirical data.

Moreover, as Qemu is an emulated system, the computational power of the Qemu also

fluctuates leading to higher difference between mathematical and empirical results. We

utilized Pearson correlation coefficient to find the linear correlation between the data sets

145

Figure 6.2: Mathematical Validation of SIMDOM Framework for FFT Benchmark: Exe-
cution Time

of mathematical and empirical results. The value of Pearson correlation coefficient lies

between 0 and 1. The closer the value of Pearson correlation coefficient to 1, the higher

is a correlation between the two datasets. The Pearson correlation for our mathematical

and empirical data sets is 0.993462, indicating a strong correlation.

6.1.2 Execution Time

We perform the validation for the execution time in this subsection. Similar to previous

case, we chose the FFT benchmark to validate the empirical results. Figure 6.2 presents

the validation of execution time for the SIMDOM framework.

The x-axis represents the execution scenarios while the y-axis represents the exe-

cution time in seconds. The aforesaid result depict that the mathematical and empirical

data differ slightly for the execution time. The absolute difference between empirical

and mathematical results is 0.63%, 2.28%, 2.73%, 3.42%, and 4.29% for the five exe-

cution scenarios. The mathematical model produces lower values for execution time as

compared to the empirical results. The mathematical model is simplistic as it ignores

the complexity of most of the parameter of the Wi-Fi network. Moreover, the math-

146

ematical model does not represent the internal memory management details of Qemu.

Therefore, the difference in mathematical and empirical values for the Qemu scenario is

high. Furthermore, the absolute difference between mathematical and empirical values

for the execution time is lesser than those for the energy. The reason is that the energy

model includes the energy profiling framework in the form of PowerTutor which can lead

to further inaccuracy in empirical results. The 0.999762 Pearson correlation value for the

data sets indicates a strong correlation further validating our model and empirical results.

6.2 Comparison of SIMDOM for Application Benchmarks

The SIMDOM framework provides energy and time efficiency for the offloaded mobile

application. In this section, we compare the SIMDOM framework on multiple application

benchmarks to verify its performance. The analysis is presented for energy consumption,

execution time, and MFLOPS performance. The comparison is performed on both ver-

sions of the four application benchmarks. The performance analysis of the SIMDOM

benchmark is performed on the prototype implemented on cloud server.

6.2.1 Energy

We compare the energy consumption of the SIMDOM framework in this subsection for

the application benchmarks. Figure 6.3 presents the energy consumption of SIMDOM

framework for the scalar and SIMD versions of the benchmarks.

The x-axis represents the application benchmarks while the y-axis present the energy

consumption in Joules. The result shows that the energy consumed by the FFT benchmark

is highest among the application benchmarks. The FFT benchmark has higher computa-

tional load compared to the other benchmarks leading to higher energy consumption. The

rest of application benchmarks have similar energy consumption pattern due to approxi-

mately same amount of computational workload. The energy consumption of the SIMD

version of benchmarks is 17.44% lower than the scalar benchmarks. The lower energy

147

Figure 6.3: Comparison of SIMDOM Framework for Application Benchmarks: Energy
Consumption

consumption by the SIMD benchmarks verifies that the SIMD instructions have been ef-

ficiently translated by the SIMDOM framework. The average energy consumption by

the application benchmarks is 1.41 while the standard deviation is 0.36. The confidence

interval for energy consumption of the application benchmarks is ±0.25.

6.2.2 Execution Time

Figure 6.4 presents the comparison for execution time of application benchmarks.

The x-axis represents the application benchmarks selected for evaluation, while the

y-axis represents the execution time of the benchmarks. The execution time of FFT

benchmark is scaled by a factor of five to provide a reasonable comparison for all of

the evaluated application benchmarks. The execution time of the FFT benchmark is high-

est among the application benchmarks due to a higher number of instructions and com-

putational workload. The Mathlib benchmark provides the lowest execution time as it

has the lowest number of instructions among the evaluated application benchmarks. The

execution time of the SIMD benchmarks is 34.58% lower than the scalar benchmarks.

The SIMD benchmarks achieve lower execution time as they are efficiently translated by

148

Figure 6.4: Comparison of SIMDOM Framework for Application Benchmarks: Execu-
tion Time

vector-to-vector translations of the SIMDOM framework. The mean execution time of

the evaluated application benchmarks is 53.26 while the population standard deviation

is 93.21. The higher standard deviation occurs due to the higher execution time of FFT

benchmarks. The standard deviation of the dataset is reduced to 7.44 while excluding

the FFT benchmark. The confidence interval of the execution time for all the application

benchmarks is ±64.59.

6.2.3 Performance Gain

Figure 6.5 presents the performance gain of SIMDOM framework in terms of MFLOPS.

The MFLOPS performance is evaluated on the Linpack benchmark which provides

variable matrix inputs. The matrix inputs vary from 200 x 200 to 1200 x 1200. The

average performance for all inputs of the Linpack benchmarks is 764.08 MFLOPS while

the standard deviation is 358.63. The basic and SIMD version of benchmarks lead to

contrasting performance, hence, resulting in higher standard deviation. The confidence

interval is±202.59 for the evaluated benchmarks. The SIMD versions of the benchmarks

produce 63.74% efficient performance than the basic versions.

149

Figure 6.5: Comparison of SIMDOM Framework for Application Benchmarks: MFLOPS
Performance

In the above subsections, we analyzed the performance of SIMDOM framework

on various application benchmarks. The performance of the SIMDOM framework in

cross-platform translation and offloading of SIMD instructions can be judged from the

difference in SIMD and scalar version of the benchmarks. The SIMD benchmarks result

in 17.44%, 34.58%, and 63.74% energy, time, and MFLOPS performance efficiency for

the SIMDOM framework.

6.3 Comparison of SIMDOM with Qemu Offloading Framework

In this section we present the operational and experimental results of the SIMDOM frame-

work while comparing it with the state-of-the-art MCC code offloading frameworks. We

quantify and investigate each of the illustrated result from the following five aspects.

• Is code offloading feasible in terms of energy and time for the evaluated bench-

marks?

• How much is pre-compiled code offloading based SIMDOM framework efficient

than compiled code offloading frameworks?

150

• Under what conditions are the local server scenarios efficient than the remote server

scenarios?

• What effect has the benchmark size on the efficiency of the MCC offloading frame-

works?

• How efficiently does the SIMDOM framework handle translation of SIMD instruc-

tions as compared to the Qemu framework?

The SIMDOM framework comparison and evaluation is performed on five scenarios

of application execution, namely, LE, LS, RS, QLS, and QRS as detailed at the start of

the chapter. The scenario of local execution provides the base case where the application

executes without the support of MCC. The SIMDOM scenarios represent our framework

prototype of pre-compiled native code offloading. The Qemu scenarios present the case

of compiled native code offloading in MCC. The compiled code experiments are per-

formed with Qemu and provide a comparative analysis of the SIMDOM framework. We

chose Qemu for comparison with the SIMDOM framework as it provides the existing

state-of-the-art implementation of native code translation in MCC. Moreover, the cloud

and cloudlet servers are considered to deliberate on the proximity of resource and net-

work overhead. Furthermore, scalar and SIMD versions of the benchmarks are utilized to

analyze the efficiency of SIMD translation in SIMDOM and Qemu frameworks. While

other benchmarks execute for all inputs, the Linpack benchmark is based on the input of

a 600×600 matrix.

6.3.1 Energy

We measured the energy consumption of application benchmarks in various operational

scenarios. We first evaluated the SIMDOM framework for the base case where the mo-

bile device goes to idle state immediately after offloading the computations and LCD is

151

Figure 6.6: Energy Consumption: LCD Sleep Time = 0

turned off. The result of the energy consumption for device sleep time = 0 is presented in

Figure 6.6.

The result of FFT benchmark for local execution has been factored by seven to pro-

vide comparable perspective for other benchmarks. The results depict that the energy

consumption in the case of local computation on the smartphone is highest for all bench-

marks. On the contrary, the lowest energy consumed is by the pre-compiled code of-

floading of SIMDOM framework. SIMDOM and Qemu frameworks provide 85.66% and

61.09% energy efficiency respectively as compared to local MCC-disabled execution on

average for all benchmarks. Similarly, SIMDOM consumes 55.99% and 48.23% lesser

energy than the Qemu framework in the cloudlet and cloud server scenarios. The en-

ergy efficiency in case of offloading (either SIMDOM or Qemu based) increases with the

increase in the computational size of the benchmark. For example, the SIMDOM frame-

work on cloudlet server leads to 63.96% energy efficiency for the Mathlib benchmark as

compared to the 92.23% for the FFTSIMD benchmark. This implies that for large bench-

marks such as FFT, the energy efficiency gained by offloading is higher as the mobile

device remains in idle low-power state for longer time intervals.

152

In most of the cases, the energy consumption of cloud server is higher than the

cloudlet for both SIMDOM and Qemu based offloading. There are two reasons behind

high energy consumption of the cloud server. Firstly, the network latency of the remote

cloud server is higher than the cloudlet server leading to more waiting time for code

offload and result feedback. Secondly, for smaller inputs or low execution time bench-

marks, the network latency and overhead always dominates the computational overhead.

For example, the FFT benchmark which has a higher number of computations leads to

2.71% and 22.35% energy efficiency for cloud execution as compared to cloudlet execu-

tion for SIMDOM and Qemu frameworks respectively. On the contrary, the rest of the

benchmarks with a smaller number of instructions lead to 15.15% and 12.87% energy

efficiency for the cloudlet execution as compared to cloud execution for SIMDOM and

Qemu frameworks respectively.

The SIMD benchmarks are energy efficient in most of the scenarios of local and re-

mote execution as compared to scalar benchmarks. For local MCC-disabled execution,

the SIMD benchmarks provide 13.03% energy efficiency as compared to scalar bench-

marks. The SIMDOM and Qemu frameworks provide 16.88% and 11.63% energy effi-

ciency respectively for the SIMD benchmarks as compared to scalar benchmarks on the

cloudlet. The higher percentage of energy efficiency for the SIMDOM framework in case

of SIMD benchmarks points to the fact that the SIMD instructions are efficiently trans-

lated. Similarly, the SIMDOM and Qemu frameworks provide 15.55% and 6.61% energy

efficiency respectively for the SIMD benchmarks as compared to scalar benchmarks on

the cloud server. Hence, the SIMDOM efficiency for SIMD instruction translation re-

mains stable for both cloud and cloudlet execution.

153

Figure 6.7: Energy Distribution: LCD Sleep Time = 0

6.3.1.1 Energy Distribution

In this subsection, we will analyze the distribution of energy among the energy consuming

components. In case of code offloading, the energy consumption can be contributed to

three major categories; (a) energy consumed during execution of the benchmark, i.e.,

computational energy, (b) energy consumed during offloading of data and receiving of

results, i.e., communicational energy, and (c) energy spent while profiling the code at

server, i.e., profiling energy. We exclude the case of local MCC-disabled execution in our

evaluation as all the energy is spent in computations in that scenario. Figure 6.7 presents

the energy distribution for the evaluated benchmarks in a 100% stacked column chart.

There are multiple implications of the aforementioned result for energy distribution.

Firstly, the profiling energy contributes only for the SIMDOM framework where we pro-

file application for SIMD instructions and recompile the application for corresponding

ARM and x86 architectures. The profiling energy is higher for large computation bench-

marks. For FFT benchmark which is a library (consists of multiple files), the profiling

overhead is significantly high (16.5%). On the contrary, the profiling overhead is very

low (approximately 2.2%) for the Mathlib benchmark.

154

Secondly, the computational energy consumption is higher in all of the cases than

the communicational energy. However, for the Mathlib benchmark application, the com-

municational energy is high. The reason behind the low ratio of computational energy

is that SIMDOM framework sends and receives data as C code files that have small net-

work footprint. However, in the case of benchmarks (Speed, Linpack, and Mathlib) where

computations are low, the communicational energy matches the computational energy on

some levels. With the increase in the computational size of the benchmark, the contri-

bution of communicational energy decreases. Moreover, the communicational energy is

higher for cloud server scenarios than the cloudlet scenarios. Furthermore, the profiling

overhead is lower in the case of cloud server that has more computational power. Another

implication of the aforementioned result is the difference in SIMD and scalar versions of

the benchmarks. As the computations are efficient in the SIMD version of the benchmark,

the computational energy decreases while the share of communication energy increases

in the overall distribution. However, the decrease in computational energy for SIMD

benchmarks is more significant for the SIMDOM framework as compared to Qemu.

6.3.1.2 Impact of Sleep Time

The results presented in above sections are based on the assumption that the mobile is

switched to idle low-power state and the LCD is turned off as soon as the computations

are offloaded to the cloud server. In a real-time scenario, a mobile user has multiple

options for the mobile idle state. The mobile device utilized in our evaluation has six idle

state options, i.e., 15 seconds, 30 seconds, 1 minute, 2 minute, 5, minute, and 10 minute.

In this section, we explore other options for mobile device idle state and analyze its effects

on mobile device power consumption. For local smartphone execution, the mobile LCD

always remains on as long as the task is being performed on the device.

Case 1: Sleep Time = 15s. We analyze the energy consumption of SIMDOM frame-

155

Figure 6.8: Energy Consumption: Sleep Time = 15s

work when the device sleep time is set to 15 seconds. Figure 6.8 presents the results of

energy consumption for application execution in the mobile device sleep time configura-

tion of 15 seconds.

The result of FFT benchmark for local execution has been factored by six to pro-

vide comparable perspective to other benchmarks. There are multiple ramifications of

the aforesaid result. The result depicts that for all instances other than local mobile ex-

ecution, the energy consumption has increased from the base case of device sleep time.

The reason behind the static energy of mobile local execution is that during execution

of the task, the mobile device always remains in power on state. The SIMDOM frame-

work consumes less energy than both local mobile and Qemu framework scenarios. For

example, the SIMD framework on cloudlet consumes 46.02% less energy than the local

execution on average for all benchmarks. The energy efficiency increases with the size

of the benchmark as the FFT provides the highest efficiency (96.99%) while the Mathlib

provides the least efficiency (15.36%). Similarly, the SIMDOM framework is 47.34%

energy efficient than the Qemu framework on average for all benchmarks on the cloudlet.

The energy consumption of SIMDOM framework is less in the case of cloudlet server

than the cloud server due to low network overhead of offloading for Linpack, Speed, and

156

Mathlib benchmarks. On average, the SIMDOM is 2.70% energy efficient in the cloudlet

execution as compared to cloud execution due to the higher communicational overhead

of the cloud server. However, the cloud server energy consumption is lower than cloudlet

server energy consumption in case of FFT benchmark as its higher computational require-

ments dominate the network overhead. Moreover, a similar pattern is found for cloud and

cloudlet energy consumption in the case Qemu framework.

Qemu framework also provides energy efficiency to the mobile client for all bench-

marks except for both scalar and SIMD versions of Mathlib and SIMD version of FFT

benchmark. For the rest of benchmarks, the Qemu cloudlet provides 18.18% energy effi-

ciency as compared to local MCC-disabled execution on average. The Qemu framework

does not provide energy efficiency for Mathlib as the computations are small in num-

ber and better off performed locally than executed with the overhead of profiling and

offloading. With the increase in the number of computations in benchmarks, the energy

efficiency for the QLS scenario increases. However, the vectorization of FFT benchmark

leads to compact code that does not provide energy efficiency in case of the Qemu frame-

work.

The SIMD versions of the benchmarks provide higher energy efficiency than the

scalar versions. The local execution, SIMDOM framework on cloudlet, and Qemu frame-

work on cloudlet provide 15.37%, 11.19%, and 7.80% energy efficiency respectively for

the SIMD benchmarks as compared to scalar benchmarks. It can be noted that the energy

efficiency for the SIMDOM framework increases with respect to the Qemu execution,

thereby quantifying the efficiency of the SIMD translator. Qemu provides lower efficiency

than both the local execution and SIMDOM framework for the SIMD based benchmarks.

Therefore, it can be stated that the Qemu framework loses some of the efficiency of the

SIMD instructions while translating the applications by vector-to-scalar mappings.

Case 2: Sleep Time = 30s. We analyze the energy consumption of the evaluated

157

Figure 6.9: Energy Consumption: Sleep Time = 30s

benchmarks for the case of device sleep time of 30 seconds. Figure 6.9 presents the

results of energy consumption of all application benchmarks for device sleep time of 30

seconds.

The result of FFT benchmark for local execution has been factored by five to provide

comparable perspective to other benchmarks. There are three inferences of the aforemen-

tioned results. Firstly, for Mathlib, Speed, and Linpack benchmarks, the Qemu framework

does not deliver energy efficiency. The Qemu framework also does not provide energy

efficiency for the SIMD version of FFT benchmark. Hence, the offload decision is not

feasible in terms of energy for compiled code for these benchmarks. The Qemu frame-

work provides 35.42% higher energy consumption for the aforementioned benchmarks

on average for the cloudlet as compared to local execution. The compiled code offloading

results in 83.08% and energy efficiency for the scalar version on the cloudlet for FFT

benchmark.

The second inference is that the SIMDOM framework of pre-compiled code offload-

ing leads to energy efficiency for all benchmark as compared to local execution and com-

piled code offloading scenarios. The SIMDOM framework provides 32.09% and 29.76%

energy efficiency than local execution for the cloudlet and cloud servers respectively on

158

Figure 6.10: Energy Consumption: Sleep Time = 60s

average for all benchmarks. Hence, the code can be offloaded even if the device sleep time

is less than or equal to 30 seconds in SIMDOM framework for all benchmarks. However,

the energy gains are marginal for the Mathlib benchmark (13.96% and 6.42% respectively

for cloudlet and cloud server). As the benchmark computational size increases for FFT

benchmark, the SIMDOM framework leads to higher energy efficiency (50.24%). More-

over, the SIMDOM framework leads to 51.24% and 50.39% energy efficiency than the

Qemu on average for the cloudlet and cloud servers respectively.

Thirdly, as evaluated in earlier cases, the SIMD benchmarks provide higher energy

efficiency than their scalar counterparts. The local execution, SIMDOM framework on

cloudlet, and Qemu on cloudlet provide 17.7%, 14.15%, and 10.58% energy efficiency

for the SIMD benchmarks respectively as compared to scalar benchmarks. The higher

efficiency for the SIMDOM framework as compared to Qemu proves the effectiveness of

the SIMD translator.

Case 3: Sleep Time = 60s. We analyze the energy consumption of the evaluated

benchmarks for all scenarios with the device sleep time set to 60 seconds. Figure 6.10

presents the results of energy consumption for device sleep time of 60 seconds.

The result of FFT benchmark for local execution has been factored by four to pro-

159

vide comparable perspective to other benchmarks. The aforementioned results reveal that

the Qemu framework scenarios do not provide energy efficiency as compared to local ex-

ecution except for scalar FFT benchmark. The Qemu cloudlet execution leads to 34.54%

higher energy consumption than that of the local execution while including the negative

result of scalar FFT benchmark. On the contrary, the SIMDOM framework provides

28.14% and 26.36% energy efficiency as compared to local executions for cloudlet and

cloud servers respectively. Similar to previous cases, the FFT benchmark provides the

highest energy efficiency, i.e., 93.99% for cloudlet server and 95.30% for cloud server.

On the contrary, Mathlib provides the least energy efficiency, i.e., 10.33% and 1.67%

respectively for cloudlet and cloud SIMDOM framework.

The SIMDOM framework provides 61.70% and 63.92% energy efficiency on aver-

age for all benchmarks than the Qemu framework for cloudlet and cloud server execution

respectively. The cloud server execution provides considerable energy efficiency than

the cloudlet server only for the FFT benchmark. The SIMDOM framework in the cloud

server scenario provides 26.94% energy efficiency than the cloudlet server for the FFT

benchmark. For the remaining applications, the cloud server gains are negligible. Similar

to previous cases, the SIMD benchmarks provide more efficiency than the scalar versions

for the SIMDOM framework. The SIMDOM framework and Qemu on cloudlet provides

14.75% and 11.11% energy efficiency respectively for the SIMD benchmarks as com-

pared to scalar benchmarks.

In the above subsection, we analyzed the energy efficiency of computational offload-

ing frameworks in various scenarios of mobile device sleep time. We observed that by

increasing mobile device sleep time, the energy efficiency of the offloading frameworks

decreases. The SIMDOM framework provides 85.66% energy efficiency for immediate

device sleep after offloading as compared to 28.14% for sleep time = 60 seconds scenario

for the cloudlet execution. For benchmarks that take longer than 60 seconds to execute

160

on the cloud server, the energy efficiency will further decrease upon increase of mobile

device sleep time. However, the most energy efficient case is where the mobile device

is kept in sleep mode after computational offloading. The Qemu offloading framework

provides energy efficiency for all benchmarks in the sleep time = 0 seconds case. For the

case of sleep time = 15 seconds, the Qemu provides energy efficiency for three bench-

marks. Similarly, for the case of sleep time = 30 seconds, the Qemu provides energy

efficiency for only scalar version of FFT benchmark. However, for sleep time = 60 sec-

onds, the Qemu framework provides energy efficiency for scalar FFT while leading to

34.54% higher energy consumption for all benchmarks on average.

In all the evaluated scenarios, the SIMD benchmarks provide higher efficiency as

compared to scalar benchmarks for the SIMDOM framework. The SIMDOM framework

provides approximately 14% energy efficiency for the SIMD benchmarks as compared to

scalar benchmarks while Qemu provides only 7% energy efficiency.

6.3.1.3 Impact of Application Partitioning

The SIMDOM framework provides three cases for application partition and offloading,

i.e., no application partition in case the offload decision is not feasible, full application

partition and offloading, and partial application offloading for only SIMD instructions. In

the above sections, we investigated the SIMDOM framework where the complete appli-

cation is offloaded to the server without partition. In this subsection, we will investigate

the SIMDOM framework for partial application partition.

In the simplest of the cases, the complete application can be offloaded and executed

on the cloud. However, the offload manager can decide upon the partial execution of

the application based on the input from the application profiler. The application profiler

profiles the application after compiling it for ARM and x86 architectures. The simplest

partition of the application code during compilation can be based on the NEON intrinsics.

161

Figure 6.11: Energy Consumption: The Case of Application Partition

The NEON intrinsics can be translated to SSE code and executed on the server, while the

scalar code can be executed on the mobile device. We analyze only SIMD benchmarks

for application partitioning as scalar benchmarks do not provide an opportunity for par-

titioning based on SIMD instructions. Figure 6.11 illustrates the energy consumption of

application partition based offloading.

There are multiple ramifications of the above stated result. Firstly, the SIMDOM

framework does not provide energy efficiency for benchmarks with lower computation,

such as the Mathlib benchmark. Through application profiling, we found that the Mathlib

benchmark produces 26.14% and 46.37% SIMD instructions for the ARM and x86 ISAs

respectively. The percentage of SIMD instructions in the Mathlib benchmark were found

to be highest among the evaluated benchmarks. However, Mathlib benchmark does not

gain from the application partition as the total number of SIMD instructions are low. The

Linpack and Speed benchmark provide marginal energy efficiency in this scenario. On

the contrary, the total number of SIMD instructions in the FFT benchmark are quite high

as compared to other benchmarks. Hence, the only benchmark application gaining con-

siderable energy efficiency (93.94%) from the application partition is the FFT benchmark.

162

Figure 6.12: Energy Distribution: The Case of Application Partition

Compared to the corresponding scenario of full application offloading, the SIMDOM en-

ergy gains corresponding to local execution decrease from 42.85% to 28.28% on average

for all benchmarks.

Secondly, the Qemu framework does not provide energy efficiency for any of the

benchmarks except for the FFT. Qemu consumes 31.42% higher energy than the local

MCC-disabled execution on average for all benchmarks. Moreover, Qemu provided en-

ergy efficiency for three benchmarks in the full application offloading scenario compared

to only one benchmark in application partitioning scenario. Thirdly, the SIMDOM is

39.61% energy efficient than the Qemu framework on average for all benchmarks for the

cloudlet scenario. To illustrate the distribution of energy among local and remote com-

puting, we analyze the result in further detail. The energy distribution of the benchmarks

for the case of application partition is presented in Figure 6.12.

The total energy is distributed among local, remote, communicate, and remote pro-

filing components. The communicational energy contributes significantly to the overall

energy as compared to the scenario presented in Figure 6.7. The communicational en-

ergy contribution is particularly higher for smaller benchmarks due to offloading of data

163

and synchronization of distributed application execution results. Due to the increase in

the communicational energy, the contribution of energy utilized in profiling of the ap-

plication decreases. Moreover, for the SIMDOM framework, the local execution energy

consumption is higher than the remote execution energy consumption as the SIMDOM

efficiently translates and executes the SIMD instruction over the cloud servers. The Qemu

framework provides the contrary scenario.

Theoretically, as the application is divided into a scalar instruction part and a vec-

tor instruction part, the overall energy efficiency of the application should increase from

a singleton execution scenario. On the contrary, the energy efficiency of the offloading

scenarios decreases. There are two main contributors to this fact. Firstly, the commu-

nicational energy increases as described above. Secondly, after the completion of local

execution, the mobile device waits for the result of the offloaded part without going into

sleep mode immediately. The device waiting for the results contributes to the remote ex-

ecution energy and increases the overall energy of the application partition based offload

scenario.

6.3.1.4 Impact of Computational Size

We investigated the energy efficiency of the SIMDOM framework for variable size inputs.

We utilized the Linpack benchmark as its input matrices can be varied. The Linpack

benchmark was compiled to operate on 200× 200, 400× 400, 600× 600, 800× 800,

1000×1000, 1200×1200, and 1400×1400 matrices. As a result, N×N basic operations

are performed in each benchmark instance. The matrix size of 1400× 1400 and greater

lead to negative results in terms of performance. The result of the energy consumption of

the Linpack benchmark for different execution scenarios are depicted in Figure 6.13.

The energy was measured with the mobile device configuration of sleep mode after

15 seconds of inactivity. The energy consumption in various scenarios does not increase

164

Figure 6.13: Energy Consumption: Linpack Benchmark on Variable Input Matrices of
Size N ∗N

significantly until the matrix size of 600× 600. Afterward, the energy spent on local

execution increases exponentially with the increase in the size of the input. The energy

consumption of the Qemu framework also increases linearly with the increase in matrix

size. On the contrary, the energy consumption of SIMDOM framework remains linearly

stable and does not increase significantly with the increase in the size of the input matrix.

Both pre-compiled code SIMDOM and compiled code Qemu offloading frameworks lead

to the energy efficiency for larger input sizes. However, for smaller inputs, the energy

gains are marginal. The energy efficiency of the cloudlet based SIMDOM framework

as compared to local execution increases from 26.63% for 200× 200 matrix to 92.21%

for 1400× 1400 matrix. Similarly, the energy efficiency of the SIMDOM framework as

compared to Qemu increases 22.75% for 200× 200 matrix to 78.80% for 1400× 1400

matrix.

The SIMD version of the benchmarks leads to considerable energy efficiency as

compared to basic benchmarks. The SIMD version efficiency for the local execution on

a mobile device is 6.69%. However, the translated code by the SIMDOM framework

provides better SIMD to basic version energy efficiency ratio of 8.58%. On the contrary,

165

Figure 6.14: Execution Time of Evaluated Benchmark Applications

Qemu provides only 2.21% energy efficiency while providing inefficient vector-to-scalar

translation for the SIMD benchmarks. These ratios also quantitatively assert the efficiency

of SIMD translations in the SIMDOM framework.

6.3.2 Execution Time

The second most important factor in the evaluation of a MCC offloading framework is

the execution time of the applications. The execution time of the offload framework

should also be efficient than the local computations to provide greater benefits to the cloud

users. In this section, we investigate the execution time of the benchmarks in different

execution scenarios for the case where the complete application is offloaded to the server.

The total execution time includes the overhead of application offloading and profiling.

In Figure 6.14, we present the execution times of the evaluated benchmarks in various

scenarios of application execution.

The execution time of the FFT benchmark scale out of the figurative graph limits.

Therefore, all scenarios of the FFT benchmark and Qemu scenarios of FFTSIMD bench-

mark are scaled by a factor of 5. Still, FFT-QLS and FFT-QRS is out of bound of the

graph. The FFT benchmark values have been scaled to provide a comparative perspective

166

to other benchmarks.

The Mathlib benchmark leads to the lowest execution times while the FFT varia-

tions lead to the highest execution times. The Qemu framework does not provide time

efficiency for any of the benchmark applications. The Qemu framework leads to 56.68%

and 54.90% higher execution time on average for all benchmarks for cloud and cloudlet

scenarios respectively. The inefficient translation of SIMD instructions and the overhead

of DBT result in the higher execution times for the Qemu framework. On the contrary,

the SIMDOM framework leads to time efficiency for all the benchmarks except for Math-

lib, MathlibSIMD, Linpack, and LinpackSIMD in the cloudlet and cloud server scenar-

ios. On average, the SIMDOM framework provides 3.93% and 8.01% time efficiency as

compared to the local execution for the cloudlet and cloud offloading respectively while

including the negative results. The time efficiency of the SIMDOM framework increases

with the increase in the computational size of the benchmark. For instance, the time effi-

ciency of FFTSIMD benchmark is 22.46% and 37.69% for the cloudlet and cloud server

respectively for SIMDOM framework. Therefore, the offloading is favorable in terms of

execution time for those benchmarks that have a large number of computations. On the

contrary, smaller applications provide negligible or no time efficiency that can be further

degraded by the variable wireless medium.

The SIMDOM framework leads to 57.30% and 56.53% time efficiency than the

Qemu framework for the cloudlet and cloud server scenarios respectively. The time ef-

ficiency of the SIMDOM framework compared to Qemu is higher for Mathlib (76.70%)

and FFT (93.14%) benchmarks that have a higher percentage of SIMD instructions. The

reason behind higher time efficiency of SIMD-rich benchmarks is that the Qemu applies

non-optimal translations to vector instructions leading to one-to-many mappings in most

of the cases. Moreover, the higher time efficiency in case of Mathlib and FFT bench-

mark shows that the SIMDOM framework provides an efficient solution for translation

167

and offloading of vector instructions.

The cloud server provides efficient execution times than the cloudlet, particularly for

large benchmarks. However, few exceptions occur for the small benchmarks. The higher

execution time on the cloud server can be contributed to higher CPU load, network la-

tency, or benchmark computational size. On average, the SIMDOM framework on cloud

server provides 4.16% time efficiency than the cloudlet including the negative results.

The lower time efficiency is attributed to the fact that the computational power (MIPS) of

the cloudlet and cloud server are quite similar.

The SIMD benchmarks provide considerably lower execution time than the scalar

benchmarks. The SIMD benchmarks lead to 31.72%, 35.54%, and 12.37% time effi-

ciency when compared to scalar benchmarks for local execution, SIMD framework on

cloudlet, and Qemu framework on cloudlet respectively. The lowest time efficiency is

provided by Qemu with SIMD benchmark execution time similar to the scalar bench-

marks. On the contrary, SIMDOM framework leads to the highest time difference in

SIMD and scalar benchmarks while mapping most of the ARM vector instructions to x86

vector instructions.

6.3.2.1 Time Distribution

We further investigate the execution time of the benchmarks by illustrating the distribu-

tion across time consuming components, i.e., computing, profiling, and communication.

Figure 6.15 provides the distribution of the execution time among these components.

The profiling time distribution is only for SIMDOM framework due to activities of

the application profiler and SIMD translator. The time distribution of local execution is

not illustrated as it consists entirely of local computations. The time spent on profiling

the application increases with the size of the benchmark and has the highest proportion

for the FFT benchmark. The higher percentage of SIMD instructions also leads to higher

168

Figure 6.15: Execution Time Distribution of The Evaluated Application Benchmarks

profiling overhead for the Mathlib benchmark. It can be further noted that the time spent

in profiling the SIMD versions of the application is higher than the scalar versions. The

reason is that the SIMD version often requires additional compilation flags that lead to

higher SIMD instruction count and higher profiling overhead. The time spent on commu-

nicating the FFT benchmark is also highest as it consists of multiple libraries rather than

singleton source files in case of other benchmarks. However, in the overall distribution,

the communication time share is dominated by profiling and computational time. The

contribution of communication time is less for the Qemu scenarios than SIMDOM sce-

narios. The Qemu framework leads to higher number of computations, hence, dominating

the communication time.

6.3.2.2 Impact of Application Partitioning

In this subsection, we investigate the impact of application partitioning on the execu-

tion time of the application. The application partition is based on NEON intrinsics and

performed by statically annotating code of the benchmark. We analyze only SIMD bench-

marks for application partitioning as scalar benchmarks do not provide an opportunity for

partitioning based on SIMD instructions. Figure 6.16 illustrates the result of application

169

Figure 6.16: Execution Time: The Case of Application Partition

partition based offloading.

The execution time of the FFT benchmark scale out of the figurative graph limits.

Therefore, the Qemu scenarios of FFTSIMD benchmark are scaled by a factor of five. The

Qemu framework does not provide time efficiency for any of the benchmarks. While the

base case of full application offloading leads to 56.68% higher execution times, the partial

application partitioning leads to 52.15% higher execution time for the Qemu framework

on cloudlet. As Qemu does not handle SIMD instructions optimally, it does not gain

significant advantage from the partitioning of the application.

The SIMDOM framework provides time efficiency for Linpack and FFT bench-

marks. Including the negative results, the SIMDOM framework provides 5.23% and

5.87% time efficiency for the cloudlet and cloud server respectively as compared to the

local execution. The execution time efficiency of SIMDOM framework shows an in-

crease from 3.93% to 5.23% and decrease from 9.33% to 5.87% for cloudlet and cloud

server respectively when compared to the case of full application offloading for the SIMD

benchmarks. The application partitioning and parallel execution of scalar and vector in-

stances lead to higher time efficiency for only FFT benchmark. The FFT benchmarks

170

gain 38.61% time efficiency as it has the highest number of SIMD instructions. The rest

of the benchmarks have a small number of instructions and the overhead of instruction

offloading dominates the efficiency of parallel execution.

In case of energy and execution time, the application partitioning led to lesser effi-

ciencies when compared to the case of full application offloading. However, the execution

time and energy show higher efficiencies in case of partial application offloading for the

FFT benchmark. As the number of computations and vector instructions increase for the

FFT benchmark, the parallel execution of code is efficient. However, for smaller bench-

mark applications, as the application is executing on the mobile device and expecting

results from the server, its network components remain in the active state. Therefore,

benchmarks that are not specifically compute-intensive result in higher energy consump-

tion and execution time in case of application partitioning.

6.3.2.3 Impact of Computational Size

We investigate the application execution time for variable size inputs. We utilize the

Linpack benchmark as its input matrices can be varied. The Linpack benchmark was

compiled to operate on 200× 200, 400× 400, 600× 600, 800× 800, 1000× 1000,

1200× 1200, and 1400× 1400 matrices. The result of the execution times of the Lin-

pack benchmark are depicted in Figure 6.17.

The Qemu inputs are scaled to fit the figurative bounds of graph and provide a better

illustration for all input sizes. The execution time of Qemu for matrix sizes 800×800 and

1000× 1000 has been scaled by a factor of five while that for matrix sizes 1200× 1200

and 1400×1400 has been scaled by a factor of six.

There are multiple ramifications of the aforementioned result. The execution time in

local MCC-disabled does not increase until the input size of 600× 600. Afterward, the

increase in matrix size leads to exponential increase in the execution time. Similarly, the

171

Figure 6.17: Execution Time of Linpack Benchmark on Variable Input Matrices of Size
N ∗N

SIMDOM framework does not show any significant increase in execution time with the

increase of matrix size. The only significant increase in execution time of the SIMDOM

framework occurs for the input matrix of 1200×1200 and 1400×1400. The stable per-

formance of the SIMDOM framework is due to the computational power of the cloudlet

and cloud servers that can sustain the input increase gracefully to provide efficient execu-

tion. On the contrary, Qemu does not sustain performance on the increase in the size of

input matrix as the execution time of Qemu scenarios increases exponentially.

The SIMDOM framework does not provide time efficiency for the small matrix in-

puts. The SIMDOM framework provides time efficiency as compared to local execution

after the input size is increased to 800×800 and beyond. For the input matrices 800×800

to 1400×1400, the SIMDOM framework on cloudlet provides 66.24% efficiency than the

local execution. For the input matrices 200× 200, 400× 400, and 600× 600, the SIM-

DOM framework on cloudlet leads to 0.54% time overhead as compared to local execu-

tion. Therefore, the time efficiency of SIMDOM framework increases with the increase

in the size of the input. The SIMD versions of the benchmarks show significantly lower

execution times than the basic versions. The efficiency of the SIMD versions increases

172

Figure 6.18: Performance of Linpack Benchmark on Variable Input Matrices of Size N∗N

with the increase in the size of the benchmark. However, the efficiency is more significant

for the SIMDOM framework than the Qemu as SIMDOM efficiently translates the SIMD

instructions. The SIMD versions of the benchmarks provide 14.32% time efficiency than

the scalar version for the SIMDOM framework on the cloudlet. On the contrary, the

Qemu provides 9.63% time efficiency for the SIMD versions on the cloudlet.

6.3.3 Performance Gain

The Linpack benchmark also analyzes the performance of the system. The performance

measured by the Linpack benchmark is dependent on the calculation of x[i] = x[i]+c∗y[i]

for a system of linear equations based on matrices of variable inputs. The performance

of the system is measured in MFLOPS, i.e., Million of Floating Point instructions per

Second. The Linpack benchmark iterates through loops while solving the aforementioned

equation. As a result, the number of floating point instructions executed over a time

duration are calculated. Figure 6.18 presents the performance of Linpack benchmark in

different execution scenarios.

The performance of cloud server for all input sizes scale out of the figurative graph

limits. Therefore, all scenarios of the cloud server (RS) have been divided by a factor of

173

3.3. On the other hand, the Qemu performance is too low to be figuratively represented

in the graph. Therefore, the Qemu performance for both cloudlet (QLS) and cloud server

(QRS) are multiplied by three. The Linpack benchmark for 1400×1400 matrix input is

not included in the results as it leads to negative performance on all execution instances.

The SIMDOM framework provides 79.93% and 95.16% higher performance than

the local execution for cloudlet and cloud server respectively on average. Similarly, the

SIMDOM cloud server provides 76.55% higher performance than the cloudlet server on

average for all benchmarks. Contrary to the cases of energy and time efficiency, which

were 13.60% and 5.99% respectively, the performance efficiency of the cloud server is

relatively high than the cloudlet. The cloud server provides higher performance than the

cloudlet due to its abundance of resources, such as the number of processing cores.

The Qemu framework provides the lowest performance. The local execution is

79.96% better in performance than the Qemu cloudlet on average for all benchmarks.

Similarly, the SIMDOM cloudlet is 96.23% performance efficient than the Qemu cloudlet

on average for all benchmarks. The increase in the matrix size effects the performance

of the application execution, particularly, for resource-constrained environments. For ex-

ample, the performance of Linpack benchmark after the input size of 600 decreases on

the mobile device. However, the SIMDOM cloudlet and cloud server sustain their perfor-

mance for higher input matrices.

The SIMD versions of the benchmarks provide 74.56%, 70.78%, and 29.45% higher

performance than the scalar benchmarks for the local, SIMDOM cloudlet, and Qemu

cloudlet scenarios respectively. The SIMD benchmarks have the highest performance as

compared to scalar benchmarks in local execution. The SIMDOM cloudlet provides a

comparatively equivalent performance for SIMD benchmarks. However, the Qemu does

not show higher performance for SIMD benchmarks as compared the local execution and

SIMDOM framework as it translates most of the vector instructions to scalar instructions.

174

6.4 Conclusion

In this chapter, we discussed the performance of SIMDOM framework from various di-

mensions of device sleep time, application partition, and increasing input sizes. We com-

pared the energy consumption of proposed system model with the empirical data and

found 0.94% of error in the best case for local execution and 7.98% error in the worst

case for Qemu cloud execution. The higher error rate in model validation is contributed

to memory page dynamics of Qemu and wireless network fluctuations. Similarly, for

execution time, a best case error of 0.63% and worst case error of 4.29% was found for

MCC-disabled and Qemu cloud execution validity, respectively. The Pearson correlation

coefficient lies near 1, hence, validating the correlation between the data of mathematical

model and empirical results for energy and execution time.

The SIMDOM framework was evaluated on three main parameters of execution, i.e.,

energy, execution time, and MFLOPS performance. Comparison with state-of-the-art

Qemu based compiled code translation and offloading framework was performed. The

SIMDOM framework provides higher energy efficiency than both local MCC-disabled

execution and Qemu based offloading. The SIMDOM framework provides 85.66% and

55.99% energy efficiency than the local device and Qemu based offload scenarios re-

spectively in the base case of mobile sleep state. As the mobile sleep state is delayed to

one minute, the energy efficiency of SIMDOM framework as compared to local MCC-

disabled execution decreases to 28.14%. The cloud server provides energy efficiency

comparative to cloudlet only for high computation benchmarks, such as the FFT. More-

over, the SIMD versions of the benchmarks lead to higher energy efficiency for the SIM-

DOM framework as compared to the Qemu framework, hence, quantifying the efficiency

of the SIMD translator. Furthermore, the results show that SIMD instruction based appli-

cation partitioning leads to energy efficiency only for the FFT benchmark that has higher

175

ratio and number of SIMD instructions.

The SIMDOM framework provides time efficiency only for benchmark applications

with higher computational requirements. The SIMDOM framework provides 3.93% and

8.01% time efficiency as compared to the local execution for the cloudlet and cloud server

offloading respectively while including the negative results. Moreover, the SIMD instruc-

tion based application partitioning leads to higher time efficiency for only the FFT bench-

mark. For the rest of the benchmarks, the overhead of cloud offloading dominates the

efficiency of parallel execution of scalar and vector partitions of the benchmark. The

SIMDOM framework provides 79.93% and 95.16% higher MFLOPS performance on

the cloudlet and cloud server respectively. Moreover, the results depict that the SIM-

DOM framework on cloud server provides 76.55% higher MFLOPS performance than

the cloudlet due to the higher computational power of the former. On the contrary, the

Qemu based code offloading does not provide efficient MFLOPS and execution time per-

formance for any of the benchmark applications and provides energy efficiency in only

some of the application execution scenarios.

176

CHAPTER 7: CONCLUSION

This chapter presents the overall conclusion of the research work and emphasizes the

qualitative features of the SIMDOM framework. The conclusive analysis is performed by

reflecting on the research objectives set in the first chapter of the thesis. Future work and

research contributions are also highlighted.

The rest of the chapter is organized as follows. In Section 7.1, we reexamine the

research aim and objectives listed in Section 1.4 of the thesis. Section 7.2 lists the con-

tributions of this research work. Section 7.3 deliberates on the significance of this work

among existing MCC offloading frameworks. In section 7.4, the scope and limitations of

this research work are elaborated. At last, Section 7.5 details the research directions in

which this work can be further enhanced.

7.1 Research Objectives

This research work aimed to solve the problem of translation and offloading of vector

instructions in heterogeneous MCC architectures. In section 1.4, we set four research

objectives. We investigate the completeness of these research objective as follows.

Objective 1: To study the MCC offloading frameworks from the perspective of

offload enabling techniques to gain insights to the performance limitations of current

state-of-the-art solutions.

The first objective of our research was to study and critically analyze the recent

state-of-the-art MCC offloading frameworks such that insights are gained leading to their

performance limitations. This research objective was accomplished by a thorough survey

in the direction of MCC offloading frameworks, techniques for application execution in

heterogeneous MCC architectures, and translation of SIMD instructions in cloud environ-

ments. We performed an extensive literature review of our research field through online

databases, such as IEEE, ACM, Elsevier, and Web of Science. We organized the litera-

177

ture, devised taxonomies, and provided a qualitative comparison for MCC code offload-

ing, cross-platform application execution, and SIMD instruction translations techniques.

The purpose of this exercise was to identify the open research issues and challenges

in SIMD instruction based MCC code offloading frameworks. We found that current

cross-platform MCC offloading frameworks do not handle SIMD instructions efficiently.

The most commonly utilized cross-platform execution tool, Qemu, translates SIMD in-

structions to scalar instructions. Therefore, an efficient SIMD instruction translation

framework was required in MCC offloading domain.

To investigate the overhead of MCC offload enabling techniques to reveal ineffi-

ciency in SIMD instruction translations.

The second objective of this research work was to analyze and investigate the over-

head in current MCC offload enabling techniques. System virtualization, application vir-

tualization, and native code offloading are the three fundamental offload enabling tech-

niques utilized in heterogeneous MCC architectures. We investigated the aforementioned

MCC offload enabling techniques from the perspective of multimedia applications. The

investigation revealed high computational overhead for the application virtualization and

native code based offloading techniques. On the other hand, system virtualization tech-

niques are not feasible for wireless access based mobile devices. We further examined

the cross-platform execution of native code for SIMD instructions. We found that Qemu,

the existing cross-platform framework for native code, does not optimally translate the

SIMD instructions and leads to performance loss.

To design and develop an MCC offloading framework based on dynamic mapping

of SIMD instructions that supports heterogeneity of computing architectures while pro-

viding energy and time efficiency to mobile devices.

The third objective of this research work was to develop an integrated vector instruc-

tion translation and offloading framework for heterogeneous MCC architectures. For the

178

vector instruction translation, we devised a vector-to-vector instruction mapping algo-

rithm based on recompilation technique. The native vector library of the mobile device is

mapped to that of the cloud server, i.e., ARM NEON intrinsics are translated to x86 SSE

intrinsics. An integrated SIMD instruction translation and offloading framework in MCC

(SIMDOM) was detailed based on the SIMD instruction translator and offloading mod-

ules. The application, network, and energy profilers of the SIMDOM framework were

elaborated in detail that provide inputs to the system model for the decision of offload

feasibility.

To evaluate the proposed framework for energy and time efficiency and compare

it with the state-of-the-art MCC code offloading frameworks.

The fourth objective of this research was to verify the effectiveness of the proposed

SIMDOM framework in translation and offloading of vectorized applications. We devel-

oped a system model for offloading and execution of SIMD based applications that leads

to performance and energy efficiency. We validated the model by comparing its results

with the empirical results. We further analyzed the SIMDOM framework for energy, ex-

ecution time, and performance efficiency on multiple vectorized application benchmarks.

We also compared the performance of the SIMDOM framework with the existing cross-

platform native code translation framework of Qemu. Moreover, we investigated the

performance of SIMDOM framework inefficient translation of the SIMD instructions.

The SIMDOM framework leads to 55.99%, 57.30%, and 96.23% energy, time, and

performance efficiency respectively as compared to the Qemu framework in the base case

of cloudlet execution. Similarly, the SIMDOM framework provides 85.66%, 3.93%,

and 79.93% energy, time, and performance efficiency respectively compared to the lo-

cal MCC-disabled execution. The efficiency of SIMDOM framework was investigated in

different scenarios of device sleep time, application partitioning, and variable application

input sizes. The application partitioning leads to higher time and energy efficiency for

179

only large computational applications, such as FFT. Applications with a higher number

of computations gain more benefits from computational offloading in general. More-

over, SIMDOM framework provides higher scalar-to-SIMD application performance dif-

ference (14% approximately compared to the base case of 7% for Qemu) by efficiently

mapping vector-to-vector instructions.

7.2 Contributions

In this section, we highlight the contributions of this research work. The contributions

in terms of the scholarly articles are listed separately in Appendix A. This research work

contributes to the body of knowledge in following aspects.

• Taxonomy of MCC Offload Enabling Techniques: We developed taxonomies

from the existing literature for MCC offloading frameworks, cross-platform native

code execution, and SIMD instruction translation. The taxonomies were derived

from reviewing recent state-of-the-art research works in the corresponding dimen-

sions. Moreover, critical analysis of the selected state-of-the-art research work was

performed. The comprehensive literature review led to the identification of open

research issues.

• SIMD Translator Algorithm: We devised a SIMD translator algorithm for hetero-

geneous ARM and x86 architectures. The SIMD translator algorithm maps ARM

SIMD instructions to x86 SIMD instructions such that vector-to-scalar translations

are minimized. The translated code is efficient due to the high percentage of vector-

to-vector translated instructions.

• Integrated MCC Offloading Framework: We devised a SIMD translator based

MCC offloading framework, SIMDOM. The SIMDOM framework is based on re-

compilation technique and direct vector-to-vector instruction mapping. The SIMD

180

translator was integrated with the offloading module to enable smartphone applica-

tions to execute efficiently and seamlessly on heterogeneous ARM and x86 archi-

tectures.

• Mathematical Model: We developed a mathematical model for SIMDOM frame-

work of translation and offloading of mobile applications. The mathematical model

captures dynamics of the system based on system variables, such as device power

rating, application instructions, device cycle per instruction efficiency, and network

throughput. The mathematical model decides upon the feasibility of the cloud of-

fload based on energy consumption and execution time parameters.

7.3 Significance of The Work

The SIMDOM framework provides multiple significant features that distinguish it from

the existing MCC code offloading frameworks discussed as follows.

First, the SIMDOM framework focuses on multimedia applications. In particular,

SIMD instruction based applications are translated and executed on cloud and cloudlet

servers. Previous research works have not focused on multimedia application offloading

in MCC.

Second, the SIMDOM framework is a pre-code offloading framework. The code is

offloaded before compilation and recompiled for the server architecture along with the

translation of SIMD system libraries. The majority of existing MCC offloading frame-

works are dependent on application virtualization that has high computational overhead

for compute-intensive multimedia applications.

Third, the SIMDOM framework incorporates the heterogeneity of MCC architec-

tures through recompilation and translation of architecture-specific SIMD libraries. Exist-

ing code migration frameworks overlook the heterogeneity of the underlying ISAs which

is not a realistic assumption in the MCC paradigm. Moreover, due to pre-compiled code

181

migration, the SIMDOM framework avoids the overhead of binary translations faced by

existing native code offloading frameworks.

7.4 Scope and Limitations

The SIMDOM framework provides high energy and performance efficiency for the SIMD

instruction based applications with MCC cloudlet and cloud server support. The SIM-

DOM framework enables ARM-based native applications to be translated and executed

on x86 based servers. The SIMD translator can be integrated into any application devel-

opment platform including Android and iOS provided that the NEON-to-SSE header files

are integrated at all steps of application development.

The SIMDOM framework is limited to native applications and can not be applied to

virtualization based MCC offloading frameworks. Moreover, the SIMDOM framework

targets SIMD instructions of ARM and x86 architecture and can not be applied to other

ISAs, such as MIPS. Similarly, the SIMDOM framework does not provide the reverse x86

to ARM translations. The current implementation of the SIMD translator works on the

NEON intrinsics functions. However, the proposed SIMD translations can be extended to

the low-level assembly code by replacing the original code with corresponding assembly

codes generated by the SIMD translator. Furthermore, SIMDOM framework does not

take into account the mobile battery and user location profile while deciding upon the

feasibility of cloud offload.

7.5 Future Work

This research was an effort to contribute to the existing body of knowledge in the field of

MCC. However, a single thesis is not enough to address all the challenges to a particular

domain. In the following lines, we detail the possible future works that can progress the

domain of MCC code offloading.

182

1. A joint cloud and mobile resource efficiency framework can be formulated such that

the MCC ecosystem works in a sustainable manner. The SIMDOM framework is

based on the efficiency of the mobile device while ignoring the resource utilization

at the cloud server. We will formulate and investigate a joint cost optimization

framework for the MCC paradigm in our future work.

2. The SIMDOM framework utilizes pre-compiled code for translation and mapping

of SIMD intrinsic functions. However, often for an application executing on the

mobile, the code is compiled. The only cross-platform execution framework for

compiled code is Qemu. The Qemu translates most of the SIMD instructions to

scalar instructions, hence, leading to lower performance. As Qemu codebase is

larger than 100000 lines of code, significant research effort is required to modify

the current Qemu codebase and implement an efficient compiled code based MCC

offloading framework.

3. The SIMDOM framework did not consider the utilization levels of resources in

the system model and empirical results. The cloud and cloudlet servers can be

analyzed for performance based on a number of client offload requests such that

the point of resource over-utilization is found. Moreover, an offload request control

algorithm can be devised to regulate the cloud/cloudlet server performance based

on its resource utilization levels.

4. In this Ph.D. study, we proposed a framework for translation of ARM-based ap-

plications such that they can execute on x86 ISA based cloud servers. However,

the application of translation of x86 based applications to ARM ISA also exist. A

framework to provide the reverse translation of SIMDOM needs to be explored.

183

REFERENCES

Abadal, S., Martínez, R., Solé-Pareta, J., Alarcón, E., & Cabellos-Aparicio, A. (2016).
Characterization and modeling of multicast communication in cache-coherent many-
core processors. Computers & Electrical Engineering, 51, 168 - 183.

Ahmad, R. W., Gani, A., Hamid, S. H. A., Xia, F., & Shiraz, M. (2015). A review on
mobile application energy profiling: Taxonomy, state-of-the-art, and open research
issues. Journal of Network and Computer Applications, 58, 42–59.

Ahmed, E., Gani, A., Khan, M. K., Buyya, R., & Khan, S. U. (2015). Seamless ap-
plication execution in mobile cloud computing: Motivation, taxonomy, and open
challenges. Journal of Network and Computer Applications, 52, 154–172.

Ahmed, E., Gani, A., Sookhak, M., Ab Hamid, S. H., & Xia, F. (2015). Application opti-
mization in mobile cloud computing: Motivation, taxonomies, and open challenges.
Journal of Network and Computer Applications, 52, 52–68.

Altamimi, M. (2015). A task offloading framework for energy saving on mobile devices
using cloud computing (Unpublished doctoral dissertation). University of Waterloo.

Arm® neon™ intrinsics reference. (2014). Retrieved from http://infocenter.arm
.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics
_ref.pdf

Balan, R. K., Gergle, D., Satyanarayanan, M., & Herbsleb, J. (2007). Simplifying cyber
foraging for mobile devices. In Proceedings of the 5th international conference on
mobile systems, applications and services (pp. 272–285).

Bellard, F. (2005). Qemu, a fast and portable dynamic translator. In Usenix annual
technical conference, freenix track (pp. 41–46).

Bianchi, G. (2000). Performance analysis of the ieee 802.11 distributed coordination
function. IEEE Journal on selected areas in communications, 18(3), 535–547.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., . . . others
(2011). The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2),
1–7.

Blem, E., Menon, J., Vijayaraghavan, T., & Sankaralingam, K. (2015). Isa wars: Under-
standing the relevance of isa being risc or cisc to performance, power, and energy on
modern architectures. ACM Transactions on Computer Systems (TOCS), 33(1), 3.

Boisvert, R. F., Moreira, J., Philippsen, M., & Pozo, R. (2001). Java and numerical
computing. Computing in Science & Engineering, 3(2), 18–24.

Butko, A., Garibotti, R., Ost, L., Lapotre, V., Gamatie, A., Sassatelli, G., & Adeniyi-
Jones, C. (2015). A trace-driven approach for fast and accurate simulation of many-
core architectures. In Design automation conference (asp-dac), 2015 20th asia and
south pacific (pp. 707–712).

184

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf

Butko, A., Garibotti, R., Ost, L., & Sassatelli, G. (2012). Accuracy evaluation of gem5
simulator system. In Reconfigurable communication-centric systems-on-chip (re-
cosoc), 2012 7th international workshop on (pp. 1–7).

Camarasu-Pop, S., Glatard, T., & Benoit-Cattin, H. (2016). Combining analytical model-
ing, realistic simulation and real experimentation for the optimization of monte-carlo
applications on the european grid infrastructure. Future Generation Computer Sys-
tems, 57, 13–23.

Camargos, F., Girard, G., & Ligneris, B. (2008). Virtualization of linux servers. In
Proceedings of the linux symposium (Vol. 2008).

Choi, M., & Lim, S.-H. (2016). x86-android performance improvement for x86 smart
mobile devices. Concurrency and Computation: Practice and Experience, 28(10),
2770–2780.

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011). Clonecloud: elastic
execution between mobile device and cloud. In Proceedings of the sixth conference
on computer systems (pp. 301–314).

Cisco. (2015). Cisco visual networking index: Global mobile data traffic forecast update,
2015–2020 (Tech. Rep.). Sisco.

Clark, N., Hormati, A., Yehia, S., Mahlke, S., & Flautner, K. (2007). Liquid simd: Ab-
stracting simd hardware using lightweight dynamic mapping. In High performance
computer architecture, 2007. ieee 13th international symposium on (pp. 216–227).

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R., &
Bahl, P. (2010). Maui: making smartphones last longer with code offload. In
Proceedings of the 8th international conference on mobile systems, applications,
and services (pp. 49–62).

Dall, C., & Nieh, J. (2014). Kvm/arm: the design and implementation of the linux arm
hypervisor. ACM SIGARCH Computer Architecture News, 42(1), 333–348.

de Carvalho Jr, A. D., Rosan, M., Bianchi, A., & Queiroz, M. (2013). Fft benchmark on
android devices: Java versus jni. Nexus, 7, 1.

Deshane, T., Shepherd, Z., Matthews, J., Ben-Yehuda, M., Shah, A., & Rao, B. (2008).
Quantitative comparison of xen and kvm. Xen Summit, Boston, MA, USA, 1–2.

Ding, J.-H., Chang, P.-C., Hsu, W.-C., & Chung, Y.-C. (2011). Pqemu: A parallel
system emulator based on qemu. In Parallel and distributed systems (icpads), 2011
ieee 17th international conference on (pp. 276–283).

Do, V. (2011). Security services on an optimized thin hypervisor for embedded systems
(Unpublished doctoral dissertation). Faculty of Engineering LTH at Lund Univer-
sity.

Dongarra, J. J., & Luszczek, P. (2005). Introduction to the hpcchallenge benchmark suite.
Lawrence Berkeley National Laboratory.

185

Dongarra, J. J., Luszczek, P., & Petitet, A. (2003). The linpack benchmark: past, present
and future. Concurrency and Computation: practice and experience, 15(9), 803–
820.

Ehringer, D. (2010). The dalvik virtual machine architecture (Vol. 4; Tech. Rep.).
Google.

Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., & Estrin, D.
(2010). Diversity in smartphone usage. In Proceedings of the 8th international
conference on mobile systems, applications, and services (pp. 179–194).

FELLOWS, K. M. (2014). A comparative study of the effects of parallelization on arm
and intel based platforms (Unpublished doctoral dissertation). University of Illinois
at Urbana–Champaign.

Fernando, N., Loke, S. W., & Rahayu, W. (2013). Mobile cloud computing: A survey.
Future Generation Computer Systems, 29(1), 84–106.

Flinn, J. (2012). Cyber foraging: Bridging mobile and cloud computing. Synthesis
Lectures on Mobile and Pervasive Computing, 7(2), 1–103.

Flores, H., Hui, P., Tarkoma, S., Li, Y., Srirama, S., & Buyya, R. (2015). Mobile code
offloading: from concept to practice and beyond. Communications Magazine, IEEE,
53(3), 80–88.

Fu, S.-Y., Wu, J.-J., & Hsu, W.-C. (2015). Improving simd code generation in qemu. In
Proceedings of the 2015 design, automation & test in europe conference & exhibition
(pp. 1233–1236).

Fu, S.-Y., Wu, J.-J., Liu, P., Hong, D.-Y., & Hsu, W.-C. (2015). Simd code translation
in an enhanced hqemu. In Ieee international conference on parallel and distributed
systems (icpads).

Gordon, M. S., Jamshidi, D. A., Mahlke, S., Mao, Z. M., & Chen, X. (2012). Comet:
code offload by migrating execution transparently. In Presented as part of the 10th
usenix symposium on operating systems design and implementation (pp. 93–106).

Guo, Q., Chen, T., Chen, Y., & Franchettit, F. (2015). Accelerating architectural simu-
lation via statistical techniques: A survey. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(3), 433 - 446.

Guo, Y.-C., Yang, W., Chen, J.-Y., & Lee, J.-K. (2016, December). Translating the arm
neon and vfp instructions in a binary translator. Software: Practice and Experience,
46 (12), 1591–1615.

Hong, D.-Y., Hsu, C.-C., Yew, P.-C., Wu, J.-J., Hsu, W.-C., Liu, P., . . . Chung, Y.-C.
(2012). Hqemu: a multi-threaded and retargetable dynamic binary translator on
multicores. In Proceedings of the tenth international symposium on code generation
and optimization (pp. 104–113).

Hong, D.-Y., Wu, J.-J., Yew, P.-C., Hsu, W.-C., Hsu, C.-C., Liu, P., . . . Chung, Y.-C.

186

(2014). Efficient and retargetable dynamic binary translation on multicores. Parallel
and Distributed Systems, IEEE Transactions on, 25(3), 622–632.

Hoque, M. A., Siekkinen, M., Khan, K. N., Xiao, Y., & Tarkoma, S. (2015). Modeling,
profiling, and debugging the energy consumption of mobile devices. ACM Comput-
ing Surveys (CSUR), 48(3), 39.

Hsu, C.-C., Hong, D.-Y., Hsu, W.-C., Liu, P., & Wu, J.-J. (2015). A dynamic binary
translation system in a client/server environment. Journal of Systems Architecture,
61(7), 307–319.

Huang, H. (2011). Idisa+: A portable model for high performance simd programming
(Unpublished doctoral dissertation). SIMON FRASER UNIVERSITY.

Jeffery, A. (2009). Using the llvm compiler infrastructure for optimised, asynchronous
dynamic translation in qemu (Unpublished doctoral dissertation). University of Ade-
laide.

Jenkins, I. R. (2016). Android benchmarking for architectural research (Unpublished
master’s thesis). THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS
AND SCIENCES.

Jiang, W., Mei, C., Huang, B., Li, J., Zhu, J., Zang, B., & Zhu, C. (2005). Boosting
the performance of multimedia applications using simd instructions. In Compiler
construction (pp. 59–75).

Khan, A. R., Othman, M., Madani, S. A., & Khan, S. U. (2014). A survey of mobile
cloud computing application models. Communications Surveys & Tutorials, IEEE,
16(1), 393–413.

Kim, E., Eom, H., & Yeom, H. Y. (2012). Asymmetry-aware load balancing for par-
allel applications in single-isa multi-core systems. Journal of Zhejiang University
SCIENCE C, 13(6), 413–427.

Kim, Y.-J., Cho, S.-J., Kim, K.-J., Hwang, E.-H., Yoon, S.-H., & Jeon, J.-W. (2012).
Benchmarking java application using jni and native c application on android. In
Control, automation and systems (iccas), 2012 12th international conference on (pp.
284–288).

Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X. (2012). Thinkair: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading.
In Infocom, 2012 proceedings ieee (pp. 945–953).

Koukoumidis, E., Lymberopoulos, D., Strauss, K., Liu, J., & Burger, D. (2011). Pocket
cloudlets. ACM SIGARCH Computer Architecture News, 39(1), 171–184.

Kumar, K., Liu, J., Lu, Y.-H., & Bhargava, B. (2013). A survey of computation offloading
for mobile systems. Mobile Networks and Applications, 18(1), 129–140.

Kumar, K., & Lu, Y.-H. (2010). Cloud computing for mobile users: Can offloading
computation save energy? Computer(4), 51–56.

187

Larabel, M., & Tippett, M. (2013). Phoronix test suite.

Lee, G., Park, H., Heo, S., Chang, K.-A., Lee, H., & Kim, H. (2015). Architecture-aware
automatic computation offload for native applications. In Proceedings of the 48th
international symposium on microarchitecture (pp. 521–532).

Lee, S., & Jeon, J. W. (2010). Evaluating performance of android platform using native
c for embedded systems. In Control automation and systems (iccas), 2010 interna-
tional conference on (pp. 1160–1163).

Li, J., Zhang, Q., Xu, S., & Huang, B. (2006). Optimizing dynamic binary translation for
simd instructions. In Proceedings of the international symposium on code generation
and optimization (pp. 269–280).

Limited, A. (2009). Introducing neon™ development article (Tech. Rep.). ARM Hold-
ings.

Lomont, C. (2011). Introduction to intel advanced vector extensions. Intel White Paper.

Maleki, S., Gao, Y., Garzaran, M. J., Wong, T., & Padua, D. A. (2011). An evaluation of
vectorizing compilers. In Parallel architectures and compilation techniques (pact),
2011 international conference on (pp. 372–382).

Manilov, S., Franke, B., Magrath, A., & Andrieu, C. (2015). Free rider: A tool for
retargeting platform-specific intrinsic functions. In Acm sigplan notices (Vol. 50,
p. 5).

Michel, L., Fournel, N., et al. (2011). Speeding-up simd instructions dynamic binary
translation in embedded processor simulation. In Design, automation & test in eu-
rope conference & exhibition (date), 2011 (pp. 1–4).

Mitra, G., Johnston, B., Rendell, A. P., McCreath, E., & Zhou, J. (2013). Use of simd
vector operations to accelerate application code performance on low-powered arm
and intel platforms. In Parallel and distributed processing symposium workshops &
phd forum (ipdpsw), 2013 ieee 27th international (pp. 1107–1116).

Moore, R. W., Baiocchi, J. A., Childers, B. R., Davidson, J. W., & Hiser, J. D. (2009).
Addressing the challenges of dbt for the arm architecture. In Acm sigplan notices
(Vol. 44, pp. 147–156).

Mustafa, S., Nazir, B., Hayat, A., Madani, S. A., et al. (2015). Resource management
in cloud computing: Taxonomy, prospects, and challenges. Computers & Electrical
Engineering, 47, 186–203.

Nethercote, N., & Seward, J. (2007). Valgrind: a framework for heavyweight dynamic
binary instrumentation. In Acm sigplan notices (Vol. 42, pp. 89–100).

Nimmakayala, S. T. (2015). Exploring causes of performance overhead during dynamic
binary translation (Unpublished doctoral dissertation). University of Kansas.

Niu, J., Song, W., & Atiquzzaman, M. (2014). Bandwidth-adaptive partitioning for

188

distributed execution optimization of mobile applications. Journal of Network and
Computer Applications, 37, 334–347.

Nuzman, D., Dyshel, S., Rohou, E., Rosen, I., Williams, K., Yuste, D., . . . Zaks, A.
(2011). Vapor simd: Auto-vectorize once, run everywhere. In Proceedings of the
9th annual ieee/acm international symposium on code generation and optimization
(pp. 151–160).

Oh, H.-S., Kim, B.-J., Choi, H.-K., & Moon, S.-M. (2012). Evaluation of android dalvik
virtual machine. In Proceedings of the 10th international workshop on java tech-
nologies for real-time and embedded systems (pp. 115–124).

Othman, M., Khan, A. N., Abid, S. A., Madani, S. A., et al. (2015). Mobibyte: an appli-
cation development model for mobile cloud computing. Journal of Grid Computing,
13(4), 605–628.

Penneman, N., Kudinskas, D., Rawsthorne, A., De Sutter, B., & De Bosschere, K. (2016).
Evaluation of dynamic binary translation techniques for full system virtualisation on
armv7-a. Journal of Systems Architecture.

Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., & Ioannidis, S. (2014).
Rage against the virtual machine: hindering dynamic analysis of android malware.
In Proceedings of the seventh european workshop on system security (p. 5).

Pommier, J. (2012). Pretty fast fft. Online. Retrieved from https://bitbucket.org/
jpommier/pffft

Rehman, M. H. u., Liew, C. S., Wah, T. Y., Shuja, J., & Daghighi, B. (2015). Mining
personal data using smartphones and wearable devices: A survey. Sensors, 15(2),
4430–4469.

Robinson, G., & Weir, G. R. (2015). Understanding android security. In Global security,
safety and sustainability: Tomorrow’s challenges of cyber security (pp. 189–199).
Springer.

Sartor, A. L., Lorenzon, A. F., & Beck, A. (2015). The impact of virtual machines on
embedded systems. In Computer software and applications conference (compsac),
2015 ieee 39th annual (Vol. 2, pp. 626–631).

Satyanarayanan, M. (2015). A brief history of cloud offload: A personal journey from
odyssey through cyber foraging to cloudlets. ACM SIGMOBILE Mobile Computing
and Communications Review, 18(4), 19–23.

Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for vm-based
cloudlets in mobile computing. Pervasive Computing, IEEE, 8(4), 14–23.

Satyanarayanan, M., Schuster, R., Ebling, M., Fettweis, G., Flinck, H., Joshi, K., & Sab-
nani, K. (2015). An open ecosystem for mobile-cloud convergence. Communications
Magazine, IEEE, 53(3), 63–70.

Shaukat, U., Ahmed, E., Anwar, Z., & Xia, F. (2016). Cloudlet deployment in local wire-

189

https://bitbucket.org/jpommier/pffft
https://bitbucket.org/jpommier/pffft

less networks: Motivation, architectures, applications, and open challenges. Journal
of Network and Computer Applications, 62, 18–40.

Shen, B.-Y., Hsu, W.-C., & Yang, W. (2014). A retargetable static binary translator
for the arm architecture. ACM Transactions on Architecture and Code Optimization
(TACO), 11(2), 18.

Shuja, J., Bilal, K., Madani, S. A., Othman, M., Ranjan, R., Balaji, P., & Khan, S. U.
(2016, June). Survey of techniques and architectures for designing energy-efficient
data centers. IEEE Systems Journal, 10(2), 507-519.

Shuja, J., Gani, A., Ahmad, R. W., Muhammad, H. u. R., Ahmed, E., Khan, K., & Ko,
K. (2016, November). Towards native code offloading based mcc frameworks for
multimedia applications: A survey. Journal of Network and Computer Applications,
75, 335–354.

Shuja, J., Gani, A., Bilal, K., Khan, A. U. R., Madani, S. A., Khan, S. U., & Zomaya,
A. Y. (2016, April). A survey of mobile device virtualization: Taxonomy and state
of the art. ACM Comput. Surv., 49(1), 1:1–1:36.

Shuja, J., Gani, A., & Madani, S. A. (2014, December). A qualitative comparison of
mpsoc mobile and embedded virtualization techniques. In International conference
of global network for innovative technology (ignite-2014), penang, malaysia.

Shuja, J., Gani, A., Naveed, A., Ahmed, E., & Hsu, C.-H. (2016). Case of arm emulation
optimization for offloading mechanisms in mobile cloud computing. Future Gener-
ation Computer Systems, -. doi: http://dx.doi.org/10.1016/j.future.2016.05.037

Shuja, J., Gani, A., Shamshirband, S., Ahmad, R. W., & Bilal, K. (2016). Sustainable
cloud data centers: A survey of enabling techniques and technologies. Renewable
and Sustainable Energy Reviews, 62, 195–214.

Smartphone os market share, 2015 q2. (2016). online. Retrieved from http://www.idc
.com/prodserv/smartphone-os-market-share.jsp

Stallings, W. (2000). Computer organization and architecture: designing for perfor-
mance. Pearson Education India.

Statista. (2015). Facts and statistics about cloud computing. Retrieved from http://
www.statista.com/topics/1695/cloud-computing/

ur Rehman, M. H., Sun, C., Wah, T. Y., Iqbal, A., & Jayaraman, P. P. (2016). Oppor-
tunistic computation offloading in mobile edge cloud computing environments. In
2016 17th ieee international conference on mobile data management (mdm) (Vol. 1,
pp. 208–213).

Vincent, C., & Janin, Y. (2011). Proot: a step forward for qemu user-mode. In 1st
international qemu users’ forum (p. 41).

Wang, Z., Liu, R., Chen, Y., Wu, X., Chen, H., Zhang, W., & Zang, B. (2011). Coremu: a
scalable and portable parallel full-system emulator. ACM SIGPLAN Notices, 46(8),

190

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.statista.com/topics/1695/cloud-computing/
http://www.statista.com/topics/1695/cloud-computing/

213–222.

Whaiduzzaman, M., Naveed, A., & Gani, A. (2016). Mobicore: Mobile device based
cloudlet resource enhancement for optimal task response. IEEE Transactions on
Services Computing, PP(99), 1-1. doi: 10.1109/TSC.2016.2564407

Wu, Z. P., Krish, Y., & Pellizzoni, R. (2013). Worst case analysis of dram latency in
multi-requestor systems. In Real-time systems symposium (rtss), 2013 ieee 34th (pp.
372–383).

Xu, Y., & Mao, S. (2013). A survey of mobile cloud computing for rich media applica-
tions. IEEE Wireless Commun., 20(3), 1–0.

Yadav, R., & Bhadoria, R. S. (2015). Performance analysis for android runtime en-
vironment. In Communication systems and network technologies (csnt), 2015 fifth
international conference on (pp. 1076–1079).

Yaqoob, I., Ahmed, E., Gani, A., Mokhtar, S., Imran, M., & Guizani, S. (2016). Mobile
ad hoc cloud: A survey. Wireless Communications and Mobile Computing, 16(16),
2572–2589.

Yeh, T.-C., Tseng, G.-F., & Chiang, M.-C. (2010). A fast cycle-accurate instruction set
simulator based on qemu and systemc for soc development. In Melecon 2010-2010
15th ieee mediterranean electrotechnical conference (pp. 1033–1038).

Younge, A. J., Henschel, R., Brown, J. T., Von Laszewski, G., Qiu, J., & Fox, G. C.
(2011). Analysis of virtualization technologies for high performance computing
environments. In Cloud computing (cloud), 2011 ieee international conference on
(pp. 9–16).

Yousafzai, A., Chang, V., Gani, A., & Noor, R. M. (2016). Directory-based incentive
management services for ad-hoc mobile clouds. International Journal of Information
Management, 36(6, Part A), 900 - 906.

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P., Mao, Z. M., & Yang, L.
(2010). Accurate online power estimation and automatic battery behavior based
power model generation for smartphones. In Proceedings of the eighth ieee/acm/ifip
international conference on hardware/software codesign and system synthesis (pp.
105–114).

Zhang, X., Guo, Q., Chen, Y., Chen, T., & Hu, W. (2015). Hermes: a fast cross-isa
binary translator with post-optimization. In Proceedings of the 13th annual ieee/acm
international symposium on code generation and optimization (pp. 246–256).

Zhao, J., Nagarakatte, S., Martin, M. M., & Zdancewic, S. (2012). Formalizing the llvm
intermediate representation for verified program transformations. In Acm sigplan
notices (Vol. 47, pp. 427–440).

Zhu, W., Luo, C., Wang, J., & Li, S. (2011). Multimedia cloud computing. Signal
Processing Magazine, IEEE, 28(3), 59–69.

191

APPENDIX A: LIST OF PUBLICATIONS

International Scholarly Publications: This PhD venture has led to the publication and

submission of multiple Journal and conference papers both as the first author and as a

co-author. The articles published as first-author fulfill the requirements of the BSP schol-

arship and the Ph.D. thesis at University Malaya. The following list provides the complete

details of the international research publications in ISI-indexed journals produced during

this research venture.

First Author Published Journal Articles

1. Shuja, J., Gani, A., et al., "Towards native code offloading based MCC frame-

works for multimedia applications: A survey" Journal of Network and Computer

Applications, 75 (2016): 335-354.

2. Shuja, J., Gani, A., Naveed, A., Ahmed, E., Hsu, C.-H, "Case of

ARM emulation optimization for offloading mechanisms in Mobile Cloud

Computing" Future Generation Computer Systems, Accepted May 2016.

http://dx.doi.org/10.1016/j.future.2016.05.037.

3. Shuja, J., Gani, A., Bilal, K., Khan, A. U. R., Madani, S. A., Khan, S. U., Zomaya,

A. Y., "A survey of mobile device virtualization: Taxonomy and state of the art"

ACM Computing Surveys, 49(1), 1:1–1:36. 2016.

4. Shuja, J., Bilal, K., Madani, S., Othman, M., Ranjan, R., Balaji, P., Khan,

S.,"Survey of techniques and architectures for designing energy-efficient data cen-

ters" Systems Journal, IEEE, 10(2), 507-519. 2016.

5. Shuja, J., Gani, A., Shamshirband, S., Ahmad, R. W., Bilal, K., "Sustainable

cloud data centers: A survey of enabling techniques and technologies" Renewable

and Sustainable Energy Reviews, 62, 195–214, 2016.

192

First Author Submitted Journal Articles

1. Shuja, J., Gani, A., et al., "SIMDOM: A Framework for SIMD Instruction Trans-

lation and Offloading in Heterogeneous MCC Architectures" Submitted to Trans-

actions on Emerging Telecommunication Technologies, 10 September 2016.

First Author Accepted Conference Articles

1. Shuja, J., Gani, A., Madani, S. A., " A qualitative comparison of MPSoC mo-

bile and embedded virtualization techniques" In International conference of global

network for innovative technology (IGNITE-2014), Penang, Malaysia, 2014, arXiv

preprint arXiv:1605.01168.

Journal Articles Accepted as a Co-author

1. Rehman, M. H. u., Liew, C. S., Wah, T. Y., Shuja, J., Daghighi, B, "Mining

personal data using smartphones and wearable devices: A survey" Sensors, 15(2),

4430–4469, 2015.

Conference Articles Accepted as a Co-author

1. Liaqat, M.; Ninoriya, S.; Shuja, J.; Ahmad, R. W. Gani, A. "Virtual Machine Mi-

gration Enabled Cloud Resource Management: A Challenging Task" arXiv preprint

arXiv:1601.03854, 2016

Journal Articles Submitted as a Co-author

1. Atta ur Rehman Khan, Mazliza Othman, Abdul Nasir Khan, Junaid Shuja, Saad

Mustafa, "Computation Offloading Cost Estimation in Mobile Cloud Application

Models", submitted in Wireless Personal Communications, April 2016.

2. Atta ur Rehman Khan, Mazliza Othman, Junaid Shuja, Abdul Nasir Khan, Saad

Mustafa, Shahbaz Akhtar, "Behavioral Trends and Mindset of Smartphone Users

193

Towards Adopting the Mobile Cloud Computing Paradigm", submitted in Universal

Access in the Information Society, April 2016.

194

APPENDIX B: SAMPLE CODE FOR LINPACK AND LINPACKSIMD
BENCHMARKS

Linpack:

m = n % 4;

If (m !=0)

{

for (i=0; i<m ; i++)

dy[i] = dy[i] + da*dx[i];

If (n < 4) return;

}

for (i=m; i<n ; i+4)

{

dy[i] = dy[i] + da*dx[i];

dy[i+1] = dy[i+1] + da*dx[i+!];

dy[i+2] = dy[i+2] + da*dx[i+2];

dy[i+3] = dy[i+3] + da*dx[i+3];

}

#endif

LinpackSIMD:

#ifdef NEON

float cf[4];

float32x4_t x41, y41, c41, r41;

float32_t *ptrx1 = (float32_t *)dx;

float32_t *ptry1 = (float32_t *)dy;

float32_t *ptrc1 = (float32_t *)cf;

195

for (i=0; i<4; i++)

{

cf[i] = da;

}

m = n % 4;

If (m !=0)

{

for (i=0; i<m ; i++)

dy[i] = dy[i] + da*dx[i];

If (n < 4) return;

}

ptrx1 = ptrx1 + m;

ptry1 = ptry1 + m;

c41 = vld1q_f32(ptrc1);

for (i = m; i < n; i=i+4)

{

x41 = vld1q_f32(ptrx1);

y41 = vld1q_f32(ptry1);

r41 = vmlaq_f32(y41, x41, c41);

vst1q_f32(ptry1, r41);

ptrx1 = ptrx1 + 4;

ptry1 = ptry1 + 4;

}

#endif

196

	Abstract
	Abstrak
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Background
	Motivation
	Statement of The Problem
	Statement of Objectives
	Research Methodology
	Thesis Layout

	Offloading Frameworks in MCC
	MCC Architecture and Computational Offload
	MCC Offload Enabling Techniques
	System Virtualization
	Application Virtualization
	Native Code Migration

	Cloud Augmentation for MCC Offloading Frameworks

	MCC Offloading Frameworks
	Taxonomy of MCC Offloading Frameworks
	Review of MCC Offloading Frameworks
	System Virtualization based MCC Frameworks
	Application Virtualization based MCC Frameworks
	Native Code Migration based MCC Frameworks

	Comparison of MCC Frameworks

	ARM Emulation Techniques
	Applications of ARM Emulation Techniques
	Taxonomy of ARM Emulation Techniques
	Review of ARM Emulation Techniques
	Qemu
	Gem5
	PQEMU
	HQEMU
	Trace-driven approach for gem5
	Client/server DBT
	Retargetable Static Binary Translation

	Comparison of ARM Emulation Techniques

	SIMD Instruction Porting Techniques
	Application of SIMD Instructions
	Taxonomy of SIMD Porting Techniques
	Review of SIMD Porting Techniques
	FREERIDER
	IDISA+
	Improving SIMD Instruction Generation in DBT
	Liquid SIMD
	Optimizing DBT of SIMD
	VaporSIMD
	Speeding up SIMD DBT
	MC2LLVM

	Comparison of SIMD Porting Techniques

	Open Research Issues
	MCC Code Offloading Challenges for Native Applications
	ARM DBT Challenges
	SIMD Porting Challenges

	Conclusion

	Performance Analysis of MCC Offloading Techniques
	Background
	Experiments: Performance Analysis of MCC Offload Enabling Techniques
	Application Benchmarks
	Devices

	Experimental Results
	System Virtualization
	Multimedia Benchmarks
	Phoronix Test Suite

	Application Virtualization
	Multimedia Benchmark
	Scimark Benchmark
	Dalvik Compilation Method Optimization

	ARM ISA Emulators
	System Call Emulation
	Full System Emulation
	ARM to Intel Atom Emulation

	Case for SIMD Instruction Optimizations
	Mathlib
	Linpack
	Speed
	FFT

	Discussion
	Conclusion

	A Framework for SIMD Instruction Translation and Offloading in MCC: SIMDOM
	SIMDOM Framework
	SIMDOM Features
	System Architecture
	Assumptions

	Components of SIMDOM
	SIMD Profiles
	SIMD Translator
	Application Profiler
	Energy Profiler
	Network Profiler
	Offload Manager

	System Model
	SIMDOM Algorithm
	Conclusion

	Evaluation
	Evaluation Process
	Experimental Setup
	Experimental Devices
	Application Benchmarks
	Mathlib
	Linpack
	Speed
	FFT

	Data Collection for Model Validation
	Idle Power
	Computing Power
	Wi-Fi Power
	Wi-Fi Throughput
	Application Instructions
	Computational Power and CPI

	Data Collection and Analysis of SIMD Translator
	Active Instructions
	Semantic Accuracy
	Overhead of SIMD Translator

	Data Collection and Analysis of Application Profiler
	Static Code Analysis
	Overhead of Application Profiler

	Model Bounds
	Bounds for Application Partitioning
	Bounds for Server Speed

	Case Studies
	Case Study: System Virtualization
	Case Study: Application Virtualization

	Conclusion

	Results and Discussion
	Framework Validation
	Energy
	Execution Time

	Comparison of SIMDOM for Application Benchmarks
	Energy
	Execution Time
	Performance Gain

	Comparison of SIMDOM with Qemu Offloading Framework
	Energy
	Energy Distribution
	Impact of Sleep Time
	Impact of Application Partitioning
	Impact of Computational Size

	Execution Time
	Time Distribution
	Impact of Application Partitioning
	Impact of Computational Size

	Performance Gain

	Conclusion

	Conclusion
	Research Objectives
	Contributions
	Significance of The Work
	Scope and Limitations
	Future Work

	References
	Appendices

