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ABSTRACT

The steady worldwide population growth with continuing urbanization renders the

formation of crowd by chance a norm. The mere existence of crowd has the prospect of

progressing into a hazardous scene. Consequently, visual analysis of dense crowds is a

growing research topic in the domain of computer vision. Conventional visual analysis

methods are mostly object-centric, thus, are neither suitable nor capable of analyzing

dense crowd. Hence, this thesis proposes novel solutions to analyze images and videos of

dense crowds, which contain hundreds to thousands of individuals. The main objective

are, first, to obviate the difficulty of segregating individuals in dense crowd scenes to

infer dense crowd segments, secondly to estimate the number of individuals and finally to

detect unusual events, by exploiting spatial and temporal cues readily available from the

scenes.

Dense crowd segmentation generally serves as one of the essential steps for fur-

ther visual analysis of the dense crowds. The thesis first demonstrates the significance

of simplifying dense crowd scenes into structurally meaningful atomic regions for dense

crowd segmentation. This proposed approach is formulated using the concept and prin-

ciples of granular computing. It shows that by exploiting the correlation among pixel

granules, structurally similar pixels can be aggregated into meaningful atomic structure

granules. This is useful in outlining natural boundaries between crowd and background

(i.e. non-crowd) regions necessary for dense crowd segmentation. Moreover, the pro-

posed approach is scene-independent; thus it can be applied effectively to dense crowd

scenes with a variety of physical layout and crowdedness.

Second, this thesis presents an approach to utilize irregular patches conforming to

the natural outline between crowd and background to estimate the number of individuals

in dense crowd scenes. As opposed to most of the existing approaches that uses pixel-grid
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representation, the proposed density estimation approach allows a model to adapt itself

to the arbitrary distribution of crowd where the underlying spatial information of scenes

can be accurately extracted. Here, a direct mapping is established between the extracted

features and the number of people.

Third, to detect saliency in dense crowd scenes, low-level features extracted from the

crowd motion field are transformed into a global similarity structure. This global similar-

ity structure representation allows the discovery of the intrinsic manifold of the motion

dynamics, which could not be captured by the low-level representation. Most importantly,

unlike conventional methods, the proposed approach does not require tracking, and prior

information or model learning to identify interesting / salient regions in the dense crowd

scenes.

These proposed approaches are validated by using public dataset of dense crowd

scenes. From the empirical results, it is anticipated that the collective analysis of this

thesis will constitute a complete dense crowd analysis system that is able to infer re-

gions of dense crowds, estimate crowd density and identify saliency in mass gathering for

proactive crowd management.
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ABSTRAK

Perhimpunan orang ramai di tempat awam secara tidak sengaja menjadi suatu per-

kara yang norma akibat pertambahan populasi penduduk dunia dan perkembangan per-

bandaran yang berterusan. Kerumunan orang ramai berpotensi untuk berubah menjadi

senario yang berbahaya, seperti rempuhan orang ramai. Sehubungan itu, analisis visual

himpunan orang ramai merupakan satu topik penyelidikan yang semakin berkembang dan

giat diterokai dalam domain visi komputer. Kebanyakan kaedah analisis visual yang kon-

vensional memfokuskan objek. Oleh itu, kaedah tersebut tidak sesuai dan tidak mampu

untuk menganalisi himpunan orang ramai. Justeru, tesis ini mencadangkan penyelesai-

an yang baharu untuk menganalisis gambar-gambar dan video yang mengandungi ratusan

hingga ribuan orang ramai. Objektif utama tesis ini adalah, pertamanya, untuk menangani

kesulitan dalam usaha mengasingkan individu daripada himpunan orang ramai bagi me-

nentukan segmen orang ramai daripada segmen latar belakang, keduanya, untuk meng-

anggarkan bilangan individu dan akhirnya, mengesan perkara yang menonjol (salient),

dengan mengunakan maklumat berkenaan spatial dan temporal yang didapati daripada

gambar-gambar dan video tentang orang ramai.

Segmentasi himpunan orang ramai yang padat (Dense crowd segmentation) pada

umumnya berfungsi sebagai salah satu langkah penting untuk analisis visual orang ra-

mai yang selanjutnya. Tesis ini pada awalnya menunjukkan kepentingan membahagikan

himpunan orang ramai kepada kelompok kecil yang bermakna untuk dense crowd se-

gmentation. Pendekatan yang diusulkan ini digubah dengan menggunakan konsep dan

prinsip-prinsip pengkomputeraan granul (granular computing). Hal ini menunjukkan ba-

hawa dengan mengeksploitasi hubungan antara granul piksel, struktur piksel yang sama

dapat digabungkan untuk menjadi struktur granul yang bermakna. Pendekatan ini berguna

dalam merangka sempadan semula jadi antara kumpulan orang ramai dan latar belakang
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yang diperlukan untuk dense crowd segmentation. Tambahan pula, pendekatan yang dica-

dangkan ini boleh digunakan dengan berkesan bagi himpunan orang ramai dalam pelbagai

persekitaran dan kesesakan.

Kedua, tesis in menyampaikan satu pendekatan untuk menggunakan kelompok ti-

dak sekata yang mematuhi sempadan semula jadi antara kumpulan orang ramai dan latar

belakang bagi menganggarkan bilangan individual. Berbeza dengan kebanyakan pen-

dekatan sedia ada yang menggunakan grid piksel, pendekatan anggaran kepadatan yang

dicadangkan membolehkan algorithma menyesuaikan dirinya dengan sempadan kawasan

orang ramai. Dalam pada itu, maklumat spatial yang sedia ada dalam himpunan dapat

diekstrak dengan tepat.

Ketiga, untuk mengesan ketonjolan (saliency) dalam himpunan orang ramai, low-

level feature yang diekstrak daripada pergerakan orang ramai diubah menjadi global

similarity structure. Global similarity structure membolehkan penemuan manifold in-

trinsik dalam dinamik gerakan yang tidak dapat dikesan oleh low-level representation.

Yang pentingnya, berbeza dengan kaedah konvensional, pendekatan yang dicadangkan ti-

dak memerlukan pengesanan (tracking) dan maklumat terdahulu (prior information) atau

pembelajaran model (model learning) untuk mengenal pasti kawasan-kawasan yang me-

nonjol (salient) dalam himpunan orang ramai.

Pendekatan-pendekatan yang dicadangkan disahkan dengan menggunakan set data

awam himpunan orang ramai. Daripada keputusan empirikal, analisis kolektif tesis ini di-

jangkakan akan menjadi sistem analisis himpunan orang ramai yang lengkap dan mampu

menentukan segmen orang ramai, menganggarkan kepadatan orang ramai dan menge-

nal pasti ketonjolan (saliency) dalam perhimpunan besar-besaran bagi pengurusan orang

ramai secara proaktif.
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CHAPTER 1: INTRODUCTION

In mid-2013, the world population reached 7.2 billion, 648 million more than in 2005

(United Nations, Department of Economic and Social Affairs, Population Division, 2013).

According to the population estimates and projections from the United Nations, Depart-

ment of Economic and Social Affairs, Population Division (2013), the world population

is expected to reach 9.6 billion by the year of 2050. Globally, over half (54 percent)

of the world population resides in urban areas in 2014 and is expected to increase to 66

percent by 2050 (United Nations, Department of Economic and Social Affairs, Popu-

lation Division, 2014). The worldwide population growth, coupled with the continuing

urbanization has rendered the occurrence of crowded environment a growing norm. The

presents of large crowd in any environment can disrupts and challenges the effective-

ness of public management, safety and security. It is therefore not surprising that com-

puter vision researchers have become increasingly focused on visual crowd analysis (Ali,

Nishino, Manocha, & Shah, 2013). Substantial efforts have been made toward under-

standing crowded scenes for crowd analysis in both static images and video sequences.

This endeavor is motivated by the need of a sophisticated crowd surveillance system.

A significant application of computer vision based visual crowd analysis is intelligent

crowd surveillance (Rodriguez, Sivic, & Laptev, 2012), which aims to automatically in-

fer crowds segments for density estimation and subsequently detect unusual events that

could pose a significant threat to public safety and security in crowded environments.

1.1 Visual Analysis of Dense Crowds

A mass gathering of individuals, i.e. crowding, can be either planned well in advance

(e.g. concert, parade, festival, rally and religious event) or take place spontaneously (e.g.

crowd in a train station during rush hour). The individuals in the crowd, in the most
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basic sense, gather at a specific venue with a coherent purpose for a length of time (World

Health Organization (WHO), 2008), where the behavior of one individual is influenced

by the other.

Due to the large number of individuals in close proximity, any mass gathering is

at high risk of turning fatal given physical stress (i.e. overcrowding) or sudden external

stress (e.g. shooting, fire, terrorist attack) (Helbing, Johansson, & Al-Abideen, 2007).

This is evident with the recurrent of lethal crowd disasters. Figure 1.1 illustrates sample

images captured during the progression of some high-profile crowd disasters happened

globally. Thus, visual surveillance of mass gathering in public settings is commonplace,

predominantly in response to the dynamic and degenerating risk to public safety and

security (Moore, Ali, Mehran, & Shah, 2011).

(a) Hillsborough disaster 1989
(Taylor, 1990)

(b) Love Parade disaster 2010
(Helbing & Mukerji, 2012)

(c) Shanghai New Years Eve dis-
aster 2014 (Kaiman, 2015)

Figure 1.1: Sample images captured during the progression of some crowd disasters.
(a) Hillsborough disaster: claimed 66 innocent lives and injured 140. (b) Love Parade
disaster: claimed 21 innocent lives and injured 510. (c) Shanghai New Years Eve disaster:
claimed 36 innocent lives.

Conventional visual surveillance systems depend heavily on human operators to op-

erate and monitor a set of television screens to intercept trouble before it occurs and

followed by determining the next course of action upon occurrence of an incident. The

effectiveness and efficiency of such surveillance systems are subjected to the vigilance

of the operators. However, visual surveillance task at mass gatherings where crowd of

hundred or thousand gathers is substantially more taxing compared to scenes with a few
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number of people, primarily due to the extent of activity occurred within such scenes.

In fact, even the most diligent human operators would face substantial challenges in per-

forming basic visual recognition task, such as counting individuals in mass gatherings to

predict overcrowding crisis. This perhaps makes scenes with dense crowd in dire need of

intelligent surveillance.

Furthermore, in addition to the common causes of overlook during surveillance (i.e.

short attention span, fatigue due to prolonged monitoring and excessive amount of televi-

sion screens to monitor), crowd scenes also present a new set of challenges. Visual crowd

surveillance is challenging due to (1) the sheer number of individuals in scenes, and (2)

severe occlusions between individuals. With the increase of individuals in a scene, it

would demand a greater effort during the visual inspection. Denser crowd would, further-

more, amplify the likelihood of occlusions, making it difficult to discern each individual.

This can compromise one’s capability to monitor and focus the attention on anomalies

of any scales, while ignoring the clutters in a crowded scene. The explanation has to do

with a pop-out effect (Szeliski, 2010), where increasing distractors (i.e. individuals, in the

context of this thesis) would hinder the parallel processing to pinpoint any unusual events

and scrutinize the desired individual.

Technology and service providers (e.g. CrowdVision, NEC, and AGT International)

as well as end-users have recognized that manual surveillances of dense crowd scenes

alone is inadequate to meet the sought after level of accuracy and precision in crowd

surveillance systems. Several tragic crowd disasters from the past (see Table 1.1) have

implied the significance of an intelligent visual crowd surveillance system for a proactive

crowd management to anticipate disaster and provide support in good time. An intelligent

crowd surveillance system is paramount to minimize deleterious impact of dense crowd

under adverse conditions. To fulfill such a need, advance computer vision techniques

(Junior, Musse, & Jung, 2010) are relentlessly being explored and incorporated into visual
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Table 1.1: Examples of crowd disasters at mass gatherings.

Date Event - Place Description Casualties Reference

1971
Football match
Glasgow, UK Crush between fans entering and exiting.

66 deaths
140 injured

(Popplewell, 1986)

1981
Nightclub fire

Dublin, Ireland Fire was started deliberately in the alcove.
48 deaths
128 injured

(Tribunal of Inquiry
on the Fire at the
Stardust, Artane,

Dublin, 1981)

1989
Football match
Sheffield, UK

Crush due to overcrowding surge against barriers.
96 deaths
766 injured

(Taylor, 1990)

1990
The Hajj

Mecca, Saudi
Arabia

Stampede due to overcrowding in a pedestrian tunnel
leading out from Mecca.

1426 deaths
(Ahmed, Arabi, &

Memish, 2006)

1991
Football match
Orkney, South

Africa

Panicking fans try to escape from brawls that break
out in the grandstand.

42 deaths
50 injured

(Darby, Johnes, &
Mellor, 2005)

1993
New Year’s Eve

revelry
Hong Kong

Revelers fell and pill on top of another when rushing
down a steep cobblestone walkway wet with beer and
party foam.

21 deaths (Bokhary, 1993)

1994
The Hajj

Mecca, Saudi
Arabia

Progressive crowd collapse as a result of
overcrowding of pilgrims.

270 deaths (Gad-el Hak, 2008)

1995

School’s annual
function

Mandi Dabwali,
India

Stampede due to panicking crowd tried to escape a
sudden fire.

441 deaths
150 injured

(Moddie, 2004)

2000 Football match
Harare, Zimbabwe

Stampede broke out as fans rushing to get away from
the noxious fumes of tear gas fired by the police.

13 deaths
(Madzimbamuto,

2003)

2004
Miyun lantern

festival
Beijing, China

Crush due to overcrowding on a bridge.
37 deaths
24 injured

(Zhen, Mao, &
Yuan, 2008)

2006
Philsports stadium

Manilla,
Philippines

Individuals at the front of the crowd stumbled, which
lead to a dominoes effect and stampede.

74 deaths
627 injured

(Lee, 2012)

2008
Ramadan alms

giving
Java, Indonesia

Crush due to crowd surging forward to fight over alms
(i.e. zakat) handed out as a Ramadan gift. 23 death (MacKinnon, 2008)

2010

Love Parade
music festival -

Duisburg,
Germany

Crush due to overcrowding at a narrow tunnel leading
into the festival.

21 death
510 injured

(Helbing & Mukerji,
2012)

2010

Khmer water
festival

Phnom Penh,
Cambodia

Bottleneck on the bridge has triggered sudden panic
in the crowd, which lead to stampede.

347 death
755 injured

(Hsu & Burkle,
2012)

2013
Boston marathon
Massachusetts,

USA

Two pressure cookers explored near where the
crowd gathers.

3 death
264 injured

(Starbird, Maddock,
Orand, Achterman,

& Mason, 2014)

2014
New Year’s Eve

revelry
Shanghai, China

Crush between crowd climbing up and down a
stairway.

36 death
42 injured

(Kaiman, 2015)
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crowd surveillance systems to assist human operators in surveillance tasks.

1.1.1 Dense Crowd Analysis in Computer Vision

In crowd scenes where individuals are distinguishable (see Figure 1.2a), analysis of each

individual (e.g. tracking) may be possible (Idrees, Warner, & Shah, 2014). However,

when the size of a collection of entity increases to an extent that one’s bodily movement

can no longer be distinguished and with only a few pixels per individual (see Figure 1.2b),

human actions become group activity and eventually crowd behavior. For example, in a

crowded theater, audiences often move in a synchronize pattern during ingress and egress

from the venue. Visual analysis of each individual become less feasible and less relevant,

whilst understanding the crowd as a whole for an enhanced visual analysis is of more

interest.

(a) Sparse crowds (b) Dense crowds

Figure 1.2: Examples of crowd scenes: (a) sparse crowds where individuals are dis-
tinguishable, and (b) dense crowds where there are only few pixels per individual. The
primary interest of this thesis is the analysis of dense crowd scenes.

Crowd analysis is a growing research topic in the field of computer vision fueled

by the need to carry out visual surveillance in dense crowd scenes (Zhan, Monekosso,

Remagnino, Velastin, & Xu, 2008; Ali et al., 2013). It is an integral part of a wide array

of applications with direct social impact, i.e. entertainment industry (e.g. animation of

crowd in movies and games), advertising industry, as well as public safety and security.

For instance, the computerize processing and analysis of crowd can support and assist

human operators by highlighting circumstances which require closer examination. This

changes the role of human operator from an observer to overseer to alleviate the likeli-
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hood of important incidents left unnoticed during surveillance. Pre-recorded imagery of

crowd scenes can also be analyzed to extract crowd and event information for the pur-

pose of post-event forensic investigation or crowd simulation. It serves as an effective

tool to establish global situational awareness. In retail and hospitality industries, crowd

analysis can be an intelligence gathering tool (Tian et al., 2008) which provide valuable

information to evaluate retail performance across multiple locations at different times of

the day. The gathered information can also be used to improve and optimize customer

service, floor plan and advertising program (Loy, Chen, Gong, & Xiang, 2013).

Despite the significant advancement of computer vision research, particularly, hu-

man motion analysis (J. K. Aggarwal & Cai, 1999), most of the existing work has been

focused on individuals or small group of individuals in non-crowded scenes. Conven-

tional visual analysis methods are mostly object-centric where they learn the behavior

of the scene in three steps: object detection, tracking and compilation of tracked results

for individuals or global behavior modelling (Ali et al., 2013). The applicability of such

approach is limited to scenes with relatively few individuals (approximately 5-20 individ-

uals) (Ali et al., 2013). This is because it is difficult to discern individuals in dense crowd

since they are in close proximity with each other (Rodriguez et al., 2012). Similarly, as

noted by Zhan et al. (2008), conventional computer vision methods work well on sparse

scenes, but are inadequate to analyze crowded scenes. Correspondingly, a straightforward

extension of these methods is neither suitable nor capable to analyze dense crowd. This

is because a crowd is beyond a simple sum of individuals, where it can assume different

complex behaviors. The difficulty of analyzing crowd increases disproportionately in re-

lation to the number of individuals in a crowd. Under such circumstances, dense crowd

analysis is a unique research problem which needs to be specifically addressed. There

has been a series of research studies in crowd analysis at macroscopic and/or microscopic

level. The microscopic level deals with the crowd as discrete individuals while the macro-
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scopic level treats the crowd as a unit. For dense crowd analysis, where analysing each

individual is difficult, the contextual (spatial) and temporal constraints can be employed

to analyse scenes at macroscopic level. Holistic properties of dense crowd scenes are

usually extracted to build crowd motion model (Ali & Shah, 2007; Mehran, Moore, &

Shah, 2010; Wu et al., 2009).

In terms of experimental data, most of the available datasets have low to medium

density crowd. For instance, Mall dataset has a density of 13-53 individuals per frame

(K. Chen, Loy, Gong, & Xiang, 2012), PETS dataset has a density of 3-40 individuals

per frame (Ferryman & Ellis, 2010) and USCD dataset contains 11-46 individuals per

frame (Chan, Liang, & Vasconcelos, 2008). Only in the recent years with the rising

of dense crowd analysis in the field of computer vision, more dense crowd datasets are

being introduced for evaluation, such as, the UCF crowd counting dataset (Idrees et al.,

2013). Images in the UCF crowd counting dataset contain between 94 and 4545 people

per image, with an average of 1280 people over 50 images. Such high density crowd

scenes imply that there are only a few pixels per individual, thereby exacerbating visual

analysis of individuals in crowd.

To achieve dense crowd analytics in surveillance system demands more sophisti-

cated computer vision algorithms exclusive to dense crowds. Various computer vision

techniques (Idrees et al., 2014; Kang & Wang, 2014; Shao et al., 2015; Cao, Zhang, Ren,

& Huang, 2015) were being explored recently to make better use of contextual (spatial)

and / or temporal information for crowd analysis. In this thesis, the research is greatly

motivated by the need to have an enhanced computer vision system to analyze dense

crowd, with the aim to improve crowd safety and security. This thesis explores the use

of contextual (spatial) information to infer crowd segments and estimate crowd density.

Subsequently, temporal information is used in order to detect unusual events in dense

crowd scenes.
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(a) A Colony of ants. (b) A flock of starlings. (c) A crowd of people.

Figure 1.3: A variety of entities that made up a crowd in nature, such as (a) ants, (b) birds
and (c) people.

1.1.2 Dense Crowd - Definition

According to the Oxford English Dictionary1, ‘crowd’ is a generic term that refers to a

large number of entities gathered together, and the term ‘dense’ refer to the condition of

having each constituent entity closely compacted together. In this thesis, a clear distinc-

tion is made between ‘crowd’ and ‘dense crowd’. The term ‘crowd’ has been broadly

used in the computer vision community when referring to a collection of entities of vary-

ing crowdedness. The impact of crowdedness is important to understand for crowd safety

(Still, 2000). To reduce the ambiguities, the term ‘dense crowd’ will be used exclusively

to describe a large number of densely packed entities, as shown in Figure 1.2b and Figure

1.3c, and it will be used consistently throughout the remainder of the thesis.

Entities in crowd can be of a variety of types (as shown in Figure 1.3) including but

not limited to people, vehicle, fish, bird, ant and bacteria. Various researches have been

conducted focusing on different collection of entities (e.g. ant colonies (Deneubourg,

Pasteels, & Verhaeghe, 1983), fish schools (Kunz & Hemelrijk, 2003) and bird flocks

(Heppner & Grenander, 1990). In this thesis, the primary interest is the analysis of dense

crowd scenes that contain crowd of people, with the aim to enhance crowd safety and

security. According to Dubos (1974), the research of human crowd is more complex than

the animal population given that human is profoundly conditioned by social and cultural

1Oxford English Dictionary: http://www.oed.com/
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determinants. For instance, the appropriate social distance between individuals in crowd

varies from culture to culture. Some people may require smaller space whereas some

people may demand greater physical separation.

1.1.3 What is Unusual Event in Dense Crowd?

The notion of unusual event has been referred to with various terms in different studies.

The different terms in use includes abnormal, interesting, irregular, suspicious event, or

simply saliency, anomaly, and outlier. These terms may refer to event, behavior or activity,

thus causing much confusion in the literature.

Throughout the literature, unusual event is treated as a context-sensitive notion. That

is, these terms are used in various studies to define or distinguish the notion according to

the study of interest. For example, Loy et al. (2012) define unusual events as salient

motion in crowded scenes when the motion flows deviate from regular instances. Analo-

gously, unusual events are referred to as anomalous or abnormal events that are dissimilar

from the normal crowd behavior by Mahadevan, Li, Bhalodia, and Vasconcelos (2010).

W. x. Li, Mahadevan, and Vasconcelos (2014)’s definition of unusual event is those that

have low probability with respect to the probabilistic model of normal behavior. Kratz

and Nishino (2009) identify unusual event as statistical deviations of the same scene. Un-

usual events may also denote circumstances such as overcrowding (Chiappino, Morerio,

Marcenaro, & Regazzoni, 2014).

Despite the fact that no consensus had been established in the literature, this thesis

focuses on the commonalities of the notion. Specifically, for visual analysis of dense

crowd, an event is deemed worthy of being highlighted if the event is unknown, unpre-

dictable or has not been learned before (i.e. low statistical representation in a dataset).

The researcher of this thesis made no distinction between the various terms used to de-

note unusual events. Rather, the terms are used interchangeably throughout the remainder
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Figure 1.4: Dense crowd observed in real world environment. Note that the crowd in
different scenes exhibit drastic appearance variations due to illumination conditions, inter-
occlusions, camera orientations and pose changes. Best viewed in color.

of this thesis.

1.1.4 Objectives of Study

The principle goal of this study is to devise computer vision algorithms for dense crowd

analysis. Specifically, the work focuses on three research associated with dense crowd

analysis: (1) localization of crowd segments in public scenes by obviating the difficulties

of segregating individuals, (2) crowd density estimation in public scenes using irregular

patches conforming to the natural outline between crowd and background regions, and

(3) detection of unusual events in crowded public scene, to assist human in improving

dense crowd safety and security.

In the following section, the underlying challenges faced by the research community

and the problem formulation are discussed, which serve as the main motivation of this

study to achieve the research aims and objectives.

1.2 Challenges and Problem Formulation

Dense crowd scenes pose distinctive challenges that severely impede the development of

robust visual analysis methods for intelligent crowd surveillance. The main aspects which

make dense crowd scenes intrinsically difficult to analyze is due to several inextricable

factors as follows:
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1. Choice of Granularity – Dense human crowd is complex as it exhibits large dy-

namic and psychological characteristic variation which are often dependent on the

situations and environmental settings. It could also be associated with the character-

istics of each independent individual such as age, sex and cultural background (Ali

et al., 2013). This makes it challenging to determine the optimal size of granularity

(e.g. pixel-, patch-, individual- or image-based analysis) to analyze dense crowd

scenes (Ali, 2008). Thus, granules that can be adaptive to dense crowd segments

are essential for dense crowd analysis.

2. Appearance Variations of Crowd – Crowd across all scenes varies drastically be-

cause of different crowdedness, illumination conditions, inter-occlusions and vari-

ations of clothing and poses (see Figure 1.4). At the same time, perspective dis-

tortions due to camera orientation and position implicate changes of scales of in-

dividuals within a crowd. Moreover, crowds tend to be heterogeneous in nature,

where different portions of the crowd within the same environment could behave

contrastively. This entails exploring other information from crowd imagery to dis-

ambiguate appearance information.

3. Few Pixels per Individual – It is infeasible to discern individuals and one’s body

parts due to low resolution imagery, where an individual may only be occupying

a few pixels per individual, as shown in Figure 1.4. Hence, applying conventional

object-centric strategy that requires explicit person detection and tracking in dense

crowd are still in their infancy stage (Idrees, Soomro, & Shah, 2015).

4. Effects of Terrain & Scene Features – The formation of crowd across different

scenes is inherently dependent on the constraints imposed by the environmental

layout. Behavior of individuals in crowd can vary drastically based on the given

situations and layouts. Moreover, one can observe in Figure 1.4 that background
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regions that consist of trees, buildings, vehicles and carpet grasses may clutter in

such a way that it resembles crowd regions. This hampers the process to obtain a

good separation between crowd and background regions for crowd analysis. Nev-

ertheless, the scene texture can be used as cues to differentiate between crowd and

background regions.

5. Representation of Abnormality in Crowd – The definition of interesting region

in crowd has been causing much debate in the literature due to the subjective nature

and complexity of the human behaviors. Some researchers consider any deviation

from the ordinary observed events as anomaly, whereas others consider rare or

outstanding event as interesting. One may question the benefit of predefining the

various types of anomalies in dense crowds, in serving as the cue to anticipate

crowd disasters.

1.2.1 Localization of Dense Crowd Segments in Public Scenes

Generally in crowd analysis, crowd segmentation serves as one of the fundamental steps

for further analysis, such as crowd density estimation (Idrees et al., 2013) and crowd

behavior analysis (Solmaz et al., 2012). This is also stated in (Idrees et al., 2015) and

(Kang & Wang, 2014) that the localization of crowd segments is required prior to visual

tasks such as tracking or behavior understanding.

Nevertheless, due to the aforementioned factors 1– 4, inferring crowd segments in

dense crowd scenes is taxing. This motivates the use of contextual (i.e. spatial) informa-

tion to decompose crowd scene image into different levels of granularity to avoid actual

segregation of individuals. This is similar to human cognition in problem solving. In

essence, the dichotomy articulated by Moravec (Moravec, 1988) between humans and

machines regarding the easiness and complexity in solving different problems remains

valid today. Specifically, machines perform poorly in tasks that are seemingly effortless
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Figure 1.5: Example of a crowd image divided into segments. Green outline indicates
the partitions between segments. (Red bounding boxes) segments consisting of crowd
and background (non-crowd) regions. Best viewed in color.

and natural for humans (i.e. recognizing crowd regions), but can easily solve problems

that humans find challenging (i.e. numerical computation). One key advantage of the

human mind has over a machine in cognition is the ability to segment visual information

into meaningful units of analysis effortlessly (Hendee & Wells, 1997).

Thus, a crowd segmentation strategy that simulates human cognitive process would

be extremely useful to achieve abstraction on the essential details at different granular-

ities for effective crowd segmentation. In fact, studying the correlation among image

granules at different levels of granularity is required to simplify image scene into mean-

ingful atomic regions that adhere to the natural boundaries between crowd and non-crowd

regions. At present, this problem is nontrivial and has not been addressed before for dense

crowd segmentation in public scenes.

1.2.2 Density Estimation in Dense Crowd Scenes

Visual crowd analysis for density estimation in public scenes can be a highly effective

means to ensure public safety and security. However, estimating the density of individuals

in a dense crowd scene is intrinsically difficult. Specifically, the aforementioned factors

2 – 3 render a direct implementation of conventional object centric strategy (i.e. object

detection and tracking) infeasible. The problem is further hampered by the ambiguities

caused by varying physical layout of crowd environments (i.e. factor 4).

To overcome the complexity of density estimation in the dense crowd scenes, most
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methods (Idrees et al., 2013; Davies, Yin, & Velastin, 1995) employ a regression strategy,

in which a model is trained to map the correlation between the holistic and collective

description of crowd patterns to the number of individuals. Additional measures could

be taken to alleviate perspective distortion by dividing the image space into smaller seg-

ments (i.e. pixel-grid). However, the regression strategy is not feasible when it is used

in unconstrained public scenes, where there may be cases that only partial of a segment

consist of crowd (as illustrated in Figure 1.5). This can lead to inaccurate description of

crowd patterns for density estimation.

Thus, a method is required to be adaptive to varying physical layout of different

crowd scenes and at the same time able to extract the most critical and discriminative

descriptions of crowd patterns for an enhanced density estimation in dense crowd scenes.

1.2.3 Dense Crowd Saliency Detection

Besides the aforementioned factor 1– 4, one of the foremost challenges in saliency de-

tection in dense crowd scenes is the representation of crowd abnormality (i.e. factor

5). The major implication is that collecting sufficient training data which addresses each

possible abnormal scenario in the dense crowd scenes for supervised learning will be im-

practical. This is because human behavior is extremely complex, diverse, changing and

unusual events are unpredictable. Consequently, most crowd saliency detection methods

(Rodriguez, Sivic, Laptev, & Audibert, 2011; B. Zhou, Wang, & Tang, 2012) that com-

mence by learning an activity model of the scene, followed by using the learned model to

detect anomalies may be limited to the detection of the learned behaviour. They are not

adaptive to diverse deployment scenarios.

To cope with crowd saliency variations, a method that alleviates the need for a

learned model and at the same time requires no segregations of individuals in crowd and

prior information is essential to detect crowd saliency.
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1.3 Contributions

The contributions of this thesis to visual analysis of dense crowd, particularly on local-

izing crowd segments, estimating crowd density and detection of unusual events are as

follows:

Contribution 1: A new granular computing based dense crowd segmentation (GrCS)

framework is proposed to infer crowd segments using the concept and principles of gran-

ular computing (GrC). GrC is incorporated in the framework to conceptualize crowd seg-

mentation problem on different granularity similar to human cognition in problem solv-

ing, with the intention of mapping it into computationally tractable subproblems. Con-

trary to existing regular-grid representation (Fagette et al., 2014; Arandjelovic, 2008),

the proposed GrCS framework studies the correlation among granules to represent struc-

turally similar regions in crowd scene images to infer the crowd and background regions.

This is essential because structures of background in the scene image can resemble crowd

regions, which lead to vague outline between crowd and background. GrCS is scene-

independent, and can be applied to dense crowd scenes with different physical layout.

Extensive experiments have been conducted on hundreds of real and synthetic crowd

scenes. The results demonstrate that by exploiting the correlation among granules, one

can outline the natural boundaries of structurally similar crowd and background regions

necessary for dense crowd segmentation. To the best of my knowledge, this is one of the

earliest works that uses GrC for dense crowd segmentation.

Contribution 2: The GrCS algorithm is extended to allow estimation of crowd density

without tracking of features or segregation of individuals. As opposed to existing meth-

ods (Idrees et al., 2013; Marana, Velastin, Costa, & Lotufo, 1998), the proposed crowd

density estimation approach partitions crowd scene images into irregular size granules

15

Univ
ers

ity
 of

 M
ala

ya



conforming to the boundaries of crowd and non-crowd regions. The underlying spatial

information of each granule are exploited in a holistic manner to establish a direct map-

ping to the actual people counts. This caters for arbitrary distribution of crowd in different

scenes (i.e. scene-invariant). Experimental results on standard public dataset demonstrate

the effectiveness of using structurally meaningful granules for dense crowd density esti-

mation.

Contribution 3: A novel framework to localize salient regions in crowd scene by trans-

forming low-level motion features into global similarity structure is proposed. The struc-

ture allows the discovery of the intrinsic manifold of the motion dynamics in crowded

scenes, which could not be captured by the low-level representation as to (Ali & Shah,

2007; Loy et al., 2012). Moreover, analysing the motion dynamic using global similarity

to infer saliency in crowded scenes alleviate the need of (1) tracking, as the proposed ap-

proach exploits optical flow representation, and (2) prior information or model learning

to identify interesting/salient regions in the crowded scenes.

Experimental results on public datasets demonstrate the effectiveness of exploiting

global similarity structure to identify salient regions in various crowd scenarios that ex-

hibit crowding, local irregular motion, and unique motion areas such as sources and sinks.

1.4 Organization of the Thesis

This chapter provides an overview of the work presented in the thesis. The remainder of

the thesis is organized as follows:

Chapter 2 presents a review on existing literature that focuses on the strategies and ap-

proaches relevant to the three analyses that this thesis is focusing on, while discussing

the main challenges and providing additional motivations for the proposed frameworks of
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this thesis.

Chapter 3 presents the GrCS framework for crowd segmentation. It shows that exploit-

ing the correlation among image granules at different levels of granularity are not only

useful in outlining natural boundaries between crowd and background (i.e. non-crowd)

regions, but also important as a meaningful primitive region to facilitate more robust and

accurate crowd segmentation.

Chapter 4 explains the mechanism of granularity-based approach for crowd density esti-

mation using contextual (i.e. spatial) information. Experiments are carried out to evaluate

the effectiveness of the proposed approach in adapting to different public crowd scenes to

estimate number of individuals in extremely dense crowds.

Chapter 5 provides detailed explanations on the proposed framework to identify and

localize salient regions in a crowd scene. In particular, the chapter describes the trans-

formation of low-level features extracted from crowd motion field into a global similarity

structure. Experiments are conducted to demonstrate the effectiveness of the proposed

framework in discovering the intrinsic manifold of the motion dynamic to identifying

salient regions in various crowd scenarios.

Chapter 6 draws the previous chapters to a conclusion and recommends a number of

areas to be pursued as future work.
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CHAPTER 2: LITERATURE REVIEW

Visual crowd surveillance at large public events such as concerts, parades and rallies are

common in cities worldwide. The mere existence of crowd has the prospect of progressing

into a hazardous scene, for instance, the recent stampede in the Shanghai 2014 New

Year’s Eve revelry which claimed 36 innocent lives.1 Alarmingly, with rapid urbanization

around the world, the formation of crowd by chance is becoming a norm, e.g. crowds in

train stations during rush hour. Along with the high frequency of crowd disasters and the

growth of visual surveillance system at key crowd locations (e.g. train stations, markets

and airports), crowd analysis in computer vision has recently play a growing role in visual

surveillance.

Substantial effort has been spent driven by the practical demand, and it is becoming

an important research direction (Junior et al., 2010). Given the broad and growing na-

ture of crowd analysis in computer vision, this chapter narrows down the research scope

by reviewing studies that address the major tasks associated with the analysis of dense

crowd scenes. This chapter focuses on: (1) segmenting and localizing regions of dense

crowd in a scene, (2) determining the density of people in a dense crowd scene and (3)

crowd saliency detection. Specifically, the review in this chapter is structured into four

subsections: strategies for dense crowd analysis (Section 2.1), dense crowd segmenta-

tion (Section 2.2), density estimation (Section 2.3) and saliency detection in dense crowd

scenes (Section 2.4).

Some specific features and techniques used for visual analysis of crowd, such as op-

tical flow and object tracking are not described thoroughly in this review. A literature

review performed by Thida, Yong, Climent-Pérez, Eng, and Remagnino (2013) provides

detailed studies on the aforementioned feature and techniques. Zhan et al. (2008) and

1BBC News: http://www.bbc.com/news/world-asia-china-30646918
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Junior et al. (2010) provides comprehensive coverage on different strategies developed

in computer vision techniques for crowd analysis. For crowd density estimation, com-

prehensive descriptions of the state-of-the-art approaches with emphasis on the method-

ologies and systematic evaluation can be found in (Loy et al., 2013). T. Li et al. (2015)

highlight the techniques for crowded scenes analysis from 2010 onward.

2.1 Dense Crowd Analysis Strategies

Despite the practical significance of dense crowd analysis, the visual processes of dense

crowd still pose tremendous challenges for computer vision. Particularly, the stochastic

nature of individual in dense crowd tends to be highly challenging for traditional spatial-

temporal representation (Chan, 2008). Computer vision algorithms have, for the most

part, been restricted to visual analysis of sparse crowd scenes mainly due to the limita-

tions of person detection and tracking. As density in the scene increases, the complexity

increases and may become intractable. The complexities often manifest itself in partial

or complete occlusion among individuals and complex events due to interactions among

individuals in crowd, as discussed in Chapter 1 (Section 1.1). A significant degradation in

the performance of analysis is usually observed in terms of detection and tracking, given

that many existing methods rely on the ability to separate each individual from each other

and from the background (Rodriguez et al., 2012).

Thus, visual analysis of dense crowd is a distinctive research problem that had

emerged as an increasingly dedicated problem. Significant progress has been made in

this field. The analyses of dense crowd scenes are commonly conducted at microscopic

or macroscopic levels (Thida et al., 2013).

Microscopic Level Analysis: Inherently local, where it deals with the crowd as dis-

crete individuals. The microscopic model depends on the analysis of motions of each
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individual in crowd to achieve understanding of the whole crowd. This type of analysis

generally commence by detecting the moving individuals present in the scene. Then, the

detected individuals are tracked as they enter the scene till they exit the scene, and the

tracked results are compiled for subsequent visual analysis of dense crowd (e.g. density

estimation and anomaly detection). Such method works well on scenes that are relatively

sparse (5-20 individuals) and is not appropriate to analyze dense crowd (Ali et al., 2013).

Macroscopic Level Analysis: A crowd is treated as a single entity. Macroscopic model

is interested in the global motions of a crowd of individuals, without specifically analyze

motions of each individual in a crowd. Holistic properties (e.g. instantaneous motions

of the entire scenes) are usually utilized to learn the typical motion patterns in a crowd

scene. This is the preferred approach to analyze both sparse and dense crowd (Thida et

al., 2013).

In the following sections, the researches (i.e. dense crowd segmentation, density

estimation and saliency detection) associated with the analysis of dense crowd scenes

incorporating the aspects of microscopic and macroscopic analysis are discussed. Advan-

tages and weakness of the many existing approaches are also highlighted.

2.2 Dense Crowd Segmentation

Dense crowd segmentation refers to the process of differentiating crowds from back-

ground regions (e.g. buildings, vehicles and trees). Generally, work in dense crowd seg-

mentation assume that crowd is an agglomeration of pedestrians (B. Zhou et al., 2012).

Even though each individual has their own goal destination and inclination, they appear

to share common motion dynamics when observed over time in a crowded scene. This

is due in part to the tendency of individuals to follow the dominant flow owing to the

physical structure of the scene, and the social conventions of the crowd dynamics.
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The complexity of dense crowd scenes often manifests itself in partial or complete

occlusions among the individuals in crowd. The fact that each individual in dense crowd

scenes is occluding each other blurs that boundary of crowd and non-crowd pixels in the

scene. Therefore, dense crowd segmentation is commonly the basis for subsequent more

complex task in analyzing dense crowd, such as crowd density estimation (Idrees et al.,

2013) and crowd behavior analysis (Solmaz et al., 2012). This is also stated in (Idrees et

al., 2015) and (Kang & Wang, 2014) that the localization of crowd segments is required

prior to visual tasks such as behavior understanding for saliency detection. In some sce-

narios, crowd segmentation is applied prior to estimating the density of crowd (Idrees et

al., 2013; Zhang & Li, 2012).

Recently, a significant amount of effort has been placed to develop models and strate-

gies to localize dense crowd segments in public scenes using computer vision techniques.

In this review, these models and strategies are divided into two categories: motion flow

based model and feature based model.

2.2.1 Motion Flow Based Model

Crowd is generally studied with emphasis given on the evolution of its motions in an

environment. Existing work on dense crowd analysis tends to exploit the collective

coordination of crowd by analyzing crowd through analogies with studies in fluid dy-

namic (Moore et al., 2011; Ali & Shah, 2007; Shah, 2010) or treating a crowd as a

collective entity (B. Zhou et al., 2012; Ali & Shah, 2008; Mehran, Oyama, & Shah, 2009;

Hou & Pang, 2013). The main focus is to group regions with similar motion dynamics or

coherency (Wu & San Wong, 2012; Rodriguez et al., 2012), such as illustrated in Figure

2.1. A number of approaches have been proposed for crowd segmentation. These stud-

ies lean towards analyzing dynamic crowd segments for crowd flow segmentation (Ali

& Shah, 2007; Wu et al., 2009), crowd behavior understanding (Solmaz et al., 2012),
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(a) Ali and Shah (2007) (b) Wu et al. (2009)

Figure 2.1: An illustration of two marathon sequences and the corresponding dense
crowd segmentation results using motion flow based method proposed by (a) Ali and
Shah (2007) and (b) Wu et al. (2009). The different colors in (a) represent different flow
segments. Best viewed in color.

person tracking (Ali & Shah, 2008; Mazzon, Tahir, & Cavallaro, 2012), anomaly seg-

mentation (Leach, Sparks, & Robertson, 2014) and crowd counting (Chan et al., 2008).

Most often, rather than computing the trajectories of individuals (microscopic), holis-

tic approaches (macroscopic) represent crowd motion patterns using instantaneous mo-

tions of the entire scene such as the flow field (Ali & Shah, 2007, 2008; Mehran et al.,

2010; Wu et al., 2009; M. Hu, Ali, & Shah, 2008). These flow fields are then combined

with an agglomerative clustering algorithm (M. Hu et al., 2008) or Lagrangian particle

dynamics (Ali & Shah, 2007, 2008) to partition crowd scenes into regions with similar

coherent motion. There are, however some work which is based on tracking individ-

uals and accumulating their trajectories over a period of time to obtain coherent motion

(B. Zhou et al., 2012). Tracking approaches, regardless of whether they are using distance

or model-based representations are very challenging in dense crowd scenes (Chongjing,

Xu, Yi, & Yuncai, 2013). This is because the trajectories are highly fragmented with many

missing observations due to the complex interactions, occlusions between individuals in

the crowd and background clutters. Therefore, tracking in dense crowded scenes often

incorporate scene or contextual information to enhance trajectory estimation (Dehghan,

Idrees, Zamir, & Shah, 2014).

In another variation, some approaches perform background subtraction (Kong, Gray,

& Tao, 2006; Dong, Parameswaran, Ramesh, & Zoghlami, 2007) to identify crowd seg-
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ments. Such approaches are susceptible to false segmentation in cluttered environment

with other moving entities (e.g. moving vehicles and waving trees), as well as limited to

localizing crowd with variations in collective motion. Observations by Helbing, Molnar,

Farkas, and Bolay (2001) highlighted that stationary crowd (e.g. spectators of a speech)

implicitly influenced the motion flow of dynamic crowd, where crowd maneuver around

stationary crowd to avoid collisions. Thus, it is of equal importance to include stationary

crowd segments for a complete crowd surveillance system.

2.2.2 Feature Based Model

While the earlier discussed works are fixated on segmenting coherent motions as a cue of

crowd on videos or image sequences, there is another branch of crowd segmentation re-

search that exploits the holistic and collective description of crowd pattern, regardless of

the motion variations. Due to severe inter-occlusions and perspective distortion in dense

crowd scene, appearance-based approaches which include head and shoulder segmenta-

tion are still in their infancy stage. This is an ongoing research problem (Idrees et al.,

2015). Figure 2.2 shows an example of a dense crowd scene where individuals in crowd

are severely inter-occluded and mostly cannot be detected.

(a) Dense crowd scene. (b) Person (head) detection

Figure 2.2: Person (head) detection result using state-of-the-art method (Felzenszwalb et
al., 2008). The blue bounding boxes signify the detections results. False positive and fail
detections are evident in the image. Best viewed in color. ((Felzenszwalb et al., 2008))
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To alleviate the need of person detection in a crowd, imagery of crowd scenes is

partitioned into regular pixel-grid with the purpose of achieving local texture consistency

and is treated as a texture analysis problem. A study by Marana et al. (1998) verifies

that crowd regions carry strong cue of texture variations. Arandjelovic (2008) proposes

an image-based crowd segmentation method using low-level local feature from single

crowd image. Each pixel response is defined by using multi-scale pixel-grid, where the

computation of the probability of a pixel-grid being a crowd region is based on a prede-

fined average number of SIFT word segmentation per image area. Example results are

as illustrated in Figure 2.3. Using similar approach, Idrees et al. (2013) partition crowd

scene into pixel-grid to construct a confidence map of crowd regions. In another study,

Fagette et al. (2014) perform crowd segmentation by retrieving multi-scale pixel-grid tex-

ture features from crowd scene. Binary classification is conducted to infer crowd regions

in image. Since these methods use regular pixel-grid, the representation is not adaptive to

the random distribution of crowd perimeters in real-world scene. Also, it is unclear how

well they can be generalized to arbitrary crowd scenes. The number of layers in multi-

scale pixel grid is scene-dependent; it has to be empirically defined for each public crowd

scene to optimize adherence to the arbitrary crowd distribution.

Figure 2.3: Sample results of dense crowd segmentation where regions containing crowd
are segmented using method as proposed by Arandjelovic (2008). The true positives are
highlighted in green whereas the false positives are represented by the red areas. Best
viewed in color. ((Arandjelovic, 2008))
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2.2.3 Discussion

Existing feature based crowd segmentation model (Arandjelovic, 2008; Idrees et al.,

2013; Ghidoni, Cielniak, & Menegatti, 2013; Fagette et al., 2014) infer crowd segments

by learning the textures of crowd scenes either using regular pixel-grid or overlapping

multi-scale pixel-grid (i.e. numerous range of neighboring pixels) at each pixel. This is to

obviate the difficulties to segregate individuals in dense crowd scenes due to appearance

variations of crowd and poor resolution. In spite of the promising results, the use of pixel-

grid imposes some constraints on inferring crowd segments. In the former, crowd images

are divided into regular pixel grids where an optimized boundary adherence of crowd

segments across different scene is difficult to achieve. In the latter, an antecedent version

of the regular pixel-grid, namely, multi-scale pixel grid is proposed to cope with crowd

variation across different scenes. Since it is leveraging on its antecedent, conformation to

varying crowd segments remains unresolved. With a smaller pixel-grid, localization accu-

racy is better with less probability of patch consisting both crowd and background regions;

whereas a larger pixel-grid covers wider regions for analysis of structure (Arandjelovic,

2008; Kang & Wang, 2014).

The dense crowd segmentation method proposed in this thesis (see Chapter 3) ex-

ploit the correlations among image granules of varying sizes with the hope to alleviate the

aforementioned constrains. Importantly, it simplifies each public crowd scene into struc-

turally meaningful granules to optimize adherence to the arbitrary crowd distribution for

dense crowd segmentation.

2.3 Crowd Density Estimation

Not all events with large gathering of people are conducted in an enclosed venue with

turnstiles where crowd density estimation can be administered seamlessly. And for some

events that are held in an open space area such as parades or political protest, employing
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Figure 2.4: Crowd density estimation using Jacob’s method. Grids are overlaid on the
crowd scene to compute the average number of individuals per square meter, and mul-
tiplying with the total squares to determine the approximate number of individuals in a
scene. Image source: Digital Design & Imaging Service Inc. (2015)

professionals to conduct human counting is infeasible. Nevertheless, estimating density

of crowd is of utmost importance to better administer the well-being of crowd as a whole,

development of public space design and accurate documentation of historical events. The

Hillsborough disaster (Taylor, 1990) is an example of the consequences of overcrowding.

Such tragedy could be avoided if a more effective crowd control system was enforced.

Crowd density estimation system can be a highly beneficial tool to monitor the density of

crowd to enable more effective crowd control.

In 1967, Herbert Jacobs proposed to estimate crowd density by getting an average of

individuals per square meter, and multiply that by the total squares as depicted in Figure

2.4. The approach has modernized and led to a paradigm shift in the way to estimating

density in crowd (Weiss, 2013). Determining the density of individuals in crowded scenes

has been investigated in numerous studies in computer vision. The aim of most of the

studies that focus on this task is to deliver precise estimation of individual within a scene

or a given spatio-temporal region of a scene. In this section, the studies are categorized

into two subcategories: object-level and texture-level analysis.
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2.3.1 Object Level Analysis

Existing work on crowd density estimation depends mainly on collective motion and ap-

pearance cues, with respect to the type of inputs (i.e. crowd video sequences or single

crowd image). Different techniques are adopted to cope with crowd scene of varying

density. The greater density of crowd in a scene, the more complicated the task to es-

timate crowd density where dynamic occlusions come into picture. It is infeasible to

discern different person and ones’ body parts when a person may only be occupying few

pixels (Idrees et al., 2013) and further rendered by background clutter. Nevertheless, a

significant amount of density estimation algorithms infer person count from local object

detector. For instance, framework that performs clustering of coherent trajectories to rep-

resent a moving entity, and inferring number of individual in the scene by Rabaud and

Belongie (2006). This approach is limited to crowd scenes with sparse crowd where con-

tinuous sets of image frames are accessible. The results presented in their work have

shown promising performance in Figure 2.5a when individuals are disconnected from

each other. However when individuals in crowd scenes are closely positioned with each

other, trajectories are incorrectly merged such as depicted in Figure 2.5b. This is due to

the phenomenon of collective motion occurring between moving interacting entities.

Using an analogous perception, M. Li, Zhang, Huang, and Tan (2008) estimate

the numbers of people in crowd by implementing foreground segmentation and head-

shoulder detection approach. The proposed method was intended to address stationary

crowd, where subtle motions of individual is crucial and deeply relied on in defining fore-

ground segments. Nonetheless, the proposed framework is susceptible to inter-occlusion

between individuals, particularly prominent in a dense crowd scene. Ge and Collins in

(Ge & Collins, 2009), proposed a Bayesian marked point process to detect individuals in

crowd where clear silhouette of individuals is required for accurate projection to a trained
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(a) Accurate clustering of the trajectories of independent individuals.

(b) Inaccurate clustering of the trajectories of independent individuals.

Figure 2.5: Sample results of density estimation on sparse crowd scene where coherent
trajactories are agglomeratively clustered to deduce the number of persons. The clustered
trajectories are denoted with different colors (i.e. black, blue, green, red, white, yellow,
cyan and pink). (a) Trajectories of independent individuals are accurately clustered where
the number of resulting clusters denotes the density of individuals. (b) Inter-occlusions
between individuals lead to inaccurate merging of the trajectories of multiple individuals
(left: black cluster, right: pink cluster). Best viewed in color. ((Rabaud & Belongie,
2006))

set for accurate detection and counting of individuals. In another study, Ge and Collins

(2010) uses a generative sampling-based approach that leverage on multi-view geometry

to achieve density estimation of individuals in crowd. The work assumes that individuals

in a crowd retain a certain space with each other. Thus, individuals in the scene should

not be occluded from all viewing angle. This approach tends to generate accurate density

estimation only within the bounds of the previously mentioned assumption.

2.3.2 Texture Level Analysis

Alleviating the need to detect each person in a crowd, some works (Marana et al., 1998;

Davies et al., 1995; Idrees et al., 2013; K. Chen et al., 2012; Schofield, Mehta, & Ston-

ham, 1996; Tan, Zhang, & Wang, 2011; Liang, Zhu, & Wang, 2014) uses low level crowd
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features (appearance cue) formed based on the collectives of crowd to estimate crowd

density. Marana et al. (1998) presented a method based on texture analysis to estimate

crowd density, where the estimation is given in terms of discrete ranges (i.e. very low,

low, moderate, high and very high). Their objective was to challenge scenes of dense

crowd where each individual is greatly occluded. They assumed that crowd scene of high

density tend to illustrate fine textures, whereas crowd scene of low density are mostly

made up of coarse patterns.

Crowd density estimation by Davies et al. (1995) is one of the earliest works that

uses regression approach to learn the relationship between global features (e.g. num-

ber of edge pixels) and density of individuals. Similarly, works by Chan et al. (2008)

as well as Chan and Vasconcelos (2012) propose to extract dynamic texture from ho-

mogeneous motion crowd segments and focus on learning mapping between large set of

feature responses and density. A problem commonly encountered in regression based

density estimation is perspective distortion, where individuals who are closer to the cam-

era view appear larger than those who are positioned further away from the camera (Loy

et al., 2013). The problem is exacerbated when single regression function is used for

the whole image space. To address this problem, perspective normalization plays a key

role by bringing the perceived size of individuals at different depths to the same scale.

Another approach is to divide the image space into different cells and each cell is mod-

eled by a regression function to mitigate the influence of perspective distortion. K. Chen

et al. (2012) proposed a multi-output regression approach to estimate crowd density in

sparse crowd images. Low-level features extracted are shared among spatially localized

regions to achieve more accurate counts prediction, indicating correlation between local

regions of crowd scene is crucial. Idrees et al. (2013) estimate the number of individuals

given single dense crowd image by leveraging the harmonic textures elements of crowd

from finer scales and appearances cues to approximate the density of crowd per image
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(a) Pixel grid patches. (b) Ground truth. (c) Density estimation using
(Idrees et al., 2013)

Figure 2.6: Crowd image partitioned into nine pixel grid patches (outlined in green) for
regression based density estimation using method as proposed by Idrees et al. (2013).
Density of individuals in patches with crowd and background (i.e. vehicle) and patches
consisting of crowd only are inaccurately estimated. Best viewed in color. ((Idrees et al.,
2013))

patch. The system uses regression approach to infer the count of individuals per patch

and multi-scale random fields to refine the counts of individuals per image. Despite the

promising results, this approach is constrained by the pixel grid patches such as depicted

in Figure 2.6. It is observed that density of individuals in the patches with both crowd and

vehicle are inaccurately estimated to have comparable number of individuals with patches

consisting crowd only.

In another variations, Lempitsky and Zisserman (2010) model the density function

over pixel grids, where integral over any region in the image would yield the density of

object within. Kong et al. (2006) uses feed-forward neural network to map the correlation

between feature histogram from low-level features and number of pedestrian.

2.3.3 Discussion

Over the years, density estimation has traditionally been focused on scenes containing low

density of people. However, the interest in the areas of dense crowd density estimation

has increased recently in the computer vision community.

Most of the aforementioned density estimation approaches have been constructed

primarily to deduce density of sparse crowd scenes. Individuals in dense crowd, generally,

do not uniformly distribute over a scene, but clump together as clusters or groups. Hence,
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the approaches are subjected to the limitation of person detection and tracking (object

level analysis), as well as pixel grid when coping with perspective distortion in texture

level analysis.

To address the aforementioned constrains, Chapter 4 presents a novel framework to

determine density of individuals by exploiting irregular patches in dense crowd scenes.

These patches adhere to the outline of crowd and background regions (Chapter 3). A set

of discriminative spatial information of each patches are extracted to estimate density of

dense crowd scenes.

2.4 Crowd Saliency Detection

The formation of crowd and mass gathering often poses challenges to public safety if

it is not handled effectively, particularly when panic arises among surging individuals

(Helbing, Farkas, Molnar, & Vicsek, 2002). Therefore, amongst the major goal of com-

puter vision systems is to detect and analyze the motion dynamics of crowded scenes, in

the hope towards profiling and identifying salient motion behaviors which could lead to

potential unfavorable events.

Existing crowd saliency detection methods can be divided into two major approaches.

The first approach analyzes crowd behaviors or activities based on the motion of individ-

uals, where tracking of their trajectories is required (Makris & Ellis, 2005; X. Wang,

Tieu, & Grimson, 2006; Rodriguez, Ali, & Kanade, 2009; Rodriguez, Sivic, et al., 2011;

Nedrich & Davis, 2010; B. Zhou et al., 2012). Another approach characterize crowd

scenes as a collection of local motion estimates instead of a collection of object, i.e.

holistic approach (Ali et al., 2013).

2.4.1 Object-centric Approach

Commonly, the object-centric approach keeps track of each individual motion and fur-

ther applies a statistical model of the trajectories to identify the semantics or geometric
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structures of the scene, such as the walking paths, sources and sinks. Then, the learned

semantics are compared to the query trajectories to detect anomaly. These methods works

well and produce promising results for sparse crowd scenes (i.e. with approximately 5-20

individuals) (Ali et al., 2013).

Without using a statistical measure of typicality, Dee and Hogg (2004) use the un-

derstanding of the way individuals navigate to identify individual that deviate from the

goal-directed behavior. X. Wang et al. (2006) propose an unsupervised learning frame-

work to learn semantic scene models using the tracking information. Abnormalities in

the scenes are detected using the learned semantic scene models. W. Hu et al. (2006)

learn the motion patterns in a scene by robustly track multiple objects, with the aim to

detect anomaly and predict behavior. Similarly, B. Zhou et al. (2012) learn the collective

behavior pattern of individuals in crowd scenes given their trajectories to infer their past

behavior and predict the future behaviors.

While in principle individuals should be tracked from the time they enter a scene, till

the time they exit the scene to infer such semantics, it is inevitable that tracking tends to

fail due to occlusion, clutter background and irregular motion in crowded scenes. It may

even become intractable with moderately dense crowd (Ali et al., 2013). The complexity

of object-centric approaches increases disproportionately depending on the density of

individuals in crowd scenes. The performance of saliency detection tends to deteriorate

in dense crowd scenes, where target tracking is extremely challenging. Therefore, the

aforementioned methods work well, up to a certain extent, even in sparse crowd scenes.

2.4.2 Holistic Approach

Another crowd saliency detection paradigm is based on the motion dynamics of crowd

scenes (Ali & Shah, 2007; D.-Y. Chen & Huang, 2011; Loy et al., 2012; Solmaz et al.,

2012; Zhu, Liu, Wang, Li, & Lu, 2014). This class of approaches obviates the challenges
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(a) Crowd in a marathon scene. (b) Loy et al. (2012) (c) Ali and Shah (2007)

Figure 2.7: Sample results of saliency detection in dense crowd scene using method
proposed by Loy et al. (2012) and (Ali & Shah, 2007). (a) Marathon sequence, where the
abnormal region (enclosed in the red bounding box) is simulated by inserting synthetic
instability into the original video. (b) Salient region detected by exploiting the instability
information as proposed by Loy et al. (2012). (c) Salient region detected using the global
motion saliency detection method based on spectral analysis as proposed by Ali and Shah
(2007). Best viewed in color.

of detecting individuals and instead focuses on learning crowd motion models that capture

the variations in local spatio-temporal motion patterns of crowd scenes. Finding interest-

ing regions in a given scene is generally accomplished by firstly learn an activity model

of the scene, followed by using the learned model to identify the anomalies (Kuettel, Bre-

itenstein, Van Gool, & Ferrari, 2010; Hospedales, Li, Gong, & Xiang, 2011; B. Zhou et

al., 2012; Rodriguez, Sivic, et al., 2011). In another variation, the flow field is clustered

to detect typical motions in crowded scenes (M. Hu et al., 2008), or use a hidden Markov

model to learn the inherent dynamics of the motion patterns for detection of saliency in

crowds (Andrade, Blunsden, & Fisher, 2006). Ali and Shah (2007) apply the Lagrangian

particle dynamics based on the crowd flow field to estimate the stability of a particular

region. Their method able to detect regions with unstable motion by discovering the ab-

normality in the segmented flow fields (example result as shown in Figure 2.7c). Since

the aforementioned methods use only the direction and speed as the motion features, their

scenarios are limited to abnormal events that are varied in terms of motion direction and

speed.

Detection and localization of salient regions by using spectral analysis is proposed by

Loy et al. (2012). In contrast to other methods, their method suppress dominant flows with
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a focus on the motion flows that deviate from the norm (example result as shown in Figure

2.7b). Solmaz et al. (2012) propose a linear approximation of the dynamical system to

categorize different crowd behaviors using the eigenvalues over an interval of time. Their

methods show promising results in detecting and classifying five different scenarios of

saliency, which includes the bottleneck, lane, arch, fountainhead and blocking.

There are also other approaches that adopt learning methods to interpret crowd dy-

namics for saliency detection. Kratz and Nishino (2009), for example, propose to model

a 3D Gaussian distributions representation of spatio-temporal motion patterns. This is

then fed into a variant of Hidden Markov Model to discover the relationships between

these patterns. Saliency is defined as statistical deviations within the video sequences of

the same scene. In the more recent works by Mahadevan et al. (2010) and W. x. Li et al.

(2014), a joint models of appearance and dynamics is proposed, known as the dynamic

textures (DT). Hierarchical mixtures of DT models are then performed, where the spatial

and temporal saliency scores are integrated across time, space and scale with a conditional

random field (CRF). Here, saliency is defined as events of low probability with respect to

a model or normal crowd behavior.

One of the foremost challenges in crowd saliency detection is the need of large

amount of data to enable good learning for discriminative saliency detection. In (Ihaddadene

& Djeraba, 2008), a non-learning method for crowd dynamic analysis is proposed to mit-

igate the need of requiring a huge amount of data for accurate learning. Their proposed

method detects saliency by observing the deviations of features between a set of points-

of-interest (POI) over a time series. Although the proposed non-learning method provides

convenient solution, it is restricted to a particular behavior or event such as detecting col-

lapse flow near escalator exits and may not be ideal in dealing with the complexity of

real-world scenarios.
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2.4.3 Discussion

Generally, large amount of data is required to enable good supervised / unsupervised

learning for discriminative or generative crowd models. However, a major challenge

in the context of crowd analysis in surveillance applications is the lack of abnormal or

ground truth events for training. The typical and normal individual behaviors in crowd

scenes are often known a-priori, whereas abnormal activities in crowd are erratic (Loy,

2010). Even if abnormalities of a crowd scene can be comprehensively inferred, the

learned model is scene-dependent and not adaptive to different public crowd scenes. To

address this problem, Chapter 5 will present an approach that transform low-level motion

features into global similarity structure to uncover the intrinsic manifold of the motion

dynamics. The extrema in the intrinsic manifold serve as the indicator of saliency. It is

therefore requires no tracking or model learning to identify salient regions in dense crowd

scenes.

2.5 Summary

The preceding reviews and discussions have covered essential studies in the literature

regarding visual crowd analysis. Specifically, various state of the art approaches for crowd

segmentation, density estimation and saliency detection have been reviewed. This chapter

has also discussed several open problems and limitations that need to be solved when

dealing with dense crowd scene. Firstly, most conventional computer vision algorithms

are object-centric, where detecting and learning the motion of moving individuals in a

scene is important. It serves as motion priors that can be used to enhance subsequent

tasks for visual analysis such as density estimation and saliency detection. This method

tends to fail given individuals in dense crowd scenes are likely to be densely packed

together. Secondly, the inherent constraints of pixel grid patches has never been attended

to date. The notion of simplifying scenes into meaningful atomic regions by exploiting the
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correlations among image features is generally unprecedented for dense crowd segments

and to determine the density of individuals. Thirdly, saliency detection in dense crowd

scenarios mostly uses low-level motion features that may be prone to false detection as a

result of ambiguity in feature space. In subsequent chapters of this thesis, algorithms are

formulated to address these constrains.
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CHAPTER 3: GRANULAR COMPUTING BASED DENSE CROWD

SEGMENTATION (GRCS)

Dense crowd segmentation is important in serving as the basis for a wide range of crowd

analysis tasks such as density estimation and behavior understanding. However, due to

inter-occlusions, perspective distortion, clutter background and random crowd distribu-

tion, localizing dense crowd segments is technically a very challenging task (discussed in

Section 1.2).

To this end, this chapter proposes a novel granular computing (GrC) based approach

for dense crowd segmentation. The aim is to simplify dense crowd scenes to alleviate the

difficulty of defining the natural boundaries between crowd and background (i.e. non-

crowd) regions. Unlike existing crowd analysis approaches (Fagette et al., 2014; Arand-

jelovic, 2008), the problem of dense crowd segmentation is decomposed into a family of

sub-problems, denoted by granules in the proposed method. Granules are constructed by

finer granules based on similarity and distinguishability (Zadeh, 1996). Specifically, by

exploiting the correlation among pixel granules, the structurally similar pixels are able

to be aggregated into meaningful atomic structure granules. This is useful in outlining

natural boundaries between crowd and background (i.e. non-crowd) regions. From the

structure granules, the granular computing based dense crowd segmentation (GrCS) infer

the crowd and background regions by granular information classification. In contrast to

existing methods (Arandjelovic, 2008; Fagette et al., 2014), GrCS is scene-independent,

and can be applied effectively to crowd scenes with a variety of physical layouts and

crowdedness.

The rest of the chapter is organized as follows: Section 3.1 introduces the intuition

and motivation behind the proposed dense crowd segmentation approach. Section 3.2 de-

scribes the proposed framework of dense crowd segmentation by modeling crowd scenes
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with granular computing (GrC). The experimental results are presented and discussed in

Section 3.3. Specifically, the effectiveness of the proposed framework in dense crowd

segmentation is evaluated using hundreds of real and synthetic dense crowd scenes. This

is followed by the possible future work and conclusion in Section 3.4.

3.1 Dense Crowd Segmentation

In this chapter, the correlation among image granules at different levels of granularity is

exploited with the hope that granulation can alleviate the constrains of pixel-grid approach

(Arandjelovic, 2008; Idrees et al., 2013; Fagette et al., 2014) as discussed in Section 2.2.3.

The dichotomy articulated by Moravec (Moravec, 1988) between humans and ma-

chines regarding the easiness and complexity in solving different problems remains valid

today. Specifically, machines perform poorly in tasks that are seemingly effortless and

natural for humans (i.e. recognizing crowd regions), but can easily solve problems that

humans find challenging (i.e. numerical computation). One key advantage of the human

mind has over a machine in cognition is the ability to segment visual information into

meaningful units of analysis effortlessly (Hendee & Wells, 1997). More remarkably, this

is achieved in vivid detail; disregarding the orientation, color intensity and deformation

present. This structured problem solving ability of human cognition is transferred into

dense crowd segmentation system in this chapter, with the aim of alleviating the com-

plexity to infer crowd segments.

Interestingly, granular computing (GrC), an emerging computing paradigm of in-

formation processing (Pedrycz, 2001), simulates human cognitive process by enabling

abstraction on the essential details at different granularities. That is, correlations among

granules are explored to solve various research problems in computer. For instance, Pal,

Uma Shankar, and Mitra (2005) apply granular computing (GrC) together with rough

sets to perform grayscale image segmentation. Their method defines non-overlapping
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Figure 3.1: GrCS: Granular Computing based Dense Crowd Segmentation. (Left) dense
crowd scene image. (Middle) image segmented into structurally-similar atomic clusters
(structure granules), shown as regions within yellow outline. Perimeters of crowd and
background are distinctively separated. (Right) crowd and background regions segmenta-
tion achieved via classification of structure granules. A vehicle is outlined and classified
as background region (shown as red overlay). Best viewed in color.

pixel-grid of different sizes as granules to quantify the object-background regions in im-

ages. Rizzi and Del Vescovo (2006) propose to decompose each image into segments (i.e.

granules) and map the correlation among image segments for image classification. The

method performs abstractions to cope with a wide set of problem instances of image clas-

sification. The underlying idea of GrC is the use of classes, groups or clusters of elements

denoted as granules (Y. Yao, 2000). These granules are drawn together by similarity

and distinguishability (Zadeh, 1996). So unlike conventional approaches (Fagette et al.,

2014; Arandjelovic, 2008), the concept of GrC is incorporated in the proposed approach

in the form of granules, thereby, honoring the correlations of structures in dense crowd

scenes from pixel level to crowd and background level. This is to mitigate the effects

of issues, such as context variations of crowd, cluttered background and unconstrained

physical layout of the environment, for an effective dense crowd segmentation. The uti-

lization of granules obviates the difficulty to segregate individuals in dense crowd due to

context variations of crowd by enabling inference of crowd and background regions based

on local structures. To circumvent the effects of cluttered background and unconstrained

physical layout of the environment, it is believed that the key is to study the correlations

among granules to represent structurafdlly similar regions in crowd scene images.

The notion of simplifying an image scene into structurally meaningful atomic re-
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gions (i.e. granules) is generally unprecedented in the existing crowd segmentation stud-

ies. It is important to have granulation that is able to adapt in different crowd structures

in scenes due to varying crowdedness, perspective distortion, severe inter-occlusion and

cluttered background for a better dense crowd segmentation. As an example, Fig. 3.1

illustrates a dense crowd scene with severe inter-occlusion between individuals and the

scale of individuals vary drastically due to the perspective and position of camera. Even

so humans are able to distinguish the vehicle within the crowd with ease. Similarly, by

using the proposed method, the objective is to have granules (i.e. regions within the yel-

low outline) that encompass only a single context (i.e. crowd or background), as shown

in Fig. 3.1 (Middle). This will serves as a meaningful primitive region to infer the corre-

sponding context (as shown in Fig. 3.1 (Right)). Accordingly, the vehicle (red overlay)

surrounded by a swarm of crowd (green overlay) can be effectively singled out despite

severe occlusion and highly textured scene.

3.2 Proposed Dense Crowd Segmentation Framework

The key steps of granular computing based crowd segmentation (GrCS) framework are

illustrated in Figure 3.2, where granules are the basic elements. Each level represents

different levels of granularity, i.e. pixel, structure and foreground / background granules,

which will be detailed in the subsequent sections. This is to simulate the ability of humans

to conceptualize at different granularity levels with the intention of mapping problems

into computationally tractable subproblems.

In this context, a dense crowd image, I = [υυυ ps] ∈ RN×S, where N is the number

of pixels in an image and S is the number of features for each pixel, p. Each pixel,

p, in an image is the basic granule (i.e. pixel granule), represented as a feature vector,

υυυ ps =
(
vp1, . . . ,vps, . . . ,vpS

)> ∈RN×S, where p = {1, . . . ,N} and s = {1, . . . ,S}. The fea-

ture vector, υυυ ps is formed by the concatenation of S features. Aggregation of the pixel
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Figure 3.2: GrCS: granular computing based dense crowd segmentation framework. An
illustration of the key steps and the different levels of granularity of image in granular
computing based dense crowd segmentation (GrCS). Best viewed in color.

granules (granulation process) with similarity of feature vector, υυυ ps, will form a higher

level set of granules (i.e. structure granules). These structure granules are anticipated to

be structurally coherent atomic regions in the image that conform to the natural bound-

aries between different structures of crowd and background. The key idea of the atomic

regions is to have a pixel aggregation process versatile to different crowd scenes, and so

this will best categorize the diverse structures in the scene for robust dense crowd seg-

mentation. From the structure granules, the dense crowd segmentation task is posed as

a classification problem to construct granulated view of foreground (i.e. crowd in the

context of this chapter) and background (e.g. sky, buildings, grasses etc.) granules.

3.2.1 Pixel Granules

The finest level of granules represents the most basic aspect of dense crowd scenes, which

is the pixel information: pixel intensity and spatial position in the image plane. However,

due to the complexity of discerning cluttered background from crowd, texture features are

introduced in this proposed framework to increase the discriminative ability for texture

differentiation. This is because background region such as building, can be easily misin-

terpreted as crowd region (as shown in Figure 3.3). Co-occurrence of multiple features,

vps, is thus essential to complement the insufficiencies of other features. Similar strategy

is used by humans where one’s cognition uses existing information to understand a new
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Figure 3.3: Example of dense crowd images where cluttered background regions (e.g.
buildings) can blur the boundary between crowd and background regions. These cluttered
background regions can be easily misinterpreted as crowd region as well.

subject matter.

In this proposed approach, the texture features are represented by the widely used

Local Binary Pattern (LBP) (Ojala et al., 1996) and Local Range of Intensity (LRI). Nev-

ertheless, the proposed framework is not restricted to these sets of features employed in

this chapter. Diverse sets of features can be exploited to enhance and adapt to various

image segmentation task.

3.2.1.1 Local Binary Pattern (LBP)

LBP is computationally simple yet a practical grey-level invariant approach to summarize

local grey-level structure. LBP is adopted to capture the microstructure of local region

by which the raw low-level spatial pattern of dense crowd is analyzed. Employing LBP

to capture the dense microstructures in crowd regions, such as lines and edges formed

by a mass of crowd can serve as a good indicator of the presence of crowd. However,

real world microstructures can occur at arbitrary orientations due to varying illumina-

tion conditions (Ojala, Pietikäinen, & Mäenpää, 2002). In this proposed approach, an

extended version of LBP operator known as uniform patterns (Ojala et al., 2002) is thus

implemented to cope with variance in rotation of captured microstructures.

Given pixels within a dense crowd image, I, a 3×3 circularly symmetric local neigh-

borhood, i.e. 8 sampling points centering each pixel of interest is used (as illustrated in

Figure 3.4). The sampling points are subtracted against the value of the corresponding
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Figure 3.4: Example of the 3×3 circular neighborhood used to calculate a Local Binary
Pattern (LBP). Red dot: pixel of interest. Blue dot: sampling point. Best viewed in color.

Figure 3.5: Example of the LBP operator by Ojala et al. (1996). (Left) A 3×3 circular
neighborhood where the values indicates pixel intensities. (Right) The 8 sampling points
centering the pixel of interest are threshold against the value of the corresponding pixel
of interest. The resulting positive values are encoded with 1, and 0 otherwise. The binary
values associated with the local neighborhood are concatenated in a clockwise direction
(blue arrow) to form a binary pattern. Best viewed in color.

pixel of interest, where the resulting positive values are encoded with 1, and 0 otherwise.

The corresponding binary values associated with the local neighborhood is concatenated

in a clockwise direction (starts from its top-left neighbor) to form a binary pattern (as

shown in Figure 3.5). A binary pattern is called uniform if it contains at most two 1−0 or

0−1 transition. For example, the binary pattern 00001000 is uniform whereas 11001101

is not. For uniform pattern LBP, there is a separate bin for each uniform pattern and all

non-uniform patterns are assigned to a single bin. Texture descriptors of uniform pat-

tern LBP correspond to the histogram formed by uniform and non-uniform binary pattern

bins.

3.2.1.2 Local Range of Intensity (LRI)

The Local Range of Intensity (LRI) is defined as the difference between the extrema

(maximum and minimum) intensity values of a local neighborhood centering each pixel

of interest. The notion of using local intensity variation to solve visual analysis problem
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Figure 3.6: (Top row) Example crowd scene images. (Middle row) Entropy images using
5×5 neighbourhood. (Bottom row) Images of local range of intensity (LRI) using 5×5
neighbourhood. Best viewed in color.

in computer vision has been used by several researchers, such as J. Chen et al. (2008) and

B. Wang, Li, Yang, and Liao (2011) for face detection and texture analysis.

As illustrated in Figure 3.6 (Top row), crowd segments tend to exhibit larger range

of intensity variation in comparison to background (i.e. non-crowd) regions, mainly

due to varying individual appearances. Instead of using the conventional entropy mea-

sure (Shannon, 2001), LRI is deemed more effective in quantifying the information con-

tent (statistical randomness) of local regions based on intensity variation in crowd scenes.

Figure 3.6 (Middle row) shows that this is because conventional entropy is susceptible

to image noise and background clutters such as grass, trees and buildings which produce

similar entropy variation. However, as demonstrated in Figure 3.6, by adopting the LRI

feature, the hurdle of discriminating crowd regions from textured background in existing

literatures can be relaxed.
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Figure 3.7: Sample background structure granules with variabilities in terms of illumi-
nation and texture patterns. Best viewed in color.

3.2.2 Structure Granulars

Crowdedness and the distribution of crowd in crowd scenes are rarely uniform due to the

different physical layout of the environment (e.g. cinema, stadium and train station) and

/ or the viewpoint of the scene captured. Worse still, the textures of background (e.g.

building structures and trees) and crowd (as a result of gait, clothing and shape of person)

vary drastically, as illustrated in Figure 3.7 and Figure 3.8, respectively. It, thus, can

lead to vague boundaries between crowd and background (as shown in Figure 3.6 (Top

row)). On a finer scale, the variability of crowd region tends to corresponds to a unison

structure (Idrees et al., 2013) as shown in Figure 3.8. The structures can be intimately

governed by the structure granules to outline the perimeters of coherent crowd structure

and background.

To this end, the correlations among pixel granules are explored for granulation. The

aim is to form structurally uniform structure granules adhering to the natural edges of

crowd scenes for analysis. This is analogous to how human brains perceive and process

visual information; one does not focus on individual pixels, instead, grouping them into

semantically meaningful forms to understand the image. In GrC, granulation process is

the aggregation of smaller and lower level granules into a larger and higher level granules

according to their similar characteristics (J. T. Yao, Vasilakos, & Pedrycz, 2013). In terms

of coarse and fine relationship (Y. Yao, 2005, 2009), pixel granules are the refinement of

the structure granules where every pixel granule is contained in the structure granular

level.
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Figure 3.8: Sample dense crowd structure granules with variabilities in terms of illumi-
nation, scale of persons per area, perspective and inter-occlusion. Note that the scale of
person per image area increases when view from left to right. Best viewed in color.

Structure granules are constructed by aggregating pixels (i.e. pixel granules) with

similar structure feature vector, adapting the pixels clustering approach (Achanta et al.,

2010) with refinement. The refinement is necessary in this work to enable auto-adaptability

of structure granules to conform to the structure of local atomic regions. This is different

from the existing cluster analysis solutions (Pedrycz & Bargiela, 2012; Bargiela, Pedrycz,

& Hirota, 2004; Pedrycz & Bargiela, 2002; Tang & Zhu, 2013) that use distance measures

such as the similarity between two granules defined as an average distance between sub-

granules. More precisely, the proposed approach commences by initializing the number

of structure granules, K, in an image, I. The greater the value of K, the finer is the crowd

image partitioned, generating more structure granules. The initial structure granule cen-

ters, {ck}K
k=1, for an image, I, with N pixels is regularly seeded at a grid interval G=

√
N
K .

Each ck is represented by a feature vector, υυυcks =
(
vck1, . . . ,vcks, . . . ,vckS

)>. Within the

search region (2G× 2G) for each structure granule center, ck, similarity of each feature,

vcks ∈υυυcks of structure granule center, ck, with pixel, p, within the respective search region

is defined as:

dτ
ps =

∥∥vcks− vps
∥∥

2 (3.1)

Anchor pixels for a structure granule are the pixels (i.e. pixel granules) that are associated

with a specific structure granule center. The anchor pixels for each structure granule cen-

ter, ck are obtained by iteratively associating pixels in the image, I, to the nearest structure
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granule center using the shortest pairwise distance. The pairwise distance measure, Dτ ,

is formulated as:

Dτ =
S

∑
s=1

dτ
ps

mτ−1
s

, τ ∈ {1,2,3, . . .} (3.2)

where mτ−1
s = max(mτ−2

s ,dτ−1
mps ) (3.3)

dτ−1
mps = max

{
dτ−1

ps ,∀ p ∈ 2G×2G
}

(3.4)

such that dτ−1
mps is the maximum distance of a structure granule centre, ck, with the pixels

within the respective search region at iteration τ − 1. The anchor pixels together with

its respective structure granule center will form a structure granule (i.e. a region within

yellow outlines as shown in Figure 3.1 (Middle)).

Note that, mτ−1
s is a novel adaptive varying scaling parameter in the GrCS. This is

in contrast to the constant scaling parameter scheme employed in (Achanta et al., 2010).

Due to complex texture variations in crowd scenes, compactness of structure granules in

terms of crowd and background boundary adherences is essential to provide an informa-

tive granulated view to comprehend scene context. Inspired by Zelnik-Manor and Perona

(2004), in this work, at each iteration, τ , the selection of the scaling parameter, mτ−1
s

for each dτ
ps is computed by studying the local structure of the anchor pixels with struc-

ture granule center, ck from previous iterations (Eq. 3.3). Using a scaling parameter that

honors the local structures of structure granule enables self-tuning of the pixel-to-granule

center distances according to the local statistic of different features of the granule. The

adaptive varying scaling parameters automatically find, at each iteration, the scales that

enable high structure affinity of pixels within each structure granule and low structure
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Original image patch Iteration 1 Iteration 2 Iteration 5 Iteration τ

(a)

(b)

(c)

Figure 3.9: Transition of structure granules at each iteration. Structure granules with
significant localization improvement are overlaid with different colors (i.e. purple, red,
yellow, pink and green) to enhance the visualization of the improved separation between
crowd and background regions over the iterations. (a) At iteration 1, it can be observed
that the structure granule with purple overlay consists of crowd and background regions.
After several iterations, at iteration τ , high localization of structure granules is achieved
where crowd and background regions are well separated. That is, the structure granule
with yellow overlay consists of background region only, whereas the structure granules
with purple and red overlay consist of crowd region only. Similarly, (b) and (c) show
the localization improvement of structure granules on two different crowd scenes. Best
viewed in color.

affinity across neighboring granules for each structure feature, vps (as shown in Eq. 3.2).

Section 3.3.4 demonstrates that this in turn facilitates distinct separation adhere to the

natural boundaries between crowd and background regions in dense crowd images.

A set of new structure granule centers,
{

cτ
k

}K
k=1 ∈ I is defined at each iteration, where

each cτ
k is represented by the average of feature vector, υυυ ps of anchor pixels within the

respective clusters. The optimized clusters constructed at this stage form a vocabulary

of structure granules providing the granular description of the dense crowd image. Fig-

ure 3.9 shows examples of the transition of structure granules at each iteration. As the

number of iterations, τ , increases, the localization of structure granules improves with

optimized separation between crowd and background regions and eventually converges

(see Appendix A for details). The pseudo code in Algorithm 1 describes the iterative
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Algorithm 1 : Construction of structure granules

Require: An initial set of structure granule centers, {ck}K
k=1 ∈ I, regularly seeded at a

grid interval G and number of iterations, τ , where τ ∈ N
Ensure: A set of new structure granule centers,

{
cτ

k

}K
k=1 ∈ I

repeat
for each structure granule center, ck do

for each feature, vps do
Compute dτ

ps as to Eq. 3.1;
end for
Compute Dτ as to Eq. A.1;

end for
Associate pixels to the nearest structure granule center, ck, by Dτ ;
Update set of structure granule centers,

{
cτ

k

}K
k=1 ∈ I;

until Separation between crowd and background regions is optimized

process to construct structure granules given the crowd scene image.

3.2.3 Crowd Segmentation

Given the structure granular, dense crowd segmentation task is posed as a classification

problem. The aim is to achieve robust crowd regions inference by taking into consider-

ation of the variability (as shown in Figure 3.7 and Figure 3.8) to infer class label (i.e.

crowd or background) of input structure granules.

Random Forest (RF) is a term to describe an ensemble of decision trees. Unlike

a single decision tree which is prone to bias to dominating class (Dietterich & Kong,

1995), RF is implemented due to the high generalization power yet able to avoid model

overfitting, and being fast during training and testing (Breiman, 2001; Hoo, Kim, Pei, &

Chan, 2014). Each random decision tree is generated by a random subset, E′ of the labeled

training structure granules with replacement. At a specific leaf node, the labeled training

structure granules, E′node = {ci, li}A
i=1 are recursively split into left, E′le f t and right, E′right

node subsets, where ci is a feature vector of structure granule, li is the corresponding class

label (i.e. crowd or background) and A is the number of training samples. The splitting is
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done given a set of thresholds, T and splitting function, f as:

E′le f t =
{

ci ∈ E′node| f (ci)< t
}

(3.5)

E′right = E′node \E′le f t (3.6)

At each leaf node, the threshold, t ∈ T that best split the training granules with

maximized gain, ∆G is selected,

∆G =−

∣∣∣E′le f t

∣∣∣∣∣∣E′le f t

∣∣∣+ ∣∣∣E′right

∣∣∣ · Jle f t−

∣∣∣E′right

∣∣∣∣∣∣E′le f t

∣∣∣+ ∣∣∣E′right

∣∣∣ · Jright (3.7)

where J = −∑l p(li) · (1− p(li)) is the Gini index and p(li) is the class probability for

li. Class labels of Q unseen structure granules,
{

c j
}Q

j=1 are inferred by traversing down

all β decision trees. Each leaf node of a decision tree returns a prediction of the class

label, l j with class probability distribution p(l j|c j). The final class label (i.e. crowd or

background) of structure granule is equated by averaging the probability estimate from

each decision tree, defined as:

l∗j = arg max
l j

1
β

β

∑ pβ (l j|c j) (3.8)

The class labels of structure granules in an unseen image computed are used to infer

the foreground (i.e. crowd) and background granules in the dense crowd scene image.

The construction of foreground and background granules is a process of granulation. Such

granulation process provides a granulated view of the image which is intended to be on

par with the way a human would annotate crowd and background regions in a dense crowd

scene.
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3.3 Experiments

3.3.1 Dataset

Evaluations on the GrCS framework are conducted using 201 public benchmark datasets

of real and synthetic dense crowd scenes obtained from (Idrees et al., 2013; Arandjelovic,

2008; Rodriguez, Sivic, et al., 2011; Fagette et al., 2014). These datasets consist of

dense crowd scenes in various events, such as parades, concerts and rallies. The crowd

in these datasets varies in terms of illuminations, crowdedness and perspectives. The

resolutions of the images range from 240×320 to 1024×1024. To evaluate the efficiency

of the proposed framework (i.e. conform precisely to the boundaries between crowd and

background regions), the ground truth of crowd and background regions for real crowd

scenes are manually annotated. Ground truth of each image is annotated at the pixel

level, with careful labeling around complex boundaries of crowd. Examples of ground

truth annotation are illustrated in the second row of Figure 3.13. The ground truth for

synthetic crowd images is generated by the Agoraset crowd generator (Allain, Courty, &

Corpetti, 2012). Each ground truth segment is highly accurate, i.e. adhering to the precise

outline between crowd and background, where it would be almost infeasible to achieve

manually (Courty, Allain, Creusot, & Corpetti, 2014).

3.3.2 Experiment Settings

In all the experiments, the number of structure granules, K is set to be 200 and the number

of iterations, τ = 10 which enables high localization of structure granules with adequate

separation between crowd and background regions. The varying scaling parameter, mτ−1
s ,

for each dτ
ps is initialized as m0

s = 10. Evaluation with different values of initialization

constant generates consistent structure granules adhering to the boundaries of crowd. To

construct granulated view of foreground (i.e. crowd) and background granules, random

forest classifier is used with the number of random decision trees, β = 2000 and 100
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randomly sampled variable at each split node. Dense crowd scene dataset is randomly

divided into sets of 40 images to perform 5-fold cross-validation to avoid bias. Each

structure granule is represented by the mean of feature descriptor, υυυ ps from pixel gran-

ulation, with entropy measures and pixel-wise SIFT (C. Liu, Yuen, & Torralba, 2011)

features of anchor pixels and structure granule center, ck. The feature responses of crowd

and background structure granules are combined as input to train the random forest clas-

sifier.

3.3.3 Dense Crowd Segmentation

The effectiveness and robustness of the GrCS for real and synthetic crowd scenes under-

standing are demonstrated in the application of dense crowd segmentation. Evaluations

are conducted by benchmarking the proposed framework with the multi-scale pixel grid

approaches by Arandjelovic (2008) and Fagette et al. (2014). Each evaluation is com-

pared against the benchmark dataset used in each respective approach.

Segmented crowd regions are shown as green overlay, whereas background regions

with red overlay. For quantitative evaluation, the F-score measure is used according to the

well-known PASCAL challenge (Everingham, Van Gool, Williams, Winn, & Zisserman,

2010) to evaluate the accuracy of crowd segmentation by overlapping it with ground truth

annotation (as per pixel basis).

Synthetic Crowd Scenes: Evaluations on synthetic dense crowd scenes are conducted

to gauge the applicability of GrCS. Dense crowd segmentation on synthetic scenes is

less taxing given the flat background texture. It is shown that when scales of person in

crowd are uniform (as shown in row 1 of Figure 3.10), GrCS achieves similar or better

F-score than Fagette et al. (2014) in classifying crowd and background regions. However,

on crowd scenes with perspective distortion and varying crowdedness, GrCS is more
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superior at discerning crowd and background regions, as illustrated in row 2−4 in Figure

3.10. This is not the case for Fagette et al. (2014), where their segmentation does not

accurately highlight the person in crowd. GrCS framework achieves good segmentation

of individuals in crowd, simply because novel adaptive varying scaling parameter enables

conformation of each structure granules adhering to the complex boundaries between

crowd and background. With optimized structure granules, individuals in sparse crowd

are adequately segmented.

Original Image Fagette et al. (2014) GrCS

F-score: 0.956 0.963

F-score: 0.814 0.874

F-score: 0.763 0.846

F-score: 0.774 0.886

Figure 3.10: Comparative results of dense crowd segmentation on synthetic crowd scenes
with Fagette et al. (2014). Best viewed in color.
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Real Crowd Scenes: Contrary to synthetic scenes, real crowd scenes are more chal-

lenging given the varying crowd context, cluttered background and unconstrained physi-

cal layout of environment. The GrCS is further tested on real crowd scenes such as shown

in Figure 3.11 and Figure3.12. Analogous with synthetic crowd scene, evaluation on real

crowd scenes shows that when the scale of a person in a crowd are uniform where each

person occupies only few pixels, the GrCS is comparable with Fagette et al. (2014) (as

shown in row 1 of Figure 3.11). Evaluation on dense crowd scenes with perspective dis-

tortion and different crowdedness shows that the proposed method is able to cope better

with varying scales of individuals in crowd to discern crowd and background regions in

comparison to Fagette et al. (2014) and Arandjelovic (2008), as illustrated in row 3 of

Figure 3.11 and row 2 of Figure 3.12. This is because the correlation among granules is

exploited to represent structurally similar regions in crowd scenes and the variability of

structures is taken into consideration during the granular information classification.

Background textures have significant influence on the crowd segmentation perfor-

mance. For example in row 4 of Figure 3.11, Fagette et al. (2014) fails to segment crowd

that has been overlaid by the steel barricades. Worst still, due to the crowd-like structure

of steel barricade, it is mistakenly inferred as crowd segment. On the contrary, the GrCS

is able to infer the actual crowd and background (i.e. steel barricade) segments. Arbi-

trary distribution of crowd and background regions is effectively outlined using GrCS (as

shown in the fourth row of Figure 3.11 and the first row of Figure 3.12). It provides a

more natural representation of crowd and background regions in comparison with Fagette

et al. (2014) and Arandjelovic (2008). This essentially illustrates the advantage of gran-

ulation process that is adaptive to different crowd structure in scenes over pixel-grid. In

addition, GrCS framework which utilizes Local Range of Intensity (LRI) feature is less

susceptible to false segmentation.
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Original Image Fagette et al. (2014) GrCS

F-score: 0.995 0.995

F-score: 0.943 0.918

F-score: 0.821 0.893

F-score: 0.618 0.964

Figure 3.11: Comparative results of dense crowd segmentation on real dense crowd
scenes with Fagette et al. (2014). Best viewed in color.
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Original Image Arandjelovic (2008) GrCS

F-score: 0.790 0.941

F-score: 0.771 0.932

Figure 3.12: Comparative results of dense crowd segmentation on real dense crowd
scenes with Arandjelovic (2008). Best viewed in color.

0.914 0.893 0.953 0.897 0.964 0.962 0.915

0.969 0.919 0.961 0.901 0.966 0.969 0.926

Figure 3.13: Comparative results of dense crowd segmentation on real dense crowd
scenes with SLIC (Achanta et al., 2010). First row: real crowd scenes. Second row:
ground truth annotations. Third row: crowd segmentation using SLIC (Achanta et al.,
2010) with the respective F-score measures. Forth row: GrCS (adaptive varying scaling
parameter) with the respective F-score measures. Best viewed in color.
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3.3.4 Adaptive Varying Scaling Parameters

The proposed GrCS approach using adaptive varying scaling parameter is compared

against constant scaling parameter by Achanta et al. (2010) on real crowd scenes. Exam-

ples of the ground truth and the segmentations results in comparison are shown in Figure

3.13. By using constant scaling parameter, crowd can be well separated from uncluttered

background regions, but it performs poorly on complex and cluttered background. This

is observed in the third row first column of Figure 3.13, where the ambiguous perime-

ter between crowd and building structure is inaccurately outlined. Moreover, as some of

the structure granules constructed using approach by Achanta et al. (2010) contain both

crowd and background texture (as shown in Figure 3.14), it is understandable that the

granular information is prone to classification error. As illustrated in the first and second

column of Figure 3.13, constant scaling parameter approach leads to textured regions of

buildings inaccurately inferred as crowd, whereas the GrCS approach is able to define

crowd and background regions corresponding to ground truth annotation.

To comprehend the influence of adaptive scaling parameter on dense crowd segmen-

tation, Figure 3.14 provides visualization of the ground truth and the comparative results

of structure granules using the novel adaptive varying scaling parameters and the con-

stant scaling parameter by Achanta et al. (2010) (taken from random regions in crowd

scenes from the first two columns in Figure 3.13). The results show that by using the con-

stant scaling parameter (Achanta et al., 2010), the structure granules fail to adhere to the

perimeters between different structures (particularly, crowd and background), in contrast

to GrCS which uses adaptive varying scaling parameters. The main reason is, since each

pixel, p, is represented by multiple structure features, vps that capture varying aspects of

textures, so by using a constant scaling parameter for all dps throughout the iterations will

not work well to capture the local affinity of each texture feature, vps, of pixels within the
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structure granule. Note that constant scaling parameter will act as normalization constant.

Thus, any value of constant scaling parameter would generate similar structure granules,

as shown in Figure 3.14a and Figure 3.14b.

(a) Constant scaling parameter = 10 (Achanta et al., 2010)

(b) Constant scaling parameter = 20 (Achanta et al., 2010)

(c) Proposed method, mτ−1
s

(d) Ground truth

Figure 3.14: Comparative results of structure granulation using constant value scaling
parameter (Achanta et al., 2010) and the proposed adaptive varying scaling parameters.
In ideal segmentation results, crowd regions are shown as green overlay, background
with red overlay and blue line indicate ideal boundary between crowd and background.
Boundaries between crowd and background of structure granules using adaptive varying
scaling parameters are closer to the ground truth. Best viewed in color.
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Figure 3.15: This figure shows analysis of average f-score measure per dense crowd
image in terms of number of structure granules, K. For K = 200, the average f-score per
image is 0.873.

3.3.5 Number of Structure Granules

The parameter K determines the number of structure granules in an image. The greater

the K value, the more the structure granules constructed per image. Figure 3.15 provides

the visualization of the influence of the parameter K on the crowd segmentation perfor-

mance. The result shows that the higher the K value, the less precise is the segmentation

per image. This is as expected, because with respect to the image size, with a greater K

value, the image is decomposed into smaller size structure granules, where each granule

contains fewer number of pixels. Consequently, fewer structures are present to infer the

content (i.e. crowd or background) of the corresponding granule. Likewise, the smaller

the K value, the fewer the structure granules constructed per image, which in turn gener-

ate larger size structure granules. When the size of a structure granule becomes too large,

it can no longer represent the structure characteristics of a local region. In all the experi-

ments in this chapter, K is empirically set to be 200 (Figure 3.15), which forms compact

structure granules that outlines the natural boundaries between crowd and background

regions.

59

Univ
ers

ity
 of

 M
ala

ya



3.3.6 Compactness of Structure Granules

Given the feature descriptor, υυυ ps, of each pixel in a dense crowd scene, structure gran-

ules are formed by aggregating correlated pixel granules (detailed in Section 3.2.2). The

sought after characteristics of structure granules are:

• Boundaries between the structure granules of crowd and background regions are

distinct, with each segregated into different structure granules.

• Structure granules conform to the natural outline of arbitrary distribution of crowd.

• Each structure granule contains structurally similar pixels of dense crowd scenes

(i.e. high localization accuracy). This is to cope with varying scales of individuals

due to perspective distortion.

The intuition is that each structure granule provides a compact and localized primitive

characterizing the local structure for dense crowd segmentation.

An example of the structure granules (pixels granulation) on dense crowd scene con-

structed using the GrCS is shown in Figure 3.16 with yellow outlines indicates the parti-

tions between granules. It is observed that this dense crowd scene has severe perspective

distortion of crowd. Still, the GrCS is able to aggregate neighboring individuals of sim-

ilar scale into structurally uniform atomic regions. Groups of individuals in crowds that

appear much bigger in the images are segregated into different granules from those that

appear smaller (regions in orange, green and red box). At the same time, crowd regions

with different crowdedness are observed to be grouped into separated granules. Despite

complex background clutters (i.e. trees, building patterns and image noise), the aggrega-

tion of correlated pixels enables precise segregation of crowd and background regions, as

illustrated in blue box.
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Figure 3.16: Examples of structure granules on a dense crowd images. Yellow outline
indicates the partitions between granules. (Blue box) clear separation of structure gran-
ules between crowd and background. (Orange, green and red boxes) structure granules of
crowd with significantly different crowdedness. Best viewed in color.

To evaluate the boundary adherences (compactness) of structure granules in the

crowd scenes quantitatively, the local grouping of structurally similar pixels is considered

as a clustering problem, where the widely adopted measurement in clustering evaluations

(i.e. Purity (C. C. Aggarwal, 2004)) is used. The Purity measure of structure granules

is utilized to quantify the quality of the granules against the pixel-level ground truth an-

notation labels (i.e. crowd or background). A structure granule is considered pure if it

contains label from only one class, which is either crowd or background. Otherwise, a

structure granule is considered as impure. In this context, an impure structure granule

denotes that there is inaccurate separation between crowd and background regions. The

accuracy of separation is quantified by the Purity measure, which is bounded within the

[0,1] range. A higher Purity measure suggests a higher accuracy of boundaries between

crowd and background regions.

Figure 3.17 shows the comparison and relative improvement of the structure granules
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Figure 3.17: Quantitative comparison of the boundary adherence (purity) measure of
structure granules with different pixel-grid sizes. Means are shown in dots, standard
deviations with bars. Best viewed in color.

against varying scales of pixel-grid representation. Due to the aggregation of correlating

pixel granules, structure granules are able to conform to the natural boundaries between

different structures, in particular, crowd and background structure. Accordingly, the aver-

age purity measure of the proposed structure granules (0.854) outperforms the pixel-grid

representation in all scales. Note that the proposed structure granules representation does

not require manual intervention to achieve optimal boundaries adherence.

Furthermore, the Purity measures of structure granule per dense crowd scene is

shown in Figure 3.18. It is observed that there are few dense crowd scenes with rel-

atively lower purity measures. Upon scrutinizing the results, it is observed that these

images correspond to poorly illuminated dense crowd scenes, i.e. concerts and cinema

(as shown in Figure 3.19), in which the lack of illumination may weaken informative tex-

tures structures and diminish scene details. Even so, the Purity measures of the respective

images are above 0.73.

3.4 Summary

This chapter has explored a new research direction in dense crowd scene analysis using

the theory and principles of granular computing (GrC) to conceptualize dense crowd seg-

mentation problem at different levels of granularity. Structure granules constructed by
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Figure 3.18: The boundary adherence (purity) measure per structure granule with respect
to image. The average purity is 0.854.

Figure 3.19: Example dense crowd scene images with poor illumination. Lack of illumi-
nation may weaken informative textures structures and diminish scene details.

aggregating similar neighboring pixel granules are served as primitive characterizing lo-

cal textures instead of regular pixel-grid. Experimental results on public and synthetic

dense crowd scenes have shown that the granulation approach is effective in grouping

structurally similar pixels into clusters to cope with perspective distortion, varying crowd-

edness and cluttered background for an effective interpretation of crowd and background

regions.

Though the structure granular is effective in outlining boundaries between multi-

scale crowd and background regions, the basis of granules for all granularity level are

texture features. Thus, granulated view of different granularity level is limited when

crowd scenes are poorly illuminated. Future investigation includes identifying texture

features that are more robust towards characterizing poor illuminated crowd scenes.

63

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 4: DENSE CROWD DENSITY ESTIMATION

Crowd density is one of the important aspects in dense crowd analysis when administering

crowd well-being. Specifically, the number of individuals in a crowd can be an indicator

of the comfort level in crowded scenes. It can also be a cue of imminent crowd disasters,

i.e. crowd crush. Crowd disasters often occur when density in crowd become so great

that individuals are crammed together. Physical forces from various directions cause

individuals to fall, thus creating a domino effect that forces individuals to either step on

each other or fall as well (Helbing et al., 2014). For instance, the recent crowd crush in

the Shanghai 2014 New Year’s Eve revelry which claimed 36 innocent lives.1

In some scenarios, having an accurate estimate of people count is important for his-

torical record or to signify the legitimacy and effectiveness of a social movement, e.g.,

political rallies or protests. American sociologist Charles Tilly described that movement

which demonstrates strength in the number of participant, as part of the WUNC (wor-

thiness, unity, numbers and commitment) display, is a vital form of claim-making and

measure of its success (Tilly, 1999). Thus, for many events, crowd size is a contentious

issue. An accurate empirical estimate is required to prevent dispute of crowd count results

from different parties (i.e. media, oppositions, organizers, etc.). The 1995 Million Man

March is an example of a large crowd density estimate dispute between the organizer and

the police (McPhail & McCarthy, 2004).

Despite the importance of keeping track of crowd density, as mentioned in Section

2.3, employing professional to estimate crowd size is infeasible. This is predominantly

due to the sheer number of individuals in an unconstrained dense crowd environment.

Thus, in this chapter, a novel algorithm is introduced for regression-based dense crowd

density estimation. On the contrary to existing methods (Idrees et al., 2013; K. Chen et al.,

1BBC News: http://www.bbc.com/news/world-asia-china-30646918
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2012), the proposed algorithm partitions images into irregular size granules conforming

to the image context for density estimation. The preceding chapter has demonstrated

the importance of studying the correlation among image granules at different levels of

granularity in outlining natural boundaries between crowd and background (non-crowd)

regions. The structurally meaningful atomic regions (i.e. granules) can serve as primitive

regions to extract features for density estimation. The aim is to carry out reliable low-level

feature extraction to infer accurate density of individuals in dense crowd scenes.

The remainder of this chapter is organized as follows: Section 4.1 describes the

motivation of the proposed density estimation approach, followed by the formulations

of the dense crowd density estimation strategy in Section 4.2. Section 4.3 presents and

discusses the experimental results. The proposed density estimation approach is evaluated

using public dense crowd dataset. Finally, conclusions are drawn in Section 4.4.

4.1 Dense Crowd Density Estimation

While object detection research in the field of computer vision has been improved sig-

nificantly over the recent years, analyzing dense crowd scenes (particularly, density es-

timation) remains challenging (Rodriguez, Laptev, et al., 2011). This is because dense

crowd scenes are characterized by the co-occurrence of a large number of individuals

gathered closely together. The complexity often manifested itself in the frequent, partial

or complete occlusion between individuals (Ali et al., 2013).

Since delineating individuals in dense crowd scenes are difficult (because of the

spatial overlaps), most existing density estimation approaches (Marana et al., 1998; Chan

et al., 2008; Chan & Vasconcelos, 2012; Idrees et al., 2013; K. Chen et al., 2012) obviates

the steps to detect and / or track individuals. They put emphasis on extracting a set of

low-level image feature. This paradigm of density estimation is based on regression,

where the relationship between the extracted features and the density of individuals is
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Figure 4.1: Example dense crowd scenes with perspective distortion. Individuals who
are closer to the camera view appear larger than those who are positioned further away
from the camera.

learned. However, a problem commonly encountered in regression based approach is

perspective distortion, where individuals who are closer to the camera view appear larger

than those who are positioned further away from the camera (as illustrated in Figure 4.1).

The problem is exacerbated when single regression function is used for the whole image

space. To address this problem, perspective normalization plays a key role by bringing

the perceived size of individuals at different depths to the same scale (Loy et al., 2013).

Another approach is to divide the image space into different pixel-grids and each pixel-

grid is modeled by a regression function to mitigate the influence of perspective distortion.

Such approaches rely on local features modeling through the analysis of pixel-grids (Ma,

Huang, & Liu, 2010; K. Chen et al., 2012; Idrees et al., 2013).

Despite the promising results of density estimation using pixel-grid approaches (Idrees

et al., 2013; K. Chen et al., 2012), it is susceptible to the constrain of pixel-grid. That

is, conformations to the natural outline between crowd and background (non-crowd) are

difficult to achieve (see Figure 4.2a). Consequently, one can observe in Figure 4.2d that

imprecise delineation of crowd and non-crowd regions, as well as assumption of depen-

dency between pixel-grids can lead to inaccurate estimation of person count. This is

because extracted features are not characterizing either crowd or background only. It

is worth noting that assuming dependency between granules is impractical since funda-

mentally crowd density and distribution varies from regions to regions in unconstrained
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(a) Pixel-grids (b) Ground truth count (c) Estimated count (Be-
fore MRF)

(d) Estimated count (Af-
ter MRF)

Figure 4.2: Dense crowd density estimation by Idrees et al. (2013). The dependency be-
tween pixel-grids is modeled by multi-scale MRF to enhance density estimation. Green
outline indicates the partitions between pixel-grids. Crowd density for pixel-grids con-
sisting of crowd and background (i.e. non-crowd) regions have been estimated to have
similar density with crowd-only pixel-grids after dependency modeling. Best viewed in
color.

public scenes. For instance, background elements can be randomly positioned within

dense crowds, as shown in Figure 4.2a.

It is thus necessary to partition dense crowd scenes into granules that conformed to

the natural outline between crowd and non-crowd regions. The granular computing based

approach (described in Chapter 3) is extended to allow estimation of crowd density with-

out tracking or segregation of individuals. Importantly, in contrast to a pixel-grid based

approach (Ma et al., 2010; K. Chen et al., 2012; Idrees et al., 2013), the atomic regions

(i.e. structure granules) can serve as meaningful primitive regions to extract features es-

sential for density estimation. This strategy is applicable to density estimation in public

dense crowd scenes, i.e. scene-invariant.

In addition, the proposed approach is motivated by the fact that no single feature can

provide sufficient information for density estimation in dense crowd scenes. As noted

by Idrees et al. (2013), this is predominantly due to low resolutions imagery, perspective

distortion and severe occlusions (detailed in Section 1.2). One can, however, observe that

dense crowds portray textures which can be employed to infer crowd density. There is

a relationship between low-level features and crowd density that is expected to facilitate

dense crowd density estimation (Marana, Velastin, Costa, & Lotufo, 1997).
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4.2 Proposed Dense Crowd Saliency Detection Framework

Given a dense crowd image, the aim of this work is to estimate the number of individ-

ual in the image. In a public scene, the density of individuals can varies from region to

region. This density variation is mainly due to the effects of perspective distortion (see

Figure 4.1) or constraints imposed by the environment layout. Thus, the proposed ap-

proach commence by representing structure granules using texture features. Note that the

structure granules were formed from the aggregation of pixels with similar feature, de-

scribed in Chapter 3. This is to facilitate in distinguishing between crowd and background

(i.e. non-crowd) regions for density estimation. Crowd regions with different coarseness

are also represented with different granules (as shown in Figure 3.16). Therefore, unlike

existing density estimation approach, the proposed approach does not assume similarity

of density in adjacent granules (i.e. dependency between granules).

Formally, a dense crowd image, I = [υυυgs]∈RG×S, where G is the number of granules

in an image and S is the number of features for each granule, g. Each granule, g, in a dense

crowd image, I, is represented as a feature vector, υυυgs =
(
vg1, . . . ,vgs, . . . ,vgS

)> ∈ RG×S,

where g = {1, . . . ,G} and s = {1, . . . ,S}. The feature vector, υυυgs is formed by the mean of

feature descriptor of each pixel, p, within the respective granule. The feature descriptor

for each pixel, υυυ ps, is the concatenation of S different and complementary features. The

texture features used in the proposed approach to represent pixels are discussed in the fol-

lowing subsection. Dense crowd density estimation problem is subsequently formulated

as a regression problem. In particular, a mapping function between feature vectors input

and a scalar-valued crowd density output is learned.

4.2.1 Granular Representation of Dense Crowd Images

Although dense crowd can be irregular at a coarse level, the texture of crowd tend to

correspond to a harmonic pattern (i.e. regular texture) at a finer scale patches (Idrees et
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al., 2013), such as pixel-grids or granules. Moreover, crowd regions tend to present large

number of texture features. As one can observed from Figure 4.1, this is because of the

appearance variations of crowd. These texture features carry strong cues regarding the

number of people in a scene (Loy et al., 2013). Thus, crowd regions in these patches can

be treated as texture for processing.

In this work, dense crowd images are represented as structure granules for density

estimation. It is the basic aspect of dense crowd scenes in this work, characterizing

structurally meaningful atomic regions that distinguish between crowd and background

regions for low-level feature extraction. The texture feature vector for each granule is

the mean of texture features of pixels within the respective granule. The texture feature

vector from each granule are used as description of the crowd, where a direct mapping

between the features and crowd density is learned. In the proposed approach, the tex-

ture of dense crowd scenes is represented by the Local Standard Deviation (LSD), Dense

Scale-Invariant Feature Transform (DSIFT) and Phase Congruency (PC). The proposed

framework is, however, not restricted to these sets of features employed in this chapter.

Diverse sets of features can be exploited to enhance and adapt to various dense crowd

analysis researches.

4.2.1.1 Local Standard Deviation(LSD)

The proposed approach is inspired by the fact that dense crowd regions with different

density tend to generate distinct local texture patterns, as shown in Figure 4.3. That is,

highly dense crowd regions (as shown in the first column of Figure 4.3) comprise of fine

patterns, whereas moderately dense crowd regions (as shown in the third column of Fig-

ure 4.3) mostly contain coarse pattern. As related by Davies et al. (1995) and Marana et

al. (1998), there is a correlation between crowd density and edge feature of crowd. Ac-

cordingly, this proposed approach is motivated to use edge feature to characterize crowd
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Ground truth count: 2362 Ground truth count: 209 Ground truth count: 96

Figure 4.3: (Top row) Example dense crowd scene images. (Bottom row) Images of
local standard deviation (LSD) using 5× 5 neighbourhood. Note that the crowd density
decreases when view from left to right. Best viewed in color.

regions.

To this end, Local standard deviation (LSD) is employed to capture the local image

structure, i.e. edges, formed by mass of crowd in dense crowd images. This is because

LSD is a computationally simple and practical edge detection mechanism (Lloyd, 2006).

The output of LSD is a measure of the local average contrast. Specifically, calculating the

LSD of pixels in a neighborhood can indicate the degree of variability of pixels intensities

in that local region. Strong intensity contrast / variability of pixels characterize edges in

images.

Given a dense crowd image, LSD calculate the standard deviation of pixel intensities

in a 5×5 neighborhood centering each pixel of interest (i.e. all the pixels in the image).

The output of LSD is assigned to the respective pixel of interest. One of the main advan-

tages of using LSD in the proposed approach is that edge sharpness of crowd images can

be quantified. This is essential to delineate the various texture features in dense crowd
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images for density estimation.

4.2.1.2 Dense Scale-Invariant Feature Transform (DSIFT)

DSIFT (Vedaldi & Fulkerson, 2010) is a variation of the SIFT algorithm (Lowe, 2004),

which is a state-of-the-art keypoint based approach to characterize local gradient infor-

mation. By using SIFT, the number of interest points extracted from an image varies

based on the image content, making the information incorporation on spatial configura-

tion complicated (Tuytelaars, 2010). Conversely, DSIFT extracts SIFT histogram for all

pixels with overlapping patches. Compared to sparse features (e.g. SIFT (Lowe, 2004),

interest points (Mikolajczyk & Schmid, 2004)), dense features results in a good coverage

of the entire scene (Tuytelaars, 2010). This produces a constant amount of features per

image area that contain essential information of the image content.

As one can observed in crowd regions with highly irregular repetitive grain (as shown

in Figure 4.3 (Top row)), it is likely to have similar texture element around different re-

gions of crowd, formed by parts of peoples (Idrees et al., 2013). The local intensity

gradient can reveal local individual appearance, such as head and shoulder, which is in-

formative for density estimation (Loy et al., 2013). Therefore, in addition to edge feature

of crowds, DSIFT is used in the proposed approach to model the appearance cue of crowd.

DSIFT algorithm is implemented to extract feature descriptor for each pixel in a dense

crowd image. The DSIFT feature descriptor corresponds to the spatial coordinate of im-

age pixels, forming a dense description of the image.

Given a dense crowd image, the feature descriptor of each pixel of interest is con-

structed by overlying a window centering the pixel of interest. Each local window is

further divided into smaller sub-windows (e.g. 4× 4) where gradient orientation and

magnitude is quantized into an 8 bin histogram in each sub-window. The feature de-

scriptor of the pixel of interest is formed by concatenating the histogram of sub-windows,
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obtaining a 4×4×8 = 128 dimensional vector as the SIFT representation.

4.2.1.3 Phase Congruency (PC)

The gradient-based texture features, i.e. LSD and DSIFT, are sensitive to image illumina-

tion variations (Kovesi, 1999). Hence, these extracted features can be image dependent.

To compensate and complement the set of features used to represents textures of struc-

ture granules, a dimensionless measure of feature significance that is invariant to image

illumination is desired. Such measure can provide absolute quantifications of feature

significance that is applicable to any dense crowd scene images.

Studies by Oppenheim and Lim (1981) have shown that phase information of images

can retain the important features of image context. Interestingly, the Local Energy Model

developed by Morrone and Owens (1987) postulates that features can be perceived at

spatial positions of maximum phase congruency within an image in the frequency domain.

Hence, the advantage of this model is that it is not based on local intensity gradient for

feature detection. These texture features detected include edges and lines.

To construct a dimensionless measure of phase congruency of dense crowd images

that is invariant to image illumination, the proposed approach uses the method introduced

by Kovesi (1999). Kovesi (1999) scheme calculates the phase congruency with Log-

Gabor wavelet filters (Field, 1987), which work as bandpass filters. It allows arbitrary

large bandwidth filters to be constructed while maintaining a zero DC component in the

even-symmetric filter (Kovesi, 2000). Hence, the phase congruency of a pixel p in a dense

crowd image, I, is express as the summation over orientation o and scale n:

PC(p) =
∑o ∑nWo(p)bAno(p)∆Φno(p)−Toc

∑o ∑n Ano(p)+ ε
(4.1)

where ∆Φno(p) = cos(φno(p)−φ o(p))− sin(φno(p)−φ o(p)) (4.2)
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Figure 4.4: (Top row) Example dense crowd scene images. (Bottom row) Images of
phase congruency (PC) corresponding to number of orientation o = 6 and scale n = 3.
Note that the texture features is invariant to changes in illumination. Best viewed in color.

such that b·c is a floor function which denotes that the enclosed quantity is not permitted

to be negative; Wo(p) is a weighting factor based on frequency spread; Ano(p) is the local

amplitude of pixel p on scale n and orientation o; To is introduced to compensate for noise

influence. A small denominator ε = 0.0001 is added to avoid division by zero (Kovesi,

2000). ∆Φno(p) is a sensitive phase deviation measure, where φ o(p) is the mean phase

angle for pixel p.

The output of the phase congruency takes on the values between [0,1], providing

an illumination invariant measure of texture features in dense crowd images. Figure 4.4

shows sample phase congruency outputs of dense crowd images.

4.2.2 Density Estimation by Regression

The texture feature vector, υυυgs, of a structure granule in a dense crowd image is the

mean of feature descriptor of each pixel, p, within the respective granule. The feature

descriptor, υυυ ps, of each pixel, p, is the concatenation of the Local Standard Deviation
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(LSD), Dense Scale-Invariant Feature Transform (DSIFT) and Phase Congruency (PC)

texture features. Given the structure granules of dense crowd images, dense crowd density

estimation task is posed as a regression problem. The aim is to learn the relationship

between the texture features and the crowd density, for dense crowd density estimation of

new scenes.

For sparse crowd scenes (as shown in Figure 1.2a) where lower crowd density and

fewer occlusions among individuals are observed, linear regressor (e.g. ridge regression

(Hoerl & Kennard, 1970)) may suffice. This is because the mapping between the features

and people count typically presents a linear relationship (Loy et al., 2013). Nonetheless,

given dense crowd environment, such as the scenes analyzed in this thesis, where there

are severe partial and complete occlusions among individuals, a nonlinear regressor is

required to capture the nonlinear trend in the feature space (Chan & Dong, 2011).

Formally, given M training data, represented as {xi,yi}M
i=1, xi is the feature vector

of structure granule, υυυgs, and yi is the corresponding crowd density of the respective

structure granule. The objective of regression is to predict the value of y given a new

value of x. In the proposed approach, the mapping between the texture features and the

crowd density is estimated by learning a nonlinear function, in particular, a Kernel Ridge

Regression (KRR). KRR with Radial Basis Function (RBF) kernel is employed owing

to its promising performance in the literature for crowd density estimation (K. Chen et

al., 2012; K. Chen, Gong, Xiang, & Loy, 2013). In its simplest form, a ridge regression

function (i.e. f (x,w) = wTφφφ(x)) is a linear regressor with a cost function as follows:

C(w) =
1
2 ∑

i
(yi−wT

φφφ(xi))
2 +

1
2

λ ‖w‖2 (4.3)

where 1
2λ ‖w‖2 is a regularization term to avoid over-fitting of the training data. The

parameter λ > 0 is determined via cross-validation. The model parameter w is determined

74

Univ
ers

ity
 of

 M
ala

ya



by minimizing the cost function C(w).

The nonlinear version of the ridge regression, i.e. KRR, can be achieved via kernel

trick (Shawe-Taylor & Cristianini, 2004). That is, constructing the ridge regression model

in higher dimensional feature space induced by a kernel function. In this work, the RBF

kernel function is used.

k(x,x′) = exp(−‖x−x′‖2

2σ2 ) (4.4)

where the kernel width parameter σ is determined via cross-validation. The KRR func-

tions is given by:

f (x,ααα) = ∑
i

αik(x,xi) (4.5)

where ααα = {α1,α2, · · · ,αi} are Lagrange multipliers used to solve the KRR minimization

problem (Loy et al., 2013).

The estimated density of an unseen dense crowd image is the summation of the

estimation obtained for all structure granules in the corresponding image.

4.3 Experiments

The following sections describe the dataset used in the experiments, experimental setup

and dense crowd density estimation results.

4.3.1 Dataset

Evaluations on the proposed density estimation approach are conducted on public dataset

obtained from (Idrees et al., 2013). This dataset consist of 50 dense crowd images col-

lected mainly from Flickr2. The number of individuals in these images ranges between

96 and 4628, with an average of 1280 individuals per image. The scenes in these im-

2Flickr - Photo Sharing!: https://www.flickr.com/
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Ground Truth count: 4628
(Most GT count)

Ground Truth count: 1940 Ground Truth count: 96
(Least GT Count)

Figure 4.5: Sample dense crowd images from the dataset with their corresponding ground
truth count. The left and right images show the most and least ground truth count, respec-
tively. ((Idrees et al., 2013))

ages are diverse, depicting dense crowd in various set of events, such as pilgrimages,

concerts, marathons, stadiums and rallies. The ground truth provided are manually anno-

tated, where the position of individuals are marked with a dot. Figure 4.5 illustrate some

example of dense crowd images with the associated ground truth counts.

4.3.2 Experiment Settings

In the experiments, dense crowd dataset is randomly divided into sets of 10 to perform

5-fold cross-validation to avoid bias. Each image is represented by an approximately

G = 200 granules.

4.3.3 Evaluation Metric

The performance of density estimation approach can be assessed by the similarity be-

tween the actual count and the estimated count of individuals in a scene (Idrees et al.,

2013). Accordingly, the evaluation metric known as Absolute Difference (AD) is em-

ployed to quantify the density estimation results.

ADi =
∣∣∣ζi− ζ̂i

∣∣∣ (4.6)

where i denote the ith patch (i.e. granule for the proposed approach) or image, ζi is the
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Table 4.1: Comparative results of dense crowd density estimation with Idrees et al.
(2013), Lempitsky and Zisserman (2010) and Rodriguez et al.(2011) using mean and
standard deviation of Absolute Difference (AD) from ground truth. The proposed ap-
proach outperforms the state-of-the-art approaches.

Approach AD Per Patch AD Per Image
Rodriguez et al. (2011) - 655.7±697.8
Lempitsky et al. (2010) - 493.4±487.1
Idrees et al. (2013) - before MRF 10.2±18.9 468.0±590.3
Idrees et al. (2013) - after MRF - 419.5±541.6
Proposed 6.4±6.6 407.8±484.0

actual (i.e. ground truth) count in each patch or the whole image, and ζ̂i is the estimated

count. The results for both granules and images are reported as mean and standard devi-

ation of AD.

4.3.4 Dense Crowd Density Estimation

The applicability of the proposed framework is demonstrated in the application of dense

crowd density estimation on public scenes. Evaluations are conducted by benchmarking

the proposed approach with state-of-the-art approaches by Idrees et al. (2013), Lempitsky

and Zisserman (2010) and Rodriguez et al.(2011). These methods are among the few that

is suitable for dense crowd density estimation, therefore, is used for comparison. Most

existing methods (Rabaud & Belongie, 2006; Ge & Collins, 2009) require person detec-

tion, hence is more suitable for sparse crowd scenes analysis. Comparative comparison is

conducted by using publicly available benchmark dataset (Idrees et al., 2013).

The comparative comparisons are presented in Table 4.1. The method by Rodriguez

et al.(2011) have the highest AD per image. This is because the method relies on head

detections for density estimation. For dense crowd scenes with few pixels per individual,

severe occlusions and appearance variations, it is challenging to determine ones’ head

from another. Comparing methods by Lempitsky and Zisserman (2010) with Idrees et al.

(2013), method by Idrees et al. (2013) uses three sources (i.e. head detection, SIFT and
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Table 4.2: Quantitative results of the proposed approach on dense crowd density es-
timation using different texture features, i.e. Local Standard Deviation (LSD), Dense
Scale-Invariant Feature Transform (DSIFT) and Phase congruency (PC).

Features AD Per Patch AD Per Image
LSD 5.9±8.2 621.6±679.7
LSD + DSIFT 6.7±7.2 481.2±523.7
LSD + DSIFT + PC 6.4±6.6 407.8±484.0

frequency domain analysis) whereas Lempitsky and Zisserman (2010) uses only DSIFT

feature for dense crowd density estimation. Accordingly, (Idrees et al., 2013) have lower

AD per image than (Lempitsky & Zisserman, 2010). This shows that to enhance density

estimation in dense crowd scenes, multiple features is required to compensate and com-

plement the insufficient of another features. By using irregular granules which conforms

to the natural boundaries between crowd and background (i.e. non-crowd) regions, the

proposed approach is able to extract crowd texture features essential for density estima-

tion. This is not the case for (Idrees et al., 2013) that uses pixel-grids. Hence, the AD per

patch of the proposed approach (6.4±6.6) is lower than Idrees et al. (2013) (10.2±18.9).

Figure 4.7 shows the comparative results of dense crowd density estimation with Idrees

et al. (2013).

The qualitative results of the proposed approach on dense crowd density estimation

using different features are presented in Table 4.2. The first row in Table 4.2 shows the

results of using Local Standard Deviation (LSD) feature only, giving AD of 5.9± 8.2

per patch and 621.6± 679.7 per image. By supplementing the proposed approach with

DSIFT feature, which captures the appearance cue in dense crowd scenes, improves AD

per image by 140.4. To compensate and complement the gradient-based features (LSD

and DSIFT) that are sensitive to image illumination variations, PC feature that is based

on phase information in frequency domain is included. This improves the AD per image

to 407.8± 484.0. Although the mean of AD per patch increases marginally (0.5), the

standard deviation reduces by 1.6.
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Figure 4.6: Analysis of per patch estimates in terms of absolute difference (AD). The
x-axis shows image numbers sorted with respect to mean ground truth (GT) count per
patch. Olive dots: GT count per patch. Blue crosses: mean of absolute difference. Red
bars: standard deviation of absolute difference. Best viewed in color.

Figure 4.6 shows the AD for patches in each dense crowd image. The images are

sorted with respect to the mean ground truth count per patch for ease of analysis. The

mean and standard deviation of AD per patch are shown with blue crosses and red bar,

respectively. The ground truth per patch for each image is shown as olive dots. As shown

in Figure 4.6, the AD per patch is consistent despite the increase of ground truth count,

except for the images in the range of 46 to 50. The images from the range of 1 to 45

consist of 96 – 2704 ground truth count of individual. This indicates that the proposed

approach perform density estimation consistently for structure granules in this range. The

reason for increasing mean and standard deviation of AD for images in the range of 46

– 50 is because these images contain the highest ground truth count, with the largest

ground truth count is 4628 (i.e. a 4821% of the smallest ground truth count). Likewise,

the ground truth count per patch also increases super-linearly, in contrast to the ground

truth count per patch for other images. Figure 4.8 shows several dense crowd images

from the dataset with their respective ground truth count and estimated count using the

proposed approach.

From Figure 4.6, it is observe that there are a few images with relatively higher
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Ground Truth count: 1450
Idrees et al. (2013): 1468
Proposed: 1443

Ground Truth count: 3406
Idrees et al. (2013):1287
Estimated count: 1857

Ground Truth count: 682
Idrees et al. (2013): 653
Proposed: 653

Ground Truth count: 648
Idrees et al. (2013): 640
Proposed: 694

Ground Truth count: 4628
Idrees et al. (2013): 2550
Estimated count: 1993

Ground Truth count: 2358
Idrees et al. (2013): 2496
Proposed: 2517

Figure 4.7: Comparative results of dense crowd density estimation with Idrees et al.
(2013).

Ground Truth count: 2104
Estimated count: 2087

Ground Truth count: 1050
Estimated count: 1098

Ground Truth count: 2740
Estimated count: 1412

Ground Truth count: 2550
Estimated count: 1251

Ground Truth count: 2391
Estimated count: 1645

Ground Truth count: 967
Estimated count: 884

Figure 4.8: Several dense crowd images from the dataset with their respective ground
truth count and estimated count using the proposed approach.
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Figure 4.9: Example of low-resolution dense crowd image where it is challenging to
distinguish individuals from background. Left: Dense crowd image. Right: Image with
ground truth annotations (red dots). This shows that manual annotations are prone to
human mistakes. Best viewed in color.

AD per patch than the overall images within the range of 1 to 45. Upon scrutinizing

the results, it is observed that some of these images correspond to low resolution images

where informative texture features may have been diminished. It is also challenging for

human to ascertain individuals from background in the scenes (as shown in Figure 4.9).

Since ground truth provided (Idrees et al., 2013) is manually annotated, it is prone to

human mistake.

4.4 Summary

This chapter has explored a new approach for dense crowd density estimation by using

irregular patches (i.e. granules) that conform to the natural outline between crowd and

background. The proposed density estimation approach allows the granules to adapt itself

to the arbitrary distribution of crowd, in which the underlying texture features character-

izing crowd and background regions can be extracted. Moreover, using a set of comple-

menting texture features is essential to compensate the insufficiencies of other features.

The experimental results on public dense crowd dataset demonstrated that the use of gran-
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ules can improve density estimation in dense crowd scenes. Despite the importance of

dense crowd density estimation research, it is acknowledged that one of the main chal-

lenges for this research is generating ground truth for evaluation. This is because manual

annotation of ground truth is costly and prone to human error.
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CHAPTER 5: DENSE CROWD SALIENCY DETECTION VIA GLOBAL

SIMILARITY STRUCTURE

As discussed in Section 1.1, manual visual surveillance of dense crowd scenes is a formidable

task, primarily due to the sheer number of individuals in scenes and excessive amount

of television screens to monitor. As a result, it is not surprising for human operators

that operate and monitor a set of television screens to overlook prominent events taking

place within a dense crowd scene. For example, an individual that maneuvers against the

dominant flow of dense crowd, as shown in Figure 5.1b. Thus, there is a dire need to

computerize the processing and analysis of dense crowd to support and assist human in

the detection of salient crowd regions acquiring immediate attention for a more effective

surveillance.

The preceding chapters have described approaches based on GrCS to localize crowd

regions and density estimation. Particularly, both chapters have demonstrated that spa-

tial information from dense crowd scenes can serve as a useful contextual cue to facilitate

dense crowd analysis. Whilst the GrCS-based method has shown superior performance in

the aforementioned tasks, it is unequipped for dense crowd saliency detection. This is be-

cause it is based solely on spatial information, whereas temporal information is essential

to discover and quantify saliency in dense crowd scenes.

In this chapter, a new approach is proposed for saliency detection in dense crowd

scenes. The aim is to uncover the intrinsic manifold of crowd motion dynamics, which

can facilitate the identification and localization of salient regions in a crowd scene. Dense

crowd regions that are deemed abnormal in terms of motion flow, such as shown in Fig-

ure 5.1 (red bounding boxes) are denoted as salient. These regions are areas in dense

crowd scenes with high motion dynamic. On the contrary to existing saliency detection

approaches (Ali & Shah, 2007; Loy et al., 2012), low-level features extracted from crowd
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(a) High motion dynamic at entry and exit points
(or sources and sinks).

(b) Individual moving against the dominant dense
crowd flow.

Figure 5.1: Example saliency in dense crowd scenes. These saliencies (denoted by the
red bounding boxes) are area in dense crowd scenes with high motion dynamic. Best
viewed in color.

motion field are transformed into a global similarity structure. The global similarity struc-

ture representation allows the discovery of the intrinsic manifold of the motion dynamics,

which could not be captured by the low-level representation. Ranking is then performed

on the global similarity structure to identify a set of extrema. This extrema is exploited

to detect saliency in various dense crowd scenarios that exhibit crowding, local irregular

motion and unique motion areas such as sources and sinks. In contrast to existing ap-

proaches (Kuettel et al., 2010; Hospedales et al., 2011; B. Zhou et al., 2012; Rodriguez,

Sivic, et al., 2011), the presented manifold does not require tracking and prior informa-

tion or model learning to identify interesting / salient regions in the crowded scenes. The

proposed approach is thus practical for real-world dense crowd saliency detection.

The remainder of the chapter is organized as follows: Section 5.1 express the moti-

vation of this work. This is followed by the proposed crowd saliency detection approach

via global similarity structure in Section 5.2. Section 5.3 presents and discusses the ex-

perimental results. Specifically, the applicability of the proposed framework to detect

saliency in dense crowd scenes is evaluated both qualitatively and quantitatively. Finally,

future work are discussed and conclusion are drawn in Section 5.4.
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5.1 Dense Crowd Saliency Detection

The increasing demands for security and public safety by the society has lead to an

enormous growth in the deployment of closed circuit television camera (CCTV) in pub-

lic spaces (Valera & Velastin, 2005; Gong, Loy, & Xiang, 2011). The recent Boston

Marathon bombing, specifically, has ignited a pressing interest for automated visual anal-

ysis of dense crowd to assist the law enforcement in preventing such events from hap-

pening again. The investigation surrounding the bombing put across the fact that the

incident was a missed opportunity to use technology to detect the abnormal behavior of

the suspect, which leads to the tragedy (Klontz & Jain, 2013).

One must understand that at large events such as rallies and marathons, where crowds

of hundreds or even thousands gather, visual monitoring is a daunting task. This is be-

cause studies (N.-H. Liu, Chiang, & Chu, 2013) have shown that the attention span of

human tend to deteriorate after 20 minutes. For a monitoring task that demands pro-

longed cognitive attention, it is not ideal to depend solely on human operators to under-

take the responsibility of identifying event in dense crowd scenes requiring immediate

attention. In dense crowd scenes, any saliency or abnormal event would lead to a cascade

of undesirable events because of the synergic effect of human interaction (Mehran, 2011).

Consequently, major research efforts are emerging towards developing solutions to iden-

tify interesting or salient regions, which could ultimately lead to unfavorable events, as a

cue to direct the attention of the security personnel.

As discussed in Section 1.1.3, the definition of interesting region in crowd has been

causing much debate in the literature due to the subjective nature and complexity of the

human behaviors. Some researchers consider any deviation from the ordinary observed

events as anomaly, whereas others consider rare or outstanding event as interesting. Find-

ing interesting regions in a given scene is generally accomplished by firstly learn an ac-
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tivity model of the scene, followed by using the learned model to identify the anomalies

(Kuettel et al., 2010; Hospedales et al., 2011; B. Zhou et al., 2012; Rodriguez, Sivic, et

al., 2011).

Contrarily, the proposed approach in this chapter takes a different perspective to de-

tect interesting regions in extremely crowded scenes. It alleviates the need of a learned

model. Specifically, the motion of individuals in dense crowd scenes is assumed to fol-

low the regular or dominant flow of a particular region due to the physical structure of

the scene, and the social conventions of the crowd dynamics. With this assumption, inter-

esting regions is considered as extrema in the underlying crowd motion dynamics in the

scene. Detecting these extrema is accomplished in an unsupervised manner. In contrast

to existing methods (Ali & Shah, 2007; Loy et al., 2012), which use low-level features

for dense crowd motion representation, this work projects the low-level features extracted

from the motion field into a global similarity structure. In this study, global similar-

ity structure refers to the similarity / difference between every two points on a feature

space, i.e. stability and phase shift. This captures the pairwise similarity of the dense

crowd motion of all pixels (or particles that are spatially distributed on the image plane).

Such a structure allows the discovery of intrinsic manifold of the motion dynamics. With

the manifold, ranking is performed by the iterated graph Laplacian approach (D. Zhou,

Weston, Gretton, Bousquet, & Schölkopf, 2004). The extrema of the rank scores are em-

ployed as an indicator of salient motion dynamics or unstable motion in the dense crowd

scenes caused by crowding, sources and sinks, as well as local irregular motion.

The crowding is defined as potential clogging or bottlenecks that are typically af-

fected by the physical structure of the environment. For example, near junctions where

the crowd density builds up and thus, preventing smooth motion amongst individuals.

Sources and sinks refer to regions where individuals in a crowd enter or leave the scene.

Finally, local irregular motion is triggered by flow instability of individuals or a small
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groups maneuvering against the dominant flow in the scene.

5.2 Proposed Dense Crowd Saliency Detection Framework

The pipeline of the proposed framework is illustrated in Figure 5.2. Given a dense crowd

video sequence (Figure 5.2a), local spatiotemporal information is first extracted (Figure

5.2b). It is used to represent a set of broader definition of the crowd dynamics (Figure

5.2c and 5.2d), from which the intrinsic manifold of the motion dynamics in scenes are

uncovered. Subsequently, the intrinsic manifold is exploited and used as contextual in-

formation for crowd saliency detection. In this chapter, crowd salient motions refer to

conditions caused by crowding, sources and sinks, as well as local irregular motion.

5.2.1 Crowd Motion Field

Given a dense crowd video sequence, this work commences by estimating the flow field.

The proposed framework represents the crowd motion field of each frame using the op-

tical flow. Optical flow is a velocity distribution of apparent brightness movement in an

image frame, where it captures the spatio-temporal variation of pixels intensities between

two frames of a video sequence (Horn & Schunck, 1981). Specifically, in a dense crowd

video sequence, the velocity field at each point, V (p) = (up,vp) is estimated using the

dense optical flow algorithm by C. Liu (2009). The velocity field at each point is calcu-

lated by its displacement between consecutive frames of a video sequence. Each pixel in

a given frame is considered as a point or particle1, p = (x,y). This process is reiterated

for all of the points in the frame.

Both the horizontal and vertical velocity components, u and v, of the extracted optical

flow field are then accumulated, and an averaged flow, V , is calculated within an interval

1One could also consider a spatial block of pixels as a particle.
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(a) Input video sequence (b) Motion flow estimation

(c) Global similarity feature map: stability
map

(d) Global similarity feature map: phase shift
map

(e) Normalized Laplacian matrix representa-
tion

(f) The ranking results, where red and blue
color indicate the extrema with interesting dy-
namics.

Figure 5.2: An illustration of the outputs from the key steps in crowd saliency detection.
The width and height of the global similarity feature maps are the number of pixels of a
video frame. Best viewed in color.

of time, comprising |τ| frames.

V = {u,v}= {1
τ

t+τ

∑
t

up,
1
τ

t+τ

∑
t

vp} (5.1)

Also, the mean optical flow can be denoted as {u,v}. Figure 5.2b shows a snapshot of the

mean flow computed for the Mecca sequence.

The proposed interval-based average representation is performed to obtain smooth

and consistent fields, where inconsistent velocity components (noise) are often reduced if
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not removed during the averaging step.

5.2.2 Feature Representation

Using the crowd motion field, two features are extracted to represent a broader definition

of the crowd dynamics for saliency detection. They are denoted as the stability and phase

shift maps. These maps are the results of transformation of the low-level feature space

into global similarity structure space, based on the similarity / difference between every

two points on the feature space. The computation of each map will be discussed in detail

in the following Section 5.2.2.1 and Section 5.2.2.2.

5.2.2.1 Stability Map

The mean optical flow field appears to be a good indicator for the dominant flow of

individuals in crowd, but may not be sensitive enough to capture subtle interaction and

motion flows that deviate from the norm. To this end, particle advection process is carried

out under the influence of the mean optical flow field to reveal local properties of the flow.

The resulting pathlines from the advection process allows quantification of the motion

dynamics, which is derived later from the separation coefficients between particles.

The basic idea of particle advection is to approximate the ‘transport’ quantity by a

set of particles as proposed by Moore et al. (2011). In this context, advection is applied

to keep track of the velocity changes for each point, p along its velocity field defined by

(u,v).

d~xp

dt
= up(t0, t,x0,xp) (5.2)

d~yp

dt
= vp(t0, t,y0,yp) (5.3)

where (x0,y0) represents the initial position of point p at time t0, while (xp,yp) denotes
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its position at time t0 + t.

Unlike the conventional optical flow representation that captures the velocity of a

point in two consecutive frames, the advected flow field captures the velocity of a particle

in τ consecutive frames. The trace of particles over time forms a pathline. Assuming

that the initial position of p is the mean optical flow field, {u,v}, the problem can be

formulated as an initial value problem. Cubic interpolation (Lekien & Marsden, 2005) of

the neighboring flow field can be performed to compute the robust velocity of particles.

The proposed approach in this chapter adopted the Jacobian method as in Haller

(2000) to measure the separation between each pathline which are seeded spatially close

to a point, p, within a time instance, τ . The Jacobian is computed by the partial derivatives

of d~xp and d~yp, where:

∇F t(p) =


∂d~xp
∂xp

∂d~xp
∂yp

∂d~yp
∂xp

∂d~yp
∂yp

 (5.4)

According to the theory of linear stability analysis in (Seydel, 2009), the square

root of the largest eigenvalue, λ t(p) of F t(p)>F t(p) indicates the maximum offset or

displacement if the particle’s seeding location is shifted by one unit as it satisfies the

condition that lnλ t(p) > 0. In the context of this study, a large eigenvalue indicates that

the query point is unstable, and vice versa for a small eigenvalue. In another word, a

query point is regarded as stable when the velocity changes between the point and its

spatially close neighboring points are minimal. Such conditions often refer to coherent

motion of individuals in crowds. Conversely, unstable point demonstrates large velocity

changes with respect to its spatially close neighbors.

Note that in most existing saliency detection work (Ali & Shah, 2007; Yan & Polle-
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feys, 2006), unstable points are regarded as outliers or noise in video sequences and thus

removed. Contrarily, in this chapter, it is believed that the key for dense crowd saliency

detection is to exploit these unstable points to infer salient regions. This is due in part to

the tendency of individuals to follow the dominant flow owing to the physical structure of

the scene, and the social conventions of the crowd dynamics. Accordingly, any deviation

in the motion dynamic of individuals from its close neighbours signifies abnormalities.

Given the eigenvalue, the stability of a point can be computed using Eq. 5.5. In

practice, τ should depend on the rate of change of the flow field, with a higher rate of

change of flow field resulting in smaller time scales and vice versa. In this study, τ is

fixed with 50 frames at 25fps.

φ
t =

1
| τ |

log
√

λ t(p) (5.5)

This is followed by transforming the low-level feature comprising the stability coef-

ficient, which in this study acts as an indicator of unstable motion, into global similarity

structure space. The stability map is computed by taking the difference between the sta-

bility of each point, i, with every other point, j, in the given scene:

st
i, j = φ

t
i −φ

t
j (5.6)

where si, j is the (i, j) element in the stability map denoted by S ∈ Rh×w, and h and w

represent the height and weight of the given frame.

5.2.2.2 Phase Shift Map

In order to uncover the collective flow of a dense crowd, one of the simplest way is

‘grouping’ points in the average velocity field, V , according to the phase similarity. Here,

it is anticipated that by connecting ‘grouped’ points with respect to the gradual changes

91

Univ
ers

ity
 of

 M
ala

ya



of the velocity phase, can facilitate in uncovering important motion characteristic of the

dense crowd.

The phase shift map is denoted by Θ ∈ Rh×w. Each element θ t
i, j ∈ Θ is obtained as

the phase difference of the mean flow vector between points:

θ
t
i, j = arccos

V t
i ·V

t
j∥∥∥V t

i

∥∥∥∥∥∥V t
j

∥∥∥ (5.7)

where the phase difference, θ t
i, j, between two points are measured by the shortest great-

circle distance, hence θ t
i, j is bounded by [0, π]. The process is repeated for all the points

in the average velocity field, V .

The rational of projecting the velocity phase to the global similarity structure is to

reveal the intrinsic relationship of each point, p, with the other points on the same video

sequence.

5.2.3 Saliency Detection by Manifold Ranking

In the following, steps to detect the salient motion regions within the crowd scene by

performing ranking on the intrinsic manifold (D. Zhou et al., 2004) are discussed. The

intrinsic manifold is uncovered by the global similarity feature maps, i.e. the stability and

phase shift maps.

For each video sequence, the set of data points R = {r1,r2, . . . ,rn}, is represented in

the form of a weighted k-nearest neighbors (kNN) undirected network graph G = 〈V,E〉

to model the relations among data points. Note that each data point, r = (st ,θ t)>, is

an integrated feature comprising the global similarity structure representation of scaled

stability and phase change, where st and θ t are scaled to [0,1]. Each vertex, υi, in the

graph represents a data point, ri. Two vertices are connected by an edge E weighted by a
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pairwise affinity matrix, Wi j, which is defined as follows:

Wi j = exp

(
−dist2(ri,r j)

σiσ j

)
(5.8)

where i 6= j and Wii = 0 to avoid self reinforcement during the manifold ranking (D. Zhou

et al., 2004). σi and σ j are the local scaling parameters (Zelnik-Manor & Perona, 2004).

The selection of σi is given as:

σi = dist(ri,rk) (5.9)

where rk is the k-th neighbor of data point ri. The distance metric, dist, denotes the

Euclidean distance. Given the affinity matrix, Wi j, the connected graph, G, can then be

represented using the normalized Laplacian matrix, L = D−
1
2WD−

1
2 (as shown in Figure

5.2e), where D is the diagonal matrix with Dii = ∑ j Wi j.

Assuming that the typical and uninteresting motions dominate a dense crowd scene,

thus, selecting a random set of m ‘query’ points, Q = {q1,q2, . . . ,qm} can capture the

dominant crowd behavior of the scene2. By performing ranking, extrema can be detected

as data points with the highest and lowest rank scores, deviating from the query points.

Such extrema in a video sequence suggest interesting regions caused by crowding, local

irregular motion and sources and sinks.

To detect the extrema, each query are labelled successively with a positive label +1.

Its label is then propagated to all other unlabeled instances, {ri}, of which their initial

labels are assigned as 0. More precisely, a rank score vector is computed for each query

2The selection of those random points can be repeated to generate more queries, accordingly. In this
study, m has been set to 100. Evaluation with varying query points generated consistent rank score.

93

Univ
ers

ity
 of

 M
ala

ya



Figure 5.3: Three-dimensional embedding of the global similarity structure obtained
using multi-dimensional scaling. The color of each point represents the ranking score,
where the extrema correspond to salient regions. Best viewed in color.

qi, individually, denoted as ci = (c1
i , ...,c

n
i )
>, via the normalized Laplacian matrix, L,

using the close form equation:

ci = (I−αL)−1y (5.10)

where I is an identity matrix and α is a scaling parameter in the range of [0,1]. The

vector y is the initial label assignment of data points, which is given as y = (y1, ...,yn)
>,

in which yi =+1 if ri = qi, and yi = 0 otherwise. Note that q j where j 6= i has initial label

assigned as 0 too. The same ranking process is repeated for all query points Q. The final

rank score vector, C, is the average of m rank score vectors, i.e. C = 1
m ∑

m
i=1 ci. Extrema

are data points with the highest and the lowest rank scores in C, as illustrated in Figure

5.3.

5.3 Experiments

In the following sections, the dataset used in the experiments, experimental setup and

saliency detection results on dense crowd scenes are discussed.
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5.3.1 Dataset

Evaluation on the proposed saliency detection framework are conducted on 22 benchmark

dataset of public dense crowd scenes obtained from Rodriguez, Sivic, et al. (2011), Loy

et al. (2012) and Solmaz et al. (2012). These dataset are diverse, where it consists of

dense crowd scenes in various scenarios, such as pilgrimage, marathon, station, rallies and

stadium. In addition, the sequences have different field of views, resolutions, and exhibit

a multitude of motion behaviors that cover both the obvious and subtle instabilities. To

evaluate the efficiency of the proposed framework in saliency detection, the ground truth

of dense crowd saliencies is manually annotated by exhaustive frame-wise examination

on the entire dataset. Examples of dense crowd scenes from the dataset and the respective

ground truth annotation (i.e. blue bounding boxes) are shown in Figure 5.4.

5.3.2 Experiment Settings

The proposed framework was developed in Matlab-r2013a environment. Experimental

evaluations are performed on a computer with 64-bit Microsoft Windows 7 operating

system with 3.40 GHz Intel(R) Core i7-3770 processor. In all these experiments, the time

instance, τ is set to be 50 frames at 25 frames per second.

5.3.3 Qualitative Analysis

The proposed framework is assessed in the application of dense crowd saliency detection.

Evaluations are conducted by benchmarking the proposed framework with conventional

approaches by Loy et al. (2012), Solmaz et al. (2012) and Ali and Shah (2007). Each

evaluation is compared against the benchmark dataset used in each respective approach.

The qualitative evaluation is divided into two assessments: instability detection and

local irregular motion detection.
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Figure 5.4: Example dense crowd sequences from the dataset on which experiments were
performed with the corresponding ground truth annotations (i.e. blue bounding box). The
sequences in the dataset consist of dense crowd in various scenarios, such as parades,
concerts and rallies. The saliencies (annotated by the blue bounding box) are areas in
dense crowd with high motion dynamic. Best viewed in color.

5.3.3.1 Instability Detection

A set of two sequences comprising a pilgrimage and marathon scenes were used to test

the capability of the proposed framework in detecting instability. Manual annotation of

saliencies in such dense crowd scenes is nontrivial given the high level of activities and

interactions among individuals. Moreover, as pointed out by Lim (2014), the salien-

cies / anomalies which lead to various dense crowd disasters are ambiguous in nature.

Therefore, following the studies by Loy et al. (2012) and Ali and Shah (2007), synthetic

instabilities are inserted into the two original video sequences to simulate unstable region.

The synthetic instabilities are as enclosed in the blue bounding box shown in Figure 5.5a

and red bounding box in Figure 5.6a. These instabilities are created by randomly posi-

96

Univ
ers

ity
 of

 M
ala

ya



tioning a bounding box within the dense crowd motion flow, and subsequently flipping

and rotating it to alter the flow at that location (Ali & Shah, 2007). The spatial positions

of these instabilities are noted to serve as the ground truth for experimental evaluations.

As shown in Figure 5.5 and Figure 5.6, the proposed approach is able to accurately

identify the regions injected with synthetic instability. This is analogous to approaches by

Loy et al. (2012) and Ali and Shah (2007). Additionally, the proposed approach is able to

identify other regions that exhibit high motion dynamics as highlighted by the colored re-

gions. On closer scrutiny, it is observed that these areas correspond to the exit and turning

point around the Kaaba in Figure 5.5. There is potential slowdown in the pace of indi-

viduals and shift of walking direction due to the structure of the environment and change

in the intensity of physical constrains between individuals in that region. Similarly, the

proposed approach is able to detect the sink region in the marathon sequence in Figure

5.6, where the crowd exit from the field of view. The fact that there are only a few pixels

per individual and high level of interaction among them makes such saliencies challeng-

ing even for human visual perception to notice. Nonetheless, the results demonstrate the

effectiveness of the global similarity structure in capturing the intrinsic structure of the

crowd motion for saliency detection.

To further evaluate the proposed method in dealing with inconsistent and subtle

crowd motion, the proposed approach and the benchmark approaches by Loy et al. (2012)

and Ali and Shah (2007) are tested on the original sequences of pilgrimage and marathon,

without any synthetic instability. The results in Figure 5.7 and Figure 5.8 show that ap-

proaches by Loy et al. (2012) and Ali and Shah (2007) do not have any detection for

these sequences. On the contrary, the proposed approach is capable of detecting the sink

region, as well as the potential overcrowding regions along the bridge’s edge. Note that

the results herein are consistent with the sequences with synthetic instability where the

proposed approach detects similar interesting regions. The results, again, show that subtle
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(a) Original image (with synthetic instability) (b) Proposed approach

(c) Loy et al. (2012) (d) Ali and Shah (2007)

Figure 5.5: Comparisons on the corrupted pilgrimage sequence, where synthetic insta-
bility was added to simulate unstable motion. Best viewed in color.

(a) Original image (with synthetic instability) (b) Proposed approach

(c) Loy et al. (2012) (d) Ali and Shah (2007)

Figure 5.6: Comparisons on the corrupted marathon sequence, where synthetic instability
was added to simulate unstable motion. Best viewed in color.
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(a) Original image (b) Proposed approach

(c) Loy et al. (2012) (d) Ali and Shah (2007)

Figure 5.7: Comparisons on the original pilgrimage sequence (without synthetic insta-
bility). Best viewed in color.

motion can be more effectively discovered by employing the global similarity structure

of the crowd motion rather than using the low-level flow field (Loy et al., 2012; Ali &

Shah, 2007).

5.3.3.2 Local Irregular Motion Detection

Another comparative comparison is performed between the proposed approach and Solmaz

et al. (2012) using the sequence obtained from an underground station as depicted in Fig-

ure 5.9. This sequence contains obvious source and sink regions, which are detected as

bottleneck and fountainhead in (Solmaz et al., 2012). The results demonstrate that the

proposed approach is able to detect similar regions as in (Solmaz et al., 2012), with the

addition of another source region at the bottom right of the scene, which is not detected by

Solmaz et al. (2012). Furthermore, the proposed approach is able to detect the irregular

motion of someone walking into the scene from the bottom left corner of the scene. This
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(a) Original image (b) Proposed approach

(c) Loy et al. (2012) (d) Ali and Shah (2007)

Figure 5.8: Comparisons on the original marathon sequence (without synthetic instabil-
ity). Best viewed in color.

is not the case in (Solmaz et al., 2012), where their detection does not highlight accu-

rately the location of the triggering event. It is worth pointing out that while the proposed

approach is able to detect salient/interesting motion dynamics, these saliencies are not

characterized into different categories.

Further evaluations are conducted to test the proposed approach on sequences with

local irregular motion caused by individuals moving against the dominant crowd flow

such as that shown in Fig. 5.10. This scenario is to mimic the Boston Marathon Person

Finder page3 launched by Google, which aims to identify individuals that seem suspi-

cious. Through the proposed global similarity structure of the dense crowd motion, the

proposed approach is able to detects such anomaly, as illustrated in Figure 5.10.

3Person Finder: Boston Marathon Explosions: https://google.org/personfinder/2013-boston-
explosions/
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(a) Original image (b) Solmaz et al. (2012)

(c) Proposed approach

Figure 5.9: Comparison with the state-of-the-art method by Solmaz et al. (2012) on the
station sequence. Best viewed in color.

(a) An individual walking across the scenes, when the rest of the crowd is seated.

(b) An individual maneuvering through a dense crowd.

Figure 5.10: Example detections on local irregular motion. The ground truth is enclosed
in the white bounding box in the first two columns. Saliency detection output from the
proposed approach is highlighted in the blue bounding box on the right column. (a)
Proposed approach detects an individual walking across the scene, while the rest of the
crowd is seated. (b) Proposed approach detects an individual maneuvering through a
dense crowd. Best viewed in color.

101

Univ
ers

ity
 of

 M
ala

ya



Table 5.1: Summary of the dense crowd saliency detection results.

Motion Category Total # # of # of Missed # of False
of Labelled Region Detection Detection Detection

Crowding 13 12 1 0
Sources & Sinks 19 14 5 0
Local Irregularity 43 47 2 6

5.3.4 Quantitative Analysis

As research on dense crowd saliency detection expand, public dataset start to gain im-

portance to meet the research requirement. Nonetheless, the comparative comparisons

and benchmark datasets developed are characteristically of its own. Most of the related

studies (Loy et al., 2012; Ali & Shah, 2007), merely provide qualitative results and the

implementations are not shared publicly; leading to difficulties in performing a compre-

hensive evaluation quantitatively. As such, for quantitative evaluation of the proposed

saliency detection approach, ground truth was obtained by exhaustive frame-wise exam-

ination. The regions with interesting motion dynamics are determined as per video basis

where the F-measure according to the score measurement of the well-known PASCAL

challenge (Everingham et al., 2010) is applied. That is, if the detected region overlaps

the ground truth region by more than 50 %, then the detection is considered as the correct

salient region. The propose approach are compared against the generated ground truth for

all the sequences on the public datasets.

For clarity, the detection results are presented according to the different interesting

motion categories, i.e. crowding, sources and sinks and local irregular motion, as shown

in Table 5.1. In general, the proposed approach is able to detect saliencies in dense crowd

scenes with only several false detections that are due to ambiguous local motion, i.e.

random hand waving motion in a crowded scene. Figure 5.11 shows additional output of

saliency detection on public dataset.
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Figure 5.11: Additional results of saliency detection on public dataset. Blue bounding
box: true positive (accurate detection). Red bounding box: false positive and false nega-
tive (inaccurate detection). Best viewed in color.

5.4 Summary

This chapter has presented a new approach for saliency detection in dense crowd scenes

by preserving pairwise similarity of motion features. In particular, low-level motion fea-

tures, i.e. stability and phase shift, extracted from dense crowd motion field are trans-

formed into global similarity structure, based on the similarity / difference between every

two points on the feature space. Experimental results on public dataset have shown that

the method is effective in detecting sources and sinks, crowding, and local irregular mo-

tions from various dense crowd scenes. Importantly, the proposed approach does not

require tracking of individuals in crowd. Consequently, as demonstrated through experi-

ments in this chapter, it can be applied to dense crowd scenes where inter-occlusions due

to the sheer number of individuals are apparent. Moreover, no prior information or model

learning is required to identify interesting / salient regions in the scene, since extrema in

the intrinsic manifold of motion dynamics is used as an indicator of saliency.

Though the global similarity structure representation allows the discovery of the in-

trinsic manifold of the motion dynamics, the basis of the proposed approach is optical

flow. Thus, it is confined by the drawback of optical flow which assumes brightness

constancy. Specifically, the underlying assumption is such that the intensities of objects
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remains fixed from one frame to the next. This assumption rarely holds true for real-

world scenes. Future investigation includes identifying low-level features that are robust

towards characterising motion in dense crowd scenes. In addition, it is acknowledged

that the subjectivity of saliency in dense crowd scenes poses considerable challenges for

ground truth annotation. This in turn led to difficulty to establish a benchmark dataset for

comparative comparison, both qualitatively and quantitatively. Nonetheless, the salien-

cies detected using the proposed approach can be a mean to support human in visual

surveillance of dense crowd scenes.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

This thesis has been devoted toward visual analysis of dense crowds using computer vi-

sion techniques. Specifically, the thesis addresses the three researches associated with

dense crowds: (1) localization of crowd segments in public scenes, (2) density estimation

in dense crowd scenes, and (3) detection of unusual events in crowded public scenes, to

assist human in improving dense crowd safety and security.

These research problems are nontrivial owing to the sheer number of individuals in

scenes, which lead to severe occlusions among individuals. Perspective distortion due

to camera orientation and position, as well as visual ambiguities further complicates the

problems, resulting in appearance variations of crowds. Moreover, the unpredictability

of unusual events and the elusive representation of abnormality in dense crowd scenes

remains an issue. As concluded in Chapter 2, the overview of the available literature

suggest that there is still a considerable scope to improve visual analysis of dense crowds.

6.1 Dense Crowd Segmentation

This thesis has presented an alternative approach to localize crowd segments in public

dense crowd scenes in Chapter 3. Specifically, a new approach has been proposed using

the concept and principles of granular computing (GrC) to simplify dense crowd scenes

into structurally meaningful atomic regions (i.e. granules) for dense crowd segmentation.

These granules are utilized to obviate the difficulty of segregating individuals in dense

crowd due to context variations of crowd, by enabling inference of crowd and background

regions based on local structures. The correlation among image granules at different lev-

els of granularity is exploited to alleviate the difficulty of defining the natural boundaries

between crowd and background (i.e. non-crowd) regions. These granules conformed to

the boundaries of crowd segments, thus have the advantage of being scene-independent.
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The proposed approach has shown superior performance as compared to existing tech-

niques in segmenting dense crowd regions on public and synthetic dense crowd scenes.

With regard to granular-based dense crowd segmentation, there are several possible

extensions. Despite the fact that the granules is effective in outlining boundaries between

crowd and background regions, the basis of granules are texture features on spatial do-

main. Thus, granulated views of different granularities are susceptible to illuminations

changes. Future investigation includes identifying features that are more robust toward

characterizing poor illuminated crowd scenes. Also, although the image-based approach

proposed in Chapter 3 allow separation between texture features of crowd and back-

ground, video-based approach has the advantage of temporal information. The video-

based crowd segmentation approach, generally, captures motions of crowd throughout

a sequence of images (Ali & Shah, 2007). The temporal information from video-based

method can, therefore, be utilized to complement the texture features used in the proposed

approach to enhance dense crowd segmentation.

6.2 Density Estimation

Extending from Chapter 3, this thesis demonstrated the importance of using granules

for density estimation in Chapter 4. Particularly, unlike existing techniques that uses

pixel-grid (Idrees et al., 2013; Marana et al., 1998), the proposed dense crowd density

estimation approach used granules that conform to natural outline of crowds. These gran-

ules serve as meaningful primitive regions to extract features for density estimation. The

features extracted are exploited to establish a direct mapping to the actual people count.

Experimental results have shown that the proposed strategy outperformed existing pixel-

grid based approach in estimating density of dense crowds.

In Chapter 2, the available density estimation literature suggests that most of the re-

search has been focused on scenes containing low density of people. Hence, research on
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dense crowd density estimation lacks standard dataset and performance framework for

benchmarking purposes. Thus, amongst the future work in this aspect is to collect a more

comprehensive dataset for benchmarking within the research community. However, it is

acknowledged that generating ground truth for evaluation involves manual annotations.

The annotation process can be costly and prone to human error. Another aspect for fur-

ther analysis is to include information of crowd motion dynamics as features to reduce

ambiguities of texture features while improving the accuracy of density estimation.

6.3 Saliency Detection

Apart from dense crowd segmentation and density estimation, this thesis also presents a

new approach for saliency detection in dense crowd scenes. The proposed approach de-

scribed in Chapter 5 transforms low-level features, i.e. stability and phase shift, extracted

from crowd motion field into a global similarity structure. This is to uncover intrinsic

manifold of crowd motion dynamic to facilitate the localization of salient regions. By per-

forming ranking on the global similarity structure, the experimental results have shown

that it can detect sources and sinks, crowding, and local irregular motions from various

dense crowd scenes. Importantly, this is achieved without the need of person tracking. As

demonstrated through experiments, the proposed approach can thus be applied on dense

crowd scenes where occlusions among individual in dense crowd is prominent. In ad-

dition, the proposed approach alleviate the need of prior information or model learning

to identify salient regions in scenes, since extrema in the intrinsic manifold of motion

dynamics from ranking is used as an indicator of saliency.

Whilst this work has demonstrated the effectiveness of using crowd motion dynamic

for saliency detection, the basis of the motion dynamic optical flow. It is, thus, confined

by the drawback of optical flow which assumes that the intensities of objects remains

fixed from one frame to another. Future analysis includes identifying low-level features
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that are robust towards characterizing motions in dense crowd scenes. As research on

saliency detection in dense crowd scenes expand, public dataset start to gain importance

to meet the research requirement. However, the comparative comparison and benchmark

datasets developed are characteristically of its own. This is predominantly due to the

subjectivity of the definition of saliency in dense crowd scenes, leading to difficulty to

summarize the evaluation protocol and performance comparison in this research field.

Thus, future extension includes preparing a comprehensive public dataset and a common

platform for performance comparison.

Current proposed approach focuses on analyzing regions in crowd with high mo-

tion dynamic to infer saliency. It would provide richer information of the scenes if

an algorithm could localize and analyze regions of sudden non-moving crowd as well.

This counter-intuitive approach is based on the notion that individuals or group that stop

abruptly are worthy of attention (Yi, Li, & Wang, 2015).

6.4 Summary

Visual analysis of dense crowds is nontrivial owing to the sheer number of individuals and

interactions among individuals in scenes. However, with the steady worldwide population

growth and continuing urbanization, research on visual analysis of dense crowds in the

field of computer vision has prospered, with the aim to assist human in visual analysis

task. At present, this field of research is still in its infancy stage and requires ongoing

research efforts. In an effort toward the development of dense crowd analysis research,

this thesis has presented several approaches that obviate the difficulty of segregating each

individual in analyzing dense crowds. Specifically, this thesis focuses on dense crowd

segmentation, density estimation and saliency detection, to achieve a collective analysis

of dense crowds.
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