
A STUDY ON SOLUTION OF MATRIX RICCATI
DIFFERENTIAL EQUATIONS USING ANT COLONY

PROGRAMMING AND SIMULINK

MOHD ZAHURIN MOHAMED KAMALI

THESIS SUBMITTED IN FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

INSTITUTE OF MATHEMATICAL SCIENCES , FACULTY OF SCIENCE,

UNIVERSITY OF MALAYA

KUALA LUMPUR

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Malaya Students Repository

https://core.ac.uk/display/268877937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Swarm intelligence is a modern artificial intelligence discipline that is concerned with

the design and optimization of multiagent systems with applications in robotics. This

non-traditional approach is fundamentally different from the traditional approaches. In-

stead of a sophisticated controller that governs the global behavior of the system, the

swarm intelligence principle is based on many unsophisticated entities (for example such

as ants, termites, bees etc.) that cooperate and interact in order to exhibit a desired behav-

ior. In this thesis, we implement the modified ant colony programming (ACP) algorithm

for solving the matrix Riccati differential equation (MRDE). Solving MRDE, especially

nonlinear MRDE is the central issue in optimal control theory. It has been found that by

implementing the ACP algorithm, the solution predicted is approximately close or similar

to the exact solution. Besides that, we compared our present work with numerical solution

obtained by Runge-Kutta fourth order (RK4) and a non-traditional method such as the ge-

netic programming (GP). Furthermore, in this work, we also showed the implementation

of the Simulink, for solving the MRDE in order to get the optimal solutions. This add-on

Simulink package in the Matlab software can be used to create a block of diagrams which

can be translated into a system of ordinary differential equations.

Illustrative examples are shown to prove the effectiveness of the proposed algorithm.

Moreover, the proposed method have been well applied to biological and engineering

problems such as linear and nonlinear singular systems, human immunodeficiency virus

(HIV) models, microbial growth model and ethanol fermentation process.

iii

ABSTRAK

Kepintaran berkumpulan adalah satu disiplin kepintaran buatan yang prihatin di dalam

pembinaan dan pengoptimuman sistem-sistem multi-agen dengan aplikasi di dalam robotik.

Secara asasnya kaedah bukan tradisional ini adalah berbeza dari kaedah tradisional. Di se-

balik pengawalan yang rumit bagi mentadbir sifat global sesuatu sistem itu, prinsip kepin-

taran berkumpulan adalah berdasarkan gabungan banyak entiti-entiti yang tidak sofistikated

(sebagai contoh seperti semut, anai-anai, lebah dan sebagainya) di mana entiti-entiti ini

bekerjasama bagi memberikan sifat-sifat yang dikehendaki. Di dalam tesis ini, kami

menggunakan kaedah modifikasi pengaturcaraan koloni semut (ACP) bagi menyelesaikan

persamaan pembeza matriks Riccati (MRDE). Menyelesaikan MRDE, khususnya bukan

linear MRDE telah menjadi fokus utama di dalam teori pengawalan optima. Di dapati

dengan algoritma ACP ini, penyelesaian diperolehi adalah menghampiri atau sama den-

gan penyelesaian tepat. Kami juga membandingkan keputusan kami bersama penyelesa-

ian berangka yang diperolehi dengan kaedah Runge-Kutta peringkat ke 4 (RK4) dan juga

kaedah bukan tradisional pengaturcaraan genetik (GP). Selain itu, kami juga melaporkan

penggunaan Simulink bagi menyelesaikan MRDE bagi mendapatkan penyelesaian op-

tima. Pakej tambahan di dalam Matlab ini boleh digunakan untuk membina blok-blok

diagram yang boleh diterjemahkan kepada sistem persamaan pembeza.

Contoh illustratif bagi membuktikan keberkesanan algoritma yang dicadangkan ada

ditunjukkan di dalam tesis ini. Malah, kaedah yang dicadangkan telah diaplikasikan

di dalam permasalahan biologi dan juga kejuruteraan seperti sistem singular linear dan

bukan linear, human immunodeficiency virus model (HIV), model pertumbuhan mikro-

bial dan proses penapaian etanol.

iv

ACKNOWLEDGEMENT

I would like to express my deep and sincere gratitude to both of my research supervi-

sor, Dr. N. Kumaresan and Prof. Kurunathan Ratnavelu, from Institute of Mathemat-

ical Sciences, Faculty of Science, University of Malaya for their patience and energizing

guidance. Without their encouragements and invaluable support, this research work and

thesis wouldn’t be possible. I also thank them for providing me with a good research

environment and the learning for life. I gained much from their wide knowledge and vast

research experience.

I also express my sincere thanks to Dr S. Jeeva Sathya Theesar, from Institute of Math-

ematical Sciences, Faculty of Science, University of Malaya for his invaluable suggestions

during many occasions of the research work and for the completion of this thesis.

I wish to take this opportunity to thank the Head of Institute of Mathematical Sciences,

University of Malaya and Centre for Foundation Studies in Science, University of Malaya

for providing all the necessary facilities for doing this research work.

Also I want to express my sincere gratitude to my big family of research colleagues

Prof. Koshy Philip, Mr Hilmi Jaafar, Dr. Ng Siow Yee, Ephrance Abu Ujum and Chin

Jia Hou for their wonderful support during the whole research period and for successful

completion of the thesis.

Last but not the least, I would like to express my deep gratitude to my parents: Mr.

Mohamed Kamali Kormin, Mrs Entiah Saian and my wife, Siti Zawiah Hatibin who have

been good moral support for me in every way of life and consecrate to them.

Place : Kuala Lumpur

Date : 05-03-2015 MOHD ZAHURIN MOHAMED KAMALI

v

LIST OF PUBLICATIONS

1. M. Z. M. Kamali, N. Kumaresan, and Kuru Ratnavelu, Solving Differential Equations with

Ant Colony Programming, Applied Mathematical Modelling 39(2015), 3150-3163. (ISI

publication)

2. M. Z. M. Kamali, N. Kumaresan, and Kuru Ratnavelu, Optimal Control For Stochastic

Bilinear Quadratic Neuro Takagi-Sugeno Fuzzy Singular System Using Simulink, American

Institute of Physics, accepted 2013. (ISI publication)

3. M. Z. M. Kamali, N. Kumaresan, Koshy Philip and Kuru Ratnavelu, Fuzzy Modelling of

S-Type Microbial Growth Model for Ethanol Fermentation Process and the Optimal Control

Using Simulink, Communications in Computer and Information Science, Volume 283, Part

1, 325-332, Springer-Verlag Berlin Heidelberg, 2012. (ISI publication)

vi

LOCAL/INTERNATIONAL CONFERENCE PROCEEDINGS & PAPERS PRESENTED

AT CONFERENCES

1. M. Z. M. Kamali, N. Kumaresan, and Kuru Ratnavelu, Optimal Control For Stochastic Bi-

linear Quadratic Neuro Takagi-Sugeno Fuzzy Singular System Using Simulink, Paper pre-

sented at The 2013 International Conference on Mathematics and Its Applications (ICMA2013),

18-21 Aug 2013, Kuala Lumpur, Malaysia.

2. M. Z. M. Kamali, N. Kumaresan, Koshy Philip and Kuru Ratnavelu, Fuzzy Modelling of S-

Type Microbial Growth Model for Ethanol Fermentation Process and the Optimal Control

Using Simulink, Paper presented at the International Conference on Mathematical Mod-

elling and Scientific Computation 2012, 16-18 March 2012, Tamil Nadu, India.

3. M. Z. M. Kamali, N. Kumaresan, Koshy Philip and Kuru Ratnavelu, Fuzzy Modelling of

P-Type Microbial Growth Model for Ethanol Fermentation Process and the Optimal Control

Using Simulink, International Conference on Technology and Management 2012 , Lecture

Notes in Information Technology,Vol 21, p81, 2012.

4. M. Z. M. Kamali, N. Kumaresan, and Kuru Ratnavelu, Solution of Matrix Riccati Differ-

ential Equation of Optimal Fuzzy Controller Design for Nonlinear Singular System with

cross term using Simulink, Lecture Notes in Information Technology, Vol 10, p 304, 2012,

International Conference on Affective Computing and Intelligent Interaction (ICACII2012),

Information Engineering Research Institute, USA.

vii

TABLE OF CONTENTS

ABSTRACT iii

ABSTRAK iv

ACKNOWLEDGEMENT v

LIST OF PUBLICATIONS vi

LOCAL/INTERNATIONAL CONFERENCE PROCEEDINGS & PAPERS PRESENTED

AT CONFERENCES vii

LIST OF FIGURES xi

LIST OF TABLES xiii

LIST OF ABBREVIATIONS xv

LIST OF NOTATION AND SYMBOLS xvi

1 INTRODUCTION 1

1.0.1 General Introduction . 1

1.1 Optimal control theory . 2

1.2 Pontryagin’s minimum principle . 3

1.3 Linear optimal control . 4

1.3.1 Linear quadratic regulator control . 4

1.3.2 Infinite-horizon continuous-time linear quadratic regulator 5

1.3.3 Finite-horizon continuous-time linear quadratic regulator 6

1.4 Fuzzy systems . 6

1.4.1 Fuzzy control system . 8

1.4.1.1 Takagi-Sugeno fuzzy system 9

1.5 Fuzzy optimal control problem . 10

viii

1.6 Automatic programming . 14

1.7 Ant colony programming . 15

1.7.1 Terminals and Functions . 17

1.7.2 Construction of graph . 17

1.7.3 Fitness function . 17

1.7.4 Applications of the Ant Colony Programming 19

1.7.4.1 Travelling Salesman Problem 19

1.8 Simulink . 19

1.9 Motivating Examples . 21

1.10 Organization of thesis . 23

2 LITERATURE REVIEW 25

2.1 Solving differential equations . 25

2.2 Solving the matrix Riccati differential equation 26

2.3 Solving the microbial growth . 27

2.4 Solving the human immunodeficiency virus immunology model 28

3 SOLUTION OF DIFFERENTIAL EQUATIONS USING MODIFIED ANT COLONY

PROGRAMMING 30

3.1 Unique criteria of the modified ACP. 30

3.1.1 Modified ACP algorithm . 32

3.1.2 Modified ACP pseudocode . 33

3.2 Differential equations . 35

3.2.1 Linear Ordinary Differential Equations 35

3.2.2 Non-linear Ordinary Differential Equations 38

3.2.3 Systems of Ordinary Differential Equations 39

3.2.4 Partial Differential Equations. 41

3.2.5 System of Partial Differential Equations. 44

4 SOLUTION OF MATRIX RICCATI DIFFERENTIAL EQUATION AND OTHER

FUZZY MODELLING PROBLEMS USING MODIFIED ANT COLONY PROGRAM-

MING 47

4.1 Modified ant colony programming for solving MRDE with linear singular

fuzzy system: singular cost and cross term 47

4.1.1 R=0 . 49

ix

4.1.2 R=1 . 51

4.2 Modified ant colony programming for solving MRDE with nonlinear sin-

gular fuzzy system: singular cost . 56

4.2.1 Nonlinear singular fuzzy system with cross term 62

4.3 Takagi-Sugeno fuzzy modelling for solving the Human Immunodeficiency

Virus immunology model using modified ACP 64

4.4 Takagi-Sugeno fuzzy modelling of S-type microbial growth model for ethanol

fermentation process and optimal control 75

5 SOLUTION OF MATRIX RICCATI DIFFERENTIAL EQUATION OF OPTIMAL

FUZZY CONTROLLER DESIGN WITH SIMULINK 81

5.1 Nonlinear singular system with cross term 81

5.2 Fuzzy modelling of microbial type growth model for ethanol fermentation

process and the optimal control using Simulink 83

5.2.1 S-type microbial growth model . 83

5.2.2 P-type microbial growth model . 87

6 CONCLUSION AND FUTURE DIRECTIONS 94

PUBLICATIONS UNDER REVIEW 96

References 97

x

LIST OF FIGURES

1.1 Closed-Loop Optimal Control System 2

1.2 Open-Loop Optimal Control System . 3

1.3 Fuzzy Inference System . 8

1.4 Takagi-Sugeno Fuzzy Systems . 9

1.5 Membership function of z1 (t) and z2 (t) 11

1.6 Graph with Functions and Terminals . 18

1.7 Simulink . 20

3.1 Flow Chart for ACP . 34

3.2 Parse tree solution for (a) ODE1, (b) ODE2, (c) ODE3, (d) ODE4 and (e)

ODE5. 36

3.3 Comparison between ACP and GP. 37

3.4 Parse tree solution for (a) NLODE1, (b) NLODE2, (c) NLODE3 and (d)

NLODE4. 38

3.5 Comparison between ACP and GP. 39

3.6 Parse tree solution for (a) SODE1, (b) SODE2 and (c) SODE3. 40

3.7 Comparison between ACP and GP. 41

3.8 Parse tree solution for (a) PDE1, (b) PDE2, (c) PDE3, (d) PDE4, (e) PDE5

and (f) PDE6. 43

3.9 Comparison between ACP and GP. 45

3.10 Parse tree solution for (a)SPDE1, (b)SPDE2. 46

4.1 Candidate solutions for k11(t) by ACP for various generations and com-

parison with the exact solution. 50

4.2 Candidate solutions for k12(t) by ACP for various generations and com-

parison with the exact solution. 51

4.3 Parse tree for k11 (t) . 52

xi

4.4 Parse tree for k12 (t) . 53

4.5 Parse tree for k11 (t) . 55

4.6 Candidate solutions for k11(t) by ACP for various generations and com-

parison with the exact solution. 56

4.7 Parse tree for k11 (t) . 60

4.8 Candidate solutions according to generation for k11(t) by ACP and com-

parison with the exact solution. 60

4.9 Parse tree for k12 (t) . 61

4.10 Candidate solutions according to generation for k12(t) by ACP and com-

parison with the exact solution. 62

4.11 Candidate solutions for k11(t) by ACP for various generations and com-

parison with the exact solution. 65

4.12 Candidate solutions according to generations for k12(t) by ACP and com-

parison with the exact solution. 65

4.13 Parse tree for k11 (t) . 66

4.14 Parse tree for k12 (t) . 66

4.15 Candidate solutions for T (t) . 72

4.16 Candidate solutions for V (t) . 73

4.17 Tours of ant and its parse tree for T(t). 74

4.18 Tours of ant and its parse tree for V(t). 74

4.19 Candidate solutions . 79

4.20 Tours of ant and its parse tree. 80

5.1 Simulink Model. 83

5.2 Simulink Model . 86

5.3 Simulink Model . 93

xii

LIST OF TABLES

1.1 Power of terminal symbols and functions. 17

3.1 Expressions generated for 6 nodes. 31

3.2 Pheromone values depicted in each edge. 32

3.3 List of the most favorable edges . 33

3.4 Possible solutions. 34

3.5 Results for linear ODEs using ACP . 37

3.6 Results for non-linear ODEs using ACP. 40

3.7 Results for systems of ODEs using ACP 41

3.8 Results for PDEs using ACP . 44

3.9 Results for PDEs using ACP . 46

4.1 Numerical solutions for k11(t) and k12(t) when R=0. 52

4.2 Numerical solutions for k11(t) when R=1. 55

4.3 Numerical solutions for k11(t) and k12(t) when R = 0. 61

4.4 Results obtained by ACP, RK4-method and the exact solutions. 67

4.5 Comparison results for k11 (t) and k12 (t) between ACP and GP. 67

4.6 The parameters and their units used in the HIV immunology model 68

4.7 Results comparison between ACP and exact solutions. 71

4.8 Comparison results for T (t) and V (t) between the ACP and GP. 71

4.9 Results comparison between the ACP and exact solutions. 77

4.10 Comparison results for k11(t) between the ACP and GP. 78

5.1 T-S Fuzzy Model Implication . 82

5.2 Solutions of MRDE. 84

5.3 T-S fuzzy model implication . 85

5.4 Solutions for MRDE . 87

xiii

5.5 T-S fuzzy model implication: Rule 1 - Rule 8. 90

5.6 T-S fuzzy model implication: Rule 9 - Rule 16. 91

5.7 Solutions for ẋ1 (t)and ẋ3 (t) . 92

5.8 Solutions for k11(t) . 92

xiv

LIST OF ABBREVIATIONS

Name Description

MRDE Matrix Riccati Differential Equation

ACP Ant Colony Programming

ODE Ordinary Differential Equation

NLODE Nonlinear Ordinary Differential Equation

FDE Fuzzy Differential Equation

PDE Partial Differential Equation

T-S Takagi-Sugeno

LQ Linear Quadratic

LQR Linear Quadratic Regulator

TSP Travelling Salesman Problem

ACO Ant Colony Optimization

MMAS Max-Min Ant System

xv

LIST OF NOTATIONS AND SYMBOLS

Symbol Meaning

R the set of real number

R+ the set of positive real numbers

Rm×n the set of m x n real matrices

A (Capital Letters) system matrix with constant entries, subscripts also used

AT transpose of a matrix A

∥x∥ norm of an element x in a normed space

* symmetric block in one symmetric matrix

I identity matrix with appropriate dimension

E(·) the mathematical Expectation

S = {1, 2, · · · , s} finite state space

x(t) and y(t) state vectors

τ(t) time-varying delay

xvi

CHAPTER 1

INTRODUCTION

This work reports the theoretical investigation of solving the Matrix Riccati Differential

Equation (MRDE) by using a modified Ant Colony Programming (ACP) algorithm and

we also studied the MRDE using the Simulink. This modified ACP is unique and different

from the other proposed ant colony methods. The characteristics of these modified ACP

will be described further in this thesis.

1.0.1 General Introduction

Differential equations are widely used to derive and model physical phenomena. Informa-

tion describing these phenomena is retrieved or extracted from the differential equations

either analytically, numerically, or by using graphical tools and software. One of the most

intensely studied nonlinear differential equations is the MRDE, which is very significant

in optimal control problems, multivariable and large scale systems, scattering theory, es-

timation, detection, transportation, and radiative transfer (Jamshidi, 1980). A MRDE is a

quadratic Ordinary Differential Equation (ODE) of the form

X ′ = A21 −XA11 + A22X −XA12X, X(0) = X0,

with X is an m × n matrix-valued and Aij are continuous, matrix-valued where both are

functions of time t with matrix sizes to respect the size of X. The term "Riccati equa-

tion" refers to the matrix equations with an analogous quadratic term, which occurs in

both continuous and discrete-time linear-quadratic-Gaussian control. Essentially, solving

MRDE for state space representation of a dynamical system is a central issue in optimal

control theory. The difficulty to get the solution from this equation can be viewed from

two points: the nonlinear and the matrix form.

1

Process

Closed-Loop
Optimal Control

u*(t)

x*(t)

Start

Figure 1.1: Closed-Loop Optimal Control System

1.1 Optimal control theory

The optimal control theory has been widely used in the field of science, engineering, fi-

nance and economics. Its objective is to design a control system that can determine the

best control function for a dynamical system to minimize the performance index. An op-

timal control system consists of a set of differential equations which describe the paths of

the control variables that minimize the cost function. There are two main approaches used

in the optimal control problem: the dynamic programming and the variational approach.

The dynamic programming approach is based on the principle of optimality that gives

a closed-loop solution, which is depicted in Figure 1.1, resulting in a global search of

the optimal controls. This approach has introduced a vital reduction in the computational

time. Furthermore, a continuous approach of the principle of optimality may be presented,

which results in the solution of the partial differential Hamilton-Jacobi-Bellman equation

(Bellman, 1957).

The variational approach uses the Pontryagins minimum principle (Boltyanskii et al.,

1956), which is a generalization of the Euler-Lagrange approach. However, the variational

approach is an open-loop optimal control, which is depicted in Figure 1.2, and gives the

optimal values for specific initial conditions.

2

Process
Open-Loop

Optimal Control

u*(t) x*(t)

Figure 1.2: Open-Loop Optimal Control System

In the following, the optimal control problem is illustrated. Consider a system,

ẋ = f(t, x(t), u(t)), x(t0) = x0,

where x ∈ Rn is the state, u(t) is the control function and form the set of admissible

controls u(t) ∈ U, for all t ∈ T. The optimal control problem is to find a control function

u(t) that steers the system from an initial state x(0) = x0 to a target state and minimizes

the performance criterion,

J = ϕ(x(tf)) +
´ tf
0

L(t, x(t), u(t))dt, (1.1)

where ϕ(x(tf)) is the terminal cost, L(t, x(t), u(t)) is the running cost and tf refers as the

terminal time which is either fixed or free. If the solution for the above problem can be

found in the form

u(t) = u(t, x(t)),

then the control exists and it is called the optimal control law. In eq.(1.1), the terminal

cost function is associated with error in the terminal state time tf and L penalizes for

transient state errors and control effort.

1.2 Pontryagin’s minimum principle

The Pontryagin’s minimum principle (PMP) was formulated by Pontryagin and his co-

workers (Boltyanskii et al., 1956). This approach can be implemented only to determin-

istic problems and gives similar solutions as dynamic programming. The PMP approach

also has some advantages and disadvantages. It can be used in cases where the dynamic

programming approach fails due to lack of smoothness of the optimal performance cri-

terion. It gives optimality conditions that in general are easier to verify than solving the

3

partial differential equation as in the dynamic programming approach. The optimal con-

trol can be derived by using the PMP (necessary conditions) or by solving the Hamilton

Jacobi Bellman equation (sufficient condition) .

1.3 Linear optimal control

The linear optimal control is a special sort of optimal control where the plant is assumed

linear while the controller that generates the optimal control, is constrained to be lin-

ear too. Linear controllers are obtained by working with quadratic performance indices.

These approach are called as Linear-Quadratic (LQ) methods.

Advantages of linear optimal control:

1. Finding solutions for very difficult optimal control problems.

2. The linear optimal control approach can be applied into small fractions or signal

operation of nonlinear systems.

3. The computational procedures required for linear optimal design may often be

implemented to nonlinear optimal problems.

4. Linear optimal control provides a framework for the unified treatment of the control

problems studied via classical methods. At the same time, it vastly extends the class of

systems for which control designs may be achieved.

1.3.1 Linear quadratic regulator control

Linear quadratic regulator/control (LQR) is a basic method frequently used for designing

controllers for linear (and often nonlinear) dynamical systems. It always refer to a prob-

lem where a dynamical system, which is described by a set of linear differential equations,

is to be controlled by the quadratic cost function. The quadratic performance index to be

minimized is,

J = 1
2
xT (tf)Sx(tf) +

1
2

´ tf
t0
[xT (t)Qx(t) + uT (t)Ru(t)]dt,

and the running cost and the terminal cost functions can be expressed as quadratic equa-

tions:

L = 1
2
(xT (t)Qx(t) + uT (t)Ru(t)) = 1

2

[
xT (t) uT (t)

] Q 0

0 R

 x(t)

u(t)

,

4

ϕ(x(tf)) =
1
2
xT (tf)Sxϕ(tf).

The three weighting matrices Q, R and S are symmetric, with Q and S positive semidefi-

nite and R positive definite. Then, the LQR problem is to minimize the quadratic continuous-

time cost function subject to the linear first-order dynamic constraints:

ẋ = A(t)x(t) +B(t)u(t), x(t0) = x0.

In the finite-horizon case, the matrices are restricted in that Q and R are positive semi-

definite and positive definite, respectively. In the infinite-horizon case, however, the ma-

trices Q and R are not only positive-semidefinite and positive-definite, respectively, but

are also constant. These additional restrictions on Q and R in the infinite-horizon case

are enforced to ensure that the cost functional remains positive. Furthermore, in order to

ensure that the cost function is bounded, the additional restriction is imposed such that

the pair (A,B) is controllable. Note that the LQ or LQR cost functional can be thought of

physically as attempting to minimize the control energy (measured as a quadratic form).

1.3.2 Infinite-horizon continuous-time linear quadratic regulator

The infinite horizon continuous time LQR is a specific LQR problem, where all the matri-

ces (A, B, Q and R) are positive definite. To be more specific, the matrices Q and R, are

positive-semidefinite and positive definite, respectively. Furthermore they are also con-

stant. This is to ensure that the cost functional remains positive. Since this is the infinite

time horizon case, the terminal cost is negligible. The initial time is set from zero and the

terminal time tf is taken as tf →∞. Therefore the infinite horizon continuous time LQR

problem is to minimize the cost function given as:

J = 1
2

´∞
0
[xT (t)Qx(t) + uT (t)Ru(t)]dt,

with subject to the linear time invariant first-order dynamic constraints:

ẋ = A(t)x(t) +B(t)u(t), x(t0) = x0.

In order to ensure that the cost function is bounded, the matrices A and B must be con-

trollable. In the optimal control theory, the feedback control law is given as

u(t) = −K(t)x(t),

and the control gain K(t) is obtained as

5

K(t) = R−1BTP (t),

where P (t) is obtained by solving the continuous time algebraic Riccati equation (ARE)

ATP + PA− PBR−1BTP +Q = 0.

1.3.3 Finite-horizon continuous-time linear quadratic regulator

For the finite horizon problem, the system is described on t ∈ [t0, t1]. The matrices Q and

R are strictly positive definite with a quadratic cost function given as

J =
1

2
xT (tf)Sx(tf) +

1

2

ˆ tf

t0

[xT (t)Qx(t) + uT (t)Ru(t)]dt. (1.2)

The formula for the feedback control law that minimizes the cost function is similar to

the infinite-horizon case except that P can be obtained by solving the continuous-time

Riccati differential equation:

Ṗ (t) = −ATP − PA+ PBR−1BTP −Q.

There are a few first order conditions that have to be followed for Jmin which are given

below. The state equation:

ẋ(t) = A(t)x(t) +B(t)u(t);

Co-state equation:

−λ̇ = Qx(t) + AT (t)λ;

Stationary equation:

0 = Ru(t) +BT (t)λ.

1.4 Fuzzy systems

Fuzzy Logic was introduced by Lofti A. Zadeh (Zadeh, 1965) and has been used for

human knowledge based on decision making and dealing with reasoning that is approx-

imate rather than fixed. Fuzzy logic may produce truth values ranging between 0 and 1

compared to the traditional binary numbers. It has emerged as a profitable tool for the

controlling and steering of systems with uncertainties and complex industrial processes,

as well as for household and entertainment electronics.

6

The complexity of the biological and engineering world which are inherently filled

with uncertainties and nonlinear systems, has opened its door to the world of fuzzy logic.

Studies have shown that fuzzy logic to be the most suitable tools to represent complicated

system (Leite et al., 2011; Cao et al., 2011). It all starts with a fuzzy logic which is

a form of many-valued logic and deals with reasoning that is approximate rather than

fixed and exact. Normally, a fuzzy system consists of linguistic IF-THEN rules that have

fuzzy antecedent and consequent parts. It is a static nonlinear mapping from the input

to the output space. These inputs and outputs data are crisp real numbers and not fuzzy

sets. Based on these IF-THEN rules, a fuzzy inference system has been developed and its

block diagram is presented in Figure 1.3.

The fuzzification block helps to convert the crisp inputs to fuzzy sets and then the

inference mechanism uses the fuzzy rules in the rule base to produce fuzzy conclusions

or fuzzy aggregations. Finally, the defuzzification block changes these fuzzy conclusions

into the crisp outputs. The fuzzy system with singleton fuzzifier, product inference engine,

center average defuzzifier and Gaussian membership functions is called as standard fuzzy

system (Oysal et al., 2006; Wang, 1998). The main advantages of using fuzzy systems for

control and modeling applications are (i) to avoid the need for rigorous crisp mathemat-

ical modeling and to be useful for uncertain or approximate reasoning, especially for the

system with a mathematical model that is difficult to derive and (ii) to allow fuzzy logic

to make decision with the estimated values under incomplete or uncertain information.

Fuzzy controllers are rule-based nonlinear controllers. Therefore, their main applica-

tion should be the control of nonlinear systems. However, since linear systems are good

approximations of nonlinear systems around the operating points, it is of interest to study

fuzzy control of linear systems. Additionally, fuzzy controllers due to their nonlinear na-

ture may be more robust than linear controllers even if the plant is linear. Furthermore,

fuzzy controllers designed for linear systems may be used as initial controllers for non-

linear adaptive fuzzy control systems where on-line tuning is employed to improve the

controller performance. Therefore, systematic fuzzy controllers for linear systems is of

theoretical and practical interest. Stability and optimality are the most important require-

ments in any control system. Stable fuzzy control of linear systems has been studied by

a number of researchers (Wang, 1998; Wu et al., 2005; Jenkins & Passino, 1999). It is

well-known that the fuzzy controllers are universal nonlinear controllers due to universal

7

u

Crisp Inputs Crisp Outputs

Rule Base

u

u

Fuzzified Inputs Fuzzified conclusions

Inference
mechanism

n

2

1
y

1

y
2

ny

Figure 1.3: Fuzzy Inference System

nonlinear approximated models. All these studies are preliminary in nature and deeper

studies can be undertaken. For optimality, problems in the field of optimal fuzzy control

is still open for investigation.

1.4.1 Fuzzy control system

Conventional mathematics and control theory exclude vagueness and contradictory con-

ditions. As a consequence, conventional control systems theory does not attempt to study

any formulation, analysis and control of what has been called fuzzy systems, which may

be vague, incomplete, linguistically described, or even inconsistent. Fuzzy set theory and

fuzzy logic play a central role in the investigation of controlling such systems. The main

contribution of fuzzy control theory, a new alternative and branch of control systems the-

ory that uses fuzzy logic, is its ability to handle many practical problems that cannot be

adequately managed by conventional control techniques. The aim is to extend the existing

successful conventional control systems techniques and methods as much as possible and

to develop new and special-purposed ones, for a much larger class of complex, compli-

cated and ill-modeled systems-fuzzy systems. Fuzzy models can be static or dynamic.

The widely used fuzzy models are rule based, in which the relationship between variables

are represented by means of fuzzy IF-THEN rules. Rule-based fuzzy systems include

Mamdani models (or linguistic fuzzy model), fuzzy relation models and T-S fuzzy model.

T-S fuzzy systems are popular and well used tools in recent years.

8

Figure 1.4: Takagi-Sugeno Fuzzy Systems

1.4.1.1 Takagi-Sugeno fuzzy system

The fuzzy inference system was suggested by Takagi and Sugeno (Takagi & Sugeno,

1985). A general T-S fuzzy model employs an affine fuzzy model with a constant term

in the consequence. It is known that smooth nonlinear dynamic systems can be approx-

imated by affine T-S fuzzy models (Cao et al., 1996; Ying, 1998). Most recent develop-

ments are based on T-S models with linear rule consequences. The main feature of T-S

fuzzy models is to represent the nonlinear dynamics by simple (usually linear) models

according to the so-called fuzzy rules and then to blend all the simple models into an

overall single model through nonlinear fuzzy membership functions. Each simple model

is called a local model or a sub-model. The output of the overall fuzzy model is calcu-

lated as a gradual activation of the local models by using proper defuzzification schemes.

It has been proved that T-S fuzzy models can approximate any smooth nonlinear dynamic

systems. The schematic representation for the T-S fuzzy systems is depicted in Figure

1.4. This enables a programmer to automate the inspection of the results and give more

insight into the relationship between the changing parameters and the results.

9

1.5 Fuzzy optimal control problem

There are two types of fuzzy rules: Mamdani fuzzy rules and T-S fuzzy rules. The one

that we used here in our present work is the T-S fuzzy rules. In T-S fuzzy rules, functions

of input variables are used as the rule consequent as in the following form:

If y(n) is M1 AND y (n− 1) is M2 AND y (n− 2) is M3 AND u (n) is M4 AND

u (n− 1) is M5 THEN y (n+ 1) = F (y (n) , y (n− 1) , y (n− 2) , u (n) , u (n− 1)), where

F (·) is an arbitrary function. To construct a T-S fuzy controller, we need a T-S fuzzy

model that can be derived from a nonlinear system using sector nonlinearity approach

(Kawamoto et al., 1993). Given the singular non-linear system as

Eẋ(t) = A (x)x (t) +Bu (t) , x (0) = x0, (1.3)

where the matrix E is a singular matrix, x(t) ∈ Rn is a generalized state space vector and

u(t) ∈ Rm is a control variable. A ∈ Rn×n, B ∈ Rn×m are coefficient matrices associated

with x(t) and u(t) respectively, x0 is given initial state vector and m ≤ n. In order to

derive the T-S fuzzy model from the nonlinear system, the first step is to determine the

membership functions. For simplicity, the matrix A(x) is taken as

A(x) =

 0 1

x1 (t) x2 (t)

and the fuzzy variables, x1 and x2 are also denoted as z1 and z2, respectively. By calcu-

lating the maximum and the minimum values of z1 and z2, the membership functions can

be obtained, thus x1 and x2 can be represented for the membership functions M1, M2, N1

and N2 as follows:

z1 (t) = x1 (t) = M1 (z1 (t)) ·max (z1 (t)) +M2 (z1 (t)) ·min (z1 (t)),

z2 (t) = x2 (t) = N1 (z2 (t)) ·max (z2 (t)) +N2 (z2 (t)) ·min (z2 (t)).

Since M1, M2, N1 and N2 are fuzzy sets, their values can be computed by using the

following relations

M1 (z1 (t)) +M2 (z1 (t)) = 1,

10

0

1

0

1

Negative

 min z
2
(t) max z

2
(t)max z

1
(t)

N
1
(z

2
(t))N

2
(z

2
(t))M

1
(z

1
(t))

M
2
(z

1
(t))

Positive Big

min z
1
(t)

Small

Figure 1.5: Membership function of z1 (t) and z2 (t)

N1 (z2 (t)) +N2 (z2 (t)) = 1.

These membership functions are named as Small, Big, Positive and Negative, respectively

and from this, the nonlinear systems can be linearized into the ith rule of continuous T-S

fuzzy model. Figure 1.5 depicts the membership functions for z1 (t) and z2 (t).

Consider the singular non-linear system (eq. (1.3)) that can be expressed in the form of

T-S fuzzy system: Model Rule i: If z1 (t) is Mi1 and z2 (t) is Mi2...zp (t) is Mip, then

Eiẋ(t) = Ai (x)x (t) + Biu (t) , x (0) = x0, i = 1, 2, 3, 4.,

where Mij is the fuzzy set rule of the fuzzy model, x (t) ∈ R2 is a generalized state

space vector, u (t) ∈ R1 is a control variable and it takes value in some Euclidean space,

A ∈ R2×2, B ∈ R2×1are known as coeffiecient matrices associated with x (t) and u (t),

respectively, x0 is a given initial state vector. Therefore, the nonlinear system is modeled

by the following fuzzy rules where the subsystems are defined as

A1 =

 0 1

max (z1 (t)) max (z2 (t))

 A2 =

 0 1

max (z1 (t)) min (z2 (t))

11

A3 =

 0 1

min (z1 (t)) min (z2 (t))

 A4 =

 0 1

min (z1 (t)) max (z2 (t))

.

Now from the defuzzification process the Eiẋ can be computed as

Eiẋ(t) =
∑4

i=1 hi (z (t))Aix (t) +Biu (t) ,

where

hi (z (t)) =
∏2

j=1 M
i
j(zj(t))∑4

i=1(
∏2

j=1 M
i
j(zj(t)))

for all t. To minimize both state and control signals of the feedback control system, a

quadratic performance index is minimized:

J = 1
2
[xT (t)Qx(t) + uT (t)Ru(t) + 2uT (t)Hx (t)]dt

where the superscript T represents the transpose operator, S ∈ R2×2 and Q ∈ R2×2

are symmetric and positive definite (or semidefinite) weighting matrices for x(t), R ∈

R1×1 is a symmetric and positive definite weighting matrix for u(t). H ∈ R1×2 is a

coefficient matrix. Based on the standard procedure, J can be minimized by minimizing

the Hamiltonian equation

H (x (t) , u (t) , λ (t)) =
1

2
xTx(t) +

1

2
uT (t)Ru(t) + uT (t)Hx (t)

+λ (t) [Aix (t) + Biu (t)] . (1.4)

Using calculations of variations and Pontryagins maximum principle, a linear state feed-

back control law

u (t) = −R−1(BT
i λ (t) +Hx (t))

can be obtained from eq. (1.4) and

λ (t) = Ki (t)Eix (t) ,

where Ki (t) ∈ R2×2 is a symmetric matrix and it is the solution of the relative MRDE

for the singular system.

ET
i K̇i (t)Ei + ET

i Ki (t)Ai (t) + AT
i Ki (t)Ei

12

+Q− (HT + ET
i Ki (t)Bi)R

−1(H +BT
i Ki(t)Ei) = 0

13

1.6 Automatic programming

Automatic programming is a new search technique to find programs that solve a problem.

This area of research is focusing on generating computer programs automatically.

Despite the success of heuristic optimisation and machine learning algorithms in solv-

ing real-world computational problems, their application to newly encountered problems,

or even new instances of known problems, remains difficult; not only for practitioners or

scientists and engineers in other areas, but also for experienced researchers in the field.

The difficulties arise mainly from the significant range of algorithm design choices in-

volved, and the lack of guidance as to how to proceed when choosing or combining them.

This motivates the renewed and growing research interest in techniques for automating

the design of algorithms in optimisation, machine learning and other areas of computer

science, in order to remove or reduce the role of the human expert in the design process.

Consider the area of evolutionary computation, for example. Initially, researchers con-

centrated on optimizing algorithm parameters automatically, which gives rise to adaptive

and self-adaptive parameter control methods (Back, 1998). With time, the definition of

parameters was broadened to include not only continuous variables, such as crossover and

mutation rates, but also include categorical parameters, i.e., evolutionary algorithms com-

ponents, such as the selection mechanism and crossover and mutation operators (Kramer,

2010). Later, evolutionary algorithms were first used in the meta-level, i.e., to generate

a complete evolutionary algorithm, as showed in the works of Oltean (Oltean, 2005). In

the area of machine learning, automated algorithm design appeared as a natural extension

of the first works focusing on automated algorithm selection. The algorithm selection

problem was formally defined by John Rice (Rice, 1976).

Koza was the first to propose Genetic Programming (GP) (Koza, 1992, 1994) which

is the common example of automatic programming. Koza mentioned the five preparatory

steps which should be fulfilled before searching for a program. The first step is selection

of terminal symbols, then followed by the choice of functions, next the fitness function

specification, later the selection of certain parameters for controlling the run and finally

defining the termination criteria. Many of these principles used in GP are almost simi-

lar and can be adapted to ACP. Therefore Boryczkova and co-workers (Boryczka, 2002;

Boryczka & Czech, 2002; Boryczka et al., 2003), applied ACP as an alternative method

14

for automatic programming with two different techniques: the expression and the pro-

gram approach. In the expression approach, the quest for an approximating function is

constructed in the form of an arithmetic expression. These expressions are in prefix no-

tation. In the second technique, the expression is built from a sequence of assignment

instructions which evaluates the function. Both techniques are based on a space graph

which consists of the variables, functions and constant which is represented by the nodes,

except that in the program approach each of these assignment instructions is located on

a node. Although both approaches had showed some promising results but they cannot

generate more general types of program. Other ant colony optimization (ACO) algorithms

that have been extended and used for solving symbolic regression problems, are ant pro-

gramming (AP) (Roux & Fonlupt, 2002) , generalized ant programming(GAP) (Keber &

Schuster, 2002) and the dynamic ant programming (DAP) (Shirakawa et al., 2011). In the

next section we will discuss briefly some of the well known and improved version of the

ACO method.

1.7 Ant colony programming

The ant colony programming (ACP) is a stochastic approach which is implemented on

a space graph. A space graph consists of the variables, functions and constants which

are represented by the nodes. Functions are represented in terms of arithmetic operators,

operands as well as Boolean functions. The set of functions defining a given problem is

called a function set F and the collection of variables and constants to be used are known

as the terminal set T .

The ACP can be implemented to generate a set of arithmetic expressions for solving

ordinary differential equations. If the number of expressions satisfies the fitness function,

then it will become the optimal solution. The four basic steps are listed below which are

vital for the searching process based on Boryczka et al. (Boryczka & Wiezorek, 2003):

• Choice of terminals and functions

• Construction of graph

• Defining fitness function

• Defining terminal criteria

15

In the first colony, the digital ants will move randomly on the connected graph G(V,E)

where V indicates the Functions and Terminals whereas the set E represents the edges

which connect the vertices. Normally, each ant is being put on a randomly chosen starting

node and the pheromone value are distributed equally at all the edges. Each of these ants

will move from the node r to the next node s in the graph at time t, by following the

probability law (Boryczka, 2005),

ρrs(t) =
τrs(t) · [γs]β∑

i∈Jk
r
[τri(t)] · [γi]β

, (1.5)

where parameter β controls the relative weight of the pheromone trail and visibility while

Jk
r is the set of unvisited nodes. The γs is given as γs =

(
1

(2+πs)

)d

, where d is the current

length of the arithmetic expression and πs is the power of symbols which can be either a

terminal symbol or a function and the power of symbols are given in Table 1.1.

The ant has completed its journey if it reaches the terminal node and based on the idea

proposed in the MMAS, only a single ant which found the best solution, is used for the

global update of pheromone trail in each generation. The pheromone trail update rule is

given by:

τij(t+ g) ← (1− ρ) .τij(t) +△τ bestij

△τ bestij =

1

Lbest
, if ant best uses curve ij in its tour

0, otherwise,

where τij shows the amount of pheromone trail on edge (i,j), g indicates the number

of generation, L is the length of the optimal tour found on the edges (i, j), Lbest is the

best length of the optimal tour found on the edges (i, j) and (1− ρ), ρ ∈ (0, 1] is the

pheromone decay coefficient (ρ > 0.5 produces a good solution and this is actually refer-

ring to the concentration of pheromone on edge within the time t).

16

.

Table 1.1: Power of terminal symbols and functions.
Terminal symbol or function Power

Constant, variable -1
Functions,) 0
+, -, *, /, (1

1.7.1 Terminals and Functions

Typically in a heuristic search technique, the space of graphs consists the nodes which

represent functions, variables and constants. Functions are defined mathematically in

terms of arithmetic operators, operands and boolean functions. The set of functions defin-

ing a given problem is called a function set and the collection of variables and constants

to be used are known as the terminal set. The symbol ti ∈ T is a constant or any variable

where T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, t}. Every function fi ∈ F , can be evaluated as an

arithmetic operator {+, − , ∗, /}, arithmetic function {sin, cos, exp, log}, special symbol

{(,)} and an arbitrarily defined function appropriate to the problem under consideration.

The terminal symbols and functions have the power to express the solution to a problem

based on the composition of functions and terminals specified. The terminal symbol or

functions are being presented by using the power (arity) and this is given in Table 1.1

(Boryczka, 2005)

1.7.2 Construction of graph

In ACP approach, the search space consists of a graph with l nodes. An example of such

a graph is given in Figure 1.6. Each node represents either a function or a terminal. The

edge which connects the nodes is weighted by pheromone. This graph is generated by a

randomized process.

1.7.3 Fitness function

A fitness function is an objective type of function which is used for determining how close

the suggested solutions with the objective goal. The motivation is to obtain the optimal

solution from all the available solutions based on the given problem.

There are three selective conditions under this fitness function:

1. If Er =
[
dy
dt
− g (t, y)

]2
= 0,

17

+

e

/

0

1

*

t

-

2

3

Figure 1.6: Graph with Functions and Terminals

then there will be no global pheromone update, if the exact solution is obtained for the

ODE problem and the program will be terminated.

2. If Er =
[
dy
dt
− g (t, y)

]2 → 0,

then a single ant manage to find a solution which is close to the exact answer. This infor-

mation will be used to update the whole table of the pheromone values and the iteration

for the next colony will fully utilise this piece of information in order to get to the optimal

solution.

3. If Er =
[
dy
dt
− g (t, y)

]2 ̸= 0,

then it is meaning that if not a single ant managed to find any solution which is nearer

to the exact answer. Therefore, for the next colony, the dynamical pheromone value will

stick to the previous one. Thus, there will be no global update.

The aim of the pheromone value global update rule is to increase the pheromone values on

the solution path. This reduces the size of the search within the region in order to find high

quality solution with reasonable computation time. On the updated graph, the consecutive

cycles of the ant colony algorithm are carried out by sending the ants through the best

tour of the previous generation. This procedure is repeated until the fitness function Er,

18

becomes zero.

1.7.4 Applications of the Ant Colony Programming

1.7.4.1 Travelling Salesman Problem

The ACO Algorithm has been applied to a broad range of hard combinatorial problems.

One of them is what we called the classic Traveling Salesman Problem (TSP). The TSP

sets up a condition where a travelling salesman is needed to travel through a number of

cities. The objective is the salesman must travel these cities (visiting each city exactly

once) and make the total travelling distance as minimal as possible. This problem is

one of the most widely studied problems in combinatorial optimization. The problem is

easy to state, but hard to solve. The difficulty becomes apparent when one considers the

number of possible tours - an astronomical figure even for a relatively small number of

cities. For a symmetric problem with n cities there are (n − 1)!/2 possible tours, which

grows exponentially with n. If n is 20, there are more than 1018 tours. The Ant System

was the first ACO algorithm proposed to tackle this problem (Dorigo, 1992; Dorigo et al.,

1996). The TSP itself, has a large range of applications in real time problems although

some of them seemingly have nothing to do with traveling routes. Its versatility is listed

in the following examples such as:

• Transportation routing

• Route optimizization in robotic

• Chronological sequencing

• Maximum efficiency or minimum cost in process allocation

1.8 Simulink

The Simulink tool is a companion to MATLAB software. This add-on package can be

used to create a block of diagrams which can be translated into a system of ODE. By

using this, systems of ODE can be solved easily by using Runge-Kutta 4th and 5th order.

One of the main advantages of Simulink is the ability to model a nonlinear dynamical

system. Another advantage of Simulink is the ability to take on initial conditions.

Procedure for simulink solution

19

+

+

+

+

1

1/s

-1

Integrator

Gain

-1

1

1/s

Integrator1

Constant1

Gain1
Scope

Constant

Figure 1.7: Simulink

Step 1: Choose or select the required graphical block diagrams from the Simulink

Library.

Step 2: Connect the appropriate blocks.

Step 3: Set up the simulation parameters

Step 4: Run the Simulink

Example:

A Simulink model is constructed based on the following system of two differential

equations as shown in Figure 1.7

x′ (t) = −x (t) + 1, x (0) = −1

y′ (t) = −y (t) + 1, y (0) = 1

20

1.9 Motivating Examples

The design of a zero propellant maneouvre for the international space station As

a form of motivation, consider the design of a zero propellant maneouvre for the in-

ternational space station by means of control moment gyroscopes. The example work

was reported by Bhatt (Bhatt, 2007) and Bedrossian and co-workers (Bedrossian et al.,

2009). The original 90 and 180 degree maneouvres were computed using a pseudospec-

tral method. Implemented on the International Space Station on 5 November 2006 and

2 January 2007. Savings for NASA of around US$1.5m in propellant costs. The case

described below corresponds with a 90 degree maneovure lasting 7200 seconds and using

3 Control Momentum Gyroscopes (CMG’s). The problem is formulated as follows where

the vital factor here is to find qc(t) = [qc,1(t) qc,2(t) qc,3(t) qc,4(t)]
T , t ∈ [t0, tf] and the

scalar parameter γ in order to minimise,

J = 0.1γ +

ˆ tf

t0

||u (t) ||2dt,

subject to the dynamical equations:

q̇ (t) = 0.5T (q) (ω (t)− ω0 (q))

ω̇ (t) = J−1 (τ (q)− ω (t)× (Jω (t))− u (t))

ḣ (t) = u (t)− ω (t)× h (t),

where J is a 3 × 3 inertia matrix, q = [q1; q2; q3; q4]
T is the quaternion vector, ω is the

spacecraft angular rate relative to an inertial reference frame and expressed in the body

frame, h is the momentum, t0 = 0s, tf = 7200s. The path constraints:

||q (t) ||22 = ||qc (t) ||22 = 1

||h (t) ||22 ≤ γ

||ḣ (t) ||22 ≤ ḣ2max.

The parameter bounds : 0 ≤ γ ≤ h2
max whereas the boundary conditions is given as

q(t0) = q̄0 ω(t0) = ω0(q̄0) h(t0) = h̄0

q(tf) = q̄f ω(tf) = ω0(q̄f) h(tf) = h̄f .

21

T (q)is given as :

T (q) =

−q2 −q3 −q4

q1 −q4 q3

q4 q1 −q2

−q3 q2 q1

,

where as u (t) is the control force.

The atmospheric re-entry problem The precise problem under consideration is the

following. We call atmospheric phase the period of time in which the altitude of the

engine is between around 20 and 120 kilometers. It is indeed in this range that, in the

absence of any motor thrust, the aerodynamic forces (friction with the atmosphere) can

be employed to adequately control the space shuttle to as to steer it to a desired final point

and meanwhile satisfying the state constraints in particular on the thermal flux. Thus,

during this phase the shuttle can be considered as a glider, only submitted to the gravity

force and the aerodynamic forces. The control is the bank angle, and the minimization

criterion under consideration is the total thermal flux. The model of the control system is
dr
dt

= υsinγ

dυ
dt

= −gsinγ − 1
2
ρSCD

m
υ2 +Ω2r cosL (sinγcosL− cosγ sinL cosχ)

dγ
dt

= cosγ
(−g

υ
+ υ

r

)
+ 1

2
ρSCL

m
υcosµ+ 2ΩcosL sinχ

+Ω2 r
υ
cosL (cos γ cosL+ sinγ sinL cosχ)

dL
dt

= υ
r
cosγ cosχ

dl
dt
= υ

r
cosγ sinχ

cosL

dχ
dt

= 1
2
ρSCL

m
υ

cosγ
sinµ+ υ

r
cosγ tanL sinχ+ 2Ω (sinL− tanγ cosL cosχ)

+Ω2 r
υ
sinL cosL sinχ

cosγ
,

where r shows the distance between the center of gravity of the shuttle to the center of

the Earth, υ refers to the modulus of its relative velocity, γ is the flight angle (or path

inclination, that is, the angle of the velocity vector with respect to an horizontal plane), L

is the latitude, l is the longitude, and χ is the azimuth (angle between the projection of the

velocity vector onto the local horizontal plane measured with respect to the axis South-

North of the planet). The gravitational force appears with a usual model g(r) = µ0

r2
,

where µ0 is the gravitational constant. The aerodynamic forces consist of the drag force,

with the modulus 0.5ρSCDυ
2, which is opposite to the velocity vector, and of the lift

22

force, whose modulus is 0.5ρSCLυ
2, which is perpendicular to the velocity vector. Here,

ρ = ρ (r) = ρ0e
−βr is the air density, S is some positive coefficient (reference area)

featuring the engine, and CD and CL are, respectively, the drag and the lift coefficients;

they depend on the angle of attack and on the Mach number of the shuttle. The control

is the bank angle µ; it acts on the orientation of the lift force and thus its action may be

to make the shuttle turn left or right but also to act on the altitude. It is a scalar control

that is assumed to take values in [0, π]. The mass m of the engine is a constant along

this atmospheric phase since it is assumed that there is no thrust. Finally, Ω denotes the

angular rotation speed of the planet. In the above model, the terms linear in Ω represent

the Coriolis force, and the terms proportional to Ω2 are due to the centripetal force. The

optimal control problem under consideration is to steer the vehicle from initial conditions

to final conditions, in free final time, and moreover the system is submitted to three state

constraints:

• a constraint on the (instantaneous) thermal flux: φ = Cq
√
ρυ3 ≤ φmax ,

• a constraint on the normal acceleration: γn = γn0ρυ
2 ≤ γmax

n ,

• a constraint on the dynamic pressure: 0.5ρυ2 ≤ Pmax,

where Cq, φmax, γn0 , γmax
n0 and Pmax are positive constants. The minimization criterion

is the total thermal flux along the flight

J(µ) =
´ tf
0

Cq
√
ρυ3dt.

1.10 Organization of thesis

Besides this introduction chapter, the thesis is organized as follows :

Chapter 2 is concerned with the literature review of the previous work applied to

solve the differential equations and the MRDE.

Chapter 3 is dedicated for the description of the modified Ant Colony Programming

(ACP). The significance and the usage of this modified ACP approach for solving several

differential equations problems were discussed in this chapter.

Chapter 4 shows the implementation of the modified ACP for solving the MRDE as

well as some fuzzy modelling problems.

23

Chapter 5 shows the implementation of Simulink to solve the MRDE and some bio-

logical problems.

The final chapter concludes the thesis and provides future directions of the proposed

research work.

24

CHAPTER 2

LITERATURE REVIEW

2.1 Solving differential equations

With vast advancements in computer technology, a lot of different methods have been de-

veloped for solving ordinary differential equations (ODEs) and partial differential equa-

tions (PDEs). Among the methods that have been applied and used for solving these types

of equations are the Runge-Kutta, radial basis function (Fasshauer, 1999), genetic pro-

gramming (Burgess, 1999) and feedforward neural network (Lagaris et al., 1998). Some

of these methods compute solution in an array form which contains the value of the solu-

tion whereas others apply the basis functions to represent the exact solution and convert

the original problem into a system of algebraic equations. In the feedforward neural net-

work, the ODEs and PDEs depend on the function approximation capabilities. In order

to obtain the solution, the feedforward neural network is trained to minimize the suitable

error function, by employing the optimization techniques. Another alternative, is the ge-

netic programming (GP) method. It is an optimization process which was based on the

large number of possible solutions through genetic operations such as mutation, crossover

and replication. Tsoulos and Lagaris (Tsoulos & Lagaris, 2006) , used grammatical evo-

lution which is based on genetic programming to solve ordinary and partial differential

equations. They reported that their method can create trial solutions and seeks to mini-

mize an associated error. In most of the problems, the exact solution can be obtained but

there are cases when the solution cannot be expressed in an analytical form. When this

happens, the need to get an approximate answer with controlled level of accuracy will be

produced.

25

2.2 Solving the matrix Riccati differential equation

The importance of solving the matrix Riccati differential equations is vital in the optimal

control theory. It was reported that the stochastic linear quadratic regulator problems

can be well posed if solutions can be produced for the Riccati equation, thus an optimal

feedback control can be obtained (Chen et al., 1998). However, due to the presence

of complicated nonlinear terms in the Riccati equations , this made the problems more

difficult to be solved.

Since then, we have seen quite a number of non-traditional methods which try to solve

this MRDE with less calculus effort and computational time. These non-traditional meth-

ods were inspired from the collective behaviour of biological systems. Their approaches

which work based on to a certain degree of randoms were implemented for solving the

MRDEs. The neural networks have been implemented to control nonlinear systems (Chen

& Liu, 1994; Rovithakis & Christodoulou, 1994; Sadegh, 1993; Polycarpou, 1996). The

usage of this neural networks approach is vital since they can effectively extend adap-

tive control techniques to nonlinearly parameterized systems. Miller et. al (Miller et

al., 1990) were the first to show the use of neural networks for finding optimal control

laws by using the Hamiltonian-Jacobian-Bellman equation. Later, Parisini and Zoppoli

(Parisini & Zoppoli, 1998) utilized the neural networks for deriving the optimal control

laws for discrete-time stochastic nonlinear system. This was followed later by Balasub-

ramaniam and co-workers (2006, 2007a,b), where they were the first to implement the

neural networks for solving the MRDE for linear singular system. Samath and Selvaraju

(Abdul Samath & Selvaraju, 2010) incorporate the neural networks for solving the MRDE

in nonlinear singular systems. They reported that the neuro computing approach yields

solution of MRDE significantly faster than the Runge-Kutta method. The lengthy com-

putational time for finding optimal control is avoided by using neuro optimal controller.

Another well known non-traditional approach that has been used to solve the MRDE

is the genetic programming (GP) method. It was proved that GP obtained faster conver-

gence when they applied the GP for finding the numerical solution of MRDE for singular

systems (Vincent Antony Kumar & Balasubramaniam, 2007). Furthermore, they also

extended their work to the nonlinear singular systems. Others such as Kumaresan and

Ratnavelu (2014) reported their work on optimal control stochastic linear quadratic sin-

gular neuro Takagi-Sugeno (T-S) fuzzy system. They also applied the GP to compute the

26

solution for the MRDE. The theoretical group from India led by Balasubramaniam and

co-workers (Balasubramaniam & Kumar, 2009; Kumaresan & Balasubramaniam, 2010),

showed how they solved the MRDE using the neural networks and genetic programming.

Last but not least is the ant colony programming (ACP). The ACP has been used as an

engineering approach to the design and implement automatic software systems instead of

complex optimization problems. In 2009, Ast et al. (Ast et al., 2009) implemented a novel

Ant Colony Optimization (ACO) algorithm which they called as the Fuzzy ACO for the

automated design of optimal control policies for continuous-state dynamic systems. This

algorithm integrates the multi-agent optimization heuristic of ACO with a fuzzy partition-

ing of the state space of the system. Later, Kumaresan and co-workers (Kumaresan, 2010;

Kumaresan & Balasubramaniam, 2010; Kumaresan, 2012, 2011) reported quite a num-

ber of work, when they applied the ACP to solve the optimal control for stochastic linear

quadratic singular fuzzy system. In order to get the optimal control, the solution MRDE is

computed by solving the differential algebraic equation using a novel and nontraditional

ACP approach.

2.3 Solving the microbial growth

There are vast number of mathematical models that have been developed to predict mi-

crobial growth in food and culture media. These models are based on some basic math-

ematical models such as the logistic model and Gompertz model. In 1987, Gibson et

al. were the first to modify the logistic model to fit the bacterial growth. Similarly, he

proposed a modified Gompertz model for bacterial growth. The modified logistic and

Gompertz models fit bacterial growth, but the latter model gave better results (Gibson et

al., 1987, 1988). Although these modified models are practical, but they are mechani-

cally unacceptable. Some attempts have been made to develop more mechanistic growth

models. In this respect, Baranyi and Roberts (1994, 1995) developed the Baranyi model.

The Baranyi model (1994) is valid under dynamic environmental conditions and has be-

come one of the most commonly preferred growth models due to the fact that it has a

good fitting capability. It can also be applied for dynamic environmental conditions and

most of the model parameters are biologically interpretable. (Lopez et al., 2004; Pin et

al., 2002; Van Impe et al., 2005). Although clearly interpretable, this model, inherited

from the logistic type, fails in describing more complex yet more realistic situations (for

27

example the co-cultural growth and the growth in structured media). Therefore, Van Impe

et al. extended the Baranyi models by proposing two types of models: the S and P-type

(Van Impe et al., 2006). These models explicitly incorporates nutrient exhaustion and/or

metabolic waste product effects. Furthermore, these models can be extended in a natu-

ral way towards microbial interactions in co-cultures and microbial growth in structured

foods. All the models that we described above is called the primary models. The primary

models describe the change in bacterial count over time, under given environmental and

cultural conditions. Such models can generate information about microorganisms, such

as generation time, lag-time, exponential growth rate, and maximum population density,

also called kinetic parameters.

Secondary models refer to the response of one or more kinetic parameters estimated

from the primary model (e.g., lag time) to change in multi-environmental conditions (pH,

temperature, additives, etc.). Examples of this type of model include the model of Davey

(Davey, 1991), Artificial neural network(ANN) models (Garcia-Gimeno et al., 2002) etc.

Artificial neural networks can be included under what are known as Artificial Intelligence

models.

Tertiary models represent the applications of one or more secondary models to gener-

ate systems for providing predictions to nonmodelers, user-friendly software, and expert

systems (Adair & Briggs, 1993; Jones, 1993) that can be included under Artificial In-

telligence. There are several microbial modeling software packages currently available,

including the Food Spoilage Predictor (Neumeyer et al., 1997), Decision Support System

(Zwietering et al., 1992; Wijtzes et al., 1998), Seafood Spoilage Predictor (Dalgaard et al.,

2000), Chefcad software (Nicolai & Baerdemaeker, 1996), and Quality Risk Assessment

(Brown et al., 1998).

2.4 Solving the human immunodeficiency virus immunology model

An incurable disease caused by Human Immunodeficiency Virus (HIV), AIDS attacks and

destroys the human immune system. This leaves the patient defenseless against illnesses

that can lead to death. Scientists are trying very hard, in the search for an anti-HIV vac-

cine. Other efforts such as chemotherapies are aimed at killing or halting the pathogen, but

treatment which can boost the immune system can serve to help the body fight infection

on its own. New treatments focus more on reducing the viral population and improving

28

the immune response. This enlighten some new hope to the treatment of HIV infection,

and some researchers explored these strategies for such treatments using the optimal con-

trol techniques (Joshi, 2002; Zhou et al., 2014; Ghanbari & Farahi, 2014; Roshanfeki et

al., 2014). Others try to incorporate the fuzzy approach in order to control a nonlinear

dynamic model of the HIV immunology (Miguel et al., 2006; Zarei et al., 2012). Miguel

et al implemented the genetic fuzzy system approach for controlling a nonlinear dynamic

model of the HIV immunology. They set up to find Mamdani fuzzy controllers that are

capable of boosting the immune response while reducing the impact on the body because

of potentially toxic medications usage. Zarei et al. (2012) proposed a fuzzy mathematical

model of HIV dynamics where these three-dimensional FDEs are capable to describe the

ambiguous immune cells level and HIV viral load which are due to existing patients with

various strength of their immune system. They also utilized the fuzzy model and studied

a fuzzy optimal control problem minimizing both the viral load and drug cost.

29

CHAPTER 3

SOLUTION OF DIFFERENTIAL EQUATIONS USING MODIFIED ANT

COLONY PROGRAMMING

In this chapter, we will describe the development of the ant colony programming (ACP)

that have been incorporated with some new features that is not available in other ACP

methods. We will also discuss the algorithm as well as the computational details of the

present modified ACP. Furthermore, we show some examples where we implement the

proposed algorithm in order to obtain solutions for the differential equations problems.

3.1 Unique criteria of the modified ACP.

First, we included two new properties under the terminal symbols, which is the open

bracket ’(’ and the close bracket ’)’. The inclusion of this two new properties are vital

in order to differentiate with the use of multiplication symbol ’*’. In the work reported

by Kumaresan and co-workers (Kumaresan & Balasubramaniam, 2010), the ’*’ symbol

is used not only for representing multiply operations but also for showing the implemen-

tations of bracket in the expressions. For example the tour of an ant which generated

an expression such as e ∗ t + 1 ∗ + 5 actually represents e(t+1) + 5. If the number of

nodes are increased, the expression will expand and this will make our expression look

very complicated. Therefore the inclusion of these new properties is meant to simplify

the expression and to make it more readable and easier for the programming language to

evaluate the expression.

Second, the infix formation. The expression is generated by implementing the infix

formation and this is totally different from the algorithm used by the previous works.

Suppose that the algorithm starts with a fixed number of nodes, such as 6 nodes and

we fixed the first node starts from exp or e. The ants will move freely to the next node

30

Table 3.1: Expressions generated for 6 nodes.

ant node 1 node 2 node 3 node 4 node 5 node 6
ant 1 e ∗ t () 2
ant 2 e (t + 2)
ant 3 e 2 4) + t
ant 4 e) (∗ 5 5
ant 5 e (2 − + t
ant 6 e (4) + t

according to the probability law. Therefore a lot of possible expressions can be generated

from the ants as they are jumping from one node to another.

The implementation of infix form will help to evaluate the generated expression faster

by following the terms and conditions of the syntax used in the programming language.

For example, in Table 3.1 by initializing the value t = 0, expressions generated by ant 2

and ant 6 can be evaluated. Other expressions which do not follow the rules and syntax

set by the programming language will be ignored since these expressions cannot be eval-

uated. Therefore the program will skip these unwanted expressions and jump to the next

expression. Only expressions that can be evaluated will be channelled for fitness function

trial.

Normally in the ACP method, the shortest distance is found out by using the quantity

of the pheromeone whereas in this modified ACP, the best tour is found out using the

pheromone quantity. The present ACP algorithm is unique as it does not depend on the

distance but it utilizes more on the probability function which is connected to the quantity

of the pheromone level in the ACP. The data for the quantity of the pheromone values in

each edge is depicted in Table 3.2. The data was collected after the ants have completed

their travels through 6 nodes. The symbols or the Terminals and Functions are represented

by the nodes in the space graph. Initially, the pheromone values are equally distributed

through out all the edges (τij = 0.2). As the ants move through out all the edges, there

will be some path which will be favorable as these paths satisfy the initial conditions. The

best path can be obtained only if the path satisfies the fitness function. From Table 3.2,

the favorable edges are listed down in Table 3.3 and possible solutions are shown in Table

3.4. Thus, in this work, we will implement the modified ACP to generate expression for

solving ordinary (ODEs), nonlinear and partial differential equations (PDEs). In the next

subsection, we present the modified ACP algorithm that we have used in this thesis.

31

Table 3.2: Pheromone values depicted in each edge.

Symbols 0 1 2 3.. 5 6 7.. t.. +.. ()
Nodes 0 1 2 3.. 5 6 7.. 10 12.. 15... 17

0 0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
1 1 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
2 2 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
3 3 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30
4 4 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
5 5 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30 0.20 0.20
6 6 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30
7 7 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30 0.20 0.20
8 8 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
9 9 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
t 10 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.35 0.20 0.35
+ 11 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
∗ 12 0.20 0.20 0.20 0.30 0.20 0.30 0.20 0.35 0.20 0.20 0.20
− 13 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
\ 14 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
(15 0.20 0.20 0.20 0.20 0.30 0.20 0.30 0.35 0.20 0.20 0.20
e 16 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.39 0.20
) 17 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

3.1.1 Modified ACP algorithm

Step 1: Start by constructing a graph with ℓ nodes.

Step 2: Distribute equal quantity or weight of pheromone in each edge of the graph

as a starting point.

Step 3: Pass k ants through the graph from the starting node and move to the next

node according to the probability law, eq.(1.5).

Step 4: Construct parse trees from the tours of k ants.

Step 5: Extract the expression which is generated according to the infix formation.

Step 6: Evaluate these expressions and skip unwanted ones.

Step 7: Only expressions that can be evaluated will be channelled for the fitness func-

tion, Er

Step 8: If Er → 0 and they satisfy the terminal conditions, then stop. Otherwise,

apply global update.

Step 9: Identify the best tour of the previous generation.

32

Table 3.3: List of the most favorable edges

Edges Pheromone values
(16,15) 0.39
(10,12) 0.35
(10,17) 0.35
(12,10) 0.35
(15,10) 0.35
(3,17) 0.30
(5,12) 0.30
(6,17) 0.30
(7,12) 0.30
(12,3) 0.30
(12,6) 0.30
(15,5) 0.30
(15,7) 0.30
Others 0.20

Step 10: Pass the same k ants through the best tour and go to step 3.

3.1.2 Modified ACP pseudocode

The flow chart for the ACP is given in Figure 3.1 .

Step 1: Initialize Construct a graph with ℓ nodes.
Setting up the equal weight of pheromone in each edge(i, j) of the graph.
Input value for No. of Generations of ants.
Input value for No. of ants.

Step 2: For m = 1 to No. of Generations.

For k = 1 to No. of ants

For ℓ1 = 1 to ℓ nodes.

Pass k ants through the graph from k starting points and they move to the next

node according to the probability law.

prs(t) =
τrs(t).[γs]β∑

i∈Jk
r
[τri(t)].[γi]β

,

This information will be stored in tour[m, k, ℓ1].

Step 3: For m = 1 to No. of Generations.

For k = 1 to No. of ants.

For ℓ1 = 1 to ℓ nodes.

Analyze the data stored in tour[m, k, ℓ1] by

-constructing parse trees from the tours of k ants.

33

Table 3.4: Possible solutions.

Nodes 16 15 5 12 10 17
Symbols e (5 ∗ t)

Nodes 16 15 7 12 10 17
Symbols e (7 ∗ t)

Nodes 16 15 10 12 6 17
Symbols e (t ∗ 6)

Nodes 16 15 10 12 3 17
Symbols e (t ∗ 3)

Figure 3.1: Flow Chart for ACP

-Extract the expression which is generated according to the infix formation.

-Evaluate these expressions and skip unwanted ones.

Step 4: Evaluating the fitness function, Er.

If (Er → 0 and satisfy the terminal conditions)

the process will be stopped and the result is obtained.

else

update the global pheromone rule and

τij(t+ g) = (1− ρ).τij(t) + ρ. 1
L

,

identify the best tour of the previous generation.

Pass the same k ants through the best tour and the process will go to Step 2.

34

3.2 Differential equations

Differential equations are widely used to model physical phenomena in the real world.

In this paper, a nontraditional ant colony programming approach is implemented. The

motivation in this present work is to describe the consistency and the applicability of the

nontraditional ACP method in solving various ODEs and PDEs problems. Comparatively,

similar and exact solution is achieved by using the ACP approach.

3.2.1 Linear Ordinary Differential Equations

In this work, we present the results from the first and second order linear ODEs. The ACP

is applied in each equation and in every experiment the analytical solution is found. The

solution is obtained using ACP and shown in the parse trees structure.

ODE1

y
′
=

2t− y

t

with y(0.1) = 20.1 and t ∈ [0.1, 1.0]. The tour of the ant is t + (2/t). The parse tree

of the tour is given in Figure 3.2(a). Expression extracted from the parse tree is given as

y(t) = t+ 2
t
.

ODE2

y
′
=

1− ycos (t)

sin (t)

with y(0.1) = 2.1
sin(0.1)

and t ∈ [0.1, 1]. The tour of the ant is t + 2/sin(t). The parse tree

of the tour is given in Figure 3.2(b). Expression extracted from the parse tree is given as

y(t) = t+2
sin(t)

.

ODE3

y
′′
= −100y

with y(0) = 0, y′(0) = 10 and t ∈ [0, 1]. The tour of the ant is sin(2 ∗ 5 ∗ t). The parse

tree of the tour is given in Figure 3.2(c). Expression extracted from the parse tree is given

as y(t) = sin(10t).

ODE4

y
′′
= 6y

′ − 9y

35

v

v

v

v

v

Figure 3.2: Parse tree solution for (a) ODE1, (b) ODE2, (c) ODE3, (d) ODE4 and (e) ODE5.

with y(0) = 0, y′(0) = 2 and t ∈ [0, 1]. The tour of the ant is 2 ∗ t ∗ exp(3 ∗ t). The parse

tree of the tour is given in Figure 3.2(d). Expression extracted from the parse tree is given

as y(t) =2te3t.

ODE5

ty
′′
+ (1− t) y

′
+ y = 0

with y(0) = 1 and y(1) = 0 and t ∈ [0, 1]. The tour of the ant is (1 − t). The parse tree

of the tour is given in Figure 3.2(e). Expression extracted from the parse tree is given as

y(t) = 1 − t. In Table 3.5, the average number of colonies and ants together with the

time are shown in order to obtain the exact solutions for the ODEs. In Figure 3.3, the

average number of generations obtained for finding the solutions in each of the problems

discussed above are shown. Comparison between the present ACP method and the genetic

programming(GP) (Tsoulos & Lagaris, 2006) are illustrated here. The blue scale on the

left hand side of the y-axis referred to the ACP method whereas the red scale on the right

hand side is for the GP method. The figure showed that the ACP method compute the

solution efficiently and faster compare to the GP method.

36

Table 3.5: Results for linear ODEs using ACP

ODE Average No.Generations Average No. Ants Average Time(secs)
ODE1 58 52 2.53
ODE2 70 63 7.77
ODE3 60 63 8.15
ODE4 75 65 10.3
ODE5 50 55 2.33

ODE1 ODE2 ODE3 ODE4 ODE5
48

50

52

54

56

58

60

62

64

66

68

70

72

74

76
 ACP
 GP

Results for linear ODE

Av
er

ag
e

N
o.

 o
f G

en
er

at
io

ns

0

100

200

300

400

500

600

700

800

Average N
o. of G

enerations

Figure 3.3: Comparison between ACP and GP.

37

v

v

Figure 3.4: Parse tree solution for (a) NLODE1, (b) NLODE2, (c) NLODE3 and (d) NLODE4.

3.2.2 Non-linear Ordinary Differential Equations

In this work, we present the results for solving selected non-linear ODEs. The ACP is

applied in each equation and in every experiment the analytical solution is found. The

solution is obtained using ACP and shown in the parse trees structure.

NLODE1

y
′
=

1

2y

with y(1) =1 and t ∈ [1, 4]. The tour of the ant is sqrt(t). The parse tree of the tour is

given in Figure. 3.4(a). Expression extracted from the parse tree is given as y(t) =
√
t.

NLODE2

(
y

′
)2

+ log (y)− cos2 (t)− 2cos (t)− 1− log (t+ sin (t)) = 0

with y(1) = 1 + sin(1) and t ∈ [1, 2]. The tour of the ant is t + sin(t). The parse tree

of the tour is given in Figure 3.4(b). Expression extracted from the parse tree is given as

y(t) = t+ sin(t).

NLODE3

y
′′
y

′
= − 4

t3

with y(1) = 0 and t ∈ [1, 2]. The tour of the ant is log(t ∗ t). The parse tree of the tour is

given in Figure 3.4(c). Expression extracted from the parse tree is given as y(t) = log(t2).

38

NLODE1 NLODE2 NLODE3 NLODE4

10

20

30

40

50

60

70

80

90

100

 ACP
 GP

Results for non-linear ODE

Av
er

ag
e

N
o.

 o
f G

en
er

at
io

ns

80

100

120

140

160

180

200
Average N

o. of G
enerations

Figure 3.5: Comparison between ACP and GP.

NLODE4

t2y
′′
+
(
ty

′
)2

+
1

log (t)
= 0

with y(e) = 0, y′(e) = 1
e

and t ∈ [e, 2e]. The tour of the ant is loglog(t). The parse tree

of the tour is given in Figure 3.4(d). Expression extracted from the parse tree is given as

y(t) = log(log(t)).

In Table 3.6, the average number of colonies and ants together with the time are shown

in order to obtain the exact solutions for the NLODEs. In Figure 3.5, for the non-linear

ODEs case, the average number of generations increase for the ACP method as the given

problem getting more difficult. Comparison with the GP method (Tsoulos & Lagaris,

2006) still showed that the ACP gives faster solution through out the non-linear ODEs

case.

3.2.3 Systems of Ordinary Differential Equations

In this subsection, the results for solving the systems of ODEs are obtainded by using the

ACP and in every experiment the analytical solution is found. The solution is obtained

39

Table 3.6: Results for non-linear ODEs using ACP.

NLODE Average No. Generations Average No. Ants Average Time(secs)
NLODE1 13 15 3.24
NLODE2 53 68 11.52
NLODE3 80 60 28.86
NLODE4 79 65 25.32

v

vv

Figure 3.6: Parse tree solution for (a) SODE1, (b) SODE2 and (c) SODE3.

using ACP and shown in the parse trees structure.

SODE1

y′1 = cos(t) + y21 + y2 − (t2 + sin2(t)), y′2 = 2t− t2sin(t) + y1y2

with y1(0) = 0, y2(0) = 0 and t ∈ [0, 1]. The tours of the ants are sin(t) and (t ∗ t). The

parse trees of the tours are given in Figure 3.6(a). Expressions extracted from the parse

trees are given as y1 = sin(t) and y2 = t2.

SODE2

y
′
1 = cos(t), y

′
2 = −y1, y

′
3 = y2, y

′
4 = −y1, y

′
5 = y2,

with y1(0) = 0, y2(0) = 1, y3(0) = 0, y4(0) = 1, y5(0) = 0 and t ∈ [0, 1]. The tours

of the ants are sin(t), cos(t), sin(t), cos(t) and sin(t). The parse trees of the tours are

given in Figure 3.6(b). Expression extracted from the parse trees are given as y1 = sin(t),

y2 = cos(t), y3 = sin(t), y4 = cos(t) and y5 = sin(t).

SODE3

y
′
1 = − 1

y2
sin(exp(t)), y

′
2 = −y2,

with y1(0) = cos(1.0), y2(0) = 1 and t ∈ [0, 1]. The tours of the ants are cosexp(t) and

exp(0 − t). The parse trees of the tours are given in Figure 3.6(c). Expression extracted

40

SODE1 SODE2 SODE3

40

42

44

46

 ACP
 GP

Results for systems of ODE

Av
er

ag
e

N
o.

 o
f G

en
er

at
io

ns

60

80

100

120

140

160

180

200

220

240

260

280

300
Average N

o. of G
enerations

Figure 3.7: Comparison between ACP and GP.

Table 3.7: Results for systems of ODEs using ACP

SODE Average No. Generations Average No. Ants Average Time(secs)
SODE1 42 35 5.64
SODE2 40 45 10.52
SODE3 46 50 15.36

from the parse trees are given as y1 = cos(exp(t)) and y2 = exp(−t). In Table 3.7,

the average number of generations and ants together with the time are shown in order to

obtain the exact solutions for the SODEs. In Figure 3.7, comparison between the ACP and

the GP method (Tsoulos & Lagaris, 2006) are depicted. In the systems of ODEs, solutions

obtained are more than one, therefore the task for searching the solution using this non-

traditional method will be very difficult. From the figure, the ACP method succeeded in

finding the solutions within the range of 40-50 but the GP method compute the solutions

within the range of 70-250.

3.2.4 Partial Differential Equations.

In this work, we present the results for solving the PDEs. The ACP is applied in each

equation and in every experiment, the analytical solution is found. The solution is ob-

tained using ACP and shown in the parse trees structure.

41

PDE1

∇2Ψ(x, y) = exp(−x)(x− 2 + y3 + 6y),

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions: Ψ(0, y) = y3, Ψ(1, y) = (1 +

y3)exp(−1), Ψ(x, 0) = xexp(−x) and Ψ(x, 1) = (x+ 1)exp(−x). The tour of the ant is

(x+ y ∗ y ∗ y)exp(0− x). The parse tree of the tour is given in Figure 3.8(a). Expression

extracted from the parse tree is given as Ψ(x, y) = (x+ y3)exp(−x).

PDE2

∇2Ψ(x, y) = −2Ψ (x, y) ,

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions: Ψ(0, y) = 0, Ψ(1, y) = sin(1)cos(y),

Ψ(x, 0) = sin(x), Ψ(x, 1) = sin(x)cos(1). The tour of the ant is sin(x)cos(y). The parse

tree of the tour is given in Figure 3.8(b). Expression extracted from the parse tree is given

as Ψ(x, y) = sin(x)cos(y).

PDE3

∇2Ψ(x, y) = 4,

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions: Ψ(0, y) = y2 + y + 1, Ψ(1, y) =

y2 + y + 3, Ψ(x, 0) = (x2 + x + 1) and Ψ(x, 1) = x2 + x + 3. The tour of the ant is

(x∗x+ y ∗ y+x+ y+1). The parse tree of the tour is given in Figure 3.8(c). Expression

extracted from the parse tree is given as Ψ(x, y) = x2 + y2 + x+ y + 1.

PDE4

∇2Ψ(x, y) = −
(
x2 + y2

)
Ψ (x, y) ,

with x ∈ [0, 1] and y ∈ [0, 1] and boundary conditions: Ψ(x, 0) = 0, Ψ(x, 1) = sin(x),

Ψ(0, y) = 0 and Ψ(1, y) = sin(y). The tour of the ant is sin(x ∗ y). The parse tree of

the tour is given in Figure 3.8(d). Expression extracted from the parse tree is given as

Ψ(x, y) = sin(xy).

42

v

v

v

v

v

v

v
v

v

v

v

z

y y y

y

x

z

y y
y y

y y

y

x

y

V
V

Figure 3.8: Parse tree solution for (a) PDE1, (b) PDE2, (c) PDE3, (d) PDE4, (e) PDE5 and (f)
PDE6.

43

Table 3.8: Results for PDEs using ACP

PDE Average No. Generations Average No. Ants Average Time(secs)
PDE1 81 75 15.57
PDE2 75 65 8.52
PDE3 85 77 16.33
PDE4 56 50 4.42
PDE5 77 70 15.46
PDE6 82 73 17.52

PDE5

∇2Ψ(x, y) + exp(Ψ(x, y)) = 1 + x2 + y2 +
4

(1 + x2 + y2)2
,

with x ∈ [−1, 1] and y ∈ [−1, 1] and boundary conditions: f(0, y) = log(1 + y2),

f(1, y) = log(2 + y2), g(x, 0) = log(1 + x2) and g(x, 1) = log(2 + x2). The tour of the

ant is log(1+x∗x+y∗y). The parse tree of the tour is given in Figure 3.8(e). Expression

extracted from the parse tree is given as Ψ(x, y) = log(1 + x2 + y2).

PDE6

∇2Ψ(x, y, z) = 6

with x ∈ [0, 1], y ∈ [0, 1] and z ∈ [0, 1] and boundary conditions: Ψ(0, y, z) = y2 + z2,

Ψ(1, y, z) = y2 + z2 + 1, Ψ(x, 0, z) = x2 + z2, Ψ(x, 1, z) = x2 + z2 + 1, Ψ(x, y, 0) =

x2+ y2 and Ψ(x, y, 1) = x2+ y2+1. The tour of the ant is (x∗x+ y ∗ y+ z ∗ z+1). The

parse tree of the tour is given in Figure 3.8(f). Expression extracted from the parse tree is

given as Ψ(x, y) = x2 + y2 + z2 +1. In Table 3.8, the average number of generations and

ants together with the time are shown in order to obtain the exact solutions for the PDEs.

In Figure 3.9, the ACP method shows that as the solution is getting more complicated

to obtain, the average number of generations will increase. This can be observed and

analyzed from each of the PDE problems given above. For example at PDE4, where the

analytical solution is quite simple, the average number of generations obtained for finding

the solution by using ACP is 56 whereas in the GP method (Tsoulos & Lagaris, 2006) is

about 207. It shows that the proposed ACP method works faster than the GP method.

3.2.5 System of Partial Differential Equations.

In the following, the proposed ACP algorithm is implemented to solve the system of

PDE’s. The first example are related to linear case whereas the second problem involves

44

PDE1 PDE2 PDE3 PDE4 PDE5 PDE6

55

60

65

70

75

80

85
 ACP
 GP

Results of PDE

Av
er

ag
e

N
o.

 o
f G

en
er

at
io

ns

0

200

400

600

800

1000
Average N

o. of G
enerations

Figure 3.9: Comparison between ACP and GP.

nonlinear ones. In each experiment, the analytical solution is obtained.

SPDE1

Given a linear system of PDEs

ut + ux − 2v = 0, vt + vx − 2u = 0,

where the initial condition are given as u (x, 0) = sin (x) and v (x, 0) = cos (x). The tours

of the ants are obtained as sin (t+ x) and cos (x+ t). The parse trees of the tours are

given in Figure 3.10(a). Expressions extracted from the parse trees are given as u =

sin(t+ x) and v = cos(x+ t).

SPDE2

Consider this non-linear case where

ut + vux + u = 1, vt + uvx − v = −1,

with the initial data given as u(x, 0) = exand v(x, 0) = e−x. The tours of the ants are

obtained as e(x − t), e(t − x). The parse trees of the tours are given in Fig. 3.10(b).

Expressions extracted from the parse trees are given as each u = ex−t and v = et−x.

The average number of colonies and ants together with the time taken to obtain the exact

45

Table 3.9: Results for PDEs using ACP

SPDE Average No. Generations Average No. Ants Average Time(secs)
SPDE1 88 75 33.70
SPDE2 95 80 48.72

Figure 3.10: Parse tree solution for (a)SPDE1, (b)SPDE2.

solutions for the SPDE’s are depicted in Table 3.9. From Table 3.9, the ACP approach

predicted the solutions within reasonable computational time.

46

CHAPTER 4

SOLUTION OF MATRIX RICCATI DIFFERENTIAL EQUATION AND OTHER

FUZZY MODELLING PROBLEMS USING MODIFIED ANT COLONY

PROGRAMMING

In this chapter, we implement the modified ACP method to compute the solution of

MRDE. Solving MRDE will lead to the key for obtaining the optimal feedback with the

minimum cost function. The capability of the ACP method is further tested out by solving

some fuzzy modelling problems such as in the engineering and biological fields. From

these studies that have been carried out, the modified ACP computes solutions which are

either exact or approximately close enough to the analytical solutions. The modifed ACP

suggests simpler solutions with very good accuracy for solving complicated differential

equations.

4.1 Modified ant colony programming for solving MRDE with linear singular

fuzzy system: singular cost and cross term

The linear singular system is given as

Eẋ (t) = Ax (t) +Bu (t) ,

where E is a singular matrix, while A and B are vector valued functions for x (the state

vector) and u (the control vector), respectively. Since E is singular, there are some lim-

itations or conditions on x imposed by the above equation, and because of this reason,

x is sometimes referred to as a semi-state or a descriptor variable. Singular systems are

also referred as descriptor, generalized, or differential-algebraic systems. A singular sys-

tem is a combination of algebraic and differential equations. Due to this combination,

the algebraic parts represent the constraints to the solution of the differential equation

47

and this led to a lot of disadvantages either in analytical or numerical treatment of such

systems, especially when there is a need for their control. The system appears as a linear

approximation of system models in many applications such as robotics, biology, aircraft

dynamics, etc. In real life applications, physical systems are complicated in their system

structure, and are extremely challenging to model using precise mathematical equations.

Therefore, another method is needed to represent these complicated physical systems by

implementing approximate modeling. How can a good approximation in a system pro-

duce good, reasonable and satisfactory outputs if we have imprecise information or if the

system itself is too complicated to be described? The key to this answer is the fuzzy logic

and the interval mathematics. Both can be applied in mathematical modeling to represent

or to describe many complicated systems. These are known as the fuzzy systems model-

ing. Fuzzy systems range from fuzzy linear systems and fuzzy differential equations to

control chaotic systems etc. In a fuzzy linear system,

Ax̃ = b̃,

where A is a n×n singular matrix and b̃ refers to a vector of fuzzy numbers in parametric

form.

In the present work, the modified ACP is used to find the solution of MRDE for the

linear fuzzy singular system with singular cost (R=0) and cross term (R=1) scenarios. The

optimal control problem is considered where we need to minimize the cost function given

below,

J = 1
2
xT (tf)E

T
i SEix(tf) +

1
2

´ tf
0
[xT (t)Qx(t) + uT (t)Ru(t)]dt,

subject to the linear singular fuzzy system Ri : If xj is (µji, σji), i = 1, 2, ..r and

j = 1, 2, ..n, then

Eiẋ(t) = Aix (t) +Biu (t) , x (0) = x0,

where

S =

 3 0

0 0

, Ei =

 3 0

0 0

, A1 =

 −1 −1

0 1

,

A2 =

 −2 −2

0 2

 , Bi =

 0

1

, Q =

 1 0

0 0

.

48

The numerical implementation can be adapted by taking tf = 2 for solving the MRDE of

the above linear singular fuzzy system. The above matrices are substituted in the equation

below and these are later transformed into a set of nonlinear differential equations in k11

and k12. Then, the optimal control can be obtained by the solution of MRDE,

ET
i K̇i (t)Ei + ET

i Ki (t)Ai + AT
i Ki (t)Ei +Q− ET

i Ki (t)BiR
−1BT

i Ki (t)Ei = 0.

Both k11 and k12 are computed simultaneously by using the modified ACP. In this ACP

approach, the construction graph has 18 nodes: (T = {0, 1, 2, 3, 4, .., 9, t}) and (F =

{+,−, ∗, /, (,), exp}). In the first generation, 50-100 ants are sent to visit 7-10 nodes.

The ants start from any of the nodes randomly, until the ants reach to the limit where the

terminal condition is satisfied. Although the value for the fitness function may not be

close to zero, but the path or tour that have been taken by the ants might lead to the final

solution. Therefore after completion of each generation, a global update of pheromone

trail takes place in order to increase the pheromone value on the solution path. This

significant piece of information will be used for the next generation. Furthermore, the

number of nodes can also be increased automatically one at a time if the ants could not

find any combinations of expression which can satisfy the fitness function in the current

or present nodes. The above process will be repeated several times until the final solution

is obtained. Working on this MRDE problem, the expression is generated randomly up to

22-26 nodes, where ρ = 0.5, τij(0) = 0.2 and β = 1. After 22-26 nodes, the expression

satisfies the terminal condition as well as the fitness function. In Figures 4.1 and 4.2, the

evolution of trial solutions for the above problem are shown. These trial solutions are

compared with the exact solutions.

4.1.1 R=0

For k11(t), at generation 15, with fitness value equal to 0.01235, the intermediate solution

was:

Tours: k11(t) = e(2/3 ∗ t);

Expressions: k11(t) = e
2
3
t.

Next, at the 45th generation, again with the same fitness value 0.01235, the corresponding

candidate solution was:

49

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k
1

1
(t

)

t

 k
11

 15

 k
11

 45

 k
11

 69

 Exact

Figure 4.1: Candidate solutions for k11(t) by ACP for various generations and comparison with
the exact solution.

Tours: k11(t) = e((2 ∗ t− 4)/3) ∗ 7 ∗ 2/5;

Expressions: k11(t) = 14
5
e

2t−4
3 .

Finally, at the 69th generation, the ACP computed the solution with fitness value less than

1.0e−09, with its functional form given as

Tours: k11(t) = e((2 ∗ t− 4)/3) ∗ 5 ∗ 3 + 2/6 + 1/6;

Expressions: k11(t) = 17
6
e

2t−4
3 + 1

6
.

The ACP method was applied to obtain the solution for k12(t), where the first trial

solution was obtained at the 19th generation, similar to the k11(t) with the fitness function

is 0.01235. Here,

Tours: k12(t) = 0− e(2/3 ∗ t);

Expressions: k12(t) = −e
2
3
t.

Later, the ACP predicted another trial solution with the same fitness value at the 56th

generation. The candidate solution was given as

50

0.0 0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

k
1

2
(t

)

t

 k
12

19

 k
12

56

 k
12

73

 Exact

Figure 4.2: Candidate solutions for k12(t) by ACP for various generations and comparison with
the exact solution.

Tours: k12(t) = 0− e((2 ∗ t− 4)/3) ∗ (1/6);

Expressions: k12(t) = −1
6
e

2t−4
3 .

Finally, at the 73rd generation the solution is achieved where the fitness function is

less than 1.0e−09. Here,

Tours: k12(t) = 0− e((2 ∗ t− 4)/3) ∗ (1/6) + 1/6;

Expressions: k12(t) = −1
6
e

2t−4
3 + 1

6
.

The parse trees for the solutions k11(t) and k12(t) are shown in Figures 4.3 and 4.4,

respectively. The numerical solutions, which are given in Table 4.1, show that the ACP

approach predicts solutions which are equivalent to the analytical ones. However, the RK4

method showed some differences with the exact solutions especially at 7 to 9 decimal

places at t ≥ 0.8.

4.1.2 R=1

For searching the solution of MRDE for linear singular fuzzy system with cross term

(R=1) using the ACP, 50-100 digital ants are sent throughout the space graph, to visit

51

*

e

+

/

-

t

3

1

/

6

*

2

5

*

/

3

4

2

+
6

Figure 4.3: Parse tree for k11 (t)

Table 4.1: Numerical solutions for k11(t) and k12(t) when R=0.

ACP RK4 Exact
t k11 (t) k12 (t) k11 (t) k12 (t) k11 (t) k12 (t)

0.0 0.913525225 0.122733810 0.913525238 0.122733810 0.913525225 0.122733810
0.2 1.020050267 0.116467631 1.020050269 0.116467631 1.020050267 0.116467631
0.4 1.141769063 0.109307702 1.141769063 0.109307702 1.141769063 0.109307702
0.6 1.280848709 0.101126547 1.280848707 0.101126547 1.280848709 0.101126547
0.8 1.439765398 0.091778506 1.439765393 0.091778506 1.439765398 0.091778506
1.0 1.621348504 0.081097147 1.621348496 0.081097147 1.621348504 0.081097147
1.2 1.828830955 0.068892297 1.828830942 0.068892298 1.828830955 0.068892297
1.4 2.065906797 0.054946659 2.065906779 0.054946660 2.065906797 0.054946659
1.6 2.336796959 0.039011944 2.336796933 0.039011945 2.336796959 0.039011944
1.8 2.646324404 0.020804447 2.646324370 0.020804449 2.646324404 0.020804447
2.0 3.000000000 0.000000000 3.000000000 0.000000000 3.000000000 0.000000000

52

*
e

/

-

t

1
/ 6

*

2

61

/

3

4

+
-

0

Figure 4.4: Parse tree for k12 (t)

53

15 nodes. At 23rd generation, with fitness function equal to 49, the ACP predicted an

intermediate solution which was:

Tours: k11(t) = 3/(2 ∗ e(2− t)− 1));

Expressions: k11(t) = 3
2e2−t−1

.

Then, after the global pheromone update, the ACP method gives an expression with

the fitness function is equal to 1 and its functional form is given as:

Tours: k11(t) = 3/(3 ∗ e((8− 4 ∗ t)/3)− 2);

Expressions: k11(t) = 3

3e
8−4t

3 −2
.

at 47thgeneration. Then at 87th generation, again after updating the global pheromone

values, a new expression is predicted with the fitness function equal to 6.67e−6. The

candidate solution is given as:

Tours: k11(t) = 4/(7 ∗ 3/5 ∗ e((8− 4 ∗ t)/3)− 3);

Expressions: k11(t) = 4
21
5
e
8−4t

3 −3
.

Finally at the 93rd generation, the ACP predicted an expression with a fitness function

less than to 1.0e−9, with its functional form given as:

Tours: k11(t) = 4/(6 ∗ 2 + 1/3 ∗ e((8− 4 ∗ t)/3)− 3);

Expressions: k11(t) = 4
13
3
e
8−4t

3 −3
.

The parse tree for the solutions k11 is shown in Figure 4.5. The comparison between

the ACP, RK4 and the analytical solutions are given in Table 4.2. The differences between

RK4 and the other methods are clearly seen in the data starting from 3 to 4 decimal places.

In Figure 4.6, the candidature solutions are compared with the analytical solutions. The

ACP method improves the quality of its calculations based on the fitness functions in

order to obtain the final solutions. Therefore, the solution of MRDE for linear singular

fuzzy system with cross term and singular cost for the matrix A2 can also be obtained by

using the modified ACP method.

54

Table 4.2: Numerical solutions for k11(t) when R=1.

ACP RK4 Exact
t k11 k11 k11

0.0 0.067379804 0.067431300 0.067379804
0.2 0.089351336 0.089420571 0.089351336
0.4 0.119096627 0.119190746 0.119096627
0.6 0.159856850 0.159986532 0.159856850
0.8 0.216647867 0.216829853 0.216647867
1.0 0.297636154 0.297898000 0.297636154
1.2 0.417045908 0.417435458 0.417045908
1.4 0.602045991 0.602647984 0.602045991
1.6 0.911863579 0.912766058 0.911863579
1.8 1.505104706 1.506414596 1.505104706
2.0 3.000000000 3.000000000 3.000000000

*

e

-/

-

t

4

/
3

*

4

3

1

/

3

8

*

+

6 2

Figure 4.5: Parse tree for k11 (t)

55

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

k
1

1
(t

)

t

 k
11

23

 k
11

47

 k
11

87

 k
11

93

 Exact

Figure 4.6: Candidate solutions for k11(t) by ACP for various generations and comparison with
the exact solution.

4.2 Modified ant colony programming for solving MRDE with nonlinear singular

fuzzy system: singular cost

Fuzzy modelling has proven its capability as a universal approximator for smooth non-

linear systems. The fuzzy controller which consists of several linear models in their own

local dynamics in different states, allows the researcher to utilize a complex controller

design within an intuitively straightforward framework. The total output for the nonlinear

systems is obtained by utilizing a fuzzy “blending” of these linear models.

In this section, the singular nonlinear system is given as

Eiẋ = A (x)x (t) + Bu (t) ,

where Ei is a singular matrix, x (t) ∈ Rn is a generalized state space vector and u (t) ∈

Rmis a control variable, A ∈ Rn×nand B ∈ Rn×m are the coefficient matrices that asso-

ciated with x (t) and u (t), respectively. A is a vector valued function of x that is possibly

nonlinear. x0 is the given initial state vector and m ≤ n. To derive the T-S fuzzy model

56

from the above equation, the first step is to determine the membership function. For

example, the matrix A(x) is taken as

A (x) =

 0 1

x1 (t) x2 (t)

 ,

Let x1 ∈ [0.5, 3.5] and x2 ∈ [−1, 4]. The fuzzy variables x1 and x2 are also denoted as

z1 and z2, respectively. The maximum and minimum values of z1 and z2 can be calculated,

therefore x1 and x2 can be represented for the membership functions M1, M2, N1 and N2.

From these membership functions, the nonlinear systems can be linearized into the ith

rule of continuous T-S fuzzy model of the following forms. Given the singular non-linear

system that can be expressed in the form of T-S fuzzy system Ri: Model Rule i: If z1 (t)

is Mi1 and z2(t) is Mi2 ...and zp(t) is Mip, then

Eiẋ(t) = Aix(t) + Biu(t), x (0) = x0, i = 1, 2, ..r. (4.1)

Therefore the nonlinear system is modeled by the following fuzzy rules where the sub-

systems are defined as

A1 =

 0 1

max (z1 (t)) max (z2 (t))

 , A2 =

 0 1

max (z1 (t)) min (z2 (t))

A3 =

 0 1

min (z1 (t)) min (z2 (t))

 , A4 =

 0 1

min (z1 (t)) max (z2 (t))

.

To minimize both state and control signals of the feedback control system, a quadratic

performance index is defined:

J =
1

2
xT (tf)E

T
i SEix(tf) +

1

2

ˆ tf

0

[xT (t)Qx(t) + uT (t)Ru(t)]dt,

subject to the linear singular fuzzy system (4.1). The superscript T represents the trans-

pose operator. S ∈ Rn×nand Q ∈ Rn×n are symmetric and positive definite weighting

matrices for x(t). R ∈ Rm×m is a symmetric and positive definite weighting matrix for

u(t).

S =

 1 0

0 0

 , Ei =

 1 0

0 0

 , A1 =

 0 1

3.5 4

 ,

57

A2 =

 0 1

3.5 −1

 , A3 =

 0 1

0.5 4

 , A4 =

 0 1

0.5 −1

 ,

Bi =

 0

1

 , R = 0, Q =

 1 0

0 0

.

The matrices above are substituted into the following MRDE for the nonlinear singular

fuzzy system below:

ET
i K̇i (t)Ei + ET

i Ki (t)Ai + AT
i Ki (t)Ei +Q− ET

i Ki (t)BiR
−1BT

i Ki (t)Ei = 0.

The numerical implementation can be adapted by taking tf = 2 for solving the MRDE

and these are later transformed into sets of differential equations in k11 and k12, with their

terminal conditions given as k11(2) = 1 and k12(2) = 0. Then, the optimal control can be

obtained by the solution of MRDE.

In this study, the first generations with 50-100 ants are sent out to visit 8-12 nodes

from any random initial node until the ants reach to the limit where the terminal condition

is satisfied. These digital ants are sent out in order to find solutions for both k11 and k12,

simultaneously. If the value for the fitness function are close to zero, the global update

of pheromone trail takes place in order to increase the pheromone value on the solution

path. This significant piece of information will be used for the next generation and it will

be repeated several times until the final solution is achieved.

At 27th generation, the mechanism of the ACP approach predicted an expression with

the fitness function equivalent to 0.0625. The tours is given as:

Tours: k11 (t) = e(t/2− 1);

Expressions: k11 (t) = e(
t
2
−1).

This piece of information will be added up into the global update of the pheromone

values and the number of nodes will be increased for the next generation. The number

of nodes will be increased only if the ants could not find any combination of expression

which satisfies the fitness function in that current number of nodes. As the number of

nodes is increased, the value of the fitness function can also be changed. This is vital in

order to guide the ACP method to the final solution. At 44th generation, with the fitness

function (Er) is 1, the ACP predicted an expression given as:

58

Tours: k11 (t) = e(7/4 ∗ t− 7/2);

Expressions: k11 (t) = e(
7
4
t− 7

2).

Again the global pheromone value will be updated and the next generation will be

sent out to the space graph. This process will keep on repeating until it reaches up to 20

nodes, where at this stage, the modified ACP algorithm finds a combination of expressions

which gives the fitness function equals to 0.5. This candidate solution is achieved at the

78th generation and its given as:

Tours: k11 (t) = e(7/4 ∗ t− 7/2) ∗ 3/5 + 1/2;

Expressions: k11 (t) = 3
5
e(

7
4
t− 7

2) + 1
2
.

Finally, at 95th generation, the modified ACP predicted the solution which satisfied

the terminal condition as well as the fitness function where it is given in the functional

form as:

Tours: k11 (t) = e(7/4 ∗ t− 7/2) ∗ 3/7 + 4/7;

Expressions: k11 (t) = 3
7
e(

7
4
t− 7

2) + 4
7
.

The modified ACP is also used to compute the solution for the k12 where the final

solution is achieved when the ACP reached up to 18 nodes. The fitness function (Er)

is equal to zero and the terminal condition is satisfied. Below we listed down the trial

solutions and the fitness functions obtained in order to find the solution for k12:

Tours: k12 (t) = e((t− 2)/7)/9 =⇒ 27th generation, Er = 0.1837;

Expressions: k12 (t) = e(
t
2
−1).

Tours: k12 (t) = e((t− 2)/7)− 1 =⇒ 35th generation, Er = 0.0115;

Expressions: k12 (t) = e(
t
2
−1) − 1.

Tours: k12 (t) = e(7/4 ∗ t− 7/2)/5− 1/5 =⇒ 69th generation, Er = 0.01;

Expressions: k12 (t) = 1
5
e(

7
4
t− 7

2) − 1
5
.

Tours: k12 (t) = e(7/4 ∗ t− 7/2)/7− 1/7 =⇒ 77th generation, Er = 0.00;

Expressions:k12 (t) = 1
7
e(

7
4
t− 7

2) − 1
7
.

The parse trees for both solutions are given in Figures 4.7 and 4.9, whereas the candidate

solutions are shown in Figures 4.8 and 4.10, respectively. These solutions are compared

with the exact solutions. The numerical solutions are shown in Table 4.3.

59

/ /

3

+

4

e

7

*

*

4

7

7

-

/

27

/
t

Figure 4.7: Parse tree for k11 (t)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

k
1

1
(t

)

t

 k
11

27

 k
11

44

 k
11

78

 k
11

95

 Exact

Figure 4.8: Candidate solutions according to generation for k11(t) by ACP and comparison with
the exact solution.

60

/

/

-

1

e

7
*

4

7

7

-

/

27

/

t

Figure 4.9: Parse tree for k12 (t)

Table 4.3: Numerical solutions for k11(t) and k12(t) when R = 0.

ACP RK4 Exact
t k11 (t) k12 (t) k11 (t) k12 (t) k11 (t) k12 (t)

0.0 0.58437 -0.13854 0.58438 -0.13854 0.58437 -0.13854
0.2 0.58979 -0.13674 0.58980 -0.13673 0.58979 -0.13674
0.4 0.59749 -0.13417 0.59750 -0.13417 0.59749 -0.13417
0.6 0.60841 -0.13053 0.60843 -0.13052 0.60841 -0.13053
0.8 0.62391 -0.12536 0.62393 -0.12536 0.62391 -0.12536
1.0 0.64590 -0.11803 0.64593 -0.11803 0.64590 -0.11803
1.2 0.67711 -0.10763 0.67714 -0.10762 0.67711 -0.10763
1.4 0.72140 -0.09287 0.72143 -0.09286 0.72140 -0.09287
1.6 0.78425 -0.07192 0.78428 -0.07191 0.78425 -0.07192
1.8 0.87344 -0.04219 0.87346 -0.04218 0.87344 -0.04219
2.0 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000

61

0.0 0.5 1.0 1.5 2.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

 k
1

2
(t

)

t

 k
12

27

 k
12

35

 k
12

69

 k
12

77

 Exact

Figure 4.10: Candidate solutions according to generation for k12(t) by ACP and comparison with
the exact solution.

4.2.1 Nonlinear singular fuzzy system with cross term

In this subsection, we are dealing with the optimal control problem where a quadratic

performance index is required to be minimized in order to minimize both the state and the

control signals of the feedback control system. The performance index is defined as

J =
1

2

ˆ tf

t0

[xT (t)Qx(t) + uT (t)Ru(t) + 2uT (t)Hx (t)]dt,

where the superscript T represents the transpose operator, S ∈ Rn×nand Q ∈ Rn×n

are symmetric and positive definite weighting matrices for x(t), and R ∈ Rm×m is a

symmetric and positive definite weighting matrix for u(t). H ∈ Rm×n is a coefficient

matrix.

The quadratic performance index J is minimized subject to the linear singular fuzzy

system Ri: If z1(t) is Mi1 and z2(t) is Mi2 and....zp(t) is Mip, then

Eiẋ(t) = Aix (t) +Biu (t) , x (0) = x0, i = 1, 2, ..r,

62

where

S =

 1 0

0 0

, Ei =

 1 0

0 0

, A1 =

 0 1

2 1

,

A2 =

 0 1

2 −1

 , A3 =

 0 1

0.1 −1

 , A4 =

 0 1

0.1 1

 ,

Bi =

 0

1

, R = 1, Q =

 1 0

0 0

, H =

[
1 0

]
.

The matrices above are substituted into the following MRDE for the nonlinear singular

fuzzy system:

ET
i K̇i(t)Ei+ET

i Ki(t)Ai+AT
i Ki(t)Ei+Q− (HT +ET

i Ki(t)Bi)R
−1(H +BT

i Ki(t)Ei) = 0.

The numerical implementation can be adapted by taking tf = 2 for solving the MRDE

and these are later transformed into sets of differential equations in k11 and k12. Then, the

optimal control can be obtained by the solution of MRDE.

In this ACP approach, the construction graph has 18 nodes T={0, 1, 2, 3, 4, 5, 6, 7,

8, 9, t} and F={+, -, *, /, exp, (,)}. In the first generation, 50-100 ants are sent to visit

5-10 nodes from any initial nodes randomly until the ants reach to the limit where the

terminal condition is satisfied. Although the value for the fitness function may not be

close to zero, but the path or tour that have been taken by the ants, might lead to the final

solution. Therefore after completion of each generation, a global update of pheromone

trail is taken place in order to increase the pheromone value on the solution path. This

significant piece of information will be used for the next generation. Thus from 5-10

nodes, the mechanism of the ACP will jump to 6-12 nodes and then if it still does not

satisfy the initial conditions and the fitness function, the process will jump to 7-14 nodes

and this process will be repeated several times until the final solution is obtained. Working

on this MRDE problem, the expression is generated randomly up to 16 to 18 nodes, where

ρ = 0.5, τij = 0.2 and β = 1. After the expression satisfies the terminal condition and

the fitness function, then the solution is obtained.

Below is listed the trial solutions and the fitness functions obtained in order to find the

solution for k11 and k12.

k11:

63

Tours: k11 (t) = e(2− t) =⇒ 13th generation, Er = 16;

Expressions: k11 (t) = e(2−t).

Tours: k11 (t) = 2/(e(2− t) + 1) =⇒ 55th generation, Er = 6.25;

Expressions: k11 (t) = 2
e2−t+1

.

Tours: k11 (t) = 3/(5 ∗ e(4− 2 ∗ t)− 2) =⇒ 79th generation, Er = 0.1111;

Expressions: k11 (t) = 3
5e(4−2t)−2

.

Tours: k11 (t) = 2/(3 ∗ e(4− 2 ∗ t)− 1) =⇒ 105th generation, Er = 0.00;

Expressions:k11 (t) = 2
3e(4−2t)−1

.

k12:

Tours: k12 (t) = (8− e(t))/7 =⇒ 37th generation, Er = 3.781;

Expressions: k12 (t) = 8−et

7
.

Tours: k12 (t) = 3/(e(t) + 2) =⇒ 75th generation, Er = 7.554;

Expressions: k12 (t) = 3
et+2

.

Tours: k12 (t) = 1− 3/(5 ∗ e(4− 2 ∗ t)− 2) =⇒ 97th generation, Er = 0.1111;

Expressions: k12 (t) = 1− 3
5e(4−2t)−2

.

Tours: k12 (t) = 1− 2/(3 ∗ e(4− 2 ∗ t)− 1) =⇒ 157th generation, Er = 0.00;

Expressions:k12 (t) = 1− 2
3e(4−2t)−1

.

These candidate solutions are depicted in the Figures 4.11 and 4.12 for k11(t) and k12(t),

respectively. The parse trees for the solutions k11(t) and k12(t) are shown in Figures 4.13

and 4.14, respectively. The numerical solutions are given in Table 4.4. In Table 4.5, the

average number of generations and ants, together with the computational time, are shown.

In comparing the ACP and the genetic programming (GP) method (Tsoulos & Lagaris,

2006), in terms of the average number of generations (AVG), we found that the ACP

method provide faster solutions compared to the GP method. Similarly, the MRDE can

be solved for the matrices A2, A3 and A4.

4.3 Takagi-Sugeno fuzzy modelling for solving the Human Immunodeficiency Virus

immunology model using modified ACP

The equations for the HIV immunology model used in this paper is extracted from the

paper by Kirschner and Webb (Kirschner & Webb, 1998). The equations are given as

64

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

6

7

8

k 11
(t

)

t

 k
11

13
 k

11
55

 k
11

79
 k

11
105

 Exact

Figure 4.11: Candidate solutions for k11(t) by ACP for various generations and comparison with
the exact solution.

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

k
1

2
(t

)

t

 k
12

13

 k
12

55

 k
12

97

 k
12

157

 Exact

Figure 4.12: Candidate solutions according to generations for k12(t) by ACP and comparison
with the exact solution.

65

/

2

-

1

e

*

t

4

-

*

2

3

Figure 4.13: Parse tree for k11 (t)

-

1

-

1

e

*

t

4

-

*

2

3

/

2

Figure 4.14: Parse tree for k12 (t)

66

Table 4.4: Results obtained by ACP, RK4-method and the exact solutions.

ACP RK4 Exact
t k11 (t) k12 (t) k11 (t) k12 (t) k11 (t) k12 (t)

0.0 0.01229 0.98772 0.01231 0.98772 0.01229 0.98772
0.2 0.01838 0.98162 0.01842 0.98386 0.01838 0.98162
0.4 0.02755 0.97245 0.02760 0.97808 0.02755 0.97245
0.6 0.04138 0.95862 0.04145 0.96936 0.04138 0.95862
0.8 0.06236 0.93764 0.06247 0.95613 0.06236 0.93764
1.0 0.09449 0.90551 0.09463 0.93593 0.09449 0.90551
1.2 0.14431 0.85569 0.14452 0.85548 0.14431 0.85569
1.4 0.22321 0.77679 0.22349 0.77651 0.22321 0.77679
1.6 0.35232 0.64768 0.35269 0.64730 0.35232 0.64768
1.8 0.57546 0.42454 0.57588 0.42412 0.57546 0.42454
2.0 1.00000 0.00000 1.00000 0.0000 1.00000 0.00000

Table 4.5: Comparison results for k11 (t) and k12 (t) between ACP and GP.

k11 (t) Average No.Generations Average No. Ants Average Time(secs)
ACP 98 80 120.53
GP 441 - -

k12 (t) Average No.Generations Average No. Ants Average Time(secs)
ACP 105 95 135.77
GP 451 - -

follows:

dT (t)

dt
= s1 −

s2V (t)

b1 + V (t)
− µT (t)− kV (t)T (t) , T (0) = T0 (4.2)

dV (t)

dt
=

gV (t)

b2 + V (t)
− cV (t)T (t) , V (0) = V0. (4.3)

The parameters of HIV model are given in Table 4.6. Substituting these parameters in

(4.2) and (4.3), the HIV immunology equations can be written as

dT (t)

dt
= 2− V (t)

2 + V (t)
− 0.1T (t)− 0.1V (t)T (t)

dV (t)

dt
=

2V (t)

1 + V (t)
− 0.1V (t)T (t) .

67

Table 4.6: The parameters and their units used in the HIV immunology model .

Parameters Definition
T Uninfected CD4+ T cell population
V HIV population

s1 = 2.0mm3d−1 source of CD4+ T cells
s2 = 1.0mm3d−1 source of HIV cells

µ = 0.1d−1 death rate of uninfected CD4+ T cell
k = 0.1mm3d−1 rate CD4+ cells which get infected by the virus V
g = 2d−1mm3 input rate of external viral source
c = 0.1mm3d−1 lost rate of virus
b1 = 2.0mm3 half saturation constant
b2 = 1.0mm3 half saturation contant

Now from this given nonlinear systems, the main task is to derive the Takagi-Sugeno

fuzzy model. The nonlinear systems can be written in matrices form as

Ṫ =

 −0.1 z1 (t)

0 z2 (t)

T (t)

where

z1 (t) = f (T, V) =
4 + V

2V + V 2
− 0.1T

z2 (t) = g (T, V) =
2

1.0 + V
− 0.1T.

The next step is to obtain the membership functions. In order to do it, assume that T (t) ∈

[0.1, 1] and V (t) ∈ [0.1, 1], then calculate the min and max values for z1(t) and z2(t).

max z1 (t) = 19.5138, min z1 (t) = 1.5667

max z2 (t) = 1.8082, min z2 (t) = 0.9.

From these max and min values, the z1(t) and z2(t) can be represented as

z1 (t) =
4 + V

2V + V 2
− 0.1T = M1(z1(t)).max z1(t) +M2(z1(t)).min z1(t)

z2 (t) =
2

1.0 + V
− 0.1T = N1(z2(t)).max z2(t) +N2(z2(t)).min z2(t).

Thus, from this membership function, the nonlinear systems can be linearized into these

68

fuzzy differential equations according to the following continuous T-S fuzzy rules with

T (0) = 1 and V (0) = 1:

• Model Rule 1: If z1(t) is Positive and z2(t) is Big, Then Ṫ = A1T .

• Model Rule 2: If z1(t) is Positive and z2(t) is Small, Then Ṫ = A2T .

• Model Rule 3: If z1(t) is Negative and z2(t) is Small, Then Ṫ = A3T .

• Model Rule 4: If z1(t) is Negative and z2(t) is Big, Then Ṫ = A4T ,

where the subsystems are defined as

A1 =

 −0.1 max (z1 (t))

0 max (z2 (t))

 , A2 =

 −0.1 max (z1 (t))

0 min (z2 (t))

A3 =

 −0.1 min (z1 (t))

0 min (z2 (t))

 , A4 =

 −0.1 min (z1 (t))

0 max (z2 (t))

or

A1 =

 −0.1 19.5138

0 1.8082

 , A2 =

 −0.1 19.5138

0 0.9

A3 =

 −0.1 1.5667

0 0.9

 , A4 =

 −0.1 1.5667

0 1.8082

.

Consider the Model Rule 1: If z1(t) is Positive and z2(t) is Big, then Ṫ

V̇

 =

 −0.1 19.5138

0 1.8082

 T

V

and the initial values is given as T (0) = 1 and V (0) = 1.

The ACP is implemented to solve the above equation. By generating the graph randomly,

80 generations, with 50-100 number of ants each, are sent out through the graph with

ρ = 0.5 and β = 1. These digital ants are sent to find solutions for T (t) and V (t),

simultaneously. These trial solutions are compared with the exact solutions given as:

T (t) = 9756905
954091 e

904091
500000

t − 8802814
954091 e

−1
10

t ;

V (t) = e
904091
500000

t .

69

At generation 20, with fitness value equal to 0.3437, for t = 0, the intermediate solution

was:

Tours : T (t) = 5 ∗ 2 ∗ e(2 ∗ t)− 9;

Expressions : T (t) = 10e2t − 9.

Next, at the 35th generation, the fitness value was less than 0.1492. This actually predicted

the corresponding candidate solution which was

Tours : T (t) = 5 ∗ 2 ∗ e(9/5 ∗ t)− 9 ∗ e(0− 1/5 ∗ t);

Expressions : T (t) = 10e
9
5
t − 9e

−1
5
t.

Later at the 39th generation, the ACP generated an expression with its fitness value 0.0075.

The functional form was given as

Tours : T (t) = 5 ∗ 2 ∗ e(9/5 ∗ t)− 9 ∗ e(0− 1/6 ∗ t);

Expressions : T (t) = 10e
9
5
t-9e

−1
6
t.

Finally, at the 67thgeneration, the ACP computed the solution. This time the fitness func-

tion equals 0.0025. The final solution was given as

Tours :

T (t) = (sqr(5)∗2+1)/5∗e((sqr(6∗5)+4∗t)/(sqrt(5∗2)∗5))−(5∗9+1)/5∗e(0−t/9);

Expressions : T (t) = 51
5
e

904
500

t-46
5
e

−t
9 .

Similarly, the ACP method was applied to obtain the solution for V . At generation 15,

the fitness value equalled 0.0368 and the intermediate solution was

Tours : V (t) = e(2 ∗ t);

Expressions : V (t) = e2t.

Then another candidate solution was predicted at 23rd generation with

Tours : V (t) = e(9/5 ∗ t);

Expressions : V (t) = e
9
5
t.

70

Table 4.7: Results comparison between ACP and exact solutions.
ACP Exact

t T V T V
0 1.0000 1.000 1.000 1.000

0.1 3.1230 1.1982 3.1186 1.1982
0.2 5.6456 1.4356 5.6381 1.4357
0.3 8.6470 1.7201 8.6379 1.7202
0.4 12.2223 2.0610 12.2137 2.0612
0.5 16.4857 2.4695 16.4796 2.4697
0.6 21.5736 2.9588 21.5726 2.9592
0.7 27.6497 3.5452 27.6568 3.5457
0.8 34.9099 4.2478 34.9289 4.2484
0.9 43.5895 5.0896 43.6245 5.0904
1.0 53.9695 6.0982 54.0259 6.0993

Table 4.8: Comparison results for T (t) and V (t) between the ACP and GP.

T (t) Average No.Generations Average No. Ants Average Time(secs)
ACP 146 95 150.53
GP 234 - -
V (t) Average No.Generations Average No. Ants Average Time(secs)
ACP 95 88 95.77
GP 234 - -

where the fitness value is less than 7e−05. The final solution is only achieved when the

ACP reached at the 44thgeneration with its functional form given as:

Tours : V (t) = e((sqr(6 ∗ 5) + 4*t)/(sqrt(5 ∗ 2) ∗ 5));

Expressions : V (t) = e
904
500

t.

The fitness value is given as 4e−08. In Figures 4.15 and 4.16, the evolution of a trial

solutions for the above problem are shown. We also included an inset in each graph in

order to show how close are the final solutions predicted by the ACP when compared to

the analytical functions as the parameter time gets larger. The parse trees for the solutions

T and V are shown in Figures 4.17 and 4.18. The numerical solutions are given in Table

4.7 whereas the average number of generations and ants together with the computational

time are depicted in Table 4.8. In the systems of ODEs, solutions obtained are more than

one, therefore the task for searching the solution using this non-traditional method will be

very difficult. From Table 4.8, the ACP method succeeded in finding the solutions within

the range of 90-150 average no. of generations but the GP method requires about 234.

Similarly the solution for the HIV for fuzzy model rules 2, 3 and 4 can be obtained by

using the modified ACP.

71

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

80

90

0.6 0.8 1.0

20

30

40

50

t

 T20

 T35

 T39

 T67

 Exact

 T

Figure 4.15: Candidate solutions for T (t)

72

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

0.6 0.9

3

4

5

6

t

 V15

 V23

 V44

 Exact

 V

Figure 4.16: Candidate solutions for V (t)

73

/

6

5

e

5

*

4

5

*

2

t

/

*

+

sqr

5

2

1

5

*

sqr

+

sqr

*

*

-

+

/

*

5 9

*

e

1

5

-

0 /

t 9

Figure 4.17: Tours of ant and its parse tree for T(t).

/

6

5

e

5

*

4

5

*

2

t

sqr

+

sqr

*

*

Figure 4.18: Tours of ant and its parse tree for V(t).

74

4.4 Takagi-Sugeno fuzzy modelling of S-type microbial growth model for ethanol

fermentation process and optimal control

The development of mathematical models in the field of predictive microbiology to de-

scribe and predict the microbial evolution in foods are very vital. Single species microbial

growth, whether in a (liquid) food product, normally passes three distinct phases. In the

first phase called lag phase, the microbial cells adapt to their new environment and do not

multiply. The total number of microbial cells remains constant during this phase. During

the next phase or the exponential growth phase, the microbial cells multiply exponentially.

Finally, the microbial cells cease multiplying and their total number remains constant at

the maximum population density. This third final phase is called the stationary phase.

The S-type microbial growth model below was given in the paper by Van Impe et al.,

(Van Impe et al., 2006):

Ṅ(t) =
(

Q(t)
1+Q(t)

)
.µmax.S(t).N(t) with N(t = 0) = N0,

Q̇(t) = µmax.Q(t) with Q(t = 0) = Q0,

Ṡ(t) = −
(

Q(t)
1+Q(t)

)
.µmax.

S(t)
YN

S

.N(t) with S(t = 0) = N0.

The first differential equation describes the evolution of the microbial load in time. It

consists of the adjustment function which describes the lag phase by means of a variable

representing the physiological state of the cells Q(t), as well as the inhibition function

which is a linear function of the substrate concentration S(t). The second differential

equation, describes the evolution of Q(t), which increases exponentially, whereas the

third differential equation represents the evolution of the substrate concentration S(t).

YN
S

refers as the yield constant.

The T-S fuzzy model can be derived from the above nonlinear system using sector non-

linearity approach (Kawamoto et al., 1993). Consider the linear dynamical fuzzy system

(Wu et al., 2005) that can be expressed in the form: Ri: If xj is Mji, i = 1, 2, 3, 4 and

j = 1, 2, 3, then

ẋ(t) = Aix (t) +Biu (t) , x (0) = 0, t ∈ [0, tf] , (4.4)

where

75

ẋ (t) =

ẋ1 (t)

ẋ2 (t)

ẋ3 (t)

 =

Ṅ (t)

Q̇ (t)

Ṡ (t)

 ,

Ai =

z1 0 0

0 µmax 0

0 0 z2

 , Bi =

0

0

1

,

z1 = µmax
Q (t)

1 +Q (t)
S (t) , z2 = −µmax

Q(t)
1+Q(t)

N(t)
Yn

s

,

Ri denotes the ith rule of the fuzzy model, Mji is membership function, x (t) ∈ Rn is a

generalized state space vector, u (t) ∈ Rm is a control variable and it takes value in some

Euclidean space, and A ∈ Rn×n, B ∈ Rn×m are coefficient matrices associated with x(t)

and u(t) respectively, x0 is given initial state vector and m ≤ n. Consider the system of

differential equation for given below

K̇i (t) +Ki (t)Ai + AT
i Ki (t) +Q−Ki (t)BiR

−1BT
i Ki (t) = 0 (4.5)

in each rule of the fuzzy model

k̇ij (t) = ϕij (kij (t)) , (kij) (tf) = Aij, (i, j = 1, 2, ..n).

Consider the optimal control problem:

J = E

{
1

2
xT (tf)F

T
i SFix (tf) +

1

2

ˆ tf

0

[
xT (t)Qx (t) + uT (t)Ru (t)

]
dt

}
,

subject to the linear T-S fuzzy system Ri: If xj is Mji , i = 1, 2, 3, 4 and j = 1, 2, 3,

then following the eq.(4.4). The values of x1, x2 and x3 are taken as x1 ∈ [0.0, 0.5],

x2 ∈ [0.0, 0.5] and x3 ∈ [0.0, 0.5]. The value of µmax is given as 9.006. The minimum

and maximum values of z1 and z2 are calculated as follows:

max z1 (t) = 0.3333, min z1 (t) = 0.0,

max z2 (t) = 0.0, min z2 (t) = −0.16667.

76

Table 4.9: Results comparison between the ACP and exact solutions.

ACP Exact
t k11 k11

1.0 3.3693 3.3692
1.1 3.0553 3.0552
1.2 2.7615 2.7614
1.3 2.4867 2.4866
1.4 2.2296 2.2295
1.5 1.9890 1.9889
1.6 1.7640 1.7639
1.7 1.5535 1.5535
1.8 1.3566 1.3566
1.9 1.1723 1.1723
2.0 1.0000 1.0000

Therefore the membership functions can be computed

Model Rule 1: If z1(t) is Positive and z2(t) is Big, Then ẋ (t) = A1x (t) +Bu .

Model Rule 2: If z1(t) is Positive and z2(t) is Small, Then ẋ (t) = A2x (t) +Bu.

Model Rule 3: If z1(t) is Negative and z2(t) is Small, Then ẋ (t) = A3x (t) + Bu.

Model Rule 4: If z1(t) is Negative and z2(t) is Big, Then ẋ (t) = A4x (t) +Bu.

Here

S =

 1 0

0 0

, A1 =

0.3333 0 0

0 9.006 0

0 0 0

, A2 =

0.3333 0 0

0 9.006 0

0 0 0.16667

 ,

A3 =

0 0 0

0 9.006 0

0 0 0

 , A4 =

0 0 0

0 9.006 0

0 0 0.16667

 , Bi =

0

0

1

,

R = 0, Q =

1 0 0

0 0 0

0 0 0

.

The numerical implementation could be adapted by taking tf = 2 for solving the related

MRDE of the above linear system. The appropriate matrices are substituted in (4.5), the

MRDE is transformed into system of differential equation in k11 and k12. The numerical

solutions of MRDE are calculated and displayed in Table 4.9. Similarly the solution of

the above system with the matrix A2, A3 and A4 can be found out using ACP.

By generating the graph randomly, 80 generations with 50-100 number of ants each, are

sent out through the graph with ρ = 0.5 and β = 1. In Figure 4.19, the trial solutions are

77

Table 4.10: Comparison results for k11(t) between the ACP and GP.

k11(t) Average No. Generations Average No. Ants Average Time(secs)
ACP 45 80 120.53
GP 234 - -

plotted. These trial solutions are compared with the exact solution given as:

k11 (t) =
8333
3333e

−3333
5000

t+ 3333
2500 − 5000

3333 .

At 13th generation, the trial solution computed the fitness values was 0.4444 at t = 2 and

the expression was:

Tours := k11 (t) = e (2− t) ;

Expressions := k11 (t) = e2−t.

After the global pheromone update, the ACP method gives an expression with the fitness

function equals to 0.2172 its functional form is given as:

Tours := k11 (t) = 6/5 ∗ e (2− t)− 1/5;

Expressions := k11 (t) =
6
5e

2−t − 1
5

at 28th generation. Later at 43rd generation, the ACP predicted an expression with a

fitness function less than 0.0707 with its functional form given as:

Tours := k11 (t) = 7/5 ∗ e (2− t)− 2/5;

Expressions := k11 (t) =
7
5e

2−t − 2
5 .

Only after reaching 70th generation, the final solution is obtained. The fitness function is

4.4e−09 and the expression was given as:

Tours := k11 (t) = 5/2 ∗ e ((4− 2 ∗ t)/3)− 3/2;

Expressions := k11 (t) =
5
2e

4−2t − 3
2 .

The parse trees for the solutions k11 is shown in Figure 4.20. The comparison between

the ACP and GP method are given in Table 4.10.

78

1.0 1.2 1.4 1.6 1.8 2.0

1.0

1.5

2.0

2.5

3.0

3.5

k
1

1

t

 k
11

13

 k
11

28

 k
11

43

 k
11

70

 Exact

Figure 4.19: Candidate solutions

79

*

5

-

2

e

t

4

-

*

2

3

/

2

*

/ 3

Figure 4.20: Tours of ant and its parse tree.

80

CHAPTER 5

SOLUTION OF MATRIX RICCATI DIFFERENTIAL EQUATION OF

OPTIMAL FUZZY CONTROLLER DESIGN WITH SIMULINK

In this chapter, we implement the Simulink approach to compute the solution of MRDE.

Simulink is a graphical extension in MATLAB and is best for modeling and simulation

of dynamic systems and this includes the nonlinear system. Another advantage is its

capability to take on initial conditions for dynamical systems. Simulink runs based on

systems drawn as a block of diagrams which can be translated either as system of ordinary

differential equations, transfer functions, signal routing etc. Therefore its a very useful

tools for everyone. The Simulink approach suggests an alternative method to solve the

MRDE and nonlinear fuzzy modelling problems discussed in this present work.

5.1 Nonlinear singular system with cross term

In this section, we are dealing with the optimal control problem where a quadratic perfor-

mance index is required to be minimized. Consider the optimal control problem, where

J =
1

2

(
xT (t)Qx (t) + uT (t)Ru (t) + 2uT (t)Hx (t)

)
dt,

is minimized, subject to the linear singular fuzzy system Ri :

If z1(t) is Mi1 and z2(t) is Mi2 then

Eiẋ(t) = Ai (x)x (t) +Biu (t) , x (0) = x0, i = 1, 2, .., r

where

ẋ (t) =

 ẋ1 (t)

ẋ2 (t)

, x (t) =

 x1 (t)

x2 (t)

 , Ei =

 3 0

0 0

,

81

Table 5.1: T-S Fuzzy Model Implication

Implication Premise Consequence Truth Value
Rule 1 M1(z1) = 0.5483, ẋ1 = 0.25, 0.5483

∧
0.2498 = 0.2498

N1(z2) = 0.2498 ẋ2 = 8.5075

Rule 2 M1(z1) = 0.5483, ẋ1 = 0.25, 0.5483
∧

0.7502 = 0.5483
N2(z2) = 0.7502 ẋ2 = 7.2575

Rule 3 M2(z1) = 0.4517, ẋ1 = 0.25, 0.4517
∧

0.2498 = 0.2498
N1(z2) = 0.2498 ẋ2 = 2.0725

Rule 4 M1(z1) = 0.4517, ẋ1 = 0.25, 0.4517
∧

0.7502 = 0.4517
N1(z2) = 0.7502 ẋ2 = 0.8225

Ai (x) =

 0 1

z1 (t) z2 (t)

, H =

[
1 0

]
, Bi =

 0

1

, R = 1, Q =

 1 0

0 0

are substituted in the equation given below

ET
i K̇iEi + ET

i KiAi + AT
i KiEi +Q−

(
HT + ET

i KiBi

)
R−1

(
H +BT

i KiEi

)
= 0,

where z1(t) = x1(t) and z2(t) = x2(t). Let x1 ∈ [0.5, 3.5] and x2 ∈ [−1, 4]. The

minimum and maximum values of z1 and z2 can be calculated, the membership functions

can be obtained. Then, the nonlinear system is represented by the following fuzzy model.

Model Rule 1: If z1(t) is Positive and z2(t) is Big, Then ẋ (t) = A1x (t) +Bu .

Model Rule 2: If z1(t) is Positive and z2(t) is Small, Then ẋ (t) = A2x (t) +Bu.

Model Rule 3: If z1(t) is Negative and z2(t) is Small, Then ẋ (t) = A3x (t) +Bu.

Model Rule 4: If z1(t) is Negative and z2(t) is Big, Then ẋ (t) = A4x (t) +Bu.

Here

A1 (x) =

 0 1

3.5 4

, A2 (x) =

 0 1

3.5 −1

, A3 (x) =

 0 1

0.5 4

,

A4 (x) =

 0 1

0.5 −1

 .

If z1 = x1 = 2.145 and z2 = x2 = 0.25, the T-S fuzzy modelling implication can be

derived as in Table 5.1. Now the final values for ẋ1 and ẋ2 in the T-S fuzzy defuzzification

process, can be calculated as:

ẋ1 =
(0.2498�0.25)+(0.5483�0.25)+(0.2498�0.25)+(0.4517�0.25)

(0.2498+0.5483+0.2498+0.4517) = 0.25,

ẋ2 =
(0.2498�8.5075)+(0.5483�7.2575)+(0.2498�2.0725)+(0.4517�0.8225)

(0.2498+0.5483+0.2498+0.4517) = 4.6639.

The results of ẋ1 and ẋ2 from the T-S fuzzy approximation are either close or similar

to the original system where ẋ1 = 0.2490 and ẋ2 = 4.6630. The Simulink model shown in

82

-

+

1/s1/16

Integrator1
Gain

1/s

Integrator2

Gain1

Scope

5/4

-1/4

u
2

Math Function

Gain2

Figure 5.1: Simulink Model.

Figure 5.1 represents the systems of differential equations in k11 and k12, with the terminal

conditions k11(2) = 1.0 and k12(2) = 0.0 .

These numerical solutions of MRDE are shown in Table 5.2. Similarly the solution of

the above system with the matrix A2, A3 and A4 can be solved using simulink. The solu-

tion of MRDE of optimal fuzzy controller design for nonlinear singular system with cross

term has been obtained by using Simulink. The results are similar to the exact solution.

A numerical example is given to illustrate the proposed method. The computational work

of the optimal solutions are done in Matlab on PC, CPU 2.0GHz.

5.2 Fuzzy modelling of microbial type growth model for ethanol fermentation pro-

cess and the optimal control using Simulink

5.2.1 S-type microbial growth model

The theoretical details for this S-type microbial growth model has been described in the

previous chapter. Consider the optimal control problem,

83

Table 5.2: Solutions of MRDE.

Exact Simulink
t k11 (t) k12 (t) k11 (t) k12 (t)

0.0 0.0860 0.2285 0.01231 0.0860
0.2 0.1103 0.2224 0.1103 0.2224
0.4 0.1415 0.2146 0.02760 0.2146
0.6 0.1813 0.2047 0.1813 0.2047
0.8 0.2322 0.1920 0.2321 0.1920
1.0 0.2971 0.1757 0.2971 0.1757
1.2 0.3799 0.1550 0.3799 0.1550
1.4 0.4852 0.1287 0.4852 0.1287
1.6 0.6187 0.0953 0.6187 0.0953
1.8 0.7875 0.0531 0.7875 0.0531
2.0 1.00000 0.00000 1.00000 0.0000

J =
1

2
xT (tf)Sx (tf) +

1

2

ˆ tf

0

[
xT (t)Qx (t) + uT (t)Ru (t)

]
dt

is minimized with subject to the linear T-S fuzzy system Ri: If xj is Mji, i = 1, ..., 4

and j = 1, 2, 3. Then the values of x1, x2 and x3 are taken as x1 ∈ [1.68e−06, 0.478] ,

x2 is fixed and x3 ∈ [0.306, 0.542]. The value of µmax is given in (Baranyi & Roberts,

1994) (i.e. µmax = 9.006, whereas YN/S = 19.5147). The minimum and maximum values

of z1 and z2 can be calculated and the membership functions can be obtained. Then, the

nonlinear system is represented by the following fuzzy model:

Model Rule 1: If z1(t) is Positive and z2(t) is Big, Then ẋ (t) = A1x (t) +Bu.

Model Rule 2: If z1(t) is Positive and z2(t) is Small, Then ẋ (t) = A2x (t) +Bu.

Model Rule 3: If z1(t) is Negative and z2(t) is Small, Then ẋ (t) = A3x (t) + Bu.

Model Rule 4: If z1(t) is Negative and z2(t) is Big, Then ẋ (t) = A4x (t) +Bu.

Here

A1 =

2.65 0 0

0 9.01 0

0 0 6.64e− 04

, A2 =

2.65 0 0

0 9.01 0

0 0 4.27e− 07

 ,

A3 =

−1.47e− 02 0 0

0 9.01 0

0 0 6.64e− 04

 , A4 =

−1.47e− 02 0 0

0 9.006 0

0 0 −4.2e− 07

 ,

84

Table 5.3: T-S fuzzy model implication

Implication Premise Consequence Truth Value
Rule 1 M1(z1) = 0.10 ẋ1 = 2.65e−05 M1(z1) ∧N1(z2) = N1(z2)

N1(z2) = 2.19e−06 ẋ2 = 0.90
ẋ3 = 2e−04

Rule 2 M1(z1) = 0.10 ẋ1 = 2.65e−05 M1(z1) ∧N2(z2) = M1(z1)
N2(z2) = 1.0 ẋ2 = 0.90

ẋ3 = −1.30e−07

Rule 3 M2(z1) = 0.90 ẋ1 = −1.47e−07 M2(z1) ∧N1(z2) = N1(z2)
N1(z2) = 2.19e−06 ẋ2 = 0.90

ẋ3 = 2.06e−04

Rule 4 M2(z1) = 0.90 ẋ1 = −1.47e−07 M2(z1) ∧N2(z2) = M2(z1)
N2(z2) = 1.0 ẋ2 = 0.90

ẋ3 = −1.30e−07

Bi =

0

0

1

, R = 0, Q =

1 0 0

0 0 0

0 0 0

.

If x1 = 1.0e−05, x2 = 0.1 and x3 = 0.31 , the T-S fuzzy modelling implication can be

derived as in Table 5.3. Now the final values for ẋ1 and ẋ3, in T-S fuzzy defuzzification

process, can be calculated as:

ẋ1 =
(0.2498·0.25)+(0.5483·0.25)+(0.2498·0.25)+(0.4517·0.25)

(0.2498+0.5483+0.2498+0.4517)
= 0.25,

ẋ2 =
(0.2498·8.5075)+(0.5483·7.2575)+(0.2498·2.0725)+(0.4517·0.8225)

(0.2498+0.5483+0.2498+0.4517)
= 4.6639

Comparing the values of ẋ1 = 2.54e−06 and ẋ3 = −1.30e−07 of the original system, the

T-S fuzzy approximation is more or less similar. The numerical implementation could be

adapted by taking tf = 2 for solving the related MRDE of the above linear system. The

appropriate matrices are substituted in the equation given below,

K̇ii +KiAi + AT
i Ki +Q−KiBiR

−1BT
i Ki = 0

and the MRDE is transformed into system of differential equation in k11, k12, k13, k22,

k23 and k33. The equidistant points in the interval [0, 2] are taken as input vector. The

Simulink model is shown in Figure 5.2 represents the systems of differential equations

with the terminal conditions k11 = 1.0 and k12 = k13 = k22 = k23 = k33 = 0.0. The

numerical solutions of MRDE are calculated and displayed in Table 5.4. In the similar

way, the MRDE can be solved for the matrices A2, A3 and A4.

85

-

1/s

5.3072

Integrator1
Gain

1/s

Integrator2Gain1

Scope

-1

Constant1

-

-11.66

1/s

Integrator3Gain2

-2.654

1/s

Integrator4Gain3

-9.007

1/s

Integrator5Gain4

-18.012

1/s

Integrator6Gain5

-0.0013

Figure 5.2: Simulink Model

86

Table 5.4: Solutions for MRDE

Exact Simulink
t k11 k11
0 48389 48389

0.24 13690 13693
0.44 4736 4737
0.64 1639 1639
0.72 1072 1072
0.84 568 567
1.04 197 196
1.24 68 68
1.44 23 23
1.84 3 3

2 1 1

5.2.2 P-type microbial growth model

The incapability of the reference growth model (Baranyi & Roberts, 1994) to explain

complicated and realistic situation (e.g., co-cultural growth, growth in structured media)

due to the lacks of mechanistic base in the model itself have urged other researchers

to extend and improve the microbial predictive growth model. Van Impe et al. (2006)

reported in their work where they had proposed two novel class of predictive growth

models. In this work, the P-type has been applied together with the T-S fuzzy system.

The P-type microbial growth model is given below as

Ṅ(t) =
(

Q(t)
1+Q(t)

)
.µmax.

(
1− P (t)

Kp

)
.N(t) with N(t = 0) = N0,

Q̇(t) = µmax.Q(t) with Q(t = 0) = Q0,

Ṡ(t) = −
(

Q(t)
1+Q(t)

)
.µmax.

(
1− P (t)

Kp

)
.N(t) with S(t = 0) = N0.

The first differential equation describes the evolution of the microbial load N(t) in time. It

consists of the adjustment function which describes the lag phase by means of a variable

representing the physiological state of the cells Q(t), as well as the inhibition function

which is a linear function of the toxic product concentration P (t). The second differential

equation, describes the evolution of Q(t), which increase exponentially, whereas the third

differential equation represents the evolution of the toxic product concentration P (t). KP

refers as the concentration of the product at which growth ceases whereas 1/KP described

as the sensitivity of the microbial cell towards P (t).

For the P-type microbial growth, to deal with the optimal control problem and to minimize

with subject to the linear T-S fuzzy system, the procedure is almost similar to the one

87

described for the S-type microbial growth. For this case, the value of µmax and KP is

given in (Van Impe et al., 2006) (i.e., µmax= 9.006, KP = 7.5022). The minimum and

maximum values z1, z2, z3 and z4 can be calculated and the membership functions can be

obtained. Then, the nonlinear system is represented by the following fuzzy model.

Model Rule 1: If z1(t) is Positive , z2(t) is Big, z3(t) is Positive, z4(t) is Big Then

ẋ (t) = A1x (t) +Bu .

Model Rule 2: If z1(t) is Positive, z2(t) is Big, z3(t) is Positive, z4(t) is Small Then

ẋ (t) = A2x (t) +Bu.

: : : : : : :

Model Rule 16: If z1(t) is Negative and z2(t) is “Small”, z3(t) is Negative, z4(t) is Big,

Then ẋ (t) = A16x (t) +Bu.

Here

S =

1 0 0

0 0 0

0 0 0

 , B =

0

0

1

 , R = 0, Q =

1 0 0

0 0 0

0 0 0

,

A1 (x) =

4.896 0 5.37e−10

0 9.01 0

0.018 0 0.3119

, A2 (x) =

4.896 0 −0.3119

0 9.01 0

0.018 0 0.3119

,

A3 (x) =

4.896 0 5.37e−10

0 9.01 0

−4.896 0 0.3119

, A4 (x) =

4.896 0 5.37e−10

0 9.01 0

0.018 0 −5.37e−10

,

A5 (x) =

−0.018 0 5.37e−10

0 9.01 0

0.018 0 0.3119

, A6 (x) =

−0.018 0 −0.3119

0 9.01 0

0.018 0 0.3119

,

A7 (x) =

−0.018 0 −0.3119

0 9.01 0

0.018 0 0.3119

, A8 (x) =

−0.018 0 5.37e−10

0 9.01 0

0.018 0 −5.37e−10

,

A9 (x) =

4.896 0 −0.3119

0 9.01 0

−4.896 0 0.3119

, A10 (x) =

4.896 0 −0.3119

0 9.01 0

−4.896 0 −5.37e−10

,

88

A11 (x) =

4.896 0 −0.3119

0 9.01 0

0.018 0 −5.37e−10

, A12 (x) =

4.896 0 5.37e−10

0 9.01 0

−4.896 0 −5.37e−10

,

A13 (x) =

−0.0185 0 −0.3119

0 9.01 0

−4.896 0 0.3119

, A14 (x) =

−0.0185 0 −0.3119

0 9.01 0

−4.896 0 −5.37e−10

,

A15 (x) =

−0.0185 0 −0.3119

0 9.01 0

−4.896 0 −5.37e−10

, A16 (x) =

−1.47e−02 0 0

0 9.01 0

0 0 −4.2e−07

 .

If x1 = 1.74e−07, x2 = 7.0e−04 and x3 = 1.0e−09 , the T-S fuzzy modelling impli-

cation can be derived as in Tables 5.5 and 5.6. Now the final values for and in T-S fuzzy

defuzzification process, can be calculated and is shown in Table 5.7.

ẋ1 = 8.44e−09/1.02 = 8.3e−09, ẋ3 = −8.44e−09/1.02 = −8.3e−09.

Comparing the values of ẋ1 = 1.46e−10 and ẋ3 = −1.46e−10 of the original system,

the T-S fuzzy approximation is more or less similar. The numerical implementation could

be adapted by taking tf = 1 for solving the related MRDE of the above linear system.

The appropriate matrices are substituted in equation given below:

K̇ii +KiAi + AT
i Ki +Q−KiBiR

−1BT
i Ki = 0.

The MRDE is transformed into system of differential equation in k11, k12, k13, k22,

k23 and k33. The equidistant points in the interval [0,1] are taken as input vector. The

simulink model is shown in Fig. 5.3 represents the systems of differential equations with

the terminal conditions k11 = 1.0 and k12 = k13 = k22 = k23 = k33 = 0.0. The numerical

solutions of the MRDE are computed and shown in Table 5.8. Similarly, the MRDE can

be solved for the matrices A1, A2, A3,..., and A16.

89

Table 5.5: T-S fuzzy model implication: Rule 1 - Rule 8.

Implication Premise Consequence Truth Value
Rule 1 M1(z1) = 4.848e−03 ẋ1 = 8.519e−07 M1(z1) ∧N1(z2) ∧R1(z3) ∧ S1(z4) = N1(z2)

N1(z2) = 6.348e−04 ẋ2 = 6.304e−03

R1(z3) = 0.9952 ẋ3 = 3.361e−09

S1(z4) = 0.9994

Rule 2 M1(z1) = 4.848e−03 ẋ1 = 8.519e−07 M1(z1) ∧N1(z2) ∧R1(z3) ∧ S2(z4) = N1(z2)

N1(z2) = 6.348e−04 ẋ2 = 6.304e−03

R1(z3) = 0.9952 ẋ3 = 3.361e−09

S2(z4) = 6.348e−04

Rule 3 M1(z1) = 4.848e−03 ẋ1 = 8.519e−07 M1(z1) ∧N1(z2) ∧R2(z3) ∧ S1(z4) = N1(z2)

N1(z2) = 6.348e−04 ẋ2 = 6.304e−03

R2(z3) = 4.848e−03 ẋ3 = −8.519e−07

S1(z4) = 0.9994

Rule 4 M1(z1) = 4.848e−03 ẋ1 = 8.519e−07 M1(z1) ∧N2(z2) ∧R1(z3) ∧ S1(z4) = M1(z1)

N2(z2) = 0.9994 ẋ2 = 6.304e−03

R1(z3) = 0.9952 ẋ3 = 3.049e−09

S1(z4) = 0.9994

Rule 5 M2(z1) = 0.9952 ẋ1 = −3.049e−09 M2(z1) ∧N1(z2) ∧R1(z3) ∧ S1(z4) = N1(z2)

N1(z2) = 6.348e−04 ẋ2 = 6.304e−03

R1(z3) = 0.9952 ẋ3 = 3.361e−09

S1(z4) = 0.9994

Rule 6 M2(z1) = 0.9952 ẋ1 = −3.049e−09 M2(z1) ∧N1(z2) ∧R1(z3) ∧ S2(z4) = N1(z2)

N1(z2) = 6.348e−04 ẋ2 = 6.304e−03

R1(z3) = 0.9952 ẋ3 = 3.361e−09

S2(z4) = 6.348e−04

Rule 7 M2(z1) = 0.9952 ẋ1 = −3.049e−09 M2(z1) ∧N1(z2) ∧R2(z3) ∧ S1(z4) = N1(z2)

N1(z2) = 6.348e−04 ẋ2 = 6.304e−03

R2(z3) = 4.848e−03 ẋ3 = −8.561e−07

S1(z4) = 0.9994

Rule 8 M2(z1) = 0.9952 ẋ1 = −3.049e−09 M2(z1) ∧N2(z2) ∧R1(z3) ∧ S1(z4) = R1(z3)

N2(z2) = 0.9994 ẋ2 = 6.304e−03

R1(z3) = 0.9952 ẋ3 = −8.561e−07

S1(z4) = 0.9994

90

Table 5.6: T-S fuzzy model implication: Rule 9 - Rule 16.

Implication Premise Consequence Truth Value
Rule 9 M1(z1) = 4.848e−03 ẋ1 = 8.519e−07 M1(z1) ∧N1(z2) ∧R2(z3) ∧ S2(z4) = N1(z2)

N1(z2) = 6.348e−04 ẋ2 = 6.304e−03

R2(z3) = 4.848e−03 ẋ3 = −8.519e−07

S2(z4) = 6.348e−04

Rule 10 M1(z1) = 4.848e−03 ẋ1 = 8.519e−07 M1(z1) ∧N2(z2) ∧R2(z3) ∧ S2(z4) = S2(z4)

N2(z2) = 0.9994 ẋ2 = 6.304e−03

R2(z3) = 4.848e−03 ẋ3 = −8.519e−07

S2(z4) = 6.348e−04

Rule 11 M1(z1) = 4.848e−03 ẋ1 = 8.519e−07 M1(z1) ∧N2(z2) ∧R1(z3) ∧ S2(z4) = S2(z4)

N2(z2) = 0.9994 ẋ2 = 6.304e−03

R1(z3) = 0.9952 ẋ3 = 3.049e−09

S2(z4) = 6.348e−04

Rule 12 M1(z1) = 4.848e−03 ẋ1 = 8.519e−07 M1(z1) ∧N2(z2) ∧R2(z3) ∧ S1(z4) = M1(z1)

N2(z2) = 0.9994 ẋ2 = 6.304e−03

R2(z3) = 4.848e−03 ẋ3 = −8.519e−07

S1(z4) = 0.9994

Rule 13 M2(z1) = 0.9952 ẋ1 = −3.360e−09 M2(z1) ∧N1(z2) ∧R2(z3) ∧ S2(z4) = N1(z2)

N1(z2) = 6.348e−04 ẋ2 = 6.304e−03

R2(z3) = 4.848e−03 ẋ3 = −8.519e−07

S2(z4) = 6.348e−04

Rule 14 M2(z1) = 0.9952 ẋ1 = −3.360e−09 M2(z1) ∧N2(z2) ∧R2(z3) ∧ S2(z4) = S2(z4)

N2(z2) = 0.9994 ẋ2 = 6.304e−03

R2(z3) = 4.848e−03 ẋ3 = −8.519e−07

S2(z4) = 6.348e−04

Rule 15 M2(z1) = 0.9952 ẋ1 = −3.360e−09 M2(z1) ∧N2(z2) ∧R1(z3) ∧ S2(z4) = S2(z4)

N2(z2) = 0.9994 ẋ2 = 6.304e−03

R1(z3) = 0.9952 ẋ3 = 3.049e−09

S2(z4) = 6.348e−04

Rule 16 M2(z1) = 0.9952 ẋ1 = −3.049e−09 M2(z1) ∧N2(z2) ∧R2(z3) ∧ S1(z4) = R2(z3)

N2(z2) = 0.9994 ẋ2 = 6.304e−03

R2(z3) = 4.848e−03 ẋ3 = −8.519e−07

S1(z4) = 0.9994

91

Table 5.7: Solutions for ẋ1 (t)and ẋ3 (t)

j hj (zj (t)) Ajx1 (t) hj (zj (t)) ·Ajx1 (t) Ajx3 (t) hj (zj (t)) ·Ajx1 (t)

1 6.35e−04 8.52e−07 5.41e−10 3.36e−09 2.13e−12

2 6.35e−04 8.52e−07 5.41e−10 3.36e−09 2.13e−12

3 6.35e−04 8.52e−07 5.41e−10 −8.50e−07 −5.40e−10

4 4.85e−03 8.52e−07 4.13e−09 3.05e−09 1.48e−11

5 6.35e−04 −3.05e−09 −1.94e−12 3.36e−09 2.13e−12

6 6.35e−04 −3.36e−09 −2.13e−12 3.36e−09 2.13e−12

7 6.35e−04 −3.05e−09 −1.94e−12 −8.50e−07 −5.40e−10

8 9.95e−01 −3.05e−09 −3.03e−09 3.05e−09 3.03e−09

9 6.35e−04 8.52e−07 5.41e−10 −8.50e−07 −5.40e−10

10 6.35e−04 8.52e−07 5.41e−10 −8.50e−07 −5.40e−10

11 6.35e−04 8.52e−07 5.41e−10 3.05e−09 1.94e−12

12 4.85e−03 8.52e−07 4.13e−09 −8.50e−07 −4.10e−09

13 6.35e−04 −3.36e−09 −2.13e−12 −8.50e−07 −5.40e−10

14 6.35e−04 −3.36e−09 −2.13e−12 −8.50e−07 −5.40e−10

15 6.35e−04 −3.36e−09 −2.13e−12 3.05e−09 1.94e−12

16 4.85e−03 −3.05e−09 −1.48e−11 −8.50e−07 −4.10e−09

SUM= 1.02 8.44e−09 8.44e−09

Table 5.8: Solutions for k11(t)

t Simulink Exact
0 19717 19717

0.32 859 859
0.64 37 37
0.8 8 8
1 1 1

92

-

1/s

9.7918 Integrator1

Gain1

Scope

-1
Constant1

-

-

5.37e
-10

-

1/s

Integrator2

-

13.9019

5.37e
-10

-

1/s

Integrator3

-

0.035

5.2078

Gain2

Gain3

Gain4

Gain5

Gain6

-

1.07e
-9

Gain7

-

1/s
-

13.9019

Gain3

1/s

18.012

Gain8

-
1/s

Integrator5

-

0.0175

9.32

Gain10

-
-

Gain9

Integrator4

-
1/s

Integrator6

-

6.24e
-1

Gain5

Gain111.75e
-2

Gain12

Figure 5.3: Simulink Model

93

CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, a modified ACP have been developed. The function of this modified ACP

approach is to generate solutions which is similar or close to the analytical answers, in the

form of expressions. This novel approach has shown its validity for solving the ODEs,

NLODE, SODE, PDEs and SPDEs. Furthermore, we implemented the ACP for solving

the MRDE in linear and nonlinear fuzzy optimal control problem. It is found that the

modified ACP can be used to solve complicated differential equations with reasonable

computational time. In the ACP method, the average number of generations for finding

the solutions increased as the differential equations become more difficult. Comparison

between the ACP and the GP method showed that the present ACP gives faster solutions

within reasonable range of average number of generations. By manipulating the terminal

criteria, the ACP solution predicted either complete agreement or approximately close

answer to the exact solution. This approach is very vital for solving complicated dif-

ferential equations which suggest or predict simpler solutions with very good accuracy.

We have also demonstrated conclusively that the Simulink approach provides an alterna-

tive method to solve the MRDE and nonlinear fuzzy modelling problems without writing

complex coding.

For our future work, we tend to add more terminal symbols and functions in the ACP

algorithm in order to test it out with other more complicated differential equations which

are used in dynamical and engineering systems. We also hope that this modified ACP

approach can be used for other problems such as identifying the structure of unknown

molecules especially in the analysis of complex biological samples, generating music or

language by moving the artificial ants on a space graph with vertices and edges . As the

ant chooses its way, the pheromone is deposited on the edges, simultaneously building up

94

a melody or a sentence.

95

PUBLICATIONS UNDER REVIEW

1. M. Z. M. Kamali, N. Kumaresan, and Kuru Ratnavelu, Solution of fuzzy modelling of

engineering and scientific problems using Ant Colony Programming, Applied Mathematical

Modelling, (under review).

2. M. Z. M. Kamali, N. Kumaresan, and KuruRatnavelu, Modified ant colony programming

for solving matrix Riccati differential equation with linear singular fuzzy system: cross term

and singular cost, (to be submitted).

3. M. Z. M. Kamali, N. Kumaresan, Koshy Philip and Kuru Ratnavelu, Fuzzy modelling of

optimal control ethanol fermentation process using ant colony programming, (to be submit-

ted).

96

References

Abdul Samath, J., & Selvaraju, N. (2010). Solution of matrix riccati differential equation for

nonlinear singular system using neural networks. Int. J. Comput. Appl., 1, 48-55.

Adair, C., & Briggs, P. (1993). The concept and application of expert systems in the field of

microbiological safety. J Ind. Microbiol., 12, 263-267.

Ast, J. v., Babuska, R., & Schutter, B. D. (2009). Fuzzy ant colony optimization for optimal

control. In American control conference.

Back, T. (1998). An overview of parameter control methods by self-adaptation in evolutionary

algorithms. Fundam. Inf., 35, 51-66.

Balasubramaniam, P., & Kumar, A. V. A. (2009). Solution of matrix riccati differential equation

for nonlinear singular system using genetic programming. Genet. Program. Evol. M., 10,

71-89.

Balasubramaniam, P., Samath, J. A., & Kumaresan, N. (2007 a). Optimal control for nonlinear

singular systems with quadratic performance using neural networks. Appl. Math. Comput.,

187, 1535–1543.

Balasubramaniam, P., Samath, J. A., Kumaresan, N., & Kumar, A. V. A. (2006). Solution of matrix

riccati differential equation for the linear quadratic singular system using neural networks.

Appl. Math. Comput., 182, 1832-1839.

Balasubramaniam, P., Samath, J. A., Kumaresan, N., & Kumar, A. V. A. (2007 b). Neuro approach

for solving matrix riccati differential equation,. Neural Parallel Sci. Comput., 15, 125-135.

Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food,.

Int. J. Food Microbiol., 23, 277-294.

Baranyi, J., & Roberts, T. A. (1995). Mathematics of predictive food microbiology. Int. J. Food

Microbiol., 26, 199-218.

Bedrossian, N., Bhatt, S., Kang, W., & Ross, I. M. (2009). Zero-propellant maneuver guidance.

IEEE Contr. Syst. Mag., 29, 53-73.

Bellman, R. E. (1957). Dynamic programming. Princeton University Press.

Bhatt, S. (2007). Optimal reorientation of spacecraft using only control moment gyroscopes

97

(Unpublished master’s thesis). Dept. of Computational & Applied Mathematics, Rice Univ.,

Houston.

Boltyanskii, V., Gamkrelidze, R., & Pontryagin, L. (1956). Towards a theory of optimal processes.

Reports Acad. Sci. USSR, 110.

Boryczka, M. (2002). Ant colony programming for approximation problems. In Proceedings of

the Eleventh International, Symposium on Intelligent Information Systems, Sopot, Poland.

Boryczka, M. (2005). Eliminating introns in ant colony programming,. Fund. Inform., 68, 1-19.

Boryczka, M., & Czech, Z. J. (2002). Solving approximation problems by ant colony pro-

gramming. In Breaking Papers at the Genetic and Evolutionary Computation Conference

(GECCO-2002).

Boryczka, M., Czech, Z. J., & Wieczorek, W. (2003). Ant colony programming for approximation

problems. In Proceedings of the Genetic and Evolutionary Computation (GECCO-2003).

Boryczka, M., & Wiezorek, W. (2003). Solving approximation problems using ant colony pro-

gramming,. In Proceedings of AIMETH.

Brown, M. H., Davies, K. W., Billon, C., Adair, C., & McClure, P. J. (1998). Quantitative

microbiological risk assessment: principles applied to determining the comparative risk of

salmonellosis from chicken products. J. Food Prot., 61, 1446-1453.

Burgess, G. (1999). Surveillance system division, electronics and surveillance research laboratory.

In (chap. Finding Approximate Analytical Solutions to Differential Equations Using Genetic

Programming). Department of Defense, Australia.

Cao, J., Li, P., & Liu, H. (2011). Fuzzy controllers, theory and applications. In (chap. Adap-

tive Fuzzy Modelling and Control for Non-Linear Systems Using Interval Reasoning and

Differential Evolution). Lucian Grigorie (Ed.), ISBN: 978-953-307-543-3, InTech (2011).

Cao, S. G., Rees, N. W., & Feng, G. (1996). Fuzzy control of nonlinear continuous-time systems.

Proc. 35th IEEE Conf. Decision and Control, 592-597.

Chen, F. C., & Liu, C. C. (1994). Adaptive controlling nonlinear continuous-time using multilayer

neural networks. IEEE. Trans. Automat. Control, 39, 1306-1310.

Chen, S., Li, X., & Zho, X. (1998). Stochastic linear quadratic regulators with indefinite control

weight costs. SIAM J. Control Optim., 36(5), 1685-1702.

Dalgaard, P., Buch, P., & Silberg, S. (2000). SSP online-an internet version of the seafood spoilage

predictor software. In Proceedings of 1st International Conference on Simulation in Food

and Bio Industries.

Davey, K. (1991). Applicability of the davey(linear arrhenius) predictive model to the lag phase

98

of microbial growth. J. Appl. Bacteriol., 70, 253-257.

Dorigo, M. (1992). Optimization, learning and natural algorithms (in italian) (Unpublished

doctoral dissertation). Dipartimento di Elettronica, Politecnico di Milano, Italy.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of

cooperating agents. IEEE T. Syst. Man. Cy. B, 26(1), 29-41.

Fasshauer, G. E. (1999). Solving differential equations with radial basis functions: Multilevel

methods and smoothing,. Adv. Comput. Math., 11, 139-159.

Garcia-Gimeno, R. M., Hervas-Martinez, C., & de Siloniz, I. (2002). Improving artificial neu-

ral networks with a pruning methodology and genetic algorithms for their application in

microbial growth prediction in foods. Int. J. Food Microbiol., 72, 19-30.

Ghanbari, G., & Farahi, M. H. (2014). Optimal control of a delayed HIV infection model via

fourier series. Journal of Nonlinear Dynamics, 2014.

Gibson, A. M., Bratchell, N., & Roberts, T. A. (1987). The effect of sodium chloride and temper-

ature on the rate and extent of growth of clostridium botulinum type a in pasteurized pork

slurry. J. Appl. Bacteriol., 62, 479-490.

Gibson, A. M., Bratchell, N., & Roberts, T. A. (1988). Predicting microbial growth: grogro

responses of salmonellae in a laboratory mdeium as affected by ph, sodium chloride and

storage temperature. Int. J. Food Microbiol., 6(2), 155-178.

Jamshidi, M. (1980). An overview on the solutions of the algebraic matrix Riccati equation and

related problems. Large Scale Syst., 1, 167-192.

Jenkins, D. F., & Passino, K. M. (1999). An introduction to nonlinear analysis of fuzzy control

systems. J. Intell. Fuzzy Syst., 7, 75-103.

Jones, J. (1993). A real time database/models base/expert system in predictive microbiology. J.

Ind. Microbiol., 12, 268-272.

Joshi, H. R. (2002). Optimal control of an HIV immunology model. Optim. Control Appl. Meth.,

23, 199-213.

Kawamoto, S., Tada, K., Ishigame, A., & Taniguchi, T. (1993). An approach to stability analysis

of second order fuzzy systems. IEEE T. Neural Netw., 4, 919-930.

Keber, C., & Schuster, M. G. (2002). Option valuation with generalized ant programming. In

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002).

Kirschner, D., & Webb, G. F. (1998). Immunotherapy of HIV-1 infection. J. Biol Syst., 6(1),

71-83.

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural

99

selection. MIT Press, Cambridge, MA.

Koza, J. R. (1994). Genetic programming II: Automatic discovery of reusable programs. MIT

Press, Cambridge, MA,.

Kramer, O. (2010). Evolutionary self-adaptation: a survey of operators and stratergy parameters.

Evol. Intel., 3, 51-65.

Kumaresan, N. (2010). Optimal control for stochastic linear quadratic singular Takagi-Sugeno

fuzzy system using ant colony programming. Neural Parallel Sci. Comput., 18, 89-108.

Kumaresan, N. (2011). Optimal control for stochastic linear quadratic singular periodic neuro

Takagi-Sugeno fuzzy system with singular cost using ant colony programming. Appl. Math.

Model., 35, 3797-3808.

Kumaresan, N. (2012). Optimal control for stochastic singular integro-differential Takagi-Sugeno

fuzzy system using ant colony programming. Filomat, 26:3, 415-426.

Kumaresan, N., & Balasubramaniam, P. (2008). Optimal control for stochastic nonlinear singular

system using neural network. Comput. Math. Appl., 56, 2145-2154.

Kumaresan, N., & Balasubramaniam, P. (2010). Singular optimal control for stochastic linear

quadratic singular system using ant colony programming. Int. J. Comput. Math., 87(14),

3311-3327.

Kumaresan, N., & Ratnavelu, K. (2014). Optimal control for stochastic linear quadratic singular

neuro Takagi-Sugeno fuzzy system with singular cost using genetic programming. Appl.

Soft. Comput., 24, 1136-1144.

Lagaris, I., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary and

partial differential equations. IEEE T. Neural Netw., 9, 987-1000.

Leite, C. R. M., Sizilio, G. R. A., Neto, A. D. D., Valentim, R. A. M., & Guerreiro, A. M. (2011).

A fuzzy model for processing and monitoring vital signs in ICU patients. Biomed. Eng.

Online, 10, 1-17.

Lopez, S., Prieto, M., Dijkstra, J., Dhanoa, M. S., & France, J. (2004). Statistical evaluation of

mathematical models for microbial growth. Int. J. Food Microbiol., 96, 289-300.

Miguel, A. M., Carlos, A. P., & Sanchez, E. (2006). A genetic-fuzzy system approach to control a

model of the HIV infection dynamics. In IEEE International Conference on Fuzzy Systems.

Miller, W. T., Sutton, R., & Werbos, P. (1990). Neural networks for control. Cambridge, MA,

MIT Press.

Neumeyer, K., Ross, T., & McMeekin, T. A. (1997). Development of pseudomonas predictor.

Aust. J. Dairy Technol., 52, 120-122.

100

Nicolai, B. M., & Baerdemaeker, J. D. (1996). Chefcad: A software package for food recipe design

and analysis. In Proceedings of the Software and Food Safety Conference; Leatherhead

Food RA: Leatherhead U. K.

Oltean, M. (2005). Evolving evolutionary algorithms using linear genetic programming. Evol.

Comput., 13, 387-410.

Oysal, Y., Becerikli, Y., & Konar, A. F. (2006). Modified descend curvature based fixed form

fuzzy optimal control of nonlinear dynamical systems,. Comput. Chem. Eng., 30, 878-888.

Parisini, T., & Zoppoli, R. (1998). Neural aapproximation for infinite horizon optimal control of

nonlinear stochastic systems. IEEE Trans. Neural Netw., 9, 1388-1408.

Pin, C., Gonzalo, F., Ordonez, J. A., & Baranyi, J. (2002). Analysing the lag-growth rate relation-

ship of yersinia enterocolitica. Int. J. Food Microbiol., 73, 197-201.

Polycarpou, M. M. (1996). Stable adaptive neural control scheme for nonlinear systems. IEEE

Trans. Automat. Contrl., 41, 447-451.

Rice, J. R. (1976). The algorithm selection problem. Adv. Comput., 15, 65-118.

Roshanfeki, M., Farah, M. H., & Rahbarian, R. (2014). A different approach of optimal control

on an HIV immunology model. Ain Shams Eng. J., 5, 213-219.

Roux, O., & Fonlupt, C. (2002). Ant programming: Or how to use ants for automatic program-

ming. In Proceedings of ANTS00, Brussels, Belgium.

Rovithakis, G. A., & Christodoulou, M. A. (1994). Adaptive control of unknown plants using

dynamical neural networks. IEEE Trans. Systems, Man and Cybernetics, 24, 400-412.

Sadegh, N. (1993). A perceptron network for functional identification and control of nonlinear

systems. IEEE Trans. Neural Networks, 4, 982-988.

Shirakawa, S., Ogino, S., & Nagao, T. (2011). Automatic construction of programs using dynamic

ant programming,. Ant Colony Optimization-Methods and Applications, 75-88.

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling

and control. IEEE Trans. Syst. Man Cyber., 15, 116-132.

Tsoulos, I. G., & Lagaris, I. E. (2006). Solving differential equations with genetic programming.

Genet Program Evolvable Mach, 7, 33-54.

Van Impe, J. F., Poschet, F. P., Geeraerd, A. H., & Vereecken, K. M. (2005). Towards a novel

class of predictive micromicr growth models. Int. J. Food Microbiol., 100, 97-105.

Van Impe, J. F., Poschet, F. P., Nicolai, B. M., & Geeraerd, A. H. (2006). S and P-type models a

novel class of predictive microbial growth models. In 13th World Congress of Food Science

and Technology,.

101

Vincent Antony Kumar, A., & Balasubramaniam, P. (2007). Optimal control for linear singular

system using genetic programming. Appl. Math. Comput., 192(1), 78-89.

Wang, L. X. (1998). Stable and optial fuzzy control of linearsystems. IEEE Trans. Fuzzy Syst.,

6(1), 137-143.

Wijtzes, T., Riet, K. A. V., in’t Veld, J., & Zwietering, M. H. (1998). A decision support system

for the prediction of microbial food safety and food quality. Int. J. Food Microbiol., 42,

79-90.

Wu, S. J., Chiang, H. H., Lin, H. T., & Lee, T. T. (2005). Neural network based optimal fuzzy

controller design for nonlinear systems. Fuzzy Set. Syst., 154, 182-207.

Ying, H. (1998). Sufficient conditions on uniform approximation of multivariate functions by

general takagi-sugeno fuzzy systems with linear rule consequence. IEEE Trans. Syst. Man

Cyber., 28, 515-521.

Zadeh, L. A. (1965). Fuzzy sets. Inf. Control., 8, 338-353.

Zarei, H., Kamyad, A. V., & Heydari, A. A. (2012). Fuzzy modeling and control of HIV infection.

Comput Math Methods Med., 1-17.

Zhou, Y., Liang, Y., & Wu, J. (2014). An optimal stratergy for HIV multitherapy. J. Comput.

Appl. Math., 263, 326-337.

Zwietering, M., Wijtzes, T., Wit, J., & Riet, K. A. V. (1992). A decision support system for

prediction of the microbial spoilage in foods. J. Food Prot., 55, 973-979.

102

