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ABSTRACT 

A popular distribution for the modelling of discrete count data is the Poisson 

distribution. However, count data usually exhibit over dispersion or under dispersion 

when modelled by a Poisson distribution in empirical modelling. The presence of excess 

zeros is also closely related to over dispersion. Two new mixed Poisson distributions, 

namely a three-parameter Poisson-exponentiated Weibull distribution and a four-

parameter generalized Sichel distribution is introduced to model over dispersed, zero-

inflated and long-tailed count data. Some of the theoretical properties of the 

distributions are derived and the distributions' characteristics are studied. A Monte 

Carlo simulation technique is examined and employed to overcome the computational 

issues arising from the intractability of the probability mass function of some mixed 

Poisson distributions. For parameter estimation, the simulated annealing global 

optimization routine and an EM-algorithm type approach for maximum likelihood 

estimation are studied. Examples are provided to compare the proposed distributions 

with several other existing mixed Poisson models. Another approach to modelling count 

data is by examining the relationship between the counts of number of events which has 

occurred up to a fixed time t and the inter-arrival times between the events in a renewal 

process. A family of count distributions, which is able to model under- and over 

dispersion, is presented by considering the inverse Gaussian distribution, the 

convolution of two gamma distributions and a finite mixture of exponential distributions 

as the distribution of the inter-arrival times. The probability function of the counts is 

often complicated thus a method using numerical Laplace transform inversion for 

computing the probabilities and the renewal function is proposed. Parameter estimation 

with maximum likelihood estimation is considered with applications of the count 

distributions to under dispersed and over dispersed count data from the literature.  
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ABSTRAK 

Taburan Poisson merupakan suatu taburan yang popular untuk memodelkan data 

menghitung. Namun demikian, data menghitung biasanya memaparkan ciri di mana 

serakannya adalah melebihi atau kurang daripada apa yang dimodelkan oleh taburan 

Poisson. Kewujudan lebihan sifar juga adalah berkaitan dengan lebihan serakan ini. Dua 

taburan baru, iaitu taburan “Poisson-exponentiated Weibull” yang mempunyai tiga 

parameter dan taburan "generalized Sichel" yang mempunyai empat parameter 

dicadangkan untuk mengatasi masalah lebihan serakan, lebihan sifar dan ekor yang 

panjang. Sifat teoretikal dan ciri-ciri taburan baru ini dikaji. Suatu teknik simulasi 

Monte Carlo dikaji dan digunakan untuk mengatasi masalah perhitungan yang 

disebabkan oleh fungsi ketumpatan kebarangkalian taburan Poisson campuran yang 

hanya boleh ditulis dalam bentuk kamiran. Untuk tujuan anggaran parameter, rutin 

optimasi global "simulated annealing" dan pendekatan jenis "EM-algorithm" dikaji 

untuk anggaran "maximum likelihood". Contoh-contoh diberikan untuk 

membandingkan kesesuaian taburan baru ini untuk set data menghitung dengan taburan 

Poisson campuran yang lain. Pendekatan yang lain untuk memodelkan data menghitung 

adalah dengan mengkaji hubungan di antara bilangan kejadian yang telah berlaku 

sehingga suatu titik masa tetap t dengan jangka masa antara kejadian. Suatu famili 

taburan menghitung yang dapat memodelkan lebihan dan kurang serakan diperolehi 

apabila taburan "inverse Gaussian", konvolusi dua taburan gamma dan campuran 

taburan eksponensial digunakan sebagai taburan jangka masa antara kejadian. Fungsi 

kebarangkalian untuk data menghitung ini adalah rumit, maka satu kaedah yang 

menggunakan "numerical Laplace transform inversion" untuk menghitung 

kebarangkalian dan fungsi pembaharuan dicadangkan. Anggaran parameter melalui 

anggaran "maximum likelihood" dijalankan melalui aplikasi taburan-taburan tersebut 

dalam data menghitung lebihan dan kurang serakan.  
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CHAPTER 1: INTRODUCTION 

1.1 Distributions for Statistical Modelling of Discrete Count Data 

Discrete count data is encountered in many disciplines such as actuarial science, 

biology, computer science, engineering, linguistics, psychology, public health and 

sociology. Examples of applications of count data are the number of automobile 

insurance claims, citation counts and species abundance data. The binomial, Poisson 

and logarithmic distributions are some basic distributions for modelling discrete count 

data. 

The well-known single parameter Poisson model is one of the basic models for 

discrete count data with infinite support. The Poisson distribution has probability mass 

function (pmf) 

 
!

)Pr(
k

e
kX

k
   

for k = 0, 1, 2, ... and   > 0. The Poisson parameter   also corresponds to the mean of 

the Poisson distribution. The Poisson distribution has a distinct characteristic in that its  

variance is equal to its mean. This characteristic is also known as equidispersion. A 

common issue when applying the Poisson distribution to model observed count 

frequency data is a violation of this variance-mean equality. To measure departure from 

equidispersion, the index of dispersion or Fisher dispersion index which is defined as 

mean

variance
ID  is commonly used. An equidispersed distribution such as the Poisson 

distribution will have an ID of value 1. 

When the variance of the count data is larger than the mean, the index of dispersion 

is larger than 1 and the phenomenon is known as over dispersion. The presence of over 

dispersion can be attributed to, amongst others, unobserved heterogeneity in the data, 
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clustering and small sample size. Cox (1983) showed that when certain requirements are 

fulfilled for the target parameter, maximum likelihood estimation in a simple model 

retains high efficiency under modest amounts of over dispersion. Lindsey (1999) argued 

that in regression modelling, over dispersion is present only when "the deviance is at 

least twice the number of degrees of freedom" (p. 560). Nevertheless, unaccounted over 

dispersion may cause problems such as biased inference and inefficient estimation in 

statistical modelling. It is also possible to have under dispersion, i.e. the variance is 

smaller than the mean though this is less common than over dispersion. In the case of 

under dispersion, the Fisher dispersion index takes value 10  ID . 

A popular approach to model under dispersion or over dispersion is by generalizing 

or extending the Poisson distribution. Mixed Poisson models, which are constructed by 

allowing the Poisson parameter to be a random variable with an appropriate probability 

structure, are intended for modelling latent heterogeneity in the population. Mullahy 

(1997) showed that unobserved heterogeneity, commonly assumed to be the source of 

over dispersion in count data modelling, have certain implications for the probability 

structures of such models. Examples of mixed Poisson distributions are the negative 

binomial (Greenwood & Yule, 1920), Poisson-inverse Gaussian (Holla, 1967; Sankaran, 

1968) and the Delaporte distribution (Johnson, Kemp & Kotz, 2005). When over 

dispersion is present but there is no unobserved heterogeneity, one can consider other 

extensions to the Poisson distribution such as the generalized Poisson distribution 

defined by Consul and Jain (1973) and discussed in detail by Consul (1989), the double 

Poisson distribution proposed by Efron (1986), Poisson polynomial distribution 

(Cameron & Johansson, 1997), weighted versions of Poisson distributions (Castillo & 

Pérez-Casany, 2005) and the Conway-Maxwell-Poisson or COM-Poisson distribution 

(Conway & Maxwell, 1962; Shmueli, Minka, Kadane, Borle & Boatwright, 2005). Non-

Poissonian approaches include Charlier series distribution (Ong, 1988) and its various 
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generalizations (Ong, Chakraborty, Imoto & Shimizu, 2012), negative binomial mixture 

(Gómez-Déniz, Sarabia & Calderín-Ojeda, 2008), the Lagrangian Katz family of 

distributions (Gathy and Lefèvre, 2010) and non-parametric methods (Aitkin, 1996; 

1999). 

Over dispersion in observed count data is also closely related to presence of excess 

zeros. There are two types of zero counts that may occur in count data, i.e. structural 

zeros and sampling zeros. The difference between these two types of zeros can be 

clearly illustrated in an example from behavioural studies on alcohol abuse by He, 

Tang, Wang and Crits-Cristoph (2014). In a sample of observations on number of days 

that the subjects consumed alcohol in a study period, structural zeros are attributed to 

the existence of a subpopulation of subjects who does not drink alcohol at all, known as 

the non-risk group. Subjects who are at-risk (those who does consume alcohol) may still 

record a zero count response due to sampling and these zeros are known as sampling 

zeros. In some studies, it is necessary to distinguish between structural and sampling 

zeros in order to determine the different characteristics between the two groups. This is 

achieved by using a zero-inflated distribution (Johnson et al., 2005). Zero-inflated 

distributions split the zero counts into structural zeros and sampling zeros from a 

baseline distribution. If X is a random variable from the baseline distribution, its zero-

inflated random variable Y is defined as 

 )0Pr()1()0Pr(  XppY  

 Pr(Y = k) = (1- p)Pr(X = k), k = 1, 2, 3, …, 

where 0 < p <1. For example, the zero-inflated Poisson distribution is defined as 

 
 eppXP )1()0(
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!
)1()(

k

e
pkXP

k
 ,   k = 1, 2, 3, ...  . 

Another approach to address the structural and sampling zeros, with a subtle 

difference in interpretation, is by using a special case of the hurdle model first discussed 

by Mullahy (1986). A hurdle count data model with the hurdle at zero consists of a 

component which models the zero counts and another zero-truncated component 

distribution to model the nonzero observations. As such, the hurdle model interprets all 

the zero counts as structural zeros and the at-risk group is assumed to only produce 

nonzero positive counts. For example, Gurmu and Trivedi (1996) applied a hurdle 

model in modelling the number of recreational boating trips by a family in a year. If X is 

a random variable from the distribution of the nonzero counts, the probabilities of the 

random variable Y in a hurdle model are given as 

  )0Pr(Y  

 
)0Pr(1

)Pr()1(
)Pr(






Y

kX
kY


, k = 1, 2, 3, ... .  

In both of the approaches discussed, it is assumed that some (in the case of the zero-

inflated distribution) or all (the hurdle model) of the excess zeros and the nonzero 

counts are not from the same data-generating process. If this assumption is not true, then 

the use of a zero-inflated distribution or hurdle model is not necessary. It will be of 

interest then to consider other alternatives that are able to model excess zeros as well as 

over dispersion. 

In some disciplines such as computer science and linguistics, the observed count data 

may have a very long right tail. An example of long-tailed data is the number of 

citations for published journal articles (Zhu & Joe, 2009). A probability distribution is 
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said to have a very long tail if the individual probabilities only become very small after 

a certain large k. The skewness of a distribution or the limiting ratio 
)Pr(

)1Pr(
lim

kX

kX

k 




 

can be used to give an indication of the distribution's tail length. For the Poisson 

distribution, 
)Pr(

)1Pr(
lim

kX

kX

k 




 = 0, indicating that it has a short tail. Gupta and Ong 

(2005) have analysed the fit of some mixed Poisson distributions to model long-tailed 

count data. 

Another approach to model discrete count data is by looking at the dual relationship 

between the occurrence of an event and the inter-arrival times between the events in a 

stochastic process. A counting process is a stochastic point process }0),({ ttN  where 

N(t) represents the total number of events that have occurred by a fixed point in time t. 

The distribution of the event counts N(t) is closely related to the distribution of the inter-

arrival times between these events. Distributions that model the inter-arrival times are 

also known as duration models. A trivial example of this relationship is when the inter-

arrival times are exponentially distributed. Then the counting process is a Poisson 

process with intensity  )(t  with pmf 

 
!

)(
})(Pr{

n

te
ntN

nt 

 ,  n = 0, 1, 2, ... . 

The exponential distribution has a “memoryless” property due to its constant hazard 

function. Therefore, it is found to be inadequate in modelling duration data from many 

real applications. Continuous distributions with more flexible hazard functions such as 

the gamma and Weibull distributions are popular alternatives to the exponential 

distribution in duration analysis. Due to the interlinkage between event counts and the 

inter-arrival times (or duration) between events, it is then of interest to examine the 

count distributions arising from such non-exponential duration models. Research work 

Univ
ers

ity
 of

 M
ala

ya



6 

in this area is further motivated by the intimate connection between the dispersion of the 

count distribution and the hazard function of the underlying duration models 

(Winkelmann, 1995). For example, McShane, Adrian, Bradlow and Fader (2008) have 

derived a count distribution with Weibull duration. In the same paper, McShane et al. 

(2008) also discussed other advantages of using a non-exponential duration model, 

which includes the ability to model heterogeneity.  

1.2 Contributions of the Thesis 

Part of the work in this thesis is motivated by the fact that there are a number of 

count frequency data sets with very high zero counts and/or very long right tails which 

may not be adequately fitted by existing mixed Poisson models. In the preceding 

section, we also contemplated on the necessity of a zero-inflated Poisson or hurdle 

model when there is presence of excess zeros in the data. An important result by Shaked 

(1980), which is aptly named as the Two-Crossings Theorem states that when a 

distribution is from the exponential family, its density and the density of an arbitrary 

mixture of this distribution with the same mean must 'cross' each other twice, from 

above in the first time, then from below in the second time.  Based on this Two-

Crossings Theorem, a mixed Poisson distribution, relative to the Poisson distribution, 

has a higher probability for the zero count and a longer right tail.  This elevation of 

probability for zero counts and tail lengthening will vary according to the mixing 

distributions considered. As such, the choice of the mixing distribution is critical in 

order to obtain a distribution with high zero counts as well as a long right tail. We study 

and present two mixed Poisson distributions, namely the generalized Sichel distribution 

and the Poisson-exponentiated Weibull distribution. These two distributions are found 

to be more flexible and most importantly, fit better than other well-known mixed 

Poisson distributions when the count data has many zeros as well as a long tail. Since 

these distributions nest some well-known mixed Poisson distributions as special cases 

Univ
ers

ity
 of

 M
ala

ya



7 

we also eliminate the need for a piecewise treatment in empirical count data modelling. 

A paper based upon this work has been submitted for publication. 

We also address the computational hurdle encountered when evaluating the Poisson-

exponentiated Weibull probabilities since it has an intractable probability mass function 

by using a Monte Carlo simulation technique. This computation issue has previously 

hindered the applications of many potentially useful mixed Poisson distributions, a 

well-known example being the Poisson-lognormal distribution. Statistical inference 

procedures for the generalized Sichel and Poisson-exponentiated Weibull distributions 

are also discussed. Karlis (2005) advocated an Expectation-Maximization (EM) 

algorithm for maximum likelihood estimation in mixed Poisson distributions. We adapt 

this EM-type algorithm for maximum likelihood estimation for the Poisson-Weibull 

distribution in particular. The procedures discussed can be extended and generalized for 

other mixed Poisson distributions. A paper based on this work is in progress. 

Another motivation for the work in this thesis is the fact that in many real 

applications either the event count frequency data or the inter-arrival time between the 

event counts is recorded. The dual relationship between count distributions and their 

underlying duration models implies that given the knowledge of the count distribution, 

one can infer its underlying duration model, and vice versa. In econometrics, the inter-

arrival times is a more familiar concept but such data may not be readily available. 

Moreover, the inter-arrival times need not be exponentially distributed. If such is the 

case and the observed count frequency data is available, one can exploit the interlinkage 

between the count distributions and the duration models to infer on the inter-arrival 

times. We derive and present a family of count distributions with inter-arrival times 

distributed as the inverse Gaussian, convolution of two gamma distributions and finite 

mixture of two exponential distributions. Due to the flexibility of the duration models’ 
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hazard functions, this family of distributions is able to model both over dispersion and 

under dispersion. Part of this work has resulted in two papers: One paper has been 

published (Ong, Biswas, Peiris & Low, 2015) and another paper will be published in a 

conference proceedings. 

A major drawback in the applications of count distributions arising from non-

exponential duration models is the computational issues on the count probabilities. 

These issues are attributed to numerical overflow caused by the infinite series or special 

mathematical functions in the probability mass function. In regard to this, we apply an 

efficient numerical inverse Laplace transform method based on the algorithm by Abate 

and Whitt (1992) to facilitate the computation of the count probabilities. The accuracy 

of the method is studied and found to be satisfactory. Applications of the count 

distributions arising from non-exponential duration models and the computation method 

are exemplified by fitting the models with real data from the literature. A paper based 

upon this work has been prepared for submission. 

1.3 Organization of the Thesis 

Chapter 2 contains a literature review on modelling of over dispersed, under 

dispersed and zero-inflated count data. A brief literature survey on the relevant 

statistical inference methods used to obtain the main findings given in Chapters 3 to 6 in 

this thesis is also provided. 

The two new mixed Poisson distributions proposed in this thesis, namely the 

generalized Sichel distribution and Poisson-exponentiated Weibull distribution, are 

presented in Chapter 3. We study the shape of the distributions along with their 

characteristics in terms of skewness, length of tail and amount of zero-inflation. 
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Chapter 4 is concerned with the computation of probabilities and statistical inference 

for some mixed Poisson distributions. The expectation-maximization (EM) type 

algorithm for maximum likelihood estimation of mixed Poisson parameters is discussed. 

This chapter also contains a description of the hypothesis testing procedures for the two 

new mixed Poisson distributions discussed in Chapter 3. We show that the new mixed 

Poisson distributions give a superior fit to several real data sets selected from diverse 

fields in the literature.  

A family of count distributions arising from non-exponential duration models are 

presented in Chapter 5. Apart from the probability mass function of the distributions, 

their characteristic with respect to modelling dispersion is discussed. 

A major part of Chapter 6 is devoted to the numerical inverse Laplace transform 

method for computation of count probabilities arising from a renewal process with non-

exponential duration. We propose an easily implemented and efficient method to 

compute the probabilities of the counts and subsequently the renewal function (expected 

number of renewals), given the Laplace transform of the inter-arrival times density 

function. The application of this method is illustrated on some existing and new count 

distributions in this context, along with model fitting on over dispersed and under 

dispersed data sets from the literature. 

Finally, some concluding remarks are given in Chapter 7. An outline on future works 

is discussed at the end of this chapter. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Statistical Distributions for Modelling Dispersion and Zero-inflated 

Count Data 

The Poisson distribution is a benchmark model for modelling count data since it 

accounts for many inherent characteristics of count data such as positive skewness and 

zero counts. An exposition on the Poisson distribution and other univariate discrete 

distributions has been given by Johnson, Kemp and Kotz (2005). The Poisson 

assumption of equidispersion is often violated in observed count data, resulting in over 

dispersion or under dispersion. Solutions to overcome the presence of over dispersion or 

under dispersion include ad hoc methods, discretized continuous distributions, mixture 

models (for example, mixed Poisson models), generalizations of the birth and Poisson 

process, hurdle models, occurrence and duration dependent models. Kokonendji (2014) 

has presented a concise overview on count models for over dispersion and under 

dispersion. Some of these solutions are widely recognized in applied statistics. In their 

review on models for panel count data in insurance, Boucher and Guillén (2009) has 

discussed the use of mixed Poisson distributions, zero-inflated distributions and 

duration models.   

The ad hoc methods are approaches such as the quasi-likelihood function 

(Wedderburn, 1974), extended quasi-likelihood (Nelder & Pregibon, 1987), combining 

quasi-likelihood estimation with maximum likelihood estimation (Brooks, 1984), 

pseudo-likelihood method (Carroll & Ruppert, 1988), simple likelihood method 

(Moore, 1986) and Efron's (1986) double exponential family. These methods do not 

assume a proper distribution for the count data. 

In a mixed Poisson distribution, the Poisson parameter   is allowed to be a random 

variable having an appropriate probability structure. Mixed Poisson distributions are 
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always over dispersed relative to the simple Poisson distribution. The development of 

mixed Poisson distributions is closely linked to studies in accident-proneness and 

actuarial risk theory when accounting for different risk levels amongst individuals in an 

insurance portfolio. The earliest and simplest choice for the distribution of   is the 

gamma density, resulting in a negative binomial distribution introduced by Greenwood 

and Yule (1920). Negative binomial regression models have been applied in diverse 

fields such as immunology (Periwal, Spagna, Shahabi, Quiroz & Shroff, 2005). Gupta 

and Ong (2004) proposed a generalized negative binomial distribution which has been 

found to fit some data sets better than the negative binomial distribution. The Delaporte 

distribution is obtained when the Poisson parameter follows a three-parameter gamma 

distribution (Johnson et al., 2005). Another popular mixed Poisson distribution is the 

Sichel distribution (Sichel, 1971) which is also known as the Poisson-generalized 

inverse Gaussian distribution.  A special case of this distribution is the Poisson-inverse 

Gaussian (PIG) distribution (Holla, 1967; Sankaran, 1968). Hougaard, Lee and 

Whitmore (1997) considered the power variance mixture model, a large family of 

mixture distributions which includes the PIG as a special case. Kokonendji and Khoudar 

(2004) introduced the strict arcsine exponential dispersion model with pmf given as 
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where m is the mean and  /12  ,  > 0 being the parameter in the strict arcsine 

model introduced by Letac and Mora (1990). The function (.;.)A  is defined according 

to whether k is even or odd. Rigby, Stasinopoulos and Akantziliotou (2008) provided a 

general framework for the fitting of a family of mixed Poisson regression models by 

reparameterizing the mixing distributions to ensure that one of the parameters is always 

the mean of the mixed Poisson distribution. They also considered a Poisson-shifted 
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generalized inverse Gaussian distribution but it is not found to fit the data better. 

Gómez-Déniz, Sarabia and Calderín-Ojeda (2011) developed a new unimodal two-

parameter discrete distribution with a mode at zero count which is equally competitive 

with the negative binomial and PIG distribution in fitting over dispersed data in 

actuarial studies. The pmf of the distribution is given by 
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where  < 1, 0  and 10  . Karlis and Xekalaki (2005) and Nikoloulopoulos and 

Karlis (2008) have given a review on some properties of mixed Poisson distributions. 

Xekalaki (2014) has discussed about over dispersion and studied the Waring 

distribution and its generalizations for modelling over dispersed count data. By studying 

the properties of the factorial cumulant generating function, Jørgensen and Kokonendji 

(2016) have proposed a class of discrete factorial dispersion models which includes 

some of the mixed Poisson distributions. 

Gupta, Gupta, and Ong (2004) introduced the univariate and multivariate Poisson 

random effect models. In these models, the parameter   of the Poisson distribution is 

modified by either adding (additive model) or multiplying (multiplicative model) with 

an unobserved random effect  . In turn,   can be modelled by a probability 

distribution with density function )(g  such as the gamma distribution and the inverse 

Gaussian distribution. For the univariate additive model, the general pmf is defined as  
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whereas the general pmf for the univariate multiplicative model is given by 
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Cheng, Geedipally and Lord (2013) used a similar approach in developing the Poisson-

Weibull generalized linear model for accident crash data. 

Most generalizations of the Poisson distributions are able to accommodate both over 

dispersion and under dispersion. A well-known example is the generalized Poisson 

distribution proposed by Consul and Jain (1973) with pmf given as 
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such that )Pr( kX  = 0 for mk   if 021   k . It extends the Poisson distribution by 

including an additional parameter which can take positive, zero and negative values to 

account for over dispersion, equidispersion and under dispersion respectively. Castillo 

and Pérez-Casany (2005) considered a family of weighted versions of the Poisson 

distribution belonging to the exponential family. In general, a weighted Poisson 

distribution has pmf of the form  
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where w(k) is nonnegative and )]([ XwE  is the mean with respect to the distribution of 

X depending on  . Some w(k) considered in the literature are )](exp[)( krtkw   

(Castillo & Pérez-Casany, 2005), |]|exp[)(  krkw  (Ridout & Besbeas, 2004) and 
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Shmueli, Minka, Kadane, Borle and Boatwright (2005) have studied the statistical 

and probabilistic properties of the Conway-Maxwell-Poisson (COM-Poisson) 

distribution which is introduced by Conway and Maxwell (1962). The COM-Poisson 

pmf can be treated as a weighted Poisson distribution since its pmf is defined as 
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  for  > 0 and   0. Lord, Guikema, and Geedipally (2008) 

applied the COM-Poisson generalized linear model on accident data and found that the 

model performs equally well as compared to the negative binomial model. Sáez-Castillo 

and Conde-Sánchez (2013) proposed a regression model based on the hyper-Poisson 

distribution (Bardwell and Crow, 1964) as an alternative to the COM-Poisson and 

Poisson-Polynomial regression models. 

Some researchers have taken a non-Poissonian approach in modelling under 

dispersion and/or over dispersion. For example, Jain and Consul (1971) proposed the 

generalized negative binomial distribution 
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where 10  , 1||  , n > 0 such that Pr(X = k) = 0 for mk  if mn  < 0. This 

generalized distribution nests the binomial and negative binomial distributions as 

special cases. Gómez-Déniz, Sarabia and Calderín-Ojeda (2008) proposed a negative 

binomial-inverse Gaussian distribution which is obtained by mixing one of the 

parameters in the negative binomial distribution with the inverse Gaussian distribution. 

Rodríguez-Avi, Conde-Sánchez, Sáez-Castillo, Olmo-Jiménez and Martínez-Rodríguez 
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(2009) developed a regression model based on the generalized Waring distribution 

(Irwin, 1968; Xekalaki, 1983), which is an extension of the negative binomial model 

and applied in accident theory. They compared its model fit with the negative binomial 

regression model. 

2.1.1 Excess Zeros 

Over dispersion is also closely related to the presence of excess zeros in the data. We 

say that there are excess zeros when the observed frequency of zero counts is 

significantly higher than the expected frequency predicted by an assumed model. 

Ridout, Demétrio and Hinde (1998) have given a review on the methods for modelling 

count data with excess zeros.  

A natural model for the presence of excess zeros is the zero-inflated model. The pmf 

of a zero-inflated distribution has been given in Chapter 1. The zero-inflated model can 

be interpreted as a model for a mixture of two populations, and the zeros from the 

degenerate-at-zero distribution are known as structural zeros whereas those from the 

simple baseline model are sampling zeros. An example of a zero-inflated model is the 

zero inflated Poisson (ZIP) model, which can be considered as an extension of the 

simple Poisson distribution. The ZIP model has been used in regression modelling by 

Lambert (1992) in manufacturing, Böhning, Dietz, Schlattmann, Mendonca and 

Kirchner (1999) in dental epidemiology, Dalrymple, Hudson and Ford (2003) in a study 

on sudden infant death syndrome and Hall (2000) on horticulture data. Li et al. (1999) 

considered multivariate version of the ZIP models and found the models to be 

satisfactory in fitting real life data on manufacturing. 

If count data exhibit both excess zero counts and over dispersion, the zero-inflated 

negative binomial (ZINB) distribution (Heilbron, 1994) will be more appropriate as a 

model. Jansakul and Hinde (2009) have derived a score test statistic for testing the NB 
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against ZINB in regression modelling. Applications of the ZINB regression model can 

be found in the work by Yau, Wang and Lee (2003), Yip and Yau (2005), Trocóniz, 

Plan, Miller, & Karlsson (2009) and Ullah, Finch and Day (2010). Ridout, Hinde and 

Demétrio (2001) proposed a score test for testing the ZIP against ZINB alternatives and 

provided examples for cases with and without covariates. Phang and Ong (2006) 

proposed a zero-inflated inverse trinomial distribution as an alternative model to 

accommodate over dispersion and excessive zero counts in count data. 

Through a series of simulation studies, Perumean-Chaney, Morgan, McDowall and 

Aban (2013) conceded that the zero-inflated distributions are necessary in modelling 

over dispersion and excess zeros. Of importance in this simulation study is that the data 

are generated from a zero-inflated distribution, thus the need exists to account for the 

two types of zeros is prevalent.  

Gupta, Gupta and Tripathi (1996) introduced the zero adjusted generalized Poisson 

distribution where the possibility of zero-deflation, that is, the number of zeros is fewer 

than expected, is included.  

2.1.2 Long-tailed distributions 

Over dispersion is also related to the tail length of a discrete count data set. Classic 

examples of over dispersed and long-tailed data are the number of absenteeism among 

shift-workers (Arbous & Sichel, 1954), the distribution of Corbet’s Malayan butterfly 

with zeros (Bulmer, 1974) and fish species abundance data (Stein & Juritz, 1988). Ong 

and Muthaloo (1995) derived the modified Bessel function distribution of the third kind 

mixed Poisson (BF3-P) distribution for modelling very long-tailed data. Gupta and Ong 

(2005) pointed out that in a mixed Poisson distribution, careful consideration should be 

given to the choice of the mixing distribution in order to obtain a distribution with a 

longer tail than the negative binomial distribution. They analysed the fit of some mixed 
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Poisson distributions on long-tailed count data. Zhu and Joe (2009) derived a 

generalized Poisson inverse Gaussian family which is able to model long-tailed data, 

but computation of its probabilities require a recursion approach.  

2.1.3 Count Distributions arising from Non-exponential Duration in a Renewal 

Process 

In Chapter 1, we have briefly discussed the duality between event counts and inter-

arrival times between the events in a stochastic process. Consequently, the modelling of 

count data can also be examined from the perspective of the duration between events, 

whereby the occurrence of an event leads to a count. When the sequence of inter-arrival 

times is independent and identically distributed, this is a special case known as a 

renewal process. A concise introduction to the theory of renewal processes and their 

basic properties can be found in the monograph by Cox (1962). 

The hazard function is defined as 
)(1

)(
)(

xF

xf
xh


  where )(xf  and )(xF  are the 

density function and cumulative distribution function of X respectively. A distribution is 

said to display negative duration dependence when 0
)(


dx

xdh
 and positive duration 

dependence when 0
)(


dx

xdh
. If the hazard function is monotonic, a direct relationship 

between the distribution’s hazard function and its coefficient of variation can be 

established. Winkelmann (1995) has shown an important relationship between the 

behaviour of the duration model’s hazard function and the dispersion of the count 

distribution in an underlying stochastic process. Duration models with increasing hazard 

function lead to under dispersed count distribution. On the other hand, duration models 

with a decreasing hazard function result in an over dispersed count distribution. 

Consequently, researchers have looked into count distributions arising from several 
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non-exponential duration models. For example, Winkelmann (1995) has studied the 

Erlangian and gamma count distributions whilst McShane, Adrian, Bradlow and Fader 

(2008) have derived the Weibull count distribution for modelling under- and over 

dispersed count data. Lee (1996) has asserted the significance of this relationship and 

consequently developed a simulated likelihood approach based on the inter-arrival times 

for estimation of count data regression models. In the field of medical statistics, Lindsey 

(1998) has pointed out the importance of recording duration between events, such as 

bone fractures, as well as the frequency of the events due to presence of other factors 

such as switching treatments during the time period concerned. Zeviani, Ribeiro Jr., 

Bonat, Shimakura and Muniz (2014) applied the gamma count distribution in the 

context of regression modelling of under dispersed experimental data. 

2.2 Statistical Inference 

In this section, we provide a review on the statistical inference procedures used in the 

work for this thesis. 

2.2.1 Maximum Likelihood Estimation 

There are many parameter estimation methods for discrete distributions, for example, 

method of moments, M-estimation and minimum divergence estimation. One of the 

most popular methods is maximum likelihood (ML) estimation. Under regularity 

conditions, an ML estimator has many desirable properties such as efficiency, 

consistency and asymptotic normality. Moreover, an ML estimate is invariant under 

parameter transformation. Statistical properties of ML estimators are discussed by 

Casella and Berger (2002). ML estimation for discrete count distributions is performed 

as follows: Suppose X is a discrete count random variable which takes values k = 0, 1, 2, 

3, …, with probability )Pr( kX  . If the sample of interest consists of n independent 
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and identically distributed (iid) observations nxxx ,...,, 21  with unknown probability 

function, the likelihood function of the sample is 
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where kf  denotes the frequency of count k and T

m ),...,,( 21 ω  the vector of  

unknown parameters for the assumed distribution and mω . Most of the time it 

is easier to work with the log-likelihood function instead, which is defined as 
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An ML estimator of ω  is the point at which ),...,,|( 21 nxxxL ω  attains its maximum as a 

function of the parameters for the given sample. ML estimation determines the 

estimates of the unknown parameters by maximizing the sample’s (log)-likelihood 

function. Therefore, ML estimates are defined as 

 ),...,,|(logmaxarg)ˆ,...,ˆ,ˆ(ˆ
2121 n

T

m xxxL ωω ω  . 

The ML estimate is unique (provided it exists) if the parameter space   is convex and 

if the likelihood function is strictly concave in ω . 

The first derivative of the log-likelihood function (also known as Fisher’s score 

function) is defined as 
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ω
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From this definition, the score vector )(ωU is simply the vector of first derivatives, 

taken with respect to the respective parameters of the assumed distribution.  
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The main task in ML estimation is to actually find the global maximum of the log-

likelihood function. If the log-likelihood function is concave, the ML estimator can be 

found by setting Fisher's score function as being equal to zero. In a multiparameter 

setting, this may involve solving systems of nonlinear equations. In general, the log-

likelihood may not possess such desirable properties and solving for Fisher’s score 

function may not guarantee a global maximum. In practice, the log-likelihood function 

may even be too complicated or intractable to be solved analytically. To overcome the 

problem of finding the global maximum in such cases, direct maximization or a 

numerical optimization method is used to obtain the ML estimates. When using a 

numerical optimization method, one has to ensure that the algorithm converges to a 

global and not local maximum of the log-likelihood function. Two effective algorithms, 

namely the simulated annealing and the Expectation-Maximization algorithm, are used 

for the work in this thesis and are reviewed in the subsequent sections. 

When regularity conditions are fulfilled, ML estimators are asymptotically normally 

distributed. Therefore, the variance and covariance of an ML estimate can be estimated 

by the corresponding elements in the inverse of the Fisher information matrix evaluated 

at the ML estimates. The Fisher information matrix is the matrix of second derivatives 

with its (i, j)-th element defined as 
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Consequently, the standard errors of the ML estimates are taken to be the square roots 

of the diagonal elements of 
1)ˆ( 

ωI . In the event that the expected information matrix is 

intractable, one can instead use the observed information matrix 
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The observed information matrix is simply the negative of the matrix of second 

derivatives (the Hessian matrix) of the log-likelihood. Efron and Hinkley (1978) 

advocated the use of the observed information matrix in place of the expected 

information matrix. When the derivatives cannot be obtained analytically, finite 

difference methods can be used to approximate the derivatives in the Hessian matrix.  

 If the sample size is small, standard errors of the ML estimates may be estimated 

using bootstrap methods (Efron, 1981). 

2.2.2 Simulated Annealing 

Simulated annealing (Kirkpatrick, Gelatt & Vecchi, 1983; Corana, Marchesi, Martini 

& Ridella, 1987) is a very robust algorithm for finding the global maximum of a 

function. The use of numerical optimization in the maximum likelihood problem must 

proceed with care to avoid undesirable outcomes such as slow or even non-convergence 

and inability to cope with difficult functions with ridges and plateaus. Although the use 

of different starting values may resolve some of these problems, there are still 

uncertainties at stake. On the other hand, the simulated annealing algorithm has been 

found to work well even in high-dimensional, non-quadratic and non-smooth log-

likelihood functions with many local maxima (Goffe, Ferrier & Rogers, 1994).  

The concept of the simulated annealing algorithm originates from the cooling of 

molten metal in thermodynamics. Annealing means ‘slow cooling’. In the cooling 

process of molten metal, random fluctuations in energy allows the metal’s energy state 

to escape local minima to achieve the global minimum. Simulated annealing works by 

drawing parallels between minimizing a function and the metal’s annealing system. In 
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the maximum likelihood problem, the algorithm works by exploring the entire surface 

of the negative of the sample’s log-likelihood function and searches for the optimum 

value while moving both uphill and downhill. Consequently, it is independent of 

starting values and is able to move out of local maxima to achieve the global maximum.  

Critical starting parameters of the simulated annealing algorithm are the initial 

temperature, the starting vector of parameters and the step length for the vector of 

parameters. The algorithm starts by moving with large step lengths to get an overview 

of the log-likelihood function’s surface. As the temperature and step length decreases, it 

will then gradually focuses on the most possible area for the global maximum and at the 

same time taking downhill moves to escape local maxima. The only drawback to this 

algorithm is in its longer execution time. Corana et al. (1987) has recommended some 

input values for the algorithm’s parameters. Building upon this recommendation, a 

strategy to optimize the algorithm’s performance by selecting appropriate parameter 

inputs is given by Goffe et al. (1994). 

2.2.3 Expectation-Maximization (EM) Algorithm 

The Expectation-Maximization (EM) algorithm is an iterative algorithm first 

introduced by Dempster, Laird and Rubin (1977) for ML estimation when the 

observations are seen as incomplete data. The iterative algorithm derives its name from 

the two steps involved in each of the iterations, namely an expectation step followed by 

a maximization step. In using this approach, one formulates the problem by first 

visualizing that there exists two sample spaces Y and X and a many-to-one mapping 

from X to Y. The observed data points y are a realization from Y. The corresponding x 

from X, referred to as the complete data (though it can actually be the parameters), 

cannot be observed directly and must be inferred from y. The relationship between the 

complete-data specification and the incomplete-data specification is given by 
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where )|( φxf  is a family of sampling densities depending on parameters φ  and 

)|( φyg  are its corresponding family of sampling densities. Given the observed data 

points y, EM algorithm maximizes )|( φyg  with respect to φ , through the associated 

family )|( φxf . In general, the EM algorithm proceeds as follows (Dempster et al., 

1977). 

Define the function ],|)'|([log)|'( φyφxφφ fEQ  . At the k-th iteration of the 

algorithm: 

E-step: Compute the ],|)|([log)|( )()( kk fEQ φyφxφφ  . 

M-step: Compute 
)1( k

φ  by maximizing the function )|( )(kQ φφ .  

The iterations are terminated by a pre-determined stopping criterion such as one 

based on the relative change of the log-likelihood functions. Stochastic versions of the 

EM algorithm such as stochastic EM (Celeux & Diebolt, 1985) and Monte Carlo EM 

(Wei & Tanner, 1990) are introduced when the computation in the E-step is intractable. 

Celeux, Chauveau and Diebolt (1995) have examined the characteristics and 

relationships of these variants of the EM algorithm. On the other hand, modifications to 

an intractable M-step can be made through the introduction of a numerical optimization 

method, resulting in the ECM algorithm (Meng & Rubin, 1993), amongst others. 

The attractiveness of the EM algorithm and its variants for ML estimation has 

resulted in it being adapted and applied in various contexts. For example, Chan and 

Ledolter (1995) on time series models involving counts, McLachlan (1997) on 

modifications to generalized linear models for handling over dispersed count data, 
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Balakrishnan and Pal (2012) for cure rate models and so on. Other than finding ML 

estimates, the EM algorithm also provides useful by-products such as posterior 

expectations for predicting future outcomes in mixed Poisson regression models (Karlis, 

2001) and observed information matrix (Louis, 1982). 

There are some limitations when using the EM algorithm in ML estimation. Karlis 

and Xekalaki (2003) highlighted some of these issues, such as the algorithm’s high 

dependency on starting values, suitability of the stopping criterion, slow convergence 

and convergence to local instead of global optimum. There are many research work 

dedicated to improving the EM algorithm, for example Louis (1982), Jank (2005), 

Lange (1985) and so on. 

2.2.4 Goodness-of-fit 

The most common procedure for testing distributional assumptions in the discrete 

case is the chi-square goodness-of-fit test introduced by Pearson (1900). The hypotheses 

for this test could be formulated as: 

0H : The data follow a specified distribution with m parameters. 

AH : The data do not follow a specified distribution with m parameters. 

This chi-square goodness-of-fit test is independent of the form of the distribution 

being tested. Using this goodness-of-fit test on discrete count data, observed values are 

divided into t mutually exclusive and exhaustive classes. For each class i = 1, 2, …, t, 

the observed frequency iO  is compared to the expected frequency iE  under 0H . The 

resulting test statistic is defined as 
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The test statistic has an approximate chi-square distribution with t – 1 – m degrees of 

freedom. A conservative rule for this approximate distribution to be applicable is to 

ensure that each iE  is at least 5. Based on a power study of the test, Cochran (1954) 

relaxed this condition by recommending the iE ’s to be at least 1. The test statistic 

quantifies the difference between the observed frequency and the frequency that should 

be observed under the specified distribution. Therefore, intuitively the larger the test 

statistic, the poorer is the fit of the specified distribution.  

2.2.5 Model Selection 

In empirical modelling, the Akaike information criterion (AIC) (Akaike, 1974) and 

Bayes’ information criterion (BIC) (Schwarz, 1978) are commonly used to determine 

the best amongst competing candidate models in approximating the unknown true 

model. Based on the idea of the Kullback-Leibler distance between the "true model" and 

a candidate model and its maximized log-likelihood function, the AIC is defined as 

 mxxxL n 2)),...,,|ˆ(log(2AIC 21  ω ,  

where m is the number of estimable parameters in the maximum likelihood estimation 

for the model. The AIC penalizes models with more parameters, in line with the concept 

of parsimony. 

A small-sample variant of AIC, known as AICc is studied by Hurvich and Tsai 

(1989) and can be written as 

 
1

)1(2
AICAIC






mn

mm
c ,  

where n is sample size. In determining which criterion to be used, Burnham and 

Anderson (2004) recommended the use of AICc when the ratio n/m is less than 40, using 
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the value of m from the highest-dimensioned model. The use of either AIC or AICc 

must be consistent in the analysis. In choosing between the competing models, only a 

difference in AIC or AICc values of more than 5 is to be considered as substantial 

(Burnham & Anderson, 2004). 

On the other hand, for a model with sample size n the BIC is calculated as 

 )log()),...,,|ˆ(log(2BIC 21 nmxxxL n  ω .  

The BIC is more sensitive towards the model's dimension especially when the 

sample size is large. The model with the smallest AIC or BIC value is selected as the 

best model as it is interpreted as one that is "closest" to the unknown true model which 

generated the data. 

In the event that all the competing models are far from the unknown true model, an 

alternative is to use Takeuchi's information criterion (TIC) (Takeuchi, 1976) if the 

sample size is quite large. The TIC is computed as 

 ))ˆ()ˆ((tr2)),...,,|ˆ(log(2TIC 1

21

 ωIωUω nxxxL ,  

where )(ωU and )(ωI  are the first and second mixed partial derivatives of the log-

likelihood function, respectively. Reliable estimation of the elements in these matrices 

is crucial but difficult especially when the model is of high dimension, unless the 

sample size is very large. Due to the possible estimation error of the two matrices, 

unless the sample size is very large, the use of TIC is not advocated (Burnham & 

Anderson, 2002).  
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2.2.6 Hypothesis Testing 

Hypothesis testing involves the problem of deciding which of the two hypotheses 

denoted by 0H  the null hypothesis and AH  the alternative hypothesis is true. The 

hypotheses are statements regarding the value or values taken by a population parameter 

or parameter vector. For the work in this thesis, the models in 0H  and AH  are nested. 

The model represented by 0H  is the more restrictive model that can be derived as a 

special case of the model represented by AH . In this case, three well-known procedures 

for hypothesis testing are the likelihood ratio test (Neyman & Pearson, 1928), Rao’s 

score test (Rao, 1948) and Wald test (Wald, 1943). All three tests are asymptotically 

equivalent but only the likelihood ratio test and score test are invariant under 

transformation of the parameters. Buse (1982) gives a concise account on these three 

tests and some of their properties. For the work in this thesis, we use the likelihood ratio 

test and the score test for hypothesis testing.  

The likelihood ratio test statistic is constructed by using a ratio of likelihood 

functions. The log-likelihood function equivalent of the test statistic is defined 

 ))],...,,|ˆ(log()),...,,|ˆ([log(2 21021 nnLR xxxLxxxLT ωω  ,  

where ω̂  and 0ω̂  are the vector of ML estimates evaluated at the alternative hypothesis 

and null hypothesis, respectively. In this special case, LRT  is asymptotically chi-square 

distributed with 1 degree of freedom. When the parameter of interest lies on the 

boundary of the parameter space under the null hypothesis, the distribution of LRT  is a 

mixture of the chi-square distribution and a distribution degenerate at zero (Self & 

Liang, 1987). 
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Rao’s score test is also known as the Lagrange Multiplier test in econometrics. An 

extensive explanation on the score test can be found in the monograph by Cox and 

Hinkley (1974). Rao (2005) has given a historical review and some recent developments 

on the score test. The score test has the advantage of requiring only the estimates of the 

parameters under the null hypothesis, which are often simpler or require less time to 

compute. The score test statistic is defined as 

 )ˆ()ˆ()ˆ( 00

1

0 ωUωIωU
 T

RST , 

where 0ω̂  is the vector of maximum likelihood estimates under the null hypothesis. The 

score test statistic RST is also asymptotically chi-square distributed with 1 degree of 

freedom. One could also use the observed information matrix 

















ji

L



log
)(

2

ωJ  in 

place of the Fisher information matrix but Morgan, Palmer and Ridout (2007) cautioned 

on obtaining a negative score test statistic. Freedman (2007) suggested computing the 

information matrix using the unrestricted ML estimates to ensure the consistency of the 

score test statistic. Authors in the literature have used both forms. Broek (1995) used the 

expected Fisher information matrix to compute the score test statistic for testing zero-

inflation while Atkinson and Yeh (1982) used the observed information matrix in their 

test for the significance of the Sichel distribution’s additional parameter. Gupta, Gupta 

and Tripathi (2005) used the expected Fisher information except for one of the elements 

in the matrix, whereby the computation is not feasible hence the expectation operator 

was omitted.  
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CHAPTER 3: SOME MIXED POISSON DISTRIBUTIONS 

3.1 Introduction 

Observed data in empirical modelling is often over dispersed, violating the Poisson 

distribution’s assumption of equidispersion. One of the solutions to model over 

dispersion is by use of mixed Poisson distributions. A mixed Poisson distribution is 

constructed by taking the Poisson parameter   to be a random variable with an 

appropriate probability structure. In this context, the distribution of   is known as the 

mixing distribution. This approach accounts for unobserved heterogeneity in the 

population, which has been identified as one of the causes of over dispersion. 

The Poisson-generalized inverse Gaussian (PGIG) or Sichel distribution (Sichel, 

1971) is a popular mixed Poisson distribution obtained when   is a generalized inverse 

Gaussian (GIG) random variable. The Sichel distribution is a long-tailed distribution 

that is found to be suitable for highly skewed data and it has been used, amongst others, 

to model insurance claim counts, protein abundance, word frequency in a text and 

consumer purchase behaviour. Based on Shaked’s (Shaked, 1980) Two-Crossings 

Theorem, a mixed Poisson distribution, relative to the Poisson distribution, has a higher 

probability for the zero count and a longer right tail. Willmot (1990) highlighted 

similarities between the right tail of the mixing distribution and that of the resulting 

mixed Poisson distribution. With these points in mind, in this chapter we derive a new 

mixed Poisson distribution by considering the extended generalized inverse Gaussian 

(EGIG) distribution as the mixing distribution. We name this new distribution as the 

generalized Sichel distribution. The EGIG distribution is derived by Jørgensen (1982) as 

a power transformation of the GIG random variable. As such, the EGIG distribution is 

more versatile with one additional parameter than the GIG distribution. Gupta and Viles 

(2011) has shown that this flexible distribution for analysing lifetime data is able to fit 

some data sets better than the GIG distribution. Statistical inferences of the EGIG 
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distribution such as parameter estimation with maximum likelihood estimation and 

hypothesis testing have been studied by Gupta and Viles (2011). The generalized Sichel 

distribution inherits the versatility of its mixing distribution and we show that this new 

mixed Poisson distribution is able to model over dispersed, zero-inflated and long-tailed 

count data sets through applications with simulated and real data sets. This generalized 

Sichel distribution nests the negative binomial (NB), Poisson-inverse Gaussian (PIG) 

and Sichel distributions as special cases. This is a useful feature in empirical modelling 

because the generalized Sichel distribution eliminates the need of piecewise treatment 

when fitting a data set that is believed to have the NB, PIG or Sichel distribution.  

Recently, Cheng, Geedipally and Lord (2013) proposed the Poisson-Weibull 

generalized linear model in the modelling of automobile crash count data. Although a 

regression model is appealing in that it is able to incorporate explanatory variables, a 

simple empirical model can be useful to describe the observed count data when such 

explanatory variables are unclear or yet to be determined. A similar point of view is 

given by Ridout and Besbeas (2004). In this chapter, we also examine the mixed 

Poisson-exponentiated Weibull distribution as an extension to the Poisson-Weibull 

distribution for modelling over dispersed discrete count data without covariates. There 

is a wealth of literature on extensions to the Weibull distribution. One of them is the 

exponentiated Weibull distribution proposed by Mudholkar, Srivastava and Freimer 

(1995). The exponentiated Weibull distribution is a generalization of the Weibull family 

and nests the exponential, exponentiated exponential and Weibull distributions.  

The remaining of this chapter is organized as follows. In the next section, we give a 

survey on the existing literature on mixed Poisson distributions. The generalized Sichel 

distribution and Poisson-exponentiated Weibull distribution are presented in subsequent 

sections. In Section 3.5, the flexibility of the shape of the proposed distributions is 
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illustrated through their probability plots. We also examine the characteristics of the 

distributions with respect to the dispersion, zero-inflation and the third central moment 

inflation indices in Section 3.6. Finally, concluding remarks are given in Section 3.7. 

3.2 Literature Review 

In the existing literature on mixed Poisson distributions, various authors have 

proposed different candidate distributions as the mixing distribution. One of the earliest 

papers is by Greenwood and Yule (1920) who used the gamma distribution as the 

mixing distribution, resulting in the well-known negative binomial (NB) distribution. 

The pmf of the NB distribution is   
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for k = 0, 1, 2, ..., and  ,   > 0. With only two parameters and a closed form 

expression for its pmf, the NB distribution is relatively simple and widely used in 

modelling over dispersed count data. Both the Poisson and NB distributions belong to 

the natural exponential family with quadratic variance functions, which enjoy many 

useful properties (Morris, 1982). Lawless (1987) did a study on the statistical inference 

of the NB regression model using the multiplicative random effects approach. 

When the mixing distribution is the inverse Gaussian distribution, the resulting 

Poisson mixture is known as the Poisson-inverse Gaussian (PIG) distribution. This 

distribution is proposed by Holla (1967) and Sankaran (1968), independently. The pmf 

of the PIG distribution is given as 
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for k = 0, 1, 2, ..., and  > 0, 10   and )(zK  is the modified Bessel function of the 

third kind with index  . This distribution has been found to be useful in modelling 

long-tailed data such as species abundance data (Ord & Whitmore, 1986) and insurance 

claim data (Tremblay, 1992). Shaban (1981) provided a recurrence relation for PIG 

probabilities to increase the computation speed and efficiency. However, this 

approximation is in general very poor for large k. In view of this, Ong (1998) has re-

written the PIG distribution in terms of a mixed Poisson distribution with the inverted 

gamma as mixing distribution and showed that the approximation improves with large 

counts, hence providing a better approximation for the tail probabilities. Ong (1998) 

also gave the Taylor expansion for the PIG probability function, based on the results 

found in Ong (1995). Generally, Ong's (1998) Taylor expansion method may be applied 

for any mixed Poisson distribution. Sankaran (1968) used the method of moments 

estimation when fitting the distribution to European corn beans data and showed that the 

PIG model fits better than the Hermite distribution. Jørgensen (1987), Stein and Juritz 

(1988) and Dean, Lawless and Willmot (1989) independently studied the PIG regression 

model, each using different approaches with their own advantages.  

The three-parameter Sichel distribution is an extension of the two-parameter PIG 

distribution. The Sichel distribution is obtained when the positively-skewed generalized 

inverse Gaussian (GIG) distribution (Jørgensen, 1982; Nguyen, Chen, Gupta & Dinh, 

2003) is used as the mixing distribution in the mixed Poisson formulation. The pmf of 

the Sichel distribution is given as  
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for k = 0, 1, 2, ..., 0 , 10   and    and )(zK  is the modified Bessel 

function of the third kind with index  . Using a moment ratio diagram, Stein, Zucchini 

and Juritz (1987) illustrated the additional flexibility gained by introducing the 

additional parameter   in the three-parameter Sichel distribution which is found to be 

suitable for modelling over dispersed and long-tailed skewed data.  The r-th raw 

moments of the Sichel distribution is defined as 
)1(

)1(
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Consequently, the mean and variance of the Sichel distribution are respectively 
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 (Sichel, 

1974). In a series of paper, the applications of this distribution have been discussed by 

various authors: number of diamond of stones in a sample of gravel (Sichel, 1973), 

word frequency and sentence-length in linguistics (Sichel, 1974; 1975), consumer 

behaviour (Sichel, 1982b), insurance claims (Willmot, 1986) and distribution of protein 

abundance in complex mixtures (Ishihama et al., 2005; Koziol et al., 2013). To facilitate 

statistical inference procedures, authors such as Stein, Zucchini and Juritz (1987) have 

proposed a reparameterization of the Sichel distribution. Johnson, Kemp and Kotz 

(2005) have given a summary of the various reparameterizations of the Sichel 

distribution. 

The Poisson-lognormal distribution is introduced by Bulmer (1974) in the study of 

species abundance. A disadvantage of this distribution is that there is no closed form for 

its pmf and it is expressed in the form of an integral 
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for k = 0, 1, 2, ..., and   ,  > 0, where  
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is the probability density function (pdf) of the lognormal distribution. The mean and 

variance of the Poisson-lognormal distribution are   and ]1)1([  , 

respectively, where 
 e  and )exp( 2  .  Although it is suitable for fitting long-

tailed data, such as in bibliometry (Stewart, 1994), microbial contaminant in food safety 

risk assessments (Williams & Ebel, 2012) and in modelling species abundance (Bulmer, 

1974), the intractability of its pmf limited its application.  

Sankaran (1970) presented the Poisson-Lindley distribution and showed that this 

one-parameter distribution gives a satisfactory fit to two over dispersed data sets. The 

pmf of the Poisson-Lindley distribution is relatively simple: 
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for k = 0, 1, 2, ...,   > 0. Ghitany and al-Mutairi (2009) showed that the method of 

moments estimators and maximum likelihood estimators for the Poisson-Lindley 

parameters are equally efficient, consistent and asymptotically normal. Upon the 

introduction of a generalized Lindley distribution by Zakerzadeh and Dolati (2009), 

Mahmoudi and Zakerzadeh (2010) used this generalized Lindley distribution as the 

mixing distribution in constructing a new mixed Poisson distribution. The Poisson-

generalized Lindley distribution has pmf 

 
 
























11)1(!

)(
)Pr(

1

1















 k

k

k
kX

k
  

Univ
ers

ity
 of

 M
ala

ya



35 

for k = 0, 1, 2, ...,   > 0,   > 0. Mahmoudi and Zakerzadeh (2010) examined the 

characteristics and statistical inference of this distribution and concluded that it gives a 

good fit compared to the NB and Poisson-Lindley distributions. 

In addition to those mentioned above, various other mixed Poisson distributions have 

been proposed in the literature, for example, the Poisson-Beta (Holla & Bhattacharya, 

1965), Poisson rectangular (Bhattacharya & Holla, 1965) and Poisson-Normal or 

Hermite distribution (Kemp & Kemp, 1966). Gupta and Ong (2005), Karlis and 

Xekalaki (2005) and Nikoloulopoulos and Karlis (2008) have given a comprehensive 

survey on mixed Poisson distributions. 

Many properties of a mixed Poisson distribution can be inferred from its mixing 

distribution. An important result by Holgate (1970) states that a mixed Poisson 

distribution is unimodal if its mixing distribution is unimodal.  Feller (1943) has shown 

that mixed Poisson distributions are identifiable, i.e. a mixed Poisson distribution and its 

mixing distribution possess a one-to-one relationship. On the moments of the 

distributions, the factorial moments of the mixed Poisson distribution are equal to the 

mixing distribution's moments about the origin. As a result, the r-th moment about the 

origin of the mixed Poisson distribution can be obtained as 

 



r

j

jr EjrSXE
1

)(),()(  , r = 1, 2, ..., 

where S(n, k) denotes the Stirling numbers of the second kind and )( jE  is the j-th 

moment of the mixing distribution about the origin. Another important result is by 

Grandell (1997), stating that a mixed Poisson with mixing distribution )(1 f  converges 

to another mixed Poisson with mixing distribution )(2 f  if and only if )(1 f  converges 

to )(2 f . This implies that the limiting case of a mixed Poisson distribution is 
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"uniquely determined by a limiting case of the mixing distribution" (Karlis & Xekalaki, 

2005, p.42). For predicting future outcomes, the posterior expectation of the random 

variable   is given by ))...(1(
)Pr(

)Pr(
)|( rkk

kX

rkX
kXE r 




  (Willmot & 

Sundt, 1989). 

3.3 The Generalized Sichel Distribution  

Let Y be a random variable with support on nonnegative real numbers. Then the pdf 

of the extended generalized inverse Gaussian (EGIG) distribution is given by 
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where )(zK  is the modified Bessel function of the third kind with index  . Here we 

follow the notation adopted by Gupta and Viles (2011). We adopt a similar domain of 

variation for the parameters to that given by Jørgensen (1982), that is  , 
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When 1 , the EGIG model reduces to the generalized inverse Gaussian (GIG) 

model which has been studied in detail by Jørgensen (1982). Other special and limiting 

cases of (3.3.1) include the inverse Gaussian distribution ( 5.0,1   ), the gamma 

distribution ( 1 , b = 0 and 0 ), the Weibull distribution and the exponential 

distribution.  
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Definition 3.1 (Generalized Sichel distribution) Suppose X is a discrete random 

variable and |X  ~ Poisson( ), where   is a nonnegative real valued random 

variable with pdf )(f  given by (3.3.1). Then X has the generalized Sichel distribution 

with pmf given by  
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which can be written as 
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The derivation of expression (3.3.3) is given in Appendix A. The probability generating 

function (pgf) of the generalized Sichel distribution is given by 
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From (3.3.4), we obtain the probability when k = 0 as 
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The generalized Sichel distribution has mean 
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expression for the index of dispersion can be written 

as 
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The special case 1  gives rise to the Sichel distribution. Furthermore, when 

1 and 
2

1
 , we obtain the PIG distribution. The Poisson-Gamma (or negative 

binomial) distribution is obtained from (3.3.2) when 1 , b = 0 and 0 . These 

special cases are derived based on the probability structure of the EGIG model. 

The extra parameter   adds flexibility to the shape of the count distribution. The 

effect of varying the parameter   on the index of dispersion XID  is illustrated in 

Figure 3.1 in the next page. 

3.4 The Poisson-exponentiated Weibull Distribution 

Let Y be a random variable having the exponentiated Weibull distribution. The pdf of 

the exponentiated Weibull distribution is given by Mudholkar et al. (1995) as   
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for y > 0 and ,  ,   > 0 with Laplace transform (Choudhury, 2005) 
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Figure 3.1:  Plot of index of dispersion versus   when (top) a = b = 0.95 and  = 

-0.5, (bottom) a = 1.0, b = 0.1,   = -5. 

The exponentiated Weibull distribution allows for a non-monotonic hazard function 

and is introduced as an extension to the Weibull distribution in reliability studies and 

survival analysis. The parameters  and   are known as the shape parameters whereas 

  is known as the scale parameter. The Weibull distribution is a special case of this 

distribution when   = 1. When   = 1 and   = 2, we obtain the exponentiated 
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exponential distribution and Burr Type X distribution, respectively. Furthermore, when 

both   and   take the value 1, the exponentiated Weibull distribution reduces to the 

exponential distribution. The r-th moment about the origin of the exponentiated Weibull 

distribution exists in closed form if   is a positive integer. 

Definition 3.2 (Poisson-exponentiated Weibull distribution) Suppose X is a discrete 

random variable and |X  ~ Poisson ( ), where   is a nonnegative real valued 

random variable with pdf )(f  given by (3.4.1). Then the probability mass function 

(pmf) of X is given by 
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Since the probability generating function (pgf) of a mixed Poisson distribution )(zG  

is the moment generating function of the mixing distribution evaluated at (z - 1) (Karlis 

& Xekalaki, 2005), we obtain the pgf of the Poisson-exponentiated Weibull distribution 

as 
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It is straightforward that the probability when k = 0 is given as 
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Following the result by Holgate (1970), the Poisson-exponentiated Weibull 

distribution is unimodal when  > 1. 
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3.4.1 The Poisson-Weibull Distribution 

A special case when  = 1 gives rise to the Poisson-Weibull distribution which has 

been discussed by Cheng et al. (2013) in the context of a generalized linear model. The 

Weibull distribution is of special importance in the field of reliability studies, partly due 

to its ability to model devices with constant, increasing and decreasing failure rates.  

The pgf of the Poisson-Weibull distribution can be written as 
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The mean and variance of the Poisson-Weibull distribution can be derived from the 

Weibull distribution. Since the Weibull distribution has mean and variance  1 1     

and     
2

2 1 12 1 1        
 

, respectively, the formula to obtain the mean  , 

variance  
2  and index of dispersion XID  of the Poisson-Weibull distribution are as 

follows: 

  1 1      , (3.4.5) 

  2 2 1 22 1         , and (3.4.6) 
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3.5 Shape of the Distributions 

The generalized Sichel distribution is a flexible model which is able to model data 

with zero-inflation, over dispersed and long-tailed data. Three examples of the 
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generalized Sichel pmf plots are given in Figure 3.2 to illustrate the versatility of the 

shape of the distribution. 
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Figure 3.2: Probability mass function plots of the generalized Sichel distribution 
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To illustrate features such as the position of the mode, skewness and tail length, 

examples of the Poisson-exponentiated Weibull probability plots are given in Figure 

3.3. It is observed that the distribution is able to model data with high zero counts, right-

skewed or almost symmetric data. 
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Figure 3.3: Probability mass function plots of the Poisson-exponentiated 

Weibull distribution 
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Figure 3.3, continued 
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Figure 3.3, continued 

The Poisson-Weibull distribution is a special case of the Poisson-exponentiated 

Weibull family when  =1. A numerical check reveals that when  < 1, the Poisson-

Weibull distribution has a high mode at k = 0 when   is small. As the value of   

increases, the probabilities shifts away from k = 0 but the mode retains. On the other 

hand, when  > 1, the mode shifts away from k = 0 as the value of   increases and the 
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distribution changes from being right-skewed to almost symmetrical. The larger the 

value of  , the further the mode shifts away from k = 0 when   increases. 

In general, increasing the value of   shifts the probabilities from the zero counts to 

the non-zero counts thus the parameter   affects the lower tail of the probability 

distribution. 

3.6 Some Characteristics of Mixed Poisson Distributions 

We examine the shape of the mixed Poisson distributions discussed in the preceding 

sections in terms of the zero-inflation index and the third central moment inflation index 

as defined by Puig and Valero (2006). For the generalized Sichel and Poisson-

exponentiated Weibull distributions, both the zero-inflation and the central moment 

indices are dependent on the mean and they are obtained using numerical computation. 

3.6.1 Zero-inflation Index 

The zero-inflation index of a nonnegative integer random variable X with mean 

 and proportion of zeros 0p  is defined as /)log(1 0pzi   (Puig & Valero, 2006). 

The Poisson random variable has a zero-inflation index of 0, and a zero-inflated random 

variable will have a positive zero-inflation index. It is known that any mixed Poisson 

random variable is zero-inflated thus it is of interest to know the amount of zero-

inflation. 

The zero-inflation index for NB and PIG are independent of the mean of the 

distribution and it is expressed as )1/()log(1 IDID   and )1/()1)(2(  IDIDID , 

respectively, where ID is the index of dispersion (Nikoloulopoulos & Karlis, 2008). In 

Figure 3.4, we plot the zero-inflation index versus index of dispersion for some 

biparametric mixed Poisson distributions: Poisson-lognormal (P-LN), negative binomial 

(NB), Poisson-inverse Gaussian (PIG) and Poisson-Weibull (P-W) distributions. The 
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zero-inflation index of the P-LN and P-W distributions are computed numerically for a 

fixed mean. By comparing the three graphs in Figure 3.4, we see that as the mean 

increases, the zero-inflation index of the P-W distribution increases. In terms of zero-

inflation, the P-W distribution is closer to the NB and PIG distribution than to the P-LN 

distribution. When both mean and over dispersion is small, the P-W distribution is very 

close to the NB distribution. On the other hand, when mean is small and over dispersion 

is large, the P-W distribution becomes closer to the PIG distribution which has a lower 

zero-inflation index. When the mean is large with small over dispersion, the P-W 

distribution has the highest zero-inflation index amongst the two-parameter mixed 

Poisson distributions compared. 

We plot the graph of the zero-inflation index for the generalized Sichel (GS) and its 

related mixed Poisson distributions in Figure 3.5. The zero-inflation index for the GS 

and Sichel distributions are both computed numerically. In Figure 3.5, the mean for the 

Sichel distribution is fixed at 2.5. The graph for the Sichel distribution does not change 

significantly as its mean increases hence it is not included here. We consider the cases 

when mean = 2.5, 5 and 15 for the GS distribution, representing different sizes of the 

mean from small to large. The zero-inflation index of the GS distribution increases with 

the value of its mean. When the mean is large, for example mean = 15, the zero-

inflation index of the GS distribution is always larger than the PIG and Sichel 

distributions. When over dispersion is very small, all three distributions are similar. 

However, as the mean gets larger, the GS distribution has a higher zero-inflation index 

than the NB distribution. Compared to the NB distribution, the GS distribution is able to 

model high zero counts even when presence of over dispersion is small and mean is 

large. 
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(a) Mean of the Poisson-lognormal and Poisson-Weibull is 1.5 
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(b) Mean of the Poisson-lognormal and Poisson-Weibull is 5 

Figure 3.4: Zero-inflation index versus index of dispersion for the Poisson-

Weibull and some biparametric mixed Poisson distributions 
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(c) Mean of the Poisson-lognormal and Poisson-Weibull is 15 

Figure 3.4, continued 

 

Figure 3.5: Zero-inflation index versus index of dispersion for the generalized 

Sichel and some related mixed Poisson distributions 
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3.6.2 Discriminant Ratio 

Ong and Muthaloo (1995) discussed the role of the discriminant ratio which is 

defined as 
)(

)1(
)(

kXP

kXP
kQ




 , for k = 0, 1, 2, 3, …, in determining the flexibility of 

the distributions which they proposed for long-tailed data. The ratio has a limiting value 

of 1)( kQ  for long-tailed distributions. Figure 3.6 gives the graphs of Q(k) versus k 

for several values of the parameter   of the generalized Sichel distribution, holding 

other parameters fixed. 

In Figure 3.6(a), we compare the graph of Q(k) versus k for the PIG distribution ( = 

1,   = -0.5) and the generalized Sichel distribution. By varying the value of  , the 

discriminant ratio varies considerably especially at large values of k. The difference is 

most prominent for k larger than 10.  

From the graphs in Figure 3.6(b), we note that when 1 , the generalized Sichel 

distribution has a longer tail compared to the Sichel distribution. The trend is similar to 

that in Figure 3.6(a). As such, we may conclude that the parameter   adds flexibility to 

the generalized Sichel distribution, enabling the distribution to model data with a very 

long tail. 

In the exponentiated Weibull distribution, the parameter   modifies the lower (or 

left) tail of the distribution. The graphs of Q(k) versus k for the Poisson-exponentiated 

Weibull distributions in Figure 3.7 show that the parameter   modifies the rate of 

change of frequencies near the origin. Figure 3.7(a) indicates long-tailed distributions 

since 1)( kQ  as k . Inheriting the right tail properties of their respective mixing 

distributions, the Poisson-exponentiated Weibull distribution and the Poisson-Weibull 

distribution have the same behaviour at the right-tail. 
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(a) Discriminant ratio diagrams when a = b = 0.95 and   = -0.5 for PIG ( = 1) 

and generalized Sichel distributions 

 

(b) Discriminant ratio diagrams when a = b = 0.95 and   = 0.2 for Sichel ( = 1) 

and generalized Sichel distributions 

Figure 3.6: Discriminant ratio diagrams for generalized Sichel distribution 
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3.6.3 Third Central Moment Inflation Index 

The third central moment inflation index of a nonnegative discrete random variable X 

describes the skewness of the distribution and is defined as 13
3 




 , where 3  is 

the third central moment of X. For discrete distributions, 

323

3 )]([2)()(3)( XEXEXEXE  , where )( rXE  is the r-th moment about the 

origin. The third central moment inflation index takes the value zero for the Poisson 

distribution. The index for the NB and PIG distributions take the values 2(ID)
2
 - ID - 1 

and 3(ID)
2
 – 3(ID), respectively (Nikoloulopoulos & Karlis, 2008). The third central 

moment of the PGIG distribution is 
)1(

)1(

12
)( 3

3

3
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(a)   =   = 0.5 

Figure 3.7: Discriminant ratio diagrams for exponentiated Weibull distributions 
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(b)   =   = 2 

 

(c)  = 0.5,   = 2 

Figure 3.7, continued 

The graphs of the third central moment inflation index versus over dispersion for the 

Poisson-Weibull and some related biparametric mixed Poisson distributions are given in 

Figure 3.8. The plot is given for three different values of the Poisson-Weibull and 

Poisson-lognormal means ranging from small to large in Figure 3.8(a)-(c). In all cases, 

the index for the Poisson-Weibull distribution is always larger than that for the negative 

binomial distribution. When presence of over dispersion is small, all four distributions 

are similar. For small values of the mean, the skewness for the Poisson-Weibull 
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distribution is higher than the PIG distribution. The Poisson-lognormal distribution 

invariably has the highest skewness index. 

In Figure 3.9, we plot the third central moment inflation index versus over dispersion 

for the NB, PIG, PGIG and generalized Sichel (GS) distributions. For the PGIG and  

generalized Sichel distributions, the graphs are given for three different values of the 

mean, i.e. 3, 5, 15. The coefficient of skewness is positive for all four distributions. For 

small over dispersion, all of the distributions are similar to each other. As the index of 

dispersion increases, the coefficient of skewness of all the distributions increases. For 

the generalized Sichel distribution, as the mean increases, the coefficient of skewness 

decreases. Moreover, the skewness of the generalized Sichel distribution moves closer 

to the NB distribution as the mean increases. The generalized Sichel distribution has a 

higher coefficient of skewness than the Sichel distribution when mean is small.  
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(a) Mean of the Poisson-Weibull and Poisson-lognormal is 1.5 

Figure 3.8: Third central moment inflation index versus index of dispersion for 

Poisson-Weibull and some biparametric mixed Poisson distributions 
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(b) Mean of the Poisson-Weibull and Poisson-lognormal is 5 
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(c) Mean of the Poisson-Weibull and Poisson-lognormal is 15 

Figure 3.8, continued 
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(a) Mean of the PGIG and generalized Sichel is 3 
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(b) Mean of the PGIG and generalized Sichel is 5 

Figure 3.9: Third central moment inflation index versus index of dispersion for 

generalized Sichel and related mixed Poisson distributions 
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(c) Mean of the PGIG and generalized Sichel is 15 

Figure 3.9, continued 

3.7 Conclusion 

In this chapter, the generalized Sichel distribution which is an extension of the Sichel 

(i.e. PGIG) distribution is presented. Based on the characteristics examined in the 

preceding sections, the generalized Sichel distribution is suitable for modelling over 

dispersed data with high zero counts and a very long tail. Since the generalized Sichel 

distribution nests the NB, PIG and PGIG distributions as special cases, this proposed 

distribution has an advantage of eliminating a piecewise treatment in empirical 

modelling.  

We also examine the Poisson-exponentiated Weibull distribution as a new mixed 

Poisson distribution suitable for modelling over dispersed data with high zero count and 

a long tail. A special case of this distribution, the Poisson-Weibull distribution, has a 

simple closed form for its moments and the distribution is further analysed and 

compared with other biparametric mixed Poisson distributions. 
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CHAPTER 4: COMPUTATION AND STATISTICAL INFERENCE FOR 

MIXED POISSON DISTRIBUTIONS 

4.1 Introduction 

The pmf of a mixed Poisson distribution is expressed as the integral 

 
 


0

)(
!

)Pr( 


df
k

e
kX

k

, k = 0, 1, 2, ..., (4.1.1) 

where )(f  is the pdf of the mixing distribution. It is favourable to simplify and re-

write (4.1.1) in closed form, whenever possible such as in the case of the negative 

binomial (Poisson-gamma), Sichel or Poisson-Lindley distributions. However, in many 

cases, a closed form representation cannot be obtained. Consequently, not many mixed 

Poisson distributions are studied in depth due to the intractability of their probability 

mass functions. For example, the Poisson-lognormal pmf cannot be written in closed 

form and thus it has to be evaluated using numerical techniques (Bulmer, 1974; Izsák, 

2008) with due consideration for large counts k. Cheng, Geedipally and Lord (2013) 

proposed the Poisson-Weibull distribution for modelling crash count data but noted that 

the pmf cannot be expressed in closed form. To circumvent the problem, they wrote the 

model using a hierarchical structure that can be modelled using Bayesian approach in 

generalized linear models.  

In Chapter 3, we have presented two new mixed Poisson distributions, namely the 

generalized Sichel and Poisson-exponentiated Weibull (P-EW) distributions. Upon 

studying their properties such as the zero-inflation index and discriminant ratio, these 

two distributions have been found to be able to model over dispersed discrete count data 

with high probabilities at zero counts and/or a very long tail. In this chapter, we present 

a Monte Carlo simulation approach to the computation of P-EW probabilities, which 

eliminates the need for using numerical methods and specific consideration and analysis 
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for various cases of k, is used. The closed form of the exponentiated Weibull cumulative 

distribution function (cdf) facilitates the rapid computer generation of exponentiated 

Weibull Monte Carlo random samples by the method of inverse cdf. As such, the Monte 

Carlo approach is easy to implement and it is shown to be highly accurate for the P-EW 

distribution in particular, and in general for any mixed Poisson distribution when the 

mixing distribution has a closed form cdf. We also study an Expectation-Maximization 

(EM) type algorithm for parameter estimation, which can eliminate the need to evaluate 

the integral in the pmf of the Poisson-Weibull distribution. 

The remaining of the chapter proceeds as follow. In the next section, a literature 

review on computation and statistical inference of mixed Poisson distributions is given. 

After that, we discuss the Monte Carlo technique for computation of the P-EW 

probabilities. In Section 4.4, we discuss ML estimation for mixed Poisson parameters, 

particularly for the generalized Sichel distribution and Poisson-Weibull distribution 

presented in Chapter 3. In the subsequent section, we discuss the likelihood ratio test for 

mixed Poisson distributions and a score test statistic is derived for the generalized 

Sichel distribution. The model fit of over dispersed data sets to some mixed Poisson 

distributions is presented and examined in Section 4.6. Finally, the conclusion is given 

in the last section. 

4.2 Literature Review  

Due to the intractability of the pmf of many mixed Poisson distributions, the 

computation of mixed Poisson probabilities is of interest. Straightforward evaluation of 

the mixed Poisson integral can be done using numerical integration techniques such as 

Gaussian quadrature. Willmot (1990) derived a formula to estimate these probabilities 

and also showed that the right tail of the Poisson mixture has the same behaviour as the 

mixing distribution. Perline (1998) derived a similar result. Willmot’s (1990) formula is 
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based on the fact that the right tail of a mixed Poisson distribution inherits the behaviour 

of its mixing distribution. Bulmer (1974) obtained an approximation of the Poisson-

lognormal probabilities for large values of k by re-expressing the pmf as an expectation 

with respect to a gamma density function, and subsequently applying a Taylor series 

expansion. Probabilities for small k can be obtained using numerical integration, for 

example, Grundy (1951) has tabled the probability values when k = 0, 1 using an 

infinite series approximation to the integral. Cassie (1962) has discussed the use of the 

lognormal distribution instead of the Poisson-lognormal distribution to approximate the 

mixed Poisson probabilities. While discussing the ML estimation of the Poisson-

lognormal distribution, Izsák (2008) made prior modifications to the integral before 

applying numerical integration for small k, but proposed the saddle point method when 

k is large. Ong (1995) discussed a three-term recurrence relation for the computation of 

the full beta model with pmf given as 



d

b

b

k

e

qpB
kX

qp

ppk











0

1

)1(!),(

1
)Pr(  for k 

= 0, 1, ..., b, p, q > 0 and B(p, q) is the Beta function. This distribution is obtained by 

taking the beta distribution of the second kind with a scale parameter b/1  as the mixing 

distribution. However, this method inherits the stability issues from three-term 

recurrence relations. Karlis and Xekalaki (2005) proposed a method that expresses the 

probability function of the mixed Poisson distribution as an infinite series involving the 

moments of the mixing distribution. 

Parameter estimation has been a topic of interest in the literature on mixed Poisson 

distributions. An issue which arises from the intractability of the mixed Poisson's pmf is 

in ML estimation procedure since analytical ML estimates require solving the first 

derivative of the log-likelihood function. Sichel (1982a) studied the asymptotic 

efficiency of his proposed method for the ML estimation of Poisson-inverse Gaussian 

(PIG) parameters, but this method is only applicable for a subset of the parameter 
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values. Atkinson and Yeh (1982) derived an approximate likelihood method for the 

inference for one of the parameters in the Sichel distribution and compared it against 

ML estimation. However, Stein, Zucchini and Juritz (1987) found that this approximate 

method may return poor estimates. In view of this, they proposed an alternative 

parameterization for the Sichel pmf and gave an algorithm for computing the ML 

estimates. With this new parameterization, the ML estimates have the advantage of 

being asymptotically uncorrelated. Highly correlated ML estimates may lead to 

misleading inference and numerical instability during the maximization of the 

likelihood function.  

In a general framework on mixed Poisson distributions, Karlis (2005) discussed an 

alternative approach to solving the ML estimation problem through the application of an 

Expectation-Maximization (EM) type algorithm. Karlis' (2005) adaptation of the EM 

algorithm to the problem of parameter estimation in mixed Poisson distributions reduces 

the problem of maximizing the mixed Poisson’s likelihood function to a simpler 

problem of maximizing the mixing distribution’s likelihood function. Therefore, when 

the ML estimates of the mixing distribution can be obtained analytically, ML estimation 

of the mixed Poisson parameters via the EM algorithm becomes a very attractive 

approach. When the mixed Poisson pmf is intractable, a Monte Carlo variant of the EM 

algorithm (Wei & Tanner, 1990) can eliminate the need to perform numerical 

integration for the mixed Poisson probabilities. 

4.3 Computational Method for Some Mixed Poisson Distributions 

The pmf of the generalized Sichel distribution proposed in Chapter 3 can be 

expressed as an integral or an infinite series. Based on the integral representation, we 

use a MATLAB numerical integration algorithm quade.m proposed by Sermutlu and 
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Eyyuboglu (2007) to compute generalized Sichel probabilities. This algorithm is able to 

handle improper integrals and non-smooth functions. 

The evaluation of integral (4.1.1) can also be studied using a Monte Carlo simulation 

approach. This Monte Carlo simulation technique for computing integrals eliminates the 

need for numerical evaluation of the probabilities that can cause stability issues in 

parameter estimation procedures such as ML estimation. When the cdf of the mixing 

distribution can be written in closed form, this Monte Carlo approach is simple and fast. 

We apply the formulation of this technique for the Poisson-exponentiated Weibull 

distribution proposed in Section 3.4. The Monte Carlo technique is briefly described 

first in general. 

Suppose we have a random variable   having pdf )(f . We would like to evaluate  

  dfggE  )()()]([  (4.3.1) 

for some function )(g . A crude Monte Carlo estimator uses n simulated realizations 

n ,...,, 21  of   to approximate the integral by 
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where the expectation operator is taken with respect to the density function )(f . 

As such, in principle the mixed Poisson probabilities given by (4.1.1) may be 

approximated by (4.3.2):  
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where 
!

);(
k

e
kg

k

i

i

i




 , n ,...,, 21  are random numbers distributed as the mixing 

distribution )(f . The remaining thing to do now is to simulate random numbers 

n ,...,, 21  from the mixing distribution. 

In Monte Carlo studies, there are various ways to simulate a random number from a 

given probability distribution. The method for simulation of the random numbers i , i = 

1, 2, ..., n from the mixing distribution )(f  is chosen according to its suitability. When 

the cdf of the mixing distribution is available in closed form, such as in the case of the 

exponentiated Weibull and Weibull distributions, the inverse transform method uses the 

inverse of the cdf and is very fast. Otherwise, other methods such as the acceptance-

rejection method or envelope rejection method can be used.   

One of the drawbacks in the Monte Carlo simulation technique is in the computation 

time required. In practice, the number of points n which need to be simulated before the 

computation stabilizes may be unrealistically high. Therefore, variance reduction 

techniques are usually employed to accelerate convergence. To accelerate the 

convergence of estimator (4.3.3), we incorporate the use of one such technique, which is 

by substituting the usual (pseudo) random numbers used in the simulation to generate 

i  with a low discrepancy sequence of numbers instead. Since the low discrepancy 

sequence of numbers is a deterministic sequence, this method is also known as quasi-

Monte Carlo method. Examples of low discrepancy sequence of numbers are the 

SOBOL sequence, Halton sequence and Niederreiter sequence (Sobol, 1998). In this 

study, we use the low F-discrepancy sequence of numbers (Fang & Wang, 1994) to 

reduce the sampling size required. 
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In the one-dimensional case,  

 
n

i
ui

2

12 
 , i = 1, 2, 3, ..., n (4.3.4) 

is the set of n points with the lowest F-discrepancy. Therefore, a Monte Carlo 

simulation algorithm to compute mixed Poisson probabilities is as follows. 

i. Generate lowest-F discrepancy numbers (4.3.4).  

ii. Compute 






 
 

n

i
Fi

2

121 , where )(F  is the cdf of the mixing 

distribution.   

iii. Compute the estimator (4.3.3). 

The algorithm can be modified accordingly for any arbitrary mixing distribution. For 

the Poisson-exponentiated Weibull probabilities, )(F  in the algorithm is the cdf for 

the exponentiated Weibull distribution. The exponentiated Weibull's inverse cdf is given 

by 
11

1 )]1log([)( F . In a similar manner, the probabilities for the Poisson-

Weibull distribution can be computed using the inverse cdf of the Weibull distribution 

given by 
1

1 )]1log([)( F . 

We exemplify the application of the Monte Carlo simulation technique in the 

evaluation of mixed Poisson probabilities by examining the computation of PIG, 

Poisson-lognormal and the newly proposed Poisson-exponentiated Weibull distribution. 

The results are presented in Tables 4.1, 4.2 and 4.3 respectively. Since the exact 

probabilities for the PIG distribution is known, we evaluate the accuracy (last column in 

Table 4.1) and measure of goodness-of-fit   for this Monte Carlo approach. The 

goodness-of-fit measure is defined as  
k

kkk ppp /)( 2*
 , where kp and 

*

kp  are 
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the exact and approximate probabilities, respectively (Shaban, 1981). The first thirty 

probabilities are used to compute this measure and we obtain 11103.6   for the 

parameters in Table 4.1.  

Table 4.1: PIG probabilities evaluated using (a) direct computation from 

formula (3.2.2), and (b) Monte Carlo estimator (4.3.3), for 5.0  

k Pr(X = k) 

Method (a) 

Pr(X = k)  

Method (b) 

Accuracy  

(%) 

2 0.02024465270 0.02024569286 99.99 

3 0.00534233891 0.00534255198 99.99 

4 0.00169584113 0.00169587264 99.99 

5 0.00059771810 0.00059772521 99.99 

10 0.00000640132 0.00000640135 99.99 

15 0.00000010775 0.00000010775 99.99 

20 0.00000000218 0.00000000218 99.99 

 

Table 4.2: Poisson-lognormal probabilities evaluated using (a) numerical 

integration, and (b) Monte Carlo estimator (4.3.3), for  = 2 and  = 0.5 

k Pr(X = k) 

Method (a) 

Pr(X = k) 

Method (b) 

2 0.048659495 0.048659479 

3 0.070620703 0.070620708 

4 0.086194013 0.086193899 

5 0.093741204 0.093741243 

10 0.060678721 0.060678737 

15 0.022880638 0.022880646 

20 0.007610721 0.007610723 

 

Table 4.3: Poisson-exponentiated Weibull probabilities evaluated using (a) 

numerical integration, and (b) Monte Carlo estimator (4.3.3), for  =  = 0.5 and 

  = 2 

k Pr(X = k) 

Method (a) 

Pr(X = k) 

Method (b) 

2 0.1094796399 0.1094796412 

3 0.0653499921 0.0653499920 

4 0.0418245007 0.0418245007 

5 0.0281190033 0.0281190033 

10 0.0059209016 0.0059209016 

15 0.0018245689 0.0018245689 

20 0.0006869179 0.0006869179 
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4.4 Parameter Estimation 

Given the observations from the sample of interest, there are many parameter 

estimation methods for discrete distributions. Maximum likelihood (ML) estimation is a 

very popular approach due to its desirable properties such as efficiency, consistency and 

asymptotic normality. However, ML estimation has a major drawback as it may lead to 

intractable nonlinear likelihood equations. For mixed Poisson distributions, we can use 

global optimization routines such as the simulated annealing algorithm or an EM-type 

algorithm discussed by Karlis (2005). Although in general the EM-type algorithm can 

be adapted for all mixed Poisson distributions, we found that its performance is 

suboptimal for the generalized Sichel distribution. Therefore, the simulated annealing 

algorithm is used instead for parameter estimation in the generalized Sichel distribution. 

4.4.1 Simulated Annealing 

For the generalized Sichel distribution proposed in Chapter 3.3, the ML estimates of 

the unknown parameters ),,,( baω  of the generalized Sichel distribution is defined 

as )(logmaxarg)ˆ,ˆ,ˆ,ˆ(ˆ ωω ω Lba T   , where log L is the log-likelihood function 

given by )][Pr(loglog
0

kXfL
k

k 




 and kf  is the observed frequency of count k in 

the sample. In order to obtain the global maximum of the log-likelihood function 

analytically, we need to derive the partial derivatives of  




 


























0

/ )(log!log)2(loglog
2

2
loglog

k

k hkabK
a

b
fL 






  

where 


 
0

1 )exp()(   dbaeh k . We find that the likelihood equations are 

intractable, so we use the simulated annealing algorithm (Goffe, Ferrier & Rogers, 

1994) to obtain the global maximum of the log-likelihood function.  
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4.4.2 Poisson-Weibull Distribution: ML Estimation via EM Algorithm 

The pmf of the Poisson-Weibull distribution is not in closed form thus we are not 

able to derive the ML estimates of its parameters analytically. In the previous section, 

we use the simulated annealing algorithm to obtain the ML estimates of the generalized 

Sichel distribution. Although the simulated annealing algorithm is able to solve for a 

global maximum even for functions with many local maxima, it has a disadvantage of 

being time consuming to run. Since the Weibull distribution has a relatively simple pdf 

and ML estimator, the EM algorithm is a viable approach for obtaining ML estimates of 

the Poisson-Weibull parameters.  

In Karlis' (2005) formulation for EM algorithm in the context for mixed Poisson 

distributions, the data sample of size n is treated as the complete data ),( iii XY  , i = 

1, 2, ..., n, which consists of the observed data points iX  and the unobserved 

realizations i  of the parameter for each point iX . As discussed in Section 4.1,   is 

distributed as the mixing distribution );( τf  with parameter vector τ . At the E-step of 

the (k+1)-th iteration we use the estimates )(k
τ  from the k-th iteration to calculate 

pseudo-values ),|)(( )(k

ij XhE τ , for i = 1, 2, ..., n, j = 1, 2, ..., m, where (.)jh  are 

certain functions depending on the mixing distribution. The expectation is taken with 

respect to the conditional distribution ),;( )(kXYf τ . Then, at the M-step, using the 

pseudo-values from E-step, we maximize ),|)|((log);( )()( kk XYpEQ ττττ   over τ . 

The details of the EM algorithm for various mixed Poisson distributions such as the 

negative binomial, Poisson-inverse Gaussian and Poisson-lognormal distributions can 

be found in Karlis (2005). We follow the same approach for the Poisson-Weibull 

distribution and the algorithm is as follows: 
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E-step. Calculate the pseudo-values 
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 (4.4.2.2) 

Numerical integration is used to evaluate the integrals in the expectations.  

M-step. From the likelihood function of the Weibull distribution, the ML estimate of 

  is given as 





1

1

1ˆ 
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and subsequently we obtain new  by numerically maximizing 
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  with respect to  . 

The iterations are stopped if the relative change in the log-likelihood between two 

iterations is less than 
1010

. This is the same criteria adopted by Karlis (2005). The issue 

of choosing an appropriate termination criteria is common with EM algorithm and other 

termination criteria have been given by Seidel, Mosler and Alker (2000) and Karlis 

(2001). 
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Although the EM algorithm is a simple algorithm, it does not guarantee that the ML 

estimates found correspond to the global maximum of the likelihood function. This 

issue has been discussed by many authors, including Wu (1983) and Chung and Lindsay 

(2015). Two of the factors which cause the EM algorithm to fail to return the global 

maximum of the likelihood function is the termination criteria discussed in the 

preceding paragraph and choice of initial values. We adopt the standard practice of 

using multiple sets of randomly generated initial values to yield a higher confidence that 

the algorithm converges to the global maximum. Karlis and Xekalaki (2003) have 

conducted a study on the choice of the initial values and their affects on the ML 

estimation for finite mixtures. 

4.5 Hypothesis Testing 

Hypothesis testing is performed to determine the significance of the parameter   in 

the generalized Sichel distribution and the parameter   in the Poisson-exponentiated 

Weibull distribution.  

When   = 1, the Poisson-exponentiated Weibull distribution reduces to the Poisson-

Weibull distribution. In order to test the significance of  , we perform the test of 

hypotheses 

 1:0 H      vs    1: AH . (4.5.1) 

The difference between the Poisson-exponentiated Weibull and the Poisson-Weibull 

distributions is most prominent in the left tail probabilities. Therefore, we name the 

hypothesis test as the left-tail Weibull test. Since both the null and alternative 

hypotheses involve numerical integration, we use the likelihood ratio test for hypothesis 

testing. The likelihood ratio test statistic for (4.5.1) is  

 )],...,|1,ˆ,ˆ(log),...,|ˆ,ˆ,ˆ([log2 1001 nnLR xxLxxLT   , 
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where ),...,|ˆ,ˆ,ˆ(log 1 nxxL   is the log-likelihood function of the Poisson-

exponentiated Weibull distribution evaluated at the ML estimates and 

),...,|1,ˆ,ˆ(log 100 nxxL   is the log-likelihood function of the Poisson-exponentiated 

Weibull distribution evaluated at the restricted ML estimates. As   = 1 is an interior 

point in the parameter space, LRT  has an asymptotic chi-square distribution with one 

degree of freedom. 

In the case of the generalized Sichel distribution,  = 1 corresponds to the three-

parameter Sichel distribution. As such, we name the hypothesis testing as the Sichel 

test. The null hypothesis 0H  and alternative hypothesis AH  can be written as 

 1:0 H      vs    1: AH  (4.5.2) 

The distribution in the null hypothesis is the Sichel distribution which is relatively 

simple. In view of this, we perform the score test which requires only the restricted ML 

estimates corresponding to the Sichel distribution. Its test statistic for (4.5.2) is  

 )()()( 00

1

0 ωUωJωU
 T

RST  

where the score vector 
TLLbLaL )/log,/log,/log,/log()(  U  is being 

evaluated at the null hypothesis, i.e. 
Tba )ˆ,1,ˆ,ˆ( 0000 ω are the restricted maximum 

likelihood estimates. The partial derivatives aL  /log , bL  /log ,  /log L  and 

 /log L are given by (4.5.3), (4.5.4), (4.5.5) and (4.5.6), respectively. In general, 

)( 0ωJ  is either the expected or observed information matrix, also evaluated at the null 

hypothesis. In our case for the generalized Sichel distribution, we use the observed 

information matrix because the expected information matrix is intractable. The observed 

information matrix is the matrix of second partial derivatives of the log-likelihood 
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function and its r,s-th element is obtained as   













sr

rs

L



log
)(

2

ωI , where 
p  is the 

p-th element in the parameter vector ),,,( baω . The score test statistic RST  has an 

asymptotic chi-square distribution with one degree of freedom. 

In order to obtain the likelihood score equations, we derive the partial derivatives of 

the log-likelihood function using the generalized Sichel pmf. As such,  
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Then the partial derivatives are 
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where 
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 dbaeh k ,  

and the derivatives of the modified Bessel function of the third kind is obtained by 

differentiating 












0

/ cosh)cosh2exp()2( dtttababK



 . A program written in 

MATLAB to compute the score test statistic is given in Appendix B. 

4.6 Applications 

To examine the suitability of the mixed Poisson distributions for zero-inflated, over 

dispersed and long-tailed data sets, we fit one simulated data set and four well-known 

data sets from the literature with some mixed Poisson distributions and the zero-inflated 

Poisson distribution. The four real data sets are from diverse fields of insurance, 

medicine and sales and marketing. 

The ML estimates together with the maximized log-likelihoods and AIC values are 

presented in Table 4.4. The standard error for the best fitting model is provided. For the 

parameters of the generalized Sichel distribution, estimates of their standard error are 

obtained from the observed information matrix defined in Section 4.5. For each data set, 

based on the AIC values for model selection we select the best four models for 

goodness-of-fit test. The observed frequency and the fitted distributions are presented in 

Tables 4.5 - 4.9, together with the degrees of freedom, 
2 -statistic and p-values for the 

chi-square goodness-of-fit test. The 
2 -statistic and p-values reported in the tables are 
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obtained after grouping to ensure that the expected frequency for each class is at least 5. 

The degree of freedom is equal to )1(  pt where t = number of classes and p = 

number of parameters. 

4.6.1 Simulated data 

In this section, we illustrate the application of the generalized Sichel distribution with 

a simulated data set with very long tail. The Malayan butterfly data is a well-known 

example in the literature on long-tailed data (Gupta & Ong, 2005). However, the 

frequencies after k = 25 are grouped hence the individual observations at the tail is lost. 

We simulate a long-tailed data using the estimated parameters of the Malayan butterfly 

data given in Gupta and Ong (2005).  The mean and variance of the simulated data set 

are 10.6990 and 22.7307, respectively. A plot of the simulated data is given in Figure 

4.1. The data set has a high zero count and a very long tail. The minimum value of the 

data set is 0, whilst the maximum is 224. During the model fitting, frequencies after k = 

50 are grouped. From Table 4.4(a), the generalized Sichel, Poisson-exponentiated 

Weibull, Sichel and Poisson-lognormal distributions are selected for goodness-of-fit 

test. The model fitting results are presented in Table 4.5. For presentation purposes, 

observations after 20 have been grouped but the analysis is performed on the data used 

during the model fitting. 
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Figure 4.1: A plot of the frequency distribution of the simulated data 
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The generalized Sichel distribution and Poisson-exponentiated Weibull gives a 

satisfactory fit to the data in terms of chi-square goodness-of-fit statistic. The 

generalized Sichel distribution fits well on not only the observations at the right tail but 

also the zero and one counts. 

Table 4.4: ML estimates, maximized log-likelihood and AIC 

(a) Simulated data 
Mixed Poisson 

Distribution 

ML estimates (standard error) Log-

likelihood  

AIC 

Negative 

binomial 
̂ = 0.2989, ̂ = 33.9736 

 

-13697.53 

 

27399.05 

Poisson-

lognormal 
̂ = 0.6902, ̂ = 2.1803 -13687.63 27379.26 

PIG ̂ = 1.3198, ̂  = 0.9983 
-13836.28 

 

27676.57 

PGIG ̂ = 0.3576, ̂ = 0.9816, ̂ = -0.0774 
-13654.18 

 

27314.35 

Poisson-Lindley ̂  = 0.2077 
-17249.23 34502.47 

Generalized 

Poisson-Lindley 
̂ = 0.0000, ̂  = 0.1540 

-14311.92 28627.84 

Poisson-Weibull ̂ = 0.5127, ̂ = 4.7684 
-14654.56 29313.12 

Poisson-

exponentiated 

Weibull 

̂ = 0.4156 (0.1403), ̂ = 3.2881 (3.6174),  

̂ = 1.2340 (0.6601) 

-13650.52 27305.04 

Generalized 

Sichel 
â = 0.2058, b̂ = 0.0624, ̂ = 0.5750,  

̂ = 0.2632 

-13650.23 27308.47 

 

(b) Trobliger’s data (1961) (Gathy & Lefèvre, 2010) 
Mixed Poisson 

Distribution 

ML estimates (standard error) Log-

likelihood  

AIC 

Negative 

binomial 
̂ = 1.1514, ̂ = 0.1246 

 

-10180.29 

 

20364.57 

Poisson-

lognormal 
̂ = -2.2651, ̂ = 0.8036 -10178.00 20360.00 

PIG ̂ = 1.2443, ̂  = 0.2055 
-10178.42 

 

20360.83 

PGIG 
̂ = 1.3138, ̂ = 0.4060, 

̂
= -1.8177 

-10177.62 

 

20361.25 

Poisson-Lindley ̂  = 7.76669 
-10181.02 20366.05 

Generalized 

Poisson-Lindley 
̂ = 1.1375, ̂  = 8.6533 

-10180.34 20364.69 

Poisson-Weibull ̂ = 1.0720, ̂ = 0.1473 
-10179.64 20363.27 

Generalized 
Sichel 

â = 1.1407 (1.3912), b̂ = 0.1514 (0.2447),  

̂ = 1.0560 (0.4198), ̂ = -1.9458 (0.8237) 

-10177.60 20363.21 

Zero-inflated 

Poisson 
̂ = 0.2538, p̂ = 0.4348 

-10190.58 20385.16 
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(c) Accident injuries data (Kadane et al., 2006) 
Mixed Poisson 

Distribution 

ML estimates (standard error) Log-

likelihood  

AIC 

Negative 

binomial 
̂ = 2.0361, ̂ = 0.3474 -11485.48 

 

22974.97 

Poisson-

lognormal 
̂ = -0.5666, ̂ = 0.6620 -11463.00 22932.00 

PIG ̂ = 2.4604, ̂ = 0.4330 -11466.82 22937.64 

PGIG ̂ = 2.7035, ̂ = 0.9671,  ̂  = -3.4594 -11454.22 

 

22914.45 

Poisson-Lindley ̂ = 1.8951 -11551.94 23105.88 

Generalized 

Poisson-Lindley 
̂ = 1.9914, ̂  = 3.15462 -11486.56 22977.12 

Poisson-Weibull ̂ = 1.4378, ̂ = 0.7793 

 

-11495.52 22995.04 

Poisson-

exponentiated 

Weibull 

̂ = 1.3963, ̂ = 0.7748, ̂ = 1.3340 -11489.76 22985.51 

Generalized 

Sichel 
â = 0.0027 (0.0067), b̂ = 0.0715 (0.1170) 

̂ = 3.0000 (1.3142), ̂ = -2.1791 (0.2218) 

-11450.78 22909.56 

Zero-inflated 
Poisson 

̂ = 0.9135, p̂ = 0.2257 -11613.88 23231.76 

 

(d) Data on systemic adverse effects after vaccination (Rose et al., 2006) 
Mixed Poisson 

Distribution 

ML estimates (standard error) Log-

likelihood  

AIC 

Negative 

binomial 
̂ = 1.5268; ̂  = 0.9870 -6740.60  13485.21 

Poisson-

lognormal 
̂ = 0.1372; ̂ = 0.7469 -6762.87 13529.75 

PIG ̂ = 2.5208; ̂  = 0.6782 -6760.27 13524.53 

PGIG ̂ = 0.0000, ̂ = 0.4967,  ̂  = 1.5268 -6740.60 

 

13487.21 

Poisson-Lindley ̂ = 0.9941 -6745.99 13493.99 

Generalized 

Poisson-Lindley 
̂ = 1.2946, ̂  = 1.1654 -6739.00 13482.01 

Poisson-Weibull ̂ = 1.2669; ̂  = 1.6226 -6738.27 13480.53 

Poisson-

exponentiated 

Weibull 

̂ = 1.6210 (0.2271), ̂ = 2.1305 (0.2415),  

̂ = 0.6428 (0.1391) 

-6736.65 13479.29 

Generalized 

Sichel 
â = 0.1756, b̂ = 0.0000 

̂ = 1.8282, ̂ = 0.9879 

-6736.70 13481.40 

 

(e) Quarterly sales data (Shmueli et al., 2005) 
Mixed Poisson 

Distribution 

ML estimates (standard error) Log-

likelihood  

AIC 

Negative 

binomial 
̂ = 1.5817; ̂  = 2.2505 -7526.61  15057.22 

Poisson-

lognormal 
̂ = 0.9853; ̂ = 0.7709 -7562.27 15128.54 

PIG ̂ = 3.3987; ̂  = 0.8394 -7562.22 15128.43 

 Table 4.4, continued   
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Mixed Poisson 

Distribution 

ML estimates (standard error) Log-

likelihood  

AIC 

PGIG ̂ = 0.0000, ̂ = 0.6924,  ̂  = 1.5817 -7526.61 

 

15059.22 

Poisson-Lindley ̂ = 0.4714 -7528.08 15058.16 

Generalized 

Poisson-Lindley 
̂ = 1.1661, ̂  = 0.5132 -7524.96 15053.93 

Poisson-Weibull ̂ = 1.2984 (0.0297); ̂  = 3.8505 (0.0574) -7525.40 15054.80 

Poisson-

exponentiated 

Weibull 

̂ = 1.2548, ̂ = 3.6986, ̂ = 1.0612 -7525.28 15054.56 

Generalized 

Sichel 
â = 0.2033, b̂ = 0.0000 

̂ = 1.2446, ̂ = 1.3334 

-7525.34 15058.67 

Table 4.4, continued 

Table 4.5: Fit of simulated data set 

k 
Observed 

frequency 

Expected frequency 

Generalized 

Sichel 

Poisson-

EW 

Poisson-

lognormal Sichel 

0 1643 1643.24 1647.15 1559.80 1637.31 

1 625 626.66 608.09 720.74 655.59 

2 395 374.13 375.06 427.88 371.88 

3 227 264.38 268.70 291.45 256.15 

4 198 202.79 207.22 215.09 194.40 

5 168 163.26 167.07 167.17 156.01 

6 142 135.72 138.80 134.72 129.80 

7 117 115.43 117.85 111.50 110.73 

8 111 99.87 101.73 94.20 96.23 

9 72 87.58 88.98 80.89 84.83 

10 101 77.64 78.65 70.39 75.62 

11 66 69.44 70.14 61.93 68.03 

12 70 62.57 63.02 55.00 61.66 

13 63 56.74 56.98 49.24 56.25 

14 61 51.73 51.81 44.39 51.59 

15 34 47.39 47.34 40.26 47.53 

16 46 43.60 43.44 36.70 43.98 

17 38 40.27 40.01 33.63 40.83 

18 33 37.31 36.98 30.94 38.03 

19 39 34.67 34.29 28.57 35.52 

20 32 32.31 31.89 26.48 33.26 

21 to 30 223 232.85 227.68 55.00 244.71 

31 to 40 132 137.61 132.86 49.24 148.87 

41 to 49 80 82.03 78.74 44.39 89.89 

50 or more 284 280.77 285.54 40.26 271.30 

Total 5000 5000 5000 5000 5000 

Number of classes 51 51 51 51 

Chi-square 54.4979 55.7434 137.3672 60.8280 

d.f. 46 48 47 47 

p-value 0.1827 0.2065 0.0000 0.0848 
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4.6.2 Real data 

We present in Table 4.6 the fit for Tröbliger’s data (1961) (as cited in Gathy & 

Lefèvre 2010) on the frequency of the number of claims. This data set has an 87% 

proportion of zeros. It has a mean of 0.1434 with standard deviation 0.4031, thus giving 

a dispersion index of 1.1328. From Table 4.4(b), with the exception of the Poisson-

Lindley distribution, the AIC values for all mixed Poisson distributions considered are 

not significantly different. For further analysis, we fit the data to the generalized Sichel, 

PIG, Sichel and Poisson-Weibull distributions. The generalized Sichel and Sichel 

distributions provide a good fit amongst the four mixed Poisson distributions based on 

the p-value of the chi-square goodness-of-fit test. The Sichel distribution being a special 

case of the generalized Sichel distribution, fitting the generalized Sichel distribution 

eliminates the need for piece-wise treatment in the empirical modelling of the data.  

The fit for data on number of injuries sustained in 10,000 accidents in the United 

States in 2001 (as cited in Kadane, Krishnan & Shmueli, 2006) is presented in Table 

4.7. It has a mean of 0.7073, standard deviation 1.0020 thus yielding a dispersion index 

of 1.4194. Its proportion of zeros is at 54%. The generalized Sichel distribution gives a 

significantly better fit on this data in terms of its AIC values in Table 4.4(c) and chi-

square goodness-of-fit statistic in Table 4.7, compared to the other mixed Poisson 

distributions considered here. 

Table 4.8 gives the observed and expected frequencies by model and goodness-of-fit 

results for fitted models on the data on systemic adverse events for first four study 

injections in an anthrax vaccine absorbed (AVA) clinical trial study (Rose, Martin, 

Wannemuehler & Plikaytis, 2006). The data has sample mean 1.5070, standard 

deviation 1.7040 and dispersion index of 1.93, implying presence of over dispersion. 

We see that the Poisson-exponentiated Weibull distribution gives the best fit to the data.  
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Table 4.6: Fit of Trobliger's data (Gathy & Lefèvre, 2010) 

Number 

of 

Claims 

Observed 

Frequency 

Expected Frequency 

Generalized 

Sichel 

Poison-

Weibull PIG PGIG 

0 20592 20593.33 20599.40 20597.30 20593.00 

1 2651 2647.44 2624.52 2633.40 2647.52 

2 287 291.39 314.01 303.63 291.69 

3 41 38.52 36.42 38.37 38.50 

4 7 6.52 4.14 5.34 6.50 

5 0 1.35 0.46 0.80 1.35 

6 1 0.32 0.05 0.13 0.32 

>7 0 0.12 0.00 0.02 0.12 

Total 23579 23579 23579 23579 23579 

Number of classes 6 5 6 6 

Chi-square 0.6165 5.5825 1.7271 0.6338 

d.f. 1 2 3 2 

p-value 0.4324 0.0613 0.6309 0.7284 

 

Table 4.7: Accident Injuries Data (Kadane et al., 2006) 

Number 

of 

accidents 

Observed 

Frequency 

Expected Frequency 

Generalized 

Sichel 

Poisson-

lognormal PIG PGIG 

0 5363 5389.30 5444.1919 5446.28 5408.54 

1 3091 3025.28 2910.76 2900.77 2984.26 

2 1008 1059.84 1085.87 1086.47 1072.46 

3 348 332.94 367.25 372.34 345.44 

4 105 111.96 123.35 126.44 114.36 

5 46 43.16 42.76 43.60 41.47 

6 19 18.89 15.54 15.35 16.81 

7 9 9.04 5.96 5.52 7.59 

8 7 4.56 2.41 2.02 3.76 

9 2 2.37 1.02 0.75 2.02 

10 1 1.25 0.46 0.28 1.15 

> 11 1 1.39 0.43 0.18 2.13 

Total 10000 10000 10000 10000 10000 

Number of classes 9 9 8 10 

Chi-square 6.0877 34.5882 40.1319 12.1989 

d.f. 4 6 5 6 

p-value 0.1927 0.0000 0.0000 0.0577 

 

In Table 4.9, we present the observed and expected frequencies of the fitted models 

on the number of quarterly sales (Shmueli, Minka, Kadane, Borle & Boatwright, 2005). 

The mean is 3.5502 with standard deviation 3.3636, yielding dispersion index 3.19. 
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Both the Poisson-Weibull distribution and generalized Poisson-Lindley distributions 

give a satisfactory fit to the data as compared to the other mixed Poisson distributions 

considered. 

All of the data sets cited here so far do not fit well to the zero-inflated Poisson 

distribution.  This is due to a poor fit on the counts at the right tail of the data although it 

fits the zero counts very well. We also attempted to fit the data sets with the zero-

inflated negative binomial (ZINB) distribution. However, the iterative method used to 

estimate the ZINB parameters failed to converge. This convergence failure is a common 

problem with the ZINB and it was also noted by Famoye and Singh (2006). Moreover, 

we observe that for all of the data sets cited here, the negative binomial predicted a 

higher frequency of zeros than which is observed, hence it may not be necessary to fit 

the ZINB model at all. As such, some mixed Poisson distributions such as the 

generalized Sichel distribution can serve as an alternative to model zero-inflated count 

data. 

Table 4.8: Systemic adverse events after vaccination (Rose et al., 2006) 

Number 

of adverse 

events 

Observed 

Frequency 

Expected Frequency 

Generalized 

Sichel 

Poisson-

Weibull 

Poisson-

exponentiated 

Weibull 

Generalized 

Poisson-

Lindley 

0 1437 1419.32 1414.65 1429.26 1418.11 

1 1010 1024.63 1052.44 1026.71 1054.75 

2 660 670.27 670.79 667.73 668.47 

3 428 409.05 397.89 405.15 394.62 

4 236 235.53 225.43 232.53 223.23 

5 122 128.98 123.49 127.33 122.65 

6 62 67.58 65.88 66.91 65.95 

7 34 34.03 34.38 33.90 34.88 

8 14 16.54 17.61 16.62 18.21 

9 8 7.78 8.87 7.90 9.40 

10 4 3.55 4.41 3.66 4.81 

11 4 1.58 2.16 1.65 2.44 

12 1 0.68 1.05 0.73 1.23 

> 13 0 0.49 0.95 0.00 1.23 

Total 4020 4020 4020 4020 4020 

Number of classes 11 11 11 12 

d.f. 6 8 7 9 

Chi-square 3.8628 8.5174 4.2001 7.3941 

p-value 0.6952 0.3846 0.7565 0.5962 

Univ
ers

ity
 of

 M
ala

ya



80 

Table 4.9: Number of quarterly sales (Shmueli et al., 2006) 

Number 

of sales 

Observed 

Frequency 

Expected Frequency 

Negative 

Binomial 

(Poisson-

Gamma) 

Generalized 

Poisson 

Lindley 

Poisson-

Weibull 

Poisson-

exponentiated 

Weibull 

0 514 490.94 505.72 506.53 504.70 

1 503 537.63 522.70 523.43 525.67 

2 457 480.49 469.29 467.03 468.88 

3 423 397.18 393.68 391.23 391.83 

4 326 314.98 316.65 315.43 315.05 

5 233 243.45 247.40 247.54 246.65 

6 195 184.90 189.20 190.26 189.24 

7 139 138.65 142.33 143.78 142.88 

8 101 102.98 105.68 107.12 106.45 

9 77 75.91 77.63 78.83 78.41 

10 56 55.61 56.53 57.39 57.18 

11 40 40.54 40.85 41.37 41.34 

12 37 29.43 29.33 29.56 29.65 

13 22 21.29 20.95 20.95 21.11 

14 9 15.35 14.89 14.74 14.93 

15 7 11.04 10.53 10.30 10.50 

16 10 7.92 7.43 7.15 7.34 

17 9 5.67 5.22 4.93 5.10 

18 3 4.05 3.65 3.38 3.53 

19 2 2.89 2.55 2.31 2.43 

20 2 2.06 1.78 1.57 1.67 

21 2 1.47 1.24 1.06 1.14 

> 22 1 3.57 2.77 2.12 2.32 

Total 3168 3168 3168 3168 3168 

Number of 

classes 

 

20 20 19 20 

d.f.  17 17 16 16 

Chi-square  17.3347 18.3217 15.6877 18.4206 

p-value  0.4319 0.3688 0.4750 0.2998 

 

Since the Poisson-Weibull and Poisson-exponentiated Weibull distributions give a 

similar fit to the quarterly sales data in Table 4.9, we perform the likelihood ratio test 

for the left-tail test (4.5.1) on the quarterly sales data. The test statistic obtained is 

0.2357 with a p-value of 0.6273. At a significance level of  = 0.05, we do not reject 

the null hypothesis and conclude that the Poisson-Weibull distribution gives a fit which 

is just as good as the Poisson-exponentiated Weibull distribution to this data. 

In Tables 4.6 and 4.7, the p-value of the goodness-of-fit test implies that both the 

generalized Sichel and the Sichel distributions give a good fit to the data sets. For these 

two data sets, the hypothesis testing results for the Sichel test (4.5.2) are presented in 
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Table 4.10. At a significance level of  = 0.05, the null hypothesis is not rejected for 

the Trobliger's data but is rejected for the accident injuries data. This conclusion 

corroborates the analysis of our model fitting results discussed earlier in this section. 

Table 4.10: Score test results for Sichel test 

Data Set Score Test Statistic  p-value 

Tröbliger’s data (1961) on number 

of claims 

0.0566 0.8120 

Accident injuries data 4.2257 0.0398 

 

4.7 Conclusion 

In the past, computational difficulties have hindered the use of many mixed Poisson 

distributions in empirical modelling. In this chapter, we apply a general computational 

approach for evaluating the mixed Poisson probabilities using a Monte Carlo simulation 

technique to compute Poisson-exponentiated Weibull probabilities. This method 

overcomes the computational hurdle which previously have hindered the application of 

many useful mixed Poisson distributions. An alternative is to use a numerical 

quadrature routine, of which we find the algorithm by Sermutlu and Eyyuboglu (2007) 

works well on the generalized Sichel probabilities.  

Through the use of the Monte Carlo simulation technique together with an EM type 

algorithm for maximum likelihood estimation, we avoid the use of numerical methods 

and this allows many mixed Poisson distributions to be considered in model fitting. As 

we have shown in Section 4.6, mixed Poisson distributions such as generalized Sichel, 

Poisson-exponentiated Weibull and Poisson-lognormal are useful in modelling over 

dispersed data thus overcoming the computational issue is of significance.  

Future work can be done to explore variance reduction techniques to speed up the 

Monte Carlo simulation technique in evaluating mixed Poisson probabilities. This 

would then enable the application of this technique for the generalized Sichel 
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distribution, which at the moment takes a long time to compute with Monte Carlo 

simulation. The ML estimation problem for the generalized Sichel distribution and 

Poisson-Weibull distributions is treated differently due to the different structure of their 

respective mixing distributions. In principle, the EM algorithm can be applied on all 

mixed Poisson distributions but its implementation is less straightforward as the mixing 

distribution's likelihood function becomes more complicated. For instance, the M-step 

of the EM-type algorithm can be studied to incorporate conjugate gradient or quasi-

Newton methods (Fletcher, 1987) so that this approach for ML estimation can be used 

for the class of mixed Poisson distributions where the ML equations of the mixing 

distribution is not in closed form. 
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CHAPTER 5: A FAMILY OF COUNT DISTRIBUTIONS ARISING FROM 

NON-EXPONENTIAL INTER-ARRIVAL TIMES 

5.1 Introduction 

A counting process is a stochastic point process }0),({ ttN  where N(t) represents 

the total number of events that have occurred by time t. Let nS  denote the waiting time 

to (or arrival time of) the n-th event, and nX  denote the inter-arrival time or waiting 

time between the (n - 1)-st and the n-th event of this process. Therefore, 0S = 0 and 





n

i

in XS
1

, n ≥ 1. If the sequence of inter-arrival times ,...},{ 21 XX  is iid as )(xf  

with cdf F(x), the counting process }0),({ ttN  is known as a renewal process. In a 

renewal process, the distribution function of nS  can be obtained as the n-fold 

convolution )(xFn  of the distribution of iX  and )(0 tF = 1. From this point forward in 

this thesis, we assume that the inter-arrival times iX  is iid and we drop the index i from 

the notation thus X denotes the inter-arrival time. 

In a renewal process, the number of events that has occurred up to a certain fixed 

time point t is closely related to the duration or inter-arrival times between these events. 

This relationship between the event counts N(t) and inter-arrival times between events 

can be written as tSntN n )( . As such, the pmf of the distribution of the event 

counts can be obtained as  

 )()(}Pr{}Pr{})(Pr{ 11 tFtFtStSntN nnnn   , (5.1.1) 

where )(xFn  is the cdf of nS . Based on (5.1.1), the derivation of the count pmf is 

straightforward if )(xFn  admits a closed form. However, very often
 

)(xFn  can only  be 

expressed as convolution of integrals thus the count pmf becomes complicated. 
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In duration analysis, the hazard function of a distribution is used to capture duration 

dependence. A decreasing hazard function implies negative duration dependence. On 

the other hand, an increasing hazard function implies positive duration dependence, i.e. 

the waiting time is more likely to end the longer it lasts. The exponential distribution is 

a special distribution in the sense that it has a constant hazard function, known as the 

“memoryless” property. 

The Laplace transform )(s  of a function )(xf  is defined as dxxfes sx





0

)()( , s 

a complex number. The Laplace transform exists for the function )(xf  defined over (0, 

∞), whenever the integral converges. Since the inter-arrival times iX 's are iid, the 

Laplace transform of the waiting time 



n

i

in XS
1

 is simply the n-fold convolution of 

the Laplace transform of iX . Consequently, the Laplace transform of the count 

distribution is derived as 

 n

nnn s
s

s
tFtFLntNLs ))((

)(

)(1
))()((}))((Pr{)( 1 







 

 (5.1.2) 

where )(s  is the Laplace transform of the inter-arrival time's pdf )(xf .  

A trivial example of the relationship between the inter-arrival times and the event 

counts is when the inter-arrival times are exponentially distributed. Then the counting 

process is a Poisson process. Besides the exponential distribution, other positive 

continuous distributions especially lifetime distributions can be used to model the inter-

arrival and waiting times in a renewal process. A survey on distributions that have been 

used to replace the exponential distribution is given in Section 5.2. In the subsequent 

sections, we derive the count distribution when the duration follows an inverse Gaussian 

distribution, convolution of two gamma distributions and a hyperexponential (finite 
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mixture of exponentials, also known as Schuhl distribution) distribution. Winkelmann 

(1995) has shown that the dispersion of the count distribution in a stochastic process is 

related to the duration dependence of the inter-arrival distribution. If the hazard function 

is monotonic increasing, the count distribution will be under dispersed. A monotonic 

decreasing hazard function corresponds to an over dispersed count distribution. A 

constant hazard function, in the case of the exponential distribution, corresponds to an 

equidispersed Poisson distribution. Due to the flexibility of the hazard functions, the 

count distributions to be presented in Sections 5.3, 5.4 and 5.5 are over- and/or under 

dispersed. Some concluding remarks are given Section 5.6. 

5.2 Literature Review 

Lifetime distributions are a popular choice to model inter-arrival times in renewal 

processes. Banerjee and Bhattacharyya (1976) derived a new purchase count model by 

modelling the inter-purchase (inter-arrival of purchase incidence) times with an inverse 

Gaussian distribution. To account for population heterogeneity, they modelled the 

parameters of the inverse Gaussian distribution with a natural conjugate family. 

Compared to the negative binomial distribution, this compound inverse Gaussian count 

distribution is shown to give a better fit to a toothpaste purchase data set. 

Winkelmann (1995) obtained a closed form expression for the count distribution with 

Erlangian inter-arrival times. In the same paper, the gamma distribution is used to 

replace the exponential distribution in modelling inter-arrival times. The Weibull 

distribution is a very popular model in reliability studies and McShane, Adrian, 

Bradlow and Fader (2008) derived the count distribution for Weibull duration in the 

regression context. In two separate occasions, Jose and Bindu have considered the 

Mittag-Leffler count distribution (Jose & Abraham, 2011) and Gumbel Type II (Jose & 

Abraham, 2013) count distribution. Recently Ong, Biswas, Peiris and Low (2015) 
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considered a flexible generalized Weibull count distribution which is able to provide a 

better fit than the Weibull count distribution in modelling over dispersed and under 

dispersed count data. A summary of these count distributions is given in Table 5.1. 

Table 5.1: Some existing count distributions in renewal theory 

Inter-arrival 

time distribution 

Probability mass function (pmf) of corresponding count distribution 

Erlang  
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5.3 Inverse Gaussian Count Distribution 

In this section we derive the count distribution when the inter-arrival times has an 

inverse Gaussian (IG) distribution (Johnson, Kotz & Balakrishnan, 1994). Our duration 

dependence-based approach is different from the work by Banerjee and Bhattacharyya 

(1976) in that their model accounts for heterogeneity in the population by assuming a 

compound inverse Gaussian distribution. The interpretation of the IG distribution as a 

first passage time distribution of Brownian motion with positive drift has resulted in the 

distribution being used as a lifetime distribution and duration model in various fields. 

The IG distribution has been used to model duration of a strike (Lancaster, 1972), length 

of hospital stays (Eaton & Whitmore, 1977) and employee service times (Whitmore, 

1979). The pdf of the IG distribution is given by 

 






 




x

x
xxf

2

2

2
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)(
exp

2
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  (5.3.1) 

for 0x , where  ,  > 0. The hazard function (Chhikara & Folks, 1977) is  

 
))/1(/())/1(/(

)2/)(exp()2/(
)(

/2

222/13




 xxexx

xxx
xh




 , 

where   denotes the cdf of the standard normal distribution. There are several 

parameterizations of the IG distribution, but we use (5.3.1) because the parameters has 

meaningful interpretations )(XE  and   is the scale parameter. It is a unimodal and 

positively skewed distribution. The shape of the distribution is determined by the ratio 




 and the pdf is highly skewed for moderate values of this ratio. Chhikara and Folks 

(1977) describes the failure rate of the IG distribution as an increasing function until it 

reaches a maximum point and subsequently the failure rate function decreases towards 

an asymptotic value of 
22/  . 

Univ
ers

ity
 of

 M
ala

ya



88 

When  , we obtain a one-parameter limiting form of IG, known as the 

distribution of first passage time of drift-free Brownian motion. Its pdf is given as 

 











x
xxf

2
exp

2
);( 2

3





   

with 0x , where  > 0 (Johnson et al., 1994). The expected value and variance of this 

distribution are infinite. On the other hand, when  = 1, the distribution is also known 

as the Wald distribution.  

The Laplace transform of the inverse Gaussian distribution (Seshadri, 1983) is given 

as 
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Proposition 5.1  If the inter-arrival time (duration) has an inverse Gaussian 

distribution with pdf (5.3.1), the inverse Gaussian count distribution has pmf given by 
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 The derivation of expression (5.3.3) is given in Appendix E. 

Since the IG duration model has an almost increasing failure rate, the IG count 

distribution is more suited to model under dispersed data, although it may also be able 

to model over dispersion. The pmf plots of the inverse Gaussian count distribution and 
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the Poisson distribution is given in Figure 5.1. For comparison purposes, the mean for 

both distributions is set to 2 (E(N) = 2).  
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Figure 5.1: Probability functions for the Poisson and inverse Gaussian count 

distribution; (top)   = 0.17,  = 1 (over dispersion), (bottom)  = 1,  = 0.438 

(under dispersion) 
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5.4 Count Distribution for Convolution of Two Gamma Duration 

The gamma duration model has been used by Winkelmann (1995) to derive a gamma 

count distribution for regression modelling. The gamma density function is defined as 

xexxf 



 


 1

)(
)( ,  ,  > 0. We find that the gamma count distribution is a 

satisfactory model for many over dispersed and under dispersed data. It is then of 

interest to examine the convolution of two gamma distributions as a duration model. 

This generalization is motivated by an interpretation that the inter-arrival time in a 

duration model may be determined by two variables both of which are gamma 

distributed. In discussing the use of convolution distributions as duration models, 

Ickowicz and Sparks (2015) provide an example whereby the length of stay in a hospital 

could possibly be determined by patient’s need and the hospital’s discharging process. 

If we represent the inter-arrival time X as a sum of two independent gamma random 

variables, then X has a convolution of two gamma distributions. A brief review on the 

convolution of two gamma density functions can be found in Johnson et al. (1994). We 

shall adapt the density function given in Moschopoulos (1985) for the sum of n 

independent gamma random variables, which is derived from the n-convolutions of the 

moment generating function. Let 21 XXX  , where iX , i = 1, 2, are distributed as 

gamma with parameters i and i  respectively. We obtain the density function of X as 
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Proposition 5.2  If the inter-arrival time (duration) has a convolution of two gamma 

distributions with pdf (5.4.1), the count distribution has pmf given by 

  ),,,,(),,,,(})(Pr{ 212112121  tCtCntN nn   (5.4.2) 

where 
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The derivation of expression (5.4.2) is given in Appendix F. 

The convolution of two gamma distributions has an increasing hazard function when 

its two component distributions has an increasing hazard function, i.e. both 1  and 2  

are greater than 1. In other cases, convolution of two gamma distributions may give rise 

to a distribution with increasing or decreasing hazard function. Therefore, the 

convolution of two gamma count model can also model both over dispersion and under 

dispersion relative to the Poisson distribution, with some added flexibility than the 

simple gamma count model. Figure 5.2 compares the probability functions of the 

convolution of two gamma count distribution with a Poisson distribution. Univ
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Figure 5.2: Probability functions for the Poisson and convolution of two gamma 

count distribution; (top) 1  = 1.5, 2  = 1.9 (under dispersion), (bottom) 1 = 0.2, 

2  = 0.5 (over dispersion) 

 

The convolution of two gamma distributions nests the special case of convolution of 

two exponential distributions, i.e. when 1 = 2 = 1. This two-component 

hypoexponential count distribution with parameters 1  and 2  can model under 

dispersion and Figure 5.3 compares its probability function with a Poisson distribution.  
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Figure 5.3:  Probability function for the Poisson and convolution of two 

exponentials count distribution; 1 = 4.2, 2 = 4.85 (under dispersion) 

 

5.5 Count Distributions with Finite Mixture Inter-arrival Times 

In this section we derive the count distribution when the duration has a finite mixture 

of exponential model. The concept of finite mixture is used to model a population which 

consists of subpopulations. As such, using finite mixture distributions as an underlying 

duration model in a stochastic process can account for the heterogeneity present in the 

population when modelling the event counts. An immediate example is the possible 

existence of two subpopulations of subjects in the study of health care utilization, i.e. 

those who rarely consults a specialist or those who sees a specialist regularly. 

The hyperexponential distribution has been used to approximate the distribution of 

long-tailed inter-arrival times (Feldmann & Whitt, 1998), in comparison with the 

Weibull and Pareto distributions. Nair and Abdul (2010) derived several important 

properties of the two-component hyperexponential distribution in the context of renewal 

theory. It is a three-parameter distribution, which is relatively simple as compared to 

other finite mixture distributions. 
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The pdf of a finite mixture of exponentials is given by 
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Nair and Abdul (2010) has derived the pdf and cdf of the waiting time nS  as 
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where (.)2  is the hypergeometric series 
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Consequently, if the inter-arrival time (duration) has a hyperexponential distribution 

with pdf (5.5.2), the hyperexponential count distribution has pmf given by 

 )()(})({ 1 tGtGntNP nn  ,  n = 0, 1, 2, …, (5.5.6) 

where 
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defined in (5.5.5). 

The hyperexponential distribution has a monotone decreasing hazard function thus 

the hyperexponential count distribution (5.5.6) can model over dispersed data.  

5.6 Conclusion 

In this chapter, a family of count distributions is derived by considering some non-

exponential inter-arrival times. The choice of the inverse Gaussian distribution, 

convolution of two gamma distributions and the hyperexponential distribution are 

motivated by their applications in modelling life times, the behaviour of their hazard 

function and their physical interpretation in modelling duration. By taking into 

consideration the hazard function of the inter-arrival times, this family of count 

distributions has the flexibility of being able to model under-, equi- and over dispersed 

count data.  Univ
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CHAPTER 6: COMPUTATION OF PROBABILITIES AND STATISTICAL 

INFERENCE FOR NON-EXPONENTIAL DURATION COUNT 

DISTRIBUTIONS 

6.1 Introduction 

Count distributions arising from non-exponential inter-arrival times in a stochastic 

process are able to model under- and/or over dispersed data, depending on the hazard 

function of the inter-arrival times’ distribution. However, with the exception of the 

Erlangian count distribution proposed by Winkelmann (1995), the pmf of these count 

distributions are complicated, often involves special mathematical functions or 

computationally intractable expression. For example, the generalized Weibull count 

probabilities derived by Ong, Biswas, Peiris and Low (2015) involves an infinite series 

and a gamma function )(x  which tends to numerically overflow quickly. 

 In this chapter, a numerical inverse Laplace transform technique is proposed for 

computing the probabilities of count distributions arising from renewal processes with 

non-exponential duration. Using this method, computational restrictions which limits 

the use of many lifetime distributions to model inter-arrival times can be overcome.  

The organization of this chapter is as follows. A literature review on the existing 

methods used in computing the count probabilities are given in Section 6.2. The 

implementation of the algorithm for the proposed technique, as well as a comparison on 

its accuracy with existing methods in the literature is discussed in Section 6.3. The 

proposed method is used for calculating the renewal function in Section 6.4. In Section 

6.5, we use the proposed technique for fitting under- and over dispersed data sets with 

the family of count distributions proposed in Chapter 5. A hypothesis test is performed 

for the hyperexponential count distribution in Section 6.6. Finally, concluding remarks 

is given in Section 6.7.  
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6.2 Literature Review 

McShane, Adrian, Bradlow and Fader (2008) and Jose and Abraham (2013) have 

used the polynomial expansion method to derive the count distribution for Weibull and 

Gumbel inter-arrival times, respectively. A different approach by From (2004) used a 

family of generalized Poisson distributions to approximate the renewal counting 

processes with Weibull, truncated normal and exponentiated Weibull inter-arrival times. 

Chaudhry, Yang and Ong (2013) used the method of roots and a Padè approximation 

method for computing the count probabilities for several inter-arrival times 

distributions.  

An important concept in renewal processes is the renewal function or expected 

number of renewals E{N(t)} which is defined as 
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The Laplace transform of (6.2.1) is 
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There are many studies on the approximation of the renewal function. Using a 

generalized cubic splining algorithm which provides piecewise polynomial 

approximations to recursively-defined convolution integrals, Baxter, Scheuer, Blischke 

and McConalogue (1981) have tabulated the renewal function and variance function for 

renewal processes with gamma, inverse Gaussian, lognormal, truncated normal and 

Weibull inter-arrival times. However, they noted that the convergence of the algorithm 

is slow for some of the parameter values. Chaudhry et al. (2013) took a slightly different 

approach by using the probability function obtained from numerically inverting the 
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Laplace transform in rational function form to calculate the renewal function and 

variance of several count distributions. They obtained the distribution function, mean 

and variance of N(t) using the method of roots for numerically inverting the Laplace 

transform when it can be expressed as a rational function. They also studied the Padè 

approximation method to obtain an approximate rational function for the Laplace 

transform when it is not a rational function.  In addition, they used Padè approximation 

method prior to the method of roots when the Laplace transform could not be expressed 

as a rational function, such as in the case for gamma and inverse Gaussian distributions. 

6.3 Computation of the Probabilities of Count Distribution 

In this section, we discuss the proposed numerical inverse Laplace transform 

technique for computing the probabilities of count distribution. The relationship 

between the Laplace transform of the inter-arrival times' distribution and the count 

distribution has been discussed in Chapter 5. For easier reference, we reproduce 

equation (5.1.2) here as 

 n

nnn s
s

s
tFtFLntNLs ))((

)(

)(1
))()((}))((Pr{)( 1 







 

, (6.3.1) 

where )(s  is the Laplace transform of the inter-arrival time's pdf )(xf .  

The probability function of the counts can be recovered by numerically inverting the 

Laplace transform (6.3.1). Using this method, given the inter-arrival time distribution 

and its Laplace transform, we will be able to compute the corresponding count 

probabilities.  

For some common functions, the inverse Laplace transforms )(xf  are readily 

available from existing tables (Erdélyi, 1953). Otherwise, there are various explicit 

formulae for inverting a Laplace transform )(s , such as the Bromwich inversion 
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integral formula and the Post-Widder inversion formula. In most cases, it is difficult to 

find an analytical expression for the inverse Laplace transform using these formula thus 

a numerical inversion is necessary. Abate and Valkó (2004) and Valkó (2015) have 

given a comprehensive review on the numerous methods for numerical inversion of 

Laplace transforms. In our study, we use a numerical inversion algorithm which is 

based on the Bromwich inversion integral and gives good results for smooth functions. 

The algorithm was originally proposed by Dubner and Abate (1968), improved by 

Abate and Whitt (1992) and was proposed by Abate and Whitt (1995) for numerically 

inverting Laplace transforms of probability distributions.  

The basis of the proposed algorithm is the Bromwich inversion integral formula 

which is given as 
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 , (6.3.2) 

where a is another real number such that 0sa  , 0s  is the real part of the singularities 

of )(s  and 1i . The algorithm is developed by first applying the trapezoidal rule 

to the integral in (6.3.2), and subsequently using a Fourier-series method for 

approximation. Based on the algorithm, we obtain the following formula for computing 

the count probabilities 
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where (.)n is as defined in (6.3.1).  
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The convergence of the infinite sum in (6.3.3) can be accelerated by applying the 

well-known Euler's algorithm for alternating series. Therefore, the count probabilities 

(6.3.3) are approximated using the following formula 
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where )(ts p is the p-th partial sum  
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The choice of the constant A affects the discretization error caused by using the 

trapezoidal rule. We use Abate and Whitt's (1995) suggestion to set A = 18.4, p = 38 and 

m = 11. The value of p may be increased when necessary. The algorithm can be 

implemented in programming languages which provides for complex number 

computation, such as MATLAB
©
.  

6.3.1 Implementation 

In order to implement the numerical Laplace transform inversion method for 

computing the count probabilities, knowledge of the inter-arrival time distribution’s 

Laplace transform is necessary. The Laplace transform of the exponential, Erlang, 

gamma distributions, as well as of those proposed in Chapter 5, is listed in Table 6.1. 

The Laplace transform of the Weibull and generalized Weibull distributions cannot be 

in expressed in a closed form. 

To illustrate the accuracy of this numerical Laplace transform inversion method, we 

apply it in calculating the count probabilities for generalized Weibull duration and 

Erlangian duration. The pmf of the Erlangian count distribution is given as 

(Winkelmann, 1995) 

Univ
ers

ity
 of

 M
ala

ya



101 

 
 













1

0 )!(
})(Pr{

 







i

in

t

in

t
entN   

for n = 0, 1, 2, …, where   integer and   > 0. The pmf of the Erlangian count 

distribution is in closed form and computationally simple, hence there is no actual need 

to use the proposed method but it serves as a good example for comparison purpose.  

Table 6.1: Laplace transforms 

Distribution of the 

inter-arrival times 

Laplace Transform 

Exponential 
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The pmf of the generalized Weibull count distribution is defined as (Ong et al., 2015) 
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, and a, 

 > 0, 0x  if 0  and 
 /1)/(0 ax   if 0 . The Laplace transform of the 

generalized Weibull density function is approximated using Gauss-Laguerre quadrature 

since it is not available in closed form.  
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The comparison table is presented in Table 6.2. The count probabilities for 

generalized Weibull duration are computed when a = 1,  = 1 and  = -2, t = 0.25 and t 

= 1. For the Erlangian count distribution, we compute the probabilities when  = 2, 

 = 0.8, t = 0.25 and t = 1. A column to indicate the accuracy of our proposed method 

is included in Table 6.2(b) and Table 6.2(c) since we are comparing against the actual 

probabilities of the Erlangian count distribution. In all cases, we find that our 

approximation is accurate up to at least seven decimal places. To illustrate the issue of 

overflowing which might occur, we present the count probabilities for generalized 

Weibull duration when a = 2,  = 1 and  = -2 and t = 1 in Table 6.3. It is clear that in 

this case, there is a numerical error in the computation of the probabilities when n = 1, 

2. 

Table 6.2: Count probabilities for (a) generalized Weibull count distribution, (b) 

Erlangian count distribution (t = 0.25), and (c) Erlangian count distribution (t = 1); 

computation using (i) our proposed method, (ii) formula of the count distribution 

(a) Generalized Weibull count distribution  
n Pr{N(t) = n} 

t = 0.25 

Pr{N(t) = n} 

t = 1 

(i) (ii) (i) (ii) 

0 0.790123462190233 0.790123456790123 0.444444446077630 0.444444444444444 

1 0.185268558281666 0.185268554955749 0.341447772405153 0.341447770099717 

2 0.022624019619715 0.022624018469588 0.152421254574663 0.152421252253988 

3 0.001862447034136 0.001862446759278 0.047632000079489 0.047631998279757 

4 0.000115528824677 0.000115528774610 0.011418307350013 0.011418306220399 

5 0.000005746921940 0.000005746914580 0.002217009636005 0.002217009042290 

6 0.000000238568216 0.000000238567310 0.000361439244000 0.000361438976100 

7 0.000000008496400 0.000000008496304 0.000050759289875 0.000050759184107 

 

(b) Erlangian count distribution (t = 0.25) 
n Pr{N(t) = n} Accuracy 

(%) (i) (ii) 

0 0.982476912658251 0.982476903693578 99.99 

1 0.017466257275868 0.017466256065664 99.99 

2 0.000056765366099 0.000056765332213 99.99 

3 0.000000074855777 0.000000074855383 99.99 

4 0.000000000053140 0.000000000053138 99.99 

5 0.000000000000024 0.000000000000024 100.00 

6 0.000000000000000 0.000000000000000 100.00 

7 0.000000000000000 0.000000000000000 100.00 
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(c) Erlangian count distribution (t = 1) 
n Pr{N(t) = n} Accuracy 

(%) (i) (ii) 

0 0.808792138560495 0.808792135410999 100.00 

1 0.182128011589934 0.182128006788847 99.99 

2 0.008895517173780 0.008895515278950 99.99 

3 0.000182292662905 0.000182292332810 99.99 

4 0.000002035889418 0.000002035857392 99.99 

5 0.000000014264304 0.000000014262333 99.99 

6 0.000000000068513 0.000000000068429 99.88 

7 0.000000000000241 0.000000000000239 99.17 

Table 6.2, continued 

Table 6.3:  Count probabilities for generalized Weibull count distribution when 

a = 2,  = 1 and  = -2 and t = 1 

n 

 

Pr{N(t) = n} 

Formula (6.3.1.1) Proposed inverse Laplace transform 

method 

0 0.2500 0.2500 

1 63.5982 0.2971 

2 2.3327 0.2305 

3 0.1839 0.1317 

4 0.0604 0.0593 

5 0.0220 0.0220 

6 0.0069 0.0069 

7 0.0019 0.0019 

 

The pmf of the inverse Gaussian count distribution has been given in Chapter 5. 

Chaudhry et al. (2013) computed the probabilities for the inverse Gaussian count 

distribution but the pmf was not derived. In Table 6.4, we compare the probability 

function of gamma, inverse Gaussian and Weibull count distributions with those 

obtained by Chaudhry et al. (2013). The difference in the probabilities is at most two 

decimal places. In the case of Weibull count distribution, we include only the results 

when t = 0.25 because the algorithm could not converge for t = 0.60 and t = 1 when   = 

3, which are the other two values included in Chaudhry et al. (2013). Convergence 

issues with the Weibull renewal function have been discussed by Constantine and 

Robinson (1997) whereby they developed a convergent damped exponential series by 

residue calculations of the Laplace transform of the renewal integral equation for the 

Weibull renewal function when   > 1.  
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Table 6.4:  Probability functions for (a) gamma count distribution, (b) inverse 

Gaussian count distribution, and (c) Weibull count distribution for selected values 

of t; computation using (i) our proposed method, (ii) method of Chaudhry et al. 

(2013). 

(a) Gamma count distribution 

t 
Pr{N(t) = 0} Pr{N(t) = 1} Pr{N(t) = 2} Pr{N(t) = 3} Pr{N(t) = 4} 

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) 

0.1 0.6938 0.6871 0.2341 0.2385 0.0579 0.0602 0.0117 0.0119 0.0021 0.0019 

0.4 0.4061 0.4071 0.3092 0.3088 0.1683 0.1677 0.0744 0.0743 0.0283 0.0284 

1.25 0.1291 0.1291 0.1952 0.1951 0.2050 0.2050 0.1730 0.1730 0.1249 0.1249 

 

(b) Inverse Gaussian count distribution 

t 
Pr{N(t) = 0} Pr{N(t) = 1} Pr{N(t) = 2} Pr{N(t) = 3} Pr{N(t) = 4} 

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) 

0.25 0.7394 0.7445 0.2497 0.2442 0.0108 0.0112 0.0001 0.0001 0.0000 0.0000 

0.7 0.3377 0.3390 0.4070 0.4042 0.2044 0.2062 0.0460 0.0457 0.0047 0.0046 

1.0 0.1623 0.1623 0.2865 0.2869 0.2871 0.2867 0.1763 0.1762 0.0681 0.0683 

 

(c) Weibull count distribution 

t Pr{N(t) = 0} Pr{N(t) = 1} Pr{N(t) = 2} Pr{N(t) = 3} Pr{N(t) = 4} 

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) 

0.25 0.9845 0.9841 0.0155 0.0159 0.0000 0.0000 0.0000 - 0.0000 - 

 

6.4 Renewal function and variance 

Using the probability of the counts, we also computed the renewal function and 

variance function for comparison with those obtained by Baxter et al. (1981) and 

Chaudhry et al. (2013). The details are presented in Table 6.5. In most cases, the values 

computed using our proposed method is closer to that of Baxter et al. (1981). Baxter et 

al. (1981) has verified the accuracy of their extended cubic splining algorithm through 

comparisons with previous tabulations for the Weibull count distribution in the 

literature and a direct evaluation of the incomplete gamma integral for the gamma count 

distribution. 
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Table 6.5: Renewal and variance function for (a) gamma count distribution, (b) 

inverse Gaussian count distribution, and (c) Weibull count distribution for selected 

values of t; computation using (i) our proposed method, (ii) method of Baxter et al. 

(1981), and (iii) method of Chaudhry et al. (2013). 

(a) Gamma count distribution 
t Renewal Function Variance Function 

(i) (ii) (iii) (i) (ii) (iii) 

0.1 0.3953 0.3933 0.4040 0.4580 0.4485 0.4623 

0.4 1.0560 1.0550 1.0545 1.3954 1.3901 1.3970 

1.25 2.6662 2.6653 2.6663 4.0491 4.0441 4.0487 

 

(b) Inverse Gaussian count distribution 

t 
Renewal Function Variance Function 

(i) (ii) (iii) (i) (ii) (iii) 

0.25 0.2716 0.2715 0.2669 0.2198 0.2200 0.2188 

0.7 0.9739 0.9739 0.9736 0.7717 0.7718 0.7732 

1.0 1.7636 1.7638 1.7635 1.5290 1.5293 1.5294 

 

(c) Weibull count distribution 

t 
Renewal Function Variance Function 

(i) (ii) (iii) (i) (ii) (iii) 

0.25 0.0155 0.0156 0.0159 0.0153 0.0154 0.0156 

 

6.5 Applications of the Count Distributions 

In this section, the pmf of the count distributions are evaluated using the numerical 

inverse Laplace transform method discussed in the preceding sections. Maximum 

likelihood (ML) estimation of the parameters is performed via numerical global 

optimization using the simulated annealing (Goffe, Ferrier & Rogers, 1994) algorithm. 

Although we have derived the count distribution for a time period of length t, we 

consider a unit time interval t = 1 without loss of any generality. In this section we 

follow Cochran's (1954) recommendation to group cells with expected frequencies of 

less than 1.0.  

6.5.1 Over Dispersed Data 

We fit count distributions that are able to model over dispersion to two over 

dispersed data sets. Consequently, the inverse Gaussian count distribution and the 

Univ
ers

ity
 of

 M
ala

ya



106 

hypoexponential count distribution are not discussed in this section, since they are able 

to model only under dispersed data sets. 

Table 6.6 gives the observed and expected frequency table on the number of doctor 

consultations in a two-week period from the 1977-78 Australian Health Surveys 

(Cameron & Trivedi, 1986). Such data is useful in health economics research which 

studies the link between health care utilization and economic variables. The data set is 

over dispersed with a mean of 0.3017 and variance 0.6370. Based on the AIC value and 

chi-square goodness-of-fit test statistic, the Weibull count distribution gives the best fit 

for this data set.  

Table 6.6: Number of consultations with specialists or doctors in a two-week 

period (Cameron & Trivedi, 1986) 
 

Count Obs Exp G 
Hyper 

Exp 

Conv 

G 
W GW 

0 4141 3838.18 3985.02 3986.99 3986.08 3986.81 3986.61 

1 782 1158.11 926.48 924.16 925.02 924.21 924.23 

2 174 174.72 214.40 214.21 214.37 214.28 214.37 

3 30 17.57 49.40 49.65 49.61 46.69 49.74 

4 24 1.33 11.34 11.51 11.47 11.52 11.55 

5 9 0.08 3.36 3.47 3.44 3.48 3.49 

6 12       

7 12       

8 5       

9 1       

Total  5190.00 5190.00 5190.00 5190.00 5190.00 5190.00 

Number of 
classes 

6 6 6 6 6 6 

d.f. 4 3 2 1 3 2 

2  18540.47 436.57 420.16 424.69 419.14 417.46 

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Log-likelihood 

function value 
-3983.19 -3660.56 -3657.93 -3658.75 -3657.83 -3657.83 

AIC 7968.39 7325.11 7321.87 7325.50 7319.66 7321.27 

 

Table 6.7 presents the count frequency distribution for the labour mobility data 

(Winkelmann & Zimmermann, 1995), which is a topic of interest in labour economics. 

The data has a sample mean of 0.7906 and variance 1.6050. For this data set, the 

generalized Weibull count distribution gives the best fit.  
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For the over dispersed data sets, the count model with hyperexponential duration 

provides a closer fit than the exponential and gamma duration models in terms of AIC 

value. The Weibull count distribution and the generalized Weibull count distribution 

give the best fit to the data in Table 6.6 and Table 6.7, respectively. Since the Weibull 

and generalized Weibull distribution does not have a closed form Laplace transform, the 

model fitting takes up a significantly longer time. In the case of distributions with 

closed Laplace transform, the hyperexponential count distribution gives the best fit for 

both over dispersed data sets presented in this section. As such, when computational 

time is a concern, the hyperexponential count distribution may serve as a feasible model 

to fit these data sets. 

Table 6.7: Labour Mobility (Winkelmann and Zimmermann, 1995) 

Count Obs Exp G 
Hyper 

Exp 

Conv 

G 
W GW 

0 465 366.04 437.51 450.68 450.40 451.05 457.51 

1 183 289.38 207.75 198.99 199.19 198.66 197.80 

2 89 114.39 93.49 87.86 88.00 87.65 84.08 

3 39 30.15 40.33 38.79 38.83 38.74 35.70 

4 17 5.96 16.80 17.13 17.12 17.16 15.66 

5 5 1.08 6.80 7.56 7.54 7.61 7.39 

6 1  2.68 3.34 3.32 3.39 3.83 

7 6  1.03 1.47 1.46 1.51 2.15 

8 0  0.62 1.16 1.14 1.22 1.25 

9 1      1.62 

10 1       

Total 807       

Number of classes 6 9 9 9 9 10 

d.f. 4 6 5 4 6 6 
2  248.84 33.47 18.75 19.06 18.14 13.05 

p-value < 0.001 < 0.001 0.0021 0.0008 0.0059 0.0423 

Log-likelihood 

function value 
-1083.09 -995.35 -991.69 -991.62 -991.55 -990.07 

AIC 2168.18 1992.71 1985.38 1991.24 1987.10 1986.15 

 

We also verify that the convolution of two exponentials count distribution gives 

exactly the same fit as the simple Poisson distribution, implying that this distribution is 

not suitable for over dispersed count data. The inverse Gaussian count distribution also 
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gives a poor fit to both of these data sets. This coincides with the characteristic of inter-

arrival time distributions which has an increasing hazard function. 

 

6.5.2 Under Dispersed Data 

Table 6.8 gives the distribution on completed fertility in a group of Swedish women 

(Melkersson & Rooth, 2000). The data set is slightly under dispersed with mean 2.1641 

and variance 1.7814. From the chi-square goodness-of-fit value and the AIC value, the 

convolution of two gamma count distribution is the best fitting model for this data set. 

Table 6.8:  Completed fertility in a group of Swedish women (Melkersson & 

Rooth, 2000) 

Count Obs Exp G Conv 

Exp 

Conv G IG W GW 

0 114 134.38 96.43 100.90 104.88 114.80 94.47 134.03 

1 205 290.81 292.65 285.19 273.29 266.41 298.08 290.94 

2 466 314.67 354.96 352.34 357.09 342.10 354.52 314.80 

3 242 226.99 249.85 254.80 260.57 266.72 246.32 227.04 

4 85 122.81 119.26 122.08 121.96 130.34 118.09 122.83 

5 35 53.15 42.08 41.63 40.12 40.47 42.65 53.16 

6 16 19.17 11.60 10.60 9.87 8.04 12.26 19.18 

7 4 5.93 3.17 2.46 2.23 1.11 3.61 5.93 

8 - 12 3 2.09      2.09 

Total  1170.00 1170.00 1170.00 1170.00 1170.00 1170.0 1170.0 

Number of 

classes 

10 9 9 9 9 9 10 

d.f. 8 6 6 4 4 6 6 

2  121.57 81.78 84.99 78.26 116.84 83.20 121.40 

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Log-likelihood 

function value 

-1956.66 -1942.17 -1944.51 -1940.25 -1958.77 -1942.58 -1956.59 

AIC 3915.31 3888.33 3893.03 3888.50 3921.54 3889.16 3919.18 

 

Skellam's (1948) data on secondary association of chromosomes in Brassika is given 

in Table 6.9. The data is under dispersed with a mean of 1.7418 and variance 0.8562. 

Based on the chi-square values, the convolution of two gamma count distribution gives 

the best fit to this data set. However, it is to be noted that the small number of classes 

affects the distribution of the chi-square statistic since its degree of freedom depends on 
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the number of parameters (i.e. four in the convolution of two gamma count distribution). 

In this event, the two-parameter inverse Gaussian count distribution gives the best fit 

with a chi-square value of 21.03. 

Table 6.9: Secondary association of chromosomes in Brassika (Skellam, 1948) 

Count Observed Exp G Conv 

Exp 

Conv G IG W GW 

0 32 114.96 23.77 31.35 36.74 26.57 24.55 56.15 

1 103 123.64 118.70 116.02 90.21 109.58 123.14 104.99 

2 122 66.49 128.86 118.25 133.85 134.90 122.16 90.14 

3 80 23.83 53.35 54.54 75.79 56.96 52.11 52.13 

> 4 0 8.07 12.31 16.84 0.41 8.98 15.04 33.60 

Total 337 337.00 337.00 337.00 337.00 337.00 337.00 337.00 

Number of classes 5 5 5 5 5 5 5 

d.f. 3 2 2 0 2 2 1 

2  250.11 30.91 30.32 3.66 21.03 35.53 70.18 

p-value < 0.001 < 0.001 < 0.001 - < 0.001 < 0.001 < 0.001 

Log-likelihood 

function value 

-489.88 -457.06 -459.29 -438.68 -450.91 -460.66 -487.66 

AIC 981.76 918.13 922.58 885.37 905.81 925.32 981.32 

 

The hyperexponential count distribution gives a very poor fit to both data sets. This 

observation coincides with the characteristic of the hyperexponential inter-arrival times’ 

distribution which has a decreasing hazard function thus it is suitable for modelling over 

dispersed data sets. 

The ML estimates are given in Table 6.10. The standard errors of the ML estimates 

for the distribution which gives the best fit to the respective data sets are computed 

through bootstrapping and given in the same table. For numerical stability, we transform 

the parameters for the generalized Weibull count distributions to its corresponding 

reciprocals prior to performing ML estimation. For the data on monthly doctor 

consultations and labour mobility, it is noted that both the ML estimates of   for the 
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gamma duration model and 1  for the hyperexponential duration model approaches the 

boundary of 0. 

Table 6.10: ML estimates of the fitted distributions 

Data set ML estimates of parameters (standard error) 

Legend Exp = Exponential; G = Gamma; HyperExp = Hyperexponential; ConvExp = 

Convolution of two exponentials; ConvG = Convolution of two gamma; IG = 

Inverse Gaussian; W = Weibull; GW = Generalized Weibull 

Table 6.6 

(Number of 

consultations 

with doctors or 

specialists) 

̂ = 0.3017 [(Exp] 

̂ = 0.0545, ̂ = 0.0000 [G] 

1̂ = 0.0000, 
2̂  = 43.8787, p̂ = 0.7682 [HyperExp]  

 1̂ = 0.0293, 
1̂ = 0.0000, 2̂ = 0.0000, 

2̂ = 7.7068 [ConvG]  

̂ = 16.6245 (1.8436), ̂ = 7.4567 (0.2119) [W] 

â = 3090.40, ̂ = 0.3673, ̂ = -0.2514 [GW] 

Table 6.7 

(Labour 

mobility data) 

̂ = 0.7905 [Exp] 

̂ = 0.01, ̂ = 0.1870 [G] 

1̂ = 0.0000, 
2̂  = 19.4552, p̂ = 0.5585 [HyperExp] 

1̂ = 0.0282, 1̂ = 0.0000, 2̂ = 0.0000, 2̂  = 67.0468 [ConvG] 

̂ = 0.0551, ̂ = 3.7724 [W] 

â = 128.6581 (74.4390), ̂ = 1.2437 (0.1623), ̂ = -0.1208 (0.0281)  [GW] 

Table 6.8 

(Completed 

fertility in 

Swedish 

women) 

̂ = 2.1641 [Exp] 

̂ = 1.3532, ̂ = 3.1046 [G] 

1 = 2.6091, 8015.172   [ConvExp] 

1̂ = 1.6063 (0.8888), 1̂ = 4.0972 (1.6213), 2̂ = 0.0008 (0.2161), 2̂  = 0.0000 

(2.096) [ConvG] 




=0.4487, ̂ = 0.4602 [IG] 

̂ = 2.1692, ̂ = 0.8462 [W] 

â = 2.1642, ̂ = 1.0000, ̂   [GW] 

Table 6.9 

(Secondary 

association in 
chromosomes) 

̂ = 1.0755 [Exp] 

̂ = 2.4717, ̂ = 5.0429 [G] 

1  = 3.9803, 2 3.9804 [ConvExp] 

1̂ = 89.9209, 1̂ = 336.8173, 2̂ = 0.3218, 2̂  = 1.2048 [ConvG] 




= 1.0828 (0.0932), ̂ = 0.4970 (0.0158) [IG] 

̂ = 1.8249, ̂ = 0.6258 [W] 

â  = 1.7424, ̂ = 1.0000, ̂ [GW] 
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6.6 Hypothesis Testing for the Hyperexponential Count Distribution 

From the results in the previous section, the hyperexponential count distribution can 

serve as an alternative to the simple Poisson distribution or gamma distribution to model 

over dispersed data. To determine the significance of the phase parameter p in the 

hyperexponential count distribution, we perform the likelihood ratio test to test the 

hypotheses H0: p = 0 (exponential duration) versus H1: p ≠ 0 (hyperexponential 

duration). 

For all the over dispersed data sets, the likelihood ratio test statistic has a value of 

greater than 70.0 leading to the rejection of H0 at a significance level of 0.05.  

6.7 Conclusion 

In this chapter, an efficient and accurate method to compute the probabilities of a 

count distribution arising from non-exponential inter-arrival times between event counts 

is proposed and discussed. The implementation of this numerical inverse Laplace 

transform technique is straightforward when the Laplace transform of the inter-arrival 

times’ distribution is available in closed form. This method removes the computational 

hurdle in applying a wide range of lifetime distributions for modelling the inter-arrival 

times between events. When the Laplace transform of the inter-arrival time distribution 

is not available in closed form, other methods to approximate the Laplace transform for 

numerical inversion can be explored, such as the infinite series, Gaussian quadrature, 

Laguerre method and the continued fractions technique.  
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CHAPTER 7: CONCLUSION AND FURTHER WORK 

In this thesis, some families of count distributions for modelling over dispersion, 

under dispersion and zero-inflation have been proposed and studied. In a mixed Poisson 

distribution, the choice of the mixing distribution is crucial especially in determining the 

amount of zero-inflation and tail length of the resulting Poisson mixture. The extended 

generalized inverse Gaussian (EGIG) and exponentiated Weibull distributions have 

been earmarked as mixing distributions in part of the work in this thesis due to their 

shape flexibility and desirable statistical properties such as regularity. Two new mixed 

Poisson distributions, namely the generalized Sichel distribution and Poisson-

exponentiated Weibull distribution have been shown to model over dispersion, zero-

inflation and long-tailed data very well. Issues related to the computational hurdle posed 

by an intractable probability mass function have been addressed through a Monte Carlo 

simulation technique and an EM-type algorithm for parameter estimation. 

We have also studied a family of count distributions arising from non-exponential 

duration in a renewal process. The duration models considered are the inverse Gaussian 

distribution, convolution of two gamma distributions and a two-component exponential 

mixture distribution. This family of count distributions are able to model over 

dispersion and under dispersion and serves as a satisfactory, if not better alternative to 

existing models in the same context. Given the distribution of the counts, this approach 

provides an insight to the waiting times or inter-arrival times in a stochastic process, and 

vice versa.  

A numerical inverse Laplace transform technique is proposed to facilitate 

computation of count probabilities arising from non-exponential duration models in a 

stochastic process. These count probabilities often involve special mathematical 

functions and infinite series. In some cases, the probability mass function is expressed 
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as multiple integrals. In the past, such computation requires extensive numerical 

methods and may result in an inevitable numerical overflow. The numerical inverse 

Laplace transform technique is able to avoid these issues and provide sufficiently 

accurate results.  

Future work from the findings of this thesis will be to extend the distributions in a 

regression modelling context. When such information is available, inclusion of 

covariates in modelling the count data will give further insight to the analyst to answer 

the research question of interest. In particular, Rigby, Stasinopoulos and Akantziliotou 

(2008) have developed a generalized additive model for location, shape and scale and 

this approach could be further explored with the generalized Sichel distribution.  

A relatively simple but flexible distribution known as the exponentiated Nadarajah 

Haghighi distribution (Lemonte, 2013) can be considered as the underlying duration 

model for a new count distribution in a stochastic process. The numerical inverse 

Laplace transform technique for computing probabilities is straightforward when the 

Laplace transform of the duration distribution is in closed form. Further work can be 

done to examine approximations to the Laplace transform when it is not in closed form 

and its implications on the numerical inverse Laplace technique for computing 

probabilities, in terms of accuracy and efficiency. 
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