ABSTRACT

The current method for composition measurement of an industrial distillation column specifically offline method, is slow, tedious and could lead to inaccurate results. Among the advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. Principal component and partial least square analysis are used to determine the important variables surrounding the column prior to implementing the neural network. It is due to the different types of data available for the plant, which requires proper screening in determining the right input variables to the dynamic model. Statistical analysis is used as a model adequacy test for the composition prediction of n-butane and i-butane in the column. Simulation results showed that the Artificial Neural Network (ANN) can reliably predict the online composition of the column. The major contribution of the current research is the development of composition prediction of n-butane and i-butane using equation based neural network (NN) models. Based on statistical analysis, the results indicate that neural network equation, which is more robust in nature, predicts better than the PLS equation and RA equation based methods. The temperature predictions using neural network equation are also compared with partial least square (PLS) and regression analysis (RA) equations methods. A new technique for nonlinear system, which is based on hybrid neural network modeling, is proposed. The hybrid model consists of combination of residual composition and residual temperature with first principle in terms of mass and energy balance. Hybrid neural network equation performs better than the hybrid neural network, and neural network predictions to estimate composition and temperature for the column. The use of an inverse neural network and forward neural network are used for the direct control of a distillation column. The neural network used for the control strategy to track the set point of the top and bottom temperature. Neural network estimators are used to track the set point of the top and bottom composition together with disturbances. There are two types of controller used for control strategies which are the direct inverse control (DIC) and internal model controller (IMC). Based on the results, IMC and DIC were found to perform better in controlling the temperature with respect to set point changes and disturbances compared to conventional PID controllers.

ABSTRAK

Kaedah semasa untuk mengukur komposisi kolum penyulingan perindustrian kaedah khusus di luar talian, lambat, membosankan dan boleh membawa kepada keputusan yang tidak tepat. Antara kelebihan menggunakan komposisi dalam talian yang direka adalah untuk mengatasi kelewatan masa yang panjang yang diperkenalkan oleh sampel makmal dan memberikan anggaran yang lebih baik, yang sesuai untuk tujuan pemantauan dalam talian. Komponen utama dan sebahagian analisis kuasa dua terkecil yang digunakan untuk menentukan pembolehubah penting sekitar ruang sebelum melaksanakan rangkaian neural. Ia adalah disebabkan oleh pelbagai jenis data yang ada untuk industri, yang memerlukan pemeriksaan yang betul dalam menentukan pembolehubah input yang betul untuk model yang dinamik. Analisis statistik digunakan sebagai ujian kecukupan model ramalan komposisi daripada n-butana dan i-butana dalam ruang. Keputusan simulasi menunjukkan bahawa Rangkaian Neural Buatan (ANN) pasti boleh meramalkan komposisi talian lajur. Sumbangan utama kajian semasa adalah pembangunan ramalan komposisi n-butana dan i-butana menggunakan rangkaian neural (NN) model persamaan berasaskan. Berdasarkan analisis statistik, keputusan menunjukkan bahawa persamaan rangkaian neural, yang lebih teguh dalam alam semula jadi, meramalkan lebih baik daripada persamaan PLS dan persamaan RA kaedah berasaskan. Ramalan suhu menggunakan persamaan rangkaian neural juga berbanding kurangnya separa persegi (PLS) dan analisis regresi (RA) persamaan kaedah. Satu teknik baru untuk sistem tak linear, yang berasaskan pemodelan neural hibrid, adalah dicadangkan. Model hibrid terdiri daripada gabungan komposisi sisa dan sisa suhu dengan prinsip pertama dari segi jisim dan tenaga-kira. Hibrid persamaan rangkaian neural melakukan lebih baik daripada rangkaian neural hibrid, dan ramalan rangkaian neural untuk menganggarkan komposisi dan suhu bagi lajur. Penggunaan rangkaian neural songsang dan rangkaian neural hadapan digunakan untuk kawalan langsung lajur penyulingan. Rangkaian neural digunakan untuk strategi kawalan untuk mengesan titik set suhu bahagian atas dan bawah. Penganggar rangkaian neural digunakan untuk mengesan titik set komposisi atas dan bawah bersama-sama dengan gangguan. Terdapat dua jenis kawalan yang digunakan untuk strategi kawalan yang kawalan langsung songsang (DIC) dan pengawal model dalaman (IMC). Berdasarkan kepada keputusan, IMC dan DIC didapati prestasi yang lebih baik dalam mengawal suhu berkenaan untuk menetapkan titik perubahan dan gangguan berbanding dengan pengawal PID konvensional

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to Allah S.W.T for His Blessings and giving me strength to complete my PhD study for 5 years at University of Malaya. I would like to take this opportunity to thank University of Malaya for giving me an opportunity to complete my PhD here.

My sincere and heartfelt thanks to my supervisors, Prof Ir Dr Mohd Azlan Hussain and Dr Badrul Mohamed Jan in the Chemical Engineering Department, Faculty of Engineering for enlightening supervision and countless hours spent in sharing their insightful understanding, profound knowledge and valuable experiences throughout my PhD study.

A grateful thanks to all staff of PP(T)SB especially to Process Technology and Control Department (PTCD) staff members who are involved directly and indirectly in making my PhD study a valuable and beneficial experience for me.

Last but not least, I would also like to express a special thank to UTP for providing financial assistance to undergo my PhD study at University of Malaya.

TABLE OF CONTENTS

Abstract	iii
Abstrak	v
Acknowledgement	vii
Table of Contents	viii
List of Figures	xiii
List of Tables	xxii
Lis of Symbols and Abbreviations	xxiv
List of Appendices	xxvi

CHAF	CHAPTER 1 : INTRODUCTION 1			
1.1	Problem statement and motivation	2		
1.2	Objectives	6		
1.3	Scope of work	7		
1.4	Novelty	8		
1.5	Dissertation organization	8		

CHAI	CHAPTER 2 : LITERATURE REVIEW10				
2.1	Introd	uction1	0		
2.2	Neura	l network introduction1	0		
2.3	Types	of artificial neural network	11		
	2.3.1	Feedforward network	12		
	2.3.2	NARX network	12		
2.4	Learni	ing paradigms learning task	12		

	2.4.1	Supervised learning	.13
	2.4.2	Learning algorithms	13
	2.4.3	Levenberg-Marquardt method	14
2.5	Neura	l network design	15
	2.5.1	Procedure for obtaining the neural network models	16
2.6	Data p	pretreatment	. 18
	2.6.1	Principal component analysis (PCA)	. 18
	2.6.2	Partial least square (PLS)	. 22
	2.6.3	Literature review principal component and partial least square analys	is
		for distillation column	24
	2.6.4	Literature review modeling for distillation column especially	
		debutaniser column	26
	2.6.5	Literature review using neural network for distillation column	27
	2.6.6	Literature review hybrid modeling for chemical processes	30
	2.6.7	Literature review for control of the distillation column	34

CHAPTER 3: PLANT DESCRIPTION AND CASE STUDY OF THE

DEBU	JTANIS	SER COLUMN	. 46
3.1	Introd	uction	. 46
3.2	Plant o	description	46
3.3	Data g	generation: open loop, closed loop, extract close loop	50
3.4	Steady	y state and dynamic state	52
3.5	Open	loop response	56
	3.5.1	Step test overhead pressure	57
	3.5.2	Step test reflux flow rate	58
	3.5.3	Step test reboiler flow rate	60

	3.5.4	Close loop response61
	3.5.5	Validate online and simulation composition in close loop64
	3.5.6	Extract from close loop data66
3.6	Data p	pretreatment principal component analysis and partial least square68
	3.6.1	PCA and PLS analysis71

CHAPTER 4 : NEURAL NETWORK PROCESS MODEL FOR COMPOSITION

AND '	ГЕМРІ	ERATURE		
4.1	Introdu	action		
4.2	Methodology for modelling81			
4.3	Model	adequacy test for neural network to determine the hidden layer		
4.4	Neural	network prediction of n-butane composition (MIMO model)85		
	4.4.1	With partition into 3		
	4.4.2	Validate based on close loop data for n-butane93		
4.5	Model	data generation101		
	4.5.1	Neural network, Partial least square (PLS) and Regression Analysis (RA)		
		data sets101		
	4.5.2	Neural network n-butane equation based model103		
	4.5.3	PLS analysis105		
	4.5.4	Regression analysis105		
	4.5.5	Analysis of variance (ANOVA) n-butane107		
	4.5.6.	Comparison NN, PLS and RA109		
	4.5.7	Residual analysis118		
4.6	Neural	network design120		
	4.6.1	Neural network top and bottom temperature (MIMO model)121		
4.7	Neural	network, PLS and RA modeling temperature prediction127		

4.7.1	Neural network equation based127
4.7.2	PLS model128
4.7.3	Regression model129
4.7.4	Analysis of variance (ANOVA) results for neural network model130
4.7.5	Comparison NN, PLS and RA131
4.7.6	Residual analysis

CHAPTER 5 : HYBRID NEURAL NETWORK TO ESTIMATE COMPOSITION

AND TEMPERATURE FOR THE COLUMN......140

5.1	Introduction	140
5.2.	Hybrid model construction	141
5.3	Hybrid simulation of the distillation column	142
5.4	Mathematical modelling of the distillation column	143
5.5	Hybrid neural network (HNN) approach	148
5.6	Neural network hybrid modelling	149
5.7	Residual neural network n-butane	156
	5.7.1 With partition into 3	158
5.8	Residual top and bottom temperature neural network	161
	5.8.1 With partition into 3	163
5.9	Hybrid modelling of n-butane	167

CHAPTER 6 : ADVANCED PROCESS CONTROL......175

6.1	Introd	uction17	15
6.2	Neura	l network based control strategies17	7
	6.2.1	Direct Inverse Control (DIC) method17	'8
	6.2.2	Internal Model Control (IMC) method17	'9

	6.2.3	Neural r	networks models	.179
		6.2.3.1	Forward models	179
		6.2.3.2	Neural network estimator	.181
		6.2.3.3	Inverse models	.182
6.3	Neural network development			.184
	6.3.1	Set point	t changes	.184
	6.3.2	Disturba	nces test	.188
	n-buta	ine		
	6.3.3	Neural n	etwork estimator	.191

CHAPTER 7 : SUMMARY AND MAJOR CONTRIBUTION......196

7.1	Introduction	196
7.2	Summary of work	196
7.3	Major contribution of this work	198

CHAI	PTER 8 : CONCLUSION AND RECOMMENDATIONS	200
8.1	Conclusions	200
8.2	Recommendations and future works	201
Refere	ences	
List of	Publications and Papers Presented	211
Appen	ıdix	212

LIST OF FIGURES

Figure 2.1: General procedure to obtain the suitable neural network model17
Figure 2.2: Notation used in PCA19
Figure 2.3: A geometric illustration of a PCA model with two principal components t_1
and t ₂ 21
Figure 2.4: The X variables is defined as factors and Y variables are called responses.24
Figure 3.1: Flow chart for the refinery process
Figure 3.2: Debutaniser column configuration50
Figure 3.2a: Simulation flow chart
Figure 3.2b: Flow chart to extract close loop to obtain open loop data
Figure 3.3: top temperature
Figure 3.4: bottom temperature
Figure 3.5: receiver bottom temperature
Figure 3.6: light naphtha temperature57
Figure 3.7: reboiler outlet temperature
Figure 3.8: feed temperature
Figure 3.9: receiver overhead pressure
Figure 3.10: top temperature
Figure 3.11: bottom temperature
Figure 3.12: receiver bottom temperature
Figure 3.13: light naphtha temperature
Figure 3.14: reboiler outlet temperature
Figure 3.15: feed temperature
Figure 3.16: receiver overhead pressure
Figure 3.17: top temperature60
Figure 3.18: bottom temperature60

Figure 3.19: receiver bottom temperature
Figure 3.20: light naphtha temperature60
Figure 3.21: reboiler outlet temperature61
Figure 3.22: feed temperature61
Figure 3.23: receiver overhead pressure
Figure 3.24: Process variables of Temp 5 for controller settings based on PID, plant and
different set point
Figure 3.25: Process variables of Flow 1 for controller settings based on PID, plant and
different set point63
Figure 3.26: Process variables of Flow 2 for controller settings based on PID, plant and
different set point63
Figure 3.27: Process variables of Pressure 1 for controller settings based on PID, plant
and different set point64
Figure 3.28: Top composition n-butane65
Figure 3.29: Bottom composition n-butane65
Figure 3.30: Top composition i-butane65
Figure 3.31: Bottom composition i-butane
Figure 3.32: Temperature 567
Figure 3.33: Pressure 1
Figure 3.34: Debutaniser feed67
Figure 3.35: Debutaniser reflux flows
Figure 3.36: Manipulated variable Debutaniser
Figure 3.37: Manipulated variable reflux flow rate
Figure 3.38: Manipulated variable reboiler flow rate
Figure 3.39: Manipulated variable overhead pressure flow rate
Figure 3.40: Model window for PCA in SIMCA-P environment70

Figure 3.41: Component contribution plot overhead pressure flow rate	73
Figure 3.42: PLS i-butane	73
Figure 3.43: PLS n-butane	73
Figure 3.44: Component contribution plot reboiler flow rate	74
Figure 3.45: PLS i-butane	75
Figure 3.46: PLS n-butane	75
Figure 3.47: Component contribution plot reflux flow rate	76
Figure 3.48: PLS i-butane	76
Figure 3.49: PLS n-butane	76
Figure 3.50: Component contribution i-butane	77
Figure 3.51: PLS i-butane	77
Figure 3.52: Component contribution n-butane	78
Figure 3.53: PLS n-butane	78
Figure 4.1: Neural network architecture for n-butane	86
Figure 4.2: Profile of the RMSE of n-butane training	87
Figure 4.3: Profile of the RMSE of n-butane validation	87
Figure 4.4: Profile of the RMSE of n-butane testing	87
Figure 4.5: Actual and simulated n-butane top composition training	88
Figure 4.6: Actual and simulated n-butane bottom composition training	88
Figure 4.7: Actual and simulated n-butane top composition validation	88
Figure 4.8: Actual and simulated n-butane bottom composition validation	88
Figure 4.9: Actual and simulated n-butane top composition testing	89
Figure 4.10: Actual and simulated n-butane bottom composition testing	89
Figure 4.11: Actual and simulated n-butane top composition line plot training	89
Figure 4.12: Actual and simulated n-butane bottom composition line plot training	89
Figure 4.13: Actual and simulated n-butane top composition line plot validation	90

Figure 4.14: Actual and simulated n-butane bottom composition line plot validation90
Figure 4.15: Actual and simulated n-butane top composition line plot testing90
Figure 4.16: Actual and simulated n-butane bottom composition line plot testing90
Figure 4.17: Manipulated variable reboiler and reflux flow rate90
Figure 4.18: Actual and simulated n-butane top composition training94
Figure 4.19: Actual and simulated n-butane bottom composition training94
Figure 4.20: Actual and simulated n-butane top composition validation94
Figure 4.21: Actual and simulated n-butane bottom composition validation94
Figure 4.22: Actual and simulated n-butane top composition testing95
Figure 4.23: Actual and simulated n-butane bottom composition testing95
Figure 4.24: Actual and simulated n-butane top composition line plot training95
Figure 4.25: Actual and simulated n-butane bottom composition line plot training95
Figure 4.26: Actual and simulated n-butane top composition line plot validation96
Figure 4.27: Actual and simulated n-butane bottom composition line plot validation96
Figure 4.28: Actual and simulated n-butane top composition line plot testing96
Figure 4.29: Actual and simulated n-butane bottom composition line plot testing96
Figure. 4.30: Prediction versus actual value neural network equation top
composition n-butane110
Figure. 4.31: Prediction and actual value for top composition n-butane line plot111
Figure 4.32: Prediction versus actual value neural network equation bottom
composition n-butane112
Figure. 4.33: Prediction and actual value for bottom composition n-butane line plot112
Figure. 4.34: Prediction versus actual value PLS equation top composition n-butane.113
Figure. 4.35: Prediction and actual value for top composition n-butane line plot113
Figure. 4.36: Prediction versus actual value PLS equation bottom position n-butane114
Figure. 4.37: Prediction and actual value for bottom composition n-butane line plot115

Figure. 4.38: Prediction versus actual value RA equation top composition n-butane115
Figure. 4.39: Prediction and actual value for top composition n-butane line plot116
Figure. 4.40: Prediction versus actual value RA equation bottom composition
n-butane117
Figure 4.41: Prediction and actual value for bottom composition n-butane line plot117
Figure 4.42: Residual analysis for neural network equation, PLS equation and
regression analysis equation top composition n-butane
Figure 4.43: Residual analysis for neural network equation, PLS equation and
regression analysis equation bottom composition n-butane119
Figure 4.44: Neural network architecture for top and bottom temperature
Figure 4.45: Profile of the RMSE training122
Figure 4.46: Profile of the RMSE validation123
Figure 4.47: Profile of the RMSE testing123
Figure 4.48: Actual and simulated top temperature training123
Figure 4.49: Actual and simulated bottom temperature training123
Figure 4.50: Actual and simulated top temperature validation124
Figure 4.51: Actual and simulated bottom temperature validation124
Figure 4.52: Actual and simulated top temperature testing124
Figure 4.53: Actual and simulated bottom temperature testing124
Figure 4.54: Actual and simulated top composition line plot training124
Figure 4.55: Actual and simulated bottom composition line plot training124
Figure 4.56: Actual and simulated top temperature line plot validation125
Figure 4.57: Actual and simulated bottom temperature line plot validation125
Figure 4.58: Actual and simulated top temperature line plot testing125
Figure 4.59: Actual and simulated bottom temperature line plot testing125
Figure. 4.60: Prediction versus actual value neural network equation top
temperature131

Figure. 4.61: Prediction and actual value for top temperature line plot132
Figure. 4.62: Prediction versus actual value neural network equation bottom
temperature132
Figure. 4.63: Prediction and actual value for bottom temperature line plot133
Figure. 4.64: Prediction versus actual value PLS equation top temperature133
Figure. 4.65: Prediction and actual value for top temperature line plot134
Figure. 4.66: Prediction versus actual value PLS equation bottom temperature134
Figure. 4.67: Prediction and actual value for bottom temperature line plot135
Figure 4.68: Prediction versus actual value RA equation top temperature135
Figure. 4.69: Prediction and actual value for top temperature line plot
Figure. 4.70: Prediction versus actual value RA equation bottom temperature136
Figure 4.71: Prediction and actual value for bottom temperature line plot137
Figure 4.72: Residual analysis for neural network equation, PLS equation and
regression analysis equation top temperature138
Figure 4.73: Residual analysis for neural network equation, PLS equation and
regression analysis equation bottom temperature138
Figure 5.1: Two approaches used in HNN with FPM142
Figure 5.2: Hybrid model for the composition n-butane and temperature156
Figure 5.3: Neural network architecture for residual n-butane157
Figure 5.4: Profile of the RMSE of n-butane training158
Figure 5.5: Profile of the RMSE of n-butane validation158
Figure 5.6: Profile of the RMSE of n-butane testing158
Figure 5.7: Actual and simulated n-butane top residual composition training159
Figure 5.8: Actual and simulated n-butane bottom residual composition training159
Figure 5.9: Actual and simulated n-butane top residual composition validation159
Figure 5.10: Actual and simulated n-butane bottom residual composition validation159

Figure 5.11: Actual and simulated n-butane top residual composition testing159
Figure 5.12: Actual and simulated n-butane bottom residual composition testing159
Figure 5.13: Actual and simulated n-butane top composition line plot training160
Figure 5.14: Actual and simulated n-butane bottom composition line plot training160
Figure 5.15: Actual and simulated n-butane top residual composition line plot
validation160
Figure 5.16: Actual and simulated n-butane bottom residual composition line plot
validation160
Figure 5.17: Actual and simulated n-butane top residual composition line plot testing
Figure 5.18: Actual and simulated n-butane bottom residual composition line plot
testing161
Figure 5.19: Neural network architecture for residual top and bottom temperature162
Figure 5.20: Profile of the RMSE training
Figure 5.21: Profile of the RMSE validation164
Figure 5.22: Profile of the RMSE testing164
Figure 5.23: Actual and simulated top residual temperature training164
Figure 5.24: Actual and simulated bottom residual temperature training164
Figure 5.25: Actual and simulated top residual temperature validation165
Figure 5.26: Actual and simulated bottom residual temperature validation165
Figure 5.27: Actual and simulated top residual temperature testing165
Figure 5.28: Actual and simulated bottom residual temperature testing165
Figure 5.29: Actual and simulated top residual composition line plot training166
Figure 5.30: Actual and simulated bottom residual composition line plot training166
Figure 5.31: Actual and simulated top residual temperature line plot validation166
Figure 5.32: Actual and simulated bottom residual temperature line plot
validation166

Figure 5.33: Actual and simulated top residual temperature line plot testing167
Figure 5.34: Actual and simulated bottom residual temperature line plot testing167
Figure 5.35: Top composition n-butane first principle model168
Figure 5.36: Bottom composition n-butane first principle model168
Figure 5.37: Top temperature first principle model169
Figure 5.38: Bottom temperature first principle model169
Figure 5.39: Hybrid model, neural network and actual top composition n-butane170
Figure 5.40: Hybrid model, neural network and actual bottom composition n-butane170
Figure 5.41: Hybrid model, neural network and actual top temperature172
Figure 5.42: Hybrid model, neural network and actual bottom temperature172
Figure 6.1: Control loop of neural network based Direct Inverse Model Control (DIC)
Figure 6.2: Control loop of neural network based Internal Model Controller (IMC)178
Figure 6.2a: Forward and inverse models to control temperature
Figure 6.3: Set point top temperature
Figure 6.4: Set point bottom temperature
Figure 6.5: Manipulated variable temperature neural network
Figure 6.6:Manipulated variable temperature PID
Figure 6.7: Disturbances top temperature
Figure 6.8: Disturbances bottom temperature
Figure 6.9: Manipulated variable temperature neural network disturbances
Figure 6.10: Manipulated variable temperature PID disturbances
Figure 6.11: Neural network estimator for the top composition191
Figure 6.12: Neural network estimator for the bottom composition192
Figure 6.13: Manipulated variable composition for PID192
Figure 6.14: Top composition disturbances
Figure 6.15: Bottom composition disturbances194

Figure 6.16: Manipulated variable composition PID due to disturbances	194
Figure 6.17 Steady state error top temperature	194
Figure 6.18 Steady state error bottom temperature	195

LIST OF TABLES

Table 3.1: Debutaniser column specification
Table 3.2: Tag name description of the column
Table 3.3: Composition at the feed
Table 3.4: Properties of the compounds
Table 3.5: Controller setting and set point
Table 3.6: Important variables involved in the PCA analysis
Table 3.7: Data pretreatment after PCA and PLS
Table 3.8: Data pretreatment after PCA and PLS
Table 3.9: Important variables for neural network prediction of n-butane
Table 3.10: Important variables for neural network prediction of i-butane
Table 4.1: Important variables for neural network prediction
Table 4.2: Neural network architecture
Table 4.3: Statistical analysis for n-butane composition prediction
Table 4.4: Statistical analysis for online n-butane composition prediction
Table 4.5: ANOVA of the n-butane top composition
Table 4.6: ANOVA of n-butane bottom composition109
Table 4.7: Variables involved in the PLS analysis, regression analysis and neural
network n-butane
Table 4.8: n-butane statistical analysis of NN equation, PLS equation and RA equation
Table 4.9: Important variables for neural network prediction
Table 4.10: Neural network architecture
Table 4.11: Statistical analysis for temperature with 3 partition
Table 4.12: ANOVA of the n-butane top temperature
Table 4.13: ANOVA of n-butane bottom temperature

Table 4.14: Variables involved in the PLS analysis, regression analysis and neura	ıl
Network	131
Table 4.15: Statistical analysis of NN equation, PLS equation and RA equation.	137
Table 5.1: Important variables for neural network prediction	156
Table 5.2: Neural network architecture	157
Table 5.3: Important variables for neural network prediction	162
Table 5.4: Neural network architecture	163
Table 5.5: Statistical analysis for composition prediction n-butane	171
Table 5.6: Statistical analysis for temperature prediction	172
Table 5.7: Statistical analysis for robustness analysis variable Temp 6	174
Table 6.1:PID tuning	185
Table 6.2: Controller performance during set point changes	185
Table 6.3: Controller performance during disturbance changes	188
Table 6.4: Computing time	195

LIST OF SYMBOLS AND ABBREVIATIONS

AIC	:	Akaike information criterion	
ANN	:	Artificial neural network	
ANOVA	:	Analysis of variance	
BIC	:	Bayesian information criteria	
CDC	:	Correct Directional Change	
IAE	:	Integral absolute error	
ISE	:	Integral square of error	
LM	:	Levenberg-Marquardt	
MAPE	:	Mean Absolute Percentage Error	
MS	:	Mean of square	
NARX	:	Nonlinear autoregressive network with exogenous inputs	
PCA	:	Principal component analysis	
PLS	:	Partial least square	
R^2	:	Coefficient of determination	
RMSE	:	Root Mean Square Error	
SS	:	Sum of square	
A_t	:	Actual value	
C_p	:	Person correlation co-efficient	
D_i	:	Product $y_i \times \overline{y_i}$	
E_a	:	Actual value	
E_p	:	Predicted value	
$\overline{E_a}$:	Average actual value	
$\overline{E_p}$:	Average predicted value	
F_t	:	Predicted value	
Κ	:	Number of free model parameters	
MSE	:	Mean square error	
Ν	:	Number of observation	
R^2	:	R squared	
Т	:	Number of parameters	
df	:	Degree of freedom	
F	:	Statistical F value	
$x_{meamsured}$:	Measure value	
$\chi_{predicted}$:	Predicted	

- *y_i* : Difference actual and average actual
- $\overline{y_i}$: Difference predicted and average predicted
- σ^2 : Variance

LIST OF APPENDICES

Appendix 1.1: F	Results for i-butane	
Appendix 1 2. N	Neural network programming	245