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ABSTRACT

Ferroelectric superlattices comprising two or more different layers are currently a

topic of active research because of their potential applications in memories and funda-

mental scientific interest. A thermodynamic model based on the Landau-Ginzburg theory

is proposed to study the phase transitions in ferroelectric superlattices. An interface en-

ergy term is introduced in the free energy to describe the formation of intermixed layer

with properties different from those of both layers. These intermixed layers are mutually

coupled through the local polarization at interfaces.

The effects of electrostatic coupling and interface intermixing on the internal electric

field and polarization of superlattices which composed of alternate layers of ferroelectrics

and paraelectrics are discussed. As an illustration, the model is applied to a superlattice

consisting of a ferroelectric layer as PbTiO3 (PT) and a paraelectric layer as SrTiO3 (ST)

on a ST substrate. Appropriate electrostatic boundary conditions are considered for the

case of superlattice with polarization perpendicular to the surface or interface. The effect

of interface intermixing and modulation period on the internal electric field and polariza-

tion are studied by changing the volume fraction or thickness ratio of the PT/ST super-

lattice. In addition, the spatially-varying internal electric field, dielectric susceptibility

and polarization of these ferroelectric superlattices are calculated. Effects of modulation

period and temperature on the internal electric field, dielectric susceptibility and polariza-

tion of these superlattices with inhomogeneous properties are examined. The polarization

reversal in PT/ST superlattices with “switchable” polarization in intermixed layers is also

studied. The dependence of polarization and internal electric field on an applied electric

field is discussed. The polarization and internal electric field profiles at certain applied

electric field are examined. Besides that, the effects of alternating interface charges, ±σ

of the ferroelectric superlattices are studied by taking into account the intermixing at the
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interfaces between layers. The alternating interface charges enhance the polarization of

ferroelectric superlattices, and lead to the formation of an effective internal electric field

in the superlattices.

Lastly, the thermodynamic model is extended to study the effect of composition

and interface intermixing on ferroelectric properties of BaTiO3/BaxSr1−xTiO3 (BT/BST)

superlattices. Effects of composition and interface intermixing on ferroelectricity of

BT/BST superlattices are examined by investigating the modulated profiles of polariza-

tion and the mismatch in polarization at the interface.
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ABSTRAK

Superkekisi feroelektrik yang terdiri daripada dua atau lebih lapisan yang berbeza

merupakan satu topik penyelidikan yang aktif pada masa kini, ini disebabkan aplikasinya

yang berpotensi dalam storan ingatan dan kepentingan asas saintifik. Kami telah men-

cadangkan model termodinamik yang berdasarkan teori Landau-Ginzburg untuk mengkaji

peralihan fasa dalam superkekisi feroelektrik. Istilah tenaga antara muka telah diperke-

nalkan dalam tenaga bebas untuk menggambarkan pembentukan lapisan saling campur

yang mempunyai ciri-ciri yang berbeza daripada kedua-dua lapisan. Lapisan-lapisan sal-

ing campur ini saling berganding melalui pengkutuban tempatan di antara muka.

Kesan gandingan elektrostatik dan antara muka yang bersaling campur ke atas medan

elektrik dalaman dan pengkutuban dalam superkekisi yang terdiri daripada lapisan fer-

oelektrik dan paraelektrik yang berselang-seli telah dibincangkan. Sebagai contoh, kita

mengaplikasikan model tersebut ke atas superkekisi yang terdiri daripada PbTiO3 (PT)

sebagai lapisan feroelektrik dan SrTiO3 (ST) sebagai lapisan paraelektrik di atas sub-

strat ST. Syarat sempadan elektrostatik yang sesuai telah dipertimbangkan untuk kes su-

perkekisi yang pengkutubannya bertegak lurus pada permukaan atau antara muka. Ke-

san antara muka yang bersaling campur dan tempoh modulasi ke atas medan elektrik

dalaman dan pengkutuban telah dikaji dengan menukarkan pecahan isipadu atau nisbah

ketebalan superkekisi PT/ST. Di samping itu, perubahan secara ruang terhadap medan

elektrik dalaman, kebolehrentanan dielektrik dan pengkutuban untuk superkekisi fer-

oelektrik telah dihitungkan. Kesan tempoh modulasi dan suhu ke atas medan elektrik

dalaman, kebolehrentanan dielektrik dan pengkutuban dalam superkekisi yang bersifat

tak homogen juga dikajikan. Kami juga mengkaji perubahan arah pengkutuban dalam

superkekisi PT/ST yang mempunyai pengkutuban yang boleh disuiskan dalam lapisan

saling campur. Pergantungan pengkutuban dan medan elektrik dalaman ke atas medan
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elektrik kenaan juga telah dibincangkan. Profil pengkutuban dan medan elektrik dalaman

di bawah pengaruh medan elektrik kenaan yang tertentu telah dikaji. Di samping itu, ke-

san daripada caj yang bersilih ganti di antara muka, ±σ dalam superkekisi feroelektrik

telah dikaji dengan mengambil kira kesan bersaling campur di antara muka. Caj yang

bersilih ganti di antara muka ini meningkatkan pengkutuban superkekisi feroelektrik, dan

juga membawa kepada pembentukan medan elektrik dalaman efektif dalam superkekisi .

Akhir sekali, kami melanjutkan model termodinamik kami untuk mengkaji kesan

komposisi dan antara muka yang bersaling campur ke atas sifat feroelektrik dalam su-

perkekisi BaTiO3/BaxSr1−xTiO3 (BT/BST). Kesan komposisi dan antara muka bersaling

campur ke atas keferoelektrikan superkekisi BT/BST telah dikaji dengan menyiasat profil

modulasi pengkutuban dan perbezaan pengkutuban di antara muka.
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CHAPTER 1

INTRODUCTION

1.1 Statement of Present Research

Ferroelectric offers a tantalizing potential in many technological applications such as

transducers, high-permittivity dielectrics, pyroelectric sensors, piezoelectric devices, tun-

able ferroelectric capacitor and etc. (Lines & Glass, 1977). The studies of ferroelectric

superlattices have attracted immense attention due to its fundamental scientific interest

and potential applications (Scott, 2000; Dawber, Rabe, & Scott, 2005). When the ferro-

electric system has superlattice or multilayer structures, intermixed layers may form at

interfaces between the two layers. These interface intermixed with properties different

from those of both layers may affect the properties of superlattices (Pertsev & Tyunina,

2011).

Landau-Ginzburg (LG) is one of the most widely used theoretical models and has

long been successfully used to describe the physical properties of ferroelectric materials.

Many theoretical studies of ferroelectric superlattices were carried out using the LG the-

ory. The research described in this thesis was aimed to develop a a thermodynamic model

based on the LG theory to study interface intermixing in ferroelectric superlattices. We

introduced an interface energy term in the Landau free energy to describe the formation of

intermixed layer with properties different from each constituent layers. These intermixed

layers are mutually coupled through the local polarization at interfaces. Furthermore, our

model can be extended to take into account the influence of electrostatic coupling, mis-

fit epitaxial strain, interface charge, composition effect and etc., on phase transition and

ferroelectric properties in ferroelectric superlattices.
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1.1.1 Objectives of present Work

In this research, a thermodynamic model based on the LG theory will be devel-

oped to study the polarization and dielectric behaviors in ferroelectric superlattices with

nanometric thickness. The effects of interface, substrate-induced strain and electrostatic

coupling will be considered in this study.

The specific objectives are:

1. To develop a thermodynamic model based on the Landau-Ginzburg theory for a

ferroelectric/paraelectric superlattice with interface intermixed layer to explain the

correlation between internal electric field, dielectric susceptibility and polarization.

2. Study the polarization reversal in ferroelectric superlattices with electrostatic cou-

pling and interface intermixing effects.

3. Employ the aforementioned thermodynamic model to study the polarization dis-

continuity and screening charge in ferroelectric/paraelectric superlattices by con-

sidering the existence of screening charge at interface with equal but of opposite

sign for alternate interface.

4. To investigate the effect of composition and interface intermixing on ferroelectricity

of BaTiO3/BaxSr1−xTiO3 (BT/BST) superlattices.

1.1.2 Organization of the Thesis

Overall, this thesis is organized into six chapters. Chapter 1 starts with a brief intro-

duction to what is ferroelectrics and its applications. The basic concepts such as symme-

try in crystals, perovskite-oxide ferroelectrics, broken symmetry and order parameters are

emphasized first in order to help readers understand the basic background before explor-

ing the Landau phenomenological theory of ferroelectricity. A literature review on the

ferroelectric superlattices is given in Chapter 2. A discussion of major factors that affect-
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ing ferroelectric superlattices and an overview of phenomenological theory for ferroelec-

tric superlattices are also included. Finally, we will discuss our proposed thermodynamic

model based on LG theory to study the ferroelectric phase transitions in superlattices.

In Chapter 3, a detailed discussion on electrostatic coupling and interface intermixing in

ferroelectric superlattices will be given. The formalism and the detailed calculation for

superlattices will be provided. We will discuss the properties of superlattices for instance,

polarization, internal electric field, dielectric susceptibility and also the polarization re-

versal. Chapter 4 gives a detailed discussion of polarization discontinuity and screening

charges by taking into account the presence of charges of density at the internal inter-

faces in superlattices. Chapter 5 is devoted to the study of the effect of composition

and interface intermixing on ferroelectric properties of BaTiO3/BaxSr1−xTiO3 (BT/BST)

superlattices. Conclusions and future works are presented in Chapter 6.
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1.2 Introduction to Ferroelectrics and its Applications

The duality symmetry in classical electromagnetic theory was discovered more than

a century ago by Heaviside (Heaviside, 1892). He showed that the electric field is the

dual of the magnetic field. Similarly, the ferroelectricity is the dual of ferromagnetism

because they are in many ways analogous to each other. A ferromagnetic has a sponta-

neous magnetic moment even in zero applied magnetic field. Analogously, a ferroelectric

also exhibits a spontaneous electric dipole moment even in zero applied electric field.

These two phenomena have received a sustained study since the early of 20th century.

The term ferroelectric from German “ferroelektrisch” was first coined by Erwin

Schrödinger in 1912 (Schrödinger, 1912) before the first discovery of ferroelectricity in

Rochelle salt by Valasek in 1920 (Valasek, 1920, 1921). By extending the Debye’s theory

of liquid dielectric, he speculated that in solids below a certain temperature, an electric

polarization which is analogous to the magnetization, ought to be expected in the absence

of an electric field (Joas & Katzir, 2011). Ferroelectricity is a collective phenomena and

all ferroelectric materials are both piezoelectric and pyroelectric. To be more precise,

they are polar materials that possess at least two equilibrium orientations of the sponta-

neous polarization vector in the absence of an external electric field. This spontaneous

polarization vector can be switched between those orientations by an electric field. Piezo-

electric is a class of materials which can be polarized in response to applied mechanical

stress, whereas the pyroelectric materials exhibit an electric dipole moment even in the

absence of an external electric field. The schematic description of the relations among

piezoelectricity, pyroelectricity and ferroelectricity are shown in Fig. 1.1.

Ferroelectric has been found in variety of compounds, for instance, hydrogen-bonded

systems such as potassium dihydrogen phosphate (KDP or KH2PO4), polymeric systems

and the family of ABO3 compounds. According to traditional view, ferroelectric phase
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Figure 1.1: Relations among piezoelectricity, pyroelectricity and ferroelectricity.

transitions are commonly classified as either displacive or order-disorder type. The atom

in the crystal begins to displace at the phase transition point and the displacement leads

to a change in crystal symmetry, such a transition is termed displacive (e.g., BaTiO3).

In case of order-disorder type, a change of symmetry occurs as a result of the redistri-

bution of particles or ions over equiprobable positions at the transition temperature (e.g.,

hydrogen-bounded system such as KDP). However, the aforementioned classification is

not generally applicable in ferroelectrics because a phase transition may demonstrate both

displacive and order-disorder features. Recently, the experimental evidence for the coex-

istence of these two behaviours was found in hydrogen-bonded order-disorder systems

like squaric acid, namely H2SQ and D2SQ (Dalal, Klymachyov, & Bussmann-Holder,

1998). The detailed description of this intriguing subject is beyond the scope of this the-

sis. Interested readers are advised to refer the book by Dalal and Bussmann-Holder (Dalal

& Bussmann-Holder, 2007) and references therein.

Ferroelectric materials are of technologically important due to its useful properties

in wide range of potential applications. Due to the high permittivity of ferroelectrics, it

can be used as a non-volatile random access memories or so-called ferroelectric random

access memory (FeRAM) for smart cards and portable electronic devices. Its memory
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will not lose even after the supply of voltage is switched off. The large dielectric sus-

ceptibility of ferroelectrics is used in capacitor applications as they have smaller physical

size compared to other dielectric materials. The high piezoelectric effect of these ma-

terials is applied in a variety of electromechanical sensors, actuators, transducers, and

microelectro-mechanical system (MEMS). Ferroelectric materials are also pyroelectric

and they are very useful for pyroelectric detectors or sensors. The electro-optic effect

(the change in refractive index with an external applied electric field) of ferroelectrics

can be used for the modulation of light or optical waveguides, which are very important

for optical communication systems. Ferroelectrics in paraelectric phase have a very high

potential in varactor techologies for radio frequency (RF) or microwave tunable devices.

1.3 Symmetry in Crystals

The notion of symmetry is the most powerful and intriguing principle to perceive

and describe the inner workings of nature. In short, symmetry is an operation or transfor-

mation that doesn’t change how thing behaves relative to the outside world. The structure

of crystals can be described by symmetry transformations, such as, rotational, inversion,

translational symmetries etc. In fact, symmetry can be used to study the invariant aspects

of physical properties, physical interactions and physical laws under certain transforma-

tions.

The Neumann’s principle states that “The symmetry elements of any physical prop-

erty of a crystal must include the symmetry elements of the point group of the crystal”

(Nye, 1972). This means that if a physical property is subjected to a symmetry operation

of this crystal, the value of this property should remain invariant. As a result, it explains

why some properties (such as dielectric permittivity, elastic compliance and electrostric-

tion) are present in all materials and that other properties (such as piezoelectricity and

pyroelectricity) can exist only in materials with certain symmetries (Damjanovic, 1998).
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The point group of a crystal is the group of macroscopic symmetry elements that its struc-

ture possesses. This principle is the basis for the division of crystals into 32 point groups.

The crystalline lattices can be classified into 32 crystallographic point groups. These

32 point groups can be divided into two classes, 11 of them belong to centrosymmet-

ric groups and the remaining 21 are non-centrosymmetric groups. These 11 centrosym-

metric groups contain an inversion center and do not have polar properties because any

polar vector may be inverted by an existing symmetry transformation. 20 of the non-

centrosymmetric groups can exhibit the piezoelectric effect and are called piezoelec-

tric point groups. 10 out of the 20 piezoelectric point groups have a unique polar axis

and may exhibit a spontaneous polarization in the absence of an external electric field,

and are known as 10 pyroelectric point groups. Among the pyroelectric crystals, those

whose direction of spontaneous polarization can be reversed by the external electrical

field are called ferroelectrics. Hence, ferroelectric materials have to be pyroelectrics and

piezolectrics, but the reverse is not true. Fig. 1.2 display a schematic description of the

classification of crystal according to their structures and properties.

Figure 1.2: Classification of crystals according to their structure and properties. Ferro-
electric materials have to be pyroelectrics and piezoelectrics.
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1.4 Perovskite-oxide Ferroelectrics

Most of the ferroelectric oxides belong to the family of perovskite oxides. The

chemical formula of perovskite structure is represented by ABO3, where “A” and “B” are

cations and “O” is an anion, oxygen. Generically, the valence of A cations is from +1 to

+3 and B cations is from +3 to +6. The typical perovskite structure is shown in Fig. 1.3.

It can be seen that the A cation has fractional coordinates given by (1/2,1/2,1/2), the

B cation is located at the origin, and the coordinates of oxygen atoms are (1/2,0,0),

(0,1/2,0) and (0,0,1/2) (Dove, 2003).

The role of symmetry can be illustrated by the ferroelectric tetragonal phase of a

perovskite material such as PbTiO3, as shown schematically in Fig. 1.3. At the high

temperature paraelectric phase, the ferroelectric oxides exhibit a high symmetry of cubic

phase with space group Pm3̄m. When the temperature approaches the transition point,

these compounds undergo a structural phase transitions leading to ferroelectricity with a

low symmetry non-centrosymmetric of tetragonal phase with space group P4mm. Most

ferroelectrics with perovskite structure undergo a displacive phase transitions. However,

order-disorder dynamics are also found in these perovskite systems, such as BaTiO3 and

SrTiO3 (Dalal & Bussmann-Holder, 2007). In case of displacive phase transitions, it

involves an ionic displacement in such a way that the symmetry of the crystal is changed.

In the case of PbTiO3, it is cubic and paraelectric at high temperature and the crys-

tal transforms to ferroelectric tetragonal phase at 490◦C. In the ferroelectric phase of

PbTiO3, the direction of spontaneous polarization is along the cT -axis of the tetragonal

unit cell. In fact, the dipole originates from the displacement of O and Ti ions relative to

Pb. The crystal is spontaneously strained with aT << aC < cT where aT and aC are the

a-axes of the tetragonal and cubic unit cell (Damjanovic, 1998).
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Figure 1.3: Perovskite structure of the ferroelectric oxide PbTiO3. (a) high tempera-
ture paraelectric phase with cubic structure, (b) low temperature ferroelectric phase with
tetragonal structure (Damjanovic, 1998).

1.5 Symmetry and Order Parameters

L. D. Landau is probably the first person to realize the important role of symmetry

plays in the phase transitions of equilibrium condensed matter systems. The Landau

theory of phase transitions is basically relied on two closely related important concepts:

broken symmetry and order parameter (Landau & Lifshitz, 1980). On one hand, the

broken symmetry is of prime importance and it can be met in diverse realm of physics,

such as particle physics, cosmology and astrophysics, condensed matter physics, etc. On

the other hand, the concept of order parameter is the essence of Landau theory, it is zero

in the symmetric state and has a non-zero value when the symmetry is broken.

1.5.1 Broken Symmetry

Generally, a phase transition may or may not be associated with a change of sym-

metry. In fact, a given symmetry element is either present or absent and there is no in-

termediate state of symmetry. If a symmetry change is involved, a system cannot change

continuously between two phases of different symmetry. For instance, the transition from

liquid to solid states cannot occur in a continuous manner. However, a continuous path is
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only possible if there is no symmetry change involved, such as transition between liquid

and gaseous states which is also known as isomorphic transition (Ginzburg, Sobyanin, &

Levanyuk, 1983). As P. W. Anderson used to express it as “Symmetry cannot change con-

tinuously: what I have called the first theorem of condensed matter physics” (Anderson,

2004)

Most ferroelectric materials undergo a structural phase transition from a high tem-

perature paraelectric phase into a low temperature ferroelectric phase. The temperature

at the phase transition occurs is called the Curie temperature or Curie point (Tc). In this

case, the phase transition is accompanied by a change of symmetry. Under the transfor-

mation from the higher to the lower temperature phase, some symmetry elements of the

high temperature phase are lost on cooling below Tc. In fact, we might denote G0 as the

high symmetry group of high temperature paraelectric phase and G1 for the low sym-

metry group of low temperature ferroelectric phase. It is a fact that the symmetry group

G1 of the new (ferroelectic) phase is always less symmetrical than the old (paraelectric)

phase, therefore the symmetry group G1 is a subgroup of the group G0. In brevity, the

more symmetrical phase will be termed as the symmetrical one and the less symmetrical

phase will be called as non-symmetrical one (Ginzburg et al., 1983).

In reality, the ferroelectric phase transitions are directly related to broken symme-

try. The paraelectric phase is a fully disordered phase, it is the broken symmetry that

leads it to the ordered phase (ferroelectric) with the value of order parameter (polariza-

tion) to be different from zero. This breaking of symmetry at low temperature is also

known as spontaneous symmetry breaking. Actually, the ferroelectric phase transitions

is associated with broken space inversion symmetry (Feng & Jin, 2005) which is a dis-

crete symmetry group, for example the reflection group z→−z is broken (Blinc & Žekš,

1974). This discrete symmetry also known as Ising symmetry and it is invariant under Z2
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group (Chaikin & Lubensky, 1995). In other words, we can say that the system breaks

the space inversion invariance “spontaneously”.

Anderson emphasized that the appearance of generalized rigidity is actually respon-

sible for the unique properties of the ordered (broken-symmetry) states (Anderson, 1984).

The energy is minimized when the symmetry is broken, therefore the system have a strong

energetic preference to stay in that broken state. Furthermore, the system tends to resist

any attempt from the outside to alter its ordered states. In ferroelectric phase transition,

the generalized rigidity phenomenon is literally the ferroelectric hysteresis (Anderson,

1984). A detailed description on ferroelectric hysteresis will be presented in Section 1.7.

If a discrete symmetry is broken differently in two adjacent parts of a macroscopic sys-

tem, the boundary that separates two distinct but energetically equivalent states in system

will contain a topological defect (Blundell, 2001). It is known as domain wall in fer-

roelectric system, these thin boundaries is located at a specific crystal plane and cannot

move continuously in space. They must overcome an activation energy to move to the

next (Anderson, 1984).

When a symmetry is broken, a phase transition takes place and the system is per-

fectly ordered. At finite temperature this order is weakened by excitations in the order

parameter. In ferroelectric these excitations are called soft modes which emerge upon

symmetry breaking (Anderson, 1984; Blundell, 2001). The fundamental concept of the

soft mode is that, when a ferroelectric material undergoes a structural phase transitions

close to the tricritical point, the frequency of one or several normal modes of a crystal

lattice tends to zero or greatly decreases (Ginzburg, 2005). A detailed discussion of this

soft modes concept can be found in the book by Blinc & Žekš, 1974.

In fact, the concept of broken symmetry can be used to describe the two mechanisms

in ferroelectric transitions, namely, displacive and order-disorder types (Blinc, 2011). In

the case of displacive ferroelectrics, a discrete symmetry group is broken at Tc and the
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phase transition is the result of an instability of the anharmonic crystal lattice against

soft polar lattice vibration. On the other hand, in an order–disorder system, a discrete

symmetry group is broken due to the ordering of the ions in a rigid lattice potential.

However, it should be emphasized that there is no clear boundary line that exists between

these two phase transitions. This is because from the perspective of symmetry, there is no

difference at all between the two of them (Strukov & Levanyuk, 1998).

1.5.2 Order Parameters

The concept of order parameter is a starting point for Landau theory. It was first

introduced by Landau to describe the aspect of the loss of symmetries as the crystal un-

dergoes a transition from a high symmetry phase G0 to a low symmetry phase G1. The

order parameter varies in such a way that it vanishes above the Curie temperature, Tc (a

high symmetry phase) and has a finite value below the Tc (a low symmetry phase).

In fact, the order parameter is a physical quantity that characterizes the magnitude

of the atomic displacement or the degree of their ordering which represents the crystal

reconstruction under the phase transition (Ginzburg et al., 1983). It may be a scalar, a

vector, a complex number or a more complicated quantity with multicomponents. More-

over, the order parameter can be considered as a field because the state of a system is

expressed in terms of a quantity η , which is a function of the position ~x. It can be con-

sidered as a mapping from real space into order parameter space (Sethna, 2006; Chaikin

& Lubensky, 1995). One can refer the example from the book by Tagantsev, Cross and

Fousek (Tagantsev, Cross, & Fousek, 2010) and references therein for the mapping of

domain state onto the order parameter space for an improper ferroelectric of gadolinium

molybdate (GMO). Hence, we can say that Landau theory is essentially a field theory.

In general, there are two types of phase transitions, first order and second order tran-

sition. For the case of first order transition, the order parameter exhibits a discontinuity
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change or has a jump at the transition temperature. The two symmetry groups for the high

symmetry phase and the low symmetry phase may or may not have any group-subgroup

relationship to each other. On the other hand, the order parameter will be a continuous

function of temperature in second order transition. The variation of the temperature de-

pendence of order parameter η in the region of structural phase transition are shown in

Fig. 1.4. Evidently, the Fig. 1.4(a) shows a second order phase transition and Fig. 1.4(c)

corresponds to a first order type. It should be mentioned that there is a case where a first

order phase transition close to a second order transition as shown in Fig. 1.4(b).

Figure 1.4: Temperature dependence of the order parameter in case of a second order
transition (a), first order close to second order transition (b) and in case of first order
transition (c). (Strukov & Levanyuk, 1998)

In ferroelectric systems, the order parameter is the polarization vector P whose ap-

pearance at the Curie point breaks the symmetry of the paraelectric phase. P is a thermo-

dynamic variable and its magnitude signifies the difference between the non-symmetrical

and symmetrical lattice structures. This order parameter also indicates the inner defor-

mation or atomic configuration under phase transition. To illustrate, the order parameter

in displacive transitions characterizes the degree of displacement of certain ions or ionic

groups (the long range ordering of induced dipoles), whereas the order parameter in order-

disorder transitions determines the amount of long range ordering of permanent dipoles

(Blinc & Žekš, 1974).
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The formula of Landau theory is the expression of thermodynamic potential as a

function of order parameter. By minimizing the thermodynamic potential, which is also

at the condition of thermal equilibrium, one can find the equilibrium value of P.

1.6 Phenomenological Theory of Ferroelectricity

The phenomenological theory of ferroelectricity was first proposed by V. L. Ginzburg

in 1945 (Ginzburg, 1945). Later in 1949, A. F. Devonshire independently developed the

same approach (Devonshire, 1949) but omitted some important invariants with P6 which

is admitted by the symmetry and essential in the case of a first-order transition (Ginzburg,

2005). Hence, the phenomenological theory of ferroelectricity is also known as Landau-

Ginzburg-Devonshire (LGD) theory.

There are many classical books such as Blinc & Žekš, 1974; Lines & Glass, 1977;

Strukov & Levanyuk, 1998, which give a very comprehensive treatise on the formalism of

Landau theory in ferroelectrics. Generically, Landau theory is a phenomenological theory

which based on symmetry consideration and thermodynamic principles. It is purely a

macroscopic theory which equivalent to a mean field theory and cannot describe any

microscopic quantities that lead to a phase transition, for example atomic displacement

and forces.

The central Ansatz of Landau theory is that the thermodynamic potential can be

Taylor expanded in powers of order-parameter in the vicinity of phase transition (Chandra

& Littlewood, 2007). In fact, thermodynamic potential also known as free energy, such

as Gibbs free energy and Helmholtz free energy. The parameter of this phenomenological

theory can, in principle, be determined either by comparison to experiment or from first

principle calculation.
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1.6.1 Thermodynamic Relations

One can always use different type of thermodynamic potentials to describe the prop-

erties of a materials and the choice is simply a matter of convenience. A detail discussion

can be found in Lines & Glass, 1977; Defaÿ, 2011. The thermodynamic potential of

any system in equilibrium can be defined as a function of three independent variables

which can be chosen in eight different ways from the so-called conjugate pairs (Lines &

Glass, 1977), namely temperature (T ) and entropy (S) for thermal properties, stress (σ )

and strain (u) for mechanical properties, and electric field (E) and electric displacement

(D) or polarization (P) for dielectric properties. These conjugate pairs can be divided into

two variables, i.e. intensive variables (temperature, stress and electric field) and extensive

variable (strain, entropy, electric displacement, polarization). An extensive variable has

a value that changes depending on the size of the system whereas an intensive variable

remains constant (Defaÿ, 2011).

Starting from the first law of thermodynamic, the infinitesimal change of internal

energy U is the sum of infinitesimal variation of heat δQ and work δW .

dU = δQ+δW = T dS+σidui +EidPi (1.1)

The following two thermodynamic potentials are the most common for the study of fer-

roelectric (Fatuzzo & Merz, 1967):

Helmholtz free energy: F =U−T S (1.2a)

Elastic Gibbs energy: Ge =U−T S−σu (1.2b)
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Their corresponding differential relations describing infinitesimal changes are:

dF =−SdT +σidui +EidPi (1.3a)

dGe =−SdT −uidσi +EidPi (1.3b)

Henceforth, the function elastic Gibbs energy, Ge will be denoted simply as Gibbs

free energy, G.

1.6.2 Multiaxial Ferroelectrics (Multicomponent Order Parameters)

Normally, Gibbs free energy is the most convenient thermodynamic potential. It is

expressed as a function of temperature, stress and polarization. G can be expanded as

follows (Haun, Furman, Jang, McKinstry, & Cross, 1987):
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where Pi are the polarization and σi (i = 1,2, . . . ,6 in the Voigt matrix notation1) is the

stress, α,β , γ are the Landau coefficients and only α is temperature dependence, si j

are the elastic compliances of the material and Qi j are the electrostrictive coefficients at

constant polarization.

1Please refer to Appendix A
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The Helmholtz free energy can be expanded in polarization and strain components

as below:
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where α,β ′,γ are Landau coefficients, ui (i = 1,2, . . . ,6 in the Voigt matrix notation) are

the strain, ci j are the elastic stiffness, gi j are the electrostrictive constants. It should be

noted that the Landau coefficient β ′i j in Eq.(1.5) are not equal to βi j in Eq.(1.4).

1.6.2.1 Legendre Transformation

It is possible to change the independent variables of the thermodynamic potential

from the original set to other by performing a Legendre transformation. The relationship

between F(Pi,u j) and G(Pi,σ j) is given by the Legendre transformation (Sethna, 2006;

Iwata, Orihara, & Ishibashi, 2001):

G(Pi,σ j) = F(Pi,u j)−
6

∑
k=1

uk
∂F(Pi,uk)

∂uk
(1.6)

G(Pi,σ j) = F(Pi,u j)−
6

∑
k=1

ukσk (1.7)

In order to change the set of independent variables of Helmholtz energy (P,u) to

Gibbs energy (P,σ), we use ∂F(Pi,uk)
∂uk

= σk and solve the system of equations in order to

obtain the strain uk (i = 1,2, . . . ,6) in term of P and σ . After some lengthy and tedious
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mathematical manipulations, we obtain the relationship between the parameters:
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Similarly, the conversion of Gibbs free energy coefficients to Helmholtz free energy

coefficients are given as:
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Following from Eqs.(1.10), the corresponding electrostrictive constants are given as

g11 = 2c12Q12 +Q11c11,

g12 = c11Q12 + c12Q11 + c12Q12,

g44 = Q44c44, (1.14)

and the elastic stiffnesses from Eqs.(1.11) are

c11 =
s11 + s12

(s11− s12)(s11 +2s12)
,

c12 =−
s12

(s11− s12)(s11 +2s12)
,

c44 =
1

s44
. (1.15)

1.6.3 Uniaxial Ferroelectrics (One-component Order Parameter)

Now going back to the more commonly used Gibbs energy, Eq.(1.4) and discuss the

simple case when the stress is zero. For simplicity, we assume that the polarization of

ferroelectric system lies along a single direction with only one component order param-

eter (polarization P). The Gibbs energy, Eq.(1.4) also known as Landau free energy is

represented as

F(P,T ) =
∫

dV
[

1
2

αP2 +
1
4

βP4 +
1
6

γP6 +
κ

2
(∇P)2 + · · ·−EP

]
, (1.16)

where the ellipsis denotes higher order terms. The volume integrals are over the bulk

ferroelectric. The introduction of factor 1/2,1/4 and 1/6 are for the ease of calculation.

κ is the gradient coefficient and together with (∇P)2 they are known as Ginzburg or

gradient term, which is account for the spatial variations and fluctuations of the order

parameter, P (Strukov & Levanyuk, 1998). Due to the fact that ferroelectric crystal lattice
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has a centre of symmetry and the free energy will be invariant with polarization reversal

(P→−P), the odd terms of the above expansion are vanished.

At present, we consider the case when the order parameter is homogeneous through-

out the system so that the Ginzburg term is neglected. The functional of Eq.(1.16) be-

comes

F(P,T ) =
1
2

αP2 +
1
4

βP4 +
1
6

γP6 + · · ·−EP, (1.17)

In general, the coefficients β and γ can be assumed to be temperature independent whereas

α is not. In particular the coefficient α can be approximated by a Taylor series in powers

of (T −T0) and by keeping only the first order term

α = α0(T −T0); C =
1

α0
, (1.18)

where C is the Curie constant and T0 is the Curie-Weiss temperature which is equal to or

lower than the actual transition temperature Tc. Hence, the coefficient α must be negative

for the ferroelectric state to be stable.

The equilibrium states are characterized by minima of the free energy

∂F
∂P

= 0 = E−P
(
α +βP2 + γP4) , (1.19)

∂ 2F
∂P2 = χ

−1 = α +3βP2 +5γP4 > 0, (1.20)

where χ is the dielectric susceptibility. Eq.(1.19) and Eq.(1.20) are the essential and

stability condition for the minima of F .

1.6.3.1 Paraelectric Phase

For the stability of paraelectric phase, Eq.(1.19) is solved by P = 0 and the Eq.(1.20)

now becomes χ−1 = α = α0(T − T0) > 0. Evidently, the α must be positive for the

20



paraelectric phase to be stable at high temperature and T must be larger than T0. A

comparison of Eq.(1.18) and Eq.(1.20) thus result in a Curie-Weiss law for the dielectric

susceptibility of the paralectric phase:

χ =
C

T −T0
. (1.21)

1.6.3.2 Ferroelectric Phase - Second Order Transition

If β > 0 , a second order transition occurs at T = T0 to the ferroelectric state. The

sixth and higher order terms in Eq.(1.17) are often ignored. For zero applied electric field

fro Eq.(1.19), we have

∂F
∂P

= P
(
α0(T −T0)+βP2) (1.22)

with the solution either P = 0 or P2 =−α0(T −T0)/β . For T < T0, a spontaneous polar-

ization Ps exists and the result is:

Ps =

[
α0

β
(T0−T )

]1/2

. (1.23)

The spontaneous polarization Ps will increase while the temperature start to decrease from

the point T = T0. Therefore, the phase transition occurs when the Curie temperature Tc

is equal to the Curie-Weiss temperature T0. It will evolve continuously as a function of

temperature.

The corresponding dielectric susceptibility is obtained by inserting Eq.(1.23) into

Eq.(1.20) with γ = 0

χ =
C

2(T −T0)
(T < T0). (1.24)

It should be noticed that the dielectric susceptibility becomes infinite at the transition

temperature.
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Fig. 1.5 schematically shows the free energy as a function of polarization at various

temperature for the second order phase transition. For T > Tc a minimum is found at

P = 0. When T is below Tc, the minimum of the free energy gradually shifts to a finite

value of Ps.

Figure 1.5: Free energy as a function of polarization at various temperature for second
order phase transition.

1.6.3.3 Ferroelectric Phase - First Order Transition

For first order transition, β is chosen as negative and γ > 0. The equilibrium condi-

tion for E = 0 will be defined by Eq.(1.19) with solution P = 0 or

P2
s =

{
|β |+

√
β 2−4α0γ(T −T0)

}
/2γ. (1.25)

In order to fulfil the condition ∂ 2F/∂P2 > 0, the positive sign in the bracket is required to

obtain a stable state. We can obtain the transition temperature Tc based on the condition

that the free energy of paraelectric and ferroelectric are equal, F(0,T ) = F(Ps,T ). At this

temperature T = Tc:

Tc = T0 +
3
16

β 2

α0γ
. (1.26)
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On substituting Eq.(1.25) into free energy Eq.(1.20), the dielectric susceptibility of

the first order transition is obtained as:

χ
−1 =

β 2

γ

√(
1− 4α0γ

β 2 (T −T0)

){√(
1− 4α0γ

β 2 (T −T0)

)
+1

}
. (1.27)

Fig. 1.6 shows the first order phase transition from the paraelectric state to ferro-

electric state. When T >> Tc, the free energy shows a parabolic shape with a minimum

correspond to a stable paraelectric phase. During cooling and temperature still higher

than Tc, the depth of central minima is lower than the two side minima. During this

time, the ferroelectric phase is metastable whereas the paraelectric phase is stable. Upon

further decreasing the temperature, the central minimum has the same depth as the two

other minima at T = Tc. The temperature at this point is given by Eq.(1.26) and the free

energies of the paraelectric and ferroelectric are equal. When T0 < T < Tc, there is a co-

existence of the paraelectric phase and the ferroelectric phase with the paralectric phase

being metastable. For T below T0, the free energy has two minima which correspond to

P =±Ps.

Figure 1.6: Free energy as a function of polarization at various temperature in case of a
first order phase transition.
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1.7 Ferroelectric Hysteresis and Polarization Reversal

The most important feature that distinguishes the ferroelectrics from other pyro-

electrics is the polarization reversal (or switching) by an applied electric field. By plot-

ting the change of polarization against applied electric field, it displays a hysteresis loop

which resembling the magnetic hysteresis loop. It shows that the polarization of ferro-

electric materials is not only depend on the applied electric field but also on their previous

history. The Sawyer-Tower circuit is customarily used in experiment for the ferroelectric

switching measurements (Sawyer & Tower, 1930).

Fig. 1.7 shows a typical ideal hysteresis loop and an experimental observed hystere-

sis loop when driven by a continuous applied electric field. Before discussion, we first

define the notations. The coercive field, Ec is the required applied electric field to bring

the polarization to zero. The value of polarization at zero field (point E) is called the

remanent polarization, Pr and the spontaneous polarization is Ps.

In case of an ideal single-domain single crystals, the ideal hysteresis loop is shown

in Fig. 1.7(a). The value of PS is equal to the Pr. All the dipoles have to be switched

together to reverse the direction of polarization. An applied electric field with amplitude

E > Ec is required to switch the polarization.

The hysteresis loop in a polycrystalline material is shown in Fig. 1.7(b). Especially

in the case of polydomain ferroelectric ceramics, there is a statistical distribution of do-

mains before the material is polarized for the first time (Hoffmann-Eifert et al., 2012). As

shown in Fig. 1.7(b) in segment AB, P start to increase from zero when applied electric

field is increase at the same time. At a low applied electric field, polarization increases

linearly with the field and the ferroelectric behaves like an ordinary dielectric. Even-

tually, the polarization reaches saturation at point B. The saturation polarization Psat is

determined by extrapolating the CB segment until it intersect the vertical axis at E = 0.
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After saturation if one starts to decrease the applied electric field until E = 0, a remanent

polarization Pr is found. In order to further reduce the P to zero, a negative electric field

which corresponds to the coercive field Ec has to be applied. Further increase the negative

field, the hysteresis loop is traced in the reverse manner.

There are many factors that may affect the coercive field, spontaneous and remanent

polarization and shape of the hysteresis loop. For instance: mechanical stresses, the thick-

ness of the film, the presence of charged defects such as oxygen vacancies, preparation

conditions and thermal treatment (Damjanovic, 1998).

Figure 1.7: Ferroelectric (P−E) hysteresis loop. (a) Ideal single-domain single crystals
(b) Polycrystalline materials (Hoffmann-Eifert et al., 2012)

1.8 Misfit Epitaxial Strain Effect

The strong coupling between polarization and strain has a dramatic effects on ferro-

electric properties especially ferroelectric film which is particularly sensitive to mechan-

ical boundary conditions. Epitaxial strain can have a substantial impact on the structure,

ferroelectric transition temperatures, and other properties such as the dielectric and piezo-

electric responses. The epitaxial growth of the ferroelectric thin film on a substrate with

a difference lattice parameter can achieve a homogeneous epitaxial strain.
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A phenomenological approach is developed to study the ferroelectric thin films which

epitaxially grown on a substrate. First of all, the mechanical boundary conditions for a

thin film epitaxially grown on a substrate is identified. On the one hand, an in-plane

strains is induced due to the lattice mismatch between the film and the thick substrate.

On the other hand, the out-of-plane strain vanishes because there are no traction acting

on the top of film surface. Hence, the epitaxial ferroelectric thin films is subject to mixed

mechanical boundary conditions, namely in-plane strain and out-of-plane strain. Under

these mechanical boundary conditions imposed by substrate, the epitaxial thin film tends

to minimize the elastic energy by either elongation or compression of the lattice vector

perpendicular to the film surface (Ghosez & Junquera, 2006).

In fact, the above mixed mechanical conditions can be simplified and written in a

succinct mathematical expression (Defaÿ, 2011). First, the top of thin film surface is

mechanically free, so no stress is applied on it:

σ3 = σ4 = σ5 = 0. (1.28)

Second, the in-plain strains of the surface (u1,u2 and u6) are actually imposed by the

substrate. Therefore the strains along the directions 1 and 2 are equal (u1 = u2) and that

shear stress between these two directions is zero (u6 = 0) since the directions 1 and 2 are

perpendicular. If the film/substrate interface is commensurate, then

u1 = u2 = um =
as−a0

as
, (1.29)

where um is the in-plane misfit strain induced by the substrate due to the lattice mismatch.

a0 is the equivalent cubic cell lattice constants of the free standing film and as is the lattice

parameter of the substrate.
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Due to the above mixed mechanical conditions, the thermodynamic potential of a

strained ferroelectric thin film is essentially different from the bulk ferroelectrics. The

new modified thermodynamic potential must reach the minimum at thermodynamic equi-

librium where the strain components u1,u2,u6 and the stress components σ3,σ4,σ5 are

fixed (Tagantsev et al., 2010). The differential form of Gibbs energy G, Eq.(1.3b) and

Helmholtz energy F , Eq.(1.3a) with the aforementioned conditions can be expressed

mathematically as:

dG =−SdT −u1dσ1−u2dσ2−u6dσ6 +
3

∑
i=1

EidPi, (1.30)

dF =−SdT +σ3du3 +σ4du4 +σ5du5 +
3

∑
i=1

EidPi. (1.31)

Therefore, a new form of thermodynamic potential with function of polarization, misfit

strain must be used to find equilibrium thermodynamic states of an epitaxial thin films.

Starting from the Gibbs energy G, the modified thermodynamic potential G̃ for a

2D-clamping case can be derived via the Legendre transformation (Pertsev, Zembilgotov,

& Tagantsev, 1998)

G̃ = G(Pi,σ j)−
6

∑
k=1

σk
∂G(Pi,σk)

∂σk
= G+u1σ1 +u2σ2 +u6σ6, (1.32)

by using Eq.(1.30) and ∂G/∂σ = −u. This modified thermodynamic potential is neces-

sarily to study the case of a (001) thin ferroelectric film grown on a cubic thick substrate.

We consider the system of an uniaxial ferroelectric where the polarization is perpen-

dicular to the substrate (in the z direction) and the in-plane polarizations P1 and P2 will be

zero. For simplicity, P3 = P and the Gibbs free energy with mechanical conditions (1.28)
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can be rewritten as:

G = αP2 +β11P4 + γ111P6− 1
2

s11
(
σ

2
1 +σ

2
2
)
−Q12

[
(σ1 +σ2)P2]− s12σ1σ2−

1
2

s44σ
2
6 ,

(1.33)

where si j and Qi j is the elastic compliances and the electrostrictive coefficients. Based

on the aforementioned mechanical conditions in the film, ∂G/∂σ1 = ∂G/∂σ2 = −um,

∂G/∂σ6 = 0 and we solve for the case σ1 = σ2 = σm with σ6 = 0. After some algebraic

manipulation, the modified thermodynamic potential (1.32) become:

G̃ = α
∗P2 +β

∗
11P4 + γ111P6 +

u2
m

s11 + s12
, (1.34)

where

α
∗ = α− 2Q12

s11 + s12
um (1.35)

and

β
∗
11 = β11 +

Q2
12

s11 + s12
. (1.36)

Hence, the coefficients of both the quadratic and the quartic polarization terms in the

thermodynamics potential are renormalized. By setting α∗ = 0, we find that

T ∗ = T0 +
2Q12

α0(s11 + s12)
um. (1.37)

As a consequence of the in-plane misfit strain of the film by the substrate, the transition

temperature shifts from the bulk value T0 to T ∗. Furthermore, the sign of shifting in

transition temperature depends on the relative sign and magnitude of Q12,s11 and s12. It is

noticeable that according to Eq.(1.36), the misfit epitaxial strain can change the transition

from first order to second order β11 < 0 but β ∗11 > 0

28



In addition, the above thermodynamic formulation for describing the mechanical

substrate effect can actually be developed from the Helmholtz energy Eq.(1.5), F (Pertsev,

Tagantsev, & Setter, 2000). Similarly, the appropriate thermodynamic function can be

obtained via the following Legendre transformation of F :

F̃ = F(Pi,u j)−
6

∑
k=1

uk
∂F(Pi,uk)

∂uk
= F−u3σ3−u4σ4−u5σ5, (1.38)

by using Eq.(1.31) and ∂F/∂u = σ . In the case of ferroelectric thin film with a me-

chanically free upper surface, Eq.(1.28) σ3 = σ4 = σ5 = 0, the thermodynamic function

F̃ reduces to the Helmholtz free energy F , Eq.(1.5). Likewise, only the case of uniaxial

ferroelectric is consider, P1 = P2 = 0, P3 = P, the Helmholtz free energy is simplified with

mechanical conditions (1.28):

F =αP2 +β
′
11P4 + γ111P6 +

1
2

c11
(
u2

1 +u2
2 +u2

3
)
+ c12 [(u1u2 +u1u3 +u2u3)]−g11u3P2

+
1
2

c44
(
u2

4 +u2
5
)
−g12 (u1 +u2)P2. (1.39)

The mixed mechanical conditions state that u1 = u2 = um and the shear strain u6 = 0. The

conditions σ3 = σ4 = σ5 = 0 imply that we can find the u3,u4 and u5 from the relations

∂F/∂u3 = ∂F/∂u4 = ∂F/∂u5 = 0. After some calculation, we obtain the following

expression:

F = α
′∗P2 +β

′∗
11P4 + γP6 +

c2
11 + c11c12−2c2

12
c11

u2
m, (1.40)
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where the coefficients denoted by ∗ are renormalized by strain constraint. They are given

by

α
′∗ = α +2

(
c12

c11
g11−g12

)
um, (1.41)

β
′∗
11 = β

′
11−

g2
11

2c11
. (1.42)

Similarly by letting α ′∗ = 0 and since α = α0(T −T0), we obtain the shift of transition

temperature due to misfit strain as

T ∗ = T0−
2

α0

(
c12

c11
g11−g12

)
um. (1.43)
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CHAPTER 2

REVIEW OF FERROELECTRIC SUPERLATTICES

2.1 Overview

In this chapter we will begin with an introduction to ferroelectric superlattice and

briefly describe different types of ferroelectric superlattices. Theoretical methods that are

mainly used to study ferroelectric superlattices will be briefly elucidated as well. Next,

the key factors that affect the properties of ferroelectric superlattices will be discussed.

Since this thesis is a theoretical work using Landau theory, an overview on the theoreti-

cal works of ferroelectric superlattices based on the phenomenological approach will be

presented. At the end, we will discuss in detailed the thermodynamic model based on

Landau-Ginzburg theory that we used in the present study of phase transitions in ferro-

electric superlattices.

2.2 Introduction to Ferroelectric Superlattices

Artificially layered ferroelectric superlattices comprising of two or more different

layers are currently a topic of active research (Dawber, Rabe, & Scott, 2005; Scott,

2013) because of their potential applications (Scott, 2000; Muralt, 2000; Scott, 2007) and

fundamental scientific interest (Ríos et al., 2003; Dawber, Lichtensteiger, et al., 2005).

Typically, the thickness of each constituent layer in ferroelectric superlattices is several

nanometers or a few unit cells. In fact, superlattices are an alternative approach to inves-

tigate and exploit the properties of ferroelectric thin films (Rijnders & Blank, 2005) be-

cause its specific properties can be designed by tailoring their composition at the atomic

level. Basically, there are three main motivations to fabricate these artificial materials

(Dawber & Bousquet, 2013): (i) superlattice structures offers a promising way to tune or
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tailor the ferroelectric properties for specific applications. (ii) ferroelectric superlattices

can exhibit enhanced physical properties and functionalities unachievable in bulk or its

parent compounds and (iii) superlattice produce an artificial layer single crystal with new

physical phenomena that are completely absent in the parent compounds and improve its

properties.

There are several important growth techniques that can fabricate epitaxial ferroelec-

tric superlattices, such as molecular beam epitaxy (MBE) (Tsurumi, Ichikawa, Harigai,

Kakemoto, & Wada, 2002a; N. Wang et al., 1999; J. C. Jiang, Pan, Tian, Theis, & Schlom,

1999), radio-frequency (RF) magnetron sputtering deposition (Dawber, Lichtensteiger, et

al., 2005; Tsai, Liang, & Lee, 2005; Chiu, Liu, Lee, Yu, & Huang, 2011), pulse laser de-

position (PLD) (Tabata, Tanaka, & Kawai, 1994; Kim et al., 2002; B. D. Qu, Evstigneev,

Johnson, & Prince, 1998), metalorganic chemical vapor deposition (Z. Wang & Oda,

2000), and chemical solution deposition (Q. Wang & Shen, 2005). Molecular-beam epi-

taxy (MBE) and sputter deposition can produce high quality of superlattices, but the latter

requires a proper control of processing parameters (Bao, 2008).

In the field of ferroelectric (FE) perovskite, recently there are many experimental

works focused on “bicolor” superlattices, for example: FE/dielectric, FE/FE, FE/relaxor,

and etc. The term “color” refers to a distinct parent constituent layer within the superlat-

tice. Those “bicolor” system for FE/dielectric including BaTiO3/SrTiO3 (Tabata et al.,

1994; Zhao et al., 1999; Shimuta et al., 2002; Tsurumi, Ichikawa, Harigai, Kakemoto,

& Wada, 2002b; A. Q. Jiang, Scott, Lu, & Chen, 2003; Ríos et al., 2003; Tenne et al.,

2006), PbTiO3/SrTiO3 (J. C. Jiang et al., 1999; Dawber, Lichtensteiger, et al., 2005;

Dawber et al., 2007; Zubko, Stucki, Lichtensteiger, & Triscone, 2010; Jo et al., 2011),

KNbO3/KTaO3 (H. Christen et al., 1996; H.-M. Christen, Specht, Norton, Chisholm, &

Boatner, 1998; Specht, Christen, Norton, & Boatner, 1998; Sigman, Norton, Christen,

Fleming, & Boatner, 2002) and etc. FE/FE superlattice combining two distinct ferro-
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electric materials together, such as PbTiO3 and BaTiO3 (Le Marrec et al., 2000). A re-

cent experimental work showed that a different type of FE/dielectric superlattices like

PbTiO3/SrRuO3 can be fabricated by combining ferroelectric materials with metallic

magnetic perovskite oxides (Callori et al., 2012). On the other hand, ferroelectric ma-

terials can also be combined with relaxor such as PbTiO3 / PbMg1/3Nb2/3O3 superlattice

(Ranjith, Nikhil, & Krupanidhi, 2006). Some other studies including tricolor superlattices

which alternating between three different materials, for example, SrTiO3/BaTiO3/CaTiO3

(Warusawithana, Colla, Eckstein, & Weissman, 2003; H. N. Lee, Christen, Chisholm,

Rouleau, & Lowndes, 2005) with broken inversion symmetry.

2.2.1 Theoretical Methods for the Study of Ferroelectric Superlattices: An Overview

In this section, an overview of theoretical methods that are mainly used in studying

ferroelectric superlattices will be briefly discussed. Generally, the theoretical study of

ferroelectric superlattices are mainly pursued by two approaches, i.e. macroscopic the-

ory and microscopic theory. The macroscopic theory also known as phenomenological

approach based on the Landau-type theory (Chandra & Littlewood, 2007) or phase-field

method using time-dependent Ginzburg-Landau equations (Chen, 2008). On the micro-

scopic level, one usually start with a microscopic many-body Hamiltonian and applying

the quantum statistical techniques to consider the interaction between particles in a crys-

tal. For instance, the lattice dynamic models is used for the displacive type ferroelectrics

whereas the Ising model in a transverse field is used for the order–disorder type ferro-

electrics (Blinc & Žekš, 1974). Especially in the case of ferrolectric superlattices, there

are a series of papers that used transverse Ising Model (TIM) to study the properties of

ferroelectric superlattices (B. D. Qu, Zhong, & Zhang, 1994; B. Qu, Zhong, & Zhang,

1995; Xin, Wang, Zhong, & Zhang, 1999). Another method involves atomistic model-

ing of ferroelectric materials is known as first-principles or ab initio techniques. These
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methods are free of empirically adjustable parameters and solely based on the funda-

mental laws of quantum mechanics. Among all the first-principles approaches, density

functional theory (DFT) has emerged as one of the best methodological tools to study fer-

roelectrics (Ghosez & Junquera, 2006). In order to extend the first-principles modeling

to provide access to finite-temperature thermodynamic properties, a “second principles”

methods has been developed to explore the physical phenomena with a few parameters

that can be extracted directly from DFT calculations (Lichtensteiger et al., 2012). Among

them, the most common methods are the effective Hamiltonian (W. Zhong, Vanderbilt, &

Rabe, 1994, 1995) and shell models (Sepliarsky, Asthagiri, Phillpot, Stachiotti, & Migoni,

2005). There are several good reviews on the first-principles studies of ferroelectric su-

perlattices, such as Dawber, Rabe, & Scott, 2005; Rabe, 2005; Ghosez & Junquera, 2006;

Rabe & Ghosez, 2007. Each theory has its own merits, however, this study will only focus

particularly on Landau phenomenological theory on ferroelectric superlattices. The other

aforementioned microscopic methods and atomic modelings are lie beyond the scope of

this thesis, it will not be discussed in detail.

2.3 Major Factors Affecting Ferroelectric Superlattices

Ferroelectric superlattices that will be discussed in this study are mainly focus on

ferroelectric oxide with perovskite structure. Due to the complexity of the physics of fer-

roelectric superlattices, their properties can be influenced by numerous factors, such as

finite size effects, electrostatic effect, mechanical effect and etc. On top of that, recent

studies shown that a new intriguing physics of phenomena arise in complex oxides het-

erostructures due to interface effect (Zubko, Gariglio, Gabay, Ghosez, & Triscone, 2011).

In the following discussions, the key factors that affect the properties of ferroelectric su-

perlattices will be discussed in detailed.
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2.3.1 Misfit Strain

Superlattices are customarily produced by fabricating alternate layers of epitaxially

ferroelectric perovskites with different properties and lattice parameters. Hence, the sub-

strate is very important in obtaining a single-crystalline epitaxial film in order to grow a

high-quality superlattice. Similar to grow an epitaxial oxide thin film, one usually start

from an atomically flat substrate surface otherwise it would be difficult to assure correct

atomic-scale layer ordering during film growth. If a thin film grows on a rough starting

surface, it can leads to a variety of structural defects (Posadas et al., 2007). As a con-

sequence, it could affect the properties of the film such as dielectric, ferroelectric and

others. Besides that, the surface flatness over multiple layers is very crucial when fabri-

cating a superlattices. Any roughness on the substrate surface can cause an unintentional

electrical short in thin barrier layers (Posadas et al., 2007).

Besides that, it is possible to induce considerable epitaxial strains in the ferroelec-

tric superlattices by growing epitaxial thin films on lattice mismatched substrates. This

epitaxial thin films are considerably different from those of their bulk parent material

(Dawber, Rabe, & Scott, 2005; Schlom et al., 2007). Hence, epitaxial strain is one of

the major factors determining the structures and properties of epitaxial superlattices. The

ionic positions in thin films and its lattice vibration, particularly the ferroelectric soft

mode is very sensitive to the strain effect (Ortega et al., 2011). It has been experimen-

tally observed and theoretically proved that epitaxial strain have a substantial impact on

the structure and properties of ferroelectric thin films and superlattices (Dawber, Rabe, &

Scott, 2005; Schlom et al., 2007; Dawber & Bousquet, 2013).

An important consideration is the limitation on the thickness of the superlattice that

can be achieved while retaining the coherent growth required to maintain the epitaxial

strain condition imposed by substrate (Posadas et al., 2007). The strain constraint of a suf-
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ficiently thick superlattice can be either partially or fully relaxed through the formation of

misfit dislocations, thereby allowing more complicated strain interactions between differ-

ent constituent layers. More often than not, superlattice structure tends to inhibit the for-

mation of misfit dislocations and can be grown coherently with layers sufficiently thicker

than single material films. This behaviour can be seen in the case of BaTiO3/SrTiO3 su-

perlattice on a SrTiO3 substrate where the epitaxial strain from the substrate can be main-

tained throughout the sample to a thickness greater than single BaTiO3 films (Posadas et

al., 2007). Firstly, this is due to the fact that the overall lattice misfit of BaTiO3/SrTiO3

superlattice relative to the substrate is less than single BaTiO3 films. Secondly, by re-

ducing the thickness of the individual layers that are under strain, the multilayer structure

itself may tend to impede the formation of misfit dislocation.

Furthermore, the influence of epitaxial strain on superlattice can cause other inter-

esting and striking behaviours from a practical point of view. Another example is the

PbTiO3/SrTiO3 superlattices, a very thin and high-quality layers of SrTiO3 can be grown

within PbTiO3 layers at much lower temperatures than the growth of single thick SrTiO3

films (Dawber, Lichtensteiger, et al., 2005; Posadas et al., 2007). On the other hand,

the results of experimental works (A. Q. Jiang et al., 2003; Ríos et al., 2003) and first-

principles calculation (Johnston, Huang, Neaton, & Rabe, 2005) on BaTiO3/SrTiO3 su-

perlattices showed that the SrTiO3 layers can achieve an in-plane polarization but not the

BaTiO3 layers.

Recently, Ortega et al. (Ortega et al., 2011, 2013) have demonstrated that the strain

among the inter- and intra-layer of BaTiO3/(Ba,Sr)TiO3 superlattices can be manipulated

by changing the composition of the constituent layer. Their results show that the dielectric

and ferroelectric properties of the superlattices can be tuned by varying the Ba/Sr ratio

of the constituent layer without changing the periodicity and the total thickness of the

superlattices.
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Hence, strain engineering in artificial superlattices allowed us to fine tune their fer-

roelectric properties and acquire new functionalities that are unachievable in bulk.

2.3.2 Electrostatic coupling

Electrostatic coupling between individual layers of superlattice exists when the po-

larization is perpendicular to the interface or along the modulation direction. Similar to

ferroelectric thin films, the electrostatics coupling between layers of superlattices also

plays a major role in determining the properties of ferroelectricity (Dawber, Rabe, &

Scott, 2005; Ghosez & Junquera, 2006; Dawber & Bousquet, 2013).

In the absence of free charges at interfaces, there is a uniform electric displace-

ment through out the superlattice. The continuity of the displacement field across the

interfaces resulting in a polarization mismatch between the individual layers (Posadas et

al., 2007). Thereby it gives rise to the presence of non-vanishing electric field in each

different layers. This electrostatic coupling effect has been proven by first-principles

calculation in BaTiO3/SrTiO3 (Neaton & Rabe, 2003) and by both experiment and the-

ory in PbTiO3/SrTiO3 (Dawber, Lichtensteiger, et al., 2005; Aguado-Puente, García-

Fernández, & Junquera, 2011; Zubko et al., 2012). In their studies, they have shown that

the internal fields in a polarizable materials has a significant influence on polarization and

structural properties of the system. To illustrate, the field within BaTiO3 layers is oppose

its polarization whereas the field (with opposite sign) in SrTiO3 layers is tend to polarize

this paraelectric layers (Neaton & Rabe, 2003). Due to the tendency of the system to

minimize electrostatic energy, it force the structure to adopt a nearly uniform polariza-

tion throughout the system (Neaton & Rabe, 2003; Dawber, Lichtensteiger, et al., 2005;

Aguado-Puente et al., 2011).

It has been demonstrated from both experiment and Landau theory in KTaO3/KNbO3

system (Specht et al., 1998; Sepliarsky, Phillpot, Wolf, Stachiotti, & Migoni, 2001;
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Stephanovich, Luk’yanchuk, & Karkut, 2005) that there is a progressive transition from

a strong electrostatic interlayer coupling in the thin layer limit (which applies to thick-

ness below a few unit cells) to a weak electrostatic coupling regime in the thick layer

limit. The same phenomenon is also observed by experiment and first-principles calcu-

lation in PbTiO3/SrTiO3 superlattices (Zubko et al., 2012; Aguado-Puente et al., 2011;

Aguado-Puente & Junquera, 2012).

Besides that, a series of papers based on Landau theory explicitly considering elec-

trostatic interaction between ferroelectric-paraelectric bilayers and multilayers (Roytburd,

Zhong, & Alpay, 2005; S. Zhong, Alpay, & Mantese, 2006; S. Zhong, Alpay, Roytburd,

& Mantese, 2006). Their thermodynamic model showed that the electrostatic coupling

can lead to a large enhancement of dielectric properties in multilayers.

2.3.3 Volume fraction or thickness ratio

In general, superlattices consist of two or more layers with thickness and order that

are repeated many times. It is found that the volume fraction or thickness ratio is one

of the key factors that controls the properties in superlattice. For example in the case of

PbTiO3/SrTiO3 superlattices, it has been demonstrated by both experiment and theory

(Dawber et al., 2007; Zubko et al., 2010) that the polarization, dielectric susceptibility

and phase transition temperature depend on the volume fraction of PbTiO3.

On the other hand, the enhancement of ferroelectricity in two-component superlat-

tices has been reported in BaTiO3/SrTiO3 grow on SrTiO3 substrate (Shimuta et al.,

2002; Neaton & Rabe, 2003; Tian et al., 2006; Tenne et al., 2006). By increasing the

volume fraction of BaTiO3, the polarization of the superlattices can be enhanced and it

exceeds that of bulk BaTiO3. This enhanced polarization is attributed to the high con-

centration of the ferroelectric components BaTiO3 and compressive strain imposed by

SrTiO3 substrate.
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2.3.4 Interface effects

Recent progress in deposition techniques have made it possible to fabricate high-

quality nanoscale artificial oxide heterostructures such as perovskite ferroelectric super-

lattices. Thus, it leads to the discovery of new intriguing physics of phenomena that arise

at the interfaces between these multifunctional materials (Zubko et al., 2011). Accord-

ing to first-principles calculations, the interface atomic relaxations between alternating

layers influences the chemical bonding and the short range interatomic force near the in-

terface. The Born effective charges at interface is differ from the bulk values due to the

modification of long range dipole-dipole interaction (Ghosez & Junquera, 2006). The

rearrangement of atoms at the surface or interface in layered ferroelectrics leads to a dif-

ferent crystal symmetry and unexpected new behaviours compare to bulk.

2.3.4.1 Inhomogeneous Polarization and Polar Discontinuity at Interfaces

The spatial inhomogeneity of polarization is very important when dealing with fer-

roelectric domains. A more detailed description of ferroelectric domains can be found

in the book by Tagantsev et al., 2010. Phenomenological theories predicted that the in-

homogeneous and changes of polarization are expected near the surface of ferroelectrics

(Kretschmer & Binder, 1979; D. Tilley & Z̆eks̆, 1984) and the interface of superlattices

(B. D. Qu, Zhong, & Prince, 1997).

It has been predicted theoretically (Y. L. Li et al., 2007; D. Lee et al., 2009) and

inferred by indirect experimental methods (A. Q. Jiang et al., 2003; Tenne et al., 2006;

Bruchhausen et al., 2008) that the superlattices composed of ferroelectric and paralectric

layers are expected to give rise to an inhomogeneous polarization profile. By make use of

electron-energy-loss spectra (EELS) and high-angle annular dark field (HAADF), Torres-

Pardo et al. and Zubko et al. (Torres-Pardo et al., 2011; Zubko et al., 2012) were able

to observe the local structural distortions in PbTiO3/SrTiO3 superlattices. They have
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identified local structural distortion at the single unit-cell scale across the interface, and

revealed the existence of inhomogeneous polarization profile within the ferroelectric and

paraelectric layers. While the length scale of inhomogeneity extends over 5-6 unit cells

was attributed to ferroelectric domains, the effect of intermixing confines to 1 unit cell

from interface may also be present and should not be ruled out. Their interesting works

implied that any theoretical study based on homogeneous polarization model (Pertsev &

Tyunina, 2011; Chew, Ong, Osman, & Tilley, 2000; Roytburd et al., 2005; Dawber et al.,

2007; Neaton & Rabe, 2003) is most likely inapplicable in superlattices.

Recently, a first-principles studies demonstrated that a superlattice consisting alter-

nate layers of ferroelectrics and paralelectrics may form a polar discontinuity at interface

(Das, Spaldin, Waghmare, & Saha-Dasgupta, 2010). Their results show that the coupling

at the interface between the switchable induced-polarization of paraelectric layer and the

electrically switchable spontaneous polarization of ferroelectric layer leads to polariza-

tion continuities or discontinuities at interface.

2.3.4.2 Interface coupling

In superlattices composed of thin layers of ferroelectric and paraelectric compound,

there is an additional coupling originates from the interaction at the interface which may

affect the ferroelectric properties of the structure. Indeed, the coupling at the interface

between the two constituent layers has been demonstrated in experiments (Sigman et al.,

2002; Bousquet et al., 2008) to play an important role in governing their properties.

The experimental works on KTaO3/KNbO3 superlattices showed that there is a sig-

nificant long-range ferroelecric coupling across the KTaO3 layers (H.-M. Christen et al.,

1998; Specht et al., 1998). Moreover, this system is further investigated by Stephanovich

et al. using Landau-Ginzburg theory (Stephanovich et al., 2005). It has been shown

that the coupling between ferroelectric layers in this superlattice is caused by the de-
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polarization field which emerge from the domain structure of the ferroelectric layers.

Besides that, a transition from ferroelectric to antiferroelectric orderings is observed in

KTaO3/KNbO3 superlattices experimentally (Sigman et al., 2002) further indicating the

existence of strong coupling across the interface between the two layers.

In the limit of ultra-short periods, a PbTiO3/SrTiO3 superlattice shows an unusual

recovery of ferroelectricity that cannot be explained by a simple electrostatic model alone

(Dawber, Lichtensteiger, et al., 2005). First-principles study suggests that this is essen-

tially an interface effect which involves an unusual coupling between FE and antifer-

rodistortive (AFD) instabilities (Bousquet et al., 2008). Another first-principles results by

Junquera group show that there is an existence of a strong coupling between FE and AFD

modes with strain in monodomain PbTiO3/SrTiO3 superlattices (Aguado-Puente et al.,

2011). Both the magnitude and the relevant directions of the FE polarization and the ro-

tation axis of oxygen octahedra can be tuned by controlling the epitaxial strain. Thus, the

coupling of structural instabilities at interface introduces a unique approach for designing

new functional materials which is not restricted to the superlattice system itself (Zubko et

al., 2011).

There have been a number of theoretical studies for the coupling between layers

at interface in superlattices within the framework of Landau theory. Several varieties

of terms have been proposed to account for the coupling between layers, for instance

the works by D. R. Tilley, 1988; B. D. Qu et al., 1997; Ma, Shen, & Xu, 2000; Chew,

Ishibashi, G. Shin, & L. W. Chan, 2003. The detailed discussion of this topic will be

presented in Section 2.4.

2.3.4.3 Intermixing at interfaces

In multilayer structures such as superlattices, intermixed layers may form at inter-

faces between dissimilar layers. The formation of intermixed layers at interfaces with
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properties different from those of both constituents, may affect the properties of multi-

layer structures (Chew, 2012). These intermixed layers can be formed due to the short-

range interactions between contacting dissimilar materials, surface or interface recon-

struction, cation intermixing, or composition deviations at the interfaces in superlattices

of ferroelectric solid solutions (Pertsev & Tyunina, 2011).

Recently there was an experiment demonstrated that BaTiO3/SrTiO3 superlattices

can be fabricated without interface intermixing by using chemical solution deposition

method (Hosokura et al., 2011). However, the intermixing at heterointerfaces is usually

difficult to control experimentally at high temperature using high-energy lasers, where

the stoichiometry of the deposited films changes in a complicated manner under the

prescribed deposition conditions (Mizoguchi, Ohta, Lee, Takahashi, & Ikuhara, 2011;

Ohnishi, Koinuma, & Lippmaa, 2006). On the other hand, Mizoguchi and co-workers

(Mizoguchi et al., 2011) have found an experiment method to control the atomic-scale

intermixing at interfaces and improve the properties of SrTiO3 based superlattice by con-

structing an abrupt heterointerface.

The interface structure of PbTiO3 thin films grown on SrTiO3 substrates were studied

experimentally by Fong et al. (Fong et al., 2005) using a high resolution coherence Bragg

rod analysis (COBRA) to reveal details of the film structure. Their work suggests that

cation intermixing may exist at the interfaces of PbTiO3/SrTiO3 superlattices. A detail

evaluation of interface diffusion or intermixing in BaTiO3/SrTiO3 superlattices grown

by molecular beam epitaxy was performed by Ishibashi, Ohashi and Tsurumi (Ishibashi,

Ohashi, & Tsurumi, 2000). Besides that, Hung et al. also identified the presence of com-

positional intermixing at interfaces in PbZrO3/BaZrO3 (Hung, Chueh, Wu, & Chou,

2005). A recent study on the structural evolution of surfaces during the layer-by-layer

growth of BaTiO3 films on SrRuO3 indicates that the surface reconstruction of SrRuO3

increases the oxygen concentration, and leads to both intermixing and structural change
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in BaTiO3 at the interface (Shin et al., 2010). Their finding further reveals the possible

existence of intermixed layer at oxide interface.

On the theoretical side, the first-principles study of interface intermixing effect in

short-period PbTiO3/SrTiO3 was done by Cooper, Johnston and Rabe (Cooper, John-

ston, & Rabe, 2007), they have shown that the interfacial intermixing can significantly

enhance the polarization in superlattices. On the other hand, Pertsev and Tyunina (Pertsev

& Tyunina, 2011) based on phenomenological theory demonstrated that the short-range

interactions and intermixing between dissimilar constituents in contact can give rise to

the formation of an interface layer with physical properties different from those of both

layers.

2.4 An Overview of Phenomenological Theory for Ferroelectric Superlattices

A number of papers using phenomenological approach have appeared to study the

phase transition of ferroelectric superlattices. In fact, the theoretical studies of these

works started even earlier than the first fabrication of superlattices in experiment (Levanyuk

& Misirlioglu, 2011). In this section, an overview on the theoretical works of ferroelectric

superlattices which based on phenomenological theory or Landau theory is reviewed.

In fact, many theoretical works that based on Landau theory have adopted the idea

of extrapolation length which borrowed from the literature on surface superconductivity

(Kretschmer & Binder, 1979; D. Tilley & Z̆eks̆, 1984). By using extrapolation length,

Li et al. (S. Li, Eastman, Vetrone, Newnham, & Cross, 1997) used Landau formulation

to studied the ferroelectricity of superlattices by assuming that the polarization is contin-

uous at the interface. Based on the same assumption that the polarization is continuous

at the interface, Schwenk et al. (Schwenk, Fishman, & Schwabl, 1990) considered the

surface interactions by introduced the surface Ginzburg-Landau functional to study soft

modes in ferroelectric superlattices. On the other hand, D. R. Tilley (D. R. Tilley, 1988)
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proposed a Landau formulation for coupled ferroelectric superlattices by introduced an

interface coupling energy term. Later on, Qu and co-workers (B. D. Qu et al., 1997) pre-

sented the thermodynamic model to study interfacial coupling ferroelectric superlattices

based on Landau-like formulation by taking the continuum mean-field expressions of the

transverse Ising model. Their model use two surface parameters or extrapolation lengths

to describe the inhomogeneity of polarization near surfaces and an interface coupling pa-

rameter gives the strength of the interface polarization coupling. Nonetheless, their work

did not explicitly address how the interface polarization coupling affects the local po-

larization across the interface. Later, Ma and co-workers (Shen & Ma, 2000; Ma et al.,

2000; Shen & Ma, 2001) reconsidered the Qu model by including the long-range coupling

effect, but the spatial distribution of polarizations was not reported and discussed. The re-

cent works by Chew et al. and Ong et al. (Chew, Ong, & Iwata, 2011c; Ong, Lee, & Chew,

2012) on the study of switching dynamics in ferroelectric superlattices show that the Qu’s

model (B. D. Qu et al., 1997) using extrapolation length can only describe polarization

discontinuities at the interface. Misirlioglu and co-workers (Misirlioglu, Akcay, Zhong,

& Alpay, 2007) applied the idea of extrapolation length in their nonlinear thermodynamic

model to investigate the effect of interface on polarization of BaTiO3/SrTiO3 bilayer by

considering the depolarization effect. Although the extrapolation length has been exten-

sively studied in ferroelectric thin films and superlattices, to our knowledge, there is no

direct experimental confirmation of this enigmatic idea.

Most of the earlier theoretical works of Landau theory in ferroelectric superlattice

only considered the simple case of polarization parallel to the surfaces or interfaces such

as D. R. Tilley, 1988; B. D. Qu et al., 1997; Shen & Ma, 2000; Ma et al., 2000; Shen

& Ma, 2001. Hence, there is no depolarization field in this configuration and the elec-

trostatic coupling effect can be neglected. In fact, this configuration of in-plane polar-

ization in superlattices can be measured using interdigital electrodes (Harigai, Tanaka,
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Kakemoto, Wada, & Tsurumi, 2003). In the case of polarization is perpendicular to the

interface, the depolarization field due to electrostatic coupling between layer is crucial

to the ferroelectric properties of superlattices. Roytburd and co-worker have developed a

thermodynamic model by explicitly take into account electrostatic interactions between

layers of superlattices and the depolarization field effect (Roytburd et al., 2005; S. Zhong,

Alpay, & Mantese, 2006; S. Zhong, Alpay, Roytburd, & Mantese, 2006). Recently, Kesim

et al. (Kesim, Cole, Zhang, Misirlioglu, & Alpay, 2014) employed the Roytburd’s model

(Roytburd et al., 2005) to examine the dielectric properties of ferroelectric-dielectric mul-

tilayers by taking into account the thermal stresses that develop during cooling from the

growth temperature. However, the Roytburd’s model did not consider the effect of surface

or interface, the polarization coupling at interface is ignored, the polarization is homoge-

nous within the superlattices according to their results. On the other hand, Stephanovich

et al. (Stephanovich et al., 2005) employed the Ginzburg-Landau equations coupled with

electrostatic equations which was first proposed by Chenskii and Tarasenko (Chenskii

& Tarasenko, 1982) to discuss the phase transition of ferroelectric superlattices. Sub-

sequently, Levanyuk and Misirlioglu (Levanyuk & Misirlioglu, 2011) adapted the same

approach as Stephanovich et al. (Stephanovich et al., 2005) to show that the periodicity as-

sumption along the out-of-plane direction is not justified. By using the Landau-Ginzburg-

Devonshire theory coupled with electrostatic equation, Misirlioglu et al. (Misirlioglu,

Kesim, & Alpay, 2014) demonstrated that the electrostatic boundary conditions have a

significant effect on the dielectric response of PbZr0.3Ti0.7O3/SrTiO3 superlattices. This

is due to the existence of internal electric fields at the interfaces resulting from the polar-

ization mismatch between the layers.

In addition, there are several other Landau phenomenological models proposed by

different authors for studying ferroelectric superlattices. Based on the Landau-Ginzburg

theory, Cui et al. (Cui, Lü, Xu, & Zhou, 2009) applied the idea of surface transition layer
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(Lü & Cao, 2002) in each constituent layer and interface coupling between two con-

stituent layers. In their model, however, the surface transition layers or inhomogeneity

of polarization across interface are represented by a distribution function that are based

on mathematics argument and its underlying physical meaning is difficult to justified. On

the other hand, Pertsev and Tyunina (Pertsev & Tyunina, 2011) introduced an interface

nanolayer with properties different from those of both constituents to investigate the per-

mittivity of superlattice. However, they assumed the polarization is homogeneous, the

effect of surface or interface is neglected and the local polarization coupling at interfaces

is not considered.

Recently, there are number of papers study the space charges effect in ferroelectric

multilayer or superlattices within the framework of Landau theory. Misirlioglu and co-

workers (Misirlioglu, Alexe, Pintilie, & Hesse, 2007) investigate the effect of interfacial

space charge in ferroelectric superlattices using the Roytburd’s model (Roytburd et al.,

2005) and follow the approach for space charge distribution by Bratkovsky and Levanyuk

(Bratkovsky & Levanyuk, 2000). Their results show that the polarization and its switching

characteristics of ferroelectric superlattices can be affected by the presence of an inter-

face charge. By treating the ferroelectric perovskites as wide band-gap semiconductors

instead of insulators, Liu and Li (Y. Y. Liu & Li, 2010) studied the effect of space charges

on the ferroelectric superlattices based on a continuum model. They found that a large

electric field near the superlattice interface is due to the accumulation of space charge at

interface. As a result, it gives rise to the enhancement of polarization and asymmetric

in the hysteresis loop. Okatan et al. (Okatan, Misirlioglu, & Alpay, 2010) developed a

thermodynamic model to study the contribution of localized charges to the polarization

and dielectric properties of PbTiO3/SrTiO3 superlattices. Their study shows that there

exists a critical volume fraction of PT below which the superlattice is in the paraelectric
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phase. Furthermore, there is a recovery of in ferroelectric polarization near to the vicinity

of ferroelectric-paraelectric phase transition.

2.5 A Thermodynamic Model for Ferroelectric Superlattices

From what have been discussed in the preceding session, undoubtedly the interface

effects have a dominant influence on the properties of ferroelectric superlattices. In order

to develop a thermodynamic model based on Landau-Ginzburg theory for ferroelectric

superlattices, the interface effects such as interface coupling, intermixing have to be taken

into account. The presence of interface effect can give rise to the changes of polarization

at interface of superlattices, hence the Ginzburg term or gradient term must be considered

in the free energy functional.

Recently, Chew and co-worker have proposed a thermodynamic model to study the

ferroelectric properties of superlattices consisting of alternate ferroelectric and paraelec-

tric layers (Ishibashi & Iwata, 2007; Chew, Iwata, Shin, & Ishibashi, 2008; Chew, Iwata,

& Shin, 2009; Chew et al., 2011c; Chew, Ishibashi, & G. Shin, 2006; Chew, Ong, & Iwata,

2011a). Their model can be constructed using the concept of interaction of dipole lattices,

which are characterized by polarizations with double potential wells (Chew, 2012; Chew

et al., 2011a). In the model, an interface energy term is introduced in the free energy

to describe the local polarization coupling at interface between the two contacting fer-

roelectrics, and the formation of an intermixed layer (Chew et al., 2003). Despite its

simplification, the approach has captured the essential physics which associate with po-

larization continuities or discontinuities, polarization inhomogeneities, intermixing and

local polarization coupling at interfaces (Chew, 2012).

2.5.1 Dipole Lattice Model

On the basis of Landau-Ginzburg theory, a thermodynamic model is proposed to

study the periodic superlattice –ABABAB– consist of two different ferroelectric/paraelectric
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Figure 2.1: Schematic illustration of a periodic superlattice composed of a ferroelectric
and paraelectric layers with the thicknesses L1 and L2, respectively. L = L1 +L2 is the
periodic thickness of the superlattice. The direction of polarization p, polarization q and
applied electric field E are indicated in the figure. (Chew, 2012)

layers as shown in Fig.2.1. In general, layer A is ferroelectric material whereas layers B

can be either ferroelectric or paraelectric. The two constituent layers interact with each

other via the polarizations located at the interfaces. For simplicity, we consider the case

when the polarization is parallel to surfaces or interfaces, so there is no depolarization

field in the system. At the beginning, we construct the model using a dipole lattice model

as proposed by Ishibashi (Ishibashi, 1990; Omura, Adachi, & Ishibashi, 1991; Ishibashi,

1992; Omura, Adachi, & Ishibashi, 1992; Omura, Mihara, & Ishibashi, 1993). In fact, this

dipole lattices model has been used to study the polarization reversal in ferroelectric thin

films (Ricinschi, Lerescu, & Okuyama, 2000; Ricinschi, Ishibashi, Iwata, & Okuyama,

2001; Baudry & Tournier, 2001).

The dipole lattice model assumes that each layer is an ensemble of dipole lattices

characterized by polarization which has double potential wells. To illustrate, we consider

a simple case of one-dimensional ferroelectric superlattices composed of alternating layer

A and layer B with total number of M and N lattices, respectively. The pm and qm represent

the dipole lattices located at the m-th sites of layer A and n-th of layer B. Each dipole
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interacts with its nearest-neighboring dipole. κ1 and κ2 are the corresponding interaction

parameter between the nearest-neighboring dipoles within layer A and layer B.

The free energy for the layer A with total dipole lattices M, is (Chew et al., 2006,

2011a)

F1 =
M

∑
m=1

[
α1

2
p2

m +
β1

4
p4

m−E pm

]
+

M

∑
m=2

[
κ1

2
(pm− pm−1)

2
]

(2.1)

and the free energy for the layer B with total lattices N is

F2 =
N

∑
n=1

[
α2

2
q2

n +
β2

4
q4

n−Eqn

]
+

N

∑
n=2

[
κ2

2
(qn−qn−1)

2
]

(2.2)

where the higher order q terms are truncated. E is the applied electric field. In the

ferroelectric phase, αi < 0 and βi > o, whereas αi > 0 for the paraelectric layer.

The dipoles at the interface of layer A and layer B are given by p1 = pM and q1 =

qN , respectively. It is easily seen that the interaction energy between the dipoles at the

interface of the two constituent layers is given by (Chew et al., 2006)

Fi =
λ

2

[
(pM−q1)

2 +(p1−qN)
2
]

(2.3)

where λ denote the interaction parameter between the interface dipole lattices. By as-

suming that the variation of the order parameter within each layer is sufficiently smooth

and each layer consists of a large number of dipoles, then the interaction energy of layer

A (second term in Eq.(2.1)) can be written approximated as (Chew et al., 2011a)

M

∑
m=2

[
κ1

2
(pm− pm−1)

2
]
≈
∫ L1

0

κ1

2

(
d p
dx

)2

dx (2.4)

where L1 = Ma1 and a1 are the thickness and the lattice constant of layer A, respectively.

Similarly, the interaction energy of layer B with thickness L2 =Na2 and its lattice constant
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a2 (second term in Eq.(2.2)) is given by (Chew et al., 2011a)

N

∑
n=2

[
κ2

2
(qn−qn−1)

2
]
≈
∫ L2

0

κ2

2

(
dq
dx

)2

dx (2.5)

where the periodic thickness is L = L1+L2. Periodic boundary conditions are considered

for describing the infinite ferroelectric superlattice. The periodic boundary condition in-

dicates that we only have to consider a one-period superlattice structure.

Since there are only two dipoles at each interface contribute to the interface coupling

energy, the interface energy (2.3) remains unchanged. Thus, it is clear that the interface

energy has the same form as the interaction energy term of the dipole lattice model or the

gradient term of the continuum model or the Landau-Ginzburg theory, which describes

the inhomogeneity of polarization within the constituent layer.

2.5.2 Continuum Model

Now we rewrite the free energies Eqs. (2.1), (2.2) and (2.3) into a continuum

Landau-Ginzburg theory. Hence, the final form of the total free energy per unit area

of the superlattices with periodic thickness, L = L1 +L2 is

F = F1 +F2 +Fi, (2.6)

where the total free energy densities of layer A and B are (Chew et al., 2011a)

F1 =
∫ 0

−L1

[
α1

2
p2 +

β1

4
p4 +

κ1

2

(
d p
dx

)2

−E p

]
dx, (2.7)

F2 =
∫ L2

0

[
α2

2
q2 +

β2

4
q4 +

κ2

2

(
dq
dx

)2

−Eq

]
dx, (2.8)
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respectively. In Eq. (2.7) and (2.8), the α j ( j : A or B) is temperature dependent as α j =

α0, j(T − T0). β j is the coefficients and κ j is the gradient coefficient determining the

energy cost due to the inhomogeneity of polarization.

The interface energy can be written as (Chew et al., 2003; Ho Tsang, Chew, Ishibashi,

& G. Shin, 2004; Chew, Ishibashi, & G. Shin, 2005; Chew et al., 2008, 2009; Ishibashi &

Iwata, 2007; Chew et al., 2011c, 2011a)

Fi =
λ

2
(pi−qi)

2 =
λ

2
(

p2
i +q2

i
)
−λ piqi. (2.9)

where pi and qi are the polarizations at interface with the periodic boundary condition

gives pm = p1 = pi and qn = q1 = qi. In Eq. (2.9), the interface parameter λ can be

conveniently related to the dielectric permittivity in vacuum ε0 as (Chew, Ong, & Iwata,

2011b; Lim, Chew, Ong, & Iwata, 2012)

λ =
λ0

ε0
(2.10)

where λ0 denote the temperature-independent interface parameter.

Basically, the interface energy term (2.9) is characterized by the interface-related

parameter λ . It is important to note that the right-hand side of interface energy term

(2.9) can be divided into two parts: (i) non-ferroelectric part (“λ p2
i /2 ” and “λq2

i /2”) and

(ii) polarizations coupling part (“λ piqi”) (Chew et al., 2011a; Chew, 2012; Lim et al.,

2012). On the basis of Landau theory, Bratkovsky and Levanyuk have illustrated that the

strong smearing of phase transition in ferroelectric thin films by considering the surface

as a defect coupled to the order parameter (Bratkovsky & Levanyuk, 2005, 2009). In their

model (Bratkovsky & Levanyuk, 2005), the surface energy term consists of a “dead layer”

and its field component. It is noteworthy that in our model, the non-ferroelectric terms
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(“λ p2
i /2” and “λq2

i /2”) are also corresponding to the formation of “dead layers” at the in-

terface region. Besides that, it has been proven by first-principles calculations (Stengel &

Spaldin, 2006; Stengel, Vanderbilt, & Spaldin, 2009) and experimentally (Chang, Alexe,

Scott, & Gregg, 2009) that the dead layer is an intrinsic effect and unavoidable phenom-

ena at metal-ferroelectric interface . The bonding at the metal-ferroelectric interfaces of

ultrathin ferroelectric capacitors can significantly affects the properties at interface. As a

result, it gives rise to the formation of intrinsic dipole moments at interface or so-called

dead layer. In fact, these dead layers are actually linear dielectrics, and their dielec-

tric stiffnesses are determined by the interface parameter λ > 0. On the other hand, the

polarization coupling part “λ piqi” describes the mutual interaction between the local po-

larization at interfaces due to the modification of bonding at the interfaces which has the

same form as the coupling term (the linear term) in the Qu model (B. D. Qu et al., 1997).

In our model, λ describes the effect of interface intermixing in the superlattices and

it governs the inhomogeneity of polarization near the interface. Therefore, the continuity

or discontinuity of polarizations across the interface depends upon the nature of the in-

termixed layer formed at interfaces. If λ 6= 0, an intermixed layer which is analogous to

a dead layer with properties different from those of both constituents is expected to form

at the interface region (Chew et al., 2003; Ho Tsang et al., 2004). If layer B is ferroelec-

tric, the formation of intermixed layer gives rise to an inhomogeneity of polarization near

interfaces. However, if layer B is paraelectric, the polarization may induce at interface

of this layer which depends on its dielectric stiffness. On the contrary, if λ = 0, no in-

termixed layer forms at the interface region. As a consequence, the polarization in the B

layer is homogeneous if it is ferroelectric layer, while no induced-polarization in the B

layer if it is paraelectric layer.

In equilibrium, the stable states of the ferroelectric superlattice correspond to the

minima of F with respect to the polarization. These are given by solving the Euler-
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Lagrange equations ∂F
∂ p −

∂F
∂x

(
∂F
∂ p′

)
= 0 with p′ = d p

dx :

κ1
d2 p
dx2 = α1 p+β1 p3−E

κ2
d2q
dx2 = α2q+β2q3−E

 . (2.11)

with the boundary conditions for the polarizations at the interfaces as

d p
dx

=− λ

κ1
(pi−qi)

dq
dx

=
λ

κ2
(pi−qi)

 . (2.12)

There have been a number of papers reported the analytical solutions of this contin-

uum Landau-Ginzburg model in study ferroelectric superlattice consist of ferroelectrics

and paraelectrics layers. The earliest works of this continuum Landau-Ginzburg model

were published by Chew and co-workers (Chew et al., 2003) focus on interface structure

in double-layer ferroelectrics. Later on, Ishibashi and Iwata (Ishibashi & Iwata, 2007)

applied this continuum Landau-Ginzburg model based on the lattice model (Chew et al.,

2006) to discuss the phase transitions of a ferroelectric superlattice. They considered the

coupling between ferroelectric and paraelectric layers through the interface interaction.

The analytical solutions of the polarization modulation profile via interface coupling in

a superlattice was later reported by Chew et al. (Chew et al., 2009). Their works shown

that the polarization modulation profile of a ferroelectric superlattice is determined by the

interface-induced polarizations in the paraelectric layer which can be strongly induced via

the interface coupling. Later on, they further investigate and obtained the exact expres-

sions for the polarization profiles induced by an external electric field and the dielectric

susceptibilities in the paraelectric phase (Chew et al., 2008). The complete reviews of this

Landau-Ginzburg model of ferroelectric superlattices are given by Chew et al., 2011b and

Chew, 2012.
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CHAPTER 3

ELECTROSTATIC COUPLING AND INTERFACE INTERMIXING IN
FERROELECTRIC SUPERLATTICES

3.1 Introduction

Ferroelectric superlattices present an opportunity for developing artificial structures

with fascinating properties for device applications. Superlattices combining a ferroelec-

tric and a paraelectric have been studied extensively both by experiment and theory.

Many superlattices have been fabricated and studied, such as BaTiO3/SrTiO3 (Tabata et

al., 1994; Tsurumi et al., 2002b), PbTiO3/SrTiO3 (Dawber, Lichtensteiger, et al., 2005;

Dawber et al., 2007), KTaO3/KNbO3 (H.-M. Christen et al., 1998; Specht et al., 1998),

BiFeO3/SrTiO3 (Ranjith, Kundys, & Prellier, 2007), BaTiO3/(Ba,Sr)TiO3, etc. While

many thermodynamic models have been put forward to study ferroelectric superlattices

(B. D. Qu et al., 1997; Chew et al., 2000; Roytburd et al., 2005; Stephanovich et al., 2005;

Dawber et al., 2007; Pertsev, Janolin, Kiat, & Uesu, 2010), they all generally do not take

into account of intermixing at interfaces. In layered structures, intermixed layers may

form at interfaces between two layers and affect the properties of superlattices (Pertsev &

Tyunina, 2011).

In this chapter, a thermodynamic model is developed to study electrostatic coupling

and interface intermixing in superlattices comprising alternate layers of ferroelectrics and

paraelectrics. The superlattice is modelled by considering them as layers of strained ferro-

electric or paraelectric with appropriate electrostatic boundary conditions (Stephanovich

et al., 2005; Lim et al., 2012). Interface intermixing leads to inhomogeneous internal elec-

tric field and polarization in superlattices. On the basis of our thermodynamic model, we

will discuss the effect of electrostatic coupling and interface intermixing in superlattice
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which comprising alternate layers of ferroelectric and dielectric in Section 3.5. The rela-

tionship between these ferroelectric properties including internal electric field, dielectric

susceptibility and polarization will be examined and discussed in Section 3.6. Finally,

the polarization reversal in ferroelectric superlattices with “switchable” polarization in

intermixed layers is examined in Section 3.7.

3.2 Literature Review

In the preceding chapter in Section 2.3, we have discussed some key factors that

affect ferroelectric superlattices. To sum up, Torres-Pardo et al., 2011 and Zubko et al.,

2012 have recently demonstrated the local structural distortion across the interface which

indicating the presence of inhomogeneous ferroelectric properties in superlattices. In-

duced changes in polarization due to electrostatic coupling can have significant effects

on the superlattice properties (Roytburd et al., 2005). Epitaxial strains are well known

to have a strong impact on the properties of these superlattices (Dawber, Rabe, & Scott,

2005). The properties of these superlattices can be manipulated by changing the ferro-

electric volume fraction (Dawber et al., 2007). Interface coupling (B. D. Qu et al., 1997;

Bousquet et al., 2008) and intermixing (Pertsev & Tyunina, 2011; Cooper et al., 2007)

effects have also been shown to be important in these superlattices.

Chew and co-worker have proposed a thermodynamic model to study interface in-

termixing in ferroelectric superlattices (Chew et al., 2006; Ishibashi & Iwata, 2007; Chew

et al., 2008, 2009, 2011c, 2011a; Chew, 2012). An interface energy term is introduced to

describe the local polarization coupling at interfaces. The existence of interface polariza-

tion coupling leads to the formation of intermixed layer at interfaces (Chew et al., 2003)

and a periodic modulation in polarization. In the works, however, it is assumed that the

polarization aligns parallel to surface of superlattices, and thus the depolarization effect

is ignored. We have recently extended the model by taking into account the effect of elec-
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trostatic coupling and epitaxial strain on phase transition, polarization, internal electric

field and dielectric susceptibility in ferroelectric superlattices (Lim et al., 2012; Chew,

Lim, Ong, & Iwata, 2013; Lim, Chew, Ong, & Iwata, 2013).

3.3 Formalism for Electrostatic Coupling and Interface Intermixing

Figure 3.1: Schematic illustration of a periodic superlattice composed of a ferroelectric
layer and a paraelectric layer. The thicknesses of ferroelectric layer (FE) and paraelectric
layer (PE) are dFE and dPE , respectively. Arrow indicates the direction of polarization.

We consider a superlattice composed of two constituents: a ferroelectric layer and

a paraelectric layer (hereafter, we denote the superlattice as a ferroelectric/paraelectric

superlattice), which grows on a substrate, as schematically shown in Fig. 3.1.

By assuming that all spatial variation of polarization takes place along the z-direction,

the Helmholtz free energy per unit area for one period of the superlattice can be expressed

as following:

F = FFE +FPE +FI. (3.1)

The free energy per unit area of ferroelectric layer with thickness dFE is FFE =
∫ 0
−dFE

fFEdz,

and the free energy per unit area of paraelectric layer with thickness dPE is FPE =
∫ dPE

0 fPEdz.
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fFE and fPE are the free energy densities, given as (Pertsev et al., 2000)

f j =α
∗
j p2

j +β
∗
j p4

j + γ j p6
j +

κ j

2

(
d p j

dz

)2

− 1
2

Ed, j p j

+

(
c2

11, j + c11, jc12, j−2c2
12, j

c11, j

)
u2

m, j−Eext p j (3.2)

In Eq. (3.2), p j corresponds to the polarization of layer j ( j : FE or PE). α∗j = α j +

2(c12 jg11 j/c11 j−g12 j)um j and β ∗j = β j−g2
11 j/2c11 j where α j (temperature dependent),

β j and γ j are the Landau coefficients. c11 j and c12 j are the elastic stiffness coefficients,

whereas g11 j and g12 j denote the electrostrictive constants. um j = (as− a j)/as denotes

the in-plane misfit strain induced by the substrate due to the lattice mismatch. a j is the

unconstrained equivalent cubic cell lattice constant of layer j and as is the lattice param-

eter of the substrate. κ j denotes the gradient coefficient that determines the energy cost

due to the inhomogeneity of polarization p j. Ed j acts as the depolarization field of layer

j, if its direction is opposite to the direction of ferroelectric polarization. If Ed j inclines in

the same direction of polarization, it cannot be regarded as the depolarization field; thus,

we denote Ed j as “the internal electric field”. The Eext is the external electric field.

3.3.1 Interface Intermixing

The interface energy is given by (Chew, 2012; Ishibashi & Iwata, 2007; Chew et al.,

2008, 2009, 2011c)

FI =
λ0

2ε0

[
(pFE(0)− pPE(0))

2 +(pFE(−dFE)− pPE(dPE))
2
]
, (3.3)

where λ0 is the temperature-independent interface parameter and ε0 is the dielectric per-

mittivity in vacuum. pFE(0) and pFE(−dFE) represent the polarization at the interface of

ferroelectric layer, whereas interface polarizations of paraelectric layer are represented by
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pPE(0) and pPE(dPE). It is important to mention that the interface energy (3.3) possesses

a similar form as the gradient terms in Eq. (3.2) (Chew, 2012; Chew et al., 2011a).

The physical origin of the interface energy (3.3) can be interpreted as follows (Chew,

2012; Chew et al., 2011a). By symmetry, we have pFE(0) = pFE(−dFE) = pi and pPE =

pPE(dPE) = qi and thus, equation (3.3) can be written as Fi =
λ0
ε0
(pi−qi)

2 = λ0
ε0
(p2

i +q2
i )−

2λ0
ε0

piqi. In other words, the interface energy expression can be clearly interpreted by

separating it (3.3) into two parts: (i) non-ferroelectric part and (ii) polarizations coupling

part. It is well-known that dead layers are intrinsic and appear inevitably at the metal-

ferroelectric interface (Stengel et al., 2009; Chang et al., 2009). The bonding at the metal-

ferroelectric interfaces of ultrathin ferroelectric capacitors, which constituted the dead

layers, strongly affects the properties at interface through the formation of intrinsic dipole

moments at interface. In the present model, the former term is analogous to the formation

of “dead” layers (Stengel et al., 2009; Chang et al., 2009) at interfaces, i.e. the surfaces

of layer FE (“λ0 p2
i /ε0 ”) layer and layer PE (“λ0q2

i /ε0”) layer. The dead layers are

linear dielectrics, and their dielectric stiffnesses are determined by the interface parameter

λ0 > 0. The polarization coupling part “λ0 piqi/ε0” describes the mutual interactions

between the local polarization at interfaces due to the modification of bonding at the

interfaces.

In the present study of superlattices, the interface parameter λ0 describes the effect of

interface intermixing in the superlattice as a whole. The explicit expression derived from

interface structure for the simple case without electrostatic boundary conditions indicates

that the intermixed layer is governed by the physical properties of the two constituent

layers (Chew et al., 2003; Ho Tsang et al., 2004). The interface intermixing effects

are governed by the inhomogeneity of polarization near the interface which may arise

from the formation of intrinsic dipole moments and effect of coupling between the local

polarization at the interface. The continuity or discontinuity of polarizations across the
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interface depends upon the nature of the intermixed layer formed at interfaces. If λ0 6= 0,

an intermixed layer (Chew et al., 2003; Ho Tsang et al., 2004) (analogous to a dead

layer (Stengel et al., 2009; Chang et al., 2009)) with properties different from those of

both constituent layers is expected to form at the interface region. Polarization may be

induced at interface of the paraelectric layer, depending on its dielectric stiffness. If

λ0 = 0, no intermixed layer is formed at the interface region. Therefore, the polarization

in the ferroelectric layer is homogeneous and no induced-polarization can be found in the

paraelectric layer.

At the interface, the boundary conditions for the polarization are



−κFE
d pFE

dz

∣∣∣∣
z=−dFE

+
λ0

ε0
[pFE(−dFE)− pPE(dPE)] = 0

κPE
d pPE

dz

∣∣∣∣
z=0

+
λ0

ε0
[pFE(0)− pPE(0)] = 0

κFE
d pFE

dz

∣∣∣∣
z=0

+
λ0

ε0
[pFE(0)− pPE(0)] = 0

−κPE
d pPE

dz

∣∣∣∣
z=dPE

+
λ0

ε0
[pFE(−dFE)− pPE(dPE)] = 0.

(3.4)

3.3.2 Electrostatic Coupling

The internal electric field Ed j within the constituent layer may be found using the

Maxwell’s equation that are, in the present case with no free charges (Stephanovich et al.,

2005; Landau, Pitaevskii, & Lifshits, 1998),

∇ · (ε0E+P) = 0, (3.5a)

∇×E (3.5b)

where E is the electric field and P is the polarization. Equation (3.5b) indicates that we

may define a scalar function ϕ j, i.e. the electrostatic potential, which satisfies Ed, j =

−∇ϕ j . Using Ed, j = −∇ϕ j ( j : FE or PE), the Euler-Lagrange equations follow from
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the equations (3.2) can be expressed in term of the electrostatic potential ϕ j as

κ j
d2 p j

dz2 = 2α
∗
j p j +4β

∗
j p3

j +6γ j p5
j +

1
2

dϕ j

dz
−Eext (3.6)

where the electrostatic potentials are (Stephanovich et al., 2005; Landau et al., 1998)

−ε0
d2ϕ j

dz2 +
d p j

dz
= 0 (3.7)

and can be found using the Maxwell’s equation (3.5a).

For the electrostatic boundary conditions, the continuity of electric displacement at

the interface gives


−ε0

dϕFE

dz

∣∣∣∣
z=0

+ ε0
dϕPE

dz

∣∣∣∣
z=0

=−(pFE(0)− pPE(0)),

−ε0
dϕFE

dz

∣∣∣∣
z=−dFE

+ ε0
dϕPE

dz

∣∣∣∣
z=dPE

=−(pFE(−dFE)− pPE(dPE)),

(3.8)

and the continuity of tangential component of electric field gives the following conditions

on the electric potentials


ϕFE(0) = ϕPE(0),

ϕFE(−dFE) = ϕPE(dPE).

(3.9)

3.4 Calculations For PbTiO3/SrTiO3 Superlattices

For illustration, we apply the model to perform a numerical calculation on a super-

lattice consisting of ferroelectric layer as PbTiO3 (PT) and paraelectric layer as SrTiO3

(ST) on a ST substrate, as a representative system.

For the convenient of discussion, our free energy is based on an expansion of the

Helmholtz free energy in terms of polarization and strain. As shown in Table 3.1, we
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adopt the Helmholtz free energy coefficients of the chosen materials from Dawber et al.,

2007. The free energy coefficients of PT are taken from Pertsev et al., 1998 in Gibbs free

energy form, whereas the free energy coefficients of ST are from Pertsev et al., 2000 in

Helmholtz free energy form. The coefficients of Gibbs free energy are converted into the

coefficients of Helmholtz free energy by using Legendre transformation which has been

discussed in the preceding Section 1.6.2.1.

In the calculations, we take 1unit cell(u.c.) ≈ 0.4nm (Fong et al., 2004) and the

characteristic length or correlation length ξ0 is defined as

ξ0 =
√

κFE/(α0FET0FE)∼ 0.6nm, (3.10)

corresponds to the estimated length of domain wall half width (Stephanovich et al., 2005;

Fong et al., 2004). The lattice constants in the cubic phase are aFE = 3.969Å and aPE =

3.905Å for PT and ST, respectively (Dawber et al., 2007). Based on the lattice constants,

the lattice misfit strains in the PT and ST layers are obtained as um,FE = −0.0164 and

um,PE = 0, respectively.

Table 3.1: List of Helmholtz free energy coefficients used in this study

PT ST Units
α 3.8(T −T0PT ) 7.45(T −T0ST ) ×105JmC−2

β 4.229 20.2 ×108Jm5C−4

γ 2.6 - ×108Jm9C−6

T0 752 51.64 K
g11 1.14 1.25 ×1010JmC−2

g12 4.63 -10.8 ×108JmC−2

c11 1.746 3.36 ×1011Jm−3

c12 0.794 1.07 ×1011Jm−3

κ 1.029 1.029 ×10−10Jm3C−2

It is convenient to rescale all the variables into their dimensionless forms, please

refer to Appendix B for details. In the calculations, the Euler-Lagrange equations (3.6)

and electrostatic equations (3.7) were transformed into a system of nonlinear equations by
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using the finite-difference method. Solving the nonlinear equations numerically with the

interface boundary conditions, Eq. (3.4) and electrostatic boundary conditions, Eq.(3.8) &

(3.9), we obtain the spatial dependence of internal electric field (or electrostatic potential)

and polarization for the superlattices. Please refer to Appendix C for the description of

our numerical methods.

The average polarization is defined as

P =
1
L

(∫ 0

−dFE

pFEdz+
∫ dPE

0
pPEdz

)
(3.11)

with the periodic thickness L = dFE +dPE . Similarly, the average internal electric fields

is defined as

Ed =
1
L

(∫ 0

−dFE

edFE (z)dz+
∫ dPE

0
edPE (z)dz

)
. (3.12)

3.5 The effects of electrostatic coupling and interface intermixing

In this section, we study the effects of electrostatic coupling and interface intermix-

ing on the internal electric field and polarization of superlattices, composed of alternate

layers of ferroelectrics (PbTiO3) and paraelectrics (SrTiO3), which can be grown on a

substrate, as schematically shown in Fig. 3.1 (Lim et al., 2012). It is the objective of this

study to investigate the case of polarization perpendicular to the surface or interface of

a superlattice with the appropriate electrostatic boundary conditions. The correlation be-

tween the internal electric field and ferroelectric properties of the superlattice is examined

by looking at the modulation profiles. Furthermore, the effect of interface intermixing and

modulation period on the internal electric field and polarization are studied by changing

the volume fraction or thickness ratio of the superlattice.
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3.5.1 Result and Discussion

We will discuss both the cases of superlattices with electrostatic boundary condi-

tions (Fig. 3.2(a) and 3.3(a)) and superlattices with non-electrostatic boundary condi-

tions (Fig. 3.2(b) and 3.3(b)) at the ferroelectric/paraelectric interfaces. The case for

non-electrostatic boundary condition can be assumed when the polarization in superlat-

tices aligns parallel to interfaces, the effect of electrostatic coupling between ferroelectric

layers, represented by 1
2Ed, j p j, can be ignored. This configuration of in-plane polariza-

tion is discussed with the objective of differentiating the effects of interface intermixing

and electrostatic coupling.

We first look at the spatial dependence of polarization and internal electric field of the

PT/ST superlattices with electrostatic boundary conditions. Fig. 3.2(a) shows the spatial

profiles of polarization and internal electric field of PT/ST superlattices with φFE = 0.5

(i.e. both the thickness of PT and ST layers are 3u.c.) for different values of λ0. Cases for

λ0 6= 0 indicate the formation of intermixed layers or “dead layers” at z = 0 (Chew et al.,

2003; Ho Tsang et al., 2004). The thickness of intermixed layer is 1u.c. The existence of

intermixed layer leads to an inhomogeneity of polarization near the interfaces, forming

the interface region. The spatial dependence of polarization extends into the bulk over a

distance governed by its correlation length. It is seen that the continuity or discontinuity

of polarization and internal electric field across the interface depends sensitively on the

nature of intermixed layer. The polarization and internal electric field vary spatially in

a periodic manner, indicating a periodic interface-induced modulation. As λ0 increases,

both the magnitudes and the gaps of polarization and internal electric field at the interfaces

are reduced. Another important features is that the modulated profiles of internal electric

field and polarization are correlated. An interesting change of sign in the local internal

electric field at the interface region is predicted in a superlattice with λ0 = ξ0 (brown
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Figure 3.2: Spatial dependence of electrical properties at T = 298K (a) with electrostatic
coupling and (b) without electrostatic coupling. The values of λ0 are: 0 (red line), 0.02ξ0
(blue line) and ξ0 (brown line).

line). The internal field in PT layer acts as the depolarization field Ed,PT (z)< 0, whereas

Ed,ST (z) > 0 tends to enhance the polarization in ST layer. The internal electric field in
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Figure 3.3: Electrical properties at T = 293K as a function of dPT/dST (a) with elec-
trostatic coupling and (b) without electrostatic coupling. The values of λ0 are: 0 (•),
0.02ξ0(�) and ξ0(N).

ST layer originates from the electrostatic interaction between polarizations in different PT

layers across the ST layer (Roytburd et al., 2005). Hereafter, we denote it as “polarization-

induced internal electric field”. The magnitude of the depolarization in PT layer for the
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superlattice with λ0 = 0 is |Ed,PT | ∼ 250MV/m∼ 0.4EC,PT from our calculation, where

the bulk coercive field of PT EC,PT is estimated as EC,PT = 4α∗PT (−α∗PT/6β ∗PT )
1/2/3 ∼

640MV/m. Note also that Fig. 3.2(a) shows the internal field-induced polarization in the

ST layer is almost the same as the spontaneous polarization of the PT layer.

In order to clarify the effect of intermixing at ferroelectric/paraelectric interfaces,

we compare the configuration when the polarization of superlattice aligns along the sur-

faces or interfaces where the electrostatic coupling between ferroelectric layers can be ne-

glected (Lim & Chew, 2014). We show the modulation profiles of polarization for PT/ST

superlattices without considering the electrostatic boundary conditions, as illustrated in

Fig. 3.2(b). This configuration with in-plane polarization is analogous to superlattices

with interdigital electrodes (Harigai et al., 2003). In this case, there is no depolarization

field in PT layer and internal electric field in ST layer does not exist. If no intermixing oc-

curred, i.e. λ0 = 0, the polarization in PT layer is equivalent to its bulk of P∼ 0.75C/m2,

whereas P = 0 for ST layer at T = 298K, as expected. From Figs. 3.2(a) and 3.2(b), it

is clearly seen that electrostatic coupling between ferroelectric layers plays a dominant

role in enhancing the polarization of superlattices with polarizations align perpendicular

to interfaces. Even if no intermixing occurred, the polarizations of both the PT and ST

layers are almost similar, as shown in Fig. 3.2(a).

We now investigate the average polarizations P and internal electric field Ed of

PT/ST superlattices as a function of unit period with thickness ratio fixed at dFE/dPE = 3.

Let us first examine the superlattice with electrostatic coupling, as shown in Fig. 3.3(a).

With decreasing periodic thickness from long-period (PT/ST = 12/4) to short-period

(PT/ST = 3/1) structures, both the values of P and Ed of a superlattice with λ0 = 0(•)

remain almost constant. The internal electric field of the superlattice with λ0 = 0(•) is

equal to Ed ∼ 0V/m, implying that the depolarization field in PT layer and internal field in

ST layer compensate each other. For the case of superlattices with 0.02ξ0(�) and ξ0(N),

66



P decreases with decreasing the periodic thickness, whereas the strength of depolariza-

tion field Ed increases with decreasing the periodic thickness. Ed 6= 0 of superlattices

with λ0 6= 0 is clearly due to the inhomogeneous properties at interfaces as a result of the

formation of intermixed layer at z = 0, as discussed in Fig. 3.2(a). Fig. 3.3(b) shows P

and Ed of PT/ST superlattices without electrostatic coupling as a function of unit period.

In this case, changes in P and Ed are purely due to intermixing at interface. Without in-

termixing λ0 = 0, P∼ 0.575C/m2 is unaffected by varying layer thicknesses, as expected

from Fig. 3.3(a). For the case with intermixing λ0 6= 0, it is seen that P can be tuned

by changing the layer thickness. Compared to superlattices with electrostatic coupling

(as shown Fig. 3.3(a)), the change in P is more marked. From Figs. 3.3(a) and 3.3(b), it

is seen that electrostatic coupling plays an important role in governing the properties of

superlattices with polarizations align perpendicular to interfaces.

In Fig. 3.4, we show the internal electric field and polarization as a function of period

thickness for a PT/ST superlattice with ferroelectric volume fraction φ = dFE/(dFE +

dPE) = 0.5 (or thickness ratio of ferroelectric to dielectric dFE/dPE = 0.5). Without

intermixing (black), both internal field and polarization are essentially independent from

changing the layer thickness dFE = dPE . The depolarization field in PT layer and polarization-

induced internal electric field in ST layer completely compensate each other, resulting in

a zero net internal field in the superlattice. While the formation of intermixed layer gives

rise to the existence of depolarization field, it has little influence on the polarization be-

haviour of the PT/ST superlattices (blue and red). The enhancement of depolarization

field is clearly due to the inhomogeneous polarization at the interface region.

Finally, we compare the calculated polarization and transition temperature using our

model with electrostatic couplings to those obtained in experiments (Dawber et al., 2007).

In this discussion, the thickness of ST layer is maintained at dPE ≈ 3u.c.. Fig. 3.5 illus-

trates the average polarization P and internal electric field Ed of a PT/ST superlattice as
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Figure 3.4: Internal electric field and polarization as a function of period thickness
dFE/dPE for PT/ST superlattices with dFE = dPE at T = 298K. The values of λ are:
0 (black line), 0.02ξ0 (blue line) and ξ0 (red line).

a function of PT volume fraction, φFE = dFE/(dFE +dPE) for different λ0. Generally, P

increases with increasing the PT volume fraction φFE . For the superlattice with λ0 = 0

(red line), Ed = 0V/m for all PT volume fraction φFE , as expected. For the case with

λ0 6= 0, Ed < 0 implies an internal electric field, acts as a depolarization field, exists in

the superlattices. It is seen that Ed increases with increasing φFE until it reaches its max-

imum value at φFE ∼ 0.87 before dying out (i.e. Ed ∼ 0) at φFE ∼ 1. This is expected

because PT approaches its bulk at φFE ∼ 1 with the bulk polarization P∼ 0.75C/m2 and

intermixing at interface no longer has a strong effect on the internal electric field. For-

mation of intermixed layer at interface z = 0 enhances the depolarization field Ed (see
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Fig. 3.5(a)). Polarization P and transition temperature TC (see inset of Fig. 3.5(b) and

Fig. 3.5(c)) of the superlattices are almost unaffected by intermixing at interface, as ex-

pected. For comparison, the experimental measurements (solid dots) of polarization and

transition temperature are also shown in Fig. 3.5(b) and 3.5(c), respectively. It is seen

that there is a reasonable agreement between the calculated and measured polarizations

for all values of λ0, indicating that intermixing at interfaces does not have a significant ef-

fect on the ferroelectric properties of superlattices (as discussed in Fig. 3.2(a) and 3.3(a)).

We also compare the results with the predictions from the model proposed by Dawber

et al. (Dawber et al., 2007). In the limit of very-short periods, the interface effect in

PT/ST superlattices is induced by the coupling between antiferrodistortive and ferroelec-

tric instabilities (Bousquet et al., 2008). Since the coupling of structural instabilities at

interfaces is not considered, it is reasonable that the model cannot quantitatively capture

the experimental data at low volume fraction φFE . 0.3.
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Figure 3.5: (a) Internal electric field and (b) polarization at T = 298K, and (c) transition
temperature as a function of PT volume fraction φFE of PT/ST superlattices. The values
of λ0 are: 0 (red line), 0.02ξ0 (blue line) and ξ0 (brown line). Solid dots (•) represent the
experimental data. The grey line denotes calculated result from Dawber et al. (Dawber et
al., 2007).

3.6 Modulated Internal Electric Field, Dielectric Susceptibility and Polarization

In this section, our thermodynamic model will be used to calculate the spatially-

varying internal electric field, dielectric susceptibility and polarization of these superlat-

tices (Lim, Chew, Ong, & Iwata, 2013). Effects of modulation period and temperature on

the internal electric field, dielectric susceptibility and polarization of these superlattices

with inhomogeneous properties are examined. Correlation between these ferroelectric

properties is established and discussed.
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3.6.1 Formalism for Dielectric Susceptibility

The dielectric susceptibility of the superlattice under a weak electric field can be

found by taking the differentiation of Eq. (3.6)

κ j
d2χ j

dz2 =
(
2α
∗
j +12β

∗
j p2

j +30γ j p4
j
)

χ j−
1

2ε0

∂Ed, j

∂Eext
− 1

ε0
, (3.13)

using χ = 1/ε0(∂ p j/∂Eext) and j : FE or PE. In order to calculate the derivative of

depolarization field with respect to external electric field in each layer, we expand the

electric displacement as below:

ε0E + p j(z) = D

ε0
(
Ed, j +Eext

)
+ p j(z) = D

Ed, j =
1
ε0
(D− p j(z))−Eext

∂Ed, j

∂Eext
=

1
ε0

(
∂D

∂Eext
−

∂ p j(z)
∂Eext

)
−1

∂Ed, j

∂Eext
=

1
ε0

∂D
∂Eext

−χ j(z)−1

∂Ed, j

∂Eext
=

1
ε0

(ε0 + ε0χ̄)−χ j(z)−1

= χ̄−χ j(z)

Here we have make use of the dielectric permittivity compliance (Lines & Glass, 1977;

Grindlay, 1970), which is given as

∂Di

∂E j
= εi j = ε0

(
δi j +χi j

)
, (3.14)

where εi j = ε0(δi j + χi j) is the dielectric permittivity of the material, δi j is Kronecker’s

symbol and χi j is the dielectric susceptibility. Since our system is a superlattice model

and i = j, we will consider the mean dielectric susceptibility and write it as χ̄ . Hence, the
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Eq. (3.13) can be rewrite by using the permittivity compliance, ∂D/∂Eext = ε0(1+ χ̄) as

κ j
d2χ j

dz2 =
(
2α
∗
j +12β

∗
j p2

j +30γ j p4
j
)

χ j−
1

2ε0

(
χ̄−χ j

)
− 1

ε0
. (3.15)

Differentiation of polarization boundary conditions Eq. (3.4) with respect to Eext

yields the boundary conditions for the dielectric susceptibility at interface as



−κFE
dχFE

dz

∣∣∣∣
z=−dFE

+
λ0

ε0
[χFE(−dFE)−χPE(dPE)] = 0

κPE
dχPE

dz

∣∣∣∣
z=0

+
λ0

ε0
[χFE(0)−χPE(0)] = 0

κFE
dχFE

dz

∣∣∣∣
z=0

+
λ0

ε0
[χFE(0)−χPE(0)] = 0

−κPE
dχPE

dz

∣∣∣∣
z=dPE

+
λ0

ε0
[χFE(−dFE)−χPE(dPE)] = 0.

(3.16)

Finally, the mean dielectric susceptibility, χ̄ of the superlattice is determined by the fol-

lowing formula

1
1+ χ̄

=
1
L

∫ dPE

−dFE

1
1+χ j(z)

dz. (3.17)

In this work, Eqs.(3.6) and Eqs.(3.7) are solved numerically subject to the bound-

ary conditions of Eq.(3.4), Eq. (3.8) and Eq.(3.9). After that, by inserting the result of

polarization and electrostatic potential into Eqs.(3.15), the configuration of dielectric sus-

ceptibility can be calculated numerically subjected to the boundary conditions Eq.(3.16).

3.6.2 Result and Discussion

In this section, we use our model in Section 3.3 to apply to a superlattice consisting of

PbTiO3 (PT) as FE and SrTiO3 (ST) as PE on ST substrate. The formalism and calculation

are explained in Section 3.3 and Section 3.4. For ease of calculation, we first rescale all

the variables into their dimensionless forms as described in Appendix B. In this work, the
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interface intermixing parameter is set as λ0 = ξ0, implying that an intermixed layer with

inhomogeneous properties are formed at interface region (Lim et al., 2012).

Fig. 3.6 shows the profiles of polarization, internal electric field and dielectric sus-

ceptibility in PT/ST superlattices for different thickness ratio. It is seen that intermixed

layers with properties difference than that of both layers are formed at interfaces z = 0

(Lim et al., 2012). The formation of intermixed layer leads to inhomogeneity in polar-

ization, internal field and dielectric susceptibility near the interfaces. The internal field in

PT layer acts as the depolarization field Ed,FE < 0, whereas Ed,PE > 0 tends to induce the

polarization in ST layer (Roytburd et al., 2005; Torres-Pardo et al., 2011). The internal

field in ST layer originates from the electrostatic coupling between different PT layers

(across the ST layer), and plays an important role in determining the ferroelectricity of

these superlattice. The spatial profiles of polarization, internal electric field and dielectric

susceptibility depend sensitively on the layer thickness of superlattice.

Figure 3.6: Profiles of polarization, internal electric field and dielectric susceptibility of
PT/ST superlattice at T = 298K. The three lines represent different period thickness with
ratio dFE/dPE (in u.c.): 10/15 (blue line), 10/10 (red line) and 10/5 (brown line).

The dependence of average internal electric field, polarization and dielectric suscep-

tibility of superlattice on temperature for different thickness ratio is shown in Fig. 3.7.

Internal electric field and polarization disappear at the transition temperature, whereas
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the dielectric susceptibility diverges. It can be seen that the phase transition temperature

of superlattices increases with increasing the thickness ratio dFE/dPE .

Figure 3.7: Internal electric field, polarization and dielectric susceptibility as a function
of temperature for PT/ST superlattice with thickness ratio dFE/dPE (in u.c.): 10/15 (blue
line),10/10 (red line) and 10/5 (brown line). Dotted-lines represent the transition temper-
ature.

In Fig. 3.8, we show the internal electric field, dielectric susceptibility and polariza-

tion as a function of dFE/dPE . As the thickness ratio increases from 10/15 to 20/10, the

polarization and depolarization field of superlattice increases. On the other hand, the di-

electric susceptibility decreases from ∼ 1200 to ∼ 200. From Figs. 3.7 and 3.8, it is seen

that the control of thickness ratio or volume fraction allows the tuning of ferroelectric

properties in these superlattices (Dawber et al., 2007).
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Figure 3.8: Internal electric field, dielectric susceptibility and polarization as a function
of dFE/dPE at T = 298K.

3.7 Hysteretic Internal Electric Fields and Polarization Reversal

In this section, we will use our model to study the polarization reversal in ferroelec-

tric superlattices with “switchable” polarization in intermixed layers (Lim, Chew, & Ong,

2013). The dependence of polarization and internal electric field on an applied electric

field is discussed. Our results reveal that polarization hysteresis in ferroelectric super-

lattices is accompanied by hysteresis in internal electric fields. The underlying physical

mechanisms that induce the internal electric field dependence of applied electric field are

discussed by looking at the polarization and internal field profiles.

3.7.1 Result and Discussion

As an illustration, a superlattice comprising PbTiO3 (PT) as ferroelectric layer and

SrTiO3 (ST) as paraelectric layer on ST substrate is used as a model system. Their ther-
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modynamic coefficients and elastic constants are listed in Table 3.1. In this work, the

interface intermixing parameter is set as λ0 = ξ0, implying that an intermixed layer with

inhomogeneous properties are formed at interface region (Lim et al., 2012). For simplic-

ity, we assume that the induced-polarization of intermixed layers is “switchable”. The

thickness of PT and ST is set as dPT = 15u.c. and dST = 5u.c., respectively. Unless stated

otherwise, the parameter values have been retained at T = 298K for all of the results

presented below.

Fig. 3.9 shows the dependence of polarization and internal electric field on the

applied electric field of the PT/ST superlattices. In general, the shape of the P− E

hysteresis loop is a square. Internal electric field Eint of the superlattice also exhibits

an interesting square hysteresis loop as a function of E. At E = 0, the polarization

P ∼ 0.4429C/m2 (e.g. at the positive state) and the corresponding internal electric field

is Eint =−4.5549×104V/m. Eint < 0 implies that the average internal field of the super-

lattice acts as a depolarization field. Polarization reversal occurs at the coercive field of

Ec ∼ 70.58MV/m and the switching of polarization in superlattice is accompanied by a

change of sign in Eint . Going from low to high positive applied electric field, the position

A (E = 0) corresponds to a negative polarization state of P∼−0.4429C/m2 (Fig. 3.9(a))

with an internal field of Eint = 4.5549×104V/m. As the applied field increases (e.g. at

Eext = 70.47MV/m∼ 0.99Ec (point B)), the magnitude of P and internal field decreases.

Upon further increasing Eext = 1.1745× 108V/m > Ec (point C), polarization switches

from the negative to positive state. The reversal of polarization is accompanied by a

change of sign in the internal electric field of superlattice.

In order to gain insight on the physical mechanism that causes the polarization and

internal electric field dependence of applied electric field, we examine the spatial de-

pendence of polarization and internal electric field of the superlattices at a particular

Eext . Fig. 3.10 depicts the profile of polarization and internal electric field at Eext = 0,
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Figure 3.9: Polarization-applied electric field (P−Eext) hysteresis loop and (b) Internal
electric field-applied electric field (Eint −Eext) hysteresis loop of a PT/ST superlattice
with dPT = 15u.c., dST = 5u.c. at T = 298K.

Eext ∼ 0.99Ec, Eext = 1.1745×108V/m > Ec, which corresponds to the point A, B and C

in Fig. 3.9. At Eext = 0, it is seen that intermixed layer formed at the interface. Formation

of intermixed layer leads to inhomogeneity in the polarization and the internal field. The

internal field in PT behaves as the depolarization field Eint < 0, whereas Eint > 0 tends to

induce the polarization in the ST layer. Note here that the electrostatic coupling between

different PT layers strongly induces the polarization in the ST layer. The polarization of

PT and ST layers are almost uniform throughout the surperlattice. When Eext ∼ 0.99Ec

(point B), the polarization and induced-polarization in PT layer and ST layer remain in

negative states. The magnitude of polarization in PT and ST layers decrease due to the
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applied electric field Eext . The reduction of polarization leads to a decrease in the mag-

nitude of internal electric field in PT and ST layers. Upon further increases the applied

electric field Eext > Ec (point C), polarization reversal from negative to positive states oc-

curs. The switching of polarization in the superlattices is accompanied by a sign change

of internal electric field in the PT and ST layers.

Figure 3.10: The profiles of polarization and internal electric field at applied electric
field: (a) Eext = 0 (point A), (b) Eext ∼ 0.99Ec (point B), (c) Eext = 1.1745×108V/m>Ec
(point C).
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3.8 Conclusion

In conclusion, we have proposed a thermodynamic model to study electrostatic cou-

pling and interface intermixing in superlattice consisting of alternate layers of ferro-

electrics and paraelectrics. We have calculated the internal electric field, polarization

and transition temperature, and explained the recently observed polarization and transi-

tion temperature in PT/ST superlattices. Our study indicates that intermixing at interfaces

forms intermixed layers with properties different from its constituent layers. Formation

of intermixed layer gives rise to inhomogeneous ferroelectric properties in superlattices.

Spatial dependence of polarization extends into the constituent layer over a distance gov-

erned by its correlation length. We have shown that periodic modulations of internal

electric field and polarization in superlattices are correlated. Intermixing at interfaces

has negligible effect on polarization and transition temperature. Internal electric field,

originates from electrostatic coupling, plays a key role in determining the ferroelectric

properties of superlattices.

Ortega et al. studied the dielectric permittivity BaTiO3/(Ba,Sr)TiO3 superlattices

(Ortega et al., 2011). They showed that the dielectric permittivity of the superlattices

can be tuned by varying the Ba/Sr ratio of the constituent layer without changing the

periodicity and the total thickness of the superlattices. This may be another better exper-

imental example of intermixing at the interfaces. In this study, the effect of intermixing

at ferroelectric/paraelectic interfaces is noticeable only when the electrostatic coupling is

neglected when polarizations in the superlattice align parallel to the interfaces. In this

case, superlattices with interdigital electrodes (Harigai et al., 2003) may be another prac-

tical example for a quantitative correlation between the properties of a superlattice and

the degree of interface effect.
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The periodic modulations of internal electric field, dielectric susceptibility and po-

larization in superlattices are correlated. Formation of intermixed layer at interfaces leads

to a periodic modulation of ferroelectric properties in these superlattices. Unlike other

uniform polarization model (Roytburd et al., 2005; Pertsev & Tyunina, 2011; Dawber et

al., 2007), our model allows the study of inhomogeneous ferroelectric properties in these

superlattices. Recent study of local structural distortions in PT/ST superlattices (Torres-

Pardo et al., 2011; Zubko et al., 2012) revealed the existence of inhomogeneous ferroelec-

tric properties in superlattices. Their studies showed that theoretical study based on the

assumption of uniform polarization throughout the layers in superlattices is most likely

not valid (Pertsev & Tyunina, 2011; Chew et al., 2000; Roytburd et al., 2005; Dawber

et al., 2007; Neaton & Rabe, 2003), since a highly inhomogeneous polarization extends

over 5-6 unit cells was attributed to ferroelectric domains. Therefore, it is worthwhile to

extend the current single-domain model to multidomain model of intermixing.

Based on the thermodynamic model of electrostatic coupling and interface intermix-

ing, we also study the polarization reversal in ferroelectric superlattices. Intermixed layers

with “switchable” polarization are assumed to form at interfaces of superlattices. Corre-

lation between the dependence of internal electric field and polarization on the applied

electric field of the superlattice are examined. Polarization reversal in superlattice at the

coercive field is accompanied by a change of sign in the internal electric field. Hysteresis

is not only observed in the field dependent of polarization, but also in the dependence of

internal electric field on the applied field.
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CHAPTER 4

POLARIZATION DISCONTINUITY AND SCREENING CHARGES IN
FERROELECTRIC SUPERLATTICES

4.1 Introduction

Ferroelectric superlattices with alternate layered structures provide relatively large

area of contact surface at the layer-interfaces that contributes dramatically to the prop-

erties which are distinctly different from that of the bulk. It is of particular importance

that the presence of defects, such as oxygen vacancies, impurities, localized charges and

etc. (Bratkovsky & Levanyuk, 2000) at the interfaces which sensitively affect ferroelec-

tric properties of the superlattices. The intrinsic defects, such as interface intermixing or

vacancies, induced during the thin-film growth process are very common and are usu-

ally difficult to control experimentally at high temperature by high-energy lasers. The

stoichiometry of the deposited films may change in a complicated manner with this de-

position condition (Mizoguchi et al., 2011; Ohnishi et al., 2006).

In this chapter, we systematically investigate the polarization discontinuity and screen-

ing charge in ferroelectric superlattices based on the Landau-Ginzburg theory (Lim, Chew,

Wang, Ong, & Iwata, 2014). Interface mixing leads to polarization continuity or discon-

tinuity in the superlattice. Screening charge with equal but of opposite sign for alternate

interface builds up to counteract the depolarization effect in superlattices. The charge den-

sity depends on the degree of interface mixing, and it approaches a saturated value when

the mismatch of internal field or polarization at interface vanishes. Using PbTiO3/SrTiO3

as a model system, we show how the screening charge accumulates at interface affects the

properties of ferroelectric superlattice with polarization discontinuity.
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4.2 Literature Review

From the literature, there are not many theoretical reports on work tackling these

delicate problems. Lately, Liu and Li studied the effect of space charges on the hysteresis

loops of ferroelectric superlattices based on a continuum model, by treating the ferroelec-

tric perovskites as wide band-gap semiconductors (Y. Y. Liu & Li, 2010). Their study

shows that the space charges tend to accumulate near the superlattice interface, resulting

in large internal field near the interface, and thus enhanced the polarization of the super-

lattice. Okatan and co-worker developed a thermodynamic model to examine the contri-

bution of localized charges to the polarization and dielectric properties of PbTiO3/SrTiO3

(PT/ST) superlattices (Okatan et al., 2010). Their results show that there exists a critical

volume fraction of PT below which the superlattice is in the paraelectric phase.

Recently, Gu et al. studied the interface structures, polarization and electronic prop-

erties of PT/ST superlattices from first-principles calculation (Gu, Wang, Xie, & Wu,

2010). A slope-like internal potential is found, indicating the presence of ferroelectric-

ity and effective charge at the interfaces. They show that this kind of electric potential

leads to a zigzag local density of states among layers along the vertical direction of the

film, which induces the alternative appearance of positive and negative charges at in-

terfaces. In first-principles calculations, Murray and Vanderbilt (Murray & Vanderbilt,

2009) investigated the “polar discontinuity” in superlattices which are formed of alter-

nately stacked groups of II-IV and I-V perovskite layers. Using SrTiO3/KNbO3 super-

lattices as a model system and assume that the polarizations of the constituents are equal,

their studies reveal how the existence of “polar discontinuity” introduces effective com-

positional charges at the NbO2/SrO and TiO2/KO interfaces. They also conclude that

the same principles should apply to II-IV/III-III perovskite superlattice. Another example
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is the SrTiO3/LaAlO3 structures, in which two-dimensional electron gas appears at the

interfaces to avoid the “polar catastrophe” (Ohtomo & Hwang, 2004).

We have recently developed a thermodynamic model of ferroelectrics heterostruc-

tures (Chew et al., 2003, 2005) and superlattices (Chew et al., 2009; Chew, 2012) with

mixing at the interfaces. By including appropriate electrostatic boundary conditions, the

effects of electrostatic coupling and interface mixing on the phase transitions of the fer-

roelectric superlattices are examined (Lim et al., 2012). In this chapter, we present a

general model based on the Landau-Ginzburg theory to study the polarization disconti-

nuity and screening charge in ferroelectric superlattices. We consider for the superlattice

composed of alternative ferroelectrics and paraelectrics. Interface mixing gives rise to

polarization continuity or discontinuity in the superlattices with inhomogeneous polar-

ization near the interfaces (Chew et al., 2003, 2005, 2009; Chew, 2012; Lim et al., 2012).

At the interface, screening charge with equal but of opposite sign for alternate interface

builds up to counteracts the depolarization field in the superlattice. It is well-known that

a depolarization field may be induced by unscreened charges on the surface and interface

of a ferroelectric thin film and/or by inhomogeneous polarization distribution in the film

(Glinchuk, Eliseev, Stephanovich, & Farhi, 2003). Using PT/ST structures as a model

system, we found two possible mechanisms by which the screening charge may build up

at the interface, depending on the arrangement of charge at the interfaces, to counteract

the depolarization effects in the superlattice. In particular, screening charge may induce

an internal field Eσ , j that acts against the depolarization effect in the constituent layer,

and thus reduces the depolarization field Eint,PT in the ferroelectric PT layer. Another

possibility is that the built-up of these interface charge suppresses the inhomogeneity of

polarization at the interface, which forming a superlattice structures with homogeneous

polarization across the constituent layer.

83



4.3 Formalism

We consider for a simple case of a superlattice composed of PT layer as ferroelectric

and ST layer as paraelectric with monodomain polarization in the thin films, which is

grown on a ST substrate. The model geometry is illustrated in Fig. 4.1(a). In the present

study, we take into account the presence of charges of density σ0 at the internal interfaces

in PT/ST superlattices with polarization discontinuity. The charge density σ0 are equal but

of opposite sign for alternate interfaces. We assume that the density of interface charges

depends on the degree of mixing at interface. The nominal charge approaches its saturated

value σ∗0 when the mismatch of internal electric field or polarization at interface vanishes.

There are two types of interface that yield stabilized superlattice structures, depending on

the arrangement of charge at interfaces, as depicted in Fig. 4.1(b) and 4.1(c).

Figure 4.1: (a) Schematic illustrations for a PT/ST superlattice on a ST substrate with
thicknesses of PT layer and ST layer are LPT and LST respectively. Black arrows represent
the direction of polarizations in the constituent layer. PT/ST superlattices with alternate
interface charge of density σ0 and their boundary conditions for the (b) type I and (c) type
II interfaces. Internal electric field in the PT layer Eint,PT (green arrows) is against the
direction of PT polarization and acts as a depolarization field, Eint,PT < 0. The electro-
static coupling between ferroelectric PT layers leads to the appearance of internal electric
field Eint,ST > 0 (green arrows) that tends to induce polarization in the ST layers. As the
result of the appearance of alternate interface charge density ±σ0, a charge-induced elec-
tric field, Eσ , j ( j : PT or ST ) (red arrows) builds up in each layer, leading the existence
of effective internal field Ee f f , j (blue arrows) in the constituent layer j.
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At the interfaces, the electric displacement D is discontinuous. The electrostatic

boundary conditions describe the two interfaces are


DST (0)−DPT (0) =∓σ0, at z = 0

DPT (−LPT )−DST (LST ) =±σ0, at z =−LPT or LST

(4.1)

where σ0 denotes the interface charge density. Hereafter, we denote the interface of type

I (see Fig. 4.1(b)) with DST (0)−DPT (0) = −σ0 and DPT (−LPT )−DST (LST ) = +σ0,

whereas for the case of superlattice with the electrostatic boundary conditions DST (0)−

DPT (0) =+σ0 and DPT (−LPT )−DST (LST ) =−σ0 is represented by the type II interface

(see Fig. 4.1(c)).

In superlattices with polarization perpendicularly to the film surfaces, the internal

electric field in the ferroelectric layer PT is against the direction of PT polarization and

acts as a depolarization field, Eint,PT < 0, as shown in Fig. 4.1. The electrostatic coupling

between ferroelectric PT layers leads to the formation of internal electric field Eint,ST >

0 that tends to induce polarization in the ST layers (Lim et al., 2012). As a result of

the appearance of alternate interface charge density ±σ0, a charge-induced electric field,

Eσ , j ( j : PT or ST ), builds up in each of the individual layer. The direction of Eσ , j

depends on the arrangement of charge at the interfaces, as shown in Fig. 4.1(b) and 4.1(c).

For superlattices with interface of the type I (Fig. 4.1(b)), Eσ , j is in the opposite direction

of Eint, j in j layer. Therefore, the charge-induced field Eσ , j tends to reduce both the

depolarization field Eint,PT in PT layer, and the internal electric field Eint,ST in ST layer.

For interface of the type II, the existence of interface charge enhances the depolarization

field in PT layer and increases the internal field in ST layer, as shown in Fig. 4.1(c).

Therefore, it is clear that a resultant effective internal field Ee f f , j appears in the constituent

layers due to the existence of these internal fields (i.e. Eint, j and Eσ , j). In the ST layer,
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the electric displacement and the effective internal electric field are respectively given by

(in vector notation) DST = ε0Ee f f ,ST +PST and Ee f f ,ST = Eint,ST +Eσ ,ST . Similarly, the

electric displacement and the effective internal field in PT layer are defined as, DPT =

ε0Ee f f ,PT + PPT and Ee f f ,PT = Eint,PT +Eσ ,PT , respectively. It is clear now that the

direction of the charge-induced field Eσ , j depends upon the type of interfaces, as shown

in Fig. 4.1(b) and 4.1(c).

In this study, we will systematically examine how the screening charge builds up at

interfaces (i.e. the type I and II interfaces) counteracts the depolarization effects in fer-

roelectric superlattices. By assuming that the polarization varies spatially and is pointing

along the z-direction, the thermodynamic model of current system is followed exactly

the formalism of electrostatic coupling and interface intermixing in ferroelectric superlat-

tices as elucidated in Section 3.3. The only different part is the new electrostatic bound-

ary conditions as depicted in Eq. (4.1) compared to the case without the interface charge

in Eq. (3.8). This is because of the discontinuity of normal component of electric dis-

placement due to interface charges density ±σ0. Besides that the continuity of tangential

component of electric field are also required at interfaces.

In this study, the spatial dependence of internal electric field (or electrostatic poten-

tial) and polarization are numerically obtained. The average polarization of each individ-

ual layer is defined as PPT =
(∫ 0
−LPT

pPT dz
)
/LPT and PST =

(∫ LST
0 pST dz

)
/LST , whereas

the average polarization of the superlattice is given by P=
(∫ 0
−LPT

pPT dz+
∫ LST

0 pST dz
)
/L

with periodic thickness L = LPT + LST . Similarly, the average effective internal elec-

tric field of each individual layer is Ee f f ,PT =
(∫ 0
−LPT

Ee f f ,PT (z)dz
)
/LPT and Ee f f ,ST =(∫ LST

0 Ee f f ,ST (z)dz
)
/LST , and the average effective internal field is expressed as Ee f f =(∫ 0

−LPT
Ee f f ,PT dz+

∫ LST
0 Ee f f ,ST dz

)
/L.
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4.4 Result and Discussion

Figure 4.2 and 4.3 show the spatial dependence of polarization and internal electric

field of PT/ST superlattices. We first examine the effect of interface mixing in super-

lattice without the presence of screening charges at the interface, as shown in Fig. 4.2.

λ0 = 0 describes no mixing at the interface. Both the internal electric field and polariza-

tion remain uniform throughout the PT and ST layers. For λ0 6= 0, an intermixed layer,

with properties different from the individual layer, is formed at interface region z = 0.

The existence of intermixed layer gives rise to inhomogeneous polarization and internal

electric field near the interfaces. The continuity or discontinuity of polarization and inter-

nal electric field across the interface depends on λ0. As the value of λ0 increases from 0

to ξ0, the polarization mismatch |pI,ST (0)− pI,PT (0)| = ∆pI and internal field mismatch

EI,ST (0)−EI,PT (0) = ∆EI at the interfaces reduce. The mismatches completely disappear

when λ0 ∼ ξ0, followed by a continuous variation of polarization and internal field across

the interface.

In Fig. 4.3, we investigate the effect of screening charges on the polarization and

internal electric field profiles for a PT/ST superlattice with polar discontinuity at inter-

faces. In the calculation, the value of λ0 is set as 0.01ξ0. For a charge-free superlattice

(black line), a weak inhomogeneity of polarization and internal field can be found near

the interface. The polarization mismatch ∆pI and internal electric field mismatch ∆EI are

∼ 0.0034C/m2 and∼ 3.8325×108V/m, respectively. Let us now look at the polarization

and internal field profiles of the superlattices with σ0. In Fig. 4.3, the label σ0 represents

the charge density at the interface z = 0 (see Fig. 4.1), whereas the σ
∗+
0 and σ

∗−
0 indicate

the positive and negative value of saturated charge density at z = 0 respectively. We first

examine the polarization and internal field profiles of superlattices with type I interface

of σ0 < 0 (red line), as shown in Fig. 4.3. As the density of interface charge |σ0| in-
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Figure 4.2: Polarization and internal electric field profiles of PT/ST superlattices with no
interface charge. The values of λ0 are: 0 (red line), 0.02ξ0 (blue line) and ξ0(brown line).

creases, the polarization mismatch ∆pI increases, whereas the mismatch of internal field

∆EI decreases because the charge-induced field Eσ , j counteracts the internal field Eint, j

of the constituent layer. The interface charge density |σ0| approaches a saturated value

of |σ0| ∼ 0.014C/m2 ≡ |σ∗−0 | when ∆EI ∼ 0, at which the polarization mismatch at the

interface reaches it maximum value of ∆pI ∼ 0.0137C/m2 ≡ ∆p∗I .

For interfaces with type II σ0 > 0 (blue line), however, ∆EI increases whereas ∆pI

decreases with increasing σ0. In this case, it is found that σ0 saturates at σ
∗+
0 ∼ 0.0045C/m2.

At the saturated charge density σ
∗+
0 , the inhomogeneous polarization near the interfaces

is completely suppressed by the charge-induced field Eσ , j. The polarization profiles of the

constituent layer are homogeneous across the interface, i.e. PPT =PST (of course ∆pI ∼ 0).
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Figure 4.3: Polarization and internal electric field profiles of PT/ST superlattices with
interface of type I (red color) and type II (blue color) for different interface charge density
σ0. In the figure, σ0 represents the charge density at interface z = 0. Black lines are the
profiles for charge-free superlattices σ0. The values of λ0 is set as 0.01ξ0.

In this case, the superlattice behaves like a “single crystal”. The internal field profile also

becomes homogenous throughout the constituent layer. The internal field of the two lay-

ers compensates between each other, and thus, EPT +EST = 0. In this case, however, the

internal field mismatch ∆EI reaches its maximum value ∆EI ∼ 5.0786×108V/m≡ ∆E∗I .

Changes in polarization and internal electric field as a result of a change in interface

charge density σ0 are associated with the appearance of charge-induced internal field,

which depending on the type of interface (as shown in Fig. 4.1). Compared to the su-
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perlattice with the interface of type I, the overall profile of polarization enhances with

increasing σ0, whereas the profile of polarization suppresses in the type II interface. In

both interfaces, the change in polarization and internal field at interface due to the inter-

face charge density of ±σ0 satisfy the electrostatic boundary conditions (4.1).

In order to gain further insight on the effect of screening charge on internal field mis-

match ∆EI and polarization mismatch ∆pI at polar discontinuity interfaces, we calculate

∆pI and ∆EI as a function of interface charge density σ0 for the two interfaces, as shown

in Fig. 4.4. In the figure, the horizontal axis represents the interface charge density σ0

at interface z = 0 (see Fig. 4.1). The graph of the type I interface σ0 < 0 is represented

by the red shaded area, whereas the blue shaded area corresponds to the superlattice with

interface of type II σ0 > 0. Here, we examine three different thickness ratios, LPT/LST

(unit cell), namely, 6/4, 5/5 and 4/6 for different value of λ0. Generally, the gap of po-

larization ∆pI and internal field ∆EI of a charge-free superlattice σ0 = 0 decreases with

increasing λ0. For the type I interface (the red shaded area), ∆EI decreases linearly with

increasing |σ0| whereas ∆pI is enhanced. Upon further increasing |σ0|, ∆EI is completely

vanished whereas ∆pI reaches a maximum value ∆p∗I . At a certain σ0 value corresponds

to the saturated charge density σ
∗−
0 , ∆EI completely vanishes, whereas ∆pI reaches a

maximum value. It is interesting to see that |σ∗−0 | shifts to a lower value with increasing

λ0. This is expected because ∆pI and ∆EI decreases with increasing λ0 for a charge-free

superlattice, as shown in Fig. 4.2. We now look at the effect of interface charge and inter-

mixing on ∆pI and ∆EI of superlattices with the type II interface (the blue shaded area).

It is seen that the internal field mismatch ∆EI increases with increasing σ0, whereas ∆pI

decreases. For three different thickness ratio, 6/4, 5/5 and 4/6, the ∆pI disappears at a

saturated density of σ
∗+
0 , namely ∼ 0.0079C/m2, ∼ 0.0045C/m2 and ∼ 0.0019C/m2 re-

spectively, at which ∆EI reaches its maximum value ∆E∗I . It is interesting to find that the
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saturated charge density σ
∗+
0 is independent of λ0, though σ

∗+
0 can be tuned by varying

the thickness ratio of LPT to LST .

Figure 4.4: Polarization mismatch ∆pI and internal field mismatch ∆EI as a function
of interface charge density σ0 at z = 0 for three different thickness ratios LPT/LST (unit
cell) of 6/4, 5/5 and 4/6. The values of λ0 are: 0.005ξ0 (red line), 0.01ξ0 (blue line),
0.016ξ0 (green line), and 0.02ξ0 (black line). Blue shaded area denotes the type I in-
terface, whereas with the area shaded with red color corresponds to the type II case. In
the figure, the charge-free superlattices are described by σ0 = 0, which is located at the
border between the two shaded areas. Dotted lines in the upper and lower figures indicate
the “saturated” charge density σ∗0 and its corresponding ∆p∗I or ∆E∗I .

Based on the same conditions as in Fig. 4.4, we also plot the average polarization

in the whole superlattice (P), the average polarization in PT layer (PPT ) and in ST layer

(PST ) versus interface charge density σ0, as shown in Fig. 4.5(a). Generally, all the value

of polarization P, PPT and PST increase as the thickness ratio LPT/LST increases. In the

case of type I interface (the red shaded area), it is seen that all the polarizations P, PPT

and PST increase with increasing |σ0|. On the other hand, for the type II interface (the

blue shaded area), all the polarizations P, PPT and PST decrease with increasing σ0. It

is clearly seen that the differences of polarization between different value of λ0 are very

small. Therefore, it suggests that the interface intermixing has a negligible effect on

polarization even with the existence of interface charge.
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More interesting results can be seen in the dependence of internal electric field Ee f f ,

Ee f f ,PT and Ee f f ,ST on interface charge density σ0 at z = 0 as shown in Fig. 4.5(b). Over-

all, all the value of internal electric field |Ee f f |, |Ee f f ,PT |, and |Ee f f ,ST | tend to increase

when thickness ratio LPT/LST increases. In the case of type I interface, the magnitude of

internal electric field |Ee f f |, |Ee f f ,PT |, and |Ee f f ,ST | increase with increasing |σ0|. But for

the type II interface, the magnitude of internal electric field |Ee f f |, |Ee f f ,PT |, and |Ee f f ,ST |

decrease with increasing σ0. Contrary to the case of polarization, the interface intermix-

ing has a more obvious influence on internal electric field of the superlattices. As the

value of λ0 increases, the magnitude of average internal electric, |Ee f f | in the whole su-

perlattice increases, whereas the magnitude of average internal electric in each individual

layer, |Ee f f ,PT | and |Ee f f ,ST | decrease.

Figure 4.6(a) illustrates P and Ee f f as a function of thickness ratio LPT/LST for

PT/ST superlattices with the saturated interface charge density σ∗0 at interface z = 0.

Three different λ0 values (i.e. 0.001ξ0 (∗), 0.005ξ0 (◦) and 0.01ξ0 (×)) are calculated for

the superlattice with interface of the type I, whereas only λ0 = 0.01ξ0 (4) is obtained for

the type II interface because σ∗0 is not dependent on λ0 (as discussed in Fig. 4.4). For

comparison, a charge-free superlattice of λ0 = ξ0 with polarization and internal electric

field vary continuously across interface is calculated (dash lines with symbol �). Gen-

erally, the polarization P and the depolarization field Ee f f < 0 increase with increasing

the thickness ratio LPT/LST . The saturated charge density σ∗0 corresponds to the disap-

pearance of ∆EI (type I) or ∆pI (type II) also increases with increasing thickness ratio

LPT/LST . For the type II interface (4), it is found that the internal field Ee f f of superlat-

tice is almost disappeared, indicating that the depolarization field in PT Ee f f ,PT and the

internal field in ST layers Ee f f ,ST nearly cancel with each other (as shown in Fig. 4.6(b)

and Fig. 4.6(c)). More interestingly, the polarizations P of the type II interface is almost

the same as that of the charge-free superlattice (dash lines with symbol �) though their
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(a)

(b)

Figure 4.5: (a)Polarization and (b)internal electric field as a function of interface charge
density σ0 at z = 0 for three different thickness ratios LPT/LST (unit cell) of 6/4, 5/5 and
4/6. The values of λ0 are: 0.005ξ0 (red line), 0.01ξ0 (blue line), 0.016ξ0 (green line), and
0.02ξ0 (black line). Blue shaded area denotes the type I interface, whereas with the area
shaded with red color corresponds to the type II case.

profiles of polarization and internal field are quite different (see Figs. 4.2 and 4.3). The

results also reveal that the degree of interface mixing effect on polarization and internal

electric field is more obvious in the type I interface.
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(a)

(b) (c)

Figure 4.6: (a) Polarization P and internal electric field Ee f f as a function of period
thickness for PT/ST superlattices with saturated interface charge density σ∗0 . The values
of λ0 are: 0.001ξ0 (∗), 0.005ξ0 (◦) and 0.01ξ0 (×) for the superlattice with the type I
interface, whereas λ0 6= 0 (4) represents the type II interface. Dash line with symbol
(�) indicates a charge-free superlattice with λ0 = ξ0.

4.5 Conclusion

In summary, we have studied the effect of polarization discontinuity and interface

charge in ferroelectric superlatices. Interface mixing leads to polarization continuity or

discontinuity in the superlattices with inhomogeneous internal field and polarization near
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the interfaces. At interface, screening charge with equal but of opposite sign for alternate

interface builds up to counteracts the depolarization field in the superlattice. The charge

density is assumed to depend on the degree of mixing at interface, and it approaches its

saturated value when the mismatch of internal field or polarization at interface vanishes.

The alternating appearance of screening charge at interface ±σ0 induces internal fields

Eσ , j in the constituent layers, and plays an important role in governing the ferroelectric

properties. Our study reveals two possible mechanisms by which the screening charge

may build up at interface, depending on the arrangement of charge at the interfaces, to

counteract the depolarization effects in the superlattice. The screening charge may build

up at the interface to induce an internal field Eσ , j that acts against the depolarization

effect in the constituent layer. Another possibility is that the built-up of these charge

suppresses the inhomogeneity of polarization at interface, which forming a superlattice

with homogeneous polarization across the constituent layer.
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CHAPTER 5

EFFECT OF COMPOSITION AND INTERFACE INTERMIXING ON
FERROELECTRIC SUPERLATTICES

5.1 Introduction

In this chapter, we have developed a thermodynamic model based on the Landau-

Ginzburg theory to study the effect of composition and interface intermixing on ferro-

electric properties of BaTiO3/BaxSr1−xTiO3 (BT/BST) superlattices (Chew, Lim, Ong,

& Iwata, 2014). Dependence of the lattice parameters and the substrate-induced misfit

strain of BST layer in BT/BST superlattices on Ba/Sr content are obtained. Effect of

composition and interface intermixing on ferroelectricity of superlattices are examined

by investigating the modulated profiles of ferroelectric properties (such as polarization

and internal electric field) and the mismatch in the properties at the interface. Our study

reveals that the polarization behaviors of BT/BST superlattices can be manipulated by

varying the Ba/Sr content in BST layer without changing the period thickness of super-

lattices. The effect of Ba/Sr content on polarization behavior of BT/BST superlattices is

stronger than the effect of interface intermixing on polarization of the superlattices.

This chapter will be devoted to study BT/BST superlattices under two different cir-

cumstances that depend on the direction of polarization. First, we will discuss the in-plane

polarization case for BT/BST superlattices that grown on SmScO3. Second, the case of

out-of-plane polarization for BT/BST superlattices that grown on SrTiO3 will be investi-

gated as well. The reasons of the aforementioned chosen substrate will be elucidated in

detail in each section.
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5.2 Literature Review

Functional properties in a ferroelectric superlattice can be manipulated by varying

its thickness ratio (Dawber et al., 2007) as well as by modifying the lattice mismatch

at film-substrate interface (Schlom et al., 2007). In the case of BaTiO3/(Ba,Sr)TiO3

superlattices, it is found that the polarization and dielectric properties can be modified by

varying Ba/Sr content in (Ba,Sr)TiO3 layer (Ortega et al., 2011, 2013). They found that

the misfit strain of the superlattices can be tuned by changing the composition of BST.

Several thermodynamic models based on the Landau-Ginzburg theory have been

proposed recently to study the ferroelectric properties of BaTiO3/SrTiO3 superlattices

(Qiu, 2010; Y. Y. Liu & Li, 2010). Qiu studied the effect of volume fraction of ST

layer in BaTiO3/SrTiO3 superlattice (Qiu, 2010). Their results show that the dielectric

properties are largely dependent on both the volume fraction of the SrTiO3 layer and the

domain wall energy parameter. By treating ferroelectrics as semiconductors instead of

insulators, Liu et al. examined the effect of space charge on the hysteresis loop behaviours

of BaTiO3/SrTiO3 superlattices (Y. Y. Liu & Li, 2010). They found that the space charges

tend to accumulate near the superlattice interface, resulting in large electric field near

the interface, and thus enhanced polarization and asymmetric hysteresis loop. Those

works, however, do not consider the effect of interface intermixing and/or composition in

BaTiO3/(Ba,Sr)TiO3 superlattices.

In superlattice structures, intermixed layers may form at interfaces between two fer-

roelectrics (Shin et al., 2010; Ishibashi et al., 2000). These interface intermixed layers

with properties different from those of the constituent layers may affect the properties of

the superlattice structure (Cooper et al., 2007; Pertsev & Tyunina, 2011). A thermody-

namic model has been proposed to study the effect interface intermixing on phase tran-

sition (Ishibashi & Iwata, 2007), modulated polarization (Chew et al., 2008), dielectric
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behaviours (Chew et al., 2009) and polarization reversal (Chew et al., 2011a, 2011c) in

ferroelectric superlattices (Chew, 2012). Recently, we further extend the model by taking

into account the electrostatic coupling and interface intermixing in epitaxial ferroelectric

superlattice (Lim et al., 2012; Chew et al., 2013).

To the best of our knowledge, the study of BaTiO3/BaxSr1−xTiO3 superlattices by

phenomenological theory has not been reported until now. Therefore in this chapter,

we aim to investigate the combine influence of composition and interface intermixing

on ferroelectricity of BaTiO3/BaxSr1−xTiO3 (BT/BST) superlattices based on Landau-

Ginzburg theory. In particular, we investigate the influence of Ba/Sr content in BST

layer and interface intermixing on polarization of BT/BST superlattices with fixed period

thickness by looking at the modulated profiles of polarization or internal electric field and

the mismatch in polarization or internal internal field at interface.

5.3 In-plane Polarization Case

We first consider a ferroelectric superlattice with in-plane polarization consisting of

alternate BaTiO3 (BT) layer and BaxSr1−xTiO3 (BST) layer on a SmScO3 substrate, as

shown in Fig. 5.1. SmScO3 is orthorhombic and it could induce tensile strain at the sub-

strate interface, hence an induced in-plane polarization (Borodavka et al., 2013). Since the

in-plane lattice parameters of the SmScO3 substrate and BaTiO3 are almost the same, i.e.

almost no strain is applied to the BaTiO3 layers by the underlying substrate (Soukiassian

et al., 2008). Changes in the Ba/Sr content will only affect the internal strain of the BST

layer. Therefore, the influence of Ba/Sr content and interface intermixing on the ferro-

electricity in BT/BST superlattices can be investigated in isolation from other effects.

By assuming the polarization aligns along the surfaces or interfaces, the effect of electro-

static coupling between ferroelectric layers in the superlattice can be neglected (Lim et al.,
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2012). In-plane ferroelectric properties of a superlattice can be experimentally measured

using interdigital electrodes (Harigai et al., 2003).

Figure 5.1: Schematic illustrations for a BT/BST superlattice on a SmScO3 substrate
with thicknesses of BT layer and BST layer are LBT and LBST , respectively. Arrows
represent the direction of polarization.

5.3.1 Formalism

The Helmholtz free energy per unit area for one period of the BT/BST superlattice

can be expressed as the following: (Lim et al., 2012; Pertsev et al., 2000)

F =
∫ 0

−LBT

fBT dz+
∫ LBST

0
gBST dz+FI (5.1)

where the first and second terms denote the free energy per unit area of BT layer with

thickness LBT and the free energy per unit area of BST layer with thickness LBST , respec-

tively and FI is the interface energy same as Eq. (3.3) and can be applied for this new

system as written in Eq. (5.12)

99



The free energy density of BT layer with the in-plane polarization pBT is as follows

(Lim et al., 2012; Pertsev et al., 2000)

fBT =α
∗
BT p2

BT +β
∗
BT p4

BT + γBT p6
BT +ϕBT p8

BT +
κBT

2

(
d pBT

dz

)2

+

(
c2

11,BT + c11,BT c12,BT −2c2
12,BT

c11,BT

)
u2

m,BT (5.2)

where an eighth-order polynomial of Landau free energy expansion is used for BT (Shirokov

et al., 2009). For the solid solution BST with composition x, the free energy density gBST

can be expressed using the known thermodynamic potentials gST and gBT for end member

of the solid solution x = 0 (ST: SrTiO3) and x = 1 (BT: BaTiO3) as (Shirokov, Torgashev,

Bakirov, & Lemanov, 2006; Shirokov et al., 2009)

gBST = (1− x)gST
(

pBST ,um,BST −∆ST
)
+ xgBT

(
pBST ,um,BST −∆BT

)
(5.3)

where the thermodynamic potential g j ( j : BT or ST )

g j =α
∗
j p2

BST +β
∗
j p4

BST + γ j p6
BST +ϕBT p8

BT +
κ j

2

(
d pBST

dz

)2

+

(
c2

11, j + c11, jc12, j−2c2
12, j

c11, j

)
u2

m, j (5.4)

where pBST corresponds to the in-plane polarization of the solid solution BST layer. The

normalized expansion coefficients are given by (Pertsev et al., 2000)

α
∗
j = α j−

(
g11, j +g12, j−2

c12, j

c11, j
g12, j

)
u j (5.5)

and

β
∗
j = β j−

g2
12, j

2c11, j
(5.6)
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where α j, β j, ϕ j and are the Landau coefficients. c11, j and c12, j are the elastic stiff-

ness coefficients, whereas g11, j and g12, j denote the electrostrictive constants. um,BT =

(aS−aBT )/aS denotes the in-plane misfit strain of BT layer induced by the substrate due

to the lattice mismatch (Y. Y. Liu, Zhu, Li, & Li, 2010). aBT is the unconstrained equiva-

lent cubic-cell lattice constant of BT layer and aS is the lattice parameter of the substrate.

For the solid solution BST layer with composition x, the in-plane misfit strain in-

duced by the substrate for each end member of the solution are given by (Shirokov et al.,

2006, 2009; Y. Y. Liu et al., 2010)

um, j = um,BST −∆ j = (aS−ax)/aS−∆ j (5.7)

which comprises both the substrate-induced misfit strain in BST layer, um,BST and the lat-

tice strain of the end members, ∆ j ( j: BT or BST ). ax is the equilibrium lattice parameter

of the solid solution BST layer. After the complete compensation of internal elastic forces

(Shirokov et al., 2006, 2009):

(1− x)
∂gST

(
pBST ,um,BST −∆ST

)
∂u

∣∣∣∣∣
pBST ,u=0

+ x
∂gBT

(
pBST ,um,BST −∆BT

)
∂u

∣∣∣∣∣
pBST ,u=0

= 0

(5.8)

Eqs. (5.3) and (5.8) yield

ax =
(1− x)τaST + xaBT

(1− x)τ + x
(5.9)

and the lattice parameters of the solid solution end constituent layers are given by

aBT = ax(1+∆BT )

aST = ax(1+∆ST )

 . (5.10)
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The lattice strain of the end members ∆BT and ∆ST are

∆BT =
(1− x)τδ

(1− x)τ +(1+δ )x

∆ST =
xδ

(1− x)τ +(1+δ )x

 , (5.11)

respectively. Here, τ =
(
c11,ST +2c12,ST

)
/(c11,BT +2c12,BT ) and δ = (aBT −aST )/aST .

If x = 1, we have ∆BT = 0 and ax = aBT and ax = aBT . In this case, gBST = gBT = fBT

and um,BT = (aS− aBT )/aS, which is the free energy of the BT layer on a substrate and

the in-plane misfit strain of BT layer induced by the substrate, respectively.

The interface energy is given by (Lim et al., 2012)

FI =
λ0

2ε0

[(
pI,BT (0)− pI,BST (0)

)2
+
(

pI,BT (−LBT )− pI,BST (LBST )
)2
]
, (5.12)

where pI, j denotes the interface polarization of constituent layer j. ε0 is the dielectric

permittivity in vacuum. λ0 is the temperature-independent interface parameter describes

the strength of interface mixing effect in the superlattice. This interface intermixing has

alreday been discussed in both Section 2.5 and Subsection 3.3.1, so this discussion will

not be repeated here.

5.3.2 Result and Discussion

In the calculations, we assume the length of 1 unit cell (u.c.) ≈ 0.4nm (Fong et al.,

2004). The characteristic length is defined as ξ0 =
√

κ/(α0BaT0Ba)∼ 0.6nm where α0BT

is the zero temperature of α j and T0BT is the transition temperature of BT, corresponds

to the estimated length of domain wall half-width (Fong et al., 2004; Stephanovich et al.,

2005). Unless otherwise specified, the periodic thickness of the BT/BST superlattice is

fixed at LBT = LBST = 5 u.c. All the Helmholtz free energy coefficients for layers BT and

ST constituent are listed in Table 5.1.
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Table 5.1: The Helmholtz free energy coefficients for BT (Shirokov et al., 2009) and ST
(Dawber et al., 2007).

BT ST Units
α 4.124(T −T0BT ) 7.45(T −T0ST ) ×105JmC−2

β 0.54012 2.02 ×109Jm5C−4

γ 1.294 - ×108Jm9C−6

ϕ 3.863 - ×1010Jm13C−8

T0 388 51.64 K
g11 1.163 1.25 ×1010JmC−2

g12 -2.448 -1.08 ×106JmC−2

c11 1.7278 3.36 ×1011Jm−3

c12 8.1958 10.7 ×1011Jm−3

κ 5.761 5.761 ×10−11Jm3C−2

We first examine the change in lattice parameters and internal strain of the solid

solution BST layer with variable Ba/Sr concentrations, as shown in Fig. 5.2. Note here

that the lattice constants in the paraelectric phase or cubic perovskite state for BT and

ST are aBT = 3.99Å and aST = 3.905Å, respectively, whereas the lattice parameter of

SmScO3 substrate is as = 3.991Å. Thus, the lattice parameter of the solid solution BST

layer increases with increasing Ba content, as expected (Ortega et al., 2011). The internal

strain of BT layer is um,BT = (as−aBT )/as = 2.5056×10−4, whereas the internal strain

of BST layer can be modified by varying the Ba/Sr content. In this case, it is seen that

the in-plane tensile strain induced by the lattice mismatch between the SmScO3 substrate

and the solid solution BST layer decreases with increasing Ba content.

Let us now investigate the effect of composition and interface intermixing on the

profile of polarization and the mismatch in polarization at interface in the BT/BST super-

lattices with fixed periodic thickness, as illustrated in Fig. 5.3. When λ0 = 0, it means

that there is no intermixing. In this case, the polarization remains homogeneous through-

out the BT and BST layers. If λ0 6= 0, an intermixed layer with properties different from

those of the constituent layers is formed at interface. The formation of intermixed layer at

interfaces gives rise to an inhomogeneity of polarization near interfaces. The continuity

or discontinuity of polarization across the interface depends on the nature of intermixed
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Figure 5.2: Lattice parameter BST aBST (green) and substrate-induced misfit strain (blue)
in BST-x layer um,BST of BT/BST superlattices grown on SmScO3 at T = 298K as a
function of composition x.

layer. The intermixed layer plays an important role in determining the polarization mod-

ulation profiles in the superlattice. In addition, the mismatch in polarization or the gap of

polarization at interface decreases with increasing λ0 value, as shown in Fig. 5.4.

The effects of Ba/Sr content of BST layer on the profile of polarization and the mis-

match in polarization at interface in the BT/BST superlattices are more interesting, as

shown in Fig. 5.3. If no intermixing at interface λ0 = 0, the polarization of the solid

solution BST layer in BT/BST superlattices increases with increasing Ba content. Since

λ0 = 0, the changes of polarization in the BST layer do not affect the ferroelectric prop-

erties of the neighboring BT layer in BT/BST superlattices. With increasing Ba content

in BST layer, the gap of polarization at interface decreases, as shown in Fig. 5.4. This is

reasonable because the internal strain in the solid solution BST layer decreases and the
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Figure 5.3: Polarization profiles of a BT/BST superlattice with only an in-plane compo-
nent at T = 298K with composition x = 0.7,0.4 and 0. The values of λ0 are: 0 (red line),
0.01ξ0 (blue line) and ξ0 (brown line).

BST layer approaches the BT end constituent layer, as the Ba content increases. For the

case of the BT/BST superlattice with λ0 6= 0, the change of Ba/Sr content in the solid

solution BST layer not only affect the mismatch of polarization at interface, but it also

affects the polarization behavior of the neighboring constituent layer, i.e. the BT layer.

Compared with the case of the BT/BST superlattice with λ0 6= 0, the decrease in the gap

of polarization at interface due to the Ba/Sr composition for the case of the superlattice

with λ0 6= 0 is more significant, as depicted in Fig. 5.4.

In Fig. 5.5, we investigate the effect of Ba/Sr composition and interface intermixing

on the polarization behaviors of a BT/BST superlattice. The average polarization of the

superlattice P is defined by P =
(∫ 0
−LBT

pBT dz+
∫ LBST

0 pBST dz
)
/L with periodic thick-

ness L = LBT +LBST . In general, the polarization P of a BT/BST superlattice increases

with increasing Ba content, as expected. This is because the solid solution BST layer
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Figure 5.4: Mismatch in polarization at interface PBT (0)−PBST (0) of a BT/BST super-
lattice at T = 298K as a function of composition x.

approaches the BT end member with increasing Ba content. In addition, the in-plane ten-

sile strain induced by the lattice mismatch between the SmScO3 substrate and the solid

solution BST layer decreases, as the Ba content increases. Compared with the effect of

interface intermixing on polarization P of BT/BST superlattice, it is clear to see that the

influence of Ba/Sr content on ferroelectric properties of the BT/BST superlattice is more

obvious.
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Figure 5.5: Polarization P of a BT/BST superlattice with only an in-plane component at
T = 298K as a function of composition x. The values of λ0 are: 0 (red line), 0.001ξ0
(blue line) and ξ0 (brown line).
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5.4 Out-of-plane Polarization Case

In order to study the case of out-of-plane polarization, we consider the BT/BST

superlattice grown on SrTiO3, as shown in Fig. 5.6. Our intention of selecting SrTiO3

as a substrate for BT/BST superlattice is to produce a compressive strain on BT and

BST layers by increasing the elongation of the lattice vector perpendicular to the surface

or interface. Consequently, it leads to a strong preference for out-of-plane polarization

in BT/BST superlattice. The SmScO3 substrate is not a best choice to study the case

of out-of-plane polarization, because the lattice parameters of the SmScO3 substrate is

larger than SrTiO3 and almost same as BaTiO3. As a result, it tends to induce a tensile

strain on BST layer that elongates its lattice vector parallel to the surface or interface and

thus suppressed the out-of-plane polarization. On the other hand, the BaTiO3/SrTiO3

superlattice which grown on SrTiO3 substrate has a higher transition temperature compare

to SmScO3 substrate according to the experimental works by Soukiassian et al., 2008.

Figure 5.6: Schematic illustrations for a BT/BST superlattice on a SrTiO3 substrate with
thicknesses of BT layer and BST layer are LBT and LBST , respectively. Arrows represent
the direction of polarization.
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5.4.1 Formalism

For the case of superlattice with out-of-plane polarization, an appropriate electro-

static boundary condition are required. As discussed in Chapter 3, it is expected that the

electrostatic coupling between ferroelectric layers will lead to the formation of internal

electric field in the dielectric layers. The method of derivation of phenomenological ther-

modynamic potential of solid solutions for the case of out-of-plane polarization is similar

to what have been discussed in Section 5.3, only the renormalized coefficients α j and

β j are different and the reason for this is the following: the renormalized coefficients α j

and β j in Eq. (5.2) to (5.4) are responsible for the in-plane tensile strain which induced

by SmScO3 substrate due to lattice mismatch. For the case of out-of-plane polarization

using SrTiO3 substrate, it will induce an in-plane compressive strain on the BT/BST su-

perlattices. Therefore, the renormalized coefficients α j is replaced by

α
′∗
j = α j +2

(
c12 j

c11 j
g11 j−g12 j

)
um j (5.13)

and β j is replaced by

β
′∗
j = β j−

g2
11 j

2c11 j
. (5.14)

Similarly, the Helmholtz free energy per unit area for one period of the BT/BST

superlattice in Eq. (5.1) can be generalized to include the energy of internal electric field

(Lim et al., 2012)

F =
∫ 0

−LBT

{
f ′BT −

1
2

Ed,BT pBT

}
dz+

∫ LBST

0

{
g′BST −

1
2

Ed,BST pBST

}
dz+FI, (5.15)

where Ed, j corresponds to the internal electric field of layer j : BT or BST . Basically,

the definition of f ′BT and g′BST are the same as fBT and gBST as shown in Eq. (5.2) to

(5.4), only the new renormalized coefficients α ′j and β ′j are substituted to account for the
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induced compressive strain by the ST substrate. The interface energy, FI is the same as

given in Eq. (5.12).

Due to the electrostatic coupling between the layer of superlattices, the physics of

ferroelectric superlattice must satisfy the Maxwell’s equations in matter, ∇ · (D) = 0 and

∇×E, where D = ε0E+P and E j = Ed, j +Eext . Hence, the electrostatic potentials in

layer j: BT or BST are the same as given in Eq. (3.7). Furthermore, the electrostatic

boundary conditions at interface require the continuity of the normal component of elec-

tric displacement and the continuity of the tangential component of the electric field,

DBT = DBST , ϕBT = ϕBST . (5.16)

where E j =−∇ϕ , in term of electrostatic potential.

5.4.2 Result and Discussion

The method of calculations and the Helmholtz free energy coefficients that we used

in this study are similar to the case of in-plane polarization as discussed in Subsection

5.3.2.

First of all, the change of lattice parameters and internal strain of the solid solution

BST layer with variable Ba/Sr concentrations is shown in Fig. 5.7. Similar to the in-

plane polarization case, the lattice constants in the paraelectric phase or cubic perovskite

state for BT and ST are aBT = 3.99Å and aST = 3.905Å, respectively. According to

calculations, the internal strain of BT layer is um,BT = (as−aBT )/as =−0.0218, whereas

the internal strain of BST layer can be modified by varying the Ba/Sr content. In this out-

of-plane polarization case, it is seen that the magnitude of in-plane compressive strain

induced by the lattice mismatch between the SrTiO3 substrate and the solid solution BST

layer increases with increasing Ba content.
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Figure 5.7: Lattice parameter BST aBST (green) and substrate-induced misfit strain (blue)
in BST-x layer um,BST of BT/BST superlattices grown on SrTiO3 at T = 298K as a func-
tion of composition x.

Let us now study the effect interface intermixing on the profile of polarization and

internal electric field at interface in the BT/BST superlattices with fixed periodic thick-

ness. Fig. 5.8 shows the profiles of polarization and internal electric field of BT/BST

superlattices with LBT = LBST = 5 u.c. for different values of λ0 and Ba content, x in BST

layer. First of all, we investigate the change of polarization and internal electric field pro-

files when the value of λ0 is varied. When λ0 = 0, no intermixing occurs and the both the

internal electric field and polarization remain homogeneous throughout the BT and BST

layers. When λ0 6= 0, an intermixed layer is formed at interface and eventually leads to

an inhomogeneity of polarization and internal electric field near interfaces. Similar to in-

plane polarization case, the mismatch or the gap of polarization and internal electric field

at interface decrease with increasing λ0 value, as shown in Fig. 5.9. Apparently the out-
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of-plane polarization profile becomes more flatten compare to the in-plane polarization

profile due to the internal electric field, as shown in Fig. 5.3.

Next we examine the effects of Ba/Sr content of BST layer on the profile of polar-

ization and internal electric field in the BT/BST superlattices. The polarization of the BT

layer and solid solution BST layer in BT/BST superlattices increases with increasing Ba

content, as shown in Fig. 5.8. On the contrary, the magnitude of internal electric field in

BT layer and solid solution BST layer of BT/BST superlattices decreases with the rise of

Ba content. Overall, the mismatch in polarization and internal electric field at interface

decrease with further increasing Ba content in BST layer, as shown in Fig. 5.9. This is

due to the fact that the BST layer approaches the BT end constituent layer and the whole

BT/BST superlattice resembles the BT bulk material as the Ba content increases.

In Fig. 5.10, we compare the effect of Ba/Sr composition and interface intermix-

ing on the ferroelectric properties of a BT/BST superlattice. It can be seen that the in-

termixing at interfaces has a negligible effect on polarization. On the other hand, the

internal electric field in BT/BST superlattices shows a very interesting behavior. In the

case of λ0 6= 0, there is a change of sign in internal electric field when the thickness ratio,

LBT/LBST ≈ 2. In the region of LBT/LBST / 2, the sign of internal electric field is negative

and it acts as a depolarization field in BT/BST superlattices. On the contrary, the internal

electric field becomes positive in the region of LBT/LBST ' 2 and it tends to induce po-

larization in BT/BST superlattices. This peculiar result indicates that the sign of internal

electric field in BT/BST superlattices can be manipulated by changing the thickness ratio.

Similar to in-plane polarization case, the polarization of BT/BST superlattice increases

with increasing Ba content. Note that when x = 0, BST layer become purely ST layer and

this explains why the internal electric field in the superlattice is negative (acting as a de-

polarization field) and there is a minimum as reported in Lim et al., 2012 (Please refer to

Section 3.5). The value of internal electric field of the superlattice become more positive
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when x is increasing, this is because the BST layer approaches the BT end constituent

layer and becoming a ferroelectric with its own spontaneous polarization. Evidently, the

influence of Ba/Sr content on polarization P of the BT/BST superlattice is more profound

compare to the effect of interface intermixing.
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(a)

(b)

Figure 5.8: Profiles of polarization P(C/m2) and internal electric field E(V/m) of
BT/BST superlattice with only an out-of-plane component at T = 298K with compo-
sition x = 0.7,0.4 and 0. The values of λ0 are: 0 (red line), 0.01ξ0 (blue line) and ξ0
(brown line).
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Figure 5.9: Mismatch in polarization and internal electric field at interface of a BT/BST
superlattice at T = 298K as a function of composition x.
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Figure 5.10: Polarization P and internal electric field E of a BT/BST superlattice with
only out-of-plane component at T = 298K as a function of composition x. The values of
λ0 are: 0 (red line), 0.001ξ0 (blue line), 0.01ξ0 (green line) and ξ0 (brown line).
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5.5 Conclusion

In conclusion, we have studied the effect of Ba/Sr content and interface intermix-

ing on ferroelectricity of a superlattice consisting of alternate BT layer and BST layer

within the framework of the Landau-Ginzburg theory. For a BT/BST superlattice with

polarization aligns along the surfaces or interfaces, the effect of electrostatic coupling in

the superlattice can be ignored. Two different cases with respect to the direction of po-

larization are considered (i) in-plane polarization and (ii) out-of-plane polarization. For

the case of superlattice with in-plane polarization, SmScO3 substrate is chosen. Whereas

SrTiO3 substrate is chosen for out-of-plane polarization. Our studies indicates that the

ferroelectricity of BT/BST superlattice can be tailored by varying Ba/Sr content of BST

layer without changing the period thickness of BT/BST superlattices. The effect of Ba/Sr

content on polarization of BT/BST superlattices is more significant than the effect of

interface intermixing on polarization of the superlattice.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this thesis, we have studied the phase transition in ferroelectric superlattices on the

basis of Landau-Ginzburg theory. By introducing an interface energy term in the free en-

ergy, the formation of intermixed layer with properties different from its individual layers

at the interface can be described. These intermixed layers are mutually coupled through

the local polarization at interfaces. As a result, polarization continuity or continuity at

interfaces is determined by the nature of these intermixed layers.

It is seen that the electrostatic coupling between ferroelectric layers plays a dominant

role in the polarization enhancement of ferroelectric/paraelectric superlattices. Internal

electric field, originates from the electrostatic coupling, strongly induces the polarization

of paraelectric layer. The spatial dependence of these ferroelectric properties extends into

the bulk over a distance governed by the correlation length ξ0 of its constituent layer.

We reveal that interface intermixing has negligible effect on polarization and transition

temperature of superlattices with polarization perpendicular to interface, based on the

current single-domain model. Even if no intermixing is considered, the polarization of

both the ferroelectric and paraelectric layer are almost the same. Thus, it is expected that

intermixing does not have a significant effect on the polarization (and thus, the transition

temperature). This effect is noticeable only if the electrostatic coupling is neglected when

polarizations align parallel to interfaces. In the present work, it allows the description of

inhomogeneous ferroelectric properties in superlattices through the interface intermixing

effect.
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We extend our work on interface intermixing in ferroelectric superlattices with elec-

trostatic coupling to investigate the polarization reversal. Our results reveal that polar-

ization hysteresis in ferroelectric superlattices is accompanied by hysteresis in internal

electric fields. This hysteresis in internal electric field has never been reported in litera-

ture before. The underlying physical mechanisms which induce the internal electric field

dependence of applied electric field can be discussed by looking at the polarization and

internal field profiles.

In our model, we have established the correlation between the internal electric field

and ferroelectric properties such as polarization and dielectric susceptibility. Internal

electric field (e.g. depolarization field) originates from electrostatic coupling is well-

known and understood to have significant impact on the ferroelectric properties. To our

knowledge, no previous work has been found on the attempt to correlate the internal

electric field with ferroelectric properties. We discuss the intermixing dependence of

spatially-modulated internal electric field, dielectric susceptibility and polarization, and

established the correlation between these properties. We also illustrate how the “step”

structure of buried ferroelectric/paraelectric interfaces depends on intermixing (i.e. po-

lar continuity or discontinuity at interfaces). Therefore, the spatially-modulated profiles

of these ferroelectric properties could provide useful information to understand superlat-

tices.

Based on our proposed thermodynamic model, we study the polarization disconti-

nuity and screening charge in ferroelectric superlattices which due to the existence of

screening charge at interface with equal but of opposite sign for alternate interface. This

screening charge depends on the degree of interface mixing and it approaches a saturated

value when the mismatch of internal field or polarization at interface vanishes. According

to our results, there are two possible mechanisms of screen charge density at interfaces.

The first mechanism as shown in Fig. 4.1(b) (hereafter we denote it as type I interface),
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suggested that the screening charge at interface may arrange itself in such a way that it

produces a charge-induced electric field, Eσ , j that acts against the resultant effective in-

ternal field, Ee f f , j in each constituent layer j. On the other hand, as shown in Fig. 4.1(c)

(henceforth denoted as type II interface), the second mechanism of screening charge at

interface can produce a charge-induced electric field, Eσ , j that has the same direction as

the resultant effective internal field, Ee f f , j. To sum up, in the case of type I interface,

the presence of screen charge tends to enhance the polarization and internal electric field

in superlattices, whereas the polarization and internal electric field are suppressed in the

case of type II interface, hence it forms a homogeneous polarization across the whole

superlattice. In conclusion, the properties of ferroelectric superlattice can be influenced

by the alternative appearance of accumulated screening charge at interface.

We further extend our thermodynamic model to study the effect of composition

and interface intermixing on BaTiO3/BaxSr1−xTiO3 (BT/BST) superlattices grown on

SmScO3. In order to focus on the effect of (Ba, Sr) content and interface intermixing on

the BT/BST superlattice system, an in-plane polarization is assumed. This assumption al-

lows us to study the effects (i.e. composition and intermixing) in isolation with the effect

of electrostatic coupling (Lim et al., 2012). Our choice of SmScO3 as substrate is with

an intention to induce the tensile stress upon the superlattice which leads to the in-plane

polarization. Since the in-plane lattice parameters of the SmScO3 substrate and BaTiO3

are almost the same, i.e. almost no strain is applied to the BaTiO3 layers by the underly-

ing substrate. Therefore, changes in the Ba/Sr content will only affect the internal strain

of the BST layer. In summary, we conclude that the changes in the composition (Ba,Sr

content) on polarization of BT/BST superlattice are more important than the degree of

interface intermixing.
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6.2 Future Works

As emphasized in the thesis, the ability of our approach to describe the inhomoge-

neous properties in superlattices via intermixing will facilitate future work on modeling

involving multidomains, as well as will establish the correlation between internal elec-

tric field and functional properties of superlattices (such as phase diagram, polarization,

dielectric susceptibility, switching, etc). Our approach is general and can be applied to

heterostructures, e.g. thin films, superlattices and multilayer system.

Since polarization, internal electric field and dielectric susceptilities are correlated,

the spatial dependence of all these ferroelectric properties are actually governed by the

correlation length. In fact, it is a quantity that measures the thickness of domain wall

(strictly, “partial-domain walls” in the present study), and it plays an important role in

understanding the polarization reversal in ferroelectrics. Hence, we can extend our works

in Section 3.7 to study the dynamics of polarization switching in a superlattice with the ef-

fects of electrostatic coupling and interface intermixing by using the Landau Khalatnikov

equation (Chew et al., 2011c).

The future trend toward acceptance of lead-free materials in electronics has led to

many investigations in finding other alternative material to replace PZT (lead zirconate

titanate) which has an outstanding piezoelectric property. A recent experiment reported

that a lead-free solid solution (BCZT) Ba(Ti0.8Zr0.2)O3 - (Ba0.7Ca0.3)TiO3 shown a high

piezoelectric coefficient which is comparable to PZT (W. Liu & Ren, 2009). In light of

this recent finding, we can extend our works in Chapter 5 to study the lead-free ferro-

electric superlattices which involving solid solution ferroelectrics, such as (Ba,Ca)TiO3,

Ba(Zr,Ti)O3, (Bi,Na)TiO3, (Bi,K)TiO3, etc. Therefore, we hope to report some inter-

esting results in near future.
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Ultimately, the future study of this research must encompass the combination of

experimental measurements and theoretical calculations to quantitatively determine the

degree of the interface effects and its influence on the ferroelectric properties of superlat-

tice. It is anticipated that by controlling and manipulating the interface effects, it can lead

to other interesting and potentially useful applications (Zubko et al., 2011).
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APPENDIX A

VOIGT NOTATION

Voigt notation is very useful to simplify a symmetric tensor by reducing its order.

The pairs of indices 11, 22, 33 are replaced by single indices 1, 2, and 3 respectively,

and the pairs of indices 23, 13, and 12 are replaced by the single indices 4, 5, and 6

respectively (Dove, 2003). Therefore, we can write the stress tensor as follows:

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

=


σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

≡



σ1

σ2

σ3

σ4

σ5

σ6



(A.1)

In Voigt notation the stress tensor is simplified to a 6 dimensional vector. The similar

method can be applied to strain tensor. The Voigt notation for strains and stresses can be

summarized in Table.A1 (Defaÿ, 2011).

Table A1: The Voigt notation with axis 3 perpendicular to the interface.

strain stress
u1 = u11 u4 = u23 +u32 σ1 = σ11 σ4 = (σ23 +σ32)/2
u2 = u22 u5 = u31 +u13 σ2 = σ22 σ5 = (σ31 +σ13)/2
u3 = u33 u6 = u12 +u21 σ3 = σ33 σ6 = (σ12 +σ21)/2
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APPENDIX B

DIMENSIONLESS SCALING

For numerical studies, it is convenient to rescale the variables in Eqs. (3.1) to Eq. (3.3)

into their dimensionless forms. The dimensionless form of Helmholtz free energy per unit

area, Eq. (3.1) is f̃ = f̃FE + f̃PE + f̃I , and the detailed forms are given as:

f̃FE =
∫ 0

−d̃FE

[
α∗FE

α0,FET0,FE
p̃2

FE +
β ∗FE
βFE

p̃4
FE + tr p̃6

FE +
1
2

(
d p̃FE

dζ

)2

− 1
2

ed,FE p̃FE − eext p̃FE

+

(
c2

11,FE + c11,FEc12,FE −2c2
12,FE

c11,FE

)
u2

m,FE
βFE

α2
0,FET 2

0,FE

]
dζ , (B.1)

f̃PE =
∫ d̃PE

0

[
α∗PE

α0,FET0,FE
p̃2

PE +
β ∗PE
βFE

p̃4
PE + trγr p̃6

PE +
1
2

κr

(
d p̃PE

dζ

)2

− 1
2

ed,PE p̃PE − eext p̃PE

+

(
c2

11,PE + c11,PEc12,PE −2c2
12,PE

c11,PE

)
u2

m,PE
βFE

α2
0,PET 2

0,PE

]
dζ (B.2)

and

f̃I =
λ0

2ε0κFE
ξ0

[
(p̃FE(0)− p̃PE(0))

2 +(p̃FE(−lFE)− p̃PE(lPE))
]
, (B.3)

where the following scaling are used:

f̃ j = f j/ f0; f0 =
α2

0,FE T 2
0,FE ξ0

βFE
; p̃ j = p j/p0; p0 =

(
α0,FE T0,FE

βFE

)1/2
; ξ0 =

(
κFE

α0,FE T0,FE

)1/2
;

tr =
γFE α0,FE T0,FE

β 2
FE

; γr = γPE/γFE ; κr = κPE/κFE ; ζ = z/ξ0; d̃ j = d j/ξ0; ed, j = Ed, j/E0;

eext = Eext/E0; E0 =
(α0,FE T0,FE)

3/2

β
1/2
FE

.

The corresponding Euler-Lagrange equations follow from Eq. (B.1) and Eq. (B.2)

are given as:

d2 p̃FE

dζ 2 =
2α∗FE

α0,FET0,FE
p̃FE +

4β ∗FE
βFE

p̃3
FE +6tr p̃5

FE +
1
2

dϕ̃FE

dζ
− eext (B.4)
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and

κr
d2 p̃PE

dζ 2 =
2α∗PE

α0,FET0,FE
p̃PE +

4β ∗PE
βFE

p̃3
PE +6trγr p̃5

PE +
1
2

dϕ̃PE

dζ
− eext (B.5)

Whereas, the boundary condition at interfaces in dimensionless form are given as:



− d p̃FE

dζ

∣∣∣∣
ζ=−d̃FE

+
λ0

κFEε0
ξ0
[
p̃FE(−d̃FE)− p̃PE(d̃PE)

]
= 0

κr
d p̃PE

dζ

∣∣∣∣
ζ=0

+
λ0

κFEε0
ξ0 [p̃FE(0)− p̃PE(0)] = 0

d p̃FE

dζ

∣∣∣∣
ζ=0

+
λ0

κFEε0
ξ0 [p̃FE(0)− p̃PE(0)] = 0

−κr
d p̃PE

dζ

∣∣∣∣
ζ=d̃PE

+
λ0

κFEε0
ξ0
[
p̃FE(−d̃FE)− p̃PE(d̃PE)

]
= 0.

(B.6)

Similarly, the dimensionless form of electrostatic potential ϕ̃ j according to Maxwell’s

equations, Eqs. (3.7) are

−ε0α0,FET0,FE
d2ϕ̃ j

dζ 2 +
d p̃ j

dζ
= 0, (B.7)

where j = FE or PE. Finally, the dimensionless form of electrostatic boundary condi-

tions, Eqs. (3.8) are


ε0α0,FET0,FE

[
− dϕ̃FE

dζ

∣∣∣∣
ζ=0

+
dϕ̃PE

dζ

∣∣∣∣
ζ=0

]
=−(p̃FE(0)− p̃PE(0)) ,

ε0α0,FET0,FE

[
− dϕ̃FE

dζ

∣∣∣∣
−d̃FE

+
dϕ̃PE

dζ

∣∣∣∣
d̃PE

]
=−

(
p̃FE(−d̃FE)− p̃PE(d̃PE)

]
.

(B.8)

and Eqs. (3.9) are 
ϕ̃FE(0) = ϕ̃PE(0),

ϕ̃FE(−d̃FE) = ϕ̃PE(d̃PE).

(B.9)
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In order to find the dielectric susceptibility, we rewrite the Eqs. (3.15) into dimen-

sionless form:

d2χFE

dζ 2 =

(
2α∗FE

α0,FET0,FE
+

12β ∗FE
βFE

p̃2
FE +30tr p̃4

FE

)
χFE

− 1
α0,FET0,FE

(
1

2ε0
(χ̄−χFE)+

1
ε0

)
(B.10)

and

κr
d2χPE

dζ 2 =

(
2α∗PE

α0,FET0,FE
+

12β ∗PE
βFE

p̃2
PE +30trγr p̃4

PE

)
χPE

− 1
α0,FET0,FE

(
1

2ε0
(χ̄−χPE)+

1
ε0

)
. (B.11)

The corresponding boundary conditions, Eqs. (3.16) for the dielectric susceptibility at

interface in dimensionless form are:



− dχFE

dζ

∣∣∣∣
ζ=−d̃FE

+
λ0

κFEε0
ξ0
[
χFE(−d̃FE)−χPE(d̃PE)

]
= 0

κr
dχPE

dζ

∣∣∣∣
ζ=0

+
λ0

κFEε0
ξ0 [χFE(0)−χPE(0)] = 0

dχFE

dζ

∣∣∣∣
ζ=0

+
λ0

κFEε0
ξ0 [χFE(0)−χPE(0)] = 0

−κr
dχPE

dζ

∣∣∣∣
ζ=d̃PE

+
λ0

κFEε0
ξ0
[
χFE(−d̃FE)−χPE(d̃PE)

]
= 0.

(B.12)
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APPENDIX C

NUMERICAL METHODS

For the convenient of numerical calculations, all the equations are rescaled into their

dimensionless forms as depicted in Appendix B. Subsequently, the dimensionless form of

Euler-Lagrange equations Eq. (B.4) & Eq. (B.5) together with the electrostatic equations

(B.7) are transformed into a system of nonlinear equations using the finite difference

method (Chapra & Canale, 2006). The central difference approach is used to approxi-

mate the first and second derivatives in the Eq. (B.4), Eq. (B.5) and Eqs. (B.7), whereas

the first derivatives in the Eqs. (B.6) and Eqs. (B.8) are approximated based on forward

difference approach. Finally, the system of nonlinear equations Eq. (B.4), Eq. (B.5) and

Eqs. (B.7) are solved numerically with the boundary conditions, i.e. Eqs. (B.6), Eqs. (B.8)

and Eqs. (B.9). The numerical calculations are implemented using the Matlab mathemati-

cal packages. The nonlinear equations solver “fsolve” based on the “trust-region-dogleg”

algorithm from the optimization toolbox of Matlab is employed in the numerical compu-

tation. A detailed description of this algorithm and Matlab command will not be given

here but it can be found in the Matlab’s help or the Optimization Toolbox User’s Guide

(The MathWorks, 2014).
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