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ABSTRACT 

Performance of organic devices is affected by material disorders, which yields low 

mobility, dispersive current and scaling noise behaviour. Anomalous transport and 

scaling noise behaviour are inadequately described by Fick’s law and characterised by 

low-frequency noise method. This work reports the study of (i) scaling behaviour of 

current noise in organic field-effect transistors (OFETs) using methods of fractal noise 

analysis and, (ii) the modelling of anomalous charge transports in disordered organic 

semiconductors based on fractional calculus. Current noises of Poly(3-hexylthiophene) 

(P3HT) OFETs were measured at various source-drain voltages (Vds) and characterised 

using the power spectral density method and detrended fluctuation analysis. Current 

noises were found to follow white noise, 1/f and Brownian noise characteristic at low, 

intermediate and high Vds, respectively. For Vds above 40 V, Brownian noise will be 

masked out by 1/f noise. Multiple-trapping mechanism is integrated with the drift-

diffusion equation and then generalised to the time-fractional drift-diffusion equation 

(TFDDE) to model the anomalous transports and reproduce the transient photocurrents 

in regiorandom P3HT (RRa-P3HT) and regioregular P3HT (RR-P3HT). The TFDDE is 

solved by using finite difference scheme and Poisson solver is implemented to calculate 

the electric field. It is found that by acquiring extra energy from high electric field, 

charge carriers escape easily from trap centres and propagate with higher velocity 

resulting in higher current. Larger amount of charge carriers will be generated at higher 

illumination and they will be hopping near the mobility edges, hence encountering 

lesser capturing events. This explains why movement of charge carriers at higher 

illumination is less dispersive than the movement of charge carriers at lower 

illumination. It is also noted that transport dynamic of charge carriers in RR-P3HT is 

relatively less dispersive and has higher mobility than that of the RRa-P3HT since RR-

P3HT has lower capturing rate and is less energetically disordered. 
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ABSTRAK 

Prestasi peranti organik dipengaruhi oleh kecelaruan bahan yang menghasilkan 

mobiliti rendah, serakan arus elecktrik dan sifat hingar berskala. Angkutan anomali dan 

sifat hingar berskala adalah tidak sesuai diterangkan oleh hukum Fick dan dicirikan oleh 

kaedah hingar frekuensi-rendah. Kajian ini bertujuan untuk (i) mengkaji sifat hingar 

berskala arus elektrik dalam transistor kesan-medan organik (OFETs) dengan 

menggunakan kaedah analisis hingar fraktal dan (ii) untuk permodelan angkutan 

anomali dalam semikonduktor organik bercelaru berdasarkan kalkulus pecahan. Hingar 

arus elektrik untuk Poly(3-hexylthiophene) (P3HT) OFETs diukur pada pelbagai voltan 

salir-sumber (Vds) dan kemudian dianalisiskan dengan kaedah ketumpatan spektra kuasa 

dan analisis fluktuasi nyahpola. Hingar arus elektrik yang bersifat putih, 1/f dan Brown 

ditunjukkan masing-masing pada Vds rendah, pertengahan dan tinggi. Hingar Brown 

akan dihilangkan oleh hingar 1/f untuk Vds yang lebih tinggi dari 40 V. Mekanisme 

perangkap berganda disepadukan dengan persamaan resapan-hayutan dan kemudian 

diitlakkan ke persamaan resapan-hayutan pecahan masa (PRHPM) untuk memodel 

angkutan anomali dan menghasilkan arusfoto elektrik semasa dalam regiorandom P3HT 

(RRa-P3HT) dan regioregular P3HT (RR-P3HT). PRHPM diselesaikan dengan kaedah 

perbezaan terhingga dan penyelesaian Poisson juga dilaksanakan untuk penghitungan 

medan elektrik. Penghasilan arus yang lebih tinggi pada medan elektrik tinggi adalah 

disebabkan oleh pembebasan dan perlonjatan pembawa cas dari pusat perangkap yang 

lebih mudah. Pergerakan pembawa cas pada pencahayaan tinggi adalah kurang terserak 

kerana cas melompat berhampiran pinggiran mobiliti dengan menghadapi perangkapan 

yang lebih kecil. Selain itu, dinamik angkutan pembawa cas dalam RR-P3HT adalah 

kurang terserak dan mempunyai mobiliti lebih tinggi dari RRa-P3HT kerana RR-P3HT 

mempunyai kadar perangkapan yang lebih rendah dan kurang tenaga bercelaru.      
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CHAPTER 1: INTRODUCTION 

A brief overview on the prospects and challenges faced in organic electronics is 

provided in this chapter together with the motivation and objectives of this work. 

Besides, the outline of the thesis is also presented at the end of this chapter. 

1.1 Prospects and challenges in organic electronics 

Since the first conducting polymer reported in 1970’s (Heeger et al., 2002), organic 

semiconductor and polymer materials have drawn tremendous research and also 

industry attentions due to their several key advantages, namely: (i) low temperature and 

relatively simple processing yield energy-efficient production and reduction in 

manufacturing cost, (ii) versatility of synthesis processes which facilitate the production 

of enormous choices of engineered organic semiconductors and polymer materials for 

enhancement in mobility, light conversion efficiency, temperature resistance and long 

term stability, (iii) well-matched on a wide range of flexible plastic substrates and 

transparent glasses and (iv) continuous improvement on large-area printing technique 

which allows high throughput production of organic semiconductor and polymer 

devices. 

Owing to the above mentioned advantages, organic semiconductors and polymers 

have become very promising choices of materials for realisation of flexible display and 

lighting technologies, large-area printable optoelectronic devices for energy harvesting, 

flexible and wearable electronic and optoelectronic devices and organic sensors, which 

are fabricated based on organic light-emitting diodes (Ho et al., 2015), organic solar 

cells (Milichko et al., 2016) and organic field-effect transistors (Sirringhaus, 2014). 

Anticipating the coming of new applications of OLEDs and OFETs is certainly 

tempting, and has been envisioned in Figure 1.1. Besides, there are also research 

interests branching into production of green materials and devices that possess human 
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and environmentally friendly features, including biodegradability and biocompatible 

(Irimia-Vladu, 2014). 

 

Figure 1.1: Green electronics: biodegradable and biocompatible materials and devices 

for sustainable future. (Irimia-Vladu, 2014) 

 

IDTechEx forecasted that investments in producing cheap and high performance 

organic semiconductor or polymer-based optoelectronic and electronic devices will be 

continuously growing and generating a market worth of US$70 billion in 2027 from the 

current market value of US$29 billion in 2017. As shown in Figure 1.2, the main 

contributors to the total market worth are due to OLEDs and conductive ink. In 

additions, a great potential market growth is expected for flexible electronics, logic and 

memory, and thin film sensors due to the advancement in research and development 

(Das, 2017). 
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Figure 1.2: Partial market forecast by component type in US$ billion predicted by 

IDTechEx. (Das, 2017) 

 

Organic and polymer-based solar cells are among the potential candidates for 

realisation of green optoelectronic devices as they can be printed on either a large-area 

flexible or a glass substrate for solar energy harvesting and electricity generation 

(Mazzio & Luscombe, 2015; Sekine et al., 2014). For instance, solar energy could be 

harvested by the OSCs when they are printed on the windows of a building or a small 

panel on a wearable device. Due to the huge investments and intense collaborations 

between governments, industrial partners and researchers, the power conversion 

efficiency of polymer based solar cells has significantly increased from roughly 2% in 

2010 to slightly beyond 8% in 2015 as depicted in Figure 1.3 (Benten et al., 2016). 

These solar cells are fabricated using conjugated polymers which act as the electron 

donor and acceptor and also enhance the flexibility and mechanical properties of the 

device as compared to that of the solar cell based on polymer-fullerene blend. 
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Figure 1.3: Progress on efficiency of polymer-polymer based solar cell. (Benten et al., 

2016) 

 

OFET plays a significant role as the building block for the development of low-cost, 

flexible and stretchable analogue and digital electronics circuits which could consist of 

logic gates, memory, sensors as well as microprocessors. The development of field-

effect transistors based on organic semiconductors and polymer materials has began in 

the 1980’s (Assadi et al., 1988; Ebisawa et al., 1983; Mori, 2008; Tsumura et al., 1986). 

Unfortunately, the reported mobility is relatively low, ranging from 10
-5

 to 10
-4

 cm
2
/Vs 

and restricted its use in high speed electronic applications. However, owing to enormous 

choices of materials and synthesis techniques, researchers were able to engineer 

materials for organic semiconductor and polymer FETs, leading to significant 

improvements in mobility over the last three decades. The magnitude of charge carrier 

mobility has raised in several orders of magnitude from 10
-5

 cm
2
/Vs to 40 cm

2
/Vs, as 

shown in Figure 1.4, for FETs fabricated using conjugated polymer, small-molecule 

organic semiconductor thin film to single crystalline organic semiconductor (Chen et 

al., 2012; Hasegawa & Takeya, 2009; Minemawari et al., 2011). 
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Figure 1.4: Progress in mobility improvement for p-type and n-type OFETs. (Dong et 

al., 2010) 

 

An example of the application of organic transistors is realised in the fabrication of 

8-bit, 40 instructions per second, flexible microprocessors as shown in Figure 1.5. The 

leftmost foil consists of two microprocessors and the rightmost foil consists of a 

microprocessor with two instruction foils. The size of one microprocessor is 2  1.7 cm
2
 

and it consists of 3381 pentacene transistors with width of 5 m and mobility of 0.15 

cm
2
/Vs. Besides the technological importance of OFET, it is also utilised to study the 

fundamental physics of transport dynamics of charge carrier, surface, interface and light 

emission properties of organic semiconductor and polymer materials (Shirota & 

Kageyama, 2007). 

Since charge carrier transport in organic semiconductors and polymer materials 

depend very much on the intermolecular hopping via -conjugates, thus fabrication of 

single crystal to achieve higher molecular order and reduction in -stacking distance 

have become a promising trend to improve mobility, defect reduction and noises of the 

material. As the material performance is gradually improving, a smart, biodegradable, 

biocompatible, environmental friendly and sustainable system which features with 

solar-powered, embedded microprocessors, memory, sensors and display units as 

illustrated in Figure 1.1 could be realised in the future. 
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Figure 1.5: 8-bit, 6 Hz plastic microprocessor made of 3381 pentacene transistors 

fabricated on a plastic foil. (Myny et al., 2012) 

 

1.2 Motivation and Objectives 

Disorderness in organic semiconductor and polymer causes low mobility and 

fluctuation in number of charge carriers which lead to low speed, low bandwidth, high 

noise floor and low signal-to-noise ratio. These unwanted effects eventually degrade the 

device performance and limit its applications. Disordered properties in organic 

semiconductor and polymer may also be reflected in current noise spectra as it has a 

tendency to deviate from the typical 1/f noise characteristics and led to anomalous 

charge transport with long-current tail. It has been known that the multi-scaling current 

noise and anomalous transport behaviour are inadequately described by the 

conventional 1/f type spectral interpretation and Fick's diffusion law, respectively. On 

the other hand, it has been demonstrated that fractal analysis is useful for analysing 

nonstationary signal and it is rather tempting to explore its application in studying 

scaling behaviour of current noise in OFET. Likewise, fractional calculus has found 

many applications in the modelling of complex phenomena with nonlocal effects, 

namely long memory and long range dependence. Almost every dynamical equation 
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known in the fields of physical science have been reformulated using fractional 

differential/integral operators. Thus, it is once again obvious to generalise the Fick’s 

diffusion equation to the fractional drift-diffusion equation to model the anomalous 

transport dynamics in disordered material. While the theoretical formulations are robust 

and intuitive, analytical solution to time-fractional drift-diffusion equation is not always 

possible in most general cases. One has ultimately resort to numerical solutions with 

efficient algorithms that could handle and optimise non-local differential operators. In 

this study, the focus will also be on the understanding of the origins of the scaling 

behaviours of current noise in OFETs, the causes of long-tail transient currents and the 

suitability of fractional drift-diffusion equation for modelling of charge carrier transport 

in disordered organic semiconductors. Therefore the objectives of this study are: 

1. to analyse the scaling behaviours of current noise in P3HT OFET using fractal noise 

theory. 

2. to relate the scaling behaviours of current noise to the charge carriers transport 

mechanisms through the spectra and scaling exponents. 

3. to study the anomalous charge carriers transport dynamics in disordered organic 

semiconductors at different fields and light intensities. 

4. to develop a phenomenological model which is capable of describing the normal and 

anomalous charge carrier transports based on fractional differential equation. 

1.3 Organisation of thesis 

Chapter 1 provides a brief overview and challenges on organic electronics that are 

relevant to the present work, especially in defining the motivation and the objectives of 

this study. Literature review is provided in Chapter 2. Brief description on the 

background theory is included here to lead the reader to the related concepts and tools 

required in this work. An overview about organic semiconductors and polymers, 

Univ
ers

ity
 of

 M
ala

ya



8 

operations and noises in the field-effect transistors, fractal modelling of signals, surfaces 

and transport dynamics are given in this chapter. Several normal and anomalous 

transport theories are presented in this chapter. Chapter 2 also introduces the fractional 

calculus theory, which serves as the mathematical framework for the derivation of 

anomalous transport model for disordered material. The fabrication and characterisation 

of OFET, low-frequency noise measurement and fractal analysis techniques are 

demonstrated in the first half of Chapter 3. The second part of this chapter continues 

with the derivation of the anomalous transport equation incorporated with multiple-

trapping using fractional calculus, the numerical methods required to solve the 

fractional drift-diffusion equation and ends with the simulation procedures. Chapter 4 

begins with a summary of the measurement conditions of P3HT OFET and then 

followed by the discussion on the scaling behaviours of current noise subjected to the 

presence of trap centres at different applied source-drain voltage. The simulation 

conditions for modelling the charge transport in RR-P3HT and RRa-P3HT materials are 

given in the beginning of Chapter 5 and then ended with the discussions on the transport 

dynamics of RRa-P3HT at various applied bias and RR-P3HT at different light intensity 

levels. Conclusions of this work, recommendations and suggestions for future work are 

reported in Chapter 6. 
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CHAPTER 2: LITERATURE REVIEW AND BACKGROUND THEORY 

Chapter 2 begins with a brief overview on the development of materials for plastic 

electronics, followed by the operation, performance limiting factors and charge 

transport theory of OFETs. Description on the fractal theory is given because it serves 

as the fundamental concept for current noise analysis. Several charge transport theories 

based on normal diffusion process are presented because they are commonly used to 

model charge transport in crystalline material. Besides, these models can be generalised 

to describe the anomalous charge transport in disordered materials using fractional 

calculus. Lastly, the details of the anomalous transport models are given in the last 

section of this chapter. 

2.1 Materials for organic electronics 

Organic semiconductors and polymers used for the fabrication of plastic electronics 

could be classified into conjugated polymers, hybrid organic-inorganic structures, 

molecular semiconductors, small molecule semiconductors and single crystal structure 

polymers. Transistors which are fabricated using the latter two structures have 

demonstrated high mobility values exceeding the mobility of amorphous silicon and is 

comparable to the mobility of polysilicon. 

Pentacene is one of the important polymers that has been extensively studied and 

used in the fabrication of OFET. This is simply due to the mobility of pentacene is 

matching up to the mobility of amorphous semiconductors. Günther and co-workers had 

demonstrated that the mobility of pentacene OFET could achieve a value up to 0.45 

cm
2
/Vs (Günther et al., 2015). They also found out that the mobility of the pentacene 

OFET would be reduced when the deposition rate is increased. This is because a larger 

amount of grain boundaries is induced in the channel region and hinders the movement 

of charge carriers leaving the device. Dong and co-workers (Dong et al., 2016) utilised a 
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very thin single crystal pentacene OFET as shown in Figure 2.1 to achieve the highest 

mobility of 5.7 cm
2
/Vs among pentacene OFETs. The thin layer of single crystal 

pentacene was grown from a seed crystal directly on a bare silicone dioxide substrate 

using the physical vapour transport method. Thus, pentacene molecules were aligned 

themselves orderly to form a monolayer crystal on the SiO2 substrate. This significantly 

enhanced the diffusion of charge carries in the single crystal structure and yielded very 

high mobility. 

 

(b) 

 
Figure 2.1: (a) Very thin pentacene single crystals deposited on a SiO2/Si substrate, (b) 

Copper grid is used as mask to complete fabrication of the OFETs. (Dong et al., 2016) 

 

Besides pentacene, poly(3-hexylthiophene) is also one of the extensively studied 

semiconducting conjugated polymers for electronic and optoelectronic applications due 

to its exceptional properties such as high mobility, solution-based processability and 

thermal properties (Bhatt et al., 2014; Dang et al., 2011). It has been demonstrated that 

the performance of P3HT polymer is greatly influenced by its backbone couplings 

which result in various types of regioisomers and the molecular weight. Regioregular 

P3HT is produced if the entire polymer consists of only the monomers with head-to-tail 

coupling configuration and less structural defects. On the other hand, regiorandom 

P3HT could have the various types of coupling configurations (Loewe et al., 1999; 

Terje & Reynolds, 2006) and Figure 2.2 shows some of the P3HT di-block copolymers. 
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Figure 2.2: Examples of P3HT di-block copolymers. (Bhatt et al., 2014) 

 

It had been shown that RR-P3HT has higher mobility than the mobility of RRa-

P3HT (Mauer et al., 2010). The high mobility achieved for P3HT is 0.4 cm
2
/Vs which 

was measured from the RR-P3HT FETs (Baeg et al., 2010). Although the mobility 

demonstrated so far for P3HT OFET has significantly improved, but it is still not 

suitable for high-speed device applications which are made from semiconductor 

materials. Recently, Nawaz and co-workers reported the highest mobility of 1.2 cm
2
/Vs 

which was measured from the defect free regioregular poly(3-hexylthiophene-2,5-diyl) 

OFET (Nawaz et al., 2016). Besides, mobility ranging from 2 to 8.2 cm
2
/Vs produced 

from PDVT-based OFET has been reported (Chen et al., 2012). The reduction in the 

distance between the -stacking has tremendously improved the mobility of the P3HT-

based OFET from 10
-5

 cm
2
/Vs to 8 cm

2
/Vs.  

Single crystal structure polymers have been extensively studied in recent years due to 

its high-order alignment of molecules and high mobility. Figure 2.3 shows a crystal 

structure and molecular arrangement of the single crystal Cn-BTBT derivatives which 

were produced by using the Friedel-Crafts acylation and Wolff-Kishner reduction 

techniques with BTBT serving as the starting material. The mobility of the BTBT 

derivatives was reported to be ranging from 0.16 to 2.75 cm
2
/Vs for 5  n  14 (Ebata et 
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al., 2007). Later on, Minemawari and co-workers successfully synthesised the single 

crystals of C8-BTBT organic semiconductor by using the combination of anti-solvent 

crystallisation and inkjet printing techniques. They then fabricated C8-BTBT TFTs 

which produced highest average mobility of 16.4 cm
2
/Vs due to the high crystallinity of 

the C8-BTBT structure (Minemawari et al., 2011). The mobility value of the C8-BTBT 

is also comparable and higher than the mobility of the amorphous semiconductor ( = 

0.5 to 1 cm
2
/Vs). It had been reported that single-crystal rubrene OFET fabricated using 

the crystal lamination technique was able to achieve a high mobility value up to 30 

cm
2
/Vs (Kalb et al., 2007) and other high performance single crystal materials for 

OFETs are also reported in (Hasegawa & Takeya, 2009). Hence, the developments of 

the anti-solvent crystallisation and inkjet printing techniques have realised the 

fabrication of high performance single crystal organic semiconductors and large-area, 

flexible optoelectronic and electronic devices. Besides, it had also been demonstrated 

that top-contact, bottom-gate TFTs fabricated using small-molecule C10-DNTT organic 

semiconductor achieved a high mobility value up to 8.5 cm
2
/Vs. C10-DNTT was 

deposited using the vacuum deposition technique for a thickness of 10 nm while 

maintaining the temperature of the substrate at 80 C. The mobility of the C10-DNTT 

TFTs would be reduced to 2.8 cm
2
/Vs if the deposition is carried out by solution 

shearing technique and further reduced to 1.3 cm
2
/Vs if the channel region is oriented 

perpendicular to the shearing direction (Hofmockel et al., 2013). 
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(a) 

 

 

(b) 

 

Figure 2.3: (a) Structure and (b) molecular arrangement of Cn-BTBT. (Ebata et al., 

2007) 

 

On top of the efforts spent on the development of p-type OFET, there are also some 

works dedicated to the development of n-type and ambipolar OFET as they are also 

important constituents of making complementary transistors, circuits, solar cells and 

light-emitting diodes (Choi et al., 2015; Zhao et al., 2013). Schmidt and co-workers had 

demonstrated that n-type OTFT based on halogenated PBI dyes deposited on SiO2 gate 

treated with n-OTS could achieve electron mobility greater than 0.5 cm
2
/Vs, which is 

comparable to the mobility of p-type OFETs and amorphous semiconductors FETs 

(Schmidt et al., 2009). This is because the PBI -stacking with very small interplanar 

distance results in highly dense and parallel arrangement of molecules that leads to the 

high electron mobility. The highest electron mobility of 6 cm
2
/Vs was demonstrated by 

the n-type OTFT made of N,N′-bis(cyclohexyl) naphthalene-1,4,5,8-bis(dicarboximide) 

and its structure is shown in Figure 2.4. The high mobility is achieved because the 

cyclohexyl end groups of the NDI helps in optimising the crystalline structure packing 

through the intermolecular stacking (Shukla et al., 2008). 

Univ
ers

ity
 of

 M
ala

ya



14 

  (a) 

 
  (b) 

 

Figure 2.4: (a) Molecular and (b) single structure of N,N′-bis(cyclohexyl)naphthalene 

diimide. (Shukla et al., 2008) 

 

2.2 Operation of field-effect transistor 

Figure 2.5 shows the top-contact and bottom-contact configurations of an OFET. 

Basically, a field-effect transistor consists of an organic or inorganic semiconducting 

active layer which is separated from the gate electrode by a layer of dielectric; source 

and drain electrodes are separated by a channel length L and in contact with the 

semiconducting layer. The source electrode is usually kept at zero bias and meant for 

charge carrier injection. When the gate voltage Vg (potential difference between the 

source and gate electrodes) is biased at a more positive (negative) level than that of the 

source voltage Vs, electrons (holes) are injected into the semiconducting layer within the 

channel region. The amount of accumulated charges is proportional to the gate voltage 

Vg and the capacitance per unit area Ci of the dielectric. Before these charge carriers are 

moving to the drain electrode and then giving rise to current, the deep trap centres at the 

interface between the semiconducting and dielectric layers in the channel region have to 

be filled by these charge carriers first. Thus, there is an extra voltage, namely the 
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threshold voltage Vth, required to compensate this effect and the effective gate voltage is 

given as Vg – Vth before current is resulted. 

 

Figure 2.5: (a) Top-contact and (b) bottom-contact configurations of OFET. (Shirota & 

Kageyama, 2007) 

 

When a small source-drain voltage Vds (potential difference between the source and 

the drain electrodes) is applied, charge carriers could flow through the channel region 

and be extracted from the drain electrode. The resulted source-drain current Ids is 

linearly proportional to the Vds and it is given by (Shirota & Kageyama, 2007), 

      i
ds g th ds

WC
I V V V

L


  ,     (2.1) 

where W is the width of the channel region. The characteristic of Ids in the linear region 

is depicted on the L.H.S. of the dashed-line in Figure 2.6. If the Vds is increased until Vds 

= Vg – Vth, the FET is now at its pinch-off condition where a small depletion region is 

formed next to the drain electrode. Since the electric field in the depletion region is 

relatively higher than the electric field at the pinch-off point, thus space-charge 
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saturation current is resulted when the charge carriers near the pinch-off point are swept 

across the depletion region into the drain electrode. If Vds is continually increased, the 

depletion region will be expanded and leads to the shortening of the channel length. 

However, the potential at the pinch-off point is still unchanged (Vg  Vth) and the same 

for the potential that drops between the pinch-off point and the source electrode. Thus, 

the resulted current saturates after the pinch-off condition is achieved. The Ids resulted 

from the transistor at saturation condition is given by  

      
2

2
i

ds g th

WC
I V V

L


  .     (2.2) 

The characteristic of Ids in the saturation region is depicted on the R.H.S. of the dashed-

line in Figure 2.6. The saturation current could be increased by increasing gate voltage. 

 

Figure 2.6: Current-voltage characteristic of an OFET for increasing Vg from (a) to (e). 

(Shirota & Kageyama, 2007) 

 

2.3 Performance limiting factors of transistors 

Low mobility and noise could be the most significant factors which could undermine 

the optimal performance of an OFET, thus a brief description on these factors and the 

methods used to characterise them are provided in this section. 
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2.3.1 Noises in organic field-effect transistor 

Current noise could be simply described as the random fluctuation in the current 

produced from a device such as field-effect transistor. High current noise will yield a 

low S/N ratio value which could set a limit on the performance of the device and hence 

restrict the application of the device as an electronic switch, amplifier or logic device. 

Commonly, the noise characteristics of a transistor could be studied through their LFN 

power spectra. This approach has been proven to be useful for probing the transport 

dynamics at microscopic level, bulk or interface defects and trap density information as 

demonstrated in several published works (Johanson et al., 2002; Jurchescu et al., 2008; 

Ke et al., 2008; Pénarier et al., 2002). This is because current-voltage measurement can 

only represent the macroscopic behaviour of the devices; it is not so useful for studying 

defects and trap centres related dynamics that are present in the devices. The gate 

voltage dependence of mobility obtained by using time-of-flight (TOF) measurement 

can be used as a device parameter to probe the information of the structural 

imperfection and impurities (Tanase et al., 2003). However, high precision TOF 

measurement requires an expensive and intricate setup thus hampers its affordability. 

Figure 2.7 shows the normalised noise power spectra of undoped amorphous silicon 

at different temperatures reported by Johanson and co-workers. They concluded that the 

slopes  of the noise power spectra at low-frequency depended very weakly on 

temperature with slope values only slightly rising from 1.15 to 1.3 when temperature 

was increased whereas the  at high frequency did not depend on temperature with 

value of 0.6 (Johanson et al., 2002). They also found the noise power spectra only 

depended very weakly on doping. Later on, they reported that the generation-

recombination noise is associated with shallow trap levels occurring in the device and 

1/f noise is believed to be caused by a large number of generation-recombination trap 
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centres that produces a cumulative generation-recombination noise (Kasap & Capper, 

2006). 

 

Figure 2.7: Normalised noise power spectra of undoped amorphous silicon at four 

temperature (i) 495 K, (ii) 483 K, 467 K and (iv) 454 K. (Johanson et al., 2002) 

 

Figure 2.8 shows the noise power spectra for various III-V semiconductor HBT with 

emitter areas of the same order of magnitude which were measured at the same base 

bias current (Pénarier et al., 2002). It could be noticed that the 1/f and Lorentzian-type 

noises are presented in the noise power spectra of AlGaAs/GaAs and GaInP/GaAs 

HBTs but Lorentzian-type noise is less apparent for the GaInP/GaAs HBTs. The noise 

power spectra for InP/InGaAs HBTs are only made up by the 1/f and white noises. 

White noise is frequency independent and given by 2eIb where Ib is the base current. 

The Lorentzian-type noise is induced by the generation-recombination of charge carrier 

from trap centres which are located near the emitted-base interface. The 1/f noise could 

be produced by the recombination of charge carries at the surface or space charge 

region. 
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Figure 2.8: Noise power spectra for various III-V semiconductor heterojunction bipolar 

transistors. (Pénarier et al., 2002) 

 

Figure 2.9 shows the low-frequency noise power spectra density for HMDS treated 

RR-P3HT OFET for various channel lengths. It could be seen that the noise level 

increases with the channel length of the OFET. Lorentzian-type of noise is observed at 

low frequency which is induced by generation and recombination of charge carries by a 

small amount of trap centres. The noise power spectra density is also found to deviate 

from the 1/f noise behaviour. The 1/f noise is believed to be caused by the fluctuation in 

the number of charge carriers which is induced by the generation and recombination or 

charge carriers at the grain boundaries (Ke et al., 2008). Since the 1/f noise is influenced 

by the grain boundaries, improvements on the quality of grain boundaries through the 

fabrication processes will reduced the 1/f noise. Univ
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Figure 2.9: Low-frequency noise power spectra density for HMDS treated RR-P3HT 

OFET. (Ke et al., 2008)  

 

In brief, the fluctuation in output current of a transistor could be due to the (i) 

random variation in the number of charge carriers leaving the device, (ii) random 

generation and recombination of charge carriers while drifting across the active region 

or interface of the device, (iii) variation in the mobility of charge carriers and (iv) 

material disorders. Besides, it is obvious that the noise power spectra could deviate from 

the 1/f noise behaviour and presents certain degree of power-law scaling behaviour as 

evidenced from the noise power spectra that are measured from the transistors made of 

amorphous silicon (amorphous structure), III-V semiconductor (crystalline structure) 

and P3HT (disordered structure) materials. 

It is reckoned that accurate characterisation of the low-frequency noise can serve as a 

simple but powerful transport dynamics, device fabrication and performance diagnosis 

tool. Most of the conventional noise analysis methods are developed based on the PSD 

method which is calculated from the Fourier transform and only works well with 

stationary noise. However, noise often contains nonstationary components and power-

law scaling behaviour as reported in (Brophy, 1968, 1969; Huo et al., 2003; Johanson et 
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al., 2002; Ke et al., 2008; Nelkin & Harrison, 1982; Pénarier et al., 2002). The notion of 

nonstationarity refers to time-dependence of the basic statistics such as mean and 

variance of the time series, and hence requires time evolutionary PSD (such as time-

frequency distribution). For example, the presence of trends or dynamical changes in the 

time series would render a simple PSD method to be inaccurate. A common practice 

would be to perform windowed Fourier transform or to perform the Fourier spectrum 

analysis on non-contagious segments of the time series and to take ensemble average of 

the power spectrum. This is done under presumption that the segments of the time series 

are approximately stationary. 

A more robust technique like the DFA, which can handle both stationary and 

nonstationary fractal time series, would provide better estimation of the scaling 

exponents present in the multiple regions of the times series. The utilisation of DFA on 

the analysis of multiscaling noise resulted from semiconductor circuits and devices has 

been demonstrated (da Silva Jr. et al., 2005; Shiau, 2011; Silva et al., 2009). Since the 

current noise of OFET presented some scaling property similar to the current noise of 

amorphous or III-V semiconductor transistors, it is believed that the DFA method would 

be a potential method which could be used to study the current noise of the OFET.  

2.3.2 Dispersive current and low mobility 

Mobility is one of the important figure-of-merits that determines the speed and 

bandwidth of electronic devices especially transistors. Accurate mobility measurement 

is crucial to provide the real performance of the device. Thus, many methods have been 

established for mobility measurement. Some of these methods are the TOF 

measurement (Tiwari & Greenham, 2009), CELIV (Juška et al., 2000; Pivrikas et al., 

2005) and SHG spectroscopy (Iwamoto et al., 2003; Manaka et al., 2005, 2006). 
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Figure 2.10(a) and Figure 2.10(b) show typical non-dispersive and dispersive 

transient photocurrents measured by the TOF measurement. The inset in Figure 2.10(b) 

is the double-log plot of the transient photocurrent. The non-dispersive transient current 

takes a step-like or nearly square pulse shape as shown in Figure 2.10(a). The step-like 

pulse shape demonstrates that most of the charge carriers exceed the device at nearly the 

same time. Thus, mobility of the non-dispersive transport is inversely proportional to 

the transit time ttr (the time when charge carriers are leaving the device as indicated by  

in Figure 2.10).  

 

Figure 2.10: (a) Non-dispersive and (b) dispersive transient photocurrents. (Shirota & 

Kageyama, 2007) 

 

The mean squared displacement of charge carriers in normal diffusion is also linearly 

proportional to time. Thus, the propagation of charge carriers could be modelled by the 

Fick’s diffusion law which is derived based on the law of conservation of mass (Fick, 

1855). Besides, several mathematical frameworks had been demonstrated in modelling 

the normal diffusion in which these models are generally classified into (i) probabilistic 

models based on the random walk (Einstein, 1905) and central limit theorem and (ii) 

stochastic models based on the Brownian motion (Chandrasekhar, 1943), master 

equation, Langevin equation and Fokker-Planck equation (Coffey et al., 2004; Fokker, 

1914; Risken & Frank, 1996).  
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In contrast, the dispersive transient current, as shown in Figure 2.10(b), possesses a 

long-tail shape after the initial spike and does not have a plateau region as compared to 

that of the normal transient current. The transient current could be described by an 

asymptotic power-law form. The presence of long-tail transient current implies the 

occurrence of pulse broadening of charge carriers when they are propagating across the 

device and yields low mobility which limits the performance of the device. The 

transport dynamic of charge carrier is associated to the hopping-trapping mechanism in 

localised states instead of charge transport in the conduction band as in the case of 

semiconductor materials. Hence, charge transport in disordered material deviates from 

the normal diffusion process which causes the MSD of charge carriers is proportional to 

the power-law in time.  

Figure 2.11 shows the schematic diagram of a SHG system that is used to analyse the 

channel formation and electric field distribution in the channel region of OFET (Manaka 

et al., 2005, 2006) and it was originally developed to study the polarisation of 

amphiphilic monolayer (Iwamoto et al., 2003). This method uses an infrared light which 

does not cause photo-carrier generation in the channel region and there is no charge 

injection from the contacts in the off-state condition, thus the channel formation is 

associated to the destruction of SHG signal which is induced by the second-order 

nonlinear polarisation of the organic material. The mobility is then indirectly deduced 

from the variation in the distribution of electric field (due to change in SHG signal) 

which is related to the space differential of the potential according to 

     ( )c

dV
J e n V

dx
 ,      (2.3)

where e is the electronic charge,  is the mobility, nc(V) is the charge carrier density that 

depends on the electric potential V. Besides, the properties of organic material and its 

device operation could be studied. 
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Figure 2.11: Schematic diagram for SHG measurement. (Manaka et al., 2006) 

 

Charge extraction by linearly increasing voltage method has become a popular 

method for mobility measurement of disordered organic semiconductors or polymer 

(Mozer et al., 2005; Pivrikas et al., 2005). The applied bias at one of the terminals is 

linearly increased and then the mobility is deduced from measured transient current 

using the following formulae, 

         

2

max

2

3 V

L

R t


 
  

 
,      (2.4) 

for low conductivity sample ( de trt ) and   

         
2

3

max

de

V

L

R t


  ,      (2.5) 

for high conductivity sample ( de trt ), where de is the dielectric relaxation time, ttr is 

the transit time, tmax is the peak current time, L is the device length,  is the mobility and 

RV is the voltage rise speed. The measurement can be carried out by using thinner 

device length as compared to that of the TOF measurement because there is no light 

absorption involved during the measurement thus electrode does not need to be 

transparent. This method provides direct mobility measurement and also suitable to be 

used to measure mobility of solar cells or LEDs at reverse biased condition. 
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Unfortunately, the mobility for hole and electron of an ambipolar device could not be 

distinguished and the charge species with lower mobility will determine the mobility of 

the device. This method also requires sufficient amount of charge carriers to be present 

in the device for measurable output current. This drawback could be improved by 

increasing the amount of charge carriers via doping or light illumination (it is called as 

Photo-CELIV (Mozer et al., 2005)). The mobility measurable range depends on the 

sample geometry and applied bias range. The extraction time and peak current levels are 

proportional to the applied bias ramp speed, which determine the lowest measurable 

mobility of the device down to range of 10
-5

–10
-6

 cm
2
/Vs. In contrast, the upper limit of 

the measurable mobility is determined by ratio of the peak current level and RC time 

constant. If the ratio is approaching unit, the output current is hard to be distinguished 

from the capacitive response. 

2.4 Charge transport theories for OFET 

Charge transport theory for disordered organic semiconductor or polymer materials 

is developed based on the charge transport theory for amorphous semiconductor. This 

means that conduction of charge carriers is due to the intermolecular hopping-trapping 

process between localised states that are subjected to the energy and positional disorders 

of the material. The hopping of a charge carrier from one place to another place in the 

device under the influence of an electric field is hypothetically represented by the line in 

the Figure 2.12(a). Along the hopping path, the charge carrier has undergone several 

hopping through different localised sites with different energy levels as depicted in 

Figure 2.12(b). By combining the hopping path in space and energy level, the hopping 

of charge transport in two-dimensional energy map is resulted and depicted in Figure 

2.12(c). The surface energy is rough due to the material disorder. 
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Figure 2.12: Schematic diagram showing the distribution of transport sites in (a) space, 

(b) energy and (c) two dimensional map of energy surface. (Tessler et al., 2009) 

 

The presence of energy disorder is induced by the variation in molecular interaction 

energies that results in a broad energy density of states. The positional disorder is 

caused by the structural defects such as kinks and twists which are generated in the 

polymer chains during fabrication processes. These defects induce variation in the 

conjugation lengths and interaction energies. In view of the broad and steep energy 

distribution caused by the energy and positional disorder, charge carriers are expected to 

be hopping between the localised states that are located near to the transport energy 

level or mobility edge. Both exponential and Gaussian distributions are commonly used 

in the derivation of the energy DOS in disordered material. 

The propagation of charge carrier could be described by a probability evolution 

equation, namely master equation, which is given by (Mott & Twose, 1961), 

     1 1i
ij i j ji j i ME i i

j

Pt
TR Pt Pt TR Pt Pt Pt

t
 


     
 

 ,    (2.6) 

where j  i, Pti(t) is the probability that site i at location Ri and energy Ei is occupied by 

a charge carrier or excitation at time t, 1  Ptj(t) is the probability that site j is empty, 

TRij is the transition rate from site i to site j and ME-i is the decay rate of the excitation 

at site i. The hopping rate from one site to another empty site could be represented 

Univ
ers

ity
 of

 M
ala

ya



27 

either by the Miller-Abrahams transition rate, Mott variable range hopping model, 

Marcus transition rate or Gaussian disorder model. 

Miller-Abraham transition rate is derived based on the phonon tunnelling mechanism 

in semiconductor materials (Miller & Abrahams, 1960). The hopping of charge carriers 

is assumed to be near the Fermi level, empty sites are randomly distributed in energy 

and no polaron effect. The MATR is given by (Stafström, 2010; Tessler et al., 2009), 

   
 2 exp  if 

exp
1                         if 

ij B j i

ij pho

j ia

R E k T E E
TR

E El


   
   
   

,   (2.7) 

where pho is the phonon vibration frequency or jump-escape rate, la is the localisation 

radius, E = Ej – Ei, Ei and Ej are the energy levels at site i and site j. 

Mott variable range hopping model is also derived based on the phonon tunnelling 

mechanism incorporated with polaron effect for disordered material (Mott & Twose, 

1961). The hopping of charge carriers could have happened through resonance and 

empty sites are randomly distributed in terms of energy and position. The transition rate 

is given by (Dunlap & Kenkre, 1993; Holstein, 1959), 

   
 

22

exp
2 2 2 8

MH

ij p

ij

p B B B B p

E EE
TR

E k T k T k T k TE

   
    
 
 

   (2.8) 

where Ep is the polaron binding energy, Ea = Ep/2 is the polaron activation energy and 

MH

ij  is the transfer matrix element given by 

     0

2
exp

ijMH MH

ij

a

R

l

 
    
 
 

,     (2.9) 
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and 
0

MH  is calculated from the crossing point between the reactant (initial state) and 

product (final state) energy curves. Equation (2.9) is resulted by assuming that the 

electronic coupling between the two energy states decays exponentially with the 

distance between the two localised sites. 

In the Marcus theory, the initial state, final state and ground state are represented by 

identical parabolic energy dispersive curve and shifted relative to each other based on 

the Gibbs free energy of the system. Transition of charge carrier occurs through the 

minimum energy at the intersecting of the potential surfaces of the initial and final 

states. The Marcus transition rate is given by (Likhtenshtein, 2012; Stafström, 2010), 

    
 

2
022

exp
44

MC

ij

ij

BB

G E
TR

E k TE k T









  
  
 
 

,  (2.10) 

where E = 4Ea is the reorganisation energy (energy needed for vertical charge carrier 

transfer without the ground state of the charge carrier is being refilled), G is the Gibbs 

free energy between the initial and final states, and the MC

ij  is the transfer matrix 

element given by 

       0 exp
ijMC MC

ij

a

R

l

 
    
 
 

,    (2.11) 

or Equation (2.11) can be rewritten in terms of the polaron activation energy Ea as 

   
 

2
02

exp
4 16

MC
aij

ij

a B a B

G E
TR

E k T E k T


  
  
 
 

.   (2.12) 

Gaussian disorder model had been proposed by Bässler to model charge transport in 

disordered organic photoconductor (Bässler, 1993) and later on this model had been 
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widely used in charge transport study of doped polymers and disordered materials 

(Borsenberger et al., 1993; Hartenstein et al., 1995). This model assumes that the 

energies of hopping sites for either electron or hole are subjected to a Gaussian 

distribution, thus the Gaussian DOS is given by, 

        
2

22

1
exp

22 EE

E
E



 
  

 
,   (2.13) 

where energy E is measured relative to the centre of the DOS. The relationship between 

the standard deviation E of the Gaussian DOS and the reduced energy disorder 

parameter is given by  

        ˆ E
E

Bk T


  ,     (2.14) 

and it is related to the dispersive parameter  in the time-fractional drift-diffusion 

equation (see Equation (3.8)) as ˆ1 .  The topological defects that occur in the 

polymer chain result in the space localisation of energy states and energies of 

neighbouring sites are uncorrelated. The motion of charge carriers is highly random and 

the hopping from site i to j is expressed by the MATR as given in Equation (2.7). Monte 

Carlo method is then used to simulate the charge carrier transport and the material 

disorder is implemented by (i) choosing the reduced energy disorder parameter from the 

Gaussian DOS in Equation (2.13), (ii) the distances between the intersites is randomly 

chosen from a uniform distribution and (iii) the intersite overlap or coupling parameter 

c = 2a/la is taken from a Gaussian distribution, a is lattice constant and c is fixed at 10 

as an experiment fitting parameter. The mobility is deduced from the average arrival 

time of charge carriers to exceed the device. It should be equal to the transit time of the 

plateau region of a non-dispersive current which is obtained from the TOF 
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measurement. The diffusion coefficient is calculated from the variance of the charge 

carrier packet or the MSD as  

     
 

2

2

x x
D

t


 .    (2.15) 

Besides the charge transport models presented in the preceding paragraphs, random 

walk and central limit theorem used in normal diffusion are respectively generalised to 

the continuous-time random walks and generalised central limit theorems for modelling 

of charge transport in disordered material (Metzler & Klafter, 2000a; Metzler et al., 

1999; Scher & Montroll, 1975). Several works have attempted to unify both normal and 

anomalous transports in a single theoretical framework by means of the generalisation 

of normal transport equation using fractional calculus approach. The anomalous 

transport models based on fractional calculus have been demonstrated in various forms 

such as the fractional diffusion equation (Balakrishnan, 1985; Bisquert, 2005; Hilfer, 

2000b; Schneider & Wyss, 1989; Wyss, 1986), fractional Fokker-Planck equation 

(Barkai, 2001; Barkai et al., 2000; Metzler et al., 1999), fractional drift-diffusion 

equations (Metzler & Klafter, 2004; Sibatov & Uchaikin, 2009), fractional Langevin 

equation (Bazzani et al., 2003; Lim & Muniandy, 2002; Lutz, 2001; Metzler & Klafter, 

2000b), fractional Brownian motion (Mandelbrot & Van Ness, 1968) and fractional 

Klein-Kramer equation (Gajda & Magdziarz, 2011). 

Barkai (2001) has developed a FFPE, which is compatible with the CTRW model 

that was  developed by Scher and Montroll (1975), to describe the anomalous behaviour 

of the transient current of amorphous material. Since the probability density of the FFPE 

developed by Barkai (2001) is normalised, thus the total charge carriers are conserved 

and equivalent to the total charge carriers that are generated during the photo-absorption 

process, particularly valid for the case in TOF measurement. Besides, Hilfer had 
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proposed a non-conserved version of the FDE based on the RL fractional derivative to 

study anomalous diffusion by replacing the integer order time derivative of the standard 

diffusion equation with a fractional order time derivative (Hilfer, 2000b). It was also 

suggested that the fractional time derivative with order ranges from 0 to 1 may be 

interpreted as infinitesimal generator of time evolution of free charge carriers in 

disordered media. Bisquert (2005) had proved that the non-conserved FDE reported in 

(Hilfer, 2000b) is capable of providing physical insight of the anomalous diffusion of 

free charge carriers in disordered material with dissipation process such as trapping or 

recombination mechanism. Sibatov and Uchaikin (2009) has also demonstrated various 

versions of conserved TFDDE, incorporated with multiple-trapping mechanism and 

recombination of charge carrier, to describe the anomalous diffusion of photo-generated 

charge carriers under the influence of external electrical force in amorphous 

semiconductors. 

2.5 Fractal theory 

The term 'fractal' is coined by Benoît Mandelbrot in 1975 based on the Latin word 

'frangere' which means broken (Mandelbrot, 1982). A fractal possesses a few 

characteristics such as (i) self similarity in which an object or geometric shape could be 

infinitely subdivided into small parts and each of them has a similar shape but reduced 

size of the original, (ii) scale-invariant which demonstrates the object has fine structure 

across different scales, (iii) a fractal dimension Df which can take a non-integer value 

and strictly greater than its topological dimension DT. Fractal dimension is considered 

as a measure of the space-filling capacity of the fractal object within the environment 

where it is contained, and (iv) the relationship between the number of rescaled copies Nf 

to cover the original object and the scaling factor rf takes a power law form in which the 

fractal dimension Df is being the scaling exponent. 
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One of the methods used to obtain the fractal dimension of an object is called Box 

counting method. A square box with size WB is used to cover the fractal object and the 

number of box NB with size WB is needed to cover the whole object of area A is 

recorded. The relationship between NB and WB is given by 

        
1

B
B D

B

N
W

 ,     (2.16) 

where DB is the box dimension (Minkowski-Bouligand dimension). The measurement 

process is repeated with different box sizes. The box dimension is then obtained from 

the slope of the linear least square line that passing through all the points in the log(NB) 

versus log(1/WB) plot. The box dimension is also defined as  

     
 0

log
lim

log 1B

B
B

W
B

N
D

W
 .    (2.17) 

Similarly, the Hausdorff dimension DH can be obtained using the similar procedures as 

that of the box counting method but the fractal object is covered with varying box sizes. 

Besides, PSD method (see subsection 3.3.1) and DFA (see subsection 3.3.2) could also 

be used to estimate the scaling exponent and fractal dimension of fractal objects. 

Fractal object can be classified, based on its similarity property, as (i) exact self-

similarity, (ii) quasi-self-similar and (iii) self-affinity. Exact self-similarity is defined as 

the set which has the same pattern at all scales. The Sierpinski triangle and von Koch 

curve are the examples of exact self-similarity geometry as depicted in Figure 2.13 and 

Figure 2.14, respectively. A Sierpinski triangle could be generated by first taking the 

midpoints of each side of a triangle (represented by the black triangle in stage 0 as 

shown in Figure 2.13) to form the vertices of a new triangle (represented by the white 

triangle in stage 1) which is then removed from the original triangle. Three black similar 
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shape triangles are formed in the original triangle but each of them has only one-fourth 

the original area and half the original dimension. The same procedure is repeated at 

each of the black triangle in stage 1, thus nine smaller black triangles are resulted in 

stage 2. Each of them has only one-fourth the original area and half the original 

dimension of the triangle in stage 1. After n iteration, the number of triangles produced 

is 3n

fN  , the dimension is  1 2
n
 and the area is  1 4

n
. The fractal dimension of the 

Sierpinski triangle is calculated as  log3 log 1/ 2 1.585fD    . 

 

Figure 2.13: Sierpinski triangle. (Fractal organisation) 

 

Von Koch curve, which was developed by Niels Fabian Helge von Koch, can be 

formed by first removing and replacing the 1/3 middle part of a linear line (initiator, E0) 

with the two other sides of an equilateral triangle to arrive at stage E1, as shown in 

Figure 2.14. After that, this rule is generated for infinite subsequent levels to ultimately 

form the von Koch curve (Falconer, 1990). The length of the von Koch curve becomes 

infinite due to an additional 1/3 length is added onto the curve at every stage. The 

fractal dimension of the von Koch curve can be calculated as, log4 log3 1.26fD   . 

Besides, three von Koch curves can be connected together to form a von Koch 

snowflake. 
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Figure 2.14: (a) von Koch curve at different level of magnification and (b) von Koch 

snowflake. (Falconer, 1990) 

 

Quasi self-similarity is defined as the set which has arbitrarily small parts of the set 

that can be magnified and altered smoothly to coincide with a large part of the set. 

Examples of quasi self-similarity objects are the star-like branching structure of 

polystyrene and Julia set as shown in Figure 2.15 and Figure 2.16, respectively. As 

shown in Figure 2.15, the structure of a group of polymer branches takes on a star-

shaped structure and the structure of a smaller branch partially bears a resemblance to 

the whole structure. Star-shaped macro-initiators are first synthesised from the 

polystyrene initiators using the convergence technique and the star-shaped macro-

initiators will then be converged to form the radially linked star-block-linear 

Polystyrene polymer as showed in Figure 2.15 (Knauss & Huang, 2003). 
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Figure 2.15: Radially linked star-block-linear polystyrene polymers. (Knauss & Huang, 

2003) 

 

Julia set, named after Gaston Maurice Julia, which can be described by a quadratic 

function,   2f z z c  , for a constant c and z is the position in space. For a constant 

value of c = 1, the Julia set has a fractal dimension of 1.27 and the pattern is depicted 

in Figure 2.16 (McMullen, 1998). 

 

Figure 2.16: Julia set. (McMullen, 1998)  

 

Self-affinity is defined as the set which has pattern possesses same statistical 

properties at all scales. Romanesco broccoli, fern leaf, morphology of Physarum 

Polycephalum plasmodium, coastline of Britain and Mandelbrot set are some examples 
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of self-affinity sets. Figure 2.17 shows a Romanesco broccoli and its florets which are 

disengaged from the original structure at various scales but yet they still resemble the 

whole structure of the broccoli and demonstrate the present of self-similar property. The 

arrangements of florets follow certain spiral path where the path begins from the top 

centre of the broccoli. The spiral path is defined by the Fibonacci spiral (a series of arcs 

whose radius values are given by the Fibonacci sequence) and the number of spiral 

paths in a direction is defined by the successive Fibonacci numbers. Besides, the 

Fibonacci number could also be used to model other fractal nature objects such as the 

number of branches of tree, arrangement of leafs around tree stem or stump, pattern on 

the shell of Chambered nautilus and ratio between human fingers and forearm. 

 

Figure 2.17: Romanesco broccoli at different magnification levels. (King, 2016) 

 

Figure 2.18 shows a spleenwort fern which is decomposed into four magnification 

levels and all the rescaled copies (branches) of the fern look alike the whole structure of 

the fern. This shows that fern is one of the natural fractal sets that possesses self-

similarity property. 
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Figure 2.18: Fern leaf decomposed to four magnification levels. 

 

Michael Barnsley, a British mathematician, had developed the mathematical 

formulation and computer algorithm based on the iterated function system, to replicate 

the pattern of fern (Barnsley, 1993). In the IFS method, the procedures to generate the 

fern are (i) generating a starting point randomly, (ii) choosing one out of the four sets of 

coordinate transformations based on its assigned probability, (iii) multiplying the 

chosen starting point in step (i) by the transformation matrix and then sum with the 

translation matrix, (iv) the resulting point is then fed as the starting point to generate the 

next new point and (v) repeating steps (ii) to (iv) for many iterations. Since the whole 

Barnsley Fern, named after Michael Barnsley, generation process is based on the 

randomly chosen numbers, thus the Barnsley Fern is considered as a chaotic IFS fractal 

sets. The computer generated Barnsley Fern is shown in Figure 2.19 and its fractal 

dimension is estimated to be around 1.45. 
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Figure 2.19: Barnsley fern generated by IFS method. (Barnsley, 1993) 

 

Figure 2.20 shows the environment dependence of growth morphology of Physarum 

polycephalum Plasmodium taken after eight hours of cultivation at different 

concentrations of KCl repellent, oat flake extraction attractant and agar substrate 

(Takamatsu et al., 2009). The morphology of the plasmodia shows a highly dense round 

shape network structure with nuclear thin tabular structure. In contrast, the morphology 

of the plasmodia demonstrated dendrite structure with thick tabular tubes. The tabular 

structures take the shape of meandering tube and straight tube respectively for low and 

high concentrations of agar substrate. This is because the attractant KCl softens the cell 

membrane of the plasmodium and promotes isotropic growth with thin tabular structure. 

The opposite situation will happen when the plasmodium is grown in the repellent 

condition that hardens the cell membrane. The fractal dimensions of these morphology 

patterns are increasing from the repulsive to attraction growth conditions. Nevertheless, 

all of these morphologies demonstrated self-affine fractal growth patterns. 
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Figure 2.20: The environment dependence of growth morphology of Physarum 

Polycephalum plasmodium. (Takamatsu et al., 2009) 

 

The Mandelbrot set, as proposed by Benoit B. Mandelbrot, is a set of points z0 

randomly generated in the complex plane via the recursive formula, 
2

1 0n nz z z   , in 

which z0 takes value of complex numbers. The generated points could eventually end up 

in one of these scenarios, (i) bounded inside the Mandelbrot set and never able to escape 

from it, (ii) generated close to the boundary of the Mandelbrot set and have the finite 

chance to escape from the Mandelbrot set via the boundary and (iii) generated outside 

the boundary of the Mandelbrot set and begin to move towards infinity to form the 

whiskers line structures, as shown in Figure 2.21. Univ
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Figure 2.21: Mandelbrot set. (Falconer, 1990)  

 

As shown in Figure 2.22, the coastline of the Great Britain demonstrated high 

irregularity and winding characteristics in which its total length of coastline varies with 

the method employed to measure it. The length of the coastline can be measured by first 

defining the window length WL of a measuring device and then moving the window 

along the coastline by sequentially placing the new window on the end point of the 

previous step. Thus, the total length of the coastline L(WL) is simply calculated as  

      L L LL W N W ,    (2.18) 

and it is related to the fractal dimension through  

      
f

L
L D

L

W
L W

W
 ,    (2.19) 

where NL is the number of steps covering whole coastline which is given by 

        
1

f
L D

L

N
W

 ,     (2.20) 
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and Df is the fractal dimension (Mandelbrot, 1982). As the measurement is repeated 

with gradually decreasing window length, the actual length of the coastline is expected 

to be obtained since the coastline is better mapped at very fine scale. However, the 

measurement shows that the measured length L(WL) is likely to increase infinitely. This 

imposes a difficulty to determine the actual length of the coastline as its length varies 

with the window length used in the measurement. This phenomenon was named as 

Richardson effect in 1961 after Lewis Fry Richardson. The fractal dimension calculated 

for the coastline of Britain is Df = 1.25. 

 

Figure 2.22: Coastline of Great Britain. (“Geometric Fractal - Chapter 2 Fractal 

Dimension of Coastlines”) 

 

The idea of self-similarity is also extended to mathematical function namely the 

Weierstrass function, proposed by Karl Weierstrass in 1875, which is a continuous 

function but not differentiable at any point on the function. The Weierstrass function is 

given by, (Mandelbrot, 1982),  

       
2

0

1
exp 2

1

k k

W

k

f t w ib t
w









 ,   (2.21) 

where real number b  1, w = b
H
, the Hölder exponent H has the range of 0  H  1 and 

the fractal dimension Df = 2  H for 1  Df  2. The Weierstrass function fW(t) generated 

for various H values (H = 0.1, 0.3, 0.5 and 0.7) are depicted in Figure 2.23. It can be 
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noted that when H value decreases or fractal dimension Df increases the curve becomes 

more irregular, space filling and has infinite length. 

 

Figure 2.23: Weierstrass function at (a) H = 0.1, (b) H = 0.3, (c) H = 0.5, and (d) H = 

0.7. (Canus et al., 2003) 

 

Brownian motion was first discovered by the Scottish botanist, Robert Brown in 

1827, through the observation of random movements of pollen particles suspended in 

the water in which the random moments were caused by the scattering between the 

particles and water molecules (Brown, 1866). The movement of the Brownian particle 

presented some fractal properties. However, Brown did not provide the mathematical 

description of the observed phenomenon. In 1905, Albert Einstein proposed that 

Brownian motion could be modelled by using the molecular kinetic theory of heat 

(Einstein, 1905). Albert Einstein deduced that the average distance travelled by a 

particle was proportional to the square root of travelling time, x t . In 1909, a 

French physicist, Jean Baptiste Perrin performed an experiment to observe and record 

the displacement of particles suspended in liquid medium through a microscope and a 

camera lucida. The positions and trajectories of the microscopic movement of particles 
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were recorded at regular time intervals and respectively represented by the dots and 

lines as shown in Figure 2.24. The recorded trajectories demonstrated the stochastic 

nature of the movements of particles due to the collisions with water molecules. Perrin 

concluded that the mean squared distance travelled by particles changes linearly with 

time and reaffirmed the molecular kinetic theory of heat developed by Albert Einstein 

(Bigg, 2008; Perrin et al., 1910). He also pointed out that the irregular movements of the 

particles coincided with non-differentiable continuous functions.  

 

Figure 2.24: Displacement of three particles recorded in the experiment conducted by 

Perrin. (Perrin et al., 1910) 

 

Almost two decades later, an American Mathematician, Norbert Wiener, had 

rigorously developed the mathematical framework to describe the trajectory followed by 

a single particle or Brownian motion based on the continuous non-differentiable 

function theory (Wiener, 1923). Brownian motion is a random process B(t) which has 

the following properties (Mandelbrot, 1982): 

(i) With probability of 1, B(0) = 0, B(t) is continuous, Gaussian distributed and 

nonstationary. 

(ii) B(t) possesses self-affinity which gives    0.5 , 0B t s B st s   and it will be 

regenerating itself at every time instant which leads to short memory effect.  
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(iii) The spectral density of B(t) has power law behaviour defined as 

   1 2 2H
S f f f

    , where 2H + 1 = 2, thus H = 0.5. 

(iv) The increments,    dB B t t B t   , of B(t) are white Gaussian noise with 

zero mean,   0,E B t     variance depends linearly with time, 

   Var B t t B t t    , independent, uncorrelated and stationary process. 

(v) B(t) is the integral of dB(t). 

Figure 2.25 demonstrates a simulated Brownian motion at different scales and it is 

considered as one of the natural self-affinity fractals. The total length of the Brownian 

motion increases as the step interval is reduced and becomes infinite when the step 

interval is approaching zero. Thus, the fractal dimensions of the Brownian motions 

depicted in Figure 2.25 take values between one and two, 1  Df  2. 

 

Figure 2.25: Brownian motion simulated at various step intervals. (Turner et al., 1998) 

 

Brownian motion could also be represented in a graph as shown in Figure 2.26. It is 

obvious that the self-similar property is presented as the curves at different level of 

magnifications resemble the original curve. 
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Figure 2.26: Brownian function, H = 0.5, at various magnification levels. (Canus et al., 

2003) 

 

Besides, fractal set is sometimes classified as monofractal or multifractal. 

Monofractal is the fractal set which possesses only one fractal dimension. For example, 

Koch snowflake, Cantor set, coastline of Britain, Brownian motion and fractional 

Brownian motion. Multifractal is fractal set which possesses a series of fractal 

dimensions, for instances, multifractal Brownian motion. 

2.5.1 Fractal modelling of signals and surfaces 

Fractional Brownian motion is another example of a mathematical function that 

presents self-affinity pattern as depicted in Figure 2.27. The reduction in H value 

decreases the jaggedness and also smoothens the curve. Brownian motion with H = 0.5 

is a special case of the FBM. 
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Figure 2.27: Fractional Brownian motion at various H values. (Canus et al., 2003) 

 

Fractional Brownian motion is derived by Benoit B. Mandelbrot using the RL 

fractional integral as (Mandelbrot, 1982; Mandelbrot & Van Ness, 1968): 

    
 

 
1/2

0

1

1/ 2

t H
t s dB s

H




   ,   (2.22) 

where dB(u) is the white noise. Equation (2.22) will exit if s  t, H should be positive 

value and achieve stationary increments, thus Equation (2.22) is rewritten using the 

Weyl’s integral as, 

     
 

 
1/21

1/ 2

t H

BB t t s dB s
H




 
   .  (2.23) 

Since t could attain values from both the directions of the coordinate, thus it will be 

more practical to write the Equation (2.23) in its symmetric form which is defined as,  

      
 

     
0 1/2 1/2 1/2

0

1
.

1/ 2

tH H H

HB t t s s dB s t s dB s
H

  



      
           (2.24) 
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Equation (2.24) is called the FBM and its properties are given below: 

(i) With probability of 1, BH(0) = 0, BH(t) is continuous, random, Gaussian 

distributed and nonstationary process. 

(ii) BH(t) possesses self-affinity which gives     , 0H

H HB t s B st s   and it will be 

regenerating itself at every time instant which leads to short memory effect.  

(iii) The spectral density of BH(t) has power law behaviour defined as 

   1 2
PS

H
S f f f

  
  , where PS = 2H + 1 is the power spectra scaling 

exponent. White noise, 1/f noise and Brownian noise are respectively 

represented by PS = 0, PS = 1 and PS = 2. 

(iv) The increments,    H H HdB B t t B t   , of the FBM BH(t) are called the 

fractional Gaussian noise with zero mean,   0HE B t    , covariance depends 

linearly with time,     2H

H HVar B t t B t t    , independent, uncorrelated 

and stationary process. 

(v) BH(t) is the integral of dBH(t). 

(vi) The fractal dimension of the FBM is given by 2fD H  . 

Since the power spectra scaling exponents PS could be used to characterise the 

fractal or scaling behaviour of a time series (either a signal or noise), thus the PSD 

method and FBM could be used for time series analysis or modelling. Nevertheless, 

FBM could also be used for surface and terrain analysis and modelling. Figure 2.28 

shows typical examples of fractal surfaces which are generated using the fractional 

Brownian motion in two dimensional spaces for different values of H ranging from 0.1 

to 0.7. At small H value, the surface forms many small clusters and spread randomly 

throughout the whole area. Oppositely, the surface forms few large clusters and contain 
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in a small area at large H value. Thus, the surface is changing from a small size 

segregated cluster to a large concentrated cluster as H value increases. 

 

Figure 2.28: Fractional Brownian surfaces for (a) H = 0.1, (b) H = 0.3, (c) H = 0.5 and 

(d) H = 0.7. (Canus et al., 2003) 

 

Kong and co-workers utilised the generalised Cauchy process, namely semi-

variogram, to analyse the fractal and long-range correlation properties of surface 

morphologies of organic nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium thin 

film (Kong et al., 2014, 2017). The correlation function of the semi-variogram is 

defined as 

        
 

2

2

2

1 2
vg

vg

vg vg vg H

vg vg

C h
h s H




 


 ,   (2.25) 

where H is the Hurst exponent related to the fractal dimension Df through Df = 3  H 

and vg is correlation exponent related to the long-range dependence through 1  vg /2. 

The surface roughness is described by the Hurst exponent or fractal dimension and the 

correlation between two points on the surface is described by the long-range 
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dependence. Conductivity of charge carriers is found to be increasing with the fractal 

dimension and further enhancement of conductivity is due to the existence of correlated 

surface morphologies. 

Diffusion-limited aggregation was originally developed by Witten and Sander in 

which the correlations between positions of particles are considered to be scale-

invariant objects. These objects are described by the density-density correlation function 

which is defined as 

        ' ' ~ DLAP r r P r r


 ,   (2.26) 

where the scaling exponent DLA is related to the Hausdorff dimension via DH = DT – A, 

DT is the topological dimension and A is area (Witten & Sander, 1983). Diffusion-

limited aggregation could be used to model surface growth, dust deposition, dendrites 

growth and also polymer branch (Wang et al., 2011). 

Wool and Long (1993) has used the gradient percolation theory (Sapoval et al., 1985) 

to study the random diffusion of atoms passing through the polymer interfaces where 

the diffusion front is obeying fractal properties as shown in Figure 2.29. The roughness 

and width of the diffusion front increase with the diffusion length. 

 

Figure 2.29: Gradient percolation of atoms with diffusion length LD = 10240 on a 

512512 lattice. (Wool & Long, 1993) 
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The diffusion front is characterised by the mass-to-radius relation as 

     fD

D Dm r ,     (2.27) 

where mD is the mass, rD is the radius and Df is the fractal dimension. The width of the 

diffusion front f is related to the diffusion length LD as  

     
 f

f DL
 

  ,     (2.28) 

and the scaling exponent of DLA (f) is related to the percolation exponent  and 

fractal dimension as  

          1
1

f fD


 


 


.    (2.29) 

2.5.2 Fractal dynamics 

Stanley formerly published a work describing how fractal concepts could be applied 

to polymer and anomalous transport in porous media (Stanley, 1984). An example is the 

relation between the fractal dimension of backbone of polymer with electric current 

flow and random walker. In crystalline media, the Fick’s diffusion law defines that the 

r.m.s. displacement x
2


0.5
 of a random walker is linearly proportional to the number of 

steps NW made by the walker which is given by  

     
0.5

2

Wx N .     (2.30) 

If a random walker is moving in a porous media, it will only be able to travel a smaller 

distance away from its origin as compared to the random walker that is moving in a 

crystalline material. Thus, Equation (2.30) is redefined as   

Univ
ers

ity
 of

 M
ala

ya



51 

      
0.5

2 WD

Wx N ,    (2.31) 

where DW  1 (Stanley, 1984). Equation (2.31) is equivalent to the mass-to-radius 

relation given by Equation (2.27). Let’s say that the random walk represents the free 

flight polymer chain and the walker represents the charge carrier propagating along the 

backbone of the chain which is characterised by the fractal dimension, thus 1/DW is 

equivalent to the fractal dimension Df of the random walker (polymer chain), number of 

walker steps NW is equivalent to the mass of the polymer chain mD and r.m.s. 

displacement is equivalent to the length of the random walk. Since the electrical current 

density is proportional to the velocity of charge carriers, thus electrical current density 

could be calculated by taking the time rate of change of MSD of the random walkers 

multiplied by the electronic charge and density of charge carriers. 

Diffusion is a Markov process which could be considered as a continuous time 

stochastic process with continuous paths if the changes in time and space are infinitely 

small. Thus, diffusion process could be represented by Brownian motion or Wiener 

process through a stochastic differential equation that takes the form of (Øksendal, 

2003), 

       , ,t t t tdX t X t X dW    ,   (2.32) 

where dWt is white noise (time derivative of Wiener process or Brownian motion), 

(t,Xt) is a drift coefficient and (t,Xt) is a diffusion coefficient. White noise is a 

stochastic process with Gaussian distribution and zero mean. Since Wt is a continuous 

but non-differential function, Equation (2.32) could not be solved directly and usually is 

written in its integral form as  

             
0

0 0

, ,
t t

t t s s s
t t

X X s X ds s X dW          , (2.33) 
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and the solution Xt of Equation (2.33) gives the diffusion process. 

2.6 Normal diffusion theory for charge transport in ordered material 

This subsection provides the introduction to several charge transport theories which 

are formulated for normal diffusion process adopted in crystalline media. These 

transport models could be generalised using the fractional calculus to model the 

anomalous diffusion in disordered material. Thus, the concept of fractional calculus is 

given before the description of the anomalous transport theories.  

(a) Diffusion equation based on Fick's law and law of conservation of mass 

In 1885, Adolf Fick published his work entitled "Uber Diffusion" in Annalen der 

Physik which described diffusion of particles in liquid medium confined by membranes 

is due to the existence of concentration gradient. The existence of concentration 

gradient causes particles to begin moving away from the high concentration region to 

their surrounding regions with lower concentration till the equilibrium of concentration 

is achieved.  

According to Fick’s first law (Fick, 1855), the flow current density of particles is 

proportional to the concentration gradient which is written as  

      
 ,

,
c x t

j x t D
x


 


,    (2.34) 

where D is the diffusion coefficient with dimension of L
2
/T, c(x,t) is the concentration of 

particle, x is the position in one-dimensional Cartesian-coordinate space and t is time of 

particle at x. Based on the law of conservation of mass, the continuity equation is 

defined as  

       
   , ,c x t j x t

t x

 
 

 
.    (2.35) 
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By substituting Equation (2.34) in Equation (2.35), Fick’s second law, which is also 

commonly known as the diffusion equation, is resulted as 

     
   2

2

, ,c x t c x t
D

t x

 


 
.   (2.36) 

The diffusion equation in Equation (2.36) describes the temporal evolution of the 

concentration. 

(b) Drift-diffusion equation based on Fick's law  

If the particle is subjected to an external force F(x), the continuity equation is 

rewritten as      

         
 ,

, ,
c x t

j x t x c x t D
x




 


,   (2.37) 

where v(x) = F(x) is the velocity of the particle and  is the mobility. Thus, the drift-

diffusion equation is resulted when Equation (2.37) is substituted into Equation (2.35) 

and it is written as  

        
   

   
2

2

, ,
,

c x t c x t
D F x c x t

t x x


  
      

.  (2.38) 

(c) Diffusion equation based on random walk theory 

In 1905, Albert Einstein (1905) derived the diffusion equation for random walker (or 

Brownian molecular motion) based on the postulates of molecular kinetic theory of heat 

in which particles move independently subjected to the influence of thermal energy. 

Let’s say a particle is located at the origin and it has an equal probability of jumping an 

equal length x to the left or to the right empty site at each short time interval t. The 
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state probability P(x,t) of the particle will be at position x = ix and at time t = kt is 

given by  

        
1 1

, , ,
2 2

P x t P x x t t P x x t t      .  (2.39) 

By expanding the two probability terms, in the R.H.S. of Equation (2.39), using the 

Taylor-series expansion, one gets 

  

   
   

       

 
   

2 22 2

2 2

2
3 3

, ,
, ,

, ,

2 2

,
,

P x t P x t
P x x t t P x t x t

x t

x P x t t P x t

x t

P x t
x t O x O t

x t

 
     

 

   
 

 


        
    

  (2.40) 

and 

  

   
   

       

 
   

2 22 2

2 2

2
3 3

, ,
, ,

, ,

2 2

,
.

P x t P x t
P x x t t P x t x t

x t

x P x t t P x t

x t

P x t
x t O x O t

x t

 
      

 

   
 

 


        
    

             (2.41) 

Retain only the leading order terms in x and t, and then substitute Equation (2.40) 

and Equation (2.41) into Equation (2.39), thus one gets the diffusion equation for one-

dimensional space as 

     
 

 2
,

,
P x t

D P x t
t


 


,   (2.42) 
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where  
2

2D x t    is the diffusion coefficient and the probability P(x,t) of finding 

the particle at x and time t is related to the concentration of particle c(x,t) which is given 

by  

           , ,c x t NP x t ,    (2.43) 

and N is the total number of particles in the system. By solving Equation (2.42), the 

propagation of particle away from the origin of coordinates in one-dimensional space is 

given by   

          
 

2 4

1 2

1
,

4

x DtP x t e
Dt

 .   (2.44) 

The mean squared displacement of the particle is then given by  

       2 2 3, 2x t x P x t d x Dt



  .   (2.45) 

Thus, Equation (2.45) demonstrated that the MSD of the normal diffusion of random 

walker is linearly proportional to time or  2x t t . 

(d) Advection-diffusion equation based on random walk theory 

If a particle is located at the origin and subjected to an external force, the probability 

of the particle to jump a length x to the left empty site is not the same as the 

probability of the particle to jump the same length to the right empty site at each short 

time interval t. Let’s define that r1 and r2 are the transition probability of flow to right 

and left, respectively. The state probability P(x,t) of the particle will be at position x = 

ix and at time t = kt is given by  

        2 1, , ,P x t r P x x t t r P x x t t      .  (2.46) 
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By expanding the two probability terms, in the R.H.S. of Equation (2.46), using the 

Taylor-series expansion, one gets 

  

   
   

       

 
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1 1 1 1

2 22 2

1 1

2 2

2
3 3

1
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2 2

,
,

P x t P x t
r P x x t t r P x t r x r t

x t

r x P x t r t P x t

x t

P x t
r x t O x O t

x t

 
      

 

   
 

 


         
    

 (2.47) 

and 

  

   
   

       

 
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2 2 2 2
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2 2

2 2

2
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.

P x t P x t
r P x x t t r P x t r x r t

x t

r x P x t r t P x t

x t

P x t
r x t O x O t

x t

 
       

 

   
 

 


         
    

 (2.48) 

Retain only the leading order terms in x and t, and then substitute Equation (2.47) 

and Equation (2.48) into Equation (2.46), thus one gets the advection-diffusion equation 

for one-dimensional space as 

    
     2

2

, , ,P x t P x t P x t
D

t x x


  
 

  
,              (2.49) 

where  
2

2D x t    is the diffusion coefficient and  1 2r r x t      is advection 

coefficient. The second term on the R.H.S. of Equation (2.49) represents the advection 

flow of particles due to the external force. Equation (2.49) is considered as the 

Smoluchowski equation (Smoluchowski, 2010) and similar to drift-diffusion equation 

(see Equation (2.38)) when the probability P(x,t) is replaced by the concentration of the 

charge particle as given by Equation (2.43). The resulted partial differential equation 
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represents the time evolution of the concentration profile of particles simultaneously 

due to diffusion and advection processes. 

Let’s say the external force is given by F(x) = dV(x)/dx, which is induced by an 

applied potential V(x), Equation (2.49) can be rewritten as, (Coffey et al., 2004; Fokker, 

1914; Risken & Frank, 1996), 

       
     

 
2

2

, ,
,

LE

P x t P x t F x
D P x t

t x x m

   
   

    
,  (2.50) 

where m is the mass of particle, LE is the friction constant and the diffusion coefficient 

D can be given by the Einstein-Stokes-Smoluchowski relation as D = kBT/mLE 

(Einstein, 1905; Hughes, 1995; Kubo, 1966). Equation (2.50) is a specialised form of 

the Fokker-Planck equation which is known as the Smoluchowski equation (Mazo, 

2009). 

(e) Diffusion equation based on Langevin equation 

When a particle is suspended in a liquid and subjected to an external force, it will 

experience frictional drag acting against its motion and random collisions with the 

thermal agitated liquid molecules as it is moving from one place to another place. The 

motion of the particle can be described by a stochastic differential equation for 

Brownian motion, namely Langevin equation, given by (Kubo, 1966; Zwanzig, 2001), 

       
2

2 LE LE

d x
m F x m t

dt
     ,   (2.51) 

where m is the mass of the particle,  is the viscosity of the fluid, LE LE m   is the 

friction constant, 6LE a LEr    is the friction coefficient, ra is the radius of the particle, 

 is the velocity, F(x) is the external force and mLE is the frictional force. The random 
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fluctuating force due to the collisions of particle with liquid molecules LE(t) is 

Gaussian distributed and has the following properties as,  

       0LE t  ,     (2.52) 

and 

         ' 2 'LE LE B LEt t k T t t     .   (2.53) 

Equation (2.53) relates the strength of the fluctuating force to the magnitude of the 

friction or dissipation of the liquid which is characterised by LE . This relation is known 

as the fluctuation-dissipation theorem (Agarwal, 1972; Kubo, 1966; Zwanzig, 2001). 

Besides, the friction coefficient is also related to the diffusion of the particle via the 

Einstein-Stokes-Smoluchowski relation as D = kBT/LE. Thus, the frictional coefficient 

is also referred as inverse mobility. 

2.7 Fractional calculus theory 

Fractional calculus has been developed since 1695, almost as old as the integer 

calculus, when Gottfried von Leibnitz replied to Guillaume de l'Hôpital after he had 

been asked for the meaning of d
n
y/dx

n
 if n = 1/2 and wrote, "Thus, it follows that d

1/2
x 

will be equal to :x dx x ,...from which one day useful consequences will be drawn." 

(Sokolov et al., 2002). Unlike integer order differential equation which has been widely 

accepted and used in describing many physical phenomena, but fractional differential 

equation has received very little attention till few decades ago. The foundation of 

fractional calculus has been contributed by many great scientist (such as Pierre-Simon 

Laplace, Bernhard Riemann, Joseph Liouville, Michele Caputo and many more) before 

it could be readily used in describing physical phenomena. The applications of 
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fractional calculus could be found in science, engineering (Hilfer, 2000a) and financial 

industry (Scalas et al., 2000). 

The fractional derivative is defined as the derivative of arbitrary real order  which is 

denoted as  

      ( )a tD f t
,    (2.54) 

and the fractional integral is defined as the integral of arbitrary real order  which is 

denoted as 

      ( )a tD f t
.    (2.55) 

The negative '' symbol prior to  in Equation (2.55) indicates that Equation (2.55) is a 

fractional integral operator. The subscripts a and t represent the two end limits of the 

operation of the fractional derivative or integration (Podlubny, 1998; Sokolov et al., 

2002).  

The n-th derivative is the same as an inverse operation of n-fold integration, n is an 

integer, which is given as  

       
 

 
1 1 1

1

1
... ( ) ... ( )

1 !

nt s s t n

n n
a a a a

f s ds ds t s f s ds
n

 
 

    .  (2.56) 

Equation (2.56) is satisfied at t = a and the derivatives of the R.H.S. and L.H.S. of the 

equation are the same. By replacing the integer order n with an arbitrary order  and the 

factorial with a Gamma function for real argument, Equation (2.56) is then generalised 

to the fractional integral of order  as  

   
 

 
11

( ) ( ) ,      .
t

a t
a

D f t t s f s ds t a




   
    (2.57) 
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Thus, fractional derivative of order  is defined via the fractional integration and 

successive integer differentiation which is mathematically written as 

     
( ) ( )

n
n

a t a tn

d
D f t D f t

dt

 
.   (2.58) 

or 

       
 

 
11

( ) ( )
n

t n

a t n a

d
D f t t s f s ds

n dt





 
 
   .  (2.59) 

The number of differentiations is n = [] + 1 where [] is the whole part of . Base on 

this definition, the lower limit becomes zero. Equation (2.57) is rewritten as 

    
 

 
1

0
0

1
( ) ( )

t
RL

tD f t t s f s ds




  
  ,  (2.60) 

where n  1    n  Z
+

 and called the RL fractional integral of order . Similarly, 

Equation (2.58) or Equation (2.59) is called the RL fractional derivative of order  and 

written as 

       
 

 
1

0
0

1
( ) ( )

n
t nRL

t n

d
D f t t s f s ds

n dt





 
 
   ,  (2.61) 

where n  1    n  Z
+

. The RL fractional derivative could be viewed as an integral-

differentiation equation. 

It should be noted that the RL fractional derivative of a constant is not zero but given 

as  

     
 0

1
1

1

RL

tD t 




 

,    (2.62) 
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because (1  ) diverges if the fractional derivative order  takes a non integer value. 

Besides, the Laplace transform of the RL fractional integral results in a simple form as 

          0

RL

tL D f t u L f t   .  (2.63) 

If the lower limit of Equation (2.57) becomes , the Weyl fractional derivative of 

an exponential function yields 

     
W t t

tD e e

  .     (2.64) 

The Fourier transform of the Weyl fractional derivative or integration produces the 

similar properties of Fourier transform of integer order derivative or integration, 

respectively. For instance, 

          
2

( )W

tF D f t i f    .   (2.65) 

Caputo fractional derivative is a differentiation-integral equation which is given by, 

    
 

 
1 ( )

0
0

1
( ) ( )

t nC n

tD f t t s f s ds
n





 
 
   ,  (2.66) 

where n  1    n  Z
+
. Unlike the RL fractional derivative, the Caputo fractional 

derivative of a constant is zero. 

2.8 Theories of anomalous charge transport 

It has been demonstrated that there are many transport processes in physical systems 

deviate from the normal diffusion process as their MSD values depend non-linearly on 

time. One typical example is the present of long tail transient photocurrent curves of 

disordered organic semiconductor measured by the TOF measurement. The following 

section will describe how the TOF measurement can be used as an important technique 
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to study the anomalous transport of charge carriers in disordered organic semiconductor. 

The related charge transport theories for anomalous diffusion are then described in the 

subsequent sub-sections. 

2.8.1 Time-of-flight measurement 

Time-of-flight measurement is one of the important techniques which can be used to 

study the mobility of charge carriers, probing on the information about the defects 

located within the surface, interface or bulk material. A basic setup of a TOF 

measurement is depicted in Figure 2.30. 

 

Figure 2.30: A basic setup for a TOF measurement. (Scher & Montroll, 1975) 

 

A light pulse, which is generated by a laser source, is shone on a DUT (or TOF cell) 

while it is biased. The time taken by a packet of charge carriers to drift across the DUT 

is measured and then used to determine the charge carrier transit time ttr. The measured 

transient current is given by  

        
0

1
,

L

I t j x t dx
L

  ,    (2.67)  

where j(x,t) is the conduction current density and L is the length or thickness of the TOF 

cell. 
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The measured transient current is affected by a few factors such as (i) RC time 

constant rc, (ii) loss of charge carriers due to deep energy level trapping, (iii) spatial 

variation of mobility due to material inhomogeneity of the DUT, (iv) spatial variation in 

electric field due to trapped charge carriers in small signal case, (v) spatial variation in 

electric field due to space charge effect in large signal case and (vi) spreading of the 

pulse width of charge carrier packet which is comparable to the length of the DUT. 

Factors (i) and (ii) impose the practical limit of the TOF measurement and the 

condition, RC time constant rc  transit time ttr  deep trapping lifetime D, must be 

embraced in order to obtain a reliable and accurate transient current measurement. 

Factors (iii) to (v) induce spatial variation on the drift velocity which ultimately yields 

fluctuation in current level that could lead to current noise. Nevertheless, the variation 

in drift velocity does not necessarily smear out the step-like current level at the transit 

time. Factor (vi) could be connected to various random processes, such as multiple-

trapping, hoping and dispersion of charge carriers due to material inhomogeneity, which 

could result in the broadening of pulse width of charge carrier packet, reduction in 

current level and smearing of the step-like transit edge as shown in Figure 2.31. 

 

Figure 2.31: Step-like and dispersive current pulses obtained from TOF measurement. 

The step-like transient current indicates a packet of charge carriers is drifting with a 

constant velocity until it leaves the DUT at transit time. 
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Consequently, the transit time of a dispersive current pulse is determined from the 

intersecting point of the asymptotic currents at the short and long times of the double-

log plot of normalised current-time curve as shown in Figure 2.32. Transient current is 

represented by an asymptotic power-law function which is given by 

          
 

 

1

1

,

,

tr

tr

t t t
I t

t t t





 

 

 
 



,    (2.68) 

where  represents the dispersive or disorder parameter of the material, 0    1. 

Besides, Scher & Montroll (1975) have developed an anomalous transport model based 

on the CTRW theory in order to describe the long-tail behaviour of the transient current. 

If the measurement is performed on ordered, crystalline or semiconductor material, 

the mobility is calculated as, (Scher & Montroll, 1975),  

     
2

tr a

L

t V
  ,                (2.69) 

where  is the mobility of charge carrier, Va is the applied bias and ttr is the transit time. 

On the other hand, if the measurement is performed on disordered, amorphous or 

organic semiconductor material, the mobility is calculated as  

     
2

tr a

L

t V




 

  
 

.                (2.70) Univ
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Figure 2.32: A double-log plot of transient photocurrent associated with a packet of 

charge carriers moving in an electric field, with a hopping-time distribution function 

(t) ~ t
-1-

, 0 <  < 1, towards an absorbing barrier at the sample surface. (Scher & 

Montroll, 1975) 

 

2.8.2 Continuous-time random walk theory 

Scher and Montroll (1975) derived a continuous-time random walk model which 

could explain the important features of the transient photocurrent measured by TOF 

measurement in amorphous materials. The CTRW model assumes that (i) the transport 

dynamic is a series of charge carrier (random walker) hopping from one localised site to 

another empty site, (ii) each hopping event happens independently, (iii) the hopping 

time, time interval between two successive hopping events, is an independent and 

identically distributed (iid) random variable which is characterised by a hopping-time 

distribution function that takes the form of a board power-law distribution, and (iv) the 

hopping sites are distributed randomly and thus the structural and energy disorder of the 

material are incorporated into the board power-law distribution. 

CTRW process is described by the generalised master equation for PDF of just 

arriving at position x at time t from x’ and t’ (Metzler & Klafter, 2000c, 2004), 

           
0

, ' ', ' ', ' 'x t dx x t x x t t dt x t    
 


     ,  (2.71) 
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where n(x',t') is the PDF of having just arrived at position x' at time t' and (x)(t) 

represents the initial condition of random walker. The PDF of being in x at time t, 

W(x,t), is given by 

         
0

, , ' '
t

W x t x t t t dt   ,   (2.72) 

which the particle has previously arrived on the site x at time t’ and then does not jump 

away to other site since time t'. The second term in Equation (2.72) is the cumulative 

jump probability within (0,t) which is given as 

        
0

1 ' '
t

t w t dt    ,   (2.73) 

where the second term in Equation (2.73) is the probability of no jump event within the 

time interval (0, t). By taking the Laplace transform on time and the Fourier transform 

on position, the PDF W(x,t) in the Fourier-Laplace space is written as  

     
   

 
01

,
1 ,

w u W k
W k u

u k u





,   (2.74) 

where W0(k) is the Fourier transform of the initial condition W0(x). 

The decoupled jump PDF could be written as  

          ,x t w t x  ,    (2.75) 

where w(t) is the waiting time PDF which is defined as  

        ,w t x t dx



  ,    (2.76) 

and (x) is the jump length PDF which is defined as 
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        
0

,x x t dt 


  .    (2.77) 

Different types of CTRW processes can be obtained via the characteristic waiting 

time c and jump length variance 2
 which are written respectively as 

         
0

c tw t dt


  ,    (2.78) 

         2 2x x dx



   .    (2.79) 

If both the characteristic waiting time and jump length variance are finite, Brownian 

motion could be obtained at the long-time limit. 

(a) Fractional diffusion equation based on CTRW with long rests 

For anomalous diffusion with long rests, one can set the jump length variance to be 

finite but the characteristic waiting time is diverging, which reflects the existence of 

deep trap centres. In this particular case, the waiting time PDF takes the form of an 

asymptotic long-tail distribution and the jump length PDF takes a Gaussian distribution 

as given by Equation (2.80) and Equation (2.82), respectively. The waiting time PDF 

takes the form of 

        
1

~w t A t


 


,    (2.80) 

for 0    1, t  ,  = c  and the characteristic waiting time diverges, c  . The 

Laplace transform of w(t) in Equation (2.80) is given by 

           ~1w u u


 .     (2.81) 
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The jump length PDF takes the form of  

        
2

22

1
exp

44

x
x



 
  

 
,   (2.82) 

where 22
 = 

2
 is the jump length variance and its Fourier transform is given by  

            2 2 4~1 +Ok k k  .    (2.83) 

By using Equation (2.81) and Equation (2.83) in Equation (2.74), thus, the PDF 

W(x,t) in Fourier-Laplace space is written as 

          
 0

2
,

1

W k u
W k u

K u k







,     (2.84) 

where K = 2
/2

 is the anomalous diffusion coefficient with unit of cm
2
s

-
. By using 

the following identities,  

            0 tL D f t u f u   ,    (2.85) 

            2 2 2F d f x dx k f k  ,   (2.86) 

and obtaining the inverse Laplace and Fourier transforms of W(x,t), one obtains the 

integral form of the FDE (Barkai et al., 2000; Metzler & Klafter, 2000c) as 

                 
2

0 0 2
, ,RL

tW x t W x D K W x t
x





 
 


.  (2.87) 

Differentiate W(x,t) with respect to time, W(x,t)/t, the differential form of the FDE 

(Wyss, 1986) is resulted as 
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        
2

1

0 0 2
, ,RL

tW x t W x D K W x t
t x





 
    

,  (2.88) 

where the operator  1

0 0

RL RL

t tD t D      is defined by the RL fractional derivative as 

         
 

 

 
1

0 10

, '1
, '

'

t
RL

t

f x t
D f x t dt

t t t











  

 .   (2.89) 

The Riemann-Liouville fractional derivative of an arbitrary power t
p
 is defined as 

         
 

 0

1

1

RL p p

t

p
D t t

p

 



 

  

.   (2.90) 

Thus, with Equation (2.90), the integral form of the FDE can be rewritten in its 

fractional derivative form as  

      
 

 
2

0 02
, ,

1

RL

t

t
D W x t K W x t W x

x








 

  
.  (2.91) 

The initial value W0(x) seems to decay in the manner of inverse power-law form and 

slower than that of the standard diffusion. Besides, if   1, the FDE reduces to the 

standard Fick's diffusion equation. The MSD is obtained through  

          
 2

2

20

,
lim
k

d W k u
x t

dk
 ,     (2.92) 

and then performing the inverse Laplace transform on Equation (2.84). Thus, the mean 

square displacement of anomalous diffusion with power-law waiting time distribution is 

resulted as  

        
 

2 2

1

K
x t t



 

.    (2.93) 
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(b) Fractional diffusion equation based on CTRW with Lévy flights 

For diffusion with Lévy flights (long jumps), one can set the jump length variance to 

be diverging but the characteristic waiting time is finite. This diffusion has Markovian 

behaviour due to the finiteness of the characteristic waiting time. In this case, the 

waiting time PDF takes a Poisson distribution and the jump length PDF takes a Lévy 

distribution with the asymptotic behaviour as given by Equation (2.94) and Equation 

(2.96), respectively. The waiting time PDF is defined as (Metzler & Klafter, 2000c), 

      
 

1

exp
w t

t 
 ,    (2.94) 

where  = c and its Laplace transform is given by 

          2~1w u u   .   (2.95) 

The jump length PDF takes the asymptotic form of  

          1

s

ss

A
x

x









,    (2.96) 

for 1  s  2, x   and its Fourier transform is given by  

          
 

1
1

exp

ss

ss

k k
k




 


  .  (2.97) 

By using Equation (2.95) and Equation (2.96) in Equation (2.74), thus, the PDF 

W(x,t) in Fourier-Laplace space is written as 

          
1

,
ss

W k u
u K k





,     (2.98) 
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where s sK
    is the anomalous diffusion coefficient with unit of sα -1cm s . By 

performing inverse Fourier transform and then Laplace transform, the space-fractional 

diffusion equation due to Lévy flight is obtained as 

      ,s sW

x

W
K D W x t

t

 







,   (2.99) 

where sW

xD


  is the Weyl fractional differential operator in one dimension which is same 

as the Riesz fractional differential operator. Equation (2.99) could be solved using the 

Fox function. Figure 2.33 shows the comparison of the trajectories of a Brownian 

motion and Lévy flight with fractal dimension Df = 1.5 for about 7000 steps. The Lévy 

flight can be viewed as a local motion sporadically interrupted by a long break on all 

length scales which leads to the formation of clustering of trajectory before a long jump 

occurs. The trajectory of Lévy flight could also be characterised by the fractal 

dimension. 

 

Figure 2.33: Comparison between the trajectories of Brownian motion (left) and Lévy 

flight at Df = 1.5 (right) for about 7000 steps. (Metzler & Klafter, 2000c) 
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(c) Fractional diffusion equation based on CTRW with long rests and Lévy flights 

When both the characteristic waiting time and jump length variance become infinite, 

the propagation of a random walker is characterised through broad PDFs and the space-

time fractional diffusion equation would be resulted as (Metzler & Klafter, 2000c), 

          1

0 ,s sRL W

t x

W
D K D W x t

t

 











,            (2.100) 

where s sK
  

   , sW

xD


  is the RL time-fractional differential operator and sW

xD


  is 

the Weyl space-fractional differential operator. The pseudo MSD is defined as  

           22 s

L
x t t

  ,             (2.101) 

which indicates that particle spreads finitely in a space in a given time interval.  

(d) Fractional Langevin equation 

Fractional Langevin equation is generalised from the LE to take into account for the 

damping effect due to an additional frictional force, which depends on the memory of 

the particle acceleration, to the Stokes drag force. The additional frictional force is 

called the Basset force (Basset, 1888; Mainardi & Pironi, 1996) and is given by 

      
0 0

9 1 1

2 FLE FLE FLE

F m t B t 
   

 
   

  

,           (2.102) 

where (t) is velocity of particle, m is the mass of particle, 

    
2

0 ,     ,
pa

FLE FLE

f

r 
 

 
                 (2.103) 

 is the viscosity of the liquid, ra is the radius of the particle, p is the density of 

particle, f is the density of liquid and B(t) is given as  
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         
 

 
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B t ds ds

t s t s

 




 
 

  .           (2.104) 

By using the RL fractional derivative of order ½, Equation (2.104) can be rewritten 

as 

         
3/2

1/2

0
2

RL

t

t
B t D t t 
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

   .            (2.105) 

Thus, the FLE is resulted as  

   
 
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 

,           (2.106) 

where R(t) is the random fluctuating force and the damping effect of the frictional force 

is given by the new friction coefficient as 

       
3/2
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1

2
FLE FLE

e

t
t t  

 





 
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 
,            (2.107) 

with an additional fractional noise associated to the term t
3/2

 in addition to the white 

noise in the standard LE. The mobility of the particle is written as  

         FLE e

em m

 
   ,             (2.108)  

where 
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6 ,      ,
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m
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              (2.109) 

and 1 FLE LE m   is the friction coefficient per unit mass. 
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The FLE in Equation (2.106) is a special case of the generalised Langevin equation 

reported in (Kubo 1966), in which the GLE is written as   

    
 

   
 

0

t

GLE

d t R t
t s t ds

dt m


     ,           (2.110) 

where the memory effect of the particle acceleration is incorporated. 

(e) Fractional diffusion equation based on fractional calculus 

The fractional diffusion equation could be generalised from the standard diffusion 

equation (Section 2.6(a)) using the fractional calculus as reported in several studies 

(Balakrishnan, 1985; Schneider & Wyss, 1989; Wyss, 1986). It is done by replacing the 

first order time derivative of the standard diffusion equation with the -order fractional 

time integral. The FDE is given by 

     
   1 2

1 2

, ,P x t P x t
D

t x









 


 
,            (2.111) 

where 
1-

/t
1-

 is the fractional integral operator and 0    1. 

(f) Fractional Fokker-Planck equation based on fractional calculus 

Under the influence of external force, for instance electric field, the transport of 

charge carriers in disordered material is now subjected to the external force and 

described by the FFPE. The fractional Fokker-Planck equation uses the probability, 

instead of using the charge carrier density as in the FDDE, to represent the position x of 

charge carrier at time t. The probability current jFP(x,t) density incorporated with an 

external electric field F(x,t) is given by (Sokolov et al., 2002), 

     
 

   
,

, , ,FP

p x t
j x t D F x t p x t

x



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
,           (2.112) 
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where P(x,t) is the probability of finding charge carrier at x and time t, D is the diffusion 

coefficient and  is the mobility. Substitute Equation (2.112) in the continuity equation, 

one gets the FPE as  

   
   

   
2

2

, ,
, ,

p x t p x t
D F x t p x t

t x x


  
      

.           (2.113) 

By using the RL fractional derivative, one can generalise the FPE equation to the 

FKKE as 

  
 
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          

,         (2.114) 

where D and  are the fractional diffusion coefficient and fractional mobility, 

respectively. The ratio of D/ = kBT gives the generalised Einstein's relationship.    
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CHAPTER 3: RESEARCH METHODOLOGY 

Organic field-effect transistors based on P3HT are fabricated in order to obtain the 

transient current noise for scaling analysis. Hence, this chapter provides some details on 

the fabrication and electrical characterisations of OFET. The fractal analysis methods 

which will be used to analyse the transient current noise are documented herein. 

Anomalous charge transport theory incorporated with multiple-trapping which is 

deduced using the fractional calculus and the numerical methods used to solve the 

transport equations are demonstrated in this chapter. Lastly, transient current calculation 

and simulation procedures of charge transport are presented. 

3.1 Fabrication of organic field-effect transistor and current-voltage 

measurement 

Top-contact and bottom-gate OFETs were fabricated in order to study charge carrier 

transport dynamics through their behaviour of noise. A 100 nm thick SiO2 layer is 

grown on top of an n-type silicon substrate to serve as the dielectric layer. The active 

layer of the device is made of P3HT. P3HT is dissolved in chloroform and is spin-

coated on top of the dielectric layer. The structure of the P3HT OFET is depicted in 

Figure 3.1. P3HT is chosen in this study simply due to its high charge carrier mobility 

and commercial availability. The P3HT active layer is thermally treated at 120 C for 

ten minutes. The source and drain electrodes are deposited with a 50 nm thick gold on 

top of the P3HT active layer. The channel width (arranged in interdigitated design) and 

length are 11.2 mm and 40 µm, respectively.  
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Figure 3.1: Top-contact and bottom-gate P3HT OFET structure and setup of current-

voltage measurement. 

 

Two Keithley SMUs are connected to the source, drain and gate contacts of the 

OFET as shown in Figure 3.1. The drain currents are then measured for source-drain 

voltage ranging from 0 to 60 V with respect to different gate voltages in order to 

obtain the current-voltage characteristic of the OFET. Low noise coaxial cable is used to 

minimise the triboelectric noise which is induced from the relative movement between 

the dielectric and shielding layers of the cable. The measurement setup is placed in a 

grounded metal box so that it is shielded from the electromagnetic interference radiating 

from open space. Since the device is biased and measured using SMUs, thus power line 

noise is superimposed on the noise of the SMUs which yields a sub-nanoampere noise 

floor. Nevertheless, the current measured from the devices are ranging from 

microamperes to sub-miliamperes, hence the noise floor of SMUs is insignificant as 

compared to the currents resulted from devices. Activation energy of P3HT organic 

semiconductor with low mobility (~10
-4

 cm
2
/Vs) is around 300 meV (Craciun, 2011), 

thus thermal noise generation at room temperature could be negligible during the 

measurement.      
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3.2 Low-frequency noise measurement 

Low-frequency noise measurement is a common technique used to characterise the 

noise behaviour and reliability of a device. This is because this technique is sensitive 

enough to probe the microscopic properties, such as the surface defects, interface 

defects, bulk defects and generation-recombination centres, of a device. Figure 3.2 

shows a setup for the low-frequency noise measurement which consists of a current 

amplifier, a dynamic signal analyser or a power spectrum analyser, a digital multimeter, 

an oscilloscope and one or two source-measurement unit(s). The current amplifier is 

used to amplify the current noise resulted from the DUT and then feeds it into the DSA. 

Power spectral density of the current noise is computed in the DSA and then recorded in 

a personal computer. The current noise is also measured with a DMM and monitored by 

an OSK during the measurement. For very low current level measurement, a pre-

amplifier is connected between the DUT and the current amplifier to sense and pre-

amplify the low current which is resulted from the DUT before it is fed into the current 

amplifier. 

 

Figure 3.2: System for measuring low-frequency noise. (Kasap & Capper, 2006) 
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All instruments used in the setup must have very low-noise level so that the current 

resulted from the DUT could be easily measured. Proper grounding and shielding of the 

setup are required to reduce the noise generated from the power-line and 

electromagnetic waves coming from surrounding environment that might interfere with 

the DUT. Besides, the impedances between the DUT, probes, connectors, cables and 

measurement instruments must be matched to avoid any lost or degradation of the 

measured current noise. In view of all the stringent requirements needed for the setup, 

thus the low-frequency noise measurement is expensive to be implemented and 

experienced personnel is required in order to obtain an accurate measurement. 

When charge carriers are moving in a small device, they will encounter smaller 

amount of trap centres as compared to that of large device. The trapping and releasing 

of charge carrier from a trap centre causes random fluctuation of charge carriers which 

eventually results a current that behaves like a random telegraph signal. A RTS 

produces a single generation-recombination spectrum (represented by the dash lines in 

Figure 3.3) and also serves as the fundamental component of the 1/f noise. In contrast, 

charge carriers are encountering larger amount of trap centres while they are moving in 

a large device. Thus, charge carriers are experiencing a greater amount of trapping and 

releasing events, eventually, a 1/f current noise is resulted as shown in Figure 3.3. 

 

Figure 3.3: 1/f noise spectra due to cumulative sum of generation-recombination noise. 

(Kasap & Capper, 2006) 
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An alternative method is proposed in this work to analyse the current noise using its 

time domain which requires much simple and cheaper measurement setup. Two 

Keithley 236 SMUs, represented by the battery symbol as shown in Figure 3.4, are used 

to bias the device and measure the current resulted from the device, where one unit of 

the SMUs is used to establish the source-drain voltage Vds and measure the drain current 

Ids while another unit of SMU is used to supply the gate voltage Vg and measure the gate 

current Ig. In order to obtain the temporal evolution of (transient) currents, devices are 

repetitively biased using the sweep function of the SMU while the resulted currents are 

measured during a fast integration time of 416 s. The measured currents in time 

domain are then stored in the buffer (maximum of 1000 readings) of the SMUs before 

they are recorded in a desktop computer for subsequent noise analysis using the 

conventional PSD method and the more robust DFA approach. Power spectral density 

of the transient current is numerically computed by taking the squared modulus of fast-

Fourier transform of the transient current. This can be effortlessly done with the FFT 

subroutine available in the MATLAB program. 

 

Figure 3.4: Current noise analysis based on PSD method and DFA. 
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3.3 Fractal analysis of current noise 

This section provides the description of the fractal analysis method, namely power 

spectral density method and detrended fluctuation analysis, used to analyse the current 

noises of OFET measured at various source-drain voltages.  

3.3.1 Power spectral density method 

The low frequency noise analysis using the power spectra density method is 

implemented by computing the squared modulus of Fourier transformed of the 

measured transient current noise. If a time series exhibits power-law scaling the PSD 

would take the following form 

       
1

~
PS

S f
f
 ,      (3.1) 

where S(f) is the power spectral density and f is the frequency.  

The slope of the log-log plot of the PSD yields the scaling exponent PS. One can 

link the scaling exponent PS to the Hurst exponent H if the underlying transport 

mechanism is described by the FBM. The scaling exponent PS gives useful information 

of the transport dynamics of the charge carriers hopping in the organic or polymer 

material of OFETs and also information on trap centres and defects. The presence of 

trap centres and defects could induce generation-recombination noise and 1/f noise in 

the devices that sets a maximum limit on the performance of the devices (Jurchescu et 

al., 2008; Ke et al., 2006, 2008; Xu et al., 2010). The occurrence of 1/f noise in a device 

could be observed at the low frequency region of the current noise PSD in which the 

PSD is inversely proportional to the frequency. In addition, it has been demonstrated in 

(Brophy, 1968, 1969; Huo et al., 2003; Nelkin & Harrison, 1982) that the nonstationary 

effect is naturally present in the current noise despite of the influence of the finite 
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sampling size effect of the time series. Huo et al. (2003) has also shown that the power 

spectrum of the current noise follows a fractal power-law scaling or 1/f type behaviour 

in which the scaling exponent of the power spectrum varies in the range of 1 < PS < 2. 

This is associated to the density of trap centres and the probability distribution of release 

rates that varies slowly with frequency (Nelkin & Harrison, 1982). The relationship of 

the scaling exponent PS and the Hurst exponent is given as PS = 2H + 1.The current 

noise can also be classified as uncorrelated white noise when PS = 0 (H = 0.5), 1/f 

noise (H = 0) and Brownian noise when PS = 2 (H = 0.5). 

3.3.2 Detrended fluctuation analysis 

The detrended fluctuation analysis is a statistical method that has been developed to 

study the existence of short-rage or long-range correlation of time series. This method 

was first used to study DNA sequences (Peng et al., 1994) and progressively found its 

applications in other time series analysis such as that of the electrocardiogram analysis 

(Huikuri et al., 2009; Meyer & Stiedl, 2003; Peng et al., 1995), electroencephalogram 

analysis (Ignaccolo et al., 2010; Lee et al., 2004; Penzel et al., 2003), weather 

forecasting (Matsushita et al., 2007) and electrical noise study in semiconductor devices 

(Houssa et al., 1998; Shiau, 2011). Detrended fluctuation analysis has been proven to be 

a robust technique in time series analysis due to the capability of detecting whether a 

trend is superimposed on a time series (Hu et al., 2001) and the capability of 

differentiating stationary and nonstationary properties inherent in a time series (Chen et 

al., 2002). This method contains few important steps (Peng et al., 1994, 1995; Penzel et 

al., 2003) as outlined in the following paragraphs. As shown in the Figure 3.5, the time 

series x(i) is first subtracted from the mean value x and then integrated as given by, 

        
1

j

i

Y j x i x


  .      (3.2) 
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Figure 3.5: Detrending procedure of DFA at different window sizes. (Penzel et al., 

2003)  

 

The integrated time series Y(j) is then divided into boxes of equal length nDFA. The 

next step involves fitting a linear least-squares line in each box of length nDFA in which 

it reflects the local trend in that box and its y-coordinate of the local trend is represented 

by Yfit(j). The integrated time series Y(j) is then detrended via subtracting it from the 

local trend Yfit(j) of each box. The average fluctuation F(nDFA) or the root-mean square 

of the difference between Y(j) and Yfit(j) is computed as 

         
2

1

1 N

DFA fit

j

F n Y j Y j
N 

    ,     (3.3) 

where N is the length of the time series. The average fluctuation F(nDFA) is then re-

calculated for all box sizes leading to the power-law behaviour,   DFA

DFA DFAF n n


, if x(i) 

is a fractal noise. As shown in Figure 3.6, the slope of linear scaling regime of the log-

log plot of F(nDFA) versus nDFA gives the scaling exponents DFA which can then be used 

to deduce the correlation behaviour of fractal noises.  

Univ
ers

ity
 of

 M
ala

ya



84 

 

Figure 3.6: Double-log plot for r.m.s. fluctuation F versus box size. (Penzel et al., 

2003) 

 

One can link the scaling exponent DFA to the anomalous diffusion process such as 

the fractional Brownian motion where DFA = H + 1. When DFA = 0.5, the integrated 

time series is associated with random walk whose original time series does not present 

any correlation between two events. This is the standard characteristic of white noise. 

The time series is said to be persistent with long memory effect when 0.5  DFA  1. 

On the other hand, anti-persistent time series exhibits short memory effect and in this 

case, 0  DFA  0.5. If DFA = 1 (H = 0), time series is identified as having the 

characteristic of 1/f noise. Finally, when  = 1.5 (H = 0.5), the integrated time series is 

considered as a Brownian noise. 

3.4 Transport equation based on fractional calculus  

This section provides the description of the transport equation used in this work to 

model the anomalous transport in disordered organic semiconductor and the numerical 

techniques used to obtain the solutions of the transport equation. 

3.4.1 Fractional kinetic equation with multiple-trapping mechanism 

Based on multiple-trapping model, photo-generated charge carriers in disordered 

material are classified into trap (localised) and free (delocalised) charge carriers. Trap 
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charge carrier is the charge carrier which is captured in localised state and free charge 

carrier is the charge carrier which is freely hopping from one trap centre (localised state) 

to another trap centre. The movement of free charge carriers is subjected to phonon 

scatterings and external electric field that cause the charge carriers to drift with a finite 

average velocity. The capture rate of charge carrier into the localised state is linearly 

proportional to the number of free charge carrier density. Trap charge carrier density is 

assumed to be higher than the free charge carrier density and the average time of 

delocalisation is approaching zero, 0  0. The total charge carrier density, p(x,t) is the 

sum of the trap, pt(x,t), and free, pf(x,t), charge carrier densities at x and t which is given 

as 

     p(x,t) = pt(x,t) + pf(x,t).    (3.4) 

As demonstrated in (Sibatov & Uchaikin, 2007, 2009), the relationship between the 

time rate of change of trap and free charge carrier densities, derived based on an 

asymptotically power-law distribution function for the random residence time in the 

localised states, is given as 
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,      (3.5) 

where t   is the RL fractional derivative of order 0 <  < 1 which is an integral-

differential operator (Podlubny, 1998). 

In the present of an applied electric field, the one-dimensional continuity equation of 

the free charge carrier is given as  
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    (3.6) 

where p(x,0)(t) is the initial photo-generated charge carriers. By assuming that most of 

the charge carriers are trapped in the localised states, p(x,t)  pt(x,t), and substituting 

Equation (3.5) into Equation (3.6), one could rewrite Equation (3.6) for the continuity 

equation of the total charge carrier density as  
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    (3.7) 

By applying RL fractional integral operator of order 1 to Equation (3.7), the 

continuity equation of the total charge carrier density can be written as 
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        (3.8) 

where K(x,t) = c

l = c

0F(x,t) is the anomalous advection coefficient, D = 0c

D is 

the anomalous diffusion coefficient, 0 is the average time of delocalisation (mean free 

time of a charge carrier moving between two successive entrapments), l = 0F(x,t) is 

the average length of delocalisation,  is the mobility and D is the diffusion coefficient 

that is calculated using the Einstein relationship D = kBT/e where e is the electronic 

charge, kB is the Boltzmann constant and T is the temperature. The velocity of charge 

carrier is written as    , ,v x t F x t  where F(x,t) is the localised electric field. The 

charge carrier capture coefficient  
1

0 sinc


       where 0 is the capture rate 

of charge carriers into the localised states and  = kBT/E0 is the dispersive parameter 

which depends on the temperature T and the mean value E0 of the exponential energy 
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density of localised state of charge carrier. The dispersive parameter is also associated 

to the fractional derivative order  in Equation (3.5). The dispersive parameter, (x,t), 

can also be expressed as a function of time, space or both time and space to represent 

the change of material property (i.e. energy disorder) of inhomogeneous materials. 

Thus, Equation (3.8) could be generalised to the one-dimensional variable-order time-

fractional drift-diffusion equation which is written as  

 

   
         

 
 

 

  

, 2 ,

, , 2,

, ,
, , ,0 ,

1 ,

x t x t

x t x tx t

p x t p x t t
K x t p x t D p x

x x x tt

 

  

 
   
    

 (3.9) 

and representing the dispersive transport dynamics of charge carriers in organic 

semiconductors based on the multiple-trapping mechanism. It should be noted that the 

propagation of charge carriers will resemble the normal transport dynamics when (x,t) 

is approaching 1. 

It is known that the RL fractional derivative can be approximated using the GL 

fractional derivative in order to obtain the numerical solutions of the time-fractional 

diffusion equation as demonstrated in (Podlubny, 1998; Yang et al., 2009). However, 

the order of accuracy of the GL fractional derivative is below one and shifted version of 

the GL fractional derivative should be used in order to obtain stable solutions as pointed 

in (Sousa, 2012). Murio (2008b) also pointed out that the GL fractional derivative might 

only be consistent at all values of x and coincides with the Caputo fractional derivative 

if zero initial condition is fulfilled. 

Nevertheless, several works (Lin & Xu, 2007; Murio, 2008a; Sun et al., 2012) had 

demonstrated a finite difference scheme to discretise the Caputo time fractional 

derivative and able to obtain unconditionally stable solutions for the time-fractional 

diffusion equation with (2) order accuracy in time. Solutions of the Caputo time-
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fractional diffusion equation are obtained through the integer order derivatives at all 

previous time steps. Thus, finite difference method used to discretise the integer order 

derivative could be readily adopted to discretise the Caputo time fractional derivative. 

This allows the past events of transport dynamics of charge carriers at all previous time 

steps to be naturally incorporated in the Caputo time fractional derivative. Besides, 

physical conditions could be represented by the boundary conditions of the Caputo 

time-fractional drift-diffusion equation. It is also known that the Caputo fractional 

derivative of a constant is zero but not the case for the RL fractional derivative. 

3.4.2 Electric potential and field 

The electric potential V(x,t) is obtained via solving the self-consistent Poisson 

equation as given below, 

     
   2

2
0

, ,

r

V x t x t

x



 


 


,    (3.10) 

where (x,t) = ep(x,t) is the charge density, r is the relative permittivity of the material 

and 0 is the permittivity of vacuum. The localised electric field is then calculated as, 

      
 ,

,
V x t

F x t
x


 


.    (3.11) 

3.4.3 Current density 

The average current density IT(t) is defined as the conduction current density 

averaged over the thickness of the device or TOF cell, 

         
0

,
L

T

e d
I t x L p x t dx

L dt
  ,   (3.12) 

where p(x,t) is the total charge carrier density obtained by solving Equation (3.8) or 

Equation (3.9). Observe that current density is generally inversely related to the cell 
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thickness L. Consequently, Equation (3.12) explicitly accounts for the influence of the 

film thickness in that the current density level decreases when the thickness of the film 

increases and vice versa.  

3.5 Numerical methods 

The anomalous transport dynamics of charge carriers in organic semiconductor 

materials are studied by using the fractional drift-diffusion equation derived based on 

the multiple-trapping mechanism (Sibatov & Uchaikin, 2009; Uchaikin & Sibatov, 

2008, 2013). The integer order space derivative, integer time derivative and fractional 

time derivative are approximated by using the finite difference method as described in 

the subsequent sub-sections. 

3.5.1 Finite difference scheme for integer order differential operator 

The derivative of a function f(x) at x, based on the First Principle definition, is 

defined as  

     
   '

0
lim
h

f x h f x
f x

h

 
 ,   (3.13) 

where h = x is the interval between x and x + h (Burden & Faires, 2011). Due to the 

rounding-off error, two-point difference formula has an error of      2
2h f   and  lies 

between x and x + h. In general, it is recommended that using more points in the 

approximation of the derivative of f(x) could improve the accuracy of the 

approximation. Thus, the three-point midpoint (central difference) formula for the first 

derivative, with equally space point, is written as  

            
2

3' 1

2 6

h
f x f x h f x h f

h
       ,  (3.14) 

Univ
ers

ity
 of

 M
ala

ya



90 

where  lies between x  h and x + h. By expanding the function f(x) about a point x to 

the third Taylor polynomial and evaluate at x  h and x + h, the three-point midpoint 

formula for the second derivative of f(x) can be defined as  

              
2

4''

2

1
2

12

h
f x f x h f x f x h f

h
        , (3.15) 

where  lies between x  h and x + h. Equation (3.14) and Equation (3.15) can also be 

used for time variable t. 

3.5.2 Finite difference scheme for fractional order differential operator 

In view of the advantages offered by the Caputo fractional time derivative, thus the 

fractional time derivative in Equation (3.9) is expressed by using the Caputo fractional 

time derivative which is defined, for a function f(x,t), as 

 
 

   

,

, ,0

( , ) 1 ( , )
, 0 ( , ) 1.

(1 ( , )) ( )

x t
t

x t x t

f x t f x s ds
x t

x t st t s



 




 
  
   

     (3.16)  

The variable-order Caputo fractional time derivative is discretised by using the 

implicit difference scheme due to its unconditional stable property. Let’s define the 

position is xi = ix for 0  i  Nx, time is tk = kt for 0  k  Nt  1, spatial step is x = 

L/Nx, time step is t = T/Nt, T is the total time, L is the device length, Nt is the total time 

step and Nx is the total spatial step. We can use the notation of 

   , ,
i

k

i kf x t f i x k t f     to represent the approximation of an arbitrary function and 

i

k  is fractional derivative order. 

The variable-order fractional time differential operator, Equation (3.16), is 

approximated as (Lin & Xu, 2007; Sun et al., 2012),  
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   
    

 

 
 

1
1

1 1

,

1

, ,
1 0 1

, ,1

1 ,

i k
m

i k i km

x t k ti k i

x t x tt
i k m k

f x t f x s ds

sx tt t s



 




 



  

 


  
  (3.17) 

             
   

 
1

1

1

1
10

1

1

m

k
im

m mk t
i i

k t kmi

f f ds
O t

t t s












  

  
   . 

     
 

1

1

1
1 , 1

1
0

1

2

k
i

k
i

k m k mk
i iα k m k

i ik
mi

f f
L f b

t





  
 






  

 .   (3.18) 

where 

    
1 11 1, 1 1 0 1 ,

k k
i im k

ib m m , m  , ,...,k
 

          (3.19) 

and 
0, 1 1k

ib   , 
, 1 0m k

ib    as m   and O(t) is the approximation error. It should be 

noted that the results of the integer order time derivative of f(x,t) at all the previous time 

steps are needed in order to implement the Caputo fractional derivative 

3.5.3 Numerical integration 

The definite integration of a function f(x) in a close interval [a, b] is given by 

Riemann sum as  

         1
1

1

lim
2

Nb
i i

i i
a N

i

x x
f x dx f x x






  
    

  
 ,  (3.20) 

where f(x) is arbitrary function of x, xi is the i-
th

 point on the curve, and N is the total 

number of points. When N  , the R.H.S. of Equation (3.20) approximates the value 

of the definite integral of f(x) over [a, b].  

The most basic numerical integration method is carried out by approximating the 

area under a curve over an interval [a, b] using a trapezoid as depicted in Figure 3.7. 
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This method is called as Trapezoid Rule (Cheney & Kincaid, 2008) and its 

approximation is given as  

              
1

2

b

a
f x dx b a f a f b     ,  (3.21) 

with the error term as  

        
     

3

2

12

b a
f 


 ,    (3.22) 

for some  in (a, b) and f
(2)

() is the second derivative of f() which yields the Trapezoid 

Rule to be second order accurate. 

 

Figure 3.7: Comparison between the Trapezoid Rule and Simpson's Rule. (Cheney & 

Kincaid, 2008) 

 

Based on Riemann summation rule, it is known that smaller subintervals could be 

used to improve the approximation of the area under the curve f(x) and reduce the error 

of the estimation. Besides, a larger number of subintervals or smaller subinterval is 

required when integrating a function which is highly oscillatory on certain points or 

subintervals.  

When the shaded region in Figure 3.7 is subdivided into two equal subintervals with 

points a, a + h and a + 2h = b, the area under the curve, defined in [a, b], could be better 
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approximated using Equation (3.23). This technique is called the basic Simpson's Rule 

(Cheney & Kincaid, 2008).  

             4
3

b

a

h
f x dx f a f a h f b      ,  (3.23) 

where the subinterval h = (b  a)/2 with the error term as  

        
     

5

4

180

b a
f 


 ,    (3.24) 

for some  in (a, b) and f
(4)

() is the fourth derivative of f() which yields the Simpson's 

Rule to be fourth order accurate. 

If the interval [a, b] is further subdivided into Nh subintervals in which Nh is divisible 

by 2, thus the width of each subinterval is obtained as h = (b  a)/Nh and each point is 

given as xi = a + ih for 0  i  Nh. This gives the Composite Simpson's Rule (Cheney & 

Kincaid, 2008) as  

          
/2 ( 2)/2

1 1

4 2 1 2 2
3

h hN N
b

a
i i

h
f x dx f a f b f a i h f a ih



 

 
         

 
  , (3.25) 

with the error term as  

        
     

4

4

180

b a h
f 


 ,    (3.26) 

for some  in (a, b) and f
(4)

() is the fourth derivative of f() which yields the Composite 

Simpson's Rule to be fourth order accurate. 
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3.5.4 Discretisation for partial differential equation 

The anomalous transport dynamic of charge carriers in organic semiconductors is 

studied by using the time-fractional drift-diffusion equation which is a generalisation 

form of the normal diffusion equation incorporated with drift term due to the applied 

electric field. So, it is worthwhile to take a look at the numerical method which can be 

used to obtain the solution of the normal diffusion equation. Diffusion equation is a 

parabolic type PDE which is written as (Burden & Faires, 2011; Cheney & Kincaid, 

2008),   

       
   2

2

, ,
;      0 , 0,

f x t f x t
D x L t

t x

 
   

 
   (3.27) 

where D is the diffusion coefficient and Equation (3.27) is subjected to the following 

conditions 

    
   

   

0, , 0,      0;

,0 ,           0 .

f t f L t t

f x f x x L

  

  
   (3.28) 

Finite difference method can be simply implemented to obtain the numerical solution 

of Equation (3.27). It is carried out by replacing the first order time derivative and 

second order space derivative in Equation (3.27) by Equation (3.14) and Equation (3.15)

, respectively. The first order time derivative is approximated by using the backward 

difference method because the implicit difference scheme is unconditionally stable. 

Thus, a larger time step could be used to reduce the computation time and memory size 

as compared to the (smaller) time step required by the forward difference method. The 

second order space derivative is approximated by using the central difference scheme 

because smaller error is resulted as compared to that of the two-point midpoint 

difference schemes.  
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Let’s define that the position is xi = ix for 0  i  Nx, time is tk = kt for 0  k  Nt, 

spatial step is x = L/Nx, time step is t = T/Nt, T is the total time, L is the device length, 

Nt is the total time step and Nx is the total spatial step. Thus, the solution at each grid 

point or node is represented as    , ,
i

k

i kf x t f i x k t f    . Thus, Equation (3.27) is 

rewritten as      

    
 

     1 1 12

1
, , , 2 , , .i k i k i k i k i k

D
f x t f x t f x t f x t f x t

t x
  

          
 (3.29) 

We may group all the tterms and (tt)terms of Equation (3.29) at the L.H.S. and 

R.H.S. Then, Equation (3.29) is written as 

     
1

1 1

k k k k

i i i if rf f sf 

     ,   (3.30) 

where r = 2 + s and s = D(x)
2
/t. Figure 3.8 shows the position of the four points in the 

Equation (3.30).   

 

Figure 3.8: Implicit difference scheme for diffusion equation. 

 

It should be noted that all 
1k

if


 values at time tk1 are known but all 
k

if  values at 

time tk are unknown. Let’s define that  1 1

1,k k

i i k ib sf x t sf 

  , Equation (3.30) can 

then be written in a tri-diagonal and diagonally dominant matrix as   
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1 1

2 2

3 3

2 2

1 1

1

1 1

1 1

1 1

1 1

1

i i

n n

n n

f br

f br

f br

f br

f br

f br

 

 

     
    

 
    
     
    
     
     
    
    
     
    

          

,  (3.31)  

or rewritten as 

      Af = b .     (3.32) 

The unknown vector f can be solved because coefficient matrix A and R.H.S. vector 

b are known. The linear equation system can be easily solved numerically by using the 

Gaussian elimination method as described in the following subsection. The similar 

numerical scheme will be implemented to obtain the solutions of the fractional time 

drift-diffusion equation that represents the anomalous transport dynamic of charge 

carriers in disordered organic semiconductors. The numerical procedure is described in 

the section 3.5.6. 

3.5.5 Gaussian elimination for solving linear equation systems 

Many problems in science and engineering can be represented by a linear equation 

system. Typically, the approximation of a parabolic PDE by algebraic equation often 

produces a linear equation system which can be represented in a matrix form that has a 

tri-diagonal structure,  
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1 1 1 1

1 2 2 2 2

2 3 3 3 3

1

2 1 1 1 1

1

i i i i i

n n n n n

n n n n

d c x b

a d c x b

a d c x b

a d c x b

a d c x b

a d x b



    



     
     
     
     
     
     
     
     
     
     
     
          

,  (3.33) 

where all the other elements in the coefficient matrix are zero, coefficients ai, bi, ci and 

di are known variables and xj are unknown variables which will be determined. 

Gauss elimination factorises the linear equation system (Ax = b) into an upper 

triangular matrix U and a lower triangular matrix L, thus the coefficient matrix A is 

rewritten as A = LU. The solution of the unknown vector x can be obtained from the 

upper triangular matrix U after completing the procedures in the Gauss elimination 

method. If the coefficient matrix A has specific form such as tri-diagonal, banded, or 

symmetric structure, lesser amount of memory is required to store the elements of the 

matrix. The conditions for the Gaussian elimination to be implemented and work 

effectively are the matrix coefficient A is a matrix with size n  n and do not have zero 

triangular elements in matrix coefficient A. 

The first phase in solving the unknown vector x is called the forward elimination 

process where all the elements a of the matrix coefficient A will become zero (except a1 

term), elements b and d will be replaced by new values and element c is unchanged.  

    1
1

1

;       2 .i
i i i

i

a
d d c i n

d






 
    

 

   (3.34) 

    1
1

1

;       2 .i
i i i

i

a
b b b i n

d






 
    

 

   (3.35) 
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Thus, the matrix in (3.33) is reduced to a non-zero upper triangular matrix and 

written as  

  

1 1 1 1

2 2 2 2

3 3 3 3

1 1 1 1

i i i i

n n n n

n n n

d c x b

d c x b

d c x b

d c x b

d c x b

d x b

   

     
     
     
     
     
     
     
     
     
     
     
          

,  (3.36) 

The second phase of the Gauss elimination is called the backward substitution 

process. In this phase, the solution of xn in Equation (3.36) is obtained as  

     .n
n

n

b
x

d
      (3.37) 

After that, the i
th
element of vector x is obtained as 

     1

1
;       1, 2,...,1.i i i i

i

x b c x i n n
d

       (3.38) 

3.5.6 Discretisation for fractional drift-diffusion equation 

Approximate the space derivative and fractional time derivative in Equation (3.9) 

respectively by using the central difference scheme and Equation (3.18), thus the VO-

TFDDE can be rewritten as 

 

   
 

 

 
 

 
 

1

1

, 2

1 1

2,

1 1

1 1

, ,

, ,
, , .

i k

i k

x t

i k i k

x t

i k i k

i k i k

p x t p x t
D

xt

p x t K x t
K x t p x t

x x













 

 

 

 
 



 


 

 (3.39) 
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 

1 1

1 1

1 1 1
1 1 1

0 2

1 1 1 1
1 11 1 1 1

0 0

2

.
2 2

k k
i i

k k
i i

k k k
α αk i i i

i

k k k k
α αk ki i i i

i i

p p p
L p c D

x

p p F F
c v c p

x x



  

 

 

  
  

   
    

  
  

  

    
   

    

        (3.40) 

The notations of , ,  ,  ,  
i i i i i

k k k k kp v F V   represent the approximations for the charge carrier 

density, velocity, electric field, electric potential and disorder parameter (fractional 

derivative order). Substitute Equation (3.18) into Equation (3.40) and group all the tk+1 

and tk terms on the L.H.S. and R.H.S. of Equation (3.40), respectively. Equation (3.40) 

is then written as 

  

 
 

 

 
 

   

   

1 1

1 1

1 1

1

01 1 1 1

1 12

1 1

0 1 1

1 1

1 1 1

0 1 1 1

1
1, 1 , 1 1, 1 ,

1

2
2

2

2

2

2

1

k k
i i

k k
i i

k k
i i

α k

ik k k k

i i i i

α k k

i i k k

i i

α k k k

i i i k

i

k
k k m k m k k m k k

i i i i i i

m

c D t
p p p p

x

c t
p p

x

c t F F
p

x

b p b b p b







 

  

  

 

 

 



   

 

 

 

 

  

  


     



  
   



  
 



   



     1 0.ip

  (3.41) 

By defining 
 
 

1 1
1

01

, 2

2
k k
i iα k

ik

D i

c D t
C

x

 
 




  




,
 

1 1
1 1

01

,

2

2

k k
i iα k k

i ik

v i

c t
C

x

  
 

 


  




 and 

   
1 1

1 1 1

0 1 11

,

2

2

k k
i iα k k k

i i ik

F i

c t F F
C

x

  
 

  

 
   




. The VOTFDDE is rewritten as 

 

     

   

1 1 1 1 1 1 1 1 1

, , 1 , , , , 1

1
1, 1 , 1 1, 1 , 1 0

1

1 2

1 ,       1.

k k k k k k k k k

D i v i i D i F i i D i v i i

k
k k m k m k k m k k

i i i i i i i

m

C C p C C p C C p

b p b b p b p k

        

 


     



       

     
  (3.42) 

When k = 0 and 
1 1k

i
  , Equation (3.42) resembles the standard drift-diffusion 

equation. 
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          1 1 1 1 1 1 1 1 1 0 0,1

, , 1 , , , , 11 2 ,    1.D i v i i D i F i i D i v i i i iC C p C C p C C p p b               (3.43) 

Let’s define that 
1 1 1

1 , ,

k k k

i D i v iP C C  

    , 
1 1 1

, ,

k k k

i D i v iR C C     , 
1 1 1

, ,1 2k k k

i D i F iS C C      and 

   
1

1 1, 1 , 1 1, 1 , 1 0

1

1
k

k k k m k m k k m k k

i i i i i i i i

m

Q b p b b p b p


      



     . For k  1 and 1  i  Nx – 1, 

Equation (3.43) is a set of linear equations for 
1k

ip 
 that can be written in a matrix as 

 

1 1 1 1

1 1 1 1

1 1 1 1 1

1 2 2 2 2

1 1 1 1 1

1

1 1 1 1

3 2 2 2

1 1 1

2 1 1

0 0

0

0

0 0

x x x x

x x x

k k k k

k k k k k

k k k k k

i i i i i

k k k k

N N N N

k k k

N N N

S R p Q

P S R p Q

P S R p Q

P S R p Q

P S p

   

    

    



   

   

  

  

   
   
   
   
   

   
   
   
   
   
      

1

2

1

1

x

x

k

N

k

NQ









 
 
 
 
 
 
 
 
 
 
  

,  (3.44) 

with the boundary conditions defined as p(0,t) = p(L,t) = 0. 

The matrix in Equation (3.44) is a tri-diagonal matrix since the central three diagonal 

elements on the L.H.S. of the matrix are non-zero. Forward elimination and backward 

substitution method is adopted in order to solve the matrix in Equation (3.44) so that the 

solutions 
1

i

kp 
 of the VO-TFDDE can be obtained. After the forward elimination 

procedure, all the coefficient P are eliminated, all the coefficient R are remained and all 

the new values of the i
th
element of coefficient Q and S are calculated as: 

    
1

1 1 11
11

1

;       2 1.
k

k k ki
i i i xk

i

P
S S R i N

S


  





 
     

 

  (3.45) 

    
1

1 1 11
11

1

;       2 1.
k

k k ki
i i i xk

i

P
Q Q Q i N

S


  





 
     

 

  (3.46) 
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The matrix in Equation (3.44) is rewritten as 

1 1 1 1

1 1 1 1

1 1 1 1

2 2 2 2

1 1 1 1

1 1 1 1

2 2 2 2

1 1 1

1 1 1

0 0

0

0

0 0

x x x x

x x x

k k k k

k k k k

k k k k

i i i i

k k k k

N N N N

k k k

N N N

S R p Q

S R p Q

S R p Q

S R p Q

S p Q

   

   

   

   

   

  

  

     
     
    
    
    

    
    
    
    
    
         











.             (3.47) 

In the backward substitution procedure, the first step is to obtain the solution 
1

1

Nx

kp



 

from Equation (3.47) by  

     
1

11

1 1

1

.x

x

x

k

Nk

N k

N

Q
p

S





 



      (3.48) 

After that, the i
th
element of 

1

i

kp 
 is obtained as 

    1 1 1 1

11

1
;       1 2.k k k k

i i i i xk

i

p Q R p i N
S

   


       (3.49) 

3.5.7 Discretisation for electric potential and Poisson equation 

Electric field established within the device due to the present of charge carriers and 

the external electric field could be calculated when the electric potential is obtained 

through solving the Poisson equation which is an elliptical partial differential equation. 

Thus, the numerical method used to solve the elliptic partial differential equation based 

on finite difference method will be employed. It is done by replacing the second order 

space derivative of the Poisson equation with the central difference scheme, thus 

Equation (3.10) is written as 
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 

1 1 1
11 1

2

0

2
.

k k k
ki i i
i

r

V V V e
p

x  

  
  

 


   (3.50) 

At k, for k  1 and 1  i  Nx – 1, Equation (3.50) is a set of linear equations for 
1

i

kV 
 

and can be written in a matrix as 

  
 

 

 

1 10
1 021

1

1 1

2 2

2

1 1

0

1 1

2 2

1

1 11 0
1 2

2 1 0 0

1 2 1

0

1 2 1

0

1 2 1

0 0 1 2

x x
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x x
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k

k k

k k

i i

r

k k

N N

k

k kN r
N N

p V
e xV

V p

e x
V p

V p

V
p V

e x

 

 

 

 



 

 

 

 



 






   
       
   
         
   
   
   
        



,














 
 

   (3.51) 

where the boundary conditions are V(0,t) = Va (applied bias) and V(L,t) = 0. All the 

values of the charge density 
1

i

kep 
 on the R.H.S. of the matrix are known for all grid 

points. The matrix in Equation (3.51) is a tri-diagonal matrix since the central three 

diagonal elements on the L.H.S. of the matrix are non-zero. Thus, the similar steps used 

to obtain the solutions for the charge carrier density can also be used to solve for the 

electric potential. After that, the i
th
element of 

1

i

kF 
 is calculated using  

     
1 1

1 1 1

2

k k
k i i

i

V V
F

x

 
  

 
  

 
.              (3.52) 

Electric fields at the terminals (boundaries) of the device are obtained as 

     
1 1

1 1 0
0 ,

k k
k V V

F
x

 
  
  

 
              (3.53) 
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and 

     

1 1

11 .x x

x

k k

N Nk

N

V V
F

x

 


 

  
  

   (3.54) 

3.5.8 Discretisation for current density 

By approximating the integration and the integer order time derivative in Equation 

(3.12) respectively with the composite Simpson's Rule and the forward difference 

method, the current density I
k+1

 at time t
k+1

 can be written as 

   

   

   

1 10
0 0

1

2 1 21 1
1 12 2 1

2 2 2 1 2 1

1 1

1 1

3
2 1 4 1

x x

k k k kL
L L

k

N Nk k
k k k ki i
i i i i

i i

x x
p p p p

L Le x
J

t x x
p p p p

L L

 



  
 

 

 

    
        

                 
        

     
 

   (3.55) 

3.6 Simulation procedures 

The simulation first started with reads in required simulation parameters such as the 

device structure and material parameters (see Table 5.1 and Table 5.2 for the full list of 

the required parameters used in the simulation). Secondly, the mesh of the TOF cell 

(device) is established with equi-distance spacing. Thirdly, the initial and boundary 

conditions for charge carrier density, electric potential and electric field are defined in 

the simulation. Fourthly, the propagation of charge carriers is obtained by solving the 

fractional time drift-diffusion equation. Fifthly, the local electric field is obtained by 

solving the Poisson equation. Step four and step five are then repeated alternately till the 

simulation time is fulfilled. Finally, all the output data such as the charge carrier 

density, electric field, electric potential and current density are recorded in the data files. 

The flow of the simulation process is summarised in Figure 3.9. 
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Figure 3.9: Flow chart of transport dynamic simulation of charge carrier 

 

The simulation code is developed and implemented using the FORTRAN 

programming language. The main programming code representing the simulation 

procedures is demonstrated below and the details of each subroutine are given in 

APPENDIX B. 

 

The optimisation of the fitting scheme is carried out by means of the simulation setup 

is established to replicate the structure of TOF cell and the parameters used in the 

simulation are chosen based on a range of experiment values for the material studied. 

Program begin 

 call readin ! Input device and material parameters 

 call paras ! Preprocess input parameters  

 call init01 ! Initiate data array  

 call mesh ! Define mesh 

 call setic ! Define initial conditions 

 call capcnt ! Calculate capture rate  

 call setbc ! Define boundary conditions 

 call dev1d ! Perform device simulation 

Program end 
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Figure 3.10 shows the transient currents calculated for various mesh sizes. The transient 

current reduces greatly when the space interval is halved from 1.25 nm to 0.625 nm. 

However, the transient current reduces slightly when the space interval is further 

reduced from 0.6325 nm to 0.408 nm which is roughly three times smaller than 1.25 

nm. It is obvious that the change in transient current becomes stagnant when the space 

interval is reduced up to a critical value which depends on material and device 

parameters. Besides, the effect of time step on the transient current is less significant as 

compared to that of the space interval. For this reason, the simulation should be carried 

out at smaller spatial interval in order to obtain more accurate results which will lead to 

a significant rise in the computation time. Thus, there is a trade-off between the space 

interval and computation time. The space interval and time step used for RRa-P3HT and 

RR-P3HT (~94%) are given in Table 5.1 and Table 5.2, respectively.  

 

Figure 3.10: Transient currents calculated for various mesh sizes. 
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CHAPTER 4: OFET NOISE STUDY BASED ON FRACTAL ANALYSIS  

This chapter reports the measurement results of output current and transient current 

noise of P3HT OFET. It is then followed by the fractal noise analysis results of the 

transient current noise obtained from the power spectral density method and detrended 

fluctuation analysis. A brief summary is included at the end of this chapter. 

4.1 Experiment conditions 

Poly(3-hexylthiophene-2,5-diyl) OFETs with top-contact and bottom-gate structure 

are fabricated (see section 3.1) and the current noises are obtained at various source-

drain voltages (see section 3.2) in order to facilitate the current noise analysis which is 

then implemented by using the PSD method and DFA (see section 3.3). The results and 

findings of the current noise analysis of P3HT OFET are reported in the following 

section. 

4.2 Results and discussion on OFET noise analysis 

 

Figure 4.1: Output characteristic of P3HT OFET with channel length of 40 m. The 

source-drain voltage is swept from 0 V to 60 V for each gate voltage. 

 

The output characteristic of the P3HT OFET is depicted in Figure 4.1, where solid 

lines represent the sweeping of source-drain voltage from 0 V to 60 V at various gate 
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voltages ranging from 0 V to 60 V. For all the applied gate voltages, it is clearly seen 

that the drain currents begin to saturate when the source-drain voltage Vds is swept till 

close to the applied gate voltage and then saturated if Vds is further increased. This is 

simply due to the pinch-off condition has been achieved. 

 

Figure 4.2: Measured transient current noises of OFETs at various Vds: (a) 1 V, (b) 

10 V, (c) 20 V, (d) 25 V and (e) 50 V. 
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The measured current noises of OFETs at various source-drain voltage Vds ranging 

from 1 V to 50 V while having the gate voltage Vg fixed at 60 V are shown in 

Figure 4.2(a)-(e). It can be clearly seen that the profile of the current noise is gradually 

changing from white noise (rough time series) to 1/f noise and then to Brownian noise 

behaviour (smoother time series) as Vds increases. The deviation of behaviour of the 

transient current noise at different Vds is also observable through the calculated transient 

current noise PSD obtained at high frequency region in which the scaling exponent PS 

of the PSD is ranging from around 0.1 (white noise) to 2.0 (Brownian noise) as shown 

in Figure 4.3(a)-(e). This observation is further evidenced by the DFA in which the 

calculated scaling exponent DFA of the DFA obtained at a short time window is 

changing from around 0.5 (white noise) to 1.5 (Brownian noise) as shown in Figure 

4.4(a)-(e). 

At Vds = 1 V, 1/f noise and shot noise are observed respectively at the low and high 

frequency regions of the PSD as shown in Figure 4.3(a). The presence of 1/f noise at the 

low frequency region of the PSD is due to the summation of the generation-

recombination noise spectral (Kasap & Capper, 2006). Generation-recombination noise 

is due to the random capturing and releasing of charge carries at trap centres. This also 

leads to the fluctuation of the number of free charge carriers occurring in the device. 

When the device is operated at low voltage (below 2.5 V), free charge carries are 

injected from the source contact, undergo trapping and then being released from the trap 

centres as they drift across the channel region of the OFET. Hence, each charge carrier 

arrives at the drain contact at a purely uncorrelated time. This transport mechanism 

causes the occurrence of shot noise in the device. The calculated scaling exponent DFA 

of the DFA confirmed that the measured current noise at Vds = 1 V is having the white 

noise behaviour as shown in Figure 4.4(a). 
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Figure 4.3: PSDs of transient current noises of OFETs obtained at various Vds: (a) 1 V, 

(b) 10 V, (c) 20 V, (d) 25 V and (e) 50 V. The straight line indicates the least-

squares line of the PSD. 
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Figure 4.4: DFA of transient current noises of OFETs obtained at various Vds: (a) 1 V, 

(b) 10 V, (c) 20 V, (d) 25 V and (e) 50 V. The straight line indicates the least-

squares line of the DFA. 

 

As Vds increases to 10 V, both the PSD method and DFA indicate that the current 

noise presents with 1/f noise at the high frequency region of the PSD (Figure 4.3(b)) and 

corresponds to a short time window of the DFA (Figure 4.4(b)). On the other hand, 

Brownian noise is detected at low frequency region of the PSD and corresponds to a 
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large time window of DFA. It is also interesting to see that the white noise behaviour of 

the current noise is detected by the DFA using a medium time window. When the 

device is biased at moderate Vds, free charge carriers are injected from the source 

contact into the channel region and all trap centres will be immediately filled first while 

the remaining large amount of free charge carries are continuously hopping towards the 

drain contact to produce current. Since electric field established at the channel region 

extends and covers relatively a larger area as compared to that of the threshold voltage, 

thus it contains a larger amount of trap centres that enhances the occurrence of 

generation-recombination noise. The summation of the generation-recombination noise 

spectral of a larger channel region eventually resulted in 1/f noise that happened at a 

very short time period (Kasap & Capper, 2006). After a very short time, all trap centres 

have been filled and the remaining free charge carriers are hopping towards the drain 

contact in which each hopping is not correlated with each other. Meanwhile, trapped 

charge carriers can be released from the trap centres and continue to hop towards the 

drain contact. On the other hand, free charge carries can be captured by trap centres 

again. Releasing of trapped charge carriers and re-trapping of free charge carriers are 

also occurring in an uncorrelated manner. Based on these reasons, the resulted current is 

fluctuating randomly like a white noise. In addition, a Brownian noise-like current 

fluctuation is detected by both the PSD method and DFA (Figure 4.4(b)). This could be 

attributed to the collective effect of hopping, capturing and releasing of charge carriers 

over a long time period. 

At Vds = 20 V, both the PSD method and DFA indicate that the current noise 

presents with 1/f noise for the entire frequency region of the PSD (Figure 4.3(c)) and at 

medium time window of DFA (Figure 4.4(c)). This is simply due to the summation of 

generation-recombination noise spectra that lead to the 1/f noise when the electric field 

extended to cover a larger area of the channel region that contains a relatively huge 
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amount of trap centres as compared to that of the number of trap centres at Vds = 10 V. 

Besides that, Brownian noise is detected when the current noise is analysed by DFA 

using large time window. This could be attributed to the collective effect of hopping, 

capturing and releasing of charge carriers over a long time period as observed at Vds = 

10 V. As shown in Figure 4.2(c), it can be seen that the profile of current noise reveals 

a slight Brownian noise behaviour that is detectable by DFA. This demonstrates that 

DFA is a more sensitive method as compared to PSD method in detecting the 

nonstationary properties of the current noise. 

At Vds = 25 V, both the PSD method and DFA indicate that the current noise 

presents with Brownian noise for the entire frequency region of the PSD (Figure 4.3(d)) 

and at medium time window of DFA (Figure 4.4(d)). It is interesting to see that charge 

carriers are now having an opposite transport dynamics as compared to the transport 

dynamics that occurred at lower Vds ( 20 V). This suggests that correlation is induced 

between each charge carrier hopping and causes charge carriers hopping like Brownian 

particles in the device when the device is operated at high electric field. Besides that, 1/f 

noise is observed when the current noise is analysed by DFA method using large time 

window in which PSD method is not sensitive enough to reveal this behaviour. The 

occurrence of 1/f noise is simply due to the fact that a large amount of trap centres is 

provoked by the electrically induced stress on the active material which causes larger 

generation-recombination noises. The summation of generation-recombination noise 

spectra eventually yields the 1/f noise in the current noise that weakens the existence of 

Brownian noise. 

Transport dynamics that happened at Vds = 25 V is also reproducible when device 

was operated at even higher bias, Vds = 50 V. The scaling exponent DFA of DFA 

indicates that charge carriers are hopping like Brownian particles. However, PSD 
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method failed to analyse a highly non-stationery current noise since it calculated an 

unrealistic value of scaling exponent, PS  2 for Brownian noise. In addition, both PSD 

method and DFA indicate that the current noise presents with 1/f noise for the low 

frequency region of the PSD (Figure 4.3(e)) and corresponds to large time window of 

DFA (Figure 4.4(e)). Since the total number of trap centres occurred at 50 V is 

relatively larger than the total number of trap centres at 25 V, thus the PSD method is 

able to sense the presence of 1/f noise. The increment of the total number of trap centres 

when the device is operating at high applied voltage also signifies the degradation of the 

performance of device. 

4.3 Summary 

Current noises of P3HT-based OFETs were measured at various source-drain 

voltages for a fixed gate voltage and analysed using PSD method and DFA. Detrended 

fluctuation analysis is found to be a more accurate and sensitive method to detect the 

change in the transport dynamics of charge carriers in which it is characterised by the 

scaling behaviour of the current noise as compared to that of the PSD method. This is 

owing to the fact that PSD method becomes an unreliable tool when the current noise 

becomes a highly non-stationery time series. White noise is observed for the current 

noise measured at low Vds, 1/f noise occurs at intermediate Vds, and Brownian noise 

occurs at high Vds. It is observed that a large number of trap centres was induced when 

the device was operated at high applied Vds where these trap centres resulted in 1/f noise 

that could diminish the existence of Brownian noise in a very short time at high Vds. It 

should be noted that if various fluctuation dynamics could produce generic 

characteristics and each dynamic is not being singled out from the experiment setup, 

this could result in ambiguity to identify the transport dynamics involved and hence 

imposes the limitation on how much information one could gain from the analysis. 
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CHAPTER 5: TRANSPORT STUDY OF RRa-P3HT AND RR-P3HT 

Chapter 5 provides the conditions which are needed in the charge transport 

simulations for RRa-P3HT at different electric field and RR-P3HT at different light 

intensities. The simulated results are then plotted together with the measurement results 

extracted from publish works for comparison (Mauer et al., 2010). It is then followed by 

the discussions on the anomalous charge transport in these materials and a summary of 

the results is provided at the end of this chapter. 

5.1 Simulation conditions 

A simple one-dimensional structure with equidistance mesh is adopted to represent 

the cell of the TOF measurement as depicted in Figure 5.1. Two types of materials are 

considered in the simulation so that the simulated results could be compared with the 

experiment data that are digitised from Figure 2 and Figure 6 in (Mauer et al., 2010) for 

RRa-P3HT and RR-P3HT (~94%), respectively. A light pulse is initially shone on the 

top surface of the cell (x = 0) so that free charge carriers are generated just beneath the 

surface of the cell and exponentially decaying into the cell according to 

  0 e a x
N x N


 , where a is the absorption coefficient, N0 is the photo-generated 

charge carrier density and x is the depth beneath the surface of the cell. Charge carriers 

are then diffusing and drifting towards the other end of the cell due to the external 

electric field. 

 

Figure 5.1: Schematic diagram represents the cell in TOF measurement. 
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The transport dynamic of charge carrier is modelled by the VO-TFDDE. The 

dielectric constant of the material is taken to be 3.4. The parameters used in the 

simulations are tabulated in Table 5.1 and Table 5.2 respectively for the RRa-P3HT and 

RR-P3HT (~94%) materials. 

Table 5.1: Simulation parameters for RRa-P3HT. 

Parameter Value 

Length of TOF cell, L 1.02 m 

Temperature, T 21 C 

Absorption coefficient, a 1.6  10
-5

 cm
-1

 

Space interval, x [nm] 0.425 

Time step, t [s] 4 

Parameter 

Electric field, F [V/m] 

10 20 35 50 

Dispersive parameter,  0.50 0.50 0.50 0.50 

Mobility,  [cm
2
/Vs] 2.6  10

-6
 2.6  10

-6
 2.6  10

-6
 2.6  10

-6
 

Average time of 

delocalisation, 0 [s] 
5.0  10

-13
 5.0  10

-13
 5.0  10

-12
 5.0  10

-11
 

Capture rate, 0 [s
-1

] 2.0  10
12

 2.0  10
12

 2.0  10
11

 2.0  10
10

 

Charge density, N0 (t = 0 s) 

[cm
-3

] 
7.0  10

14
 4.8 10

15
 1.4  10

16
 3.0  10

16
 

Average length of 

delocalisation, ld = 0F [m] 
1.3  10

-15
 2.6  10

-15
 4.6  10

-14
 6.5  10

-13
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Table 5.2: Simulation parameters for RR-P3HT (~94%). 

Parameter Value 

Applied bias, V 40 V 

Length of TOF cell, L 2 m 

Temperature, T 50 C 

Absorption coefficient, a 2  10
-5

 cm
-1

 

Space interval, x [nm] 0.8 

Time step, t [s] 0.2 

Parameter 

Light intensity, I0 [%] 

4 10 

Dispersive parameter,  0.90 0.99 

Mobility,  [cm
2
/Vs] 1.9  10

-5
 7.9  10

-5
 

Average time of 

delocalisation, 0 [s] 
1.43  10

-13
 1.43  10

-12
 

Capture rate, 0 [s
-1

] 7.0  10
12

 7.0  10
11

 

Charge density, N0 (t = 0 s) 

[cm
-3

] 
1.5  10

17
 2.0 10

17
 

Average length of 

delocalisation, ld = 0F [m] 
5.4  10

-15
 2.3  10

-13
 

 

5.2 Results and discussion on transport dynamics of RRa-P3HT and RR-

P3HT 

Figure 5.2 shows the transient current curves of RRa-P3HT which were digitised 

from Figure 6 in (Mauer et al., 2010) and measured using the TOF measurement at 

different electric fields. The transient current curves, represented by different lines in 

Figure 5.2, were calculated by the VO-TFDDE and reproduced the experimental results 

very well. It can be seen that all the current curves at different electric fields did not 

show a plateau or a transition region before they ended with a long-tail on the double-
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log current-time plot. This indicates that charge carriers are propagating very slowly 

across the TOF cell. 

 

Figure 5.2: Transient current curves: symbols (digitised from Figure 6 in (Mauer et al., 

2010)) - TOF measurement data for RRa-P3HT at different electric fields; lines: 

simulated results using the VO-TFDDE at different electric fields. 

 

This is because charge carriers are frequently captured into the trap centres and 

hopping with very low velocity which causes them to only be able to jump for a short 

distance between successive hopping events. This causes charge carries are not 

propagating far away from the location where they are photo-generated as shown in 

Figure 5.3. Thus, charge carriers require extremely long time to move out from the TOF 

cell. This situation is clearly observed in the measurement performed at low electric 

field as compared to that of the high electric field. 

However, it is noticeable that a larger number of charge carriers are generated as the 

electric field increases and then resulted in higher current level. This is because charge 

carriers residing in deeper energy levels are able to acquire additional energy from 

higher electric field and escape from the trap centres. They then hop with higher 

velocity in the direction parallel to the direction of electric field and jump with a longer 
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average delocalisation length before they are trapped into another empty trap centre 

which is located at further distance as compared to that of the low electric field. Thus, 

this leads to the reduction of the average time taken by a charge carrier to be released 

from a trap centre and then hop to another empty site as the electric field increases. 

 

Figure 5.3: Charge carrier density profile for RRa-P3HT at various electric fields and 

times. 

 

Figure 5.4 shows the transient current curves of RR-P3HT (~94%) that are digitised 

from Figure 2 in (Mauer et al., 2010) and measured using the TOF measurement at 

different light intensities. The transient current curves, represented by different lines in 

Figure 5.4, are calculated by the VO-TFDDE and they reproduce reasonably well the 

experimental results. At low light intensity, the transient current shows a vague plateau 

region, followed by a soft transition region and then decaying to a long-tail eventually. 

This demonstrates that the propagation of charge carriers is due to slow charge carriers 

that move with low mobility.  
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Figure 5.4: Transient current curves: symbols (digitised from Figure 2 in (Mauer et al., 

2010)) - TOF measurement data for RR-P3HT (~94%) at different light intensities; lines 

- simulated results using the VO-TFDDE at different electric fields. 

 

While the TOF cell is shone with low light level, there is only a small amount of 

charge carriers generated during the photo-absorption process and populates at the deep 

energy levels which are located far below the mobility edge as shown in Figure 5.5. 

When the TOF cell is biased, these charge carriers will begin to hop, in the direction of 

electric field, from one trap centre to another empty trap centre which is located within 

the deep energy levels. 

 

Figure 5.5: Generation and propagation of charge carries at low light intensity. 
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During the hopping process, charge carriers will be encountering a large number of 

trapping events since they are hopping in an environment present with many unfilled 

trap centres and yield higher capture rate at low light intensity than that of the high light 

intensity. This causes most of the charge carriers to still be located near to the vicinity 

where they are photo-generated as shown in Figure 5.6. Based on these facts, the 

transport behaviour of charge carriers at low light intensity becomes dispersive and 

causes the charge carriers to take considerable amount of time to drift out from the TOF 

cell which results in a long-tail transient current curve.  

 

 

Figure 5.6: Charge carrier density profile for RR-P3HT (~94%) at various times for (a) 

low-light intensity and (b) high-light intensity. 
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In contrast to low light intensity, the transient current measured at higher light 

intensity shows a clearer plateau, a transition region and then eventually followed by a 

long-tail as shown in Figure 5.4. This indicates that the transport dynamics of charge 

carriers is becoming slightly less dispersive as the light intensity increases. At higher 

light intensity, a huge number of charge carriers is generated during the photo-

absorption process. These charge carries will be first populating within the deep energy 

levels and then the excessive charge carriers will be stacking up to higher energy levels 

which are located nearer to the mobility edge as shown in Figure 5.7.  

 

Figure 5.7: Generation and propagation of charge carries at high light intensity. 

 

Charge carrier can now hop at higher velocity from one trap centre to another empty 

trap centre which is located close to the mobility edge. They will encounter lesser 

capturing event and able to hop at a longer average delocalisation length as compared to 

that of the low light intensity. Therefore, the propagation of charge carriers at high light 

intensity requires lesser time to leave the TOF cell as shown in Figure 5.6. In view of 

the facts that the RR-P3HT has lower capture rate and larger average length of 

delocalisation, thus the transport dynamic of charge carriers in RR-P3HT is less 

dispersive and much faster than that of the RRa-P3HT. 
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5.3 Summary 

The dispersive transport dynamic of charge carriers in organic semiconductors is 

modelled using the time-fractional drift-diffusion equation which is approximated using 

the finite difference method. Numerical solutions of charge carrier density are obtained 

which enables the calculation of transient current density. When electric field is 

increased, charge carriers are able to acquire additional energy from the field which 

promotes them to be released much easier from the trap centres and then propagating at 

higher velocity before leaving the TOF cell that eventually results in higher transient 

current. When light intensity is increased, a huge number of charge carriers can be 

generated and occupying energy levels close to the mobility edge where charge carriers 

will encounter lesser capturing event and hop at a longer average delocalisation length 

in each successive hopping. This causes charge carriers to move less depressively for a 

short time interval before the occurrence of long-tail behaviour. Besides, the transport 

dynamic of charge carriers in RR-P3HT is relatively less dispersive and has higher 

mobility than that of the RRa-P3HT since RR-P3HT has lower capturing rate and is less 

energy disordered. 
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CHAPTER 6: CONCLUSIONS 

Chapter 6 summarises the findings of this work and provides the recommendations 

and suggestions for future works. 

6.1 Summary 

Noise analysis in disordered organic semiconductor devices is frequently overlooked 

regardless of the importance of this approach which can be used to explore the transport 

dynamics of charge carriers, bulk or interface defects, trap density and structural 

properties of disordered organic semiconductors. Besides, the current noise of organic 

semiconductor device deviates from the common 1/f noise behaviour which could not 

be simply analysed by power spectra method. This work began on the study of transport 

dynamics of charge carriers in disordered material by using fractal noise analysis. 

Therefore, top-contact and bottom-gate P3HT-based OFETs had been fabricated with 

thermal treatment condition. Transient current noises of the OFETs were measured at 

various Vds ranging from 0 V to 60 V with respect to a fixed gate voltage of 60 V. 

The results from conventional PSD method were compared with the DFA. The latter has 

been proven to be a more reliable method for fractal signal analysis particularly in the 

presence of nonstationary effects. 

Interesting transitions between multiscaling to monoscaling behaviours were 

observed in the PSD as well as the DFA plots for different applied Vds. Uncorrelated 

white noise characteristics are observed for current noise measured at low Vds, 

meanwhile 1/f noise-like scaling behaviours are observed at intermediate Vds. At higher 

Vds, the noise characteristics appeared to be close to Brownian-like power-law 

behaviour. The scaling characteristics of the transient current noise can be related to the 

charge carrier dynamics. It is also found that large numbers of trap centres are induced 

when the device is stressed at high applied Vds. The existence of these trap centres 

Univ
ers

ity
 of

 M
ala

ya



124 

would disperse charge carriers, leading to 1/f type noise that could diminish the 

presence of Brownian noise in a very short time. 

Owing to the fact that anomalous transport has dispersive and non-Gaussian transport 

dynamics, thus anomalous transport cannot be adequately described by the standard 

drift-diffusion equation which is a framework commonly used to model normal 

diffusive transport. Therefore in the second part of this work, the standard drift-

diffusion equation was generalised to TFDDE using the fractional calculus approach to 

model the anomalous transport in the RRa-P3HT and RR-P3HT. Physical elucidation of 

TFDDE is given by stressing how the influence of the multiple-trapping mechanisms 

and disorder in energy lead to the long-tail behaviour in the transient photocurrent 

curves.  

Time-fractional drift-diffusion equation is solved numerically using finite difference 

scheme to obtain the profiles of charge carriers density evolution and hence to 

reproduce the corresponding transient photocurrents of RRa-P3HT and RR-P3HT. 

Poisson solver is also included in the model to account for the fluctuation of localised 

electric field due to the evolution of charge carriers. It is found that charge carriers 

acquire additional energy from high electric field that helps them to escape from the trap 

centres more easily and then propagating at higher velocity, which yields higher 

transient current. Higher concentration of charge carriers can be generated at higher 

light intensity and they can occupy energy levels close to the mobility edge, where 

charge carriers will encounter smaller capturing rate and hop at a longer length in each 

hopping event. Thus, the transport dynamic of charge carriers at high light intensity is 

less dispersive than that of the low light intensity. Besides, the transport dynamic of 

charge carriers in RR-P3HT is relatively less dispersive and has higher mobility than 

that of the RRa-P3HT since RR-P3HT has lower capturing rate and less disorder in 
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energy. It should be noted that the present study employed non-standard method based 

on fractal theory and fractional calculus to describe power-law scaling noise spectra and 

dispersive charge carrier transport dynamics in disordered organic semiconductors. At 

the end of this study, these methods have been proven successfully in describing and 

reproducing current noise and charge transport dynamics in disordered organic 

semiconductors. 

6.2 Recommendation and future works 

A large number of grid points and smaller time intervals are needed in order to detect 

the rapid change in the transport dynamics of the charge carriers and current density 

calculation. This causes a high demand on the memory, computation time as well as 

data storage. The recommendations for overcoming these issues could be: 

1. adaptive mesh method could be used to replace the equi-distance mesh so that finer 

spatial step is used at device region with higher electric field and vice versa. 

2. adopt adaptive method on the composite Simpson’s rule to reduce the total number 

of grid points used to define the mesh of the TOF cell. 

Since molecular recombination is an important process which could cause fluctuation 

and reduction in current that leads to performance degradation of device, thus it would 

be beneficial to include the effect of molecular recombination in the transport 

simulation. In this work, the anomalous transport is modelled by the multiple-trapping 

model through the time-fractional drift-diffusion equation. However, the anomalous 

transport model could be revised to incorporate the spatial disorder of the material 

through the anomalous hopping which is described based on the Lévy flight dynamics. 

Thus, anomalous transport produced by the competitiveness between the multiple-

trapping and hopping mechanisms could be modelled together. The suggestions for the 

future works are: 
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1. charge carrier generation and recombination mechanism could be incorporated in 

the fractional drift-diffusion equation to account for the molecular recombination of 

organic semiconductors. 

2. the integer order space derivative in the time-fractional drift-diffusion equation 

could be rewritten in terms of the fractional space derivative to account for the space 

disorder of the organic semiconductors so that the memory effect embedded in the 

hopping of charge carrier in space could be modelled by the Lévy flight dynamics. 

3. the TFDDE developed in this work is potentially able to be applied to model the 

transport dynamics of charge carriers and electric field distribution which is 

produced by the SHG measurement. 

4. the TFDDE is not only useful to model the subdiffusive transport dynamics of 

charge carriers and anomalous current in disordered materials but it could also be 

used to model the standard transport dynamics of charge carriers in crystalline 

materials. 
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