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ABSTRACT 

The demanding for enantiomerically pure (enantiopure) compounds, especially for 
pharmaceutical field has been attracting great attention during last decades. Direct 
enantioseparation by chiral stationary phases (CSPs) using high performance liquid 
chromatography (HPLC) remains as the most important technique for enantioseparation. 
The development of novel stable and powerful CSPs is therefore important. The first 
part of this study involved a facile and reliable preparation of CSPs. Thus, β-
cyclodextrin was functionalized with ionic liquids (ILs) namely 1-benzylimidazole (1-
BzlIm) and 1-decyl-2-methylimidazole (C10MIm) with tosylate as anion produced β-
CD-BIMOTs and β-CD-DIMOTs respectively. β-CD-BIMOTs and β-CD-DIMOTs 
were attached to the modified silica to obtain the CSPs. The performances of the 
synthesized CSPs were determined by examining the capability of enantioseparation of 
selected analytes: flavonoids (flavanone, hesperetin, naringenin and eriodictyol), β-
blockers (atenolol, metoprolol, pindolol and propranolol) and Non-steroidal anti-
inflammatory drug (NSAIDs) (ibuprofen, fenoprofen, ketoprofen and indoprofen). The 
performance of β-CD-BIMOTs and β-CD-DIMOTs stationary phases was also 
compared with native β-CD stationary phase. The results indicated that β-CD-BIMOTs 
stationary phase afforded more favorable enantioseparations than β-CD-DIMOTs and 
native β-CD based stationary phases. Therefore, the optimization for enantioseparation 
of selected analytes (flavonoids, β-blockers and NSAIDs) and evaluation of interactions 
was further investigated on β-CD-BIMOTs stationary phase. The selected flavonoids, 
flavanone and hesperetin obtained high resolution factor in reverse phase mode. 
Meanwhile naringenin and eriodictyol attained partial enantioseparation in polar organic 
mode. In order to understand the mechanism of separation, the interaction of selected 
flavonoids and β-CD-BIMOTs was studied using spectroscopic methods which are 1H 
NMR, NOESY and UV/Vis spectrophotometry. The result for enantioseparation of 
selected β-blockers, propranolol and metoprolol showed good enantioresolution 
compared to atenolol and pindolol. The results suggested that the lipophilic property 
and the structure of propranolol and metoprolol that enable the formation of inclusion 
complex contribute to better enantioseparation. This observation was proven by 1H 
NMR and NOESY of β-CD-BIMOTs/β-blockers. The effect of the types and variation 
of mobile phase composition on enantioseparation of NSAIDs was also studied on β-
CD-BIMOTs CSP. From the result of enantioseparation, ibuprofen and indoprofen 
achieved the better resolution than ketoprofen and fenoprofen due to their favorable 
orientation to fit into the β-CD-BIMOTs cavity. This orientation was depending on the 
structure of NSAIDs.  
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ABSTRAK 

 
Permintaan yang tinggi terhadap sebatian enantio yang asli, terutamanya dalam bidang 
farmaseutikal telah menjadi perhatian sejak berdekad yang lalu. Pemisahan enantio 
secara langsung oleh fasa pegun kiral (CSP) menggunakan kromatografi cecair prestasi 
tinggi (HPLC) adalah teknik yang penting untuk pemisahan enantio. Oleh itu, 
perkembangan penghasilan CSP yang terbaru perlu diambil kira. Bahagian pertama 
kajian ini adalah melibatkan penyediaan CSP yang sangat mudah. Untuk itu, β-
cyclodextrin telah difungsikan dengan cecair ionik (ILs) iaitu 1-benzylimidazole (1 
BzlIm) dan 1-Decyl-2-methylimidazole (C10MIm) dengan tosylate sebagai anion 
masing-masing menghasilkan β-CD-BIMOTs dan β-CD-DIMOTs. β-CD-BIMOTs dan 
β-CD-DIMOTs dilekatkan pada silika terubahsuai untuk menghasilkan fasa pegun kiral. 
Prestasi fasa pegun kiral ini diukur dengan keupayaan pemisahan enantio terhadap 
analit yang terpilih: flavonoid (flavanone, hesperetin, naringenin dan eriodictyol), β-
blockers (atenolol, metoprolol, pindolol dan propranolol) dan ubat anti-radang bukan 
steroid (NSAIDs) (ibuprofen, fenoprofen, ketoprofen dan indoprofen). Prestasi fasa 
pegun β-CD-BIMOTs dan β-CD-DIMOTs juga telah dibandingkan dengan fasa pegun 
β-CD asli. Keputusan menunjukkan bahawa fasa pegun β-CD-BIMOTs mencapai 
pemisahan enantio yang lebih baik daripada fasa pegun ß-CD-DIMOTs dan fasa pegun 
β-CD asli. Oleh itu, pengoptimuman pemisahan enantio terhadap analit yang terpilih 
(flavonoid, β-blockers dan NSAIDs) dan penilaian interaksi yang terlibat disiasat 
dengan menggunakan fasa pegun β-CD-BIMOTs. Flavonoid seperti flavanone dan 
hesperetin memperolehi faktor resolusi yang tinggi dalam mod fasa terbalik. Sementara 
itu, naringenin dan eriodictyol mencapai separa pemisahan enantio dalam mod organik 
berkutub. Untuk memahami mekanisma pemisahan, interaksi flavonoid dan β-CD-
BIMOTs dikaji menggunakan kaedah spektroskopi iaitu 1H NMR, NOESY dan 
spektrofotometri UV-Vis. Keputusan pemisahan enantio β-blockers menunjukkan 
resolusi enantio propranolol dan metoprolol adalah lebih baik berbanding atenolol dan 
pindolol. Ini kerana sifat lipofilik serta struktur propranolol dan metoprolol yang 
membolehkan pembentukan kompleks kemasukan berlaku dan seterusnya menyumbang 
kepada pemisahan enantio yang lebih baik. Interaksi ini dibuktikan dengan 1H NMR 
dan NOESY β-CD-BIMOTs/β-blockers. Pemisahan enantio NSAIDs dengan β-CD-
BIMOTs turut dikaji berdasarkan jenis dan kepelbagaian  komposisi fasa bergerak. 
Berdasarkan keputusan  pemisahan enantio, ibuprofen dan indoprofen mencapai resolusi 
yang lebih baik berbanding ketoprofen dan fenoprofen kerana orientasi yang sesuai 
untuk mereka dimuatkan ke dalam rongga β-CD-BIMOTs. Orientasi ini bergantung 
kepada struktur NSAIDs itu sendiri. 
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CHAPTER 1: INTRODUCTION 

1.1 Background of study 

In chemistry, chirality refers to a molecule that containing asymmetric center 

(chiral atom or chiral center) and thus it can occur in a pair of isomer which is two 

mirror images of each other. This pair of isomer is called enantiomers or optical isomers 

(Figure 1.1). Chirality is important because the biological properties of enantiomers 

may differ significantly. Using ethambutol and thalidomide as examples, one 

enantiomer of ethambutol is used to treat tuberculosis while the other isomer causes 

blindness. R-thalidomide is a sedative and effective against morning sickness, whereas 

S-thalidomide is causing the birth defect (Sekhon, 2013; Blaschke et al., 1978). A 

guideline was issued in 1992 by US Food and Drug Administration (FDA) that each 

drug enantiomer must be studied separately for its pharmacological pathways, and only 

therapeutically active isomer is allowed to be marketed (Stinson, 2000). 

 
Figure 1.1: Chiral molecule 

 

 

 

 

Mirror plane
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In laboratory, most compounds are produced as racemic mixture that containing 

equal amount of enantiomers. Ideally, the desired pure enantiomer could be obtained by 

direct asymmetry synthesis without further treatment (Pazos et al., 2009; Svang-

Ariyaskul et al., 2009; Karnik & Kamath, 2008; Kaluzna et al., 2005; Missio & 

Comasseto, 2003). However, this approach is not always efficient or cost effective. By 

using chiral catalysts for asymmetric reaction, catalyst efficiency, reaction conditions 

and kinetics should be considered. Furthermore, there are no general chiral catalysts for 

all asymmetric reactions. In order to obtain the pure enantiomer, the separation of an 

enantiomeric mixture or so called enantioseparation is often necessary (Schurig, 2002; 

Szejtli, 1998). The enantioseparation method includes enzymatic resolution, the 

diastereomers crystallization or direct chromatographic separation (Lorenz & Seidel‐

Morgenstern, 2014; Allenmark, 1989).  

Recently, high performance liquid chromatography (HPLC) is becoming more 

widely used instrument for the direct separation of chiral compounds. An advantage of 

HPLC is that it can be used to separate enantiomers which are non-volatile, polar, or 

ionic. There are several approaches that have been used to achieve enantioseparation 

using HPLC. The simplest way to achieve the enantioseparation is to add chiral 

additives directly into the mobile phase of HPLC (Zhang et al., 2005). This approach 

affords satisfactory separation with simpler operation. However, the used of chiral 

additives could not be regenerated after separations. In addition, the preparation of the 

chiral additives can be laborious and expensive. Consequently, another more practical 

approach is to use chiral HPLC column that containing chiral stationary phases (CSPs). 

In this method, the chiral selector is physically adsorbed or covalently bonded to the 

solid support for the preparation of CSPs. There are several types of CSPs applied in 

HPLC such as pirkle-type CSPs, polysaccharide-based CSPs, cyclodextrin-based CSPs, 

macrocyclic antibiotics-based CSPs, chiral crown ether-based CSPs, protein-based 
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CSPs and molecular imprinting-based CSPs. Herein, this dissertation focuses on 

cyclodextrin (CD) based CSPs. 

 CDs are natural cyclic oligosaccharides consisted of six or more glucose units 

joined through α-1, 4 linkage (Figure 1.2a). CDs contain hydrophobic center and 

hydrophilic outer surface (Figure 1.2b). Due to the chair conformation of the glucose 

units, the CDs are shaped like a truncated cone rather than perfect cylinders as 

illustrated in Figure 1.2b. CDs are classified by the number of glucose unit. α-CD, β-

CD, γ-CD containing six, seven and eight glucose unit, respectively. β-CD based CSPs 

are among the most widely used CD in HPLC due its special sizes of its hydrophobic 

cavity (cavity size: α-CD < β-CD < γ-CD) (Stalcup et al., 1990; Armstrong et al., 1986; 

Armstrong et al., 1985; Armstrong & DeMond, 1984).  

When β-CD is used as CSP, chiral recognition can be achieved via the 

interaction between chiral β-CD and enantiomers (Gubitz & Schmid, 2009). The 

example of interaction is illustrated in Figure 1.3. The β-CD molecule contains 35 chiral 

centers. Enantiomers can interact via van der Waals dispersion forces with the 

hydrophobic cavity which is due to methylene hydrogen. β-CD also has a C7 symmetry 

axis and 14 hydroxyl groups situated at the exterior of the cavity. Thus, a number of 

potential interactions might be present between these hydroxyl groups and enantiomers. 

If the enantiomer has suitable polar substituents group such as hydroxyl, carbonyl, 

carboxyl, amino and phosphate, one or more favorable hydrogen bonds can be formed 

with the β-CD CSP. Additionally, repulsive interaction due to steric hindrance around 

the chiral atoms of CD provides conformational control that can advocate the chiral 

separation (Hinze et al., 1985; Daffe & Fastrez, 1983). These properties of β-CD has led 

to its widely used as stationary phase, particularly in HPLC for the separation of chiral 

compounds (Juvancz & Szejtli, 2002). 
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Figure 1.2 : a) Chemical structure of CD b) Molecular shape of CD 
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Figure 1.3: Illustration of the interaction between β-CD and enantiomer 
 

In most cases, the cylindrical binding cavity of native β-CD is found to be too 

symmetrical to induce large enantioselectivities (Szejtli, 1994). Due to the native β-CD 

based CSP is unable to achieve satisfactory separation of enantiomers (Stalcup et al., 

1990), additional substituents are often introduced in order to achieve better chiral 

recognition. Therefore, various efforts have been directed toward developing new β-CD 

derivative-based CSPs to enhance the chiral separation (Wang et al., 2010; Ciucanu, 

1996; Ciucanu & Konig, 1994). Some common substitution groups that have been used 

to modify β-CD were alkyl, acetyl, benzoyl, hydroxypropyl, phenylcarbamoyl 

(naphthylethyl carbamoylated or 3,5-dimethylphenyl carbamoylated), p-toluoyl, 

carboxymethyl, pyridylethylene diamine and nitropyridylethylene diamine (Xiao et al., 

2009; Han et al., 2005; Tang et al., 2005a; Tang et al., 2005b; Lipka et al., 2003; 

Armstrong et al., 1998; Chang et al., 1992). Among various substitution groups, the 

aromatic ring substituted β-CD-based CSPs have been labeled as a multi-modal CSPs 

due to its ability to interact with enantiomers at various bonding sites. The aromatic 
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substituted β-CD-based CSPs not only afford hydrogen bonding effects and dipole-

dipole interactions, but also hydrophobic and π-π interactions during enantioseparation. 

The different substitution groups on the aromatic ring can further alter the nature of π-π 

interaction to make them more suitable for the separation of various enantiomers. 

Recently, the 6-hydroxyl group of CD was bonded with ionic liquids (ILs) such as 

imidazole or pyridine in order to introduce additional π-π interaction and ionic 

interaction (Xiao et al., 2009; Tang et al., 2005a; Tang et al., 2005b). 

Ionic liquids (ILs) are a class of salt, in which the ions are poorly coordinated. 

Consequently, these compounds are in liquid form at the temperature of below 100 °C 

(Subramaniam et al., 2010; Fontanals et al., 2009). ILs has unique properties, such as 

non-volatility, non-flammability, low viscosity, and has chemical and electrochemical 

stability (McEwen et al., 1999), and also can remain in the liquid state over a wide 

range of temperature. ILs could be hydrophobic and hydrophilic depending on the 

cationic and anionic characteristic. This dual nature role of ILs indicated their 

usefulness as stationary phase in chromatography (Anderson & Armstrong, 2003). On 

the other hand, ILs molecules also consist of high charge region and low charge region 

(Canongia Lopes & Padua, 2006). This property of ILs contributes to the electrostatic 

and dispersive interaction which useful for mechanism of enantioseparation (Anderson 

& Armstrong, 2003).  

In this study, β-CD was first functionalized with ILs. The selected ILs were 1-

benzylimidazole and 1-decyl-2-methylimidazole with tosylate as anion named β-CD-

BIMOTs and β-CD-DIMOTs respectively. Then, β-CD functionalized ILs were then 

bonded onto modified silica gel to obtain CSPs. The performance of both CSPs for the 

enantioseparation was evaluated using flavonoids (flavanone, hesperetin, naringenin 

and eriodictyol), β-blockers (propranolol, metoprolol, pindolol and atenolol) and non-
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steroidal anti-inflammatory drugs (NSAIDs) (ibuprofen, fenoprofen, indoprofen and 

ketoprofen). In addition, the mechanisms of enantioseparation were investigated 

experimentally through the inclusion complexes formation study. This inclusion 

complexes study gave an insight into the interaction between CSP and the selected 

analytes during HPLC separation. 

 

1.2 Objectives of the research 

The objectives of this study were: 

1. To synthesis β-cyclodextrin functionalized ionic liquid (1-benzylimidazole and 

1-decyl-2-methylimidazole) based CSPs. 

2. To examine the performance of the synthesized CSPs for the separation of 

flavonoids, β-blockers and NSAIDs group with optimization of mobile phase. 

3. To investigate the mechanism of separation of flavonoids, β-blockers and 

NSAIDs. 

 

1.3 Outline of thesis 

The present thesis is organized into five chapters. Chapter 1 gives a brief 

introduction on research background, research objectives, and scope of study. A review 

of related literature is presented in Chapter 2. Chapter 3 presents the experimental 

procedure for the synthesis of β-CD based-CSP and the preparation of inclusion 

complex. Chapter 4 discussed the characterization of the synthesized β-CD based-CSP, 

and the evaluation of synthesized CSPs performance and the mechanism of 

enantioseparation of flavonoids, β-blockers and NSAIDs. Finally, the overall 

conclusions, together with recommendations of future works are provided in Chapter 5. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Chirality 

The word “chiral” derives from the greek word “cheir” which means hand. In 

chemistry, chirality was first discovered by Louis Pasteur in 1848. Pasteur conducted an 

experiment in which he produced crystals salt known as racemic acid. The crystals were 

of divided into two forms, known as "+" and "-" forms, which is mirror images of one 

another. Pasteur shone polarized light through each solution of these salts, and found 

that the two solutions had equal but opposite optical activity. Thus, Pasteur identified, 

for the first time, the two enantiomers of a chiral substance, and recognized the 

existence of molecular chirality (Arjomandi-Behzad et al., 2013). Chirality was later 

defined by Lord Kelvin in 1906 as the non-superimpose ability of a molecule on its 

mirror image (Evans & Kasprzyk-Hordern, 2014). Chiral molecules are also called 

optical isomers because the solutions of different enantiomer rotate plane-polarized 

light in different direction. The optical isomer or enantiomer which rotates plane-

polarized light in the clockwise direction is designated as dextrorotatory (D) or (+)-

enantiomer. In contrast, its antipode (e.g., opposite enantiomer) which rotates plane-

polarized light in the counter clockwise direction is designated as levorotatory (L) or (–

)-enantiomer (Agustian et al., 2016). An equal mixture of each of the enantiomer is 

known as a racemic mixture (Zhang et al., 2014). 

Generally, molecular chirality is mainly due to the stereogenic centers of sp3 

hybridized carbon atoms that bear four different substituents. Apart from carbon, boron, 

nitrogen, phosphorus and sulphur also have stable chiral centers. The most important 

nomenclature system for denoting enantiomers is the R/S system. Absolute 

configuration of the isomer are performed by labeling each chiral center R or S 

according to a system by which each substituents are assigned a priority, according to 
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the Cahn-Ingold-Prelog priority rules (CIP), based on atomic number (Zhang et al., 

2014). 

 

 
Figure 2.1: Examples of how to design configuration using Cahn-Ingold-Prelog prioriy 

rules 

 

On a molecular level, chirality represents an intrinsic property of the “building 

blocks of life”, such as amino acids and sugars, and therefore, of peptides, proteins and 

polysaccharides (Zhang et al., 2014). For example, amino acids are all presence in L-

configuration rather than D-configuration. Meanwhile, natural sugars are presence in D-

configuration. Consequently, metabolic and regulatory processes mediated by biological 

systems are sensitive to stereochemistry and different responses can be often observed 

when comparing the activities of a pair of enantiomers in biological system. Therefore, 

stereochemistry is an important consideration when studying xenobiotics, such as drugs, 

agrochemicals, food additives, flavors or fragrances. Drug action is the result of 

pharmacological and pharmacokinetic processes, by which it enters, interacts and leaves 

the body. Thus, straight regulations have been demanded by US Food and Drug 

Administration (FDA) towards marketing the single-enantiomer of drugs (Zhang et al., 

2014). FDA demands full documentation of pharmacological and pharmacokinetic 

(activity and toxicity) profiles of each individual enantiomer, as well as the racemic 
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mixture of drugs from the manufacturer. Therefore, it is necessary to have reliable 

analytical methods for the separation of each individual enantiomer and isolate the pure 

enantiomers. Chirality is also important in the agrochemical and food industry. In the 

food industry, a significant number of additives, flavors, fragrances and fumigants, 

preservatives, growth regulators, pesticides and herbicides are chiral molecules 

(Sekhon, 2013). Enantiomers in agrochemicals can have diverse effects on plants and 

insects, and cause negative effects to the environment and human health (Zsila, 2013). 

For examples, several European governments only allow the application of pesticide 

mecoprop and dichlorprop in the form of R-enantiomers (Author, 2004). All metalaxyl 

fungicidal activity is resided with the active R-enantiomer. The degradation of 

metalaxyl was shown to be enantioselective with the fungicidally active R-enantiomer 

being degraded faster than the inactive S-enantiomer, resulting in residues enriched with 

S-metalaxyl when the racemic compound was applied (Sekhon, 2013). In addition, R-

enantiomer of fipronil, a phenylpyrazole insecticide, was more toxic to Ceriodaphnia 

dubia (water flea) than the S-enantiomer but in other studies the S-enantiomer was 

shown to have significantly more androgen and progesterone activity than the R-

enantiomer (Negru et al., 2015). 

2.2 Enantiomeric separation technology 

2.2.1 Development of chiral separation technologies 

During the past decades, the requirement of enantiomeric separation emerges 

rapidly in the area of food safety, environmental analyses, agrochemical and drug 

industries (Bubalo et al., 2014). In the preparation of single enantiomer, 

enantioseparation at analytical scale is important for determining enantiomeric purity 

(Dai et al., 2013). Since enantiomers have identical physical and chemical properties 

except for the rotation of the plane of polarized light, chiral separation has been 
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considered as one of the most challenging tasks in chemistry. The enantioseparation can 

be divided in two classes: non-chromatography and chromatography.  

For non-chromatography methods, Louis Pasteur discovered the spontaneous 

enantiomeric resolution by crystallizing separately each isomers of salt crystal as 

mentioned previously at section 2.1. After that, a considerable number of optical 

compounds were resolved mainly by fractional crystallization of the diastereomeric 

salts (Ismail et al., 2016). Generally, reaction of a racemic acid or base with an optically 

active base or acid gives a pair of diastereomeric salts. Members of this pair exhibit 

different physicochemical properties (e.g., solubility, melting point, boiling point, 

adsorption, phase distribution) and can be separated owing to these differences by 

crystallization.  

For chromatography methods, the earliest report of chiral separation was carried 

out by Gil-Av and his coworkers in 1966. They found that optically active stationary 

phase consisting of N-trifluoroacetyl-L-phenylalanine cyclohexyl ester was successfully 

applied to separate the enantiomers of trifluoroacetyl derivatives of some amino acids 

(Arjomandi-Behzad et al., 2013). Since then, chromatography approaches are rapidly 

becoming the most commonly used enantioseparation approach in both analytical and 

preparative scale. 

The publication for HPLC in the area of enantioseparation has been growing 

rapidly in recent years due to its easy-handling (Lin et al., 2014). Separation of chiral 

compounds can be carried out using HPLC through direct and indirect methods. Indirect 

methods are based on the addition of chiral additive to the mobile phase. Direct 

methods separate the isomers on chiral stationary phases (CSPs). Generally, CSPs is 

prepared by adsorbing or covalently bonding the chiral selector onto solid support. 

Chiral selector is the chiral component of the separation system that is able to interact 
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enantioselectively with the enantiomers to be separated (Saleem et al., 2013). Figure 2.2 

illustrates the structures of the various chiral selectors. However, research findings have 

found that there are no universal CSP or chromatographic conditions which enabling the 

enantioseparation for all compounds. For most of the CSPs, small changes in the 

analytes’s structures and/or chromatographic conditions would exert a strong impact on 

the efficiency of enantioseparation. Therefore, many parameters of chromatographic 

conditions in HPLC need to be optimized to resolve the enantiomers (Ismail et al., 

2016). 

 

 
Figure 2.2: Common structures of chiral selectors 
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2.2.2 Development of chiral stationary phase  

CSPs have been studied extensively since Davankov’s review on the application 

of natural sorbents (proteins, carbohydrates, and optically active quartz) and also 

artificial dissymmetric sorbents (based on silica gel and activated carbon) as stationary 

phase for the  ion exchange chromatography in the early 1970s (Arjomandi-Behzad et 

al., 2013). Driven by the growth of asymmetric organic synthesis leading to chiral 

drugs, food additives, fragrances, agricultural chemicals and many other important 

chiral intermediates, the development of CSPs has grown rapidly. Various CSPs were 

developed and applied in various chiral resolution technologies. Firstly, Davankov et al. 

developed metal ion complexes for enantioseparations (Arjomandi-Behzad et al., 2013). 

After that, by linking small chiral molecules onto stationary phase, brush type chiral 

stationary phases were prepared (Valente & Soderman, 2014). Pirkle et al. developed 

the first commercial column with brush type chiral stationary phase (Figure 2.3) for 

HPLC in 1981 (Valente & Soderman, 2014). Most recently, naturally occurred chiral 

macromolecules such as cyclodextrins, celluloses, macrocyclic glypeptides and proteins 

were modified for the application of enantioselective processes (Wang et al., 2011b).  
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Figure 2.3: Molecular structure of the first commercial chiral column (Pirkle 1-J-

column)-Brush type CSP 

 

2.3 Cyclodextrin and its applications in enantioseparation 

Cyclodextrins (CDs) are toroidal structural molecules. The α-, β-, γ- CD consist 

of six, seven and eight α-(1, 4)-linked D-(+)-glucose units, respectively (Figure 2.4). 

CDs are presence as chiral molecule due to the presence of chiral center of glucose units. 

The special properties of CDs originate from their unique truncated cone shape 

structures. The interior cavity of the cone is highly hydrophobic and the exterior is 

hydrophilic owing to hydroxyl (OH) group (Tang & Tang, 2013). The truncated cone of 

CDs consists of secondary OH groups at C2 and C3 and primary OH at C6 (Figure 2.4). 

The hydrogen at C1, C2, and C4 are located at the outside surface of the torus. The OH 

groups combined with the hydrogen atoms outside surface of CD build up a polar 
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the cavity some Lewis-base character (Zhang et al., 2005). These characteristics endow 

CDs with a special capacity which can accommodate large variety of organic and 

inorganic compounds through inclusion complexation (Schurig & Juza, 2014).  

As shown in Table 2.1, three types of CDs have different sizes of cavity. A 

general consideration is that small size hydrophobic organic molecules form the most 

stable complex with α-CD but the weakest with γ-CD. Secondly, neutral molecules 

generally bind more tightly with native CDs than their charged species. Compared with 

the α- and γ-CDs, β-CD is more widely investigated in separation science due to their 

high chemical stability and low cost. In addition, β-CD also has the special size of its 

hydrophobic cavity (cavity size: α-CD < β-CD < γ-CD) which affords to form inclusion 

complexes with numbers of organic and inorganic compounds (Valente & Soderman, 

2014). 
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Figure 2.4: Illustration of a) α-CD, b) β-CD, c) γ-CD and d) side view of CD represent 

the position 

 

Table 2.1: Physical and chemical properties of CD molecules (Bender & Komiyama, 
2012)  

Cyclodextrin No of 

glucose 

units 

Molecular 

mass 

(g/mol) 

Cavity 

diameter 

(nm) 

No. of 

stereogenic 

center 

Water 

solubility 

(g/100 mL) 

α 6 972 0.49 30 14.5 

β 7 1135 0.62 35 18.5 

γ 8 1297 0.79 40 23.3 
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For the mechanism of enantioseparation, according to Armstrong et al. (1986), 

there are a number of requirements for chiral recognition by CD. For example, an 

inclusion complex must be formed, and there must be relatively tight fit between the 

complexed moiety and the CD (Wang et al., 2011b). The chiral center and one 

substituent of the chiral center of an analyte must be near and interacts with the mouth 

of the CD cavity. The unidirectional OH groups at C2 and C3 located at the mouth of 

CD cavity are particularly important in chiral recognition in order to satisfy the 

requirement of the “three-point” model. The “three-point” model was introduced by 

Pirkle at 1989 to elaborate the enantioseparation on CSPs (Valente & Soderman, 2014). 

According to Pirkle’s model, chiral recognition requires three interactions with at least 

one of them has to be stereoselective. Pirkle’s model can be illustrated by a 

representative enantioseparation in Figure 2.5. 

 

 
Figure 2.5: The “three point” model 

 

As illustrated in Figure 2.5, three interactions of A―A’, C―C’ and D―D’ between 

the chiral selector and enantiomer (I) whereas, only two interactions A―A’ and C―C’ are 

formed between chiral selector and enantiomer (II). The discrimination effect of the two 

enantiomers falls on the interaction of D―D’ and resulting in the different of elution order 

of the two enantiomers. 
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The first application of CDs for enantioseparation was reported in 1959 in which 

CDs were employed as a selective precipitation or crystallization agent for occlusion 

compounds (Szente & Szemaan, 2013) . From then on, CDs were studied either as 

mobile phase additives or stationary phases in chromatographic separation (Zhang et 

al., 2015b). CDs derived stationary phases were originally designed for enantiomeric 

separation, structural and geometrical isomers separation. Early studies of CDs based 

stationary phases for enantioseparation focused on the polymerized CDs which were not 

robust in chiral discrimination and often overloaded with distorted peaks (Bender & 

Komiyama, 2012). Thereafter, researchers investigated the development of covalently 

bonded CD based CSPs. In 1984, the first stable CD CSP (Cyclobond I) with high 

coverage of the CD was developed by Armstrong & DeMond (1984). Subsequently, the 

CD derived CSPs were also commercialized by their group and hundreds of chiral 

compounds have been resolved on these CSPs using HPLC (Dai et al., 2013) . 

The properties of the CD can be modified by replacing one or more primary or 

secondary OH groups with different moieties (Ong et al., 2008). For CD, the three OH 

groups at the glucose units are differ in reactivity due to the different acidities and 

sterical hindrance. Of the three types of OH groups present in CD rim, the most 

nucleophilic are primary OH at C6, the least nucleophilic are secondary OH at C2 and 

the most inaccessible are secondary OH at C3. This forms the basis for a broad 

spectrum of regioselective alkylations and acylations which have been applied to 

modify the CDs for CSPs (Schurig & Juza, 2014).  

The modified CDs with certain functional moieties can provide potentially 

additional useful interaction sites and accommodate a variety of spatial requirements to 

produce highly selective separations for a versatile array of analytes. The substitution 

groups that have been incorporated onto CDs were alkyl, acetyl, hydroxypropyl, 
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phenylcarbamoyl groups (naphthylethyl carbamoyl or 3,5-dimethylphenyl carbamoyl) 

(Figure 2.6) (Dai et al., 2013). 

Generally, the OH groups, especially the secondary OH groups allow CD to 

interact with analytes via hydrogen bonding or dipole-dipole interaction. Although 

methylation of the OH groups reduced the hydrogen bonding sites but it enlarges the 

hydrophobic cavity and thus, enhances the steric interactions. These CSPs exhibit good 

enantioselectivities to some specific solutes such as furan derivatives, tetralins and 

melatonin ligand. The chiral recognition of these CSPs is implemented through 

hydrophobic and steric interactions between the analytes and the methoxy groups on the 

CD rim after inclusion complex formation (Han et al., 2005; Lipka et al., 2003). Since 

methylation could not introduce diverse effective interaction sites (like hydrogen 

bonding and π−π interaction sites), these CSPs are less effective towards a wide range 

of chiral compounds. 

Hydroxypropylated CD-based CSPs (Figure 2.6 (iii)) have been considered as a 

very successful CSP. The OH groups of this CD derivative increase the flexibility of 

hydrogen bonding and provide additional hydrogen bonding sites with analyte. Many 

chiral compounds that are partially resolved on unmodified CD-based CSP could 

undergo baseline resolution using similar separation conditions on these 

hydroxypropylated CSPs. Enhanced enantioseparation of some important drugs like 

conazoles, methadone, sertraline, Jacobsen’s Catalyst and strigol can be achieved using 

2-hydroxypropyl-β-CD (Liu et al., 2015). However, the preparation process for these 

CSPs is relatively tedious and costly. 

Substituted phenyl or naphthylethyl carbamoylated CD CSPs (Figure 2.6 (iv)) 

have been labeled as multi-modal CSPs due to their various bonding sites. It is not only 

afford hydrogen bonding effects and dipole-dipole interactions but also hydrophobic 
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and π-π interactions. In addition, the different substitution groups on the aromatic rings 

can enhance the nature of π-π interaction to make them more suitable for the separation 

of various racemates. Besides, an ionic interaction site was introduced by incorporating 

ionic liquid (IL) moiety such as imidazole or pyridine groups into the structure of CD 

and make them suitable for the enantioseparation of charged and polar analytes  (Wang 

et al., 2012b, 2012a; Wang et al., 2012c; Wang et al., 2008). 

 
Figure 2.6: Common derivatives group of CD 

 

2.4 Ionic liquid in enantioseparation  

Ionic liquids (ILs) belong to salt-liked materials which are liquid below 100 ºC 

and even below room temperature  (Yao et al., 2014b). As salts they are by essence 

made of cation and anion. The term ILs covers inorganic as well as organic molten 

salts. ILs are usually composed of bulky, nonsymmetrical organic cation such as alkyl-
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(Bubalo et al., 2014). The anion is not necessarily to be inorganic; ILs possessing 
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organic anions such as tosylate and methanesulfonate are also commercially available 

(Figure 2.7).  

Owing to tunable properties which can be selected by choosing appropriate 

cationic or anionic constituents, they can be applied as mobile phase additive or 

stationary phase in chromatographic analysis. Compared with ILs used as mobile phase 

additives in HPLC, the application of ILs as stationary phases is fewer. Armstrong et al. 

(1999) and Anderson and Armstrong (2003) applied the ILs (1-Butyl-3-

methylimidazolium hexafluorophosphate [BMIM][PF6] and chloride [BMIM][Cl]) as 

stationary phases for gas chromatography (Zhang et al., 2015a) . They claimed that the 

dual nature of ILs is the main factor that contributed to the effective separation of polar 

and nonpolar compounds. Afterward, the applications of ILs in chromatography have 

been increased significantly. 

Figure 2.7: Common structures of cation and anion of ILs 
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Extending ILs to the realm of chiral separations has been done in two ways: (1) 

the ILs itself can be chiral or (2) a chiral selector can be dissolved in an achiral ILs. The 

first approach is not popular since the synthesis of chiral ILs is tedious and required 

expensive reagents. Thus, the second approach is the most preferred method. 

Modification of chiral selector with ILs yielded the CSPs with ion exchange properties. 

Consequently, the chiral separation mechanism involving ILs relies on multi modal 

interaction such as donor-acceptor interactions (hydrogen bonding, π-π interaction) and 

ionic interactions.  

Lately, Wang et al. (2008)  have physically coated a series of alkylimidazolium 

modified β-CD onto porous spherical silica gel to develop a series of β-CD-IL based 

CSPs namely mono-6-(3-methylimidazolium)-6-deoxy-perphenylcarbamoyl-β-CD 

chloride (MPCCD),  mono-6-(3-methylimidazolium)-6-deoxyper (3,5-

dimethylphenylcarbamoyl)-β-CD chloride (MDPCCD), mono-6-(3-octylimidazolium)-

6-deoxyperphenylcarbamoyl-β-CD chloride (OPCCD)  and mono-6-(3-

octylimidazolium)-6-deoxyper (3,5-dimethylphenylcarbamoyl)-β-CD chloride 

(ODPCCD) (Table 2.2). These CSPs were used for the chiral separation of 18 aryl 

alcohols using HPLC and supercritical fluid chromatography (SFC). Among these 

CSPs, OPCCD, consisting of an n-octyl group on the imidazolium moiety and 

phenylcarbamoyl groups, exhibited the best separation ability for the aryl alcohols. 

Chromatographic studies revealed that the CSPs consisting of long alkyl group on the 

imidazolium moiety on the CD ring can provide enhancement of analyte-chiral 

substrate interactions over CSPs bearing the short alkyl group on the imidazolium 

moiety on the CD ring.  
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Later, Wang prepared another two β-CD-ILs CSP by graft polymerization of 6A-

(3-vinylimidazolium)-6-deoxyperphenylcarbamate-β-CD chloride or 6A-(N,N-

allylmethylammonium)-6-deoxyperphenylcarbamoyl-β-CD chloride onto silica to 

obtain VIMPCCD-POLY and VAMPCCD-POLY CSPs, respectively (Wang et al., 

2012b; Wang et al., 2012c). These CSPs were used to separate the enantiomers of 12 

pharmaceuticals and six carboxylic acids under reverse phase and normal phase mode. 

VIMPCCD-POLY exhibited higher enantioselectivities towards most of the selected 

analytes than VAMPCCD-POLY in normal-phase HPLC (Wang et al., 2012c). The 

higher enantioselectivity was attributed to the additional π-π conjugation and 

electrostatic interactions formed with the aromatic imidazolium moiety. Meanwhile, the 

planar imidazolium moiety was found to make the CSP more accessible to the analytes 

than the tetrahedral ammonium moiety. The chiral separation abilities of VAPMPCCD-

POLY and VIMPCCDPOLY were also compared in SFC (Wang et al., 2012a). The 

electrostatic force generated from the cationic imidazolium moiety was found to be 

important in the retention and chiral separation of 14 racemates, encompassing 

flavanones, thiazides and amino-acid derivatives. 
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Table 2.2: Chemical structures of the cationic functionalized β-CDs (Wang et al., 2008) 
Chemical structure   CSPs    R1         R2 
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Figure 2.8: Structures of VIMPCCD-POLY and VAMPCCD-POLY CSPs (Wang et 

al., 2012c) 
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1,2,3-triazole was electronically stronger than the π-conjugation through the two CH3 

groups in 1,2-dimethylimidazole. Therefore, 1-amino-1,2,3-triazole cation was much 

more electronically stabilized. Consequently, 1-amino-1,2,3-triazole cation forming a 

loose ion pair with its counter ion (OTs- or NO3
-) and it was more readily participates 

anionic exchange with analytes. Whereas 1,2-dimethylimidazole cation has a higher 

affinity to anion and could form a tight ion pair (Zhang & Lv, 2006) with its counter ion 

(OTs- or NO3
-). CSPs containing 1-amino-1,2,3-triazole was found to lead to the higher 

resolution factors for the acidic analytes. Moreover, the CSPs consist of NO3
- anion 

paired with either 1,2-dimethylimidazole or 1-amino-1,2,3-triazole cation always 

provided higher resolutions than the CSPs consist of OTs- anion. It was suggested that 

NO3
- anion has more hydrogen bonding sites and less sterically hindered to easier the 

interaction with the analytes. 

 

 
Figure 2.9: Structure of functionalized IL-bonded CSPs (Zhou et al., 2010) 
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2014b) . At the same year, Yao et al. (2014a) has synthesized triazole-bridged β-CD 

CSP. The performance of triazole-bridged β-CD CSP (Figure 2.10 (ii)) was compared 

with the previous thiolether-bridged β-CD CSP (Figure 2.10 (i)) for enantioseparation 

of 26 isoxazoline derivatives. Most of the selected analytes was well resolved (Rs >1.5) 

under reversed phase mode for both CSPs.  

Figure 2.10: Structure of Thioether-bridged β-CD and Triazole-bridged β-CD CSPs 

(Yao et al., 2014a)  

 

Li et al. (2014) prepared four β-CD derivatives functionalized by ILs, in which 

the substituents and β-CD cavity are linked by a CH2-N=C bonding and the 
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was obtained for most of 1-phenyl-2-nitroethanol derivatives, aromatic alcohol and 

ferrocene derivatives. The analytes with small volume was found to achieve better 

enantioseparation on CSP (b) with smaller volume of cation and anion. Thus, they 

summarized that not only the structure matching between β-CD derivatives and the 

analytes that contributed to the enantioseparation, but the cooperation of cationic and 

anionic substituents also play a significant role in the enantioseparation.  

 
Figure 2.11: Structure of β-CD derivatives functionalized by ILs (Li & Zhou, 2014) 
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chiral selectors and are easy to be recycled through an external magnetic field (Liu et 

al., 2015b) . 

 

 

 

 

A novel amino acid IL, tetramethylammonium L-hydroxyproline (Figure 2.13), 

was first applied as a chiral ligand to evaluate its enantioselectivity towards several 

aromatic amino acids in ligand-exchange capillary electrophoresis (LE-CE) and ligand-

exchange micellar electrokinetic capillary chromatography (LE-MEKC) (Liu et al., 

2015a). In the LE-CE system, excellent separations were achieved for tryptophan and 3, 

4-dihydroxyphenylalanine. Meanwhile, the separations of the enantiomers of 

tryptophan, phenylalanine, and histidine were all improved in LE-MEKC system. 

 

 

 

 

Figure 2.13: Structure of tetramethylammonium L-hydroxyproline (Liu et al., 2015a) 
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The latest research based on CD functionalized IL was reported by Li et al. 

(2016). Li and co-workers were prepared and evaluated four single thioether bridged 

cationic CD CSPs with different spacer length, selector concentration and rim 

functionalities (Figure 2.14). The enantioseparation ability of prepared CSPs were 

evaluated by separating over forty enantiomers including isoxazolines, dansyl amino 

acids, flavonoids, tröger’s base, 4-chromanol, bendroflumethiazide and styrene oxide. 

Most of the enantiomers were well resolved (Li et al., 2016). 

 
Figure 2.14: Novel cationic CSP (Li et al., 2016) 
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2.5 Selected chiral compounds 

2.5.1 Flavonoids 

Flavonoids are a class of secondary metabolites of the plant and fungus. 

Chemically, they have the general structure of a 15-skeleton (15 carbon atoms), which 

consists of two phenyl rings (A and B) and a heterocyclic ring (C) (Figure 2.15). 

Flavonoids are divided into subclasses as showed in Table 2.4. 

 

 

 

 

 

Figure 2.15: Basic chemical structure of flavonoid 

 

Within the large family of flavonoids, flavanones possess a unique chiral 

structural which distinguishes them from all other classes of flavonoids. All the 

flavanones have a chemical structure based on a C6–C3–C6 (Figure 2.16) configuration 

consisting of two aromatic rings joined by a three-carbon link (Tiwari et al., 2013). 

Flavanones present a single stereogenic center at C (2) of chromanone core (Figure 

2.16). 

Among various flavanones, hesperetin, naringenin and eriodictyol (Figure 2.17) 

are the most abundant flavonoids that widely distributed in plants. Traditionally, 

researchers are attracted with the organoleptic properties of flavanones, such as 

bitterness or taste (Zid et al., 2015). In recent decades, flavanones are increasingly 

being recognized for their nutritional value since they may reduce the risk of chronic 

diseases and in general it gives a positive effect to the health (Tucker & Robards, 2008; 

O

A

B

C



32 

Scalbert et al., 2005). Recent studies have shown that naringenin possesses activities 

such as anti-inflammatory (Park et al., 2012), anticancer (Sabarinathan et al., 2011, 

2010), antimetastasis (Qin et al., 2011), normalizing lipids (Cho et al., 2011; 

Goldwasser et al., 2010), anti-hyperglycemia (Annadurai et al., 2012), and anti-

hypercholesterolemia (Chanet et al., 2012). Eriodictyol can provide a cytoprotective 

effect in ultraviolet (UV)-irradiated keratinocytes (Lee et al., 2011), induce long-term 

protection in ARPE-19 cells (Johnson et al., 2009), and prevent early retinal and plasma 

abnormalities in streptozotocin induced diabetic rats (Bucolo et al., 2012). 

 

 

Figure 2.16: Spatial dispositions of the enantiomers of chiral flavanones 
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Table 2.3: Common dietary flavonoids 

Flavonoids 

subclass 

Dietary flavonoids Common food source 

Antocyanidins  Cyanidin, Delphinidin, 

Malvidin, Pelargonidin, 

Peonidin, Petunidin 

Red, blue, and purple berries; red 

and purple grapes; red wine 

Flavonols  Monomers (Catechins):  

Catechin, Epicatechin, 

Epigallocatechin Epicatechin 

gallate, Epigallocatechin 

gallate 

Dimers and Polymers:  

Theaflavins, Thearubigins, 

Proanthocyanidins 

Catechins: Teas (particularly 

green and white), chocolate, 

grapes, berries, apples  

Theaflavins, Thearubigins: Teas 

(particularly black and oolong)  

Proanthocyanidins: Chocolate, 

apples, berries, red grapes, red 

wine 

Flavanones Hesperetin, Naringenin, 

Eriodictyol 

Citrus fruit and juices, e.g., 

oranges, grapefruit, lemons 

Flavonols  Quercetin, Kaempferol, 

Myricetin, Isorhamnetin 

Widely distributed: yellow 

onions, scallions, kale, broccoli, 

apples, berries, teas 

Flavones Apigenin, Luteolin Parsley, thyme, celery, hot 

peppers 

Isoflavones  Daidzein, Genistein, Glycitein Soybeans, soy foods, legumes 

 

http://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids#figure-3
http://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids#figure-3
http://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids#figure-3
http://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids#figure-3
http://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids#figure-4
http://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids#figure-5


34 

OHO

OH

R1

R2

R1=H;          R2=OH;          Naringenin            
R1= OH;      R2=OH;          Eriodictyol
R1=OH;       R2=OCH3;      Hesperetin
*Stereogenic center

O

*

 

Figure 2.17: Chemical structures of some flavanones 

 

The vast majority of flavanones can be purchased from chemical companies, but 

they are mainly available as racemates. Until now, there are only three stereochemically 

pure flavanones that are currently marketed internationally. Eriodictyol is marketed as 

the pure S-enantiomer by Fluka (Buchs, Switzerland). Homoeriodictyol is marketed as 

the pure S-enantiomer by Indofine Chemical Company (Hillsborough, NJ), 

Extrasynthese (Genay, France), and ITI International Inc. (Miami. FL). Finally, 

taxifolin is marketed as the pure 2R, 3R-enantiomer by Alexis Biochemicals (San 

Diego, CA), Fluka (Buchs, Switzerland), and Extrasynthese (Genay, France) (Yanez et 

al., 2007). As pharmaceutical related compounds, biological activity of flavonoids may 

result from a single enantiomer. Therefore, there is a need for stereospecific assay 

methods for the quantitation and effectively isolate the pure flavonoid enantiomers for 

their pharmacometric study in in vivo and in vitro models.  
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2.5.2 β-blocker drugs 

β-adrenergic blocking agents (β-blockers) are basic drug that are frequently used for 

the treatment of angina pectoris and cardiovascular (Saleem et al., 2013). β-blockers 

competitively binds to β-adrenergic receptor located at the heart and /or nonvascular 

smooth muscle. β-blockers inhibit the action of adrenergic agents (stimulants) by 

reducing the force of the heart muscle contraction and tend to reduce the heart rate. 

These drugs do not seem to produce vasodilation (widening of blood vessels resulting 

relaxation of the muscular walls of the vessels) as in the case of α-adrenergic blocking 

agents (Arjomandi-Behzad et al., 2013). It is well known that β-blockers are chiral and 

their enantiomers have different potential of pharmacological and therapeutic effects 

(Evans & Kasprzyk-Hordern, 2014). L-isomer of all β-blockers is more potent in 

blocking β-adrenoceptors than their D-isomer. For example, S(-)-propranolol is 100 

times more active than its R(+)-propranolol (Evans & Kasprzyk-Hordern, 2014). It has 

been demonstrated that R-propranolol can inhibit the conversion of thyroxin (T4) to 

triiodothyronin (T3) (Stoschitzky et al., 1992; Harrower et al., 1977; Wiersinga & 

Touber, 1977). Therefore, R-propranolol might be used as a specific drug without β-

blocking effects to reduce plasma concentrations of T3 particularly for patients who 

suffering from hyperthyroidism. Meanwhile, racemic propranolol cannot be 

administered because of contraindications for β-blocking drugs (Stoschitzky et al., 

1998). Therefore, it is important to isolate and separate the enantiomer of β-blockers for 

further application in pharmaceutical field since each isomer give the different effect to 

the body metabolism. Figure 2.18 showed the studied β-blockers. 
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Figure 2.18: Structure of studied β-blockers 
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of their R-enantiomers (Sekhon, 2013). Some reports have shown that the protein 

binding to NSAIDs have stereoselectivity (Zsila, 2013).  

For ibuprofen, it is mainly the R-enantiomer that binds with human serum 

albumin (HSA) and the two enantiomers can be mutually replaced. In in vivo study, the 

R-enantiomer of ibuprofen undergoes unidirectional chiral inversion to S-enantiomer. 

This occurs to the extent about 65%, whereas there is no bio-inversion of S- to R-

ibuprofen (Zhang et al., 2014). Although this would favor the used of racemic 

ibuprofen, since most of its inactive enantiomer is converted to active form, conversion 

of racemic ibuprofen to S-ibuprofen results in variability of clinical response, including 

delayed onset of activity, and difficulty in achieving an optimal dose, also the formation 

of coenzyme A (CoA) thioester during bio-inversion of R- to S- ibuprofen may resulting 

toxic effects (e.g. interference of lipid anabolism/catabolism) (Podar et al., 2016). In 

addition, R-ibuprofen bio-activation is susceptible to biological factors and certain 

drugs. 

Most or all cyclooxygenase inhibitory activity of ketoprofen is attributed to the 

S-enantiomer (Podar et al., 2016). The R-enantiomer is 30 to 5000 times less potent as 

an inhibitor of cyclooxygenase-1 and about 100 times less potent as an inhibitor of 

cyclooxygenase-2 (Negru et al., 2015; Cooper et al., 1998). In addition, S-ketoprofen 

has been found to be significantly less ulcerogenic in the rat gastrointestinal tract as 

compared to the racemic ketoprofen and that R-enantiomer may contribute to the 

pathogenesis of ulcers (Hardikar, 2008). In order of the different pharmacokinetic effect 

between each isomer of NSAIDs, they are raising the method to isolate and separate the 

individual isomers of the NSAIDs via chromatography. 
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Figure 2.19: Structure of selected NSAIDs 
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CHAPTER 3: EXPERIMENTAL 

3.1 Chemicals, materials and reagents 

β-CD was purchased from Acros (Geel, Belgium) (99%). 1-Benzylimidazole (1-

BzlIm) (99%), 1-decyl-2-methylimidazole (C10MIm) (97%) and toluene 2,4-

diisocyanate (TDI) (95%) were supplied by Sigma Aldrich (Buches SG, Switzerland). 

Anhydrous N,N-Dimethylformamide (DMF), anhydrous hexane, HPLC grade of 

acetonitrile (ACN) and methanol (MeOH), p-toluene sulfonic acid, p-toluene sulfonyl 

chloride and Kromasil spherical silica gel (100Ǻ pore size and 5μm particle size) were 

purchased from Merck (New York, NY, USA).  

Flavonoids group consisting of hesperetin, naringenin and eriodictyol were 

purchased from Roth Karlsruhe (Germany) while flavanone was purchased from Sigma 

Aldrich (Buches SG, Switzerland). Propranolol, metoprolol, atenolol and pindolol were 

supplied from Sigma Aldrich (Buches SG, Switzerland). Ketoprofen, ibuprofen, 

indoprofen and fenoprofen were also purchased from Sigma Aldrich (Buches SG, 

Switzerland). The standard stock solutions of flavonoids, β-blockers and NSAIDs (500 

mg/L) were prepared separately by dissolving them in MeOH and were stored in a dark 

amber glass at 4 °C. 

3.2 Instruments 

  Fourier transform infrared (FT-IR) spectra were recorded using Perkin–Elmer 

RX1 FT-IR (Perkin Elmer, Waltham, MA, USA) in the ranged 4000 to 400 (cm-1). 1H 

NMR, 13C NMR, and NOESY spectra were recorded on AVN 600 MHz (Bruker, 

Fällanden, Switzerland), and Dimethyl Sulfoxide (DMSO-D6) was used as solvent. 

Thermogravimetric analyzers were examined using TGA 4000 (Perkin Elmer, USA). A 

linear heating rate was set at 20 °C per min within the temperature ranged from 50 °C to 

900 °C in a stream of nitrogen atmosphere. The chromatographic data was performed 
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using a HPLC system consisted of a LC-20AT pump, a SPD-M20 detector, a SIL-

20AHT auto sampler, a CTO-20AC column oven and CBM-20A communication bus 

module (Shimadzu, Japan). 

3.3 Preparation of β-CD based chiral stationary phase 

The preparation of β-CD based CSP was carried out by synthesizing β-CD 

functionalized IL and then immobilized onto modified silica. 

3.3.1 Synthesis of β-CD functionalized ionic liquid 

β-CD functionalized IL was prepared according to the previous report (Raoov et 

al., 2013), as shown in Figure 3.1. First, 6-O-monotosyl-6-deoxy-b-cyclodextrin (β-

CDOTs) was prepared as describe by Zhong (Raoov et al., 2013). Then, the reaction 

was carried out by reacting β-CDOTs with IL (1-BzlIm/C10MIm). Since tosylate is a 

good leaving group, imidazole can easily undergo the nucleophilic substitution.  

The reaction was performed as follows: A suspension of β-CD (11.5 g, 10 

mmol) and p-toluenesulfonic anhydride (Ts2O) (4.9 g, 15 mmol) in 250 mL of water 

was stirred at room temperature for 2 h. Then, solution of NaOH (5.0 g in 50 mL of 

H2O) was added, and after 10 min, the reaction mixture was filtered through the celite 

on the sintered glass funnel to separate the excess tosylate. The filtrate was brought to 

pH 8 by the addition of ammonium chloride (13.4 g). The precipitate of β-CDOTs was 

obtained and cooled at 4 °C overnight. Then, the dried β-CDOTs (1.00 g, 0.78 mmol) 

and 1-BzlIm (10 mole equivalent) were dissolved in anhydrous DMF (40 ml) and the 

solution was stirred at 90 °C under N2 atmosphere. After two days, the resultant 

solution was cooled to room temperature and acetone slowly was added. The mixture 

was stirred for 30 minutes, and thereafter, filtered and washed the obtained β-CD-
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BIMOTs (mono-6-deoxy-6-(3-benzylimidazolium tosylate)-β-CD) in excess amount of 

acetone.  

The same procedure was applied for synthesizing β-CD-DIMOTs (mono-6-

deoxy-6-(3-decyl-2-methylimidazolium tosylate)-β-CD) using C10MIm replacing 1-

BzlIm. The characterized results showed that β-CD-BIMOTs and β-CD-DIMOTs had 

been successfully prepared. Form 1H NMR result, the chemical shifts of imidazole ring 

(Hf, He, and Hd) appeared in the downfield region since the protons were deshielded 

upon functionalization. A new peak was observed in proton (H6*, 3.9 ppm) and carbon 

signal (C6*, 45 ppm), which belonged to the substituted CD. All the protons of β-CD 

still appeared after the reaction because the functionalization process occurred at only 

one of the primary hydroxyl groups of β-CD. The obtained product was successfully 

characterized using several analytical techniques. Both structures of β-CD-BIMOTs and 

β-CD-DIMOTs are illustrated in Figure 3.2 and Figure 3.3. 
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Figure 3.1: Synthesis pathways of β-CD-BIMOTs CSP 

(OH)7

(HO)6 OH

(OH)7

+

-CD p-toluenesulfonic anhydride (Ts2O)

NaOH/NH4Cl

(OH)7

(HO)6 O

(OH)7

-CDOTs
S

O

O

NN

Benzylimidazole (1-BzlIm)

+

48h/900C

DMF

S O

O

O

S

O

O

OSi

Si

Si

O

O

O

O

N
C

O

CH3

N
C

O
2

4

+

Hexane
4h/RT

2,4-Toluene diisocyanate (TDI)
Silica (Si)

HO

HO

HO

(OH)7

(HO)6

(OH)7

N
N

-CD-BIMOTS
O S

O

O

H
N

C

O

O

CH3

N
C

O
Si

+

Hexane 24h/RT

H
N

C

O

O

CH3

H
N

C
O

O

Si

-CD-BIMOTs CSP

(OH)7

(HO)6

N
N

2
4

O S
O

O





Si

Si

O

O

Si-TDI

Si

Si

O

O

HO

HO

HO

HO

HO

HO



43 

 
Figure 3.2: Structure of β-CD-BIMOTs 

 

FT-IR/KBr, cm–1: 3297 (OH), 2922 (C–H), 1652 (C=C), 1152 (C–N). 

1H NMR, DMSO-D6: Hf (9.28, s), He (7.94, s), Hd (8.20, s), Hc (7.75, s), Hb (7.80, t), 

Ha (7.46, s), Hg (5.18, s), H8 (7.41, d), H9 (7.10, d), OH-2–OH-3 (5.50–5.80, m), H1 

(4,83, s), OH-6 (4.47–4.6, m), H6* (3.91), H3, H5, H6 (3.40–3.63), H2–H4 (3.20–3.40, 

m), H11 (2.08, s). 

13C NMR, DMSO-D6: Ca (127), Cb (123.4), Cc (128.3), Cd (128), Ce (119), Cf (136.9), 

Cg (52), Ch (137.8), C7 (145.26), C10 (137.3), C9 (128.7), C8 (125.6), C1 (101.8), C4 

(81.16), C2 (73.27), C3 (71.6), C5 (69.37), C6 (60.03), C6* (45.2), C11 (21.97). 
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Figure 3.3: Structure of β-CD-DIMOTs 

 

FT-IR/KBr, cm–1: 3297 (OH), 2922 (C–H), 1652 (C=C), 1152 (C–N). 

1H NMR, DMSO-D6: Hl (7.68, s), Hk (7.61, s), Hb-Hj (1.23-1.28, t), Ha (0.85, t), H8 

(7.46, d), H9 (7.11, d), OH-2–OH-3 (5.64–5.79, m), H1 (4,83, s), OH-6 (4.44–4.54, m), 

H6* (3.91), H3, H5, H6 (3.54–3.63), H2–H4 (3.20–3.34, m), H11 (2.28, s). 

13C NMR, DMSO-D6: Ca (16.13), Cb (19.79), Cc (28.62), Cd (22.48), Cg (22.48), Ch 

(21.38), Ci(22.48), Cj (31.37), Ck (126.42), Cl (128.75), Cm (14.40), Cn (129.84), C9 

(128.17), C8 (126.06), C1 (102.38), C4 (81.95), C2 (73.49), C3 (72.43), C5 (70.74), C6 

(60.36), C6* (45.66). 
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3.3.2 Immobilization of β-CD-BIMOTs and β-CD-DIMOTs onto modified silica 

to obtain the CSP 

Silica is the most suitable inert support for stationary phase, because of its high 

physical strength, chemical inertness and high thermal resistance (Arakaki et al., 2000; 

Alimarin et al., 1987; Cassim & Yang, 1969). The immobilization was performed by 

reacting the β-CD functionalized IL with modified silica gel that bearing carbamate 

group as linker (Zhang et al., 1999). 

First, the modified silica gel was prepared as reported (Yatabe & Kageyama, 

1994). The modified silica gel was prepared by reacting TDI with silica gel in dry 

hexane for 4 h at room temperature to obtain Si-TDI. Upon completion of the reaction, 

the product was filtered, rinsed thoroughly by hexane and dried under reduced pressure. 

Later, the Si-TDI (5g) was stirred in anhydrous hexane (200 mL) through continuous 

stream of nitrogen at room temperature. After 30 min, a solution of β-CD functionalized 

IL (β-CD-BIMOTs or β-CD-DIMOTs) (1.8 g) was added. Stirring was continued for 24 

h. The obtained solid was filtered and wash with toluene, acetone and distilled water to 

afford purified product. The obtained product was characterized using FT-IR and TGA. 

3.3.3 Synthesis of native β-CD (n-β-CD) as chiral stationary phase 

Native β-CD as CSP was prepared by immobilizing the native β-CD onto Si-

TDI. The procedure was similar as the immobilization of the β-CD-BIMOTs and β-CD-

DIMOTs onto Si-TDI. 

3.4 Column packing approach 

The synthesized CSPs were packed with hexane into empty stainless steel 

column (250 mm × 4.6 mm I.D.). First, the CSPs (2.5 g) was suspended in 

approximately 15 ml of HPLC grade hexane and then poured into the column. The 
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CSPs were packed into the stainless steel column with a 1525 binary HPLC pump. The 

flow rate and pressure was first settled at 24.00 ml/min and 4000 Psi respectively. After 

that, the pressure was increased stepwise until the back pressure reached 8000 Psi. The 

pressure and flow rate was keep constantly for 1 h. 

3.5 HPLC analysis instrumentation and conditions 

The newly packed column was flushed with 100 % hexane at a flow rate of 0.2 

ml/min for 24 hours. The flow rate was increased to 0.5 ml/min for getting the stable 

baseline. All analyses were performed at ambient temperature at 25 °C. The analytes 

solutions at concentration of 500 mg/L were prepared by dissolving flavonoids, β-

blockers and NSAIDs separately in MeOH. The injection volume was 20 μl. The flow 

rate was fixed at 0.5 ml/min for all analytes. The buffer of triethylamine acetate 

(TEAA) was prepared by adding triethylamine (TEA) with acetic acid (HOAc) to adjust 

the pH of mobile phase. The amount of additives in the buffer was recorded as the total 

weight of both acetic acid and TEA in buffer (w/v). 

3.6 Calculations of chromatographic data 

Figure 3.4 illustrated the example of chromatogram of two well resolved 

enantiomers and its chromatographic data. Three important terms used in this regard are 

k' (capacity factor or retention factor), α (selectivity factor or separation factor) and Rs 

(resolution factor). k' is a measurement of time of a solute is retained on the column. 

Retention is a function of affinity of the solute to the stationary phase. The stronger the 

attraction between the solute and the column material, the longer is the retention. α is a 

measurement of selectivity of the column for any pair of solutes. Rs is a measurement of 

how well the enantiomers have been separated. The baseline resolution is achived when 

Rs ≥ 1.5. The k', α and Rs were calculated using the following equations:  
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 𝑘′ =
(𝑡𝑅−𝑡0)

𝑡0
         3-2 

𝛼 =
𝑘2 ′

𝑘1′
=

(𝑡𝑅2−𝑡0)

(𝑡𝑅1−𝑡0)
        3-3 

 𝑅𝑠 =
2×(𝑡𝑅2−𝑡𝑅1)

(𝑊1−𝑊2)
        3-4 

The dead time (t0) is the time for the mobile phase to pass through the column, 

which relates to the efficiency of the column. The retention time (tR) is the retention 

time corresponding to each isomer in the chromatographic separation. tR2 and tR1 

represents the retention times of the second and first isomers respectively, and W1 and 

W2 are the corresponding base peak width. 

 

 

 

 

 

 

 

Figure 3.4: Two enantiomerically related peaks and the measurements required to 

calculate k1', k2', α and Rs 
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3.7 Preparation of inclusion complex  

3.7.1 Preparation of kneaded complex  

The inclusion complex of β-CD-BIMOTs with analytes was prepared using 

conventional kneading method (Cwiertnia et al., 1999). Equimolar amount of β-CD-

BIMOTs and analytes were kneaded with mortar and pestle in minimal ethanol to form 

homogenous paste (Figure 3.5). The complex was kneaded for 30 min and dried to 

constant mass. After drying, a white powder was obtained. The final product was 

characterized in the liquid state by one dimensional (1D) 1H NMR and two dimensional 

(2D) 1H NMR NOESY. For 1H NMR and NOESY, the spectra were obtained from the 

samples that prepared using β-CD-BIMOTs and analytes with the ratio of 1:1. The 

samples were dissolved in DMSO-d6. Seven hundred microliter of solutions were 

introduced into standard 5 mm NMR tubes and the spectra were recorded at 300.15 K. 

For NOESY experiments, the spectra were recorded with a mixing time of 700 ms with 

256 increments and 40 scans. 

 

 

Figure 3.5: Schematic of kneading method 
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3.7.2 Determination of formation constant  

UV-Visible spectrophotometer with 1 cm quartz cuvette was used for this 

experiment. The absorption spectrum of β-CD-BIMOTs and analytes complex was 

recorded against blank reagent. Blank reagent was prepared with the same concentration 

without the addition of analytes. In addition, absorption spectra of each analyte and β-

CD functionalized ionic liquid were also recorded. For the formation constant curve, the 

concentration of analytes was held constant at 0.01 mM, meanwhile the concentration 

of β-CD functionalized ionic liquid was varied (0.001, 0.002, 0.003 and 0.005 M). The 

formation constant and stoichiometry of the β-CD functionalized ionic liquid inclusion 

complex was obtained from the Benesi-Hildebrand equation (Equation 3-5) (Qian et al., 

2008).  

1

(𝐴−𝐴0)
= [

1

(𝐴′−𝐴0)
] + [

1

𝐾(𝐴′−𝐴0)[β−CD−BIMOTs]
]           3-5 

In the above equations, 𝐴0 is the intensity of absorption of the guest without β-

CD functionalized ionic liquid, 𝐴 is the absorbance with a particular concentration of β-

CD functionalized ionic liquid, 𝐴′ is the absorbance at the maximum concentration of β-

CD functionalized ionic liquid used and K is the formation constant. Linearity is 

obtained in the plot of 1/(𝐴 − 𝐴0) versus 1/𝐾(𝐴′ − 𝐴0)[ β − CD − BIMOTS] for 1:1 

complexes (Equation 3-5). The formation constant (K) was calculated from the slope of 

Benesi–Hildebrand plot using the Equation 3-6. 

𝐾 = [
1

𝑆𝑙𝑜𝑝𝑒 (𝐴′−𝐴0)
]                                                                            3-6 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Characterization of β-CD Based Chiral Stationary Phase 

4.1.1 FT-IR analysis  

The spectra of β-CD, β-CD-BIMOTs and β-CD-DIMOTs are shown in Figure 

4.1. Meanwhile, the main frequencies of β-CD, β-CD-BIMOTs and β-CD-DIMOTs are 

shown in Table 4.1.The broad O-H stretching band around 3200-3300 cm-1 (Figure 4.1) 

for β-CD, β-CD-BIMOTs and β-CD-DIMOTs are corresponded to the multiple –OH 

functional groups in β-CD molecules. O-H stretching, C-H stretching, and C-N bending 

(refer Table 4.1 for assignment) were observed as the most obvious band in the IR 

spectra of both β-CD-BIMOTs and β-CD-DIMOTs. The intense band at 1657 cm-1 

referred to C=C aromatic ring of 1-BzlIm moieties was observed at β-CD-BIMOTs 

spectra (Figure 4.1 (b)). The weak bands knowns as overtones at 1665-2000 cm-1 were 

correlated to aromatic ring of benzene was also observed at β-CD-BIMOTs spectra. 

Moreover, the band of C-H of β-CD-BIMOTs and β-CD-DIMOTs spectra (Figure 4.1(b 

and c)) that occurred at 2925 cm-1are more intense than the band of C-H of β-CD 

spectra (Figure 4.1(a)). These prove that β-CD was successful functionalized with 1-

BzlIm or C10MIm and β-CD-BIMOTs and β-CD-DIMOTs were obtained.  

The spectra and assignment peak of Si-TDI (modified silica), native β-CD CSP, 

β-CD-BIMOTs CSP and β-CD-DIMOTs CSP are shown in Figure 4.2 and Table 4.2, 

respectively. Spectra of Si-TDI (a) shows the presence of the isocyanate (O=C=N-) 

group at 2280 cm-1. TDI has two isocyanate groups with different activities towards OH 

groups that located at the para-position and ortho-position, respectively. The two 

isocyanate groups in TDI react at different rates with the para-position (approximately 

four times more reactive than the ortho-position) (Arnold et al., 1957; Simons & 

Arnold, 1956). Hence, the isocyanate functional groups in TDI (para position) reacted 
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with OH groups on the surface of silica and formed Si-TDI. The remaining isocyanate 

group at ortho-position would react with secondary OH group of β-CD or β-CD 

functionalized ionic liquid. Therefore, the isocyanate peak was disappeared after 

immobilization of native β-CD, β-CD-BIMOTs and β-CD-DIMOTs onto Si-TDI to 

obtain CSP as shown in Figure 4.2 (b), (c) and (d).  

 

Figure 4.1: FT-IR spectrum of a) β-CD b) β-CD-BIMOTs c) β-CD-DIMOTs 
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Figure 4.2: FT-IR spectrums of a) Si-TDI b) native β-CD CSP c) β-CD-BIMOTs CSP 

d) β-CD-DIMOTs CSP 
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Table 4.1: Main IR frequencies for β-CD, β-CD-BIMOTs and β-CD-DIMOTs with 
assignments 
Wavelength cm

-1
 Assignments  β-CD β-CD-BIMOTs β-CD-DIMOTs 

3295 O-H stretch √   

3293  N-H, O-H stretch  √  
3386 N-H, O-H stretch   √ 

2922 C-H stretch √   

2925, 1385 C-H stretch, bend  √  

2925, 1339 C-H stretch, bend       √ 

1643,1023 C-O stretch √ √  

1657 C=C  
aromatic (1-BzlIm) 

 √  

1642, 1030 C-O stretch   √ 
1413 O-H, CH2 √   

1152 
 

C-C-C √   

1157      C-N  √  

1157 C-N   √ 

944, 860, 754 -CH, =CH2, CH √ √ √ 
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Table 4.2: Main IR frequencies for Si-TDI, native β-CD CSP, β-CD-BIMOTs CSP and 
β-CD-DIMOTs CSP with assignments 

Samples  Wavelength cm
-1

 Assignments  

Si-TDI 3297 

2280 

1647, 1552 

1421 

O-H stretch 

N=C=O stretch 

NHCO carbamate linkage 

Aromatic group in TDI 

Native β-CD CSP 3461 

2280 

1659, 1548 

1548, 1454 

O-H stretch 

Absence of N=C=O 

NHCO carbamate linkage 

Aromatic group in TDI 

β-CD-BIMOTs CSP 3455 

2280 

1653 

1507 

1093 

    N-H, O-H stretch and imidazole ring 

Absence of N=C=O 

C=C aromatic (1-BzlIm) 

C-C stretch in aromatic 

C-O stretch 

β-CD-DIMOTs CSP 

 

 

 

3420 

2280 

1659, 1078 

1548, 1418 

    N-H, O-H stretch and imidazole ring 

Absence of N=C=O 

C-O stretch  

Aromatic group in TDI 
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4.1.2 Thermalgravimetric analysis 

 

TGA was performed on the Si-TDI, native β-CD CSP, β-CD-BIMOTs CSP and 

β-CD-DIMOTs CSP in the temperature range of 50 to 900 ºC. Based on the 

thermograms shown in Figure 4.3, it can be seen that there is an initial loss of weight at 

temperature below 100 ºC for all samples. This was attributed to the removal of 

physically adsorbed water and/or remaining solvent residues. Physically adsorbed water 

was removed completely by further heating to around 200 ºC. TDI attached to the silica 

surface decomposed in the region between 125 and 250 ºC (Guo et al., 2005). 

Moreover, Si-TDI revealed a smaller, but noticeable, weight loss in the region from 

250-600 ºC. This can be attributed to the dehydration of the silica surface, in which 

silanol groups condense to siloxanes, a process known to occur in this thermal region 

(Poole, 2003). The thermogram of β-CD-BIMOTs CSP and β-CD-DIMOTs CSP 

showed two very distinct weight loss that occurred at the range of 210-357 ºC and 400-

600 ºC. The first of these two weight loss was attributed to the decomposition of 

organic moieties at the surface. The second weight loss was associated with the 

decomposition of the residual methoxy groups on silica (Antochshuk & Jaroniec, 2000). 

In addition, the thermogram of native β-CD CSP, β-CD-BIMOTs CSP and β-CD-

DIMOTs CSP attributed to the weight loss at 600-900 ºC due to decomposition of the β-

CD. By comparing Figure (c) and (d), it is clear that β-CD-BIMOTs-CSP shows more 

pronounced weight loss than β-CD-DIMOTs-CSP at all isothermal temperatures. This 

may be due to the long alkyl chain of β-CD-DIMOTs-CSP prevent it to be very volatile 

at high temperatures (Lu et al., 2002). The temperature of weight loss with detail 

assignment is shown in Table 4.3. 

 

 



56 

 

Figure 4.3: Thermogram of a) Si-TDI b) native β-CD CSP c) β-CD-BIMOTs CSP d) β-

CD-DIMOTs CSP 
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Table 4.3: The assignment for temperature of weight loss 

i. Samples ii. Region (ºC) iii. Weight loss (%) iv. Assignment 

Si-TDI v. 50-100 4 Water loss 

125-250 2 TDI 

250-600 28 Silanol condensation 

Native β-CD CSP 50-100 3 Water loss 

125-250 3 TDI 

250-600 24 Silanol condensation 

600-900 10 β-CD 

β-CD-BIMOTs CSP 50-100 3 Water loss  

125-250 3 TDI 

215-357 26 1-BzlIm, OTs 

357-900 11 Silanol condensation, β-CD 

β-CD-DIMOTs CSP 50-100 7 Water loss 

125-250 2 TDI 

211-357 15 C10Mim, OTs 

357-900 12 Silanol condensation, β-CD 

 

4.2 Screening performance of CSPs 

Different moieties that functionalized on β-CD possess different effects to the 

separation of chiral compounds. Herein, the effect of different group at the side chain of 

imidazolium cation of IL was studied. The performance of β-CD-BIMOTs CSP and β-

CD-DIMOTs CSP were compared with native β-CD based CSP for the 

enantioseparation of flavonoids, β-blockers and NSAIDs. As shown in Table 4.4, the 

chromatograms showed that most of the flavonoids, β-blockers and NSAIDs were 

enantioseparated using β-CD-BIMOTs CSP as compared to β-CD-DIMOTs CSP and 

native β-CD based CSP. This result might due to the β-CD-BIMOTs CSP that displayed 

additional interaction with analytes which enhanced the enantioseparations. β-CD-

BIMOTs CSP is prefer to be approached by planar analytes due to the planar aromatic 
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of 1-BzlIm (Wang et al., 2012c). This might attributed to the π-π interaction between 

analytes and β-CD-BIMOTs CSP that enhanced the enantioseparation. In addition, the 

long alkyl chain is preferably covered the partial cavity (Meier-Augenstein et al., 1992) 

resulting decreased the chiral selectivity of β-CD-DIMOTs CSP. Thus, the optimization 

of mobile phase for the enantioseparation of flavonoids, β-blockers and NSAIDs on β-

CD-BIMOTs CSP was studied. Furthermore, the mechanism of the enantioseparation 

was also evaluated.  
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Table 4.4: The chromatogram for the enantioseparation of selected flavonoids, β-blockers and NSAIDs on β-CD, β-CD-BIMOTs and β-CD-
DIMOTs CSPs 

Analytes  CSPs 

β-CD β-CD-BIMOTs β-CD-DIMOTs 

Flavonoids  

   

β-blockers 
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Table 4.4, continued  

Analytes CSPs 

β-CD β-CD-BIMOTs β-CD-DIMOTs 

NSAIDs 

   

  Flavonoids: a) flavanone b) hesperetin c) naringenin d) eriodictyol 

  β-blockers: a) propranolol b) metoprolol c) pindolol d) atenolol 

  NSAIDs   : a) fenoprofen b) ibuprofen c) indoprofen d) ketoprofen 

Condition: i) 90/10 ACN/water ii) 50/50 ACN/water iii) 30/70 ACN/water 

60 
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4.3 Enantioseparation performance of Flavonoids  

The type and composition of organic modifier as mobile phase are important 

factors that affect the enantioseparations. Adjusting the pH of mobile phase for reverse 

phase mode would also influence the forms of analytes and thus affect the 

enantioseparation. As presented in Table 4.5, high Rs values indicated the good 

enantioseparation for flavanone (Rs=1.63) and hesperetin (Rs=1.06) with the mobile 

phase of MeOH/water:50/50 and ACN/water:50/50, respectively. In addition, flavanone 

also obtained good enantioseparation (Rs=1.86) in ACN/buffer at pH 4. However, a low 

Rs value was obtained for flavanone when ACN/buffer pH 9 was selected as mobile 

phase. Meanwhile, the enantiomers of naringenin and eriodictyol were not resolve at all 

using all selected mobile phases. Moreover, it can be seen that the k1' values of 

flavonoids decreased with increasing content of organic solvent. This was a common 

rule in reverse phase mode due to the increasing content of organic solvent that led to 

the increased of elution strength of mobile phase. Thus, flavonoids easily can be 

displaced from the stationary phase. 

Flavanone obtained good enantioseparation in most of the mobile phase 

conditions which might due to its hydrophobic properties that facilitated the inclusion 

complex formation with hydrophobic cavity of β-CD-BIMOTs CSP. Moreover, 

flavanone with aromatic rings without any substituent may experience less steric 

hindrance for inclusion complex formation with cavity of β-CD-BIMOTs CSP. In 

addition, the carbonyl group and aromatic ring of flavanone can form hydrogen bonding 

and π-π interaction, respectively, with β-CD-BIMOTs CSP which can further enhance 

the enantio-recognition. Flavanone is classified as neutral compound as compared with 

hesperetin, naringenin and eriodictyol which are weakly acidic in nature (Ng et al., 

2002). Thus, at pH 4 and 7, flavanone is remained neutral and preferable to form 
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inclusion complex with cavity of β-CD (Raoov et al., 2013). Meanwhile, flavanone is 

known to undergo ring opening under basic condition to the corresponding unstable 2’-

hydroxyl substituted chalcones (Figure 4.4) (Wistuba et al., 2006) which might be a 

reason in the decreasing Rs value at pH 9.  

 

 

 

 

 

 

 

Figure 4.4: Structure of 2’-hydroxyl substituted chalcones 
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Table 4.5: Chiral separation data for the flavonoids on β-CD-BIMOTs CSP in the 
reverse mobile phase 

Flavonoids  Conditions  pH 4 pH 7 pH 9 

k1' k2' Rs k1' k2' Rs k1' k2' Rs 

Flavanone  a 0.34 0.48 0.64 0.33 0.49 0.45 0.38 0.85 0.79 

b 2.09 5.24 1.86 0.47 0.71 0.81 0.33 0.46 0.46 

c 2.77 2.77 0 2.61 2.61 0 2.51 2.51 0 

d 7.23 7.23 0 1.44 2.05 0.76 1.92 3.34 0.93 

e 2.27 3.58 0.85 2.58 4.31 1.63 6.84 6.84 0 

Hesperetin  a 1.18 1.18 0 0.47 0.76 0.45 0.79 0.79 0 

b 1.49 1.49 0 0.37 1.36 1.06 1.61 1.61 0 

c 9.75 9.75 0 4.43 7.14 0.92 4.31 4.31 0 

d 1.35 1.35 0 1.29 1.29 0 1.80 1.80 0 

e - - - 16.19 16.19 0 4.18 4.18 0 

Naringenin  a 0.27 0.27 0 0.28 0.28 0 0.28 0.28 0 

b 0.62 0.62 0 0.84 0.84 0 0.97 0.97 0 

c 1.54 1.54 0 4.16 4.16 0 5.29 5.29 0 

d 0.68 0.68 0 0.12 0.12 0 0.83 0.83 0 

e - - - 0.18 0.18 0 3.61 3.61 0 

Eriodictyol a 0.22 0.22 0 0.32 0.32 0 0.34 0.34 0 

b 0.34 0.34 0 0.34 0.34 0 0.34 0.34 0 

c 0.35 0.61 0.26 0.36 0.36 0 0.37 0.37 0 

d - - - 0.19 0.19 0 0.82 0.82 0 

e - - - 0.34 0.34 0 4.09 4.09 0 

Conditions pH 7: a) ACN/water-90/10 b) ACN/water-50/50 c) ACN/water-30/70 d) 

MeOH/water-90/10 e) MeOH/water-50/50 

Conditions pH 4 or 9: a) ACN/buffer-90/10 b) ACN/buffer-50/50 c) ACN/buffer-30/70 

d) MeOH/buffer-90/10 e) MeOH/buffer-50/50 
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According Li et al. (1992), the formation of inclusion complex is an important 

interaction to achieve better enantioseparation (Li & Purdy, 1992). In order to study the 

interaction for the enantioseparation, 1H NMR and NOESY of β-CD-

BIMOTs/flavonoids complexes were studied. The deduced structures of the β-CD-

BIMOTs and β-CD-BIMOTs/flavonoids complexes are shown in Figure 4.5 and Figure 

4.6, respectively. Chemical shift (δ) variations can provide evidence for the formation 

of inclusion complexes in solution. The values of the δ for different protons in β-CD-

BIMOTs and β-CD-BIMOTs/flavonoids complexes are listed in Table 4.6. The induced 

shift (∆δ) is defined as the difference in chemical shift in the presence or absence of 

analytes. In this study, the induced shift was calculated using Eq. 4-1:  

∆δ = δ(complex) − δ(free)       4-1 

Normally, the inclusion of an apolar region of an analyte into the hydrophobic cavity 

would affect the inner protons of the glucose units of β-CD, namely, H3 and H5 (Zhang 

et al., 1990), whereas the protons on the exterior torus of β-CD (H1, H2 and H4) would 

also affected if there are any hydrogen bonding involved. As the result, the chemical 

shifts of β-CD-BIMOTs protons (H1, H2, H3, H4 and H5) would change as the 

presence of analytes. 
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Figure 4.5: The deduced structure of β-CD-BIMOTs 
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Figure 4.6: The deduced structure of a) β-CD-BIMOTs/flavanone complex, b) β-CD-BIMOTs/hesperetin complex, c) β-CD-

BIMOTs/naringenin complex d) β-CD-BIMOTs/eriodictyol complex 
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For β-CD-BIMOTs/flavanone complex (Table 4.6), the significant changes were 

observed on ∆δ at H5 proton located at the cavity of β-CD-BIMOTs due to inclusion 

complex formation. In addition, there is large shift at H2 proton located at the exterior 

torus of β-CD-BIMOTs caused by hydrogen bonding. The NOESY spectra in Figure 

4.7 shows the cross-peak between H1, H2 and H5 protons of β-CD-BIMOTs with Hg’ 

and Hj’protons of flavanone proved that the inclusion complex and hydrogen bonding 

were formed between flavanone and β-CD-BIMOTs. 
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Table 4.6: Chemical shifts (δ) and induced shifts (∆δ) of β-CD-BIMOTs and β-CD-BIMOTs/flavonoids 

 β-CD-

BIMOTs 

β-CD-

BIMOTs/Flavanone 

β-CD-

BIMOTs/Hesperetin 

β-CD-

BIMOTs/Naringenin 

β-CD-

BIMOTs/Eriodictyol 

 δ δ ∆δ δ ∆δ δ ∆δ δ ∆δ 
H1 4.8405 4.8872 0.0467 4.8381 -0.0024 4.8241 -0.0164 4.8365 -0.004 
H2 3.3312 3.2568 -0.0744 3.3214 -0.0138 3.2406 -0.0946 3.34  0.0048 
H3 3.6394 3.6392 -0.0002 3.6401  0.0007 3.6253 -0.0141 3.6235 -0.0159 
H4 3.3716 3.3797 0.0081 3.3552 -0.0164 3.3989 0.0273 3.4438  0.0722 
H5 3.5777 3.5572 -0.0205 3.5586 -0.0191 3.5443 -0.0334 3.5428 -0.0349 
H6 3.9225 3.9110 -0.0115 3.9185 -0.004 3.9053 -0.0172 3.8979 -0.0246 
H8 7.4215 7.4374 0.0159 7.4276 0.0061 7.4128 -0.0087 7.4105 -0.011 
H9 7.1112 7.1142 0.0030 7.1281 0.0169 7.1174 0.0062 7.1199  0.0087 
H11 2.0847 2.0821 -0.0026 2.0844 -0.0003 2.0706 -0.0141 2.0698 -0.0149 
Ha 7.4314 7.4827 0.0513 7.4995 0.0681 7.4873 0.0559 7.4756  0.0442 
Hb 7.7957 7.8025 0.0068 7.8019 0.0062 7.7771 -0.0186 7.765 -0.0307 
Hc 7.7542 7.7892 0.035 7.7552 0.001 7.738 -0.0162 7.7274 -0.0268 
Hd - - - - - - - - - 
He 7.9563 7.9472 -0.0091 7.9456 -0.0107 7.9333 -0.023 7.9312 -0.0251 
Hf 9.234 9.2696 0.0302 9.2744 0.035 9.2419 0.0025 9.2252 -0.0142 
Hg 5.4371 5.4471 0.0100 5.4191 -0.018 5.4067 -0.0304 5.4000 -0.0371 

-: overlap peak
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Figure 4.7: NOESY spectra of β-CD-BIMOTs/flavanone
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Meanwhile, for hesperetin which is weakly acidic (pKa 7.9) also formed neutral 

species at pH 7 and able to form inclusion complex with the cavity of β-CD-BIMOTs 

CSP. Thus, it was effectively enantioseparated using β-CD-BIMOTs based CSP (Table 

4.5). Hesperetin bearing methoxy group is more hydrophobic than naringenin and 

eriodictyol. Therefore, hesperetin has greater affinity towards the cavity of β-CD-

BIMOTs CSP as compared to naringenin and eriodictyol. Hesperetin was not 

enantioseparated at pH 4 and 9. At acidic pH, hesperetin is in neutral form (Ficarra et 

al., 2002) but the TEAA species in the mobile phase compete with it for the inclusion 

formation (Kavalirova et al., 2004). Meanwhile, the protonated hesperetin at pH 9 was 

not favored to form inclusion complex with β-CD (Raoov et al., 2013). This finding 

further support the role of inclusion complex formation in enantioseparation of β-CD 

based CSPs. Moreover, OH groups and aromatic rings of hesperetin can form hydrogen 

bonding and π-π interaction with β-CD-BIMOTs CSP and thus enhanced the 

enantioseparation. These interactions were further proven using 1H NMR and NOESY 

of β-CD-BIMOTs/hesperetin complex. The β-CD-BIMOTs/hesperetin complex shows 

appreciable shift at H4 proton at exterior torus of β-CD-BIMOTs because of hydrogen 

bonding. There are also large shift at H5 proton located in cavity of β-CD-BIMOTs 

(Table 4.6) which related to the formation of inclusion complex. In addition, the 

NOESY spectra (Figure 4.8) shows the cross-peaks between H3, H4 and H5 protons of 

β-CD-BIMOTs with He’, Hg’, and Hk’ protons of hesperetin also proved that the 

inclusion complex and hydrogen bonding were formed with β-CD-BIMOTs which 

enhanced the enantioseparation. 
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   Figure 4.8: NOESY spectra of β-CD-BIMOTs/hesperetin 



72 

As shown in Table 4.5, naringenin and eriodictyol are not resolved in the reverse 

phase mode. Naringenin and eriodictyol contains highly polar moieties (OH) which 

might weaken the hydrophobic interaction with β-CD-BIMOTs cavity and retard the 

formation of inclusion complexes. Naringenin and eriodictyol might prefer to form 

hydrogen bonding at exterior torus instead of interior cavity of β-CD-BIMOTs CSP. 

Moreover, the presence of OH functionality as electron donating group could increase 

the electron density of aromatic ring of naringenin and eriodictyol and facilitate the π-π 

repulsion which weaken the π-π interaction (Hunter et al., 2001). It can be deduced that 

hydrogen bonding is not sufficient to produce enantio-recognition. 1H NMR of β-CD-

BIMOTs/naringenin and β-CD-BIMOTs/eriodictyol complexes were studied to get 

detail information of the interaction. Large ∆δ of H2 and H4 protons of β-CD-BIMOTs 

with the presence of naringenin and eriodictyol was observed, respectively (Table 4.6). 

In addition, NOESY spectra for β-CD-BIMOTs/naringenin complex (Figure 4.9) 

showed the cross-peak between He’, Hg’ and Hj’ protons of naringenin with H2 proton 

of β-CD-BIMOTs. In NOESY spectra of β-CD-BIMOTs/eriodictyol complex (Figure 

4.10), there are cross-peak between Hc’, Hg’ and Hf’ protons of eriodictyol with H4 

proton of β-CD-BIMOTs. These results suggest that there are hydrogen bonding 

between naringenin and eriodictyol at exterior torus of β-CD-BIMOTs.  
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Figure 4.9: NOESY spectra of β-CD-BIMOTs/naringenin 
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Figure 4.10: NOESY spectra of β-CD-BIMOTs/eriodictyol 
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As a part of the optimization, the polar organic mode with different additives 

was used to improve the enantioseparation of naringenin and eriodictyol. This system 

can be used to resolve compounds that cannot be separated in the reverse phase mode. 

In this study, the mobile phase of polar organic mode was the mixture of ACN and 

MeOH. The selected additives were TEA and HOAc (Kafkova et al., 2005). In the polar 

organic mode, the relative high concentration of organic solvents occupies the relatively 

hydrophobic cavity of β-CD. Armstrong et al. (1993) proposed that the analytes may 

form a “lid” over the “mouth” of the cavity. Moreover, the retention and selectivity are 

mainly due to the polar OH groups at the rims of β-CD forming hydrogen bonding with 

analytes (Chang et al., 1993). Thus, the total number of OH moiety at flavonoids would 

affect the enantioseparation. The HPLC chromatograms shown naringenin achieved 

better enantioseparation at higher amount of TEA (Figure 4.11) meanwhile eriodictyol 

was resolved at higher amount of HOAc (Figure 4.12). At higher amount of TEA, 

naringenin which has less OH groups than eriodictyol tends to carry less number of 

deprotonated OH. Thus, naringenin prefer to form electrostatic interaction associated 

with hydrogen bonding which facilitated the enantioseparation. Meanwhile, eriodictyol 

which has highest number of deprotonated OH led to the stronger electrostatic 

interaction with β-CD-BIMOTs and thus inhibit the enantioseparation. 

At higher ratio of HOAc, both of naringenin and eriodictyol are in neutral form. 

Under this condition, enantioseparation of eriodictyol was achieved better than 

naringenin. This might due to the structure of eriodictyol with 4 OH groups that have 

high capability to form hydrogen bonding at the exterior torus of β-CD-BIMOTs. It can 

be deduced that the better enantioseparation in the polar organic mode shows the 

importance of the hydrogen bonding and/or electrostatic interaction for the chiral 

recognition of naringenin and eriodictyol. 
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Figure 4.11: HPLC chromatograms of naringenin in polar organic mode. Mobile phase 

composition, ACN/MeOH/TEA/HOAc (v/v/v/v): a-i) 90/10/1/3, a-ii) 90/10/3/1, b-i) 

50/50/1/3, b-ii) 50/50/3/1, c-i) 30/70/1/3 and c-ii) 30/70/3/1 
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Figure 4.12: HPLC chromatograms of eriodictyol in polar organic mode. Mobile phase 

composition, ACN/MeOH/TEA/HOAc (v/v/v/v): a-i) 90/10/1/3, a-ii) 90/10/3/1, b-i) 

50/50/1/3, b-ii) 50/50/3/1, c-i) 30/70/1/3 c-ii) 30/70/3/1 

 

The chromatogram of eriodictyol (Figure 4.12(c-i)) with the broad and tailing 

peak was caused by the formation of strong hydrogen bonding with β-CD-BIMOTs 

CSP. Thus, it can be deduced that the higher number of OH groups leads to the stronger 

interaction with β-CD-BIMOTs CSP and thus, inhibit the enantioseparation. 

Consequently, the formation constant (K) was determined to study the strength of the 

interaction between flavonoids and β-CD-BIMOTs. In the experiment, the plots of 

absorption for β-CD-BIMOTs, flavonoids and β-CD-BIMOTs/flavonoids complexes 

were first measured (Figure 4.13) by monitoring the UV spectra. The results showed 

that β-CD-BIMOTs had a λmax in the range of 230-260 nm. The absorption spectra of 

flavanone displayed two well-defined λmax at 250 and 320 nm meanwhile naringenin, 

hesperetin and eriodictyol displayed one λmax at 320 nm. The λmax of β-CD-
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BIMOTs/flavonoids complex was observed at 230-260 nm referred to β-CD-BIMOTs. 

Meanwhile, the λmax at 320 nm of β-CD-BIMOTs/flavonoids complex was referred to 

flavonoids. It was observed that the absorption spectra of all β-CD-BIMOTs/flavonoids 

complexes showed both hyperchromic and hypochromic effect. Increase in absorption 

at λmax is defined as hyperchromic effect and decrease in the absorption at λmax is 

defined as hypochromic effect (Hu et al., 2012; Ventura et al., 2006). Hyperchromic 

effect that observed in the UV spectra of β-CD-BIMOTs-flavonoids at 320 nm was due 

to the electron perturbation at the chromophore of flavonoids (Ventura et al., 2006).  

Meanwhile the hypochromic effect is due to the intercalative mode involving the 

stacking interaction (Hu et al., 2012) which was mainly referred to π-π interaction 

between aromatic ring of flavonoids and β-CD-BIMOTs. The hypochromic effect for β-

CD-BIMOTs-flavanone was not observed due to the overlapping of absorption band at 

250 nm (Figure 4.13(a)). Both hyperchromic and hypochromic effects observed in the 

absorption spectra of β-CD-BIMOTs-flavonoids proved that there were multiple 

interactions between β-CD-BIMOTs and flavonoids. 

The K values were then calculated (using Equation 3-6) from the slope of 1

(𝐴−𝐴0)
 

versus 1

[ β−CD−BIMOTS]
 of β-CD-BIMOTs/flavonoids as shown in Figure 4.14. In Table 

4.7, the K values obtained are in the following order: β-CD-BIMOTs/hesperetin < β-

CD-BIMOTs/flavanone < β-CD-BIMOTs/naringenin < β-CD-BIMOTs/eriodictyol. 

This deduced that the strength of interaction is correlated with the substituted OH group 

at flavonoids. Previous study reported that hydrogen bond is the strongest non-covalent 

interactions with 2-10 kcal/mol stabilization energy (Frieden, 1975). Naringenin and 

eriodictyol that possess 3 and 4 OH groups experienced highest K values indicating the 

stronger hydrogen bond formation. Indeed, these results clarified that naringenin and 

eriodictyol interacted at the external torus of β-CD-BIMOT. Meanwhile, the small K 
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values for flavonone and hesperetin proven that the inclusion complex was formed due 

to hydrophobic interaction and facilitated the enantioseparation. 

 

Figure 4.13: Absorption spectra of a) β-CD-BIMOTs/flavanone b) β-CD-

BIMOTs/hesperetin c) β-CD-BIMOTs/naringenin d) β-CD-BIMOTs/eriodictyol with 

[β-CD-BIMOTs]: 0.032mM [Flavonoids]: 0.01mM; T = 25 °C 
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Table 4.7: K values for β-CD-BIMOTs/flavonoids 

Flavonoids K 

Flavanone 722 

Hesperetin 572 

Naringenin 1077 

Eriodictyol 6032 

 

 

Figure 4.14: Benesi-Hildebrand plot of 1/A−A0 versus 1/[β-CD-BIMOTs] for a) β-CD-

BIMOTs/flavanone, b) β-CD-BIMOTs/hesperetin, c) β-CD-BIMOTs/naringenin d) β-

CD-BIMOTs/eriodictyol 
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4.4 Enantioseparation performance of β-blockers  

The enantiorecognition ability of β-CD-BIMOTs CSP was also examined for 

chiral compounds with basic properties, β-blockers to study the enantiomeric behavior 

and the mechanism of enantioseparation. The baseline separation was achieved for the 

enantiomers of propranolol and metoprolol as shown in Table 4.8. Among the selected 

β-blockers, propranolol and metoprolol achieved the Rs values of 3.10 and 2.38, 

respectively. Complete enantioseparation of propranolol and metoprolol was achieved 

in 30 min. However, for pindolol and atenolol, no peak was observed even after 120 

min due to the high retention of these compounds onto β-CD-BIMOTs CSP. β-Blockers 

can be divided according to its lipophilic (propranolol and metoprolol) and hydrophilic 

(pindolol and atenolol) nature (Borchard, 1998). The result indicated hydrophilic 

atenolol and pindolol with polar amide and indole moiety showed stronger interaction 

with CSP that contribute to high retention. On the other hand, it is proven that the β-

blockers with lipophilicity properties were well enantioseparated than the hydrophilic β-

blockers.  

The enantioseparation of propranolol and metoprolol were separated excellently 

using β-CD-BIMOTs CSP and this might due to the formation of inclusion complex 

between the analytes and β-CD through the stereogenic center of β-CD located at the 

interior cavity. In order to verified this interaction, the inclusion complexes of β-CD-

BIMOTs and selected β-blockers were prepared. 1H NMR and NOESY were used to 

study the interaction between β-CD-BIMOTs and β-blockers in the complexes. The 

values of the chemical shifts (δ) and induced shifts (Δδ) for different protons in β-CD-

BIMOTs, β- blockers and β-CD-BIMOTs/β-blockers complexes are listed in Table 4.9 

and Table 4.10. 

 



82 

Table 4.8: Chiral separation data for the β-blockers on β-CD-BIMOTs CSP in neutral 
pH mobile phase 

β-blockers Conditions β-CD-BIMOTs CSP 

k1' k2' α Rs 

Atenolol  ACN/water-90/10 n.a n.a n.a n.a 

ACN/water-50/50 n.a n.a n.a n.a 

ACN/water-30/70 n.a n.a n.a n.a 

Metoprolol   ACN/water-90/10 2.04 3.64 1.78 2.38 

ACN/water-50/50 0.58 0.58 1.00 0 

ACN/water-30/70 0.65 0.65 1.00 0 

Propranolol   ACN/water-90/10 2.83 4.88 1.72 3.10 

ACN/water-50/50 0.79 1.01 1.27 0.46 

ACN/water-30/70 0.84 1.10 1.30 0.43 

Pindolol 

 

ACN/water-90/10 n.a n.a n.a n.a 

ACN/water-50/50 n.a n.a n.a n.a 

ACN/water-30/70 n.a n.a n.a n.a 

n.a: not available 
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Table 4.9: Chemical shifts (δ) corresponding to β-CD-BIMOTs in presence of β-blockers 

 β-CD-

BIMOTs 

β-CD-BIMOTs/ 

atenolol 

β-CD-BIMOTs/ 

metoprolol 

β-CD-BIMOTs/ 

propranolol 

β-CD-BIMOTs/ 

pindolol 

 δ δ ∆δ δ ∆δ δ ∆δ δ ∆δ 
H1 4.8405 4.8301 -0.0104 4.8249 -0.0156 4.8285 -0.012 4.8329 -0.0076 
H2 3.3312 3.3483 0.0171 3.3425 0.0113 3.3042 -0.027 3.3476 0.0155 
H3 3.6394 3.6311 -0.0083 3.6274 -0.0120 3.6309 -0.0085 3.6335 -0.0059 
H4 3.3716 3.4304 0.0588 3.4660 0.0944 3.3762 0.0046 3.4391 0.0675 

H5 3.5777 3.5488 -0.0289 3.5464 -0.0313 3.5531 -0.0246 3.5580 -0.0197 
H6 3.9225 3.9473 0.0248 3.9272 0.0047 3.9041 -0.0184 3.9041 -0.0184 
H8 7.4215 7.4212 -0.0003 7.4202 -0.0013 overlap - 7.4361 0.0146 
H9 7.1112 7.1227 0.0115 - - 7.1192 0.0008 7.1259 0.0147 
H11 2.0847 2.0797 -0.0050 - - - - - - 
Ha 7.4314 7.4798 0.0484 7.4752 0.0438 7.4832 0.0518 7.4896 0.0582 

Hb 7.7957 7.7903 -0.0054 7.7892 0.0350 7.8063 0.0106 7.8081 0.0124 
Hc 7.7542 7.7402 -0.014 7.7391 -0.0151 7.7490 -0.0052 7.7473 -0.0069 
Hd - - - - - - - - - 
He 7.9563 7.9440 -0.0123 - - - - - - 

Hf 9.2394 9.2606 0.0212 9.2807 0.0413 9.3132 0.0738 9.3379 0.0985 

Hg 5.4371 5.4400 0.0029 5.4460 0.0089 5.4369 -0.0002 5.4482 0.0111 
∆δ: induced shifts 
-: overlap peak 
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Table 4.10: Induced shifts (∆δ) corresponding to β-blockers in presence of β-CD-BIMOTs 
 β-CD-

BIMOTs/atenolol 

β-CD-

BIMOTs/metoprolol 

β-CD-

BIMOTs/propranolol 

β-CD-

BIMOTs/pindolol 

 ∆ δ ∆ δ ∆ δ ∆ δ 
Ha’ 0.1059 0.0995 -0.0018 0.1140 

Hb’ 0.1345 0.0055       - 0.2063 

Hc’ 0.1060 0.0995 -0.0018 0.1140 

Hd’      - -0.0075 -0.0160 -0.0067 
He’ 0.1596 -0.0057 -0.0044 0.1766 

Hf’ 0.0545       - -0.0063      - 
Hg’      - -0.0075 -0.0246 -0.0067 
Hh’ -0.0008 -0.0269 0.0794 0.0248 
Hi’ 0.0118 0.0048 -0.0012 0.0041 
Hj’ 0.0096 0.0064 -0.0027 0.0162 
Hk’ 0.0096 -0.0009 -0.0025 0.0162 
Hl’ 0.0132 0.0003 -0.0131 0.0836 

Hm’ 0.0054      - -0.0037 -0.0006 
Hn’     -      - -0.0011 0.0056 
Ho’       - -0.0055  

-: overlap peak 
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The deduced structures of β-CD-BIMOTs/β-blockers complexes are shown in 

Figure 4.15. For β-CD-BIMOTs/β-blockers complexes, the presence of propranolol and 

metoprolol showed appreciable shift of H5 proton of β-CD-BIMOTs (Table 4.9). The 

upfield shifts for this proton proved the existence of an interaction between the analytes 

and the interior proton of β-CD-BIMOTs. Additionally, the larger Δδ value of Hl’ 

proton was observed for propranolol (Table 4.10). This indicated the perturbation at the 

aromatic ring of propranolol which might due to π-π interaction with IL at β-CD-

BIMOTs. In contrast, the ∆δ values of aromatic protons (Hi’, Hj’, Hk’, Hl’) of 

metoprolol were relatively small (Table 4.10). This result suggested that propranolol 

achieved better enantioseparation than metoprolol because of the additional π-π 

interaction that contributed by IL at β-CD-BIMOTs. Moreover, the greater shift of H4 

proton of β-CD-BIMOT-metoprolol was observed as compared to other complexes. 

Higher electronegativity of oxygen atom at the methoxy group of metoprolol caused the 

lower electron density around the H4 proton. As a result, the proton was deshielded and 

experienced higher chemical shift. In Figure 4.16, the cross peak between Hm’ and Hn’ 

protons of propranolol with H5 proton β-CD-BIMOTs complex was observed in 

NOESY spectra. Meanwhile, in Figure 4.17, the cross peak between Hi’ and Hj’ 

protons of metoprolol with H5 proton of β-CD-BIMOTs complex was also observed. 

This indicated the interaction of propranolol and metoprolol at the interior protons of β-

CD-BIMOTs. 

 

 



86 

 

Figure 4.15: The deduced structure of β-CD-BIMOTs/β-blockers complexes: a) atenolol, b) metoprolol, c) Pindolol, d) Propranolol 
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Figure 4.16: 2D NOESY spectra of β-CD-BIMOTs/propranolol complex 
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Figure 4.17: 2D NOESY spectra of β-CD-BIMOTs/metoprolol complex
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From the 1H NMR studied (Table 4.9), H4 (exterior proton) at β-CD-BIMOTs 

was experienced appreciably shifted downfield after forming complexes with pindolol 

or atenolol. This result suggested that pindolol and atenolol were not forming inclusion 

complex but it formed hydrogen bonding with exterior torus of β-CD-BIMOTs. 

Moreover, the large ∆δ values were observed for Ha’, Hb’ and Hc’ of pindolol and 

atenolol (Table 4.10). For β-CD-BIMOTs/pindolol complex, the NOESY spectra 

showed the cross-peak between Hl’ proton of pindolol with H1 and H4 protons of β-

CD-BIMOTs (Figure 4.18). Meanwhile, β-CD-BIMOTs/atenolol complex showed the 

cross-peak between Hj’ and Hk’ protons of atenolol and H4 protons of β-CD-BIMOTs 

(Figure 4.19). This result indicated the close interaction of pindolol and atenolol at the 

exterior protons of β-CD-BIMOTs 

The composition of the mobile phase also plays an important role in 

enantioseparation. The effect of ACN contents on enantioseparation of selected β-

blockers can be seen from Table 4.8. The high k1'and k2' of propranolol and metoprolol 

at high organic content (90 % ACN) showed the normal phase behavior of the β-CD-

BIMOTs CSP. On the other hand, when organic content is low (30 % ACN), the high 

k1' and k2' of propranolol and metoprolol showed typical reverse phase behavior of β-

CD-BIMOTs CSP. Therefore, the retention behavior of β-blockers can be considered as 

the mixed reverse-normal separation mode (Guo et al., 2009). In this separation mode, 

the retention mechanism is based on the distribution of the analytes between the ACN-

rich mobile phase and water enriched layer adsorbed onto the polar stationary phase 

(Buszewski & Noga, 2012). Thus, for more hydrophilic analytes (pindolol and 

atenolol), partitioning equilibrium is shifted towards the immobilized water layer on the 

stationary phase, causing the analytes retained longer in column.  
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Figure 4.18: 2D NOESY spectra of β-CD-BIMOTs/pindolol complex 
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Figure 4.19: 2D NOESY spectra of β-CD-BIMOTs/atenolol complex
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TEAA buffer was used to control the pH of mobile phase and ionic strength. 

Buffer can influence the degree of ionization of analytes and resulting in different 

retention behavior. The chromatograms in Figure 4.20 show the effect of pH towards 

the enantioseparation of β-blockers. Propranolol and metoprolol were not 

enantioseparated at pH 4 and 9. Meanwhile, they are well enantioseparated at pH 7. 

This is due to the deprotonation and protonation of β-blockers at pH 4 and 9, 

respectively. Protonated and deprotonated analytes were not favorable for the formation 

of inclusion complex with β-CD (Raoov et al., 2013). This finding further support the 

role of inclusion complex formation in enantioseparation of β-CD based CSPs. 

Meanwhile, the retention time of pindolol and atenolol was reduced at pH 4 and 9 as 

compared to pH 7. Due to both of analytes and β-CD-BIMOTs CSP acquiring positive 

charges at pH 4, the electrostatic repulsion occurred and it reduced the retention time of 

analytes. At basic pH, the abundance of TEAA species reduces the retention time due to 

the competition between TEAA and protonated analytes. 
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Figure 4.20: The chromatograms of propranolol, metoprolol, pindolol and atenolol 

responding to different pH of mobile phase 
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4.5 Enantioseparation performance of NSAIDs 

In the final part of this work, the enantiorecognition ability of β-CD-BIMOTs 

CSP was examined using chiral compounds with acidic properties, NSAIDs. The 

influence of mobile phase on the separation of the NSAIDs enantiomers was 

investigated. The effect of organic solvents (ACN and MeOH) on retention time and 

resolution was also evaluated (Table 4.11).  The Rs values for all selected NSAIDs were 

higher in ACN mobile phase. Compared to MeOH, ACN has greater solvent strength, 

therefore less retention were found at equivalent volume of mobile phase (50 %). 

The effect of the amount of ACN on enantioseparation of selected NSAIDs was 

evaluated by varying the percentage of ACN in mobile phase (Table 4.11). The high 

k1'and k2' of NSAIDs at 90 % of ACN showed the normal phase behavior of the β-CD-

BIMOTs-CSP. On the other hand, when at 30 % of ACN, the high k1' and k2' of 

NSAIDs showed the typical reverse phase behavior of β-CD-BIMOTs CSP. Therefore, 

the retention behavior of NSAIDs can be considered as the mixed reverse-normal 

separation mode (Guo et al., 2009) similar with the retention behavior of β-blockers. 

As given in Table 4.11, ibuprofen was completely resolved with Rs value of 

2.51. Indoprofen showed partial separation with Rs value of 1.09. Ketoprofen and 

fenoprofen also partially enantioseparated with fenoprofen attained the lowest Rs value 

of 0.54. The high Rs values of ibuprofen and indoprofen are probably due to the para 

position of the substituent (containing the chiral center) on the aromatic ring. Previous 

study revealed that para-substituted aromatic rings can fit properly into the CD cavity 

(Fanali & Aturki, 1995) forming inclusion complex.  However, the extent of the 

penetration mode is also depending on the polarity and feature structure of analytes 

(Nunez-Aguero et al., 2006). Thus, this result showed that the hydrophobic ibuprofen 

achieved better enantioseparation than more polar indoprofen (Velkov et al., 2007). 
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Meanwhile, the relatively low Rs values of ketoprofen and fenoprofen were because its 

substituent that located at meta position (Fanali & Aturki, 1995) that make their 

orientation in an unfavorable way to fit into the β-CD-BIMOTs cavity.  

Table 4.11: Chiral separation data for the NSAIDs on β-CD-BIMOTs CSP 

NSAID Condition  k1' k2' α Rs 

Ibuprofen  ACN/water-90/10 0.29 1.17 4.04 2.51 

 ACN/water-50/50 0.43 0.43 1.00 0 

 ACN/water-30/70 1.23 1.23 1.00 0 

 MeOH/water-90/10 0.16 0.16 1.00 0 

 MeOH/water-50/50 0.77 0.77 1.00 0 

Indoprofen   ACN/water-90/10 3.35 3.35 1.00 0 

 ACN/water-50/50 0.15 0.51 3.39 1.09 

 ACN/water-30/70 0.16 0.48 3.02 0.68 

 MeOH/water-90/10 0.26 0.26 1.00 0 

 MeOH/water-50/50 3.23 3.23 1.00 0 

Ketoprofen  ACN/water-90/10 0.76 1.01 1.33 0.43 

 ACN/water-50/50 0.46 0.94 2.06 0.72 

 ACN/water-30/70 0.52 1.14 2.20 0.88 

 MeOH/water-90/10 2.54 2.54 1.00 0 

 MeOH/water-50/50 5.12 5.12 1.00 0 

Fenoprofen   ACN/water-90/10 1.04 1.04 1.00 0 

 ACN/water-50/50 0.07 0.07 1.00 0 

 ACN/water-30/70 0.11 0.50 4.55 0.54 

 MeOH/water-90/10 0.06 0.06 1.00 0 

 MeOH/water-50/50 1.05 1.05 1.00 0 
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Even though the polarity of fenoprofen and ibuprofen are close to each other 

(log Pfenoprofen=3.8, log Pibuprofen=3.7) (Velkov et al., 2007), ibuprofen achieved higher Rs 

value at high organic solvent content (90 % ACN) mobile phase. This result suggested 

that ibuprofen can be fitted into β-CD-BIMOTs cavity whereas fenoprofen with two 

aromatic rings was less favorable to be fitted into β-CD-BIMOTs cavity due to steric 

hindrance effect. Previous simulation study (Nunez-Aguero et al., 2006) showed the 

formation of moderate and weak hydrogen bonding between the carboxyl group of 

ibuprofen and hydroxyl groups of β-CD during complexation. Therefore, a part of 

inclusion complex formation, hydrogen bonding also plays a role to enhance the 

enantioseparation of NSAIDs. Additionally, ketoprofen which composed of almost 

similar structure (two aromatic rings) as fenoprofen achieved better enantioseparation 

than fenoprofen. This might due to the presence of carbonyl group in ketoprofen which 

enhanced the formation of hydrogen bonding with β-CD-BIMOTs rather than ether 

linkage in fenoprofen (Lommerse et al., 1997).  

In order to verify the interactions of enantioseparation, 1H NMR and NOESY of 

β-CD-BIMOTs/NSAIDs complexes were studied. The values of chemical shifts (δ) 

obtained from 1H NMR for different protons in β-CD-BIMOTs, NSAIDs and β-CD-

BIMOTs/NSAIDs complexes are listed in Table 4.12 and 4.13. The deduced structures 

β-CD-BIMOTs/NSAID complexes are shown in Figure 4.21, respectively.  
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Table 4.12: Chemical shifts (δ) corresponding to β-CD-BIMOTs in the presence of NSAIDs 

 β-CD-

BIMOTs 

β-CD-BIMOTs/ 

Ibuprofen 

β-CD-BIMOTs/ 

Indoprofen 

β-CD-BIMOTs/ 

Ketoprofen 

β-CD-BIMOTs/ 

Fenoprofen 

 δ δ ∆δ δ ∆ δ δ ∆ δ δ ∆ δ 
H1 4.8405 4.8369 -0.0036 4.8316 -0.0089 4.8337 -0.0068 4.8280 -0.0125 
H2 3.3312 3.3200 -0.0112 3.3474 0.0162 3.3015 -0.0297 3.3118 -0.0194 
H3 3.6394 3.6387 -0.0007 3.6323 -0.0071 3.6284 -0.011 3.6326 -0.0068 
H4 3.3716 3.4056 0.0340 3.4292 0.0576 3.3985 0.0269 3.4132 0.0416 

H5 3.5777 3.5597 -0.018 3.5536 -0.0241 3.5458 -0.0319 3.5530 -0.0247 

H6 3.9225 3.9091 -0.0134 3.9045 -0.018 3.9048 -0.0177 3.8803 -0.0422 
H8 7.4215 7.4422 0.0207 7.4318 0.0103 7.4182 -0.0033 7.4209 -0.0006 
H9 7.1112 7.1189 -0.0077 7.1268 0.0156 7.1196 -0.0084     -       - 
H11 2.0847 - - - - - - -  - 
Ha 7.4314 7.4877 0.0563 7.4835 0.0521 7.4737 0.0423 7.4834 0.052 

Hb 7.7957 7.8149 0.0192 - - - - 7.7896 -0.0061 
Hc 7.7542 7.7516 -0.0026 - - - - 7.7410 -0.0132 
Hd - - - - - - - - - 
He 7.9563 7.9921 0.0358 - - 7.9378 -0.0185 7.9399 -0.0164 
Hf 9.2394 9.3362 0.0968 9.3202 0.0808 9.2240 -0.0154 9.3217 0.0823 

Hg 5.4371 5.4514 0.0143 5.4146 -0.0225 5.4036 -0.0335 5.4459 -0.0088 
∆δ: induced shifts 
-: overlap peak
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Table 4.13: Induced shifts (∆δ) corresponding to NSAIDs in the presence of β-CD-BIMOTs 

 β-CD-BIMOTs/ 

Ibuprofen 

β-CD-BIMOTs/ 

Indoprofen 

β-CD-BIMOTs/ 

Ketoprofen 

β-CD-BIMOTs/ 

Fenoprofen 

 ∆δ ∆δ ∆δ ∆δ 
Ha’ -0.0022 -0.0044 -0.0183 0.0132 
Hb’ -0.0041 -0.0022 -0.0048 0.0133 
Hc’ 0.0072 -0.0044 -0.0083 0.0132 
Hd’ -0.0030 -0.0141 -0.0070 0.0677 

He’ -0.0033 -0.0051 -0.0119 0.0677 

Hf’ -0.0023 -0.0081 -0.0083 0.0237 
Hg’ -0.0011 -0.0081 -0.0052 0.0238 
Hh’ -0.0020 -0.0086 -0.0046 0.0373 
Hi’       - -0.0086 -0.0042 0.0099 
Hj’ -0.0029          - 0.0155      - 
Hk’            - -0.0235 -0.0098 0.0258 
-: overlap peak
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Figure 4.21: The deduced structure of NSAID/β-CD-BIMOTs complexes: (a) i) ibuprofen ii) β-CD-BIMOTs/ibuprofen, (b) i) 

indoprofen ii) β-CD-BIMOTs/indoprofen (c) i) ketoprofen ii) β-CD-BIMOTs/ketoprofen, (d) i) fenoprofen ii) β-CD-

BIMOTs/fenoprofen 

99  



100 

The presence of ibuprofen, indoprofen, ketoprofen and fenoprofen was found to 

cause appreciable shift at H4 and H5 protons of β-CD-BIMOTs (Table 4.12) due to the 

formation of hydrogen bonding and inclusion complex, respectively. Significant change 

at Hc’ proton of ibuprofen (Table 4.13) was observed. This result indicated that isobutyl 

moiety of ibuprofen was included into the cavity of β-CD-BIMOTs. However, the cross 

peak between proton of isobutyl ibuprofen with H5 proton of β-CD is absent in the 

NOESY spectra of β-CD-BIMOTs/ibuprofen (Figure 4.22). Perhaps, the great 

difference between isobutyl size and the internal β-CD diameter, (≈4.3 and 7.8 Å, 

respectively) is responsible for this weak interaction (Nunez-Aguero et al., 2006).  But, 

there were cross peak between Hf’, Hg’ and Hj’ protons of ibuprofen with H5 proton of 

β-CD-BIMOTs confirmed the penetration aromatic moiety into the β-CD-BIMOTs 

cavity. The appreciable shift was also observed for the aromatic proton of indoprofen 

(Hd’, Hh’, Hi’), ketoprofen (Ha’, He’) and fenoprofen (Hd’, He’) (Table 4.13) as 

evidenced of inclusion complexes. This result was further strengthen with the NOESY 

spectra of β-CD-BIMOTs/indoprofen, β-CD-BIMOTs/ketoprofen and β-CD-

BIMOTs/fenoprofen (Figure 4.23-4.25) showed the cross-peak between Hh’, Hi’ 

(proton indoprofen), He’ (proton ketoprofen) and Ha’, Hc’, Hi’ (proton fenoprofen) 

with H5 proton of β-CD-BIMOTs.  
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Figure 4.22: NOESY spectra of β-CD-BIMOTs/ibuprofen 
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Figure 4.23: NOESY spectra of β-CD-BIMOTs/indoprofen 
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Figure 4.24: NOESY spectra of β-CD-BIMOTs/ketoprofen 
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Figure 4.25: NOESY spectra of β-CD-BIMOTs/fenoprofen 
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The UV/Vis absorption spectra of β-CD-BIMOTs/NSAIDs complexes were 

further investigated to acquire more information on the interaction between NSAIDs 

and β-CD-BIMOTs. The plots of UV/Vis absorption for β-CD-BIMOTs, NSAIDs and 

β-CD-BIMOTs/NSAIDs complexes are presented in Figure 4.26. The results showed 

that β-CD-BIMOTs showed a λmax in the range of 230-260 nm. The λmax of β-CD-

BIMOTs/ibuprofen, β-CD-BIMOTs/indoprofen and β-CD-BIMOTs/fenoprofen 

complexes appeared at 262, 256 and 256 nm, respectively referring to β-CD-BIMOTs. 

This absorbance undergoes the hyperchromic effect (increased of absorbance) and 

shifted batochromically (change of absorbance to a lower frequency). Meanwhile, the 

absorbance of β-CD-BIMOTs/ketoprofen experienced the hypochromic effect 

(decreased of absorbance). The batochromical shift is because of partial shielding of the 

chromophore electrons (Wang et al., 2011a) in the β-CD-BIMOTs cavity. Both of 

hyperchromic and hypochromic effects was due to the π-π* transition of dipole 

moments of aromatic ring. The transition dipole moment of this chromophore will 

interact with the induced dipoles of the neighboring chromophores, depending on their 

relative orientation. If the dipoles are along the same axis and one behind the other, then 

the intensity of the absorption band will be increased, and hyperchromic effect is 

observed. Conversely, if the dipoles are parallel and adjacent, a decrease in intensity of 

the absorption band occurs, and hypochromic effect is observed (Peral & Gallego, 

2000). Moreover, hypochromic effect on β-CD-BIMOTs/ketoprofen also attribute by 

the limitation for π-π* transition because of hydrogen bonding (Peral & Gallego, 2000) 

at carbonyl group between aromatic rings of ketoprofen. The variations that occur in the 

UV/Vis spectra are consequence of complexation of NSAIDs with β-CD-BIMOTs 

accompanied by π-π interaction and hydrogen bonding. These results proved the role of 

IL which provides π-π interaction which is the superposition of inclusion complex and 

hydrogen bond for the enantioseparation of NSAIDs.   
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Figure 4.26: Absorption spectra of a) β-CD-BIMOTs/ibuprofen b) β-CD-BIMOTs/indoprofen c) β-CD-BIMOTs/ketoprofen d) 

β-CD-BIMOTs/fenoprofen with [β-CD-BIMOTs]: 0.032mM [NSAIDs]: 0.01mM; T = 25 °C  
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CHAPTER 5: CONCLUSIONS AND FUTURE RECOMMENDATIONS 

5.1 Conclusions  

In this study, two new β-CD functionalized IL based CSPs (β-CD-BIMOTs and 

β-CD-DIMOTs) were successfully synthesized, characterized and compared their 

performance with native β-CD CSP. The β-CD-BIMOTs and β-CD-DIMOTs CSPs 

were characterized using various tools and the result obtained was compared with native 

β-CD CSP.  

The performance evaluation of β-CD-BIMOTs, β-CD-DIMOTs and native β-CD 

as CSPs for the enantioseparation of neutral flavonoids, basic β-blockers and acidic 

NSAIDs groups was investigated. Although native β-CD has been reported as versatile 

and efficient for enantioseparation, however it is limited to certain class of analytes. The 

β-CD-BIMOTs herein have shown even greater chiral resolution capabilities.  The 

result showed that the IL moieties substituted on the β-CD enhanced the 

enantioseparation. In contrast to the native β-CD CSP, the β-CD functionalized IL based 

CSP presents the variety interactions with the analytes. β-CD-BIMOTs CSP was more 

accessible and able to provide more interaction sites compare to β-CD-DIMOTs CSP.  

Applying β-CD-BIMOTs as CSP, the influences of organic modifier and 

analytes’s structure was investigated in detail. The following points can be summarized 

from the series of elaborate investigations of the CSP in reverse phase and polar organic 

mode HPLC.  

a) The number of OH group substituted at flavonoids strongly affected the 

choice of mobile phase mode and further affected the enantiomeric 

separation. In this dissertation, β-CD-BIMOTs CSP was well resolved the 

enantiomer of flavanone and partially resolved for hesperetin, naringenin and 

eriodictyol. The broader enantiorecognition abilities of β-CD-BIMOTs CSP 
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towards flavanone and hesperetin were attributable to the hydrophobic 

interaction, hydrogen bonding and π-π interaction. Meanwhile, the chiral 

recognition for naringenin and eriodictyol were attributed to the exterior 

interaction with β-CD-BIMOTs CSP such as hydrogen bonding and π-π 

interaction. Different interactions have been proposed to explain these 

diversities of inclusion complex for different types of flavonoids.  

b) The enantioseparation that attained for the basic β-blockers group is different 

from the neutral flavonoids group since the mixed mode reverse-normal 

mobile phase was observed rather than reverse phase. High polarity of 

atenolol and pindolol retaining them onto the stationary phase and inhibit the 

chiral recognition. Even though ion pairing reagent such as TEAA was used 

to accelerate the elution of polar analytes, but the chiral recognition was not 

improved. Propranolol and metoprolol obtained good enantioresolution as 

compared to atenolol and pindolol. This result suggested that the lipophilic 

property and the structure of propranolol and metoprolol enabled the 

formation of inclusion complex which contributed to better 

enantioseparation. This observation was proven by 1H NMR and NOESY of 

β-CD-BIMOTs-β-blockers inclusion complexes. According to 1H NMR and 

NOESY, propranolol and metoprolol showed the interaction at the interior 

torus of β-CD-BIMOTs which indicates the formation of inclusion complex. 

However, atenolol and pindolol showed the strong hydrogen bonding at 

exterior torus of β-CD-BIMOTs and causing the poor enantioseparation. 

c) The β-CD-BIMOTs CSP depicted good enantioseparation for most of 

NSAIDs. It was proven through 1H NMR, NOESY and UV/Vis studied that 

all selected NSAIDs were enantioseparated due to the superposition of 

hydrogen bonding, inclusion complex and π-π interactions with β-CD-
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BIMOTs CSP. Moreover, the extent of the inclusion mode was affected the 

enantioseparation. The inclusion mode depends on the polarity and feature 

structure of analytes. Ibuprofen and indoprofen achieved the good resolution 

because of the para position of the substituent (containing the chiral center) 

on the aromatic ring can fit properly into the β-CD cavity forming inclusion 

complex. Meanwhile, the relatively low Rs values of ketoprofen and 

fenoprofen was because of its substituent in the meta position that make their 

orientation in an unfavorable way to fit into the β-CD-BIMOTs cavity. 

As a whole, the combine effect of hydrophobic inclusion complex, hydrogen 

bonding and π-π interaction resulted in improved the chiral selectivity. β-CD-BIMOTs 

which provide the additional interaction which is π-π interaction showed the important 

role of IL to enhance the enantioseparation of analytes.  

5.2 Future work suggestions 

 In this study, β-CD-BIMOTs and β-CD-DIMOTs CSP have been applied in 

reverse phase and polar organic mobile phase. Chromatographic conditions have been 

optimized. The possible chiral recognition mechanisms have been investigated using 

qualitative tools such as NMR and UV/Visible. However, the influences of π-π 

interaction, hydrogen bonding and hydrophobic inclusion complexation on chiral 

separation are not quantitatively calculated. Molecular modeling may be useful addition 

information for theoretical understanding and prediction of the chiral separation 

mechanism. Only tosylate ion was chosen as the counterion in β-CD-BIMOTs and β-CD-

DIMOTs CSPs. Investigations on chiral ionic liquid had revealed that anions may also 

affect enantioseparation processes. It will be interesting to change the counterions in the 

CSPs to investigate their influence on chiral resolution as well. 
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Appendix D: NMR spectrum for 13C β-CD-BIMOTs 
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Appendix E: NMR spectrum for 1H β-CD-DIMOTs 
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Appendix F: NMR spectrum for 13C β-CD-DIMOTs 
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Abstract Two covalently bonded b-Cyclodextrin (b-CD)
based CSPs were prepared by immobilizing the native b-
CD and mono-6-deoxy-6-(3-benzylimidazolium tosylate)-

b-CD (b-CD-BIMOTs) onto modified silica gel. b-CD-
BIMOTs is a b-CD based CSP with ionic liquid (3-ben-

zylimidazolium tosylate) substituent. The enantiosepara-

tion capability of the synthesized CSPs was examined

using 4 racemic mixtures of b-blockers (propranolol,

metoprolol, pindolol and atenolol). The results indicated

that b-CD-BIMOTs based CSP afforded more favorable

enantioseparations than native b-CD based CSP. In order to

study the mechanism of enantioseparation, inclusion

complexes b-CD-BIMOTs and b-blockers were prepared

and these inclusion complexes were characterized by using
1H NMR and NOESY. In addition, the separation condi-

tions such as pH and composition of mobile phase were

varied to study the role of b-CD and ionic liquid in enan-

tioseparation. In general, it can be concluded that the

complete enantioseparation of propranolol and metoprolol

is achieved through the formation of inclusion complex

with b-CD-BIMOTs and the formation p-p interaction with

the ionic liquid moiety of b-CD-BIMOTs. The result also

showed the poor enantioseparation of pindolol and atenolol

on the b-CD-BIMOTs based CSP due to the strong inter-

action at the exterior torus of b-CD-BIMOTs.

Keywords Cyclodextrin � Ionic Liquid �
Enantiorecognition � Chiral � Inclusion complex

Introduction

b-Blockers are a class of pharmaceuticals used to treat car-

diovascular diseases [1, 2]. Propranolol, metoprolol, pindolol

and atenolol are the most frequently used b-blockers in the

markets [3]. b-blockers are chiral compounds with different

enantiomers showing different potential on pharmacological

and therapeutic effects [4]. Most biological receptors act

stereoselectively by interacting with only one enantiomer of

a chiral substance, while the other enantiomer can be inac-

tived at the specific receptors. Mehvar and Brocks [1]

reported that b-blockers inherent high degree of enantiose-

lectivity in binding to the b-adrenergic receptors. For

example, some of the enantiomers possess higher affinity for

binding to the b-adrenergic receptors than antipode. Other

enantiomers of b-blockers may possess other effects, such as

antagonism at a-adrenergic receptors. Therefore, the devel-

opment of an efficient enantiomeric separation has attracted

considerable attention due to the awareness that compounds

of biological active such as pharmaceuticals can be chiral and

their enantiomers are often exhibited different bioactivities

and bio-toxicities [5]. For example, S-propranolol is 100

times more active than its R-propranolol [6]. So far, the

enantioseparation of b-blockers are achieved using various

chiral stationary phases (CSPs) and chiral mobile phase

additives at analytical scale [7, 8].

Among various chiral stationary phases, b-cyclodextrins
(b-CD) and their derivatives are among the most widely
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used stationary phases in high-performance liquid chro-

matography (HPLC) [8–12]. b-CD is a natural cyclic

oligosaccharides comprised of seven glucose units joined

through a-1,4 linkage. When b-CD is used as CSP, chiral

recognition can be achieved via the inclusion complex

formation between chiral b-CD and enantiomers [13]. A b-
CD molecule contains 35 chiral centers, and enantiomers

can interact via van der Waals dispersion forces with its

hydrophobic cavity. b-CD also has a C7 symmetry axis and

14 hydroxyl groups situated at the mouth of the cavity.

Thus, a number of potential interactions might be present

between these hydroxyl groups and enantiomers during the

formation of inclusion complex. For instance, if the enan-

tiomer has suitable polar substituents, one or more favor-

able hydrogen bonds can be formed with the b-CD CSP.

Additionally, repulsive steric interactions could also occur

between any groups of the analytes and hydroxyl groups of

CD [14, 15]. These properties of b-CD have led to its

widely use as CSP particularly in HPLC for chiral sepa-

ration [16].

On the other hand, native b-CD based CSP are unable to

achieve satisfactory separation of enantiomers [11] because

of the cylindrical binding cavity of b-CD which is too

symmetry to induce large enantioselectivities [17].There-

fore, additional substituents are often introduced in order to

achieve better chiral recognition. Various efforts have been

directed toward developing new modified b-CD based CSP

to enhance the chiral separation [18–20]. For example, b-
CD containing ionic-liquid (IL) substituent have been

extensively explored for the application of CSPs [21–25].

IL is defined as salt that melt at or below 100 �C to

afford liquid. IL is usually composed of organic cation and

inorganic or organic anion [26].It was been used in envi-

ronmentally benign chemical processing and chemical

analysis [27]. IL molecules consist of high charge region

and low charge region [28]. In IL based CSP, this dual

properties of IL contribute to the enantioseparation through

electrostatic and dispersive interaction [29].In addition to

the hydrophobic interaction, hydrogen bonding and dipole–

dipole interaction of b-CD based CSP, the presence of IL

can provide additional electrostatic interaction and p-p
interaction which can enhance the enantioseparation.

This study investigated the applicability of the new b-CD
functionalized IL, mono-6-deoxy-6-(3-benzylimidazolium

tosylate)-b-CD (b-CD-BIMOTs) (Fig. 1) as CSP for enan-

tioseparation of b-blockers (Fig. 2). The chromatographic

performance of b-CD-BIMOTs against native b-CD based

CSP was also evaluated. Based on literature reviews, most

of the researches on the mechanism of enantioseparation
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were elaborated through hypothesis or computational study

[30, 31].This study investigated the mechanism of enan-

tioseparation using the spectroscopic technique. This

mechanism of enantioseparation provides an insight into the

interaction between b-CD-BIMOTs CSP and b-blockers.

Experimental

Chemicals

All chemicals obtained were used without further purifi-

cation. HPLC grade solvents were purchased from Merck

(Germany). b-CD was purchased from Acros (Belgium)

(99 %). 1-benzylimidazole (1-BzlIm), 2,4-toluene diiso-

cyanate (TDI), propranolol, metoprolol, atenolol and pin-

dolol (Fig. 2),Celite (60 Å and 60–200 lm particle size)

were supplied from Aldrich (USA). The Kromasil spherical

silica gel (100 Å pore size and 5 lm particle size) was

purchased from Merck.

Instruments

A Perkin–Elmer RX1 FT-IR (Perkin Elmer, Waltham, MA,

USA) spectrophotometer was used to obtain infrared (IR)

spectra. IRdatawere recorded in the range of 400-4000 cm-1.

Thermogravimetric analyses (TGA) curves were obtained

using a TA Instruments Q500 (Perkin Elmer, Waltham, MA,

USA). In a streamofnitrogen atmosphere, a linear heating rate

was set at 20 �C per min and the temperature range was 50 to

900 �C. All NMR spectra were recorded using an Avance

600 MHz (Bruker, Fällanden, Switzerland). Proton shifts are

reported in parts per million (ppm) using the residual signal of

dimethyl sulfoxide (DMSO-d6). Evaluation of the CSPs per-

formancewas performedusing aHPLC systemconsisting of a

LC-20AT pump, a SPD-M20 detector, a SIL-20AHT auto

sampler, a CTO-20AC column oven and CBM-20A com-

munication bus module (Shimadzu, Japan).

Synthesis of chiral stationary phase (CSP)

The synthesis pathway of CSP is illustrated in Fig. 3. There

are 3 steps to synthesis the CSP: (a) preparation of 6-O-

Monotosyl-6-deoxy-b-cyclodextrin (b-CDOTs), (b) prepara-
tion of Mono-6-deoxy-6-(3-benzylimidazolium tosylate)-b-
CD (b-CD-BIMOTs), (c) immobilization of b-CD-BIMOTs

onto modified silica to obtain b-CD-BIMOTs CSP.

(a) Preparation of 6-O-Monotosyl-6-deoxy-b-
cyclodextrin(b-CDOTs) (1)

b-CDOTs was prepared as previously reported method

[32]. Briefly, a suspension of b-CD (11.5 g, 10 mmol) and

p-toluene sulfonic anhydride (Ts2O) (4.9 g, 15 mmol) in

250 mL of water was stirred at room temperature for 2 h.

Thereafter, a solution of NaOH (5.0 g in 50 mL of H2O)

was then added. After 10 min, the reaction mixture was

filtered through the Celite to separate the excess Ts2O. The

filtrate was adjusted to pH 8 by the addition of ammonium

chloride (13.4 g). b-CDOTs as a precipitate was collected

after cooling at 4 �C overnight.

(IR/KBR, cm-1) 3285 (O–H), 2925 (C–H), 1637 (C=C),

1598 (C–C), 1359 (SO2, Assy.), 1154 (SO2, Sym), 1024

(C–O).

(1H NMR/ppm, DMSO-d6) 7.53(d, HAr, 2H), 7.21 (d,

HAr, 2H), 4.55 (s, OH-6), 5.40–5.80 (m, H-6, 2H), 4.0 (m,

H-6), 3.20–3.55 (m, H-3, H-5, H-6), 5.40-5.80 (br, OH-2,

OH-3), 2.90–3.20 (m, H-2, H-4) 4.63 (d, H-1, 7H), 2.21, (s,

-CH3, 3H).

(b) Preparation of Mono-6-deoxy-6-(3-benzylimidazolium

tosylate)-b-CD (b-CD-BIMOTs) (2)

The preparation of the mono-functionalized b-CD with IL

was carried out according to a reported procedure [33].

Briefly, dried b-CDOTs (1.00 g, 0.78 mmol) and an

appropriate amount of 1-BzlIm (10 mol equivalent) were

dissolved in anhydrous DMF (40 mL) and the solution was

stirred at 90 �C under nitrogen atmosphere. After 2 days,

the resultant solution was cooled to room temperature and

acetone was added slowly. Then, the mixture was stirred

for 30 min and the resulting product was filtered and

washed with excess amount of acetone. The final product

obtained was re-crystallized thrice from hot water and a

white yellow solid was obtained.

(IR/KBR, cm-1) 3291 (OH), 2925 (C–H), 1655 (C=C),

1152 (C-N).

(1H NMR/ppm, DMSO-d6) Hf (9.2, s), He (7.93, s), Hc

(7.47, s) Hb (7.74, t),Ha (7.45, s), Hg (5.18, s), H8 (7.38,

d), H9 (7.09, d), OH2-OH3 (5.6–5.7, m), H1 (4.81, s),

OH6(4.4–4.5, m), H6* (3.89), H3, H5, H6 (3.4–3.6, m),

H2-H4 (3.2–3.4, m), H11 (2.07, s).

(c) Immobilization of b-CD-BIMOTs onto modified silica

(b-CD-BIMOTs CSP) (3)

The immobilization of b-CD-BIMOTs with modified silica

to obtain CSP is presented in Fig. 3. Silica was reacted

with TDI with hexane as solvent for 4 h at room temper-

ature. The Si-TDI was filtered and rinsed thoroughly using

hexane and dried under vacuum [34]. The immobilization

of b-CD-BIMOTs onto Si-TDI was then carried out by

stirring Si-TDI (5 g) in anhydrous hexane (200 mL) under

nitrogen atmosphere. After 30 min, a solution of b-CD-
BIMOTs (1.8 g) in anhydrous hexane was added. Stirring

was continued for 24 h. The obtained b-CD-BIMOTs CSP
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was filtered and washed with toluene, acetone and distilled

water. The same procedure was applied to immobilize the

native b-CD onto the Si-TDI by replacing b-CD-BIMOTs

with unmodified b-CD. The obtained product was charac-

terized using FT IR and TGA.

Chromatographic method and column evaluation

Prepared CSPs (2.5 g) was suspended in approximately

15 ml of HPLC grade hexane to form slurry. The slurry

was packed into an empty stainless steel HPLC column

(250 mm 9 4.6 mm I.D.) with hexane as packing solvent.

The CSPs were packed under 35 MPa with hexane for

about 24 h.

The enantioseparation of b-blockers was performed by

using acetonitrile (ACN) as organic eluent and ultrapure

water or 1 % (v/v) triethylammonium acetate buffer (de-

noted as TEAA, adjusted with acetic acid to the desired pH)

as aqueous eluent. Selected b-blockers were dissolved in

methanol and filtered through a 0.22 lm membrane filter.

The injection volume was set at 20 lL. The dead time was

determined by injecting the methanol with water/acetonitrile

(1/1, v/v) as mobile phase. The column temperature was

controlled at 30 �C and the flow rate was 0.5 mL min-1.
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Calculations of chromatographic data

The retention factor (k0), selectivity factor (a) and enan-

tioresolution (Rs) were used to describe the chromato-

graphic separation of the selected enantiomers. They were

calculated using the below equations:

k0 ¼ tR � t0ð Þ=t0 ð1Þ

a ¼ k02=k
0
1 ¼ ðtR2 � t0Þ=ðtR1 � t0Þ ð2Þ

Rs ¼ 2� tR2 � tR1ð Þ= W1 �W2ð Þ ð3Þ

The dead time (t0) is the time for the mobile phase to

pass through the column, which relates to the efficiency

of the column. The retention time (tR) is the retention

time corresponding to each enantiomer in the chro-

matographic separation tR1 and tR2 represents the reten-

tion times of the second and first enantiomers

respectively, and W1 and W2 are the corresponding base

peak width.

Synthesis and characterization of inclusion

complexes

The inclusion complex of b-CD-BIMOTs with b-blockers
was prepared using the conventional kneading method

[35, 36]. Equimolar amounts of b-CD-BIMOTs and b-
blockers were kneaded with mortar and pestle in minimal

amount of ethanol to form homogenous paste. The complex

was kneaded for 30 min and dried to constant mass. After

drying, a white powder (b-CD-BIMOTs-b-blockers) was

obtained. The final product was characterized in the liquid

state by 1D 1H NMR and NOESY. For 1H NMR and

NOESY, the spectra were obtained from the samples that

Fig. 4 FTIR spectrums of a) Si-TDI b) b-CD-BIMOTs CSP c) native

b-CD CSP

Fig. 5 Thermogravimetric profiles of a) b-CD-BIMOTs CSP b)

native b-CD CSP c) Si-TDI

Table 1 Chiral separation data

for the b-blockers on b-CD-
BIMOTs CSP and b-CD CSP in

neutral pH mobile phase

b-blockers Conditions b-CD-BIMOTs CSP b-CD CSP

k01 k02 a Rs k01 k01 a Rs

Atenolol ACN/water-90/10 Na Na Na Na Na Na Na Na

ACN/water-50/50 Na Na Na Na Na Na Na Na

ACN/water-30/70 Na Na Na Na Na Na Na Na

Metoprolol ACN/water-90/10 2.04 3.64 1.78 2.38 0.05 0.05 1.00 0

ACN/water-50/50 0.58 0.58 1.00 0 2.52 2.52 1.00 0

ACN/water-30/70 0.65 0.65 1.00 0 – – – –

Propranolol ACN/water-90/10 2.83 4.88 1.72 3.10 Na Na Na Na

ACN/water-50/50 0.79 1.01 1.27 0.46 Na Na Na Na

ACN/water-30/70 0.84 1.10 1.30 0.43 Na Na Na Na

Pindolol ACN/water-90/10 Na Na Na Na 0.41 0 1.00 0

ACN/water-50/50 Na Na Na Na 0.46 0 1.00 0

ACN/water-30/70 Na Na Na Na 0.49 0 1.00 0

Na not available
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prepared using b-CD-BIMOTs and b-blockers with the

ratio of 1:1. The samples were dissolved in DMSO-d6.

Seven hundred microliter of solutions were introduced into

standard 5 mm NMR tubes and the spectra were recorded

at 300.15 K. For NOESY experiments, the spectra were

recorded with a mixing time of 700 ms with 256 incre-

ments and 40 scans.

Result and discussion

FTIR Characterization of Si-TDI, native b-CD CSP

and b-CD-BIMOTs CSP

The silica was modified using TDI as the linker. TDI has

two isocyanate groups with different activities towards

Table 2 Chemical shifts corresponding to b-CD-BIMOTs in presence of b-blockers

b-CD-BIMOTs b-CD-BIMOTs-atenolol b-CD-BIMOTs-metoprolol b-CD-BIMOTs-propranolol b-CD-BIMOTs-pindolol

d D D d D D d d D d d D d

H1 4.8405 4.8301 -0.0104 4.8249 -0.0156 4.8285 -0.012 4.8329 -0.0076

H2 3.3312 3.3483 0.0171 3.3425 0.0113 3.3042 -0.027 3.3476 0.0155

H3 3.6394 3.6311 -0.0083 3.6274 -0.0120 3.6309 -0.0085 3.6335 -0.0059

H4 3.3716 3.4304 0.0588 3.4660 0.0944 3.3762 0.0046 3.4391 0.0675

H5 3.5777 3.5488 -0.0289 3.5464 -0.0313 3.5531 -0.0246 3.5580 -0.0197

H6 3.9225 3.9473 0.0248 3.9272 0.0047 3.9041 -0.0184 3.9041 -0.0184

H8 7.4215 7.4212 -0.0003 7.4202 -0.0013 overlap – 7.4361 0.0146

H9 7.1112 7.1227 0.0115 Overlap – 7.1192 0.0008 7.1259 0.0147

H11 2.0847 2.0797 -0.0050 Overlap – – – – –

Ha 7.4314 7.4798 0.0484 7.4752 0.0438 7.4832 0.0518 7.4896 0.0582

Hb 7.7957 7.7903 -0.0054 7.7892 0.0350 7.8063 0.0106 7.8081 0.0124

Hc 7.7542 7.7402 -0.014 7.7391 -0.0151 7.7490 -0.0052 7.7473 -0.0069

Hd – – – – – – – – –

He 7.9563 7.9440 -0.0123 – – – – – –

Hf 9.2394 9.2606 0.0212 9.2807 0.0413 9.3132 0.0738 9.3379 0.0985

Hg 5.4371 5.4400 0.0029 5.4460 0.0089 5.4369 -0.0002 5.4482 0.0111

Table 3 Induced shifts corresponding to b-blockers in presence of b-CD-BIMOTs

b-CD-BIMOTs-atenolol b-CD-BIMOTs-metoprolol b-CD-BIMOTs-propranolol b-CD-BIMOTs-pindolol

D d D d D d D d

Ha0 0.1059 0.0995 -0.0018 0.1140

Hb0 0.1345 0.0055 – 0.2063

Hc0 0.1060 0.0995 -0.0018 0.1140

Hd0 – -0.0075 -0.0160 -0.0067

He0 0.1596 -0.0057 -0.0044 0.1766

Hf0 0.0545 – -0.0063 –

Hg0 – -0.0075 -0.0246 -0.0067

Hh0 -0.0008 -0.0269 0.0794 0.0248

Hi0 0.0118 0.0048 -0.0012 0.0041

Hj0 0.0096 0.0064 -0.0027 0.0162

Hk0 0.0096 -0.0009 -0.0025 0.0162

Hl0 0.0132 0.0003 -0.0131 0.0836

Hm0 0.0054 – -0.0037 -0.0006

Hn0 – – -0.0011 0.0056

Ho0 – -0.0055

– overlap peak
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hydroxyl groups located at the para-position and ortho-

position, respectively. The isocyanate functional groups in

TDI (para position) reacted with hydroxyl groups at the

surface of silica and formed Si-TDI. The two isocyanate

groups in TDI reacted at different rates with the para-po-

sition (approximately four times more reactive than the

ortho-position) [37, 38]. Figure 4 shows the disappearance

of the absorption peak of isocyanate group at 2280 cm-1

indicated that the reserved isocyanate groups had reacted

with b-CD or b-CD-BIMOTs.

TGA Characterization of Si-TDI, native b-CD CSP

and b-CD-BIMOTs CSP

Thermogravimetry was employed to further determine the

presence of b-CD and b-CD-BIMOTs on the synthesized

CSPs. In this experiment, weight loss that attributed to the

loss of the organic group of the synthesized CSPs was

observed between 200 to 600 �C [39]. Figure 5 shows the

thermogravimetric curves of Si-TDI, native b-CD CSP

and b-CD-BIMOTs CSP. The curve of all CSPs and Si-

TDI exhibited the first weight loss below 250 �C which

was due to the loss of the physisorbed water as well as the

condensation of the silanol groups. In native b-CD CSP

and b-CD-BIMOTs CSP, the larger weight loss was

observed above 280 �C. This weight loss can be attributed

to the thermal decomposition of b-CD and b-CD-BIMOTs

moieties on the synthesized CSPs. As compared with b-
CD CSP, higher weight loss was observed for b-CD-
BIMOTs CSP indicating the presence of higher organic

content. This result provides further evidence for the

presence of b-CD and b-CD-BIMOTs on the synthesized

CSPs.

Fig. 6 2D NOESY spectra of

b-CD-BIMOTs-propranolol

complex
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Chromatographic performance and inclusion

complex evaluation

The enantiorecognition ability of b-CD-BIMOTs CSP was

first compared with native b-CD CSP for enantioseparation

of b-blockers as shown in Table 1. The results indicated

that baseline separation was achieved for the enantiomers

of propranolol and metoprolol on b-CD-BIMOTs CSP.

Meanwhile, all the b-blockers were not enantioseparated

by using native-b-CD CSP. This proved that the presence

of IL moieties at b-CD-BIMOTs CSP play an important

role to improve the enantioseparation for some of b-
blockers. This result indicated that the contribution of

multi-modal retention properties of IL which involved

hydrogen bonding, hydrophobic, p-p and electrostatic

interactions could enhance the chiral recognition [40].

Table 1 also shows the higher Rs values were obtained for

propranolol (Rs = 3.10) and metoprolol (Rs = 2.38) on b-
CD-BIMOTs CSP. Complete enantioseparation of propra-

nolol and metoprolol was achieved in 30 min. For pindolol

and atenolol, no peak was observed even after 120 min due

to the high retention of these compounds onto b-CD-
BIMOTs CSP. b-Blockers can be divided into lipophilic

(propranolol and metoprolol) and hydrophilic (pindolol and

atenolol) nature [3]. Atenolol and pindolol with polar

amide and indole moiety respectively tends to interact

stronger with CSP through hydrogen bonding which con-

tribute to high retention. Thus, it is proven that the b-
blockers with lipophilicity properties are well enantiosep-

arated than the hydrophilic b-blockers.
The enantioseparation of propranolol and metoprolol

were separated excellently using b-CD-BIMOTs CSP

might due to the formation of inclusion complex between

the analytes and b-CD through the stereogenic center of

Fig. 7 2D NOESY spectra of

b-CD-BIMOTs-metoprolol

complex
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CD which is located at the interior of the cavity of b-CD.
According Li et al. [41], the formation of inclusion com-

plex is an important interaction to achieve better enan-

tioseparation. In order to verified this interaction, the

formation of inclusion complexes of b-CD-BIMOTs and

selected b-blockers were prepared. 1H NMR and NOESY

were used to study the interaction between b-CD-BIMOTs

and b-blockers. The values of the chemical shifts (d) for
different protons in b-CD-BIMOTs, b-blockers and b-
blockers-b-CD-BIMOTs complexes are listed in Table 2

and 3. The deduced structures of the b-CD-BIMOTs and b-
CD-BIMOTs-b-blockers complexes are shown in supple-

mentary data, Figs. S1 and S2, respectively. Normally, the

inclusion of an apolar region of an analyte into the

hydrophobic cavity would affect the inner protons of the

glucose units of b-CD, namely, H3 and H5, whereas the

protons on the exterior torus of b-CD (H1, H2 and H4)

would remain unaffected [42]. For b-CD-BIMOTs-b-
blockers complexes, the presence of propranolol and

metoprolol show appreciable Dd of H5 proton of b-CD-
BIMOTs (Table 2). The upfield shifts for this proton

proved the existence of an interaction between the analytes

and the interior proton of b-CD-BIMOTs. Additionally, the

larger Dd of Hl0 proton of propranolol as show in Table 3

indicated that a perturbation occurs at the aromatic ring of

propranolol which might due to p-p interaction with IL at

b-CD-BIMOTs. In contrast, the Dd values of aromatic

protons (Hi0,Hj0, Hk0, Hl0) of metoprolol were relatively

weak (Table 3). This suggested that propranolol achieved

better enantioseparation than metoprolol because of the

additional p–p interaction contributed by IL at b-CD-
BIMOTs. Moreover, the greater Dd of H4 proton of b-CD-
BIMOT-metoprolol was observed as compared to other

complexes. Higher electronegativity of oxygen atom at the

Fig. 8 2D NOESY spectra of

b-CD-BIMOTs-pindolol

complex
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methoxy group of metoprolol caused the lower electron

density around the H4 proton. As a result, the proton was

deshielded and experienced higher chemical shift. In

Fig. 6, the cross peak between Hm0 and Hn0 protons of

propranolol with H5 proton b-CD-BIMOTs complex was

observed in NOESY spectra. Meanwhile, in Fig. 7, the

cross peak between Hi0 and Hj0 protons of metoprolol with

H5 proton of b-CD-BIMOTs complex was also observed.

This indicated that propranolol and metoprolol interact

with interior protons of b-CD-BIMOTs.

From the 1H NMR studied, the Dd of H4 (exterior

proton) at b-CD-BIMOTs was appreciably shifted down-

field after forming complexes with pindolol or atenolol.

This suggests that pindolol and atenolol are not forming

inclusion complex but it formed hydrogen bonding with

exterior torus of b-CD-BIMOTs. Moreover, the large Dd
were observed for Ha0, Hb0 and Hc0 of pindolol and

atenolol (Table 3). For b-CD-BIMOTs-pindolol complex,

the NOESY spectra show the cross-peak between Hl0

proton of pindolol with H1 and H4 protons of b-CD-
BIMOTs (Fig. 8). Meanwhile, b-CD-BIMOTs-atenolol

complex shows the cross-peak between Hj0 and Hk0 protons
of atenolol and H4 protons of b-CD-BIMOTs (Fig. 9). This

result indicated the close interaction of pindolol and ate-

nolol at the exterior protons of b-CD-BIMOTs.

The composition of the mobile phase also plays an

important role in enantioseparation. The effect of ACN

contents on enantioseparation of selected b-blockers can be

seen from Table 1. The high k01 and k02 of propranolol and

metoprolol at high organic content (90 % ACN) showed the

normal phase behavior of the b-CD-BIMOTs CSP. On the

other hand, when organic content is low (30 % ACN), the

high k01 and k
0
1 of propranolol and metoprolol showed typical

reverse phase behavior of b-CD-BIMOTs CSP. Therefore,

Fig. 9 2D NOESY spectra of

b-CD-BIMOTs-atenolol

complex
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the retention behavior of b-blockers can be considered as the
mixed aqueous-normal separation mode [43]. In this sepa-

ration mode, the retention mechanism is based on the dis-

tribution of the analytes between the ACN-rich mobile

phase and water enriched layer adsorbed onto the polar

stationary phase [44]. Thus, for more hydrophilic analytes

(pindolol and atenolol), partitioning equilibrium is shifted

towards the immobilized water layer on the stationary

phase, causing the analytes retained longer in column.

TEAA buffer was used to control the mobile phase pH

and ion strength. Buffer can influence the degree of ion-

ization of analytes and resulting in different retention

behavior. The chromatograms in Fig. 10 show the effect of

pH towards the enantioseparation of b-blockers. Propra-
nolol and metoprolol were not enantioseparated at pH 4

and 9. Meanwhile, they are well enantioseparated at pH 7.

This is due to the deprotonation and protonation of b-
blockers at pH 4 and 9, respectively. Protonated and

Fig. 10 The chromatograms of propranolol, metoprolol, pindolol and atenolol responding to different pH of mobile phase
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deprotonated analytes were not favorable for the formation

of inclusion complex with b-CD [45]. This finding further

support the role of inclusion complex formation in enan-

tioseparation of b-CD based CSPs. Meanwhile, the reten-

tion time of pindolol and atenolol was reduced at pH 4 and

9 as compared to pH 7. Due to both of analytes and b-CD-
BIMOTs CSP acquiring positive charges at pH 4, the

electrostatic repulsion occurred and reduced the retention

time. At basic pH, the abundance of TEAA species reduces

the retention time due to the competition between TEAA

and protonated analytes.

Conclusion

In this study, the b-CD-BIMOTs and native b-CD was

successfully synthesized and immobilized onto the modified

silica to obtain CSPs. The enantioseparation of b-blockers
using b-CD-BIMOTs CSP with ionic liquid moiety was

found to be better than native b-CD CSP. This proved the

critical role of ionic liquid in enhancing the enantiosepara-

tion for some of b-blockers. Propranolol and metoprolol

obtained good enantioresolution compared to atenolol and

pindolol. The results suggested that the lipophilic property

and the structure of propranolol and metoprolol that enable

the formation of inclusion complex contribute to better

enantioseparation. This observation was proven by 1H NMR

and NOESY of b-CD-BIMOTs-b-blockers inclusion com-

plexes. According to 1H NMR and NOESY, propranolol and

metoprolol showed the interaction at the interior torus of b-
CD-BIMOTs which indicates the formation of inclusion

complex. However, atenolol and pindolol showed the strong

interaction at exterior torus of b-CD-BIMOTs and resulting

in the poor enantioseparation.
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Introduction

Flavonoids are biological active organic molecules that 
occur in various vascular plants [1]. Flavanone, hespere-
tin, naringenin and eriodictyol are the most abundant fla-
vonoids in nature. These flavonoids can be easily extracted 
from grape fruits and citrus fruits [2]. The protective effect 
of these flavonoids against lipid peroxidation of membranes 
and their role in physiological and pathological disorders 
(such as aging, inflammation, atherosclerosis and ischemia) 
have been extensively reported [3, 4]. Recently, chirality 
of the flavonoids has been taken into consideration since 
enantiomers of the chiral compound can have different bio-
logical and toxicological effects on living organisms [5]. 
In most studies, preparation of pure enantiomer is mainly 
through (1) asymmetric (enantioselective) synthesis and (2) 
chiral separation of racemic mixtures [6]. Enantioselective 
synthesis is of great importance to pure enantiomer prepa-
ration, but it can be difficult to achieve. Thus, chiral separa-
tion of racemic mixtures is an alternative method used to 
obtain the desired enantiomer [7].

In this study, the enantioseparation of selected flavonoids 
was carried out using the β-cyclodextrin (β-CD) based chi-
ral stationary phase (CSP). β-CD is a natural cyclic oli-
gosaccharides comprised of seven glucose units joined 
through α-1,4 linkage. A β-CD molecule contains 35 chi-
ral centers which led to its widely used as stationary phase 
in HPLC for the chiral separation [8]. In β-CD based CSP, 
chiral separation is achieved through hydrogen bonding or 
dipole–dipole interaction of analytes with the OH groups of 

Abstract  In this study, β-cyclodextrin functionalized ionic 
liquid was prepared by adding 1-benzylimidazole onto 
6-monotosyl-6-deoxy-β-cyclodextrin (β-CDOTs) to obtain 
β-CD-BIMOTs. β-CD-BIMOTs were then bonded onto the 
modified silica to produce chiral stationary phases (β-CD-
BIMOTs-CSP). The performance of β-CD-BIMOTs-CSP 
was evaluated by observing the enantioseparation of flavo-
noids. The performance of β-CD-BIMOTs stationary phase 
was also compared with native β-CD stationary phase. For 
the selected flavonoids, flavanone and hesperetin obtained 
a high resolution factor in reverse phase mode. Meanwhile, 
naringenin and eriodictyol attained partial enantiosepa-
ration in polar organic mode. In order to understand the 
mechanism of separation, the interaction of selected flavo-
noids and β-CD-BIMOTs was studied using spectroscopic 
methods (1H NMR, NOESY and UV–Vis spectrophotom-
etry). The enantioseparated flavanone and hesperetin were 
found to form an inclusion complex with β-CD-BIMOTs. 
However, naringenin and eriodictyol were not enantiosepa-
rated due to the formation of hydrogen bonding at exterior 
torus of β-CD-BIMOTs.
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β-CD. In addition, formation of inclusion complex between 
analytes with hydrophobic cavity of β-CD was found to 
enhance the chiral separation [9]. On the other hand, native 
β-CD based CSP is not always provide satisfactory separa-
tion of enantiomers [10]. As a result, various efforts have 
been directed towards developing new β-CD derivatives to 
enhance the chiral separation [11]. Ionic liquid (IL) is an 
example of new substituent group that have been used to 
modify β-CD [12, 13]. IL is composed of organic cation 
and inorganic or organic anion [14]. IL is widely used in 
environmentally benign chemical processing and chemi-
cal analysis [15]. IL molecule consists of high charge 
region and low charge region [16]. In IL based CSP, the 
dual properties of IL contribute to the enantioseparation 
through additional electrostatic and dispersive interaction 
[17]. Therefore, in addition to the hydrophobic interaction, 
hydrogen bonding and dipole–dipole interaction of β-CD 
based CSP with enantiomers, the presence of IL can pro-
vide additional electrostatic interaction and π-π interaction 
which can further enhance the enantioseparation [12].

In this study, mono-6-deoxy-6-(3-benzylimidazolium 
tosylate)-β-CD (β-CD-BIMOTs) was bonded to modified 
silica gel to obtain a modified-β-CD based CSP (β-CD-
BIMOTs-CSP). The performance of β-CD-BIMOTs-CSP 
was then compared with native β-CD based CSP for enan-
tioseparation of flavonoids. Based on literature reviews, 
most of the researches on the mechanism of enantiosepa-
ration on β-CD functionalized IL based CSP were elabo-
rated through hypothesis or computational study [12, 13]. 
This study investigated the mechanism of enantioseparation 
using the spectroscopic and spectrophotometric techniques 

(1H NMR, NOESY and UV–Vis). The result from the spec-
troscopic and spectrophotometric techniques provides the 
information on the intermolecular interactions between 
analytes and CSP that involved in the chiral discrimination 
of flavonoids by β-CD-BIMOTs-CSP.

Experimental

Materials

β-CD was purchased from Acros (Geel, Belgium) (99 %). 
1-benzylimidazole (1-BzlIm), 2,4-toluene diisocyanate 
(TDI) and racemic flavanone (Fig. 1) were purchased from 
Aldrich (St. Louis, MO, USA). The HPLC grade solvents 
(acetonitrile (ACN), methanol (MeOH) and hexane) and 
Kromasil spherical silica gel (100 Ǻ pore size and 5 μm 
particle size) were purchased from Merck (Darmstadt, Ger-
many). The racemic hesperetin, naringenin and eriodictyol 
(Fig.  1) were purchased from Carl Roth (Karlsruhe, Ger-
many). All chemicals obtained were used without further 
purification.

Instruments

A Perkin-Elmer RX1 FT-IR (Waltham, USA) spectropho-
tometer was used to record all infrared (IR) spectra. IR 
data were recorded from 400 to 4000  cm−1. Absorption 
spectra measurements were carried out with a Shimadzu 
UV 1800 (Kyoto, Japan) spectrophotometer in the range 
of 190–800  nm. All NMR spectra were recorded using 

Fig. 1   The structure of studied 
flavonoids
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Bruker Avance 600  MHz (Fällanden, Switzerland). Pro-
ton shifts are reported in parts per million (ppm) using 
the residual signal of dimethyl sulfoxide (DMSO-d6). The 
enantioseparation was monitored using a Shimadzu HPLC 
system consisted of a LC-20AT pump, a SPD-M20 detec-
tor, a SIL-20AHT auto sampler, a CTO-20AC column 
oven and CBM-20A communication bus module (Kyoto, 
Japan).

Synthesis of Chiral Stationary Phase (CSP)

Synthesis of β‑CD‑BIMOTs

β-CD-BIMOTs (Fig.  2) was prepared according to the 
previously reported method [18, 19]. The substitution of 
IL onto β-CD was confirmed by IR and the simple proton 
NMR [18]. New peak was observed in proton NMR (H6*, 
3.9  ppm) which belonged to substituted β-CD [19]. The 
yield was 90 %.

Immobilization of β‑CD‑BIMOTs onto Si‑TDI

The synthesis of TDI modified silica gel (Si-TDI) and the 
immobilization of β-CD-BIMOTs onto the Si-TDI were 
presented in Electronic Supplementary Material (Fig. S1). 
Si-TDI was first prepared as reported by Yatabe [20]. Then, 
the obtained Si-TDI was reacted with β-CD-BIMOTs in 
anhydrous hexane for 24 h to obtain β-CD-BIMOTs-CSP. 
β-CD-BIMOTs-CSP was then filtered and washed with 
hexane, acetone and distilled water. The same procedure 
was applied to immobilize the native β-CD onto the Si-TDI 
by replacing β-CD-BIMOTs with β-CD. The products was 
then characterized using FT-IR.

Chromatographic Conditions

β-CD-BIMOTs-CSP (2.5  g) were packing into a stain-
less steel column (250  mm  ×  4.6  mm I.D.). The CSPs 
were packed under 35  MPa with hexane for about 24  h. 
The enantioseparation of the selected flavonoids on β-CD-
BIMOTs-CSP was evaluated in both reverse phase and 
polar organic mobile phases. The reverse phase mode was 
prepared by mixing different amounts of ACN or MeOH 
with ultra-pure water or triethylammonium acetate (TEAA) 
buffer pH 4 and 9 (0.1 M, ionic strength 0.21) [21]. TEAA 
was prepared with addition of acetic acid (HOAc) into 
solution of triethylamine (TEA). Whereas, polar organic 
mobile phase consisted of varies volume fraction mixture 
of ACN/MeOH/TEA/HOAc started at 90/10/1/3 (0.09 ionic 
strength) or 90/10/3/1 (0.06 ionic strength).

Flavonoids were dissolved in MeOH and filtered through 
a 0.22 μm membrane filter. The injection volume was set at 
20 μL. The dead time was determined by injecting MeOH 
with ACN/water (1/1, v/v) as mobile phase. The column 
temperature was controlled at 30 °C and the flow rate was 
fixed at 0.5 mL/min.

Data Processing

The relative retentions (k) was calculated using the follow-
ing equations:

(1)k1 =
(tR1 − t0)

t0
,

(2)k2 =
(tR2 − t0)

t0
,

Fig. 2   Structure of  
β-CD-BIMOTs
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where the dead time (t0) is the time for the mobile phase to 
pass through the column, tR1 and tR2 represent the retention 
time of the first and second enantiomers, respectively. The 
resolution factor (Rs) was calculated using Eq. (3):

where W1 and W2 are the corresponding base peak width.

Preparation of β‑CD‑BIMOTs‑flavonoids Complexes

The β-CD-BIMOTs-flavonoid complexes were prepared 
using the conventional kneading method [22]. β-CD-
BIMOTs and flavonoids with the molar ratio of 1:1 were 
pulverised in a ceramic mortar with the presence of mini-
mum amount of ethanol to form homogenous paste. The 
complex was kneaded for 30  min and dried to constant 
mass. The final product was characterized using 1H NMR 
and NOESY. 1H NMR and NOESY spectra of β-CD-
BIMOTs-flavonoid complexes were recorded at 27  °C 
using a Bruker Avance 600  MHz NMR spectrometer in 
DMSO-d6. For NOESY experiments, the spectra were 
recorded with a mixing time of 700  ms with 256 incre-
ments and 40 scans.

Determination the Formation Constant 
of β‑CD‑BIMOTs‑flavonoids Complexes

The solution of β-CD-BIMOTs-flavonoids complexes were 
prepared by adding a 2.0  mL of 0.01  mM flavonoids ali-
quot and 3.2 mL of 0.0032 M β-CD-BIMOTs solution into 
a 10.0 mL standard volumetric flask and diluted to the mark 
with ultra-pure water. The absorption spectra of β-CD-
BIMOTs-flavonoids complexes were recorded against 
blank reagent which was prepared with the same reagent 
concentration but without the addition of flavonoids. The 
absorption spectra of flavonoids and β-CD-BIMOTs alone 
were also recorded.

The formation constant (K) of the β-CD-BIMOTs-
flavonoids complexes were obtained from the slope of 
Benesi–Hildebrand plot that generated using Eqs.  (4) and 
(5). For the formation constant curve, the concentration of 
flavonoids was held constant at 0.01  mM, meanwhile the 
concentration of β-CD-BIMOTs was varied (0.001, 0.002, 
0.003 and 0.005 M). In this experiment, water was used as 
blank in all measurements.

(3)Rs = 2×
(tR2 − tR1)

(W1 −W2)
,

(4)

1

(A− A0)
=

[

1

(A′ − A0)

]

+

[

1

K
(

A′ − A0

)

[β - CD - BIMOTs]

]

,

(5)K =

[

1

Slope (A′ − A0)

]

,

where A0 and A are the absorbences of the free guest and 
the β-CD-BIMOTs, respectively. A’ is the absorbance at the 
maximum concentration of β-CD-BIMOTs.

Results and Discussion

FTIR Characterization of CSPs

The FT-IR spectra of silica gel, Si-TDI, native β-CD based 
CSP and β-CD-BIMOTs-CSP are shown in Fig.  3. In the 
Fig. 3a, the sharp peaks at 1059 and 3332 cm−1 were attrib-
uted to Si–O bond and O–H stretching, respectively. Com-
pared to silica gel, Si-TDI (Fig.  3b) showed a character-
istic peak of isocyanate (O=C=N–) group at 2280 cm−1. 
This indicated that the reaction of TDI with Si took place 
through the formation of urethane bond [23]. In the spec-
tra of native β-CD based CSP and β-CD-BIMOTs-CSP 
(Fig. 3c, d), the broad O–H stretching band was observed 
at 3461 and 3455 cm−1 attributed to β-CD. The absence of 
the peak at 2280 cm−1 (corresponding to isocyanate group) 
at Fig.  3c, d was clearly observed. This result indicated 
that the completion of reaction for immobilization of both 
native β-CD and β-CD-BIMOTs onto modified silica [18, 
19]. In addition, the band at 1643  cm−1 that attributed to 
C=C bond of aromatic ring of 1-BzlIm further proven the 
anchoring β-CD-BIMOTs on to the Si-TDI (Fig. 3d).

Screening Performance of β‑CD‑BIMOTs‑CSP

This study was started by comparing the performance of 
β-CD-BIMOTs-CSP with native β-CD based CSP in order 
to investigate the effect of IL substituent on the enanti-
oseparation of flavonoids. The results (Fig. 4a) of this study 

Fig. 3   FT-IR spectrum of a silica, b Si-TDI, c native β-CD-CSP, d 
β-CD-BIMOTs-CSP
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showed that better enantioseparation of flavanone, hespere-
tin and eriodictyol was obtained using β-CD-BIMOTs-
CSP as compared to native β-CD based CSP (Fig.  4b). 
This results showed that the presence of IL substituent on 
β-CD might provide additional interaction which enhanced 
the enatioseparation of the selected flavonoids. The effects 
of mobile phase on the enantioseparation of flavonoids on 
β-CD-BIMOTs-CSP were further investigated.

Chromatographic Data and Evaluation on the 
Mechanism of Enantioseparation

The type and composition of organic modifier as mobile 
phase are important factors that affect the enantiosepara-
tions. Adjusting the pH of mobile phase for reverse phase 
mode would also influence the forms of analytes and thus 
affect the enantioseparation. As presented in Table 1, high 
Rs values indicated the good enantioseparation for fla-
vanone (Rs =  1.63) and hesperetin (Rs =  1.06) with the 
mobile phase of MeOH/water:50/50 and ACN/water:50/50, 

respectively. In addition, good enantioseparation 
(Rs = 1.86) was obtained for flavanone when ACN/buffer 
at pH 4 was used as mobile phase. However, low Rs values 
(Rs = 0.46) was obtained for flavanone when ACN/buffer 
pH 9 was selected as mobile phase. Meanwhile, the enan-
tiomers of naringenin and eriodictyol were not resolved 
using all selected mobile phases. Moreover, it can be seen 
that the k1 values of flavonoids decreased with increas-
ing content of organic solvent. This was a common rule in 
reverse phase mode due to the increasing content of organic 
solvent which leads to the increase of elution strength of 
mobile phase. Thus, flavonoids were easily displaced from 
the stationary phase.

Flavanone obtained good enantioseparation in most of 
the mobile phase conditions and it might due to its hydro-
phobic properties that facilitated the inclusion complex 
formation with hydrophobic cavity of β-CD-BIMOTs-CSP. 
Moreover, flavanone with aromatic rings that without any 
substituent may experience less steric hindrance for inclu-
sion complex formation with cavity of β-CD-BIMOTs-CSP. 

Fig. 4   Separation of flavonoids on a β-CD-BIMOTs-CSP, b native β-CD-CSP
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In addition, the carbonyl group and aromatic ring of fla-
vanone also can form hydrogen bonding and π–π interac-
tion, respectively, with β-CD-BIMOTs-CSP which might 
further enhance the enantio-recognition. Flavanone is a 
neutral compound as compared with hesperetin, narin-
genin and eriodictyol which are weakly acidic in nature 
[24]. Thus, at pH 4, 7 and 9, flavanone is remained neutral 
and preferable to form inclusion complex with cavity of 
β-CD [19]. As compared to other flavonoids, flavanone was 
enantioseparated at pH 4, 7 and 9 but the extent of Rs was 
depend on type and composition of mobile phase.

In order to study the interaction that involved in enan-
tioseparation, 1H NMR and NOESY spectra of β-CD-
BIMOTs-flavonoids complexes were studied. The deduced 
structures of the β-CD-BIMOTs and β-CD-BIMOTs-
flavonoids complexes are presented in Electronic Supple-
mentary Material Fig. S2 and Fig. S3, respectively. Chemi-
cal shift (δ) variations provide evidence for the formation 
of inclusion complexes in solution. The values of the δ for 
different protons in β-CD-BIMOTs and β-CD-BIMOTs-
flavonoids complexes are listed in Table  2. The induced 
shift (∆δ) is defined as the difference in chemical shift 
in the presence or absence of analytes. In this study, the 
induced shift was calculated using Eq. (6):

For β-CD-BIMOTs-flavanone complex (Table  2), the 
significant changes were observed on ∆δ at H5 proton 
which located in the cavity of β-CD-BIMOTs due to inclu-
sion complex formation. In addition, large shift at H2 pro-
ton located at the exterior torus of β-CD-BIMOTs was due 
to the hydrogen bonding. The NOESY spectra of β-CD-
BIMOTs-flavanoids complexes are presented in Electronic 
Supplementary Material Fig. S5. The NOESY spectra 
[see Electronic Supplementary Material Fig. S4(a)] show 
the cross-peak between H1, H2 and H5 protons of β-CD-
BIMOTs with Hg’ and Hj’ protons of flavanone proved that 
the inclusion complex and hydrogen bonding were formed 
between flavanone and β-CD-BIMOTs.

For hesperetin which is a weakly acidic flavonoid with 
pKa 7.9 also formed neutral species at pH 7 and able to 
form inclusion complex with cavity of β-CD-BIMOTs-
CSP and thus effectively enantioseparated using β-CD-
BIMOTs-CSP (Table  1). Hesperetin bearing methoxy 
group is more hydrophobic than naringenin and eriodictyol. 
Therefore, hesperetin has greater affinity towards the cavity 
of β-CD-BIMOTs-CSP as compared to naringenin and eri-
odictyol. The OH groups and aromatic rings of hesperetin 

(6)�δ = δ(complex)− δ(free)

Table 1   Chiral separation data 
for the flavonoids on β-CD-
BIMOTs-CSP in the reverse 
mobile phase

Conditions pH 7: a: ACN/water:90/10, b: ACN/water:50/50, c: ACN/water:30/70, d: MeOH/water:90/10, e: 
MeOH/water:50/50

Conditions pH 4 or 9: a: ACN/buffer:90/10, b: ACN/buffer:50/50, c: ACN/buffer:30/70, d: MeOH/
buffer:90/10, e: MeOH/buffer:50/50

Flavonoids Conditions pH 4 pH 7 pH 9

k1 k2 Rs k1 k2 Rs k1 k2 Rs

Flavanone a 0.34 0.48 0.64 0.33 0.49 0.45 0.38 0.85 0.79

b 2.09 5.24 1.86 0.47 0.71 0.81 0.33 0.46 0.46

c 2.77 2.77 0 2.61 2.61 0 2.51 2.51 0

d 7.23 7.23 0 1.44 2.05 0.76 1.92 3.34 0.93

e 2.27 3.58 0.85 2.58 4.31 1.63 6.84 6.84 0

Hesperetin a 1.18 1.18 0 0.47 0.76 0.45 0.79 0.79 0

b 1.49 1.49 0 0.37 1.36 1.06 1.61 1.61 0

c 9.75 9.75 0 4.43 7.14 0.92 4.31 4.31 0

d 1.35 1.35 0 1.29 1.29 0 1.80 1.80 0

e – – – 16.19 16.19 0 4.18 4.18 0

Naringenin a 0.27 0.27 0 0.28 0.28 0 0.28 0.28 0

b 0.62 0.62 0 0.84 0.84 0 0.97 0.97 0

c 1.54 1.54 0 4.16 4.16 0 5.29 5.29 0

d 0.68 0.68 0 0.12 0.12 0 0.83 0.83 0

e – – – 0.18 0.18 0 3.61 3.61 0

Eriodictyol a 0.22 0.22 0 0.32 0.32 0 0.34 0.34 0

b 0.34 0.34 0 0.34 0.34 0 0.34 0.34 0

c 0.35 0.61 0.26 0.36 0.36 0 0.37 0.37 0

d – – – 0.19 0.19 0 0.82 0.82 0

e – – – 0.34 0.34 0 4.09 4.09 0
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can form hydrogen bonding and π–π interaction with 
β-CD-BIMOTs-CSP and thus enhanced the enantiosepara-
tion at pH 7. However, the result from the enantiosepera-
tion revealed that hesperetin was not enantioseparated at 
pH 4 and 9. At acidic pH, there are interaction of buffer salt 
with analyte molecule which would significantly affect the 
inclusion interactions between analyte and cavity of β-CD-
BIMOTs [25]. Meanwhile, the deprotonated hesperetin at 
pH 9 is not favorable for the formation of inclusion com-
plex with β-CD-BIMOTs [19]. This finding further support 
the role of inclusion complex formation in enantiosepara-
tion of β-CD based CSPs. These interactions were further 
proven using the data from 1H NMR and NOESY. The 
β-CD-BIMOTs-hesperetin complex shows appreciable shift 
at H4 proton at exterior torus of β-CD-BIMOTs because of 
hydrogen bonding. A large shift at H5 proton located in 
cavity of β-CD-BIMOTs (Table 2) was attributed to the for-
mation of inclusion complex. In addition, the cross-peaks 
between H3, H4 and H5 protons of β-CD-BIMOTs with 
He’, Hg’, and Hk’ protons of hesperetin showed in NOESY 
spectra [see Electronic Supplementary Material Fig. S4(b)] 
further proved the formation of inclusion complex and 
hydrogen bonding which enhanced the enantioseparation.

As shown in Table  1, naringenin and eriodictyol were 
not resolved using the reverse phase mode. Naringenin 
and eriodictyol contains highly polar moieties (OH) 
which might weaken the hydrophobic interaction with 
β-CD-BIMOTs cavity and retard the formation of inclu-
sion complexes. Naringenin and eriodictyol might pre-
fer to form hydrogen bonding at exterior torus instead of 

interior cavity of β-CD-BIMOTs-CSP. Moreover, the pres-
ence of OH functionality as electron donating group could 
increase the electron density of aromatic ring of naringenin 
and eriodictyol and facilitate the π–π repulsion which 
led to weak π–π interaction [26]. It can be deduced that 
hydrogen bonding is not sufficient to obtain the enantio-
recognition. 1H NMR spectra of complexes was recorded to 
obtain the information of intermolecular interaction. With 
the presence of naringenin and eriodictyol, large ∆δ of H2 
and H4 protons of β-CD-BIMOTs was observed. In addi-
tion, NOESY spectra for β-CD-BIMOTs-naringenin com-
plex [see Electronic Supplementary Material Fig. S4(c)] 
showed the cross-peak between He’, Hg’ and Hj’ protons of 
naringenin with H2 proton of β-CD-BIMOTs. In NOESY 
spectra of β-CD-BIMOTs-eriodictyol complex [see Elec-
tronic Supplementary Material Fig. S4(d)], there are cross-
peak between Hc’, Hg’ and Hf’ protons of eriodictyol with 
H4 proton of β-CD-BIMOTs. These results suggested that 
hydrogen bonding between naringenin and eriodictyol was 
formed at the exterior torus of β-CD-BIMOTs.

As a part of the optimization, the polar organic mode 
with different additives was used to improve the enanti-
oseparation of naringenin and eriodictyol. This system 
can be used to resolved compounds that cannot be sepa-
rated in the reverse phase mode. In this study, the mobile 
phase of polar organic mode was composed of ACN and 
MeOH. The selected additives were TEA and HAOc [27]. 
In the polar organic mode, the relative high concentration 
of organic solvents occupies the relatively hydrophobic 
cavity of β-CD. Armstrong et  al. [28] proposed that the 

Table 2   Chemical shifts (δ) of 
β-CD-BIMOTs, and β-CD-
BIMOTs-flavonoids

Values in bold refer to the highest induced shift of that particular proton

β-CD- 
BIMOTs

β-CD-BIMOTs-
flavanone

β-CD-BIMOTs-
hesperetin

β-CD-BIMOTs-
naringenin

β-CD-BIMOTs-
eriodictyol

δ δ ∆δ δ ∆δ δ ∆δ δ ∆δ

H1 4.8405 4.8872 0.0467 4.8381 −0.0024 4.8241 −0.0164 4.8365 −0.0040

H2 3.3312 3.2568 −0.0744 3.3214 −0.0138 3.2406 −0.0946 3.3400 0.0048

H3 3.6394 3.6392 −0.0002 3.6401 0.0007 3.6253 −0.0141 3.6235 −0.0159

H4 3.3716 3.3797 0.0081 3.3552 −0.0164 3.3989 0.0273 3.4438 0.0722

H5 3.5777 3.5572 −0.0205 3.5586 −0.0191 3.5443 −0.0334 3.5428 −0.0349

H6 3.9225 3.9110 −0.0115 3.9185 −0.0040 3.9053 −0.0172 3.8979 −0.0246

H8 7.4215 7.4374 0.0159 7.4276 0.0061 7.4128 −0.0087 7.4105 −0.0110

H9 7.1112 7.1142 0.0030 7.1281 0.0169 7.1174 0.0062 7.1199 0.0087

H11 2.0847 2.0821 −0.0026 2.0844 −0.0003 2.0706 −0.0141 2.0698 −0.0149

Ha 7.4314 7.4827 0.0513 7.4995 0.0681 7.4873 0.0559 7.4756 0.0442

Hb 7.7957 7.8025 0.0068 7.8019 0.0062 7.7771 −0.0186 7.7650 −0.0307

Hc 7.7542 7.7892 0.0350 7.7552 0.0010 7.7380 −0.0162 7.7274 −0.0268

Hd – – – – – – – – –

He 7.9563 7.9472 −0.0091 7.9456 −0.0107 7.9333 −0.0230 7.9312 −0.0251

Hf 9.2340 9.2696 0.0302 9.2744 0.0350 9.2419 0.0025 9.2252 −0.0142

Hg 5.4371 5.4471 0.0100 5.4191 −0.0180 5.4067 −0.0304 5.4000 −0.0371
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analytes may form a “lid” over the “mouth” of the cavity. 
Moreover, the retention and selectivity are mainly due to 
the polar OH groups at the rims of β-CD forming hydrogen 
bond with analytes. Thus, the total number of OH moiety at 
flavonoids would affect the enantioseparation. The HPLC 
chromatograms shown naringenin achieved better enanti-
oseparation at higher amount of TEA (Fig. 5a–c-ii) mean-
while eriodictyol was resolved at higher amount of HAOc 
(Fig.  6a–c-ii). Higher amount of TEA increased the pH 
value of mobile phase, thus favors the dissociation of narin-
genin and eriodictyol into ionic species. It has been showed 
that the dissociation constant of eriodictyol is higher than 
naringenin depending on the number of OH substitutions 
[29]. This might lead to the strong electrostatic interac-
tion between eriodictyol and IL of CSP which inhibit the 
enantioseparation.

At higher ratio of HAOc, both of naringenin and erio-
dictyol are in neutral form. However, enantioseparation of 
eriodictyol was better as compared with naringenin. This 
might due to the structure of eriodictyol with 4 OH groups 
that has high capability to form hydrogen bonding at the 
exterior torus of β-CD-BIMOTs. It can be deduced that the 
better enantioseparation in the polar organic mode shows 
the importance of the hydrogen bonding and/or electro-
static interaction for the chiral recognition mechanism of 
naringenin and eriodictyol.

The optimized chromatogram of eriodictyol (Fig. 6c–i) 
showed the broad and tailing peak. This might due to the 
formation of strong hydrogen bonding between eriodictyol 
and β-CD-BIMOTs-CSP. Thus, it can be deduced that the 
more OH group substituents at naringenin and eriodictyol 
leads to the stronger interaction with β-CD-BIMOTs-CSP 

Fig. 5   HPLC chromatograms of naringenin in polar organic mode. Mobile phase composition, ACN/MeOH/TEA/HAOc (v/v/v/v): a-i 
90/10/1/3, a-ii 90/10/3/1, b-i 50/50/1/3, b-ii 50/50/3/1, c-i 30/70/1/3 and c-ii 30/70/3/1
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and thus inhibit the enantioseparation. Therefore, the 
formation constant (K) was determined to indicate the 
strength of the interaction between flavonoids and β-CD-
BIMOTs. The plots of absorption for β-CD-BIMOTs, fla-
vonoids and β-CD-BIMOTs-flavonoids complexes were 
first measured (Fig.  7) by monitoring the change in the 
UV spectra. Results showed that β-CD-BIMOTs had a 
λmax in the range of 230–260  nm. The absorption spec-
tra of flavanone displayed two well-defined λmax at 250 
and 320  nm meanwhile naringenin, hesperetin and erio-
dictyol displayed one λmax at 320 nm. The λmax of β-CD-
BIMOTs-flavonoids complex was observed at 230–260 
and 320 nm refer to the wavelength of β-CD-BIMOTs and 
flavonoids, respectively. It was observed that the absorp-
tion spectra of all β-CD-BIMOTs-flavanoids complexes 
showed both hyperchromic and hypochromic effect. 
Increase in absorption is defined as hyperchromic effect 

and decrease in the absorption is defined as hypochromic 
effect [30, 31].

Hyperchromic effect observed on β-CD-BIMOTs-
flavonoids at 320 nm is due to the electron perturbation at 
chromophore of flavonoids [30]. Meanwhile, the hypochro-
mic effect is due to the intercalative mode involving the 
stacking interaction [31] which is mainly referred to 
π–π interaction between aromatic flavonoids and β-CD-
BIMOTs. The hypochromic effect for β-CD-BIMOTs-
flavanone was not observed due to the overlapping of 
absorbance at 250 nm (Fig. 7a). Both of hyperchromic and 
hypochromic effects that observed in the absorption spectra 
of β-CD-BIMOTs-flavanoids proved that there were mul-
tiple interactions for the formation of complex between 
β-CD-BIMOTs and flavanoids.

The K values were then calculated from the slope of 1
(A−A0)

 
versus 1

[β - CD - BIMOTS]
 of β-CD-BIMOTs-flavonoids as 

Fig. 6   HPLC chromatograms of eriodictyol in polar organic mode. Mobile phase composition, ACN/MeOH/TEA/HAOc (v/v/v/v): a-i 
90/10/1/3, a-ii 90/10/3/1, b-i 50/50/1/3, b-ii 50/50/3/1, c-i 30/70/1/3 and c-ii 30/70/3/1
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shown in Electronic Supplementary Material Fig. S5 using 
Eq.  (5). In Table 3, the K values obtained are in the follow-
ing order: β-CD-BIMOTs-hesperetin  <  β-CD-BIMOTs-
flavanone  <  β-CD-BIMOTs-naringenin  <  β-CD-BIMOTs-
eriodictyol. This deduced that the strength of interaction is 
correlated with the substituted OH group at flavonoids. Previ-
ous study reported that hydrogen bond is the strongest non-
covalent interactions with 8.4–41.8 kJ/mol stabilization energy 

[32]. Naringenin and eriodictyol that possess 3–4 OH substitu-
ents experienced highest K value due to the stronger hydrogen 
bond formation. Indeed, these results clarified that naringenin 
and eriodictyol interacted at the external torus of β-CD-
BIMOT. Meanwhile, the small K values for flavonone and 
hesperetin proven that the inclusion complex was formed due 
to hydrophobic interaction thus exhibit the enantioseparation.

Conclusions

In this work, β-CD-BIMOTs-CSP was successfully syn-
thesized and compared with native β-CD-CSP for enan-
tioseparation of flavonoids. The β-CD-BIMOTs-CSP is 
performed better than β-CD-CSP due to the combination 
of multi interactions which is contributed by IL and β-CD. 
Flavanone and hesperetin obtained good enantioresolution 

Fig. 7   Absorption spectra of a β-CD-BIMOTs-flavanone, b β-CD-BIMOTs-hesperetin, c β-CD-BIMOTs-naringenin, d β-CD-BIMOTs-
eriodictyol with [β-CD-BIMOTs]: 0.032 mM [Flavonoids]: 0.01 mM; T = 25 °C

Table 3   K values for β-CD-BIMOTs-flavonoids

Flavonoids K

Flavanone 722

Hesperetin 572

Naringenin 1077

Eriodictyol 6032
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in reverse phase mode. Meanwhile, the enantiomers of 
naringenin and eriodictyol are prefer to resolve in polar 
organic mode due to the high number of OH moiety sub-
stitution. From 1H NMR and NOESY determination, fla-
vanone and hesperetin are proven to form inclusion com-
plexes with β-CD-BIMOTs. Naringenin and eriodictyol 
experienced non inclusion but formed hydrogen bonding at 
exterior torus of β-CD-BIMOTs.
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Abstract

Recently, we reported a new chiral stationary phase prepared using b-cyclodextrin functionalized

with aromatic ionic liquid which is aimed to enhance the performance of enantioseparation of

flavonoids and b-blockers. In this paper, the characteristics and performance of previously

prepared chiral stationary phase denoted as b-CD-BIMOTs were compared with the newly

synthesized chiral stationary phase denoted as b-CD-DIMOTs. b-CD-DIMOTs were prepared

by functionalization of b-cyclodextrin with aliphatic ionic liquid. The obtained b-CD-BIMOTs and

b-CD-DIMOTs stationary phases were compared with native b-CD stationary phase for the

enantioseparation of non-steroidal anti-inflammatory drugs (NSAIDs) (ibuprofen, indoprofen,

ketoprofen and fenoprofen). The b-CD-BIMOTs stationary phase showed greater chiral

resolution capabilities rather than b-CD-DIMOTs and native b-CD stationary phases. Further,

in order to understand the interaction of enantioseparation, the inclusion complex formation

between NSAIDs and b-CD-BIMOTs was studied using 1H NMR, NOESY and UV/Vis. The

enantioseparated NSAIDs were found to form multiple interactions with b-CD-BIMOTs-CSP.
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Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are drugs that have been used to provide
analgesic, antipyretic and anti-inflammatory effects (Ye et al., 2010). Profen (2-arylpropionic
acids) is an important group of NSAIDs, characterized by a chiral carbon atom next to
the carboxylic acid group (Ye et al., 2010). This chiral structure of NSAIDs exhibits optical
activity and causes the different biological properties of enantiomers (Ye et al., 2010).
For example, for ibuprofen, the pharmacological activity resides in the S-enantiomer
only (Núñez-Agüero et al., 2006). Consequently, the enantioseparation of NSAIDs is an
important concern for pharmaceutical use.

High-performance liquid chromatography (HPLC) has been proven to be one of the most
widespread techniques for the enantiomeric separation and analysis (Muderawan et al.,
2006; Zhang et al., 2008). In this study, the enantioseparation of selected NSAIDs was
performed using HPLC with b-cyclodextrin (b-CD)-based chiral stationary phase (CSP).
b-CD is a doughnut-shaped cyclic oligosaccharides containing seven a-(1,4)-glycosidic
linkages. b-CD has been used extensively as CSPs in HPLC because of its ability to
recognize enantiomeric molecules through the formation of inclusion complexes (Xiao
et al., 2012; Zhong et al., 2006) and its C7 symmetry axis. Fourteen hydroxyl groups
located at the mouth of the cavity provide a number of potential interactions with
enantiomers during the enantioseparation. Until 1990, most of the enantioseparation
studies focused on the preparation of native b-CD-based CSPs modified by different
linkage groups (Zhou et al., 2010). However, the application of native b-CD-CSPs was
not always satisfactory (Zhou et al., 2010). Therefore, recently, researches have been
focused on the preparation of modified b-CD to be used as CSPs (Xiao et al., 2012).

The addition of different substituent groups onto the rim of b-CD provides
multiple interactions such as p–p, dipole–dipole interaction, electrostatic interaction, and
hydrogen bonding which contributes significantly to effective enantioseparation. Ionic
Liquids (ILs) are examples of new substituent groups that are been used to modify b-CD
(Li and Zhou, 2014; Li et al., 2011). ILs is composed of organic cation and inorganic or
organic anion (Wasserscheid and Keim, 2000). It is widely used in environmentally benign
chemical processing and analysis (Pandey, 2006). ILs molecules consist of high charge
region and low charge region (Canongia Lopes and Pádua, 2006) which contributes
to enantioseparation through electrostatic and dispersive interaction (Anderson and
Armstrong, 2003).

In our previous work, we introduced the preparation, characterization and
chromatographic performance of b-CD-BIMOTs-CSP (Figure 1) (Rahim et al., 2016a,
2016b). It was observed that compared with native b-CD-CSP, b-CD-BIMOTs-CSP
possessed excellent chiral recognition abilities towards the selected b-blockers and
flavonoids. Herein, we demonstrate another b-CD functionalized IL denoted as b-CD-
DIMOTs-CSP (Figure 1) to investigate the effect of the alkyl chain of imidazolium cation
of IL on enantioseparation abilities. The characterization of b-CD-BIMOTs-CSP and b-CD-
DIMOTs-CSP was compared with native b-CD-CSP using FTIR and thermal analysis.
Additionally, the chromatographic performance of b-CD-BIMOTs-CSP, b-CD-DIMOTs-
CSP and native b-CD-CSP was compared for the enantioseparation of NSAIDs (Figure 2).
To the best of our knowledge, most studies on the interactions of enantioseparation using
b-CD functionalized IL-based CSP are often elaborated through computational study
(Li and Zhou, 2014; Li et al., 2011). However, none of those studies provided data via
experimental data. As a solution to this problem, this article evaluates the inclusion
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Figure 1. The structure of b-CD-DIMOTs-CSP, b-CD-BIMOTs-CSP and native b-CD-CSP.

Figure 2. The structure of selected NSAIDs.
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complex formation between NSAIDs and b-CD functionalized IL CSP in enantioseparation
using spectroscopic techniques (1H NMR, NOESY and UV/Vis).

Experimental

Materials

b-CD was purchased from Acros (Belgium) (99%). 1-benzylimidazole (1-BzlIm), 1-decyl-2-
methylimidazole (C10MIm), 2,4-toluene diisocyanate (TDI) and NSAIDs were purchased
from Aldrich (USA). Solvent used for HPLC and synthesis are LC and anhydrous grade
solvents, respectively, purchased fromMerck (Germany). Kromasil spherical silica gel with a
mean pore size 100 Å and particle size of 5mm was purchased from Merck (Germany). The
stainless steel HPLC empty columns (250mm� 4.6mm) were purchased from Grace (USA).

Instruments

FT-IR spectra were performed on a Perkin–Elmer RX1 FT-IR (Perkin Elmer, Waltham,
MA, USA) using KBr pellets. Thermogravimetric (TGA) analyses curves were examined
using a TA Instrument Q500 (Perkin Elmer, Waltham, MA, USA). An elemental analysis of
the sample was determined with a Leco Truspec CHN Analyzer (Saint Joseph, MI). 1H
NMR, 13C NMR and NOESY spectra were recorded using an Avance spectrometer at
600MHz (Bruker, Fällanden, Switzerland). Absorption spectra measurements were
carried out with a Shimadzu UV 1800 (Shimadzu, Japan) spectrophotometer in the range
of 190 to 800 nm. The employed HPLC system comprised an LC-20AT pump, an SPD-M20
detector, an SIL-20AHT auto sampler, a CTO-20AC column oven and CBM-20A
communication bus module (Shimadzu, Japan).

Synthesis of CSPs

The b-CD-BIMOTs-CSP was synthesized according to the procedure reported previously
(Rahim et al., 2016a, 2016b). Meanwhile, the preparation of b-CD-DIMOTs-CSP
involved the following four steps. (i) preparation of p-toluene sulfonic anhydride (Ts2O),
(ii) preparation of 6-O-Monotosyl-6-deoxy-b-CD (b-CDOTs), (iii) synthesis of
Mono-6-deoxy-6-(3-decyl-2-methylimidazolium tosylate)-b-CD (b-CD-DIMOTs) and
(iv) immobilization of b-CD-DIMOTs onto modified silica. The synthesis pathway of
b-CD-DIMOTs-CSP is illustrated in Figure 3.

Ts2O was prepared according to our previous publications (Rahim et al., 2016a, 2016b),
primarily by dissolving p-toluene sulfonyl chloride (2.00 g, 10.4mmol) in dichloromethane
(DCM) (12.5mL). Then, p-toluene sulfonic acid (0.52 g, 2.63mmol) was added gradually
with vigorous stirring under nitrogen atmosphere. The resulting mixture was stirred
overnight at room temperature. The mixture was then filtered to remove the unreacted
p-toluene sulfonic acid. Hexane (50ml) was added to the filtrate and a precipitate was
obtained after drying overnight under reduced pressure. b-CDOTs was also prepared
according to our previously reported method (Rahim et al., 2016a, 2016b). C10MIm
(10mol equivalent) was then added dropwise to a stirred solution of dry b-CDOTs
(1.00 g, 0.78mmol) in anhydrous DMF (40ml) to prepare b-CD-DIMOTs. Stirring was
continued at 90�C under nitrogen atmosphere for a further 48 h. After cooling to room
temperature, acetone was added to precipitate the product. Thereafter, the mixture was
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then stirred for 30min and the product was filtered and washed with excess amount of
acetone. A white yellow precipitate was obtained as the final product. The structure of
b-CD-DIMOTs is shown in Figure 4.

The immobilization of b-CD-DIMOTs onto silica was first prepared by modifying silica
gel as reported by Yatabe and Kageyama (1994). The silica gel was reacted with 2, 4-toluene
diisocyanate (TDI) in dry hexane for 4 h at room temperature to obtain Si-TDI.
Upon completion of the reaction, the product was filtered, rinsed thoroughly by hexane
and dried under reduced pressure. The immobilization of b-CD-DIMOTs onto Si-TDI was
then carried out by stirring Si-TDI (5 g) in anhydrous hexane (200ml) under nitrogen
atmosphere. After 30min, a solution of b-CD-DIMOTs (1.8 g) in anhydrous hexane was
added. Stirring was continued for 24 h. The synthesized solid was filtered and washed with
toluene, acetone and distilled water to obtain a purified product. The product was
characterized using elemental analysis, FT-IR and TGA. The aforementioned procedure
was also applied to immobilize the native b-CD onto the Si-TDI.

FT-IR/KBr, cm–1: 3297 (OH), 2922 (C–H), 1652 (C¼C), 1152 (C–N).

Figure 3. Synthesis pathway of b-CD-DIMOTs-CSP.
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1H NMR, DMSO-d6: Hl (7.68, s), Hk (7.61, s), Hb-Hj (1.23-1.28, t), Ha (0.85, t), H8 (7.46,
d), H9 (7.11, d), OH-2–OH-3 (5.64–5.79, m), H1 (4,83, s), OH-6 (4.44–4.54, m), H6*
(3.91), H3, H5, H6 (3.54–3.63), H2–H4 (3.20–3.34, m), H11 (2.28, s).

13C NMR, DMSO-d6: Ca (16.13), Cb (19.79), Cc (28.62), Cd (22.48), Cg (22.48), Ch (21.38),
Ci(22.48), Cj (31.37), Ck (126.42), Cl (128.75), Cm (14.40), Cn (129.84), C9 (128.17), C8
(126.06), C1 (102.38), C4 (81.95), C2 (73.49), C3 (72.43), C5 (70.74), C6 (60.36), C6* (45.66).

CHNS (%): C (40.45), H (6.35), N (1.71), S (1.61).

Column packing approach

The CSPs (2.5 g) were suspended in approximately 15ml HPLC-grade hexane and poured
into a stainless steel column (250mm� 4.6mm). Thereafter, the CSPs were packed under
35MPa with hexane for about 24 h.

HPLC analysis instrumentation and conditions

The newly packed column was flushed with 100% hexane at a flow rate of 0.2ml/min for
24 h. The flow rate was increased to 0.5ml/min to obtain a stable baseline. The NSAIDs were
prepared at a concentration of 500mg/l in MeOH. The injection volume was 20 ml. The flow
rate was fixed at 0.5ml/min. The reversed separation mode of mobile phase consisted of
ACN/water and MeOH/water, whereas, polar organic consisted of various volume fraction
mixture of ACN and MeOH.

Calculations of chromatographic data

The retention factorðk
0

Þ, selectivity factor ð�Þ and resolution factorðRs) were calculated using
the following equations

k
0

¼
ðtR � t0Þ

t0
ð1Þ

Figure 4. The structure of b-CD-DIMOTs.
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� ¼
k02
k01
¼
ðtR2 � t0Þ

ðtR1 � t0Þ
ð2Þ

Rs ¼
2� ðtR2 � tR1Þ

ðW1 �W2Þ
ð3Þ

The dead time ðt0Þ is the time for the mobile phase to pass through the column.
The retention time tRð Þ is the retention time corresponding to each isomer in the
chromatographic separation. tR2 and tR1 represent the retention times of the second and
Erst isomers, respectively, and W1 and W2 are the corresponding base peak widths.

Preparation of �-CD-BIMOTs/NSAIDs complexes

The complex of b-CD-BIMOTs with NSAIDs was prepared using the conventional
kneading method (Cwiertnia et al., 1999; Daruházi et al., 2008). b-CD-BIMOTs and
NSAIDs (with the ratio of 1:1) were triturated with mortar and pestle in small amount of
ethanol to form homogenous paste. The slurry was kneaded for 30min and dried to a
constant mass. The final product was characterized using 1H NMR and NOESY. The
prepared samples were dissolved in DMSO-d6. A 700 ml of the resulting solution was
introduced into standard 5mm NMR tubes, and the spectra of 1H NMR and NOESY
were recorded at 27�C. For NOESY experiments, the spectra were recorded with a mixing
time of 700ms with 256 increments and 40 scans.

Determination of the absorption spectra of �-CD-BIMOTs/NSAIDs complexes

A 2.0mL of 0.01mM NSAIDs aliquot and 3.2ml of 0.0032M b-CD-BIMOTs solution was
transferred accurately into a 10.0ml standard volumetric flask and diluted to the mark with
ultra-pure water. The absorption spectra of b-CD-BIMOTs/NSAIDs complexes were
recorded against a blank reagent which was prepared with the same reagent concentration
but without the addition of NSAIDs. In addition, absorption spectra of NSAIDs and b-CD-
BIMOTs were also recorded. All the absorbance was measured at 200–800 nm separately
against blank reagent.

Result and discussion

FTIR characterization

The spectra of b-CD, b-CD-BIMOTs and b-CD-DIMOTs are shown in Figure 5. The broad
O-H stretching band around 3200–3300 cm�1 for b-CD, b-CD-BIMOTs and b-CD-
DIMOTs is corresponded to the OH group in the b-CD molecules. The intense band
at 1657 cm�1 in IR spectra of b-CD-BIMOTs was attributed to C¼C of the aromatic
ring of 1-BzlIm moieties (Figure 5(b)). The weak bands known as overtones at 1665–
2000 cm�1 were also attributed to the aromatic ring (Socrates, 2004) of 1-BzlIm moieties.
The C-H band occurred at �2900 cm�1 of b-CD-BIMOTs and b-CD-DIMOTs spectra
(Figure 5(b) and (c)) were found to be more intense than that of b-CD (Figure 5(a)).
These results indicate that b-CD was successfully functionalized with 1-BzlIm and C10MIm.

The spectra of Si-TDI, native b-CD-CSP, b-CD-BIMOTs-CSP and b-CD-DIMOTs-CSP
are shown in Figure 6. Spectra of Si-TDI (a) show the presence of the isocyanate
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(O¼C¼N-) group at 2280 cm�1. The para position isocyanate group is expected to react
with OH groups on the surface of silica to form Si-TDI (Arnold, 1957; Rahim et al., 2016a,
2016b). The remaining isocyanate group at ortho-position would react with secondary OH
group of b-CD or b-CD functionalized IL. Therefore, the isocyanate peak disappeared after
immobilization of native b-CD, b-CD-BIMOTs and b-CD-DIMOTs onto Si-TDI
(Figure 6(b) and (d)).

Thermal analysis

TGA analyses were performed on the Si-TDI, native b-CD-CSP, b-CD-BIMOTs-CSP and
b-CD-DIMOTs-CSP in the temperature range of 50 to 900�C. Based on the thermogram
shown in Figure 7, there was an initial loss of weight at temperature below 100�C for all
samples. This was attributed to the removal of physically adsorbed water and/or remaining
solvent residues. Physically adsorbed water was further removed completely by heating to
around 200�C. TDI attached to the silica surface decomposed in the region between 125 and
250�C (Guo et al., 2005). In addition, Si-TDI showed a small but noticeable weight loss in
the region 250–600�C, caused by the dehydration of the silica surface (Poole et al., 2003).
The thermogram of b-CD-BIMOTs-CSP and b-CD-DIMOTs-CSP showed two very distinct
weight losses. The weight loss occurred at the range of 210–357�C can be attributed to the
decomposition of organic moieties at the surface. The weight loss takes place at 400–600�C

Figure 5. FT-IR spectra of (a) b-CD (b) b-CD-BIMOTs (c) b-CD-DIMOTs.
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might be due to the decomposition of the residual methoxy groups on silica (Antochshuk
and Jaroniec, 2000). The incessant decrease in weight of native b-CD-CSP, b-CD-BIMOTs-
CSP and b-CD-DIMOTs-CSP between 600 and 900�C can be assigned to the decomposition
of the b-CD. Overall, the thermogram of b-CD-BIMOTs-CSP showed more pronounced
weight loss than b-CD-DIMOTs-CSP at all isothermal temperatures. This is because the
long alkyl chain of b-CD-DIMOTs-CSP prevents it from becoming volatile at high
temperatures (Lu et al., 2002).

Elemental analysis

The elemental composition of b-CD-DIMOTs-CSP was C: 15.56%, H: 2.33%, N: 4.72%,
S: 1.42%. The degree of surface coverage for b-CD-DIMOTs-CSP was calculated from the
following equation (Hongdeng et al., 2014)

b� CD�DIMOTs� CSP ð�mol m�2Þ ¼
%N

42� ð1� %C� %H� %NÞ � S
ð4Þ

where %C, %H, and %N represent the percentages of carbon, hydrogen, and nitrogen,
respectively. S is the specific surface area of the silica support (400 m2 g�1). From the

Figure 6. FT-IR spectra of (a) Si-TDI (b) native b-CD-CSP (c) b-CD-BIMOTs-CSP (d) b-CD-DIMOTs-CSP.

Rahim et al. 9



elemental analysis, b-CD-DIMOTs attached to the silica surface was quantified as
3.63mmol m�2.

Screening performance of �-CD functionalized ILs

The effect of different groups attached to imidazolium cation (present in b-CD
functionalized IL) on the separation of chiral compounds was studied. The performance
of b-CD-BIMOTs-CSP and b-CD-DIMOTs-CSP was compared with native b-CD-based
CSP for the enantioseparation of NSAIDs. The chromatogram in Figure 8(a) showed that
ibuprofen achieved baseline separation while the other NSAIDs (Figure 8(b) and (c)) were
poorly enantioseparated using b-CD-BIMOTs-CSP. It is obvious that b-CD-BIMOTs-CSP
showed better chromatographic performance as compared to that of b-CD-DIMOTs-CSP
and native b-CD based CSP. These results suggest that b-CD-BIMOTs-CSP might
provide additional interaction with NSAIDs thus enhanced the enantioseparation. The
planar aromatic of 1-BzlIm attached to b-CD-BIMOTs-CSP is approached by planar
analytes in preference, forming p–p interaction (Wang et al., 2012) that contributed to
better enantioseparation. The long alkyl chain of b-CD-DIMOTs-CSP is able to cover the
partial cavity of b-CD (Meier-Augenstein et al., 1992) resulting in decreased its chiral
selectivity. Thus, the optimization of mobile phase for the enantioseparation of NSAIDs
was further investigated using b-CD-BIMOTs-CSP. Additionally, the interactions of the
enantioseparation on b-CD-BIMOTs-CSP were evaluated.

Figure 7. Thermogram of (a) Si-TDI (b) native b-CD-CSP (c) b-CD-BIMOTs-CSP (d) b-CD-DIMOTs-CSP.
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Chromatographic data and evaluation on the interactions of enantioseparation
on �-CD-BIMOTs-CSP

With respect to the chemical structures of NSAIDs shown in Figure 2, we studied the
influences of organic solvent composition on enantioseparation of NSAIDs using two
different separation modes; reverse phase and polar organic. The effects of various
organic solvent compositions (mobile phase) on k0, a and Rs in the reversed and polar
organic separation modes are shown in Table 1. It is apparent that the enantioseparation
of NSAIDs achieved better resolution using reversed separation mode than when polar
organic mode was used. Furthermore, in the reversed separation mode, high Rs values of
NSAIDs were obtained using different compositions of ACN organic solvent. The high

Figure 8. The [AQ4]chromatograms for the enantioseparation of selected NSAIDs on (a) b-CD-

BIMOTs-CSP (b) b-CD-DIMOTs-CSP (c) native b-CD-CSP condition: (i) 90/10 ACN/water (ii) 50/50 ACN/

water and (iii) 30/70 ACN/water.
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values of k1
0 and k2

0 obtained with highest and lowest composition of ACN (90% and 30%)
used, revealed that the retention behavior of NSAIDs is mixed aqueous-normal separation
mode (Guo et al., 2009). In this separation mode, the retention mechanism was based on the
distribution of the analytes between ACN-rich mobile phase and water-enriched layer on
stationary phase (Buszewski and Noga, 2012). Apart from composition of organic solvent,
the effect of mobile phase pH on the enantioseparation of NSAIDs was also investigated.
TEAA buffer was used to control the mobile phase pH. Buffer can influence the degree of
ionization of analytes and result in different retention behavior. Referring to the
chromatograms shown in Figure 9, there was no Rs value for NSAIDs at pH 4 and 9.
The TEAA buffer is believed to have masked the enantioselective retention sites on the
CSP surface and decreased the resolution (Mosiashvili et al., 2013).

As can be seen from Table 1, ibuprofen was completely resolved with Rs value of 2.51,
meanwhile, indoprofen showed partial separation with Rs value of 1.09. Ketoprofen and
fenoprofen were also partially enantioseparated and fenoprofen attained the lowest Rs value

Table 1. Chiral separation data for the NSAIDs on b-CD-BIMOTs CSP.

NSAIDs Conditions k1
0 k2

0 a Rs

Ibuprofen ACN/water-90/10 0.29 1.17 4.04 2.51

ACN/water-50/50 0.43 0.43 1.00 0

ACN/water-30/70 1.23 1.23 1.00 0

MeOH/water-90/10 0.16 0.16 1.00 0

MeOH/water-50/50 0.77 0.77 1.00 0

ACN/MeOH-30/70 0.12 0.12 1.00 0

ACN/MeOH-50/50 0.18 0.18 1.00 0

Indoprofen ACN/water-90/10 3.35 3.35 1.00 0

ACN/water-50/50 0.15 0.51 3.39 1.09

ACN/water-30/70 0.16 0.48 3.02 0.68

MeOH/water-90/10 0.26 0.26 1.00 0

MeOH/water-50/50 3.23 3.23 1.00 0

ACN/MeOH-30/70 0.63 0.63 1.00 0

ACN/MeOH-50/50 0.79 0.79 1.00 0

ACN/MeOH-10/90 2.33 2.33 1.00 0

Ketoprofen ACN/water-90/10 0.76 1.01 1.33 0.43

ACN/water-50/50 0.46 0.94 2.06 0.72

ACN/water-30/70 0.52 1.14 2.20 0.88

MeOH/water-90/10 2.54 2.54 1.00 0

MeOH/water-50/50 5.12 5.12 1.00 0

ACN/MeOH-50/50 1.21 1.21 1.00 0

ACN/MeOH-10/90 4.93 4.93 1.00 0

Fenoprofen ACN/water-90/10 1.04 1.04 1.00 0

ACN/water-50/50 0.07 0.07 1.00 0

ACN/water-30/70 0.11 0.50 4.55 0.54

MeOH/water-90/10 0.06 0.06 1.00 0

MeOH/water-50/50 1.05 1.05 1.00 0

ACN/MeOH-30/70 0.13 0.13 1.00 0

ACN/MeOH-50/50 0.25 0.25 1.00 0

ACN/MeOH-10/90 0.52 0.52 1.00 0
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(0.54). The relatively low Rs values of ketoprofen and fenoprofen were because of the
substituent in the meta position that made their orientation in an unfavorable way to fit
into the b-CD-BIMOTs cavity (Fanali and Aturki, 1995). The higher Rs values of ibuprofen
and indoprofen are probably due to the para position of the substituent (containing the
chiral center) on the aromatic ring (Fanali and Aturki, 1995). This is in good agreement with
previous studies which also proved that para-substituted aromatic rings can fit properly into
the CD cavity forming inclusion complex, but the extent of the penetration mode is
dependent on the polarity and feature structure of analytes (Fanali and Aturki, 1995;
Núñez-Agüero et al., 2006). It can be concluded that the less polar ibuprofen achieved
better enantioseparation than polar indoprofen (Velkov et al., 2007).

Even though the polarity of fenoprofen and ibuprofen are close to each other
(log Pfenoprofen¼ 3.8, log Pibuprofen¼ 3.7) (Velkov et al., 2007), ibuprofen achieved higher
Rs value when high organic solvent content (90% ACN) was used. This is because ibuprofen
can be fitted into b-CD-BIMOTs cavity, whereas fenoprofen with two aromatic rings was
less favorable to be fitted into b-CD-BIMOTs cavity due to steric hindrance effect.
According to previous simulation study (Núñez-Agüero et al., 2006), there was also
moderate and weak hydrogen bonding between the carboxyl group of ibuprofen and
hydroxyl groups of b-CD during the complexation. Ketoprofen which is composed of a
similar structure (two aromatic rings) as fenoprofen, achieved better enantioseparation

Figure 9. The chromatograms of fenoprofen, ibuprofen, indoprofen and ketoprofen responding to

different pH of mobile phase.
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than fenoprofen. This is due to the presence of carbonyl group in ketoprofen which
enhanced the formation of hydrogen bonding with b-CD-BIMOTs rather than ether
linkage in fenoprofen (Lommerse et al., 1997). Therefore, it can be said that, apart from
the inclusion complex formation, hydrogen bonding also played an important role in
enhancing the enantioseparation of NSAIDs.

In order to verify the interactions of enantioseparation, 1H NMR and NOESY of
b-CD-BIMOTs/NSAIDs complexes were studied. The values of chemical shifts (d)
obtained from 1H NMR for different protons in b-CD-BIMOTs, NSAIDs and
b-CD-BIMOTs/NSAIDs complexes are listed in Tables 2 and 3. The deduced structures
of the b-CD-BIMOTs and b-CD-BIMOTs/NSAIDs complexes are shown in Figures 10
and 11, respectively. Normally, the inclusion of non-polar region of an analyte into the
hydrophobic cavity would affect the inner protons of the glucose units of b-CD, namely,
H3 and H5 (Zhang et al., 1990). However, in the presence of ibuprofen, indoprofen,
ketoprofen and fenoprofen, there were appreciable shift at H4 and H5 protons of
b-CD-BIMOTs (Table 2) due to the formation of hydrogen bonding and inclusion
complex, respectively. In addition, significant change in values of chemical shifts (d) of
Hc0 proton of ibuprofen (Table 3) was also observed. This result indicates that isobutyl
moiety of ibuprofen was included into the cavity of b-CD-BIMOTs. However, the cross
peak between proton of isobutyl ibuprofen with H5 proton of b-CD is absent in the NOESY
spectra of b-CD-BIMOTs/ibuprofen (see in Figure S1(a) in supporting information).
Perhaps, the great difference between isobutyl size and the internal b-CD diameter, (&4.3
and 7.8 Å, respectively) causes such weak interaction (Núñez-Agüero et al., 2006).
Furthermore, cross-peaks between Hf0, Hg0 and Hj0 protons of ibuprofen with H5 proton
of b-CD-BIMOTs confirm the penetration of aromatic moiety into the b-CD-BIMOTs cavity.

Table 2. Chemical shifts corresponding tob-CD-BIMOTs in the presence of NSAID.

b-CD-

BIMOTs

b-CD-BIMOTs/

ibuprofen

b-CD-BIMOTs/

indoprofen

b-CD-BIMOTs/

ketoprofen

b-CD-BIMOTs/

fenoprofen

d d �d d � d � � d d � d

H1 4.8405 4.8369 �0.0036 4.8316 �0.0089 4.8337 �0.0068 4.8280 �0.0125

H2 3.3312 3.3200 �0.0112 3.3474 0.0162 3.3015 �0.0297 3.3118 �0.0194

H3 3.6394 3.6387 �0.0007 3.6323 �0.0071 3.6284 �0.011 3.6326 �0.0068

H4 3.3716 3.4056 0.0340 3.4292 0.0576 3.3985 0.0269 3.4132 0.0416

H5 3.5777 3.5597 �0.018 3.5536 �0.0241 3.5458 �0.0319 3.5530 �0.0247

H6 3.9225 3.9091 �0.0134 3.9045 �0.018 3.9048 �0.0177 3.8803 �0.0422

H8 7.4215 7.4422 0.0207 7.4318 0.0103 7.4182 �0.0033 7.4209 �0.0006

H9 7.1112 7.1189 �0.0077 7.1268 0.0156 7.1196 �0.0084 Overlap �

H11 2.0847 – – – – – – – –

Ha 7.4314 7.4877 0.0563 7.4835 0.0521 7.4737 0.0423 7.4834 0.052

Hb 7.7957 7.8149 0.0192 Overlap – – – 7.7896 �0.0061

Hc 7.7542 7.7516 �0.0026 Overlap – – – 7.7410 �0.0132

Hd _ – – – – – _ – –

He 7.9563 7.9921 0.0358 – – 7.9378 �0.0185 7.9399 �0.0164

Hf 9.2394 9.3362 0.0968 9.3202 0.0808 9.2240 �0.0154 9.3217 0.0823

Hg 5.4371 5.4514 0.0143 5.4146 �0.0225 5.4036 �0.0335 5.4459 �0.0088

Note: Values in bold refer to the highest induced shift of that particular proton.
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Appreciable shifts were also observed for the aromatic proton of indoprofen (Hd0, Hh0, Hi0),
ketoprofen (Ha0, He0) and fenoprofen (Hd0, He0) (Table 2), which proves the formation of
inclusion complexes. This result was further convinced with the NOESY spectra of b-CD-
BIMOTs/indoprofen, b-CD-BIMOTs/ketoprofen and b-CD-BIMOTs/fenoprofen (Figure S1
(b) and (d)), where cross-peaks between Hh0, Hi0 (proton indoprofen), He0 (proton ketoprofen)
and Ha0, Hc0, Hi0 (proton fenoprofen) with H5 proton of b-CD-BIMOTs were observed.

Additionally, the UV/Vis absorption spectra of b-CD-BIMOTs/NSAIDs complexes were
further investigated to acquire more information on the interactions between NSAIDs
and b-CD-BIMOTs. The plots of UV/Vis absorption for b-CD-BIMOTs, NSAIDs and

Table 3. Induced shifts corresponding to NSAID in the presence of b-CD-BIMOTs.

b-CD-BIMOTs/

Ibuprofen

b-CD-BIMOTs/

Indoprofen

b-CD-BIMOTs/

Ketoprofen

b-CD-BIMOTs/

Fenoprofen

� d � d � d � d

Ha0 �0.0022 �0.0044 �0.0183 0.0132

Hb0 �0.0041 �0.0022 �0.0048 0.0133

Hc0 0.0072 �0.0044 �0.0083 0.0132

Hd0 �0.0030 �0.0141 �0.0070 0.0677

He0 �0.0033 �0.0051 �0.0119 0.0677

Hf0 �0.0023 �0.0081 �0.0083 0.0237

Hg0 �0.0011 �0.0081 �0.0052 0.0238

Hh0 �0.0020 �0.0086 �0.0046 0.0373

Hi0 – �0.0086 �0.0042 0.0099

Hj0 �0.0029 – 0.0155 –

Hk0 – �0.0235 �0.0098 0.0258

Note: Values in bold refer to the highest induced shift of that particular proton.

Figure 10. The deduced structure of b-CD-BIMOTs.
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b-CD-BIMOTs/NSAIDs complexes are presented in Figure 12. The results obtained
revealed that b-CD-BIMOTs had �max in the range of 230–260 nm. The �max of b-CD-
BIMOTs/ibuprofen, b-CD-BIMOTs/indoprofen and b-CD-BIMOTs/fenoprofen
complexes appeared at 262, 256 and 256 nm, respectively, referring to b-CD-BIMOTs.
The absorbance of b-CD-BIMOTs/ibuprofen, b-CD-BIMOTs/indoprofen and b-CD-
BIMOTs/fenoprofen underwent the hyperchromic effect (increase in absorbance), while
the absorbance of b-CD-BIMOTs/ketoprofen experienced the hypochromic effect
(decrease in absorbance). Both the hyperchromic and hypochromic effects observed were
due to the p–p* transition of dipole moments of the aromatic ring. The transition dipole
moment of this chromophore interacts with the induced dipoles of the neighboring
chromophores, depending on their relative orientation. If the dipoles are along the same
axis and one behind the other, then the intensity of the absorption band will increase and
hyperchromic effect is observed. Conversely, if the dipoles are parallel and adjacent, a
decrease in intensity of the absorption band occurs, and hypochromic effect is observed
(Peral and Gallego, 2000). The hypochromic effect on b-CD-BIMOTs/ketoprofen can also
be attributed to the limitation for p–p* transition because of hydrogen bonding (Peral and
Gallego, 2000) at carbonyl group between aromatic rings of ketoprofen. The variations
that occurred in the UV/Vis spectra were a consequence of complexation of NSAIDs with
b-CD-BIMOTs accompanied by p–p interaction and hydrogen bonding. These results clearly

Figure 11. The deduced structure of NSAID/b-CD-BIMOTs complexes: (a) (i) ibuprofen (ii) b-CD-

BIMOTs/ibuprofen, (b) (i) indoprofen (ii) b-CD-BIMOTs/indoprofen (c) (i) ketoprofen (ii) b-CD-BIMOTs/

ketoprofen, (d) (i) fenoprofen (ii) b-CD-BIMOTs/fenoprofen.
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prove the ability of IL to form p–p interaction in addition to the existing superposition of
inclusion complex and hydrogen bond for the enantioseparation of NSAIDs.

Conclusions

In this study, b-CD-BIMOTs-CSP and b-CD-DIMOTs-CSP were successfully synthesized
and compared for enantioseparation of NSAIDs. The b-CD-BIMOTs-CSP performed better
than b-CD-DIMOTs-CSP and b-CD-CSP due to the additional p-p interaction which was
possible with b-CD-BIMOTs-CSP. Furthermore, a better enantioseparation of ibuprofen,
fenoprofen, indoprofen and ketoprofen using b-CD-BIMOTs-CSP were observed due to the
superposition of hydrogen bonding, hydrophobic and also p-p interactions. From 1H NMR,
NOESY and UV/Vis studies, NSAIDs were proven to form inclusion complexes with b-CD-
BIMOTs-CSP.
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