Abstract

When a transformer is taken out of a photovoltaic (PV) inverter system, the efficiency of the whole system can be improved. Unfortunately, the additional ground leakage current appears and needs to be considered. The problem of ground leakage current is that it poses an electrical hazard to anyone touching the photovoltaic (PV) array's surface. For safety issues, the ground leakage current should be less than 300 mA, which follows the VDE-0126-1-1 German standard. To minimize the ground leakage current in the transformerless PV grid connected inverter system, the proposed inverter topologies (SC-HB inverter, bipolar H-Bridge inverter with CD-Boost converter, modified unipolar H-Bridge inverter with CD-Boost converter and modified unipolar H-Bridge inverter with modified boost converter) are analyzed, verified and compared in this thesis. In order to analyze the effect of unbalanced filter inductance on the transformerless bipolar H-Bridge inverter topology, the matching ratio of inductance ($L_r = L_{fl}/L_{fln}$ and L_{f2}/L_{f2n}) is investigated. In addition, the effect of parasitic capacitance value on the transformerless bipolar H-Bridge inverter topology is studied. The effect of modulation techniques using bipolar SPWM and unipolar SPWM on the transformerless H-Bridge inverter topology is compared and analyzed in terms of common-mode voltage and ground leakage current. TMS320F2812 is used as a controller to generate the PWM control signal, maximum power point tracking (MPPT) based on power balance and Proportional-Integral (PI) controller. PSIM 9.0 simulation software is used to design the proposed transformerless inverter topologies. Simulation and experimental results verified the proposed inverter's feasibility in addressing issues of transformerless DC/AC converters in grid-connected PV systems.

Abstrak

Apabila pengubah diambil daripada sistem photovoltaic (PV) penyongsang, kecekapan keseluruhan sistem boleh diperbaiki. Malangnya, tambahan arus kebocoran bumi akan muncul dan perlu dipertimbangkan. Masalah kebocoran arus bumi ialah ia menimbulkan bahaya elektrik kepada sesiapa menyentuh permukaan photovoltaic (PV) array. Untuk isu-isu keselamatan, kebocoran arus bumi hendaklah tidak kurang daripada 300 mA, yang mengikuti VDE-0126-1-1 standard Jerman. Untuk mengurangkan arus bocor bumi di grid yang berkaitan sistem penyongsang pengubah PV, topologi-topologi penyongsang dicadangkan (penyongsang SC-HB, penyongsang bipolar H-Bridge dengan penukar CD-Boost, penyongsang modified unipolar H-Bridge dengan penukar CD-Boost dan penyongsang modified unipolar H-Bridge dengan penukar modified boost) dianalisis dan disahkan di dalam tesis ini. Untuk menganalisis kesan tidak seimbang penapis kearuhan pada pengubah bipolar H-Bridge penyongsang topologi, nisbah kearuhan ($L_r =$ L_{fl}/L_{fln} dan L_{f2}/L_{f2n}) disiasat. Juga, kesan nilai kapasitan parasit pada pengubah bipolar H-Bridge penyongsang topologi dikaji. Kesan teknik modulasi (SPWM bipolar dan SPWM unipolar) pada pengubah H-Bridge penyongsang topologi dibandingkan dan dianalisis dari segi common-mode voltan dan arus bumi bocor. TMS320F2812 digunakan sebagai pengawal untuk menjana isyarat lebar denyut modulasi, maksimum pengesanan titik kuasa berdasarkan pembahagian kuasa dan kawalan Berkadar-Integral. Perisian simulasi PSIM 9.0 digunakan untuk merekabentuk topologi-topologi penyongsang pengubah yang dicadangkan. Keputusan simulasi dan ujikaji mengesahkan bahawa cadangan penyongsang memenuhi isu-isu yang berkaitan dengan penukar Arus Terus/Arus Ulang-Alik (AT/AU) di dalam sistem penyambungan PV ke grid.

ACKNOWLEDGEMENT

In the name of Allah, the most Gracious and most Compassionate.

I would like to thank Allah The Almighty for blessing and giving me strength to accomplish this thesis. Special thanks to my supervisor, **Prof. Dr. Nasrudin Abd. Rahim** for his invaluable support, encouragement, supervision and useful suggestions throughout this project. His moral support and continuous guidance enabled me to go through the tough route to complete this project successfully.

I acknowledge my sincere indebtedness and gratitude to my beloved husband, Nazarul Abidin Ismail, my sons, Aizuddin NasrulHaq, Ahmad Naqiuddin and Aaqil Najmuddin for his love, support and sacrifice throughout my toughest time in my life. My deepest gratitude for my friends for consistently encouraged me and keep my heart strong in accomplish this PhD study. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals. Finally, I acknowledge my greatest thanks to University of Malaya and Universiti Teknikal Malaysia Melaka (UTeM) for all support given to complete this project.

TABLE OF CONTENTS

ABS	TRACT	ı		ii
ABS	TRAK			iii
ACK	NOWL	EDGEMI	ENTS	iv
TAB	LE OF	CONTEN	TS	v
LIST	r of fi	GURES		xii
LIST	Γ OF TA	BLES		xxiii
LIST	r of sy	MBOLS		xxiv
LIST	Γ OF AE	BREVIA	TIONS	xxvii
CHA	APTER 1	l: INTRO	DUCTION	
1.1	Backg	ground		1
1.2	Objec	tives		6
1.3	Metho	odology an	d Scope of Study	7
1.4	Thesis	s Organiza	tion	8
CH	APTER	2: SOLAI	R PV SYSTEMS	
2.1	Introd	uction		10
2.2	Photo	voltaic Mo	odule	10
	2.2.1	Types of	PV Cell	11
	2.2.2	Operatio	n of PV Cell	12
	2.2.3	PV Mod	ules Behaviour	12
		2.2.3.1	Series PV Modules	14
		2.2.3.2	Parallel PV Modules	15

		2.2.3.3 Series-Parallel PV Modules	16
2.3	PV In	verter Connection Systems	17
	2.3.1	Stand Alone system	17
	2.3.2	Grid-Connected system	19
		2.3.2.1 SEDA Malaysia Feed in Tariff (FiT) Mechanism	20
	2.3.3	Hybrid system	21
2.4	PV In	verter Systems	22
	2.4.1	Sizing	22
	2.4.2	Types of grid-connected PV inverter	24
		2.4.2.1 Central Inverters	24
		2.4.2.2 String Inverters	24
		2.4.2.3 Module- Integrated Inverter	26
		2.4.2.4 Multi-String Inverter	26
2.5	PV gr	id-connected Inverter Configurations	27
	2.5.1	Line Frequency Transformer	27
	2.5.2	High Frequency Transformer	28
	2.5.3	Transformer-less/without Transformer	29
2.6	Maxir	num Power Point Tracker (MPPT) Algorithms	30
	2.6.1	Constant Voltage	30
	2.6.2	Perturbation and observation (P&O)	31
	2.6.3	Incremental Conductance (IC)	32
2.7	Protec	ction for Grid-Connected PV Inverters	33
2.8	Power	r Quality Issues	35
	2.8.1	Harmonics	35
	2.8.2	Total Harmonics Distortion (THD)	35

	2.8.3 Power Factor	of PV inverter	36
2.9	Performance PV inve	erter issues	37
2.10	Summary		38
CHA	PTER 3: OVERVIEV	OF POWER CONVERTER PHOTOVOLTAIC	
	SYSTEM		
3.1	Introduction		40
3.2	Power Converter		40
3.3	Types of Non-Isolate	d DC-DC Converters Commonly Used	41
	3.3.1 Non Isolated	DC-DC Converters	41
	3.3.1.1 Con	ventional DC-DC Boost Converter	42
	3.3.1.2 Cuk	-Derived Boost (CD-boost) Converter	44
	3.3.1.3 Thre	e-level DC-DC Boost Converter	45
	3.3.1.4 Cas	caded DC-DC Boost Converter	47
	3.3.1.5 Inve	erting Zeta Derived DC-DC Converter	48
3.4	Pulse Width Modulat	ion (PWM) Scheme	49
	3.4.1 PWM based V	Voltage Forced Strategy	50
3.5	PV Inverter Topologi	es	51
3.6	Parasitic capacitance	of PV System	51
3.7	Ground Leakage Cur System	rent in Transformerless PV Grid-Connected	53
3.8	Transformerless Sing	le-Phase H-Bridge Inverter Topology	54
3.9	Common-Mode Volta Inverter System	age model in Transformerless PV H-Bridge	57
3.10	Fourier Analysis of the	ne Common-Mode Voltage	60

3.11	Topol	ogies	61
3.12	HERI	C Topology	62
3.13	HB-Z	VR Topology	63
3.14	Н6 Т	opology	64
3.15	H5 To	opology	65
3.16	оН5 Т	Topology	66
3.17	Half E	Bridge Topology	67
3.18	Neutra	al Point Diode Clamped (NPC) Topology	67
3.19	Filter	configuration and Ground Leakage Current	68
3.20	_	arison of Transformerless Single-Phase H-Bridge er Topologies	69
3.21	Single	-Phase Multilevel Inverter Topologies	74
3.22	Modu	le Integrated Converter (MIC) Topologies	77
3.23	Summ	nary	80
CHA	PTER 4	: PROPOSED SINGLE-PHASE TRANSFORMERLESS	
		VOLTAGE SOURCE INVERTER	
4.1	Introd	uction	81
4.2		diagram of the Proposed Single-phase Transformerless rid- Connected System	81
4.3	Conve	entional Transformerless H-Bridge inverter	83
4.4	Filter	Design	88
4.5		guration of Proposed Split Capacitor H-Bridge (SC-HB) Inverter with cing Circuit	90
	4.5.1	The Balancing Strategy in SC-HB Inverter	91
	4.5.2	Ground Leakage Current Reduction in Proposed SC-HB Inverter Topology	93

4.6	Propos	sed Bipolar H-Bridge inverter with CD-Boost Converter	95
	4.6.1	Power Decoupling Calculation	96
	4.6.2	Cuk-Derived Boost (CD-Boost) Converter	97
	4.6.3	Proposed Modified Unipolar H-Bridge Inverter with CD-Boost Converter	100
		4.6.3.1 Switching Strategy of Modified Unipolar H-Bridge Inverter with CD-Boost Converter	101
		4.6.3.2 Mode of Operation for Modified Unipolar H-Bridge Inverter with CD-Boost Converter	101
4.7	Propo Ripple	sed Modified DC-DC Converter with Low Input Current	
4.8		sed Modified Unipolar H-Bridge Inverter with Modified Boost	103
	Conve		107
	4.8.1	Mode Operation of Proposed Unipolar H-Bridge Inverter with Modified Boost Converter	107
4.9	Power	r Balancing Controller	109
4.10	Anti-i	slanding Protection	109
4.11	Summ	nary	110
CHA	PTER 5	5: SIMULATION RESULTS	
5.1	Introd	luction	113
5.2	Simul	ation of Single-Phase H-Bridge Inverter	113
5.3	Propo	sed SC-HB Configuration	122
5.4	Conve	entional Boost converter and CD-Boost Converter	126
5.5	Propo	sed Bipolar H-Bridge inverter with CD-Boost Converter	129
5.6	Propo	sed Modified unipolar H-Bridge inverter with DC-Boost Converter	132
5.7	-	sed Modified Unipolar H-Bridge Inverter with Modified Converter	136
5.8	Summ	nary	139

CHAPTER 6: EXPERIMENTAL RESULTS

6.1	Introd	uction	140
6.2	Hardware Configuration		
6.3	Exper	imental Results	143
	6.3.1	Non-Isolated DC-DC Boost Converter	143
	6.3.2	Ripple of Input DC Current	148
	6.3.3	Comparison for Various Non-Isolated DC-DC Boost Converter	151
6.4	Exper	imental Results of Single-Stage H-Bridge Inverter Topologies	154
	6.4.1	Conventional Unipolar and Bipolar H-Bridge Inverter Topology	154
	6.4.2	Effect of Filter Impedance Matching and Parasitic Capacitance to Ground Leakage Current in Bipolar H-Bridge Inverter	159
	6.4.3	HB-ZVR Inverter Topology	162
	6.4.4	Proposed SC-HB Inverter Topology	164
6.5	Exper	iment Results of Proposed Two-Stage Inverter System	167
	6.5.1	Proposed Bipolar H-Bridge Inverter with CD-Boost Converter	167
	6.5.2	Proposed Modified Unipolar H-Bridge Inverter with CD-Boost Converter	170
	6.5.3	Proposed Modified Unipolar H-Bridge Inverter with Modified Boo Converter	st 173
6.6	Perfor	rmance Comparisons for Various Inverters	174
6.7	Contro	olling Algorithm for MPPT	178
6.8	Anti-i	slanding	179
6.9	Summary		180

CHAPTER 7: CONCLUSION AND FUTURE WORKS

7.1	Concluding	Remarks	181
7.2	Author's Co	ntribution	183
7.3	Future Work	CS .	184
REF	REFERENCES 1		
APPI	ENDICES		
APPI	ENDIX A	Hardware Experimental Set-up	A.1
APPI	ENDIX B	Code Generation in TMS32F2812 DSP	B.1
APPI	ENDIX C	Summary of Relevant Published work by the Author	C.1

LIST OF FIGURES

Figure 1.1	Growth of Worldwide Energy Production Since 1970 to 2025 (Wikipedia.org)	1
Figure 1.2	World Total Electricity Production from Renewable Sources in 2011 (IEA International Energy Agency, 2010)	2
Figure 1.3	Solar PV Global Capacity 1995-2012 (REN21, 2013)	3
Figure 1.4	The world major inverter manufacturer in 2005 (Report Milestone, 2005)	4
Figure 1.5	The effect of isolating transformers to European inverter efficiency (Schlumberger, 2007)	6
Figure 2.1	Photovoltaic cells, modules, panels and arrays	11
Figure 2.2	Types of Silicon PV Cells	11
Figure 2.3	Representation of PV modules in circuit diagram	13
Figure 2.4	Single PV module characteristic curve	13
Figure 2.5	Series connection of PV modules	14
Figure 2.6	Series PV module connection IV curve	14
Figure 2.7	Parallel connection of PV modules	15
Figure 2.8	I-V Parallel PV Modules curve	15
Figure 2.9	Series-parallel connection of PV module	16
Figure 2.10	I-V curve for series-parallel configuration (Chetan, 2011)	16
Figure 2.11	Stand-alone PV system (Chetan, 2011)	17
Figure 2.12	PV direct conversion	18
Figure 2.13	PV interactive conversion	18
Figure 2.14	PV on-line conversion	18
Figure 2.15	PV parallel coordinated conversion	19
Figure 2.16	Grid-connected PV system (Chetan, 2011)	20

Figure 2.17	Hybrid PV system (Electricity Resources Branch, 2011)	22
Figure 2.18	Central inverter connection	25
Figure 2.19	String inverter connection	25
Figure 2.20	Module integrated inverter configuration	26
Figure 2.21	Multistring inverter configuration	27
Figure 2.22	Single-phase multistring five-level inverter topology	28
Figure 2.23	PV inverter with DC-DC converter and HF transformer	29
Figure 2.24	PV transformerless H-Bridge inverter system	30
Figure 2.25	Perturbation and observation MPPT technique	32
Figure 2.26	Incremental Conductance MPPT flowchart method	33
Figure 2.27	Islanding detection methods	34
Figure 3.1	Types of DC to AC converter	40
Figure 3.2	DC-DC converter block diagram	40
Figure 3.3	General block diagram of AC to DC converter	41
Figure 3.4	General block diagram of AC to AC converter	41
Figure 3.5	The DC-DC boost converter	42
Figure 3.6	Boost converter waveform (a) Inductor voltage, (b) Inductor current	43
Figure 3.7	The CD- Boost converter circuit	44
Figure 3.8	Three level DC-DC boost converter	46
Figure 3.9	Switching pattern and inductor voltage waveform of three-level converter; (a) $(V_i < V_o/2)$, (b) $(V_i > V_o/2)$.	47
Figure 3.10	Cascaded DC-DCboost converter	48
Figure 3.11	Inverting zeta derived boost converter	49
Figure 3.12	Principle of sinusoidal PWM technique	50
Figure 3.13	The top and cross-section view of PV module with mounting frame	52

Figure 3.14	Detail cross-section of PV module.	53
Figure 3.16	Single-phase transformerless inverter with parasitic capacitance	55
Figure 3.17	Output inverter voltage (V_{ab}) using unipolar PWM technique	56
Figure 3.18	Output inverter voltage (V_{ab}) using bipolar PWM technique	56
Figure 3.19	The common-mode model for the PWM voltage source inverter system	58
Figure 3.20	Simplified equivalent model of common-mode resonant circuit	59
Figure 3.21	Equivalent circuit for the common-mode leakage current path	60
Figure 3.22	HERIC topology	63
Figure 3.23	HB-ZVR topology	64
Figure 3.24	H6 topology (German Patent, 2003)	65
Figure 3.25	H5 topology	66
Figure 3.26	oH5 topology (Huafeng et al., 2011)	66
Figure 3.27	Half bridge inverter topology	67
Figure 3.28	NPC inverter topology	68
Figure 3.29	(a) LCL filter configuration case (1), (b) LCL filter configuration case (2)	69
Figure 3.30	(a) Common-mode voltage and (b) ground leakage when unipolar PWM technique is used	70
Figure 3.31	(a) Common-mode voltage and (b) leakage when bipolar PWM technique is used	71
Figure 3.32	Common-mode voltage and leakage ground current in case of HERIC topology	72
Figure 3.33	Common-mode voltage and leakage ground current in case of HB-ZVR topology	72
Figure 3.34	Common-mode voltage and leakage ground current in case of H6 topology	73

Figure 3.35	Common-mode voltage and leakage ground current in case of H5 topology	73
Figure 3.36	Common-mode voltage and leakage ground current in case of oH5 topology	73
Figure 3.37	Transformerless multilevel cascade inverter (F. Peng at el., 1996)	75
Figure 3.38	Single phase five level diode clamped inverter topology (Manjrekar M.D & Lipo T.A, 1998)	76
Figure 3.39	Flying capacitor topology (Hung and Corzine, 2006)	76
Figure 3.40	Multistring five-level single phase inverter (Rahim et al. 2010)	77
Figure 3.41	MIC arrangement	77
Figure 3.42	Grid-Connected PV System using two energy processing stages (Martin & Demonti, 2002)	78
Figure 3.43	Modified inverter configuration (Saha et al., 1998)	78
Figure 3.44	Two-stage photovoltaic grid- connected inverter (Chomsuwans et al.2002)	78
Figure 3.45	Buck-boost-operation-based sinusoidal inverter circuit (Funabiki et al, 2002)	79
Figure 3.46	Transformerless PV inverter with DC-DC boost converter	79
Figure 3.47	DC-AC boost inverter (Caceres and Barbi, 1999)	80
Figure 4.1	Block diagram of the proposed transformerless PV grid-connected system	82
Figure 4.2	Conventional transformerless H-Bridge inverter	83
Figure 4.3	Half-positive cycle state for H-Bridge circuit (state I)	84
Figure 4.4	Zero state for half-positive cycle (state II)	85
Figure 4.5	Zero state for half-positive cycle (state III)	85
Figure 4.6	Positive cycle state for bipolar H-Bridge inverter circuit	87
Figure 4.7	Negative cycle state for bipolar H-Bridge inverter circuit	87
Figure 4.8	LCL configuration for the proposed transformerless PV system	89

Figure 4.9	SC-HB transformerless inverter topology	90
Figure 4.10	(a) The balancing circuit, (b) energy transfer from C_{B1} to C_{B2} ; (c) energy transfer from C_{B2} to C_{B1}	92
Figure 4.11	Mode operation of SC-HB topology, (a) zero positive state (b) positive active	94
Figure 4.12	The proposed bipolar H-Bridge inverter with CD-Boost converter for grid-connected PV system	96
Figure 4.13	The CD- Boost converter circuit	99
Figure 4.14	Operation modes of the CD-Boost converter (a) switch-on mode, (b) switch-off mode	99
Figure 4.15	Modified unipolar H-Bridge inverter with CD-Boost converter	100
Figure 4.16	Active vector state applied to grid (mode 1)	102
Figure 4.17	Zero vector state applied to grid (mode 2)	103
Figure 4.18	(a) Proposed modified boost converter circuit,(b) switch turn-on mode,(c) switch turn-off mode	104
Figure 4.19	Modified Unipolar H-Bridge inverter with modified boost converter circuit configuration	107
Figure 4.20	Active vector state mode, applied to grid for proposed unipolar H-Bridge inverter with modified boost converter	108
Figure 4.21	Zero vector state mode, applied to grid for proposed unipolar H-Bridge inverter with modified boost converter	109
Figure 4.22	Flow chart of power balancing control	111
Figure 4.23	Flow chart of anti-islanding algorithm	112
Figure 5.1	(a) Simulation set up for the single-phase transformerless H-Bridge inverter, (b) LCL filter configuration	114
Figure 5.2	(a) Hybrid modulation technique of single-phase H-Bridge inverter,(b) unipolar modulation technique of single-phase H-Bridge inverter	116
Figure 5.2	(c) Bipolar modulation technique of single-phase H-Bridge inverter	117

Figure 5.3	H-Bridge inverter output voltage for (a) hybrid & unipolar modulation technique	117
Figure 5.3	H-Bridge inverter output voltage for (b) unipolar modulation technique	118
Figure 5.4	Common-mode voltage of H-Bridge inverter for (a) hybrid & unipolar modulation technique	118
Figure 5.4	Common-mode voltage of H-Bridge inverter for (a) bipolar modulation technique	119
Figure 5.5	Ground leakage current of H-Bridge inverter for (a) bipolar modulation technique	119
Figure 5.5	Ground leakage current of H-Bridge inverter for (b) unipolar modulation technique	120
Figure 5.6	Simulated harmonic spectra of the common-mode voltage of the (a) unipolar and (b) bipolar SPWM techniques	121
Figure 5.7	(a) Shematic diagram of SC-HB configuration	122
Figure 5.7	(b) balancing circuit	123
Figure 5.8	(a) Capacitor voltage ($V_{CB1} \& V_{CB2}$) without balancing circuit, (b) Capacitor voltage ($V_{CB1} \& V_{CB2}$) with balancing circuit	124
Figure 5.9	Simulation results of proposed SC-HB inverter topology; (a) common-mode voltage (V_{cmm}), (b) ground leakage current (I_g)	125
Figure 5.10	$S_1 \& S_2$ switching, imbalance dc link series capacitor voltages ($VC_{BI} \& V$ and Common-mode voltage (V_{cmm})	(C_{B2}) 126
Figure 5.11	(a) Conventional boost converter	127
Figure 5.11	(b) CD-Boost converter circuit	128
Figure 5.12	Input voltage (V_i) , Output converter voltage (V_{dc}) and switch stress voltage (V_s) for (a) conventional converter	128
Figure 5.12	Input voltage (V_i) , Output converter voltage (V_{dc}) and switch stress voltage (V_s) for (b) DC-Boost converter	129
Figure 5.13	Schematic diagram of proposed bipolar H-Bridge inverter with DC-Boost converter system	130

Figure 5.14	(a) Inverter voltage, (b) AC signal waveform of proposed bipolar H-Bridge inverter with CD-Boost converter	131
Figure 5.15	(a) Common-mode voltage, (b) ground leakage current of proposed H-Bridge inverter with CD-Boost converter system	131
Figure 5.16	Modified unipolar H-Bridge inverter with CD-Boost converter circuit	133
Figure 5.17	(a) Positive zero state mode for S1,S3 & Sc;(b) Negative zero state mode for S2,S4 & Sb of modified unipolar H-Bridge inverter with CD-Boost converter	134
Figure 5.18	Modified unipolar H-Bridge inverter with CD-Boost converter of (a) switching for Sb,Sc and Sa, (b) common-mode voltage and ground leakage current	135
Figure 5.19	PSIM simulation results for the input currents of a proposed boost converter	137
Figure 5.20	(a) Δ_{ILI} conventional boost converter	137
Figure 5.20	(b) Δ_{ILI} proposed modified boost converter	138
Figure 5.21	Shematic diagram of modified unipolar H-Bridge inverter with modified boost converter	138
Figure 5.22	(a) AC voltage, (b) common-mode voltage, (c) ground leakage current of modified unipolar H-Bridge inverter with modified boost converter	139
Figure 6.1	Experimental setup	141
Figure 6.2	eZdsp TM F2812 board kit	141
Figure 6.3	Functional block diagram of of eZdsp TM F2812 board kit	142
Figure 6.4	Block diagram of eZdsp TM F2812 board kit (Texas Instrument)	143
Figure 6.5	PWM for conventional boost converter, cascade boost converter, invertigated derived boost converter, CD-Boost converter and modified boost converter	ing 145
Figure 6.6	Three-level boost converter PWM pattern	145
Figure 6.7	Voltage input, (V_i) voltage output (V_{dc}) and switch voltage stress (V_s) for conventional boost and modified boost converter	145

Figure 6.8	Voltage input (V_i) , voltage output (V_{dc}) and switched voltage $(Vs_a \& Vs_b)$ of cascade boost converter	146
Figure 6.9	Voltage input (V_i) , voltage output (V_{dc}) and switch voltage stress (V_s) of three-level converter	146
Figure 6.10	Voltage input (V_i) , voltage output (V_{dc}) and switch voltage stress (V_s) of inverting zeta derived boost converter	147
Figure 6.11	Voltage input V_i), voltage output (V_{dc}) and switch voltage stress (V_s) of CD-Boost converter	148
Figure 6.12	Input current (Ii) waveform of conventional boost converter	149
Figure 6.13	Input current (Ii) waveform of three-level boost converter	149
Figure 6.14	Input current (Ii) waveform of CD-Boost converter	149
Figure 6.15	Input current (Ii) waveform of zeta derived boost converter	150
Figure 6.16	Input current (Ii) waveform of cascade boost converter	150
Figure 6.17	Input current (Ii) waveform of modified boost converter	150
Figure 6.18	Conversion ratio gains of the various DC-DC converters	151
Figure 6.19	Normalized switch stresses of the various DC-DC converters	152
Figure 6.20	Efficiency of various converters.	153
Figure 6.21	PWM pattern of conventional unipolar technique (a) S1&S2	154
Figure 6.21	PWM pattern of conventional unipolar technique (b) S3&S4	155
Figure 6.22	Output inverter voltage (V_{ab}) (Channel 1, 250 V/div, t: 5 ms/div)	155
Figure 6.23	Common-mode voltage (V_{cmm} , channel 1) and ground leakage current (I_g , channel 2) for conventional unipolar PWM technique (measured by Fluke 434 Power Quality Analyzer)	155
Figure 6.24	FFT of Common-mode voltage for conventional unipolar H-Bridge inverter	156
Figure 6.25	AC waveform of conventional unipolar H-Bridge inverter	156
Figure 6.26	THD ac current for conventional unipolar H-Bridge inverter	156
Figure 6.27	Bipolar H-Bridge inverter switching pattern, (a) S1&S4, (b) S2&S3	157

Figure 6.28	Output inverter (V_{ab}) for bipolar H-Bridge inverter	158
Figure 6.29	AC waveforms for bipolar H-Bridge inverter	158
Figure 6.30	Common-mode voltage (V_{cmm} , channel 1) and ground leakage current (I_g , channel 2) for bipolar H-Bridge inverter (measured by Fluke 434 Power Quality Analyzer)	158
Figure 6.31	FFT of Common-mode voltage for conventional bipolar H-bridge inverter	159
Figure 6.32	THD current for bipolar H-Bridge inverter (measured by Fluke 434 Power Quality Analyzer)	159
Figure 6.33	The effect of filter impedance mismatch on ground leakage current levels and ac waveforms	160
Figure 6.34	The ground-leakage current spectrum when the impedances mismatched	160
Figure 6.35	Ground leakage current levels against filter ratio values $L_r (L_{fln}/L_{fln} \& (L_{f2}>L_{f2n})$	161
Figure 6.36	Parasitic capacitance vs. ground leakage current	161
Figure 6.37	Switching pattern for HB-ZVR topology	162
Figure 6.38	AC waveform for HB-ZVR topology	162
Figure 6.39	Thd ac current for HB-ZVR topology	163
Figure 6.40	Common-mode voltage and ground leakage current for HB-ZVR topology (Measured by Fluke 434 power Quality Analyzer)	163
Figure 6.41	FFT of common-mode voltage for HB-ZVR topology	163
Figure 6.42	Series dc-link capacitor voltages ($VC_{dc1} \& VC_{dc2}$) of HB-ZVR Topology	164
Figure 6.43	Switching pattern for balancing circuit	164
Figure 6.44	Series dc-link capacitors, (a) without balancing circuit, (b) with balancing circuit (vertical scale: 50 V/div; horizonatal scale: 2.5 ms/div)	165
Figure 6.45	Common-mode voltage and ground leakage current of SC-HB topology (measured by Fluke 434 Power Quality Analyzer)	166

Figure 6.46	FFT of common-mode voltage for SC-HB topology	166
Figure 6.47	Grid waveforms, ac voltage (100V/div) and ac current (5A/div) for unipoproposed SC-HB inverter topology	olar 166
Figure 6.48	THD current for SC-HB topology converter (measured by Fluke 435 series II Power Quality and Energy)	167
Figure 6.49	Common-mode voltage (V_{cmm}) obtained for bipolar H-Bridge inverter with CD-Boost converter	168
Figure 6.50	Harmonic spectrum of the common-mode voltage of bipolar H-Bridge inverter with CD-Boost converter	168
Figure 6.51	The ground leakage current, ac voltage, and ac current, of the bipolar H-Bridge inverter with CD-Boost converter	169
Figure 6.52	The ground leakage current spectrum of the bipolar H-Bridge inverter w CD-Boost converter	ith 169
Figure 6.53	THD current for the bipolar H-Bridge inverter with CD-Boost converter (measured by Fluke 435 series II Power Quality and Energy)	170
Figure 6.54	Switching pattern for modified unipolar H-Bridge inverter with CD-Boost converter	171
Figure 6.55	Output inverter V_{ab} (channel 1), common-mode voltage (V_{cmm}), channel 2) and ground leakage current I_g (channel 3) for modified unipolar H-Bridge inverter with CD-Boost converter	171
Figure 6.56	FFT of ground leakage current for modified unipolar H-Bridge inverter with CD-Boost converter	172
Figure 6.57	AC voltage and ac current waveforms for modified unipolar H-Bridge inverter with CD-Boost converter	172
Figure 6.58	THD grid current for modified unipolar H-Bridge inverter with CD-Boost converter	173
Figure 6.59	Inverter voltage, common-mode voltage and ground leakage current for proposed modified unipolar H-Bridge inverter with modified boost converter	173
Figure 6.60	AC waveforms of proposed modified unipolar H-Bridge inverter with modified boost converter	174

Figure 6.61	THD current for the proposed modified unipolar H-Bridge inverter with modified boost converter (measured by Fluke 435 series II Power Quality and Energy)	174
Figure 6.62	Conversion efficiency of different inverter topologies	175
Figure 6.63	Conversion efficiency of different two-stage inverter topologies	177
Figure 6.64	Time responses of V_{pv} , I_{pv} , V_{mp} and I_{mp} , at open-circuit mode (V_{pv}) and MPP mode (V_{mp})	178
Figure 6.65	Duty cycle and modulation index control	178
Figure 6.66	DC output current and voltage when the output power changes from 115W to 63W	179
Figure 6.67	Anti-islanding of over-frequency test (51 Hz)	179
Figure 6.68	Anti-islanding of under-frequency test (49 Hz)	180
Figure 6.69	Anti-islanding of under-voltage test (200 V)	180

LIST OF TABLES

Table 2.1	FiT Rates for Solar PV (Individual) (21 years from FiT Commencement Date 1 st January 2014)	21
Table 3.1	Advantages and disadvantages of selected topologies	74
Table 4.1	Half-positive cycle operation mode of conventional unipolar H-Bridge topology	84
Table 4.2	Operation mode of SC-HB topology	93
Table 4.3	Four states of SC-HB inverter	95
Table 4.4	Switching combination of proposed inverter (for positive grid voltage)	101
Table 5.1	Simulation and experiment parameters of proposed SC-HB inverter	123
Table 5.2	Simulation and experiment parameter values of proposed bipolar H-Bridge inverter with CD-Boost converter and modified unipolar H-Bridge inverter with CD-Boost converter	130
Table 6.1	Experiment parameter values of various DC-DC converters	144
Table 6.2	Experimental data results of various DC-DC converters	153
Table 6.3	The matching value of impedances (L_r)	161
Table 6.4	Performance comparisons of various single-stage inverter topologies	175
Table 6.5	Performance comparisons of various two-stage inverter topologies	177

LIST OF SYMBOLS

 V_{ab} Inverter output voltage

 V_{grid} Grid voltage

 C_{pv} Parasitic capacitance

 η_{mppt} Efficiency of MPP tracker

 η_{conv} Efficiency of conversion

 V_A Array voltage

 I_A Array current

 N_1 , N_2 Primary winding turn ratio, Secondary winding turn ratio

*I*_g Ground-leakage current

 I_{grid} Grid current

 V_{cmm} Common-mode voltage

 C_b, C_{dc} DC-link capacitors

 P_{pv} Rated power of PV module

 ω_{grid} Grid frequency in (rad/sec)

 V_c Rated input DC-link capacitor voltage

 Δu_c Ripple voltage of DC-link capacitor

 $\Delta_{ILripple, max}$ Maximum Ripple Current

 V_{pv} Photovoltaic voltage

 V_i Input voltage

 V_{dc} Output DC-DC converter and input inverter voltage

 V_{inv} Output inverter voltage

 V_{rms} Root mean square voltage

 P_{ac} AC output power

 P_{dc} DC output power

 η_{conv} DC / AC converter efficiency

 S_a , S_1 , S_2 , S_3 , S_4 IGBT devices

 C_1, C_2 Cuk-derived converter capacitors

 D_1, D_2, D_3 Diode devices

 V_{Cl}, V_{C2}, V_C Capacitor voltage

 V_L Voltage across input inductor (L)

L Input inductor

 L_m Magnetizing inductance

DT Time interval when IGBT Sa is closed

(1-D)T Time interval when IGBT Sa is opened

 $\Delta_{iL(on)}$ Rate of change of inductor current when S_a is closed

 $\Delta_{iL(off)}$ Rate of change of inductor current when Sa is opened

M Conversion ratio

 M_s Normalized switch voltage stress

*m*_a Modulation index

 V_a Leg 1 inverter output voltage

 V_b Leg 2 inverter output voltage

 V_{ao} Voltage pulses generated at leg a to common reference point "0".

 V_{bo} Voltage pulses generated at leg B to common reference point "0".

 V_{ref} Sinusoidal reference

 V_c Triangular carrier

 V_{oc} open-circuit voltage

 L_{f1} , L_{f2} Line inverter inductance, Line grid inductance

 L_{fln} , L_{f2n} Neutral inverter inductance, Neutral grid inductance

I_{pv} Photovoltaic current

 I_{sc} short-circuit current

w_{res} Resonant fequency

 $\Delta V_{Cpv(t)}$ Potential parasitic capacitance voltage

D Duty cycle

 t_r Rise time

t_f Fall time

T Switching period

 d_1 , d_2 Duty cycle of V_{ao} and V_{bo}

 f_{grid} Grid frequency

 f_s Switching Frequency

 f_{res} Resonance Frequency

 $f_{s,uni}$ Switching frequency for unipolar PWM

f_{svbi} Switching frequency for bipolar PWM

 V_{mpp} Maximum point voltage

I_{mp} Maximum point current

 P_{mp} Maximum power point

 L_r Common-mode inductor filters matching ratio

 C_{B1} , C_{B2} Two Series dc-link Capacitors

PSIM PowerSim

LIST OF ABBREVIATIONS

SPWM Sinusoidal Pulse Width Modulation

PV Photovoltaic

rms Root mean square

PWM Pulse Width Modulation

CD-Boost Cuk-Derived Boost

DC Direct Current

AC Alternating Current

MPP Maximum Power Point

MPPT Maximum Power Point Tracking

SC Switched - capacitor

THD_i Total harmonic distortion current

THD_v Total harmonic distortion Voltage

TWh Terawatt hour

GW Gigawatt

MII Module Integrated Inverter

PI Proportional Integral

DSP Digital Signal Processor

SC-HB Split Capacitor H-Bridge

HB-ZVR H-Bridge Zero Vector Rectifier

EFG Edge-defined Film-fed Growth

APEC All perovskite Capacitor

I-V Current-voltage

STC Standard Test Conditions

SF Sizing factor

HF High frequency

P&O Perturbation and observation

IC Incremental conductance

CV Constant voltage

DG Distributed generator

UVP Under voltage protection

OVP Over voltage protection

UFP Under frequency protection

OFP Over frequency protection

PCC Point of common coupling

IEC International Electrotechnical Commission

PF Power factor

BJT Bipolar Junction Transistors

MOSFET Metal Oxide Semiconductor Field Effect Transistor

GTO Gate-turn-off thyristor

IGBT insulated bipolar junction transistors

SITH static induction thyristor

VSI voltage source inverter

CSI current source inverter

CCM continuous current mode

CICM continuous inductor current mode

RCD Resistor, Capacitor and Diode

LCDD Inductor, Capacitor, Diode and Diode

NPC neutral point diode clamped

MIC module integrated converter

ADC analogue-to-digital converter

S/H Sample-and-hold

GP General-purpose